mm: Don't pin ZERO_PAGE in pin_user_pages()
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
ef6a22b7 32#include <linux/slab.h>
1da177e4
LT
33
34struct mempolicy;
35struct anon_vma;
bf181b9f 36struct anon_vma_chain;
e8edc6e0 37struct user_struct;
bce617ed 38struct pt_regs;
1da177e4 39
5ef64cc8
LT
40extern int sysctl_page_lock_unfairness;
41
b7ec1bf3 42void mm_core_init(void);
597b7305
MH
43void init_mm_internals(void);
44
a9ee6cf5 45#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 46extern unsigned long max_mapnr;
fccc9987
JL
47
48static inline void set_max_mapnr(unsigned long limit)
49{
50 max_mapnr = limit;
51}
52#else
53static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
54#endif
55
ca79b0c2
AK
56extern atomic_long_t _totalram_pages;
57static inline unsigned long totalram_pages(void)
58{
59 return (unsigned long)atomic_long_read(&_totalram_pages);
60}
61
62static inline void totalram_pages_inc(void)
63{
64 atomic_long_inc(&_totalram_pages);
65}
66
67static inline void totalram_pages_dec(void)
68{
69 atomic_long_dec(&_totalram_pages);
70}
71
72static inline void totalram_pages_add(long count)
73{
74 atomic_long_add(count, &_totalram_pages);
75}
76
1da177e4 77extern void * high_memory;
1da177e4 78extern int page_cluster;
ea0ffd0c 79extern const int page_cluster_max;
1da177e4
LT
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
d07e2259
DC
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
1da177e4 98#include <asm/page.h>
1da177e4 99#include <asm/processor.h>
1da177e4 100
79442ed1
TC
101#ifndef __pa_symbol
102#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
103#endif
104
1dff8083
AB
105#ifndef page_to_virt
106#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
107#endif
108
568c5fe5
LA
109#ifndef lm_alias
110#define lm_alias(x) __va(__pa_symbol(x))
111#endif
112
593befa6
DD
113/*
114 * To prevent common memory management code establishing
115 * a zero page mapping on a read fault.
116 * This macro should be defined within <asm/pgtable.h>.
117 * s390 does this to prevent multiplexing of hardware bits
118 * related to the physical page in case of virtualization.
119 */
120#ifndef mm_forbids_zeropage
121#define mm_forbids_zeropage(X) (0)
122#endif
123
a4a3ede2
PT
124/*
125 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
126 * If an architecture decides to implement their own version of
127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
128 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 129 */
5470dea4 130#if BITS_PER_LONG == 64
3770e52f 131/* This function must be updated when the size of struct page grows above 96
5470dea4
AD
132 * or reduces below 56. The idea that compiler optimizes out switch()
133 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 134 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
135 * this can result in several of the writes here being dropped.
136 */
137#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
138static inline void __mm_zero_struct_page(struct page *page)
139{
140 unsigned long *_pp = (void *)page;
141
3770e52f 142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
5470dea4
AD
143 BUILD_BUG_ON(sizeof(struct page) & 7);
144 BUILD_BUG_ON(sizeof(struct page) < 56);
3770e52f 145 BUILD_BUG_ON(sizeof(struct page) > 96);
5470dea4
AD
146
147 switch (sizeof(struct page)) {
3770e52f
AB
148 case 96:
149 _pp[11] = 0;
150 fallthrough;
151 case 88:
152 _pp[10] = 0;
153 fallthrough;
5470dea4 154 case 80:
df561f66
GS
155 _pp[9] = 0;
156 fallthrough;
5470dea4 157 case 72:
df561f66
GS
158 _pp[8] = 0;
159 fallthrough;
5470dea4 160 case 64:
df561f66
GS
161 _pp[7] = 0;
162 fallthrough;
5470dea4
AD
163 case 56:
164 _pp[6] = 0;
165 _pp[5] = 0;
166 _pp[4] = 0;
167 _pp[3] = 0;
168 _pp[2] = 0;
169 _pp[1] = 0;
170 _pp[0] = 0;
171 }
172}
173#else
a4a3ede2
PT
174#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
175#endif
176
ea606cf5
AR
177/*
178 * Default maximum number of active map areas, this limits the number of vmas
179 * per mm struct. Users can overwrite this number by sysctl but there is a
180 * problem.
181 *
182 * When a program's coredump is generated as ELF format, a section is created
183 * per a vma. In ELF, the number of sections is represented in unsigned short.
184 * This means the number of sections should be smaller than 65535 at coredump.
185 * Because the kernel adds some informative sections to a image of program at
186 * generating coredump, we need some margin. The number of extra sections is
187 * 1-3 now and depends on arch. We use "5" as safe margin, here.
188 *
189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190 * not a hard limit any more. Although some userspace tools can be surprised by
191 * that.
192 */
193#define MAPCOUNT_ELF_CORE_MARGIN (5)
194#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195
196extern int sysctl_max_map_count;
197
c9b1d098 198extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 199extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 200
49f0ce5f
JM
201extern int sysctl_overcommit_memory;
202extern int sysctl_overcommit_ratio;
203extern unsigned long sysctl_overcommit_kbytes;
204
32927393
CH
205int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 loff_t *);
207int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
56f3547b
FT
209int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
49f0ce5f 211
1cfcee72 212#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 214#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
215#else
216#define nth_page(page,n) ((page) + (n))
659508f9 217#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 218#endif
1da177e4 219
27ac792c
AR
220/* to align the pointer to the (next) page boundary */
221#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222
335e52c2
DG
223/* to align the pointer to the (prev) page boundary */
224#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
225
0fa73b86 226/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 227#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 228
f86196ea 229#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
230static inline struct folio *lru_to_folio(struct list_head *head)
231{
232 return list_entry((head)->prev, struct folio, lru);
233}
f86196ea 234
5748fbc5
KW
235void setup_initial_init_mm(void *start_code, void *end_code,
236 void *end_data, void *brk);
237
1da177e4
LT
238/*
239 * Linux kernel virtual memory manager primitives.
240 * The idea being to have a "virtual" mm in the same way
241 * we have a virtual fs - giving a cleaner interface to the
242 * mm details, and allowing different kinds of memory mappings
243 * (from shared memory to executable loading to arbitrary
244 * mmap() functions).
245 */
246
490fc053 247struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
248struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249void vm_area_free(struct vm_area_struct *);
0d2ebf9c
SB
250/* Use only if VMA has no other users */
251void __vm_area_free(struct vm_area_struct *vma);
c43692e8 252
1da177e4 253#ifndef CONFIG_MMU
8feae131
DH
254extern struct rb_root nommu_region_tree;
255extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
256
257extern unsigned int kobjsize(const void *objp);
258#endif
259
260/*
605d9288 261 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 262 * When changing, update also include/trace/events/mmflags.h
1da177e4 263 */
cc2383ec
KK
264#define VM_NONE 0x00000000
265
1da177e4
LT
266#define VM_READ 0x00000001 /* currently active flags */
267#define VM_WRITE 0x00000002
268#define VM_EXEC 0x00000004
269#define VM_SHARED 0x00000008
270
7e2cff42 271/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
272#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
273#define VM_MAYWRITE 0x00000020
274#define VM_MAYEXEC 0x00000040
275#define VM_MAYSHARE 0x00000080
276
277#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
b6b7a8fa 278#ifdef CONFIG_MMU
16ba6f81 279#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
b6b7a8fa
DH
280#else /* CONFIG_MMU */
281#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282#define VM_UFFD_MISSING 0
283#endif /* CONFIG_MMU */
6aab341e 284#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 285#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 286
1da177e4
LT
287#define VM_LOCKED 0x00002000
288#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
289
290 /* Used by sys_madvise() */
291#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
292#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
293
294#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
295#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 296#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 297#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 298#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 299#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 300#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 301#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 302#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 303#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 304
d9104d1c
CG
305#ifdef CONFIG_MEM_SOFT_DIRTY
306# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
307#else
308# define VM_SOFTDIRTY 0
309#endif
310
b379d790 311#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
312#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
313#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 314#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 315
63c17fb8
DH
316#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
318#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
320#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 321#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
322#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
323#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
324#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
325#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 326#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
327#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
328
5212213a 329#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
330# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
331# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 332# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
333# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
334# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
335#ifdef CONFIG_PPC
336# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
337#else
338# define VM_PKEY_BIT4 0
8f62c883 339#endif
5212213a
RP
340#endif /* CONFIG_ARCH_HAS_PKEYS */
341
342#if defined(CONFIG_X86)
343# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
344#elif defined(CONFIG_PPC)
345# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
346#elif defined(CONFIG_PARISC)
347# define VM_GROWSUP VM_ARCH_1
348#elif defined(CONFIG_IA64)
349# define VM_GROWSUP VM_ARCH_1
74a04967
KA
350#elif defined(CONFIG_SPARC64)
351# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
352# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
353#elif defined(CONFIG_ARM64)
354# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
355# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
356#elif !defined(CONFIG_MMU)
357# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
358#endif
359
9f341931
CM
360#if defined(CONFIG_ARM64_MTE)
361# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
362# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
363#else
364# define VM_MTE VM_NONE
365# define VM_MTE_ALLOWED VM_NONE
366#endif
367
cc2383ec
KK
368#ifndef VM_GROWSUP
369# define VM_GROWSUP VM_NONE
370#endif
371
7677f7fd
AR
372#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
373# define VM_UFFD_MINOR_BIT 37
374# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
375#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
376# define VM_UFFD_MINOR VM_NONE
377#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
378
a8bef8ff
MG
379/* Bits set in the VMA until the stack is in its final location */
380#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
381
c62da0c3
AK
382#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
383
384/* Common data flag combinations */
385#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
388 VM_MAYWRITE | VM_MAYEXEC)
389#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
390 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
391
392#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
393#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
394#endif
395
1da177e4
LT
396#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
397#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
398#endif
399
400#ifdef CONFIG_STACK_GROWSUP
30bdbb78 401#define VM_STACK VM_GROWSUP
1da177e4 402#else
30bdbb78 403#define VM_STACK VM_GROWSDOWN
1da177e4
LT
404#endif
405
30bdbb78
KK
406#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
407
6cb4d9a2
AK
408/* VMA basic access permission flags */
409#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
410
411
b291f000 412/*
78f11a25 413 * Special vmas that are non-mergable, non-mlock()able.
b291f000 414 */
9050d7eb 415#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 416
b4443772
AK
417/* This mask prevents VMA from being scanned with khugepaged */
418#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
419
a0715cc2
AT
420/* This mask defines which mm->def_flags a process can inherit its parent */
421#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
422
e430a95a
SB
423/* This mask represents all the VMA flag bits used by mlock */
424#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
de60f5f1 425
2c2d57b5
KA
426/* Arch-specific flags to clear when updating VM flags on protection change */
427#ifndef VM_ARCH_CLEAR
428# define VM_ARCH_CLEAR VM_NONE
429#endif
430#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
431
1da177e4
LT
432/*
433 * mapping from the currently active vm_flags protection bits (the
434 * low four bits) to a page protection mask..
435 */
1da177e4 436
dde16072
PX
437/*
438 * The default fault flags that should be used by most of the
439 * arch-specific page fault handlers.
440 */
441#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
442 FAULT_FLAG_KILLABLE | \
443 FAULT_FLAG_INTERRUPTIBLE)
dde16072 444
4064b982
PX
445/**
446 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 447 * @flags: Fault flags.
4064b982
PX
448 *
449 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 450 * the mmap_lock for too long a time when waiting for another condition
4064b982 451 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
452 * mmap_lock in the first round to avoid potential starvation of other
453 * processes that would also want the mmap_lock.
4064b982
PX
454 *
455 * Return: true if the page fault allows retry and this is the first
456 * attempt of the fault handling; false otherwise.
457 */
da2f5eb3 458static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
459{
460 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
461 (!(flags & FAULT_FLAG_TRIED));
462}
463
282a8e03
RZ
464#define FAULT_FLAG_TRACE \
465 { FAULT_FLAG_WRITE, "WRITE" }, \
466 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
467 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
468 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
469 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
470 { FAULT_FLAG_TRIED, "TRIED" }, \
471 { FAULT_FLAG_USER, "USER" }, \
472 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee 473 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
55324e46
SB
474 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
475 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
282a8e03 476
54cb8821 477/*
11192337 478 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
479 * ->fault function. The vma's ->fault is responsible for returning a bitmask
480 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 481 *
c20cd45e
MH
482 * MM layer fills up gfp_mask for page allocations but fault handler might
483 * alter it if its implementation requires a different allocation context.
484 *
9b4bdd2f 485 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 486 */
d0217ac0 487struct vm_fault {
5857c920 488 const struct {
742d3372
WD
489 struct vm_area_struct *vma; /* Target VMA */
490 gfp_t gfp_mask; /* gfp mask to be used for allocations */
491 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
492 unsigned long address; /* Faulting virtual address - masked */
493 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 494 };
da2f5eb3 495 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 496 * XXX: should really be 'const' */
82b0f8c3 497 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 498 * the 'address' */
a2d58167
DJ
499 pud_t *pud; /* Pointer to pud entry matching
500 * the 'address'
501 */
5db4f15c
YS
502 union {
503 pte_t orig_pte; /* Value of PTE at the time of fault */
504 pmd_t orig_pmd; /* Value of PMD at the time of fault,
505 * used by PMD fault only.
506 */
507 };
d0217ac0 508
3917048d 509 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 510 struct page *page; /* ->fault handlers should return a
83c54070 511 * page here, unless VM_FAULT_NOPAGE
d0217ac0 512 * is set (which is also implied by
83c54070 513 * VM_FAULT_ERROR).
d0217ac0 514 */
82b0f8c3 515 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
516 pte_t *pte; /* Pointer to pte entry matching
517 * the 'address'. NULL if the page
518 * table hasn't been allocated.
519 */
520 spinlock_t *ptl; /* Page table lock.
521 * Protects pte page table if 'pte'
522 * is not NULL, otherwise pmd.
523 */
7267ec00 524 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
525 * vm_ops->map_pages() sets up a page
526 * table from atomic context.
7267ec00
KS
527 * do_fault_around() pre-allocates
528 * page table to avoid allocation from
529 * atomic context.
530 */
54cb8821 531};
1da177e4 532
c791ace1
DJ
533/* page entry size for vm->huge_fault() */
534enum page_entry_size {
535 PE_SIZE_PTE = 0,
536 PE_SIZE_PMD,
537 PE_SIZE_PUD,
538};
539
1da177e4
LT
540/*
541 * These are the virtual MM functions - opening of an area, closing and
542 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 543 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
544 */
545struct vm_operations_struct {
546 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
547 /**
548 * @close: Called when the VMA is being removed from the MM.
549 * Context: User context. May sleep. Caller holds mmap_lock.
550 */
1da177e4 551 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
552 /* Called any time before splitting to check if it's allowed */
553 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 554 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
555 /*
556 * Called by mprotect() to make driver-specific permission
557 * checks before mprotect() is finalised. The VMA must not
3e0ee843 558 * be modified. Returns 0 if mprotect() can proceed.
95bb7c42
SC
559 */
560 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
561 unsigned long end, unsigned long newflags);
1c8f4220
SJ
562 vm_fault_t (*fault)(struct vm_fault *vmf);
563 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
564 enum page_entry_size pe_size);
f9ce0be7 565 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 566 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 567 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
568
569 /* notification that a previously read-only page is about to become
570 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 571 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 572
dd906184 573 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 574 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 575
28b2ee20 576 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
577 * for use by special VMAs. See also generic_access_phys() for a generic
578 * implementation useful for any iomem mapping.
28b2ee20
RR
579 */
580 int (*access)(struct vm_area_struct *vma, unsigned long addr,
581 void *buf, int len, int write);
78d683e8
AL
582
583 /* Called by the /proc/PID/maps code to ask the vma whether it
584 * has a special name. Returning non-NULL will also cause this
585 * vma to be dumped unconditionally. */
586 const char *(*name)(struct vm_area_struct *vma);
587
1da177e4 588#ifdef CONFIG_NUMA
a6020ed7
LS
589 /*
590 * set_policy() op must add a reference to any non-NULL @new mempolicy
591 * to hold the policy upon return. Caller should pass NULL @new to
592 * remove a policy and fall back to surrounding context--i.e. do not
593 * install a MPOL_DEFAULT policy, nor the task or system default
594 * mempolicy.
595 */
1da177e4 596 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
597
598 /*
599 * get_policy() op must add reference [mpol_get()] to any policy at
600 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
601 * in mm/mempolicy.c will do this automatically.
602 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 603 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
604 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
605 * must return NULL--i.e., do not "fallback" to task or system default
606 * policy.
607 */
1da177e4
LT
608 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
609 unsigned long addr);
610#endif
667a0a06
DV
611 /*
612 * Called by vm_normal_page() for special PTEs to find the
613 * page for @addr. This is useful if the default behavior
614 * (using pte_page()) would not find the correct page.
615 */
616 struct page *(*find_special_page)(struct vm_area_struct *vma,
617 unsigned long addr);
1da177e4
LT
618};
619
ef6a22b7
MG
620#ifdef CONFIG_NUMA_BALANCING
621static inline void vma_numab_state_init(struct vm_area_struct *vma)
622{
623 vma->numab_state = NULL;
624}
625static inline void vma_numab_state_free(struct vm_area_struct *vma)
626{
627 kfree(vma->numab_state);
628}
629#else
630static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
631static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
632#endif /* CONFIG_NUMA_BALANCING */
633
5e31275c 634#ifdef CONFIG_PER_VMA_LOCK
5e31275c
SB
635/*
636 * Try to read-lock a vma. The function is allowed to occasionally yield false
637 * locked result to avoid performance overhead, in which case we fall back to
638 * using mmap_lock. The function should never yield false unlocked result.
639 */
640static inline bool vma_start_read(struct vm_area_struct *vma)
641{
642 /* Check before locking. A race might cause false locked result. */
643 if (vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))
644 return false;
645
c7f8f31c 646 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
5e31275c
SB
647 return false;
648
649 /*
650 * Overflow might produce false locked result.
651 * False unlocked result is impossible because we modify and check
c7f8f31c 652 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
5e31275c
SB
653 * modification invalidates all existing locks.
654 */
655 if (unlikely(vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))) {
c7f8f31c 656 up_read(&vma->vm_lock->lock);
5e31275c
SB
657 return false;
658 }
659 return true;
660}
661
662static inline void vma_end_read(struct vm_area_struct *vma)
663{
664 rcu_read_lock(); /* keeps vma alive till the end of up_read */
c7f8f31c 665 up_read(&vma->vm_lock->lock);
5e31275c
SB
666 rcu_read_unlock();
667}
668
55fd6fcc 669static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
5e31275c 670{
5e31275c
SB
671 mmap_assert_write_locked(vma->vm_mm);
672
673 /*
674 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
675 * mm->mm_lock_seq can't be concurrently modified.
676 */
55fd6fcc
SB
677 *mm_lock_seq = READ_ONCE(vma->vm_mm->mm_lock_seq);
678 return (vma->vm_lock_seq == *mm_lock_seq);
679}
680
681static inline void vma_start_write(struct vm_area_struct *vma)
682{
683 int mm_lock_seq;
684
685 if (__is_vma_write_locked(vma, &mm_lock_seq))
5e31275c
SB
686 return;
687
c7f8f31c 688 down_write(&vma->vm_lock->lock);
5e31275c 689 vma->vm_lock_seq = mm_lock_seq;
c7f8f31c 690 up_write(&vma->vm_lock->lock);
5e31275c
SB
691}
692
55fd6fcc
SB
693static inline bool vma_try_start_write(struct vm_area_struct *vma)
694{
695 int mm_lock_seq;
696
697 if (__is_vma_write_locked(vma, &mm_lock_seq))
698 return true;
699
700 if (!down_write_trylock(&vma->vm_lock->lock))
701 return false;
702
703 vma->vm_lock_seq = mm_lock_seq;
704 up_write(&vma->vm_lock->lock);
705 return true;
706}
707
5e31275c
SB
708static inline void vma_assert_write_locked(struct vm_area_struct *vma)
709{
55fd6fcc
SB
710 int mm_lock_seq;
711
712 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
5e31275c
SB
713}
714
457f67be
SB
715static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
716{
717 /* When detaching vma should be write-locked */
718 if (detached)
719 vma_assert_write_locked(vma);
720 vma->detached = detached;
721}
722
50ee3253
SB
723struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
724 unsigned long address);
725
5e31275c
SB
726#else /* CONFIG_PER_VMA_LOCK */
727
728static inline void vma_init_lock(struct vm_area_struct *vma) {}
729static inline bool vma_start_read(struct vm_area_struct *vma)
730 { return false; }
731static inline void vma_end_read(struct vm_area_struct *vma) {}
732static inline void vma_start_write(struct vm_area_struct *vma) {}
55fd6fcc
SB
733static inline bool vma_try_start_write(struct vm_area_struct *vma)
734 { return true; }
5e31275c 735static inline void vma_assert_write_locked(struct vm_area_struct *vma) {}
457f67be
SB
736static inline void vma_mark_detached(struct vm_area_struct *vma,
737 bool detached) {}
5e31275c
SB
738
739#endif /* CONFIG_PER_VMA_LOCK */
740
c7f8f31c
SB
741/*
742 * WARNING: vma_init does not initialize vma->vm_lock.
743 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
744 */
027232da
KS
745static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
746{
bfd40eaf
KS
747 static const struct vm_operations_struct dummy_vm_ops = {};
748
a670468f 749 memset(vma, 0, sizeof(*vma));
027232da 750 vma->vm_mm = mm;
bfd40eaf 751 vma->vm_ops = &dummy_vm_ops;
027232da 752 INIT_LIST_HEAD(&vma->anon_vma_chain);
457f67be 753 vma_mark_detached(vma, false);
ef6a22b7 754 vma_numab_state_init(vma);
027232da
KS
755}
756
bc292ab0
SB
757/* Use when VMA is not part of the VMA tree and needs no locking */
758static inline void vm_flags_init(struct vm_area_struct *vma,
759 vm_flags_t flags)
760{
761 ACCESS_PRIVATE(vma, __vm_flags) = flags;
762}
763
764/* Use when VMA is part of the VMA tree and modifications need coordination */
765static inline void vm_flags_reset(struct vm_area_struct *vma,
766 vm_flags_t flags)
767{
c7322933 768 vma_start_write(vma);
bc292ab0
SB
769 vm_flags_init(vma, flags);
770}
771
601c3c29
SB
772static inline void vm_flags_reset_once(struct vm_area_struct *vma,
773 vm_flags_t flags)
774{
c7322933 775 vma_start_write(vma);
601c3c29
SB
776 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
777}
778
bc292ab0
SB
779static inline void vm_flags_set(struct vm_area_struct *vma,
780 vm_flags_t flags)
781{
c7322933 782 vma_start_write(vma);
bc292ab0
SB
783 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
784}
785
786static inline void vm_flags_clear(struct vm_area_struct *vma,
787 vm_flags_t flags)
788{
c7322933 789 vma_start_write(vma);
bc292ab0
SB
790 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
791}
792
68f48381
SB
793/*
794 * Use only if VMA is not part of the VMA tree or has no other users and
795 * therefore needs no locking.
796 */
797static inline void __vm_flags_mod(struct vm_area_struct *vma,
798 vm_flags_t set, vm_flags_t clear)
799{
800 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
801}
802
bc292ab0
SB
803/*
804 * Use only when the order of set/clear operations is unimportant, otherwise
805 * use vm_flags_{set|clear} explicitly.
806 */
807static inline void vm_flags_mod(struct vm_area_struct *vma,
808 vm_flags_t set, vm_flags_t clear)
809{
c7322933 810 vma_start_write(vma);
68f48381 811 __vm_flags_mod(vma, set, clear);
bc292ab0
SB
812}
813
bfd40eaf
KS
814static inline void vma_set_anonymous(struct vm_area_struct *vma)
815{
816 vma->vm_ops = NULL;
817}
818
43675e6f
YS
819static inline bool vma_is_anonymous(struct vm_area_struct *vma)
820{
821 return !vma->vm_ops;
822}
823
222100ee
AK
824static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
825{
826 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
827
828 if (!maybe_stack)
829 return false;
830
831 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
832 VM_STACK_INCOMPLETE_SETUP)
833 return true;
834
835 return false;
836}
837
7969f226
AK
838static inline bool vma_is_foreign(struct vm_area_struct *vma)
839{
840 if (!current->mm)
841 return true;
842
843 if (current->mm != vma->vm_mm)
844 return true;
845
846 return false;
847}
3122e80e
AK
848
849static inline bool vma_is_accessible(struct vm_area_struct *vma)
850{
6cb4d9a2 851 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
852}
853
f39af059
MWO
854static inline
855struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
856{
b62b633e 857 return mas_find(&vmi->mas, max - 1);
f39af059
MWO
858}
859
860static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
861{
862 /*
b62b633e 863 * Uses mas_find() to get the first VMA when the iterator starts.
f39af059
MWO
864 * Calling mas_next() could skip the first entry.
865 */
b62b633e 866 return mas_find(&vmi->mas, ULONG_MAX);
f39af059
MWO
867}
868
869static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
870{
871 return mas_prev(&vmi->mas, 0);
872}
873
874static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
875{
876 return vmi->mas.index;
877}
878
b62b633e
LH
879static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
880{
881 return vmi->mas.last + 1;
882}
883static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
884 unsigned long count)
885{
886 return mas_expected_entries(&vmi->mas, count);
887}
888
889/* Free any unused preallocations */
890static inline void vma_iter_free(struct vma_iterator *vmi)
891{
892 mas_destroy(&vmi->mas);
893}
894
895static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
896 struct vm_area_struct *vma)
897{
898 vmi->mas.index = vma->vm_start;
899 vmi->mas.last = vma->vm_end - 1;
900 mas_store(&vmi->mas, vma);
901 if (unlikely(mas_is_err(&vmi->mas)))
902 return -ENOMEM;
903
904 return 0;
905}
906
907static inline void vma_iter_invalidate(struct vma_iterator *vmi)
908{
909 mas_pause(&vmi->mas);
910}
911
912static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
913{
914 mas_set(&vmi->mas, addr);
915}
916
f39af059
MWO
917#define for_each_vma(__vmi, __vma) \
918 while (((__vma) = vma_next(&(__vmi))) != NULL)
919
920/* The MM code likes to work with exclusive end addresses */
921#define for_each_vma_range(__vmi, __vma, __end) \
b62b633e 922 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
f39af059 923
43675e6f
YS
924#ifdef CONFIG_SHMEM
925/*
926 * The vma_is_shmem is not inline because it is used only by slow
927 * paths in userfault.
928 */
929bool vma_is_shmem(struct vm_area_struct *vma);
d09e8ca6 930bool vma_is_anon_shmem(struct vm_area_struct *vma);
43675e6f
YS
931#else
932static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
d09e8ca6 933static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
43675e6f
YS
934#endif
935
936int vma_is_stack_for_current(struct vm_area_struct *vma);
937
8b11ec1b
LT
938/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
939#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
940
1da177e4
LT
941struct mmu_gather;
942struct inode;
943
5eb5cea1
MWO
944/*
945 * compound_order() can be called without holding a reference, which means
946 * that niceties like page_folio() don't work. These callers should be
947 * prepared to handle wild return values. For example, PG_head may be
948 * set before _folio_order is initialised, or this may be a tail page.
949 * See compaction.c for some good examples.
950 */
5bf34d7c
MWO
951static inline unsigned int compound_order(struct page *page)
952{
5eb5cea1
MWO
953 struct folio *folio = (struct folio *)page;
954
955 if (!test_bit(PG_head, &folio->flags))
5bf34d7c 956 return 0;
5eb5cea1 957 return folio->_folio_order;
5bf34d7c
MWO
958}
959
960/**
961 * folio_order - The allocation order of a folio.
962 * @folio: The folio.
963 *
964 * A folio is composed of 2^order pages. See get_order() for the definition
965 * of order.
966 *
967 * Return: The order of the folio.
968 */
969static inline unsigned int folio_order(struct folio *folio)
970{
c3a15bff
MWO
971 if (!folio_test_large(folio))
972 return 0;
973 return folio->_folio_order;
5bf34d7c
MWO
974}
975
71e3aac0 976#include <linux/huge_mm.h>
1da177e4
LT
977
978/*
979 * Methods to modify the page usage count.
980 *
981 * What counts for a page usage:
982 * - cache mapping (page->mapping)
983 * - private data (page->private)
984 * - page mapped in a task's page tables, each mapping
985 * is counted separately
986 *
987 * Also, many kernel routines increase the page count before a critical
988 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
989 */
990
991/*
da6052f7 992 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 993 */
7c8ee9a8
NP
994static inline int put_page_testzero(struct page *page)
995{
fe896d18
JK
996 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
997 return page_ref_dec_and_test(page);
7c8ee9a8 998}
1da177e4 999
b620f633
MWO
1000static inline int folio_put_testzero(struct folio *folio)
1001{
1002 return put_page_testzero(&folio->page);
1003}
1004
1da177e4 1005/*
7c8ee9a8
NP
1006 * Try to grab a ref unless the page has a refcount of zero, return false if
1007 * that is the case.
8e0861fa
AK
1008 * This can be called when MMU is off so it must not access
1009 * any of the virtual mappings.
1da177e4 1010 */
c2530328 1011static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 1012{
fe896d18 1013 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 1014}
1da177e4 1015
3c1ea2c7
VMO
1016static inline struct folio *folio_get_nontail_page(struct page *page)
1017{
1018 if (unlikely(!get_page_unless_zero(page)))
1019 return NULL;
1020 return (struct folio *)page;
1021}
1022
53df8fdc 1023extern int page_is_ram(unsigned long pfn);
124fe20d
DW
1024
1025enum {
1026 REGION_INTERSECTS,
1027 REGION_DISJOINT,
1028 REGION_MIXED,
1029};
1030
1c29f25b
TK
1031int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1032 unsigned long desc);
53df8fdc 1033
48667e7a 1034/* Support for virtually mapped pages */
b3bdda02
CL
1035struct page *vmalloc_to_page(const void *addr);
1036unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 1037
0738c4bb
PM
1038/*
1039 * Determine if an address is within the vmalloc range
1040 *
1041 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1042 * is no special casing required.
1043 */
9bd3bb67
AK
1044
1045#ifndef is_ioremap_addr
1046#define is_ioremap_addr(x) is_vmalloc_addr(x)
1047#endif
1048
81ac3ad9 1049#ifdef CONFIG_MMU
186525bd 1050extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
1051extern int is_vmalloc_or_module_addr(const void *x);
1052#else
186525bd
IM
1053static inline bool is_vmalloc_addr(const void *x)
1054{
1055 return false;
1056}
934831d0 1057static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
1058{
1059 return 0;
1060}
1061#endif
9e2779fa 1062
74e8ee47
MWO
1063/*
1064 * How many times the entire folio is mapped as a single unit (eg by a
1065 * PMD or PUD entry). This is probably not what you want, except for
cb67f428
HD
1066 * debugging purposes - it does not include PTE-mapped sub-pages; look
1067 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
74e8ee47
MWO
1068 */
1069static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 1070{
74e8ee47 1071 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1aa4d03b 1072 return atomic_read(&folio->_entire_mapcount) + 1;
53f9263b
KS
1073}
1074
70b50f94
AA
1075/*
1076 * The atomic page->_mapcount, starts from -1: so that transitions
1077 * both from it and to it can be tracked, using atomic_inc_and_test
1078 * and atomic_add_negative(-1).
1079 */
22b751c3 1080static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
1081{
1082 atomic_set(&(page)->_mapcount, -1);
1083}
1084
c97eeb8f
MWO
1085/**
1086 * page_mapcount() - Number of times this precise page is mapped.
1087 * @page: The page.
1088 *
1089 * The number of times this page is mapped. If this page is part of
1090 * a large folio, it includes the number of times this page is mapped
1091 * as part of that folio.
6988f31d 1092 *
c97eeb8f 1093 * The result is undefined for pages which cannot be mapped into userspace.
6988f31d 1094 * For example SLAB or special types of pages. See function page_has_type().
c97eeb8f 1095 * They use this field in struct page differently.
6988f31d 1096 */
70b50f94
AA
1097static inline int page_mapcount(struct page *page)
1098{
cb67f428 1099 int mapcount = atomic_read(&page->_mapcount) + 1;
b20ce5e0 1100
c97eeb8f
MWO
1101 if (unlikely(PageCompound(page)))
1102 mapcount += folio_entire_mapcount(page_folio(page));
1103
1104 return mapcount;
b20ce5e0
KS
1105}
1106
b14224fb 1107int folio_total_mapcount(struct folio *folio);
4ba1119c 1108
cb67f428
HD
1109/**
1110 * folio_mapcount() - Calculate the number of mappings of this folio.
1111 * @folio: The folio.
1112 *
1113 * A large folio tracks both how many times the entire folio is mapped,
1114 * and how many times each individual page in the folio is mapped.
1115 * This function calculates the total number of times the folio is
1116 * mapped.
1117 *
1118 * Return: The number of times this folio is mapped.
1119 */
1120static inline int folio_mapcount(struct folio *folio)
4ba1119c 1121{
cb67f428
HD
1122 if (likely(!folio_test_large(folio)))
1123 return atomic_read(&folio->_mapcount) + 1;
b14224fb 1124 return folio_total_mapcount(folio);
4ba1119c
MWO
1125}
1126
b20ce5e0
KS
1127static inline int total_mapcount(struct page *page)
1128{
be5ef2d9
HD
1129 if (likely(!PageCompound(page)))
1130 return atomic_read(&page->_mapcount) + 1;
b14224fb 1131 return folio_total_mapcount(page_folio(page));
be5ef2d9
HD
1132}
1133
1134static inline bool folio_large_is_mapped(struct folio *folio)
1135{
4b51634c 1136 /*
1aa4d03b 1137 * Reading _entire_mapcount below could be omitted if hugetlb
eec20426 1138 * participated in incrementing nr_pages_mapped when compound mapped.
4b51634c 1139 */
eec20426 1140 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1aa4d03b 1141 atomic_read(&folio->_entire_mapcount) >= 0;
cb67f428
HD
1142}
1143
1144/**
1145 * folio_mapped - Is this folio mapped into userspace?
1146 * @folio: The folio.
1147 *
1148 * Return: True if any page in this folio is referenced by user page tables.
1149 */
1150static inline bool folio_mapped(struct folio *folio)
1151{
be5ef2d9
HD
1152 if (likely(!folio_test_large(folio)))
1153 return atomic_read(&folio->_mapcount) >= 0;
1154 return folio_large_is_mapped(folio);
1155}
1156
1157/*
1158 * Return true if this page is mapped into pagetables.
1159 * For compound page it returns true if any sub-page of compound page is mapped,
1160 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1161 */
1162static inline bool page_mapped(struct page *page)
1163{
1164 if (likely(!PageCompound(page)))
1165 return atomic_read(&page->_mapcount) >= 0;
1166 return folio_large_is_mapped(page_folio(page));
70b50f94
AA
1167}
1168
b49af68f
CL
1169static inline struct page *virt_to_head_page(const void *x)
1170{
1171 struct page *page = virt_to_page(x);
ccaafd7f 1172
1d798ca3 1173 return compound_head(page);
b49af68f
CL
1174}
1175
7d4203c1
VB
1176static inline struct folio *virt_to_folio(const void *x)
1177{
1178 struct page *page = virt_to_page(x);
1179
1180 return page_folio(page);
1181}
1182
8d29c703 1183void __folio_put(struct folio *folio);
ddc58f27 1184
1d7ea732 1185void put_pages_list(struct list_head *pages);
1da177e4 1186
8dfcc9ba 1187void split_page(struct page *page, unsigned int order);
715cbfd6 1188void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 1189
a1554c00
ML
1190unsigned long nr_free_buffer_pages(void);
1191
33f2ef89
AW
1192/*
1193 * Compound pages have a destructor function. Provide a
1194 * prototype for that function and accessor functions.
f1e61557 1195 * These are _only_ valid on the head of a compound page.
33f2ef89 1196 */
f1e61557
KS
1197typedef void compound_page_dtor(struct page *);
1198
1199/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1200enum compound_dtor_id {
1201 NULL_COMPOUND_DTOR,
1202 COMPOUND_PAGE_DTOR,
1203#ifdef CONFIG_HUGETLB_PAGE
1204 HUGETLB_PAGE_DTOR,
9a982250
KS
1205#endif
1206#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1207 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
1208#endif
1209 NR_COMPOUND_DTORS,
1210};
ae70eddd 1211extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
1212
1213static inline void set_compound_page_dtor(struct page *page,
f1e61557 1214 enum compound_dtor_id compound_dtor)
33f2ef89 1215{
bad6da64
MWO
1216 struct folio *folio = (struct folio *)page;
1217
f1e61557 1218 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
bad6da64
MWO
1219 VM_BUG_ON_PAGE(!PageHead(page), page);
1220 folio->_folio_dtor = compound_dtor;
33f2ef89
AW
1221}
1222
9fd33058
SK
1223static inline void folio_set_compound_dtor(struct folio *folio,
1224 enum compound_dtor_id compound_dtor)
1225{
1226 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1227 folio->_folio_dtor = compound_dtor;
1228}
1229
5375336c 1230void destroy_large_folio(struct folio *folio);
33f2ef89 1231
f1e61557 1232static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 1233{
bad6da64 1234 struct folio *folio = (struct folio *)page;
9fd33058
SK
1235
1236 folio->_folio_order = order;
1237#ifdef CONFIG_64BIT
bad6da64 1238 folio->_folio_nr_pages = 1U << order;
5232c63f 1239#endif
d8c6546b
MWO
1240}
1241
a50b854e
MWO
1242/* Returns the number of bytes in this potentially compound page. */
1243static inline unsigned long page_size(struct page *page)
1244{
1245 return PAGE_SIZE << compound_order(page);
1246}
1247
94ad9338
MWO
1248/* Returns the number of bits needed for the number of bytes in a page */
1249static inline unsigned int page_shift(struct page *page)
1250{
1251 return PAGE_SHIFT + compound_order(page);
1252}
1253
18788cfa
MWO
1254/**
1255 * thp_order - Order of a transparent huge page.
1256 * @page: Head page of a transparent huge page.
1257 */
1258static inline unsigned int thp_order(struct page *page)
1259{
1260 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1261 return compound_order(page);
1262}
1263
18788cfa
MWO
1264/**
1265 * thp_size - Size of a transparent huge page.
1266 * @page: Head page of a transparent huge page.
1267 *
1268 * Return: Number of bytes in this page.
1269 */
1270static inline unsigned long thp_size(struct page *page)
1271{
1272 return PAGE_SIZE << thp_order(page);
1273}
1274
9a982250
KS
1275void free_compound_page(struct page *page);
1276
3dece370 1277#ifdef CONFIG_MMU
14fd403f
AA
1278/*
1279 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1280 * servicing faults for write access. In the normal case, do always want
1281 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1282 * that do not have writing enabled, when used by access_process_vm.
1283 */
1284static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1285{
1286 if (likely(vma->vm_flags & VM_WRITE))
1287 pte = pte_mkwrite(pte);
1288 return pte;
1289}
8c6e50b0 1290
f9ce0be7 1291vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1292void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1293
2b740303
SJ
1294vm_fault_t finish_fault(struct vm_fault *vmf);
1295vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1296#endif
14fd403f 1297
1da177e4
LT
1298/*
1299 * Multiple processes may "see" the same page. E.g. for untouched
1300 * mappings of /dev/null, all processes see the same page full of
1301 * zeroes, and text pages of executables and shared libraries have
1302 * only one copy in memory, at most, normally.
1303 *
1304 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1305 * page_count() == 0 means the page is free. page->lru is then used for
1306 * freelist management in the buddy allocator.
da6052f7 1307 * page_count() > 0 means the page has been allocated.
1da177e4 1308 *
da6052f7
NP
1309 * Pages are allocated by the slab allocator in order to provide memory
1310 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1311 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1312 * unless a particular usage is carefully commented. (the responsibility of
1313 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1314 *
da6052f7
NP
1315 * A page may be used by anyone else who does a __get_free_page().
1316 * In this case, page_count still tracks the references, and should only
1317 * be used through the normal accessor functions. The top bits of page->flags
1318 * and page->virtual store page management information, but all other fields
1319 * are unused and could be used privately, carefully. The management of this
1320 * page is the responsibility of the one who allocated it, and those who have
1321 * subsequently been given references to it.
1322 *
1323 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1324 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1325 * The following discussion applies only to them.
1326 *
da6052f7
NP
1327 * A pagecache page contains an opaque `private' member, which belongs to the
1328 * page's address_space. Usually, this is the address of a circular list of
1329 * the page's disk buffers. PG_private must be set to tell the VM to call
1330 * into the filesystem to release these pages.
1da177e4 1331 *
da6052f7
NP
1332 * A page may belong to an inode's memory mapping. In this case, page->mapping
1333 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1334 * in units of PAGE_SIZE.
1da177e4 1335 *
da6052f7
NP
1336 * If pagecache pages are not associated with an inode, they are said to be
1337 * anonymous pages. These may become associated with the swapcache, and in that
1338 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1339 *
da6052f7
NP
1340 * In either case (swapcache or inode backed), the pagecache itself holds one
1341 * reference to the page. Setting PG_private should also increment the
1342 * refcount. The each user mapping also has a reference to the page.
1da177e4 1343 *
da6052f7 1344 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1345 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1346 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1347 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1348 *
da6052f7 1349 * All pagecache pages may be subject to I/O:
1da177e4
LT
1350 * - inode pages may need to be read from disk,
1351 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1352 * to be written back to the inode on disk,
1353 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1354 * modified may need to be swapped out to swap space and (later) to be read
1355 * back into memory.
1da177e4
LT
1356 */
1357
27674ef6 1358#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1359DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1360
f4f451a1
MS
1361bool __put_devmap_managed_page_refs(struct page *page, int refs);
1362static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1363{
1364 if (!static_branch_unlikely(&devmap_managed_key))
1365 return false;
1366 if (!is_zone_device_page(page))
1367 return false;
f4f451a1 1368 return __put_devmap_managed_page_refs(page, refs);
e7638488 1369}
27674ef6 1370#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1371static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1372{
1373 return false;
1374}
27674ef6 1375#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1376
f4f451a1
MS
1377static inline bool put_devmap_managed_page(struct page *page)
1378{
1379 return put_devmap_managed_page_refs(page, 1);
1380}
1381
f958d7b5 1382/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1383#define folio_ref_zero_or_close_to_overflow(folio) \
1384 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1385
1386/**
1387 * folio_get - Increment the reference count on a folio.
1388 * @folio: The folio.
1389 *
1390 * Context: May be called in any context, as long as you know that
1391 * you have a refcount on the folio. If you do not already have one,
1392 * folio_try_get() may be the right interface for you to use.
1393 */
1394static inline void folio_get(struct folio *folio)
1395{
1396 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1397 folio_ref_inc(folio);
1398}
f958d7b5 1399
3565fce3
DW
1400static inline void get_page(struct page *page)
1401{
86d234cb 1402 folio_get(page_folio(page));
3565fce3
DW
1403}
1404
cd1adf1b
LT
1405static inline __must_check bool try_get_page(struct page *page)
1406{
1407 page = compound_head(page);
1408 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1409 return false;
1410 page_ref_inc(page);
1411 return true;
1412}
3565fce3 1413
b620f633
MWO
1414/**
1415 * folio_put - Decrement the reference count on a folio.
1416 * @folio: The folio.
1417 *
1418 * If the folio's reference count reaches zero, the memory will be
1419 * released back to the page allocator and may be used by another
1420 * allocation immediately. Do not access the memory or the struct folio
1421 * after calling folio_put() unless you can be sure that it wasn't the
1422 * last reference.
1423 *
1424 * Context: May be called in process or interrupt context, but not in NMI
1425 * context. May be called while holding a spinlock.
1426 */
1427static inline void folio_put(struct folio *folio)
1428{
1429 if (folio_put_testzero(folio))
8d29c703 1430 __folio_put(folio);
b620f633
MWO
1431}
1432
3fe7fa58
MWO
1433/**
1434 * folio_put_refs - Reduce the reference count on a folio.
1435 * @folio: The folio.
1436 * @refs: The amount to subtract from the folio's reference count.
1437 *
1438 * If the folio's reference count reaches zero, the memory will be
1439 * released back to the page allocator and may be used by another
1440 * allocation immediately. Do not access the memory or the struct folio
1441 * after calling folio_put_refs() unless you can be sure that these weren't
1442 * the last references.
1443 *
1444 * Context: May be called in process or interrupt context, but not in NMI
1445 * context. May be called while holding a spinlock.
1446 */
1447static inline void folio_put_refs(struct folio *folio, int refs)
1448{
1449 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1450 __folio_put(folio);
3fe7fa58
MWO
1451}
1452
0411d6ee
SP
1453/*
1454 * union release_pages_arg - an array of pages or folios
449c7967 1455 *
0411d6ee 1456 * release_pages() releases a simple array of multiple pages, and
449c7967
LT
1457 * accepts various different forms of said page array: either
1458 * a regular old boring array of pages, an array of folios, or
1459 * an array of encoded page pointers.
1460 *
1461 * The transparent union syntax for this kind of "any of these
1462 * argument types" is all kinds of ugly, so look away.
1463 */
1464typedef union {
1465 struct page **pages;
1466 struct folio **folios;
1467 struct encoded_page **encoded_pages;
1468} release_pages_arg __attribute__ ((__transparent_union__));
1469
1470void release_pages(release_pages_arg, int nr);
e3c4cebf
MWO
1471
1472/**
1473 * folios_put - Decrement the reference count on an array of folios.
1474 * @folios: The folios.
1475 * @nr: How many folios there are.
1476 *
1477 * Like folio_put(), but for an array of folios. This is more efficient
1478 * than writing the loop yourself as it will optimise the locks which
1479 * need to be taken if the folios are freed.
1480 *
1481 * Context: May be called in process or interrupt context, but not in NMI
1482 * context. May be called while holding a spinlock.
1483 */
1484static inline void folios_put(struct folio **folios, unsigned int nr)
1485{
449c7967 1486 release_pages(folios, nr);
3fe7fa58
MWO
1487}
1488
3565fce3
DW
1489static inline void put_page(struct page *page)
1490{
b620f633 1491 struct folio *folio = page_folio(page);
3565fce3 1492
7b2d55d2 1493 /*
89574945
CH
1494 * For some devmap managed pages we need to catch refcount transition
1495 * from 2 to 1:
7b2d55d2 1496 */
89574945 1497 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1498 return;
b620f633 1499 folio_put(folio);
3565fce3
DW
1500}
1501
3faa52c0
JH
1502/*
1503 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1504 * the page's refcount so that two separate items are tracked: the original page
1505 * reference count, and also a new count of how many pin_user_pages() calls were
1506 * made against the page. ("gup-pinned" is another term for the latter).
1507 *
1508 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1509 * distinct from normal pages. As such, the unpin_user_page() call (and its
1510 * variants) must be used in order to release gup-pinned pages.
1511 *
1512 * Choice of value:
1513 *
1514 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1515 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1516 * simpler, due to the fact that adding an even power of two to the page
1517 * refcount has the effect of using only the upper N bits, for the code that
1518 * counts up using the bias value. This means that the lower bits are left for
1519 * the exclusive use of the original code that increments and decrements by one
1520 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1521 *
3faa52c0
JH
1522 * Of course, once the lower bits overflow into the upper bits (and this is
1523 * OK, because subtraction recovers the original values), then visual inspection
1524 * no longer suffices to directly view the separate counts. However, for normal
1525 * applications that don't have huge page reference counts, this won't be an
1526 * issue.
fc1d8e7c 1527 *
40fcc7fc
MWO
1528 * Locking: the lockless algorithm described in folio_try_get_rcu()
1529 * provides safe operation for get_user_pages(), page_mkclean() and
1530 * other calls that race to set up page table entries.
fc1d8e7c 1531 */
3faa52c0 1532#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1533
3faa52c0 1534void unpin_user_page(struct page *page);
f1f6a7dd
JH
1535void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1536 bool make_dirty);
458a4f78
JM
1537void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1538 bool make_dirty);
f1f6a7dd 1539void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1540
97a7e473
PX
1541static inline bool is_cow_mapping(vm_flags_t flags)
1542{
1543 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1544}
1545
fc4f4be9
DH
1546#ifndef CONFIG_MMU
1547static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1548{
1549 /*
1550 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1551 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1552 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1553 * underlying memory if ptrace is active, so this is only possible if
1554 * ptrace does not apply. Note that there is no mprotect() to upgrade
1555 * write permissions later.
1556 */
b6b7a8fa 1557 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
fc4f4be9
DH
1558}
1559#endif
1560
9127ab4f
CS
1561#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1562#define SECTION_IN_PAGE_FLAGS
1563#endif
1564
89689ae7 1565/*
7a8010cd
VB
1566 * The identification function is mainly used by the buddy allocator for
1567 * determining if two pages could be buddies. We are not really identifying
1568 * the zone since we could be using the section number id if we do not have
1569 * node id available in page flags.
1570 * We only guarantee that it will return the same value for two combinable
1571 * pages in a zone.
89689ae7 1572 */
cb2b95e1
AW
1573static inline int page_zone_id(struct page *page)
1574{
89689ae7 1575 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1576}
1577
89689ae7 1578#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1579extern int page_to_nid(const struct page *page);
89689ae7 1580#else
33dd4e0e 1581static inline int page_to_nid(const struct page *page)
d41dee36 1582{
f165b378
PT
1583 struct page *p = (struct page *)page;
1584
1585 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1586}
89689ae7
CL
1587#endif
1588
874fd90c
MWO
1589static inline int folio_nid(const struct folio *folio)
1590{
1591 return page_to_nid(&folio->page);
1592}
1593
57e0a030 1594#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1595/* page access time bits needs to hold at least 4 seconds */
1596#define PAGE_ACCESS_TIME_MIN_BITS 12
1597#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1598#define PAGE_ACCESS_TIME_BUCKETS \
1599 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1600#else
1601#define PAGE_ACCESS_TIME_BUCKETS 0
1602#endif
1603
1604#define PAGE_ACCESS_TIME_MASK \
1605 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1606
90572890 1607static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1608{
90572890 1609 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1610}
1611
90572890 1612static inline int cpupid_to_pid(int cpupid)
57e0a030 1613{
90572890 1614 return cpupid & LAST__PID_MASK;
57e0a030 1615}
b795854b 1616
90572890 1617static inline int cpupid_to_cpu(int cpupid)
b795854b 1618{
90572890 1619 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1620}
1621
90572890 1622static inline int cpupid_to_nid(int cpupid)
b795854b 1623{
90572890 1624 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1625}
1626
90572890 1627static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1628{
90572890 1629 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1630}
1631
90572890 1632static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1633{
90572890 1634 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1635}
1636
8c8a743c
PZ
1637static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1638{
1639 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1640}
1641
1642#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1643#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1644static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1645{
1ae71d03 1646 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1647}
90572890
PZ
1648
1649static inline int page_cpupid_last(struct page *page)
1650{
1651 return page->_last_cpupid;
1652}
1653static inline void page_cpupid_reset_last(struct page *page)
b795854b 1654{
1ae71d03 1655 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1656}
1657#else
90572890 1658static inline int page_cpupid_last(struct page *page)
75980e97 1659{
90572890 1660 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1661}
1662
90572890 1663extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1664
90572890 1665static inline void page_cpupid_reset_last(struct page *page)
75980e97 1666{
09940a4f 1667 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1668}
90572890 1669#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536
HY
1670
1671static inline int xchg_page_access_time(struct page *page, int time)
1672{
1673 int last_time;
1674
1675 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1676 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1677}
fc137c0d
R
1678
1679static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1680{
1681 unsigned int pid_bit;
1682
d46031f4 1683 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
20f58648
R
1684 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) {
1685 __set_bit(pid_bit, &vma->numab_state->access_pids[1]);
fc137c0d
R
1686 }
1687}
90572890
PZ
1688#else /* !CONFIG_NUMA_BALANCING */
1689static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1690{
90572890 1691 return page_to_nid(page); /* XXX */
57e0a030
MG
1692}
1693
33024536
HY
1694static inline int xchg_page_access_time(struct page *page, int time)
1695{
1696 return 0;
1697}
1698
90572890 1699static inline int page_cpupid_last(struct page *page)
57e0a030 1700{
90572890 1701 return page_to_nid(page); /* XXX */
57e0a030
MG
1702}
1703
90572890 1704static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1705{
1706 return -1;
1707}
1708
90572890 1709static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1710{
1711 return -1;
1712}
1713
90572890 1714static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1715{
1716 return -1;
1717}
1718
90572890
PZ
1719static inline int cpu_pid_to_cpupid(int nid, int pid)
1720{
1721 return -1;
1722}
1723
1724static inline bool cpupid_pid_unset(int cpupid)
b795854b 1725{
2b787449 1726 return true;
b795854b
MG
1727}
1728
90572890 1729static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1730{
1731}
8c8a743c
PZ
1732
1733static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1734{
1735 return false;
1736}
fc137c0d
R
1737
1738static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1739{
1740}
90572890 1741#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1742
2e903b91 1743#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1744
cf10bd4c
AK
1745/*
1746 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1747 * setting tags for all pages to native kernel tag value 0xff, as the default
1748 * value 0x00 maps to 0xff.
1749 */
1750
2813b9c0
AK
1751static inline u8 page_kasan_tag(const struct page *page)
1752{
cf10bd4c
AK
1753 u8 tag = 0xff;
1754
1755 if (kasan_enabled()) {
1756 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1757 tag ^= 0xff;
1758 }
1759
1760 return tag;
2813b9c0
AK
1761}
1762
1763static inline void page_kasan_tag_set(struct page *page, u8 tag)
1764{
27fe7339
PC
1765 unsigned long old_flags, flags;
1766
1767 if (!kasan_enabled())
1768 return;
1769
1770 tag ^= 0xff;
1771 old_flags = READ_ONCE(page->flags);
1772 do {
1773 flags = old_flags;
1774 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1775 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1776 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1777}
1778
1779static inline void page_kasan_tag_reset(struct page *page)
1780{
34303244
AK
1781 if (kasan_enabled())
1782 page_kasan_tag_set(page, 0xff);
2813b9c0 1783}
34303244
AK
1784
1785#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1786
2813b9c0
AK
1787static inline u8 page_kasan_tag(const struct page *page)
1788{
1789 return 0xff;
1790}
1791
1792static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1793static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1794
1795#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1796
33dd4e0e 1797static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1798{
1799 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1800}
1801
75ef7184
MG
1802static inline pg_data_t *page_pgdat(const struct page *page)
1803{
1804 return NODE_DATA(page_to_nid(page));
1805}
1806
32b8fc48
MWO
1807static inline struct zone *folio_zone(const struct folio *folio)
1808{
1809 return page_zone(&folio->page);
1810}
1811
1812static inline pg_data_t *folio_pgdat(const struct folio *folio)
1813{
1814 return page_pgdat(&folio->page);
1815}
1816
9127ab4f 1817#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1818static inline void set_page_section(struct page *page, unsigned long section)
1819{
1820 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1821 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1822}
1823
aa462abe 1824static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1825{
1826 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1827}
308c05e3 1828#endif
d41dee36 1829
bf6bd276
MWO
1830/**
1831 * folio_pfn - Return the Page Frame Number of a folio.
1832 * @folio: The folio.
1833 *
1834 * A folio may contain multiple pages. The pages have consecutive
1835 * Page Frame Numbers.
1836 *
1837 * Return: The Page Frame Number of the first page in the folio.
1838 */
1839static inline unsigned long folio_pfn(struct folio *folio)
1840{
1841 return page_to_pfn(&folio->page);
1842}
1843
018ee47f
YZ
1844static inline struct folio *pfn_folio(unsigned long pfn)
1845{
1846 return page_folio(pfn_to_page(pfn));
1847}
1848
0b90ddae
MWO
1849/**
1850 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1851 * @folio: The folio.
1852 *
1853 * This function checks if a folio has been pinned via a call to
1854 * a function in the pin_user_pages() family.
1855 *
1856 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1857 * because it means "definitely not pinned for DMA", but true means "probably
1858 * pinned for DMA, but possibly a false positive due to having at least
1859 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1860 *
1861 * False positives are OK, because: a) it's unlikely for a folio to
1862 * get that many refcounts, and b) all the callers of this routine are
1863 * expected to be able to deal gracefully with a false positive.
1864 *
1865 * For large folios, the result will be exactly correct. That's because
94688e8e 1866 * we have more tracking data available: the _pincount field is used
0b90ddae
MWO
1867 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1868 *
1869 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1870 *
1871 * Return: True, if it is likely that the page has been "dma-pinned".
1872 * False, if the page is definitely not dma-pinned.
1873 */
1874static inline bool folio_maybe_dma_pinned(struct folio *folio)
1875{
1876 if (folio_test_large(folio))
94688e8e 1877 return atomic_read(&folio->_pincount) > 0;
0b90ddae
MWO
1878
1879 /*
1880 * folio_ref_count() is signed. If that refcount overflows, then
1881 * folio_ref_count() returns a negative value, and callers will avoid
1882 * further incrementing the refcount.
1883 *
1884 * Here, for that overflow case, use the sign bit to count a little
1885 * bit higher via unsigned math, and thus still get an accurate result.
1886 */
1887 return ((unsigned int)folio_ref_count(folio)) >=
1888 GUP_PIN_COUNTING_BIAS;
1889}
1890
1891static inline bool page_maybe_dma_pinned(struct page *page)
1892{
1893 return folio_maybe_dma_pinned(page_folio(page));
1894}
1895
1896/*
1897 * This should most likely only be called during fork() to see whether we
fb3d824d 1898 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1899 *
1900 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1901 */
1902static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1903 struct page *page)
1904{
623a1ddf 1905 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1906
1907 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1908 return false;
1909
1910 return page_maybe_dma_pinned(page);
1911}
1912
c8070b78
DH
1913/**
1914 * is_zero_page - Query if a page is a zero page
1915 * @page: The page to query
1916 *
1917 * This returns true if @page is one of the permanent zero pages.
1918 */
1919static inline bool is_zero_page(const struct page *page)
1920{
1921 return is_zero_pfn(page_to_pfn(page));
1922}
1923
1924/**
1925 * is_zero_folio - Query if a folio is a zero page
1926 * @folio: The folio to query
1927 *
1928 * This returns true if @folio is one of the permanent zero pages.
1929 */
1930static inline bool is_zero_folio(const struct folio *folio)
1931{
1932 return is_zero_page(&folio->page);
1933}
1934
8e3560d9
PT
1935/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1936#ifdef CONFIG_MIGRATION
6077c943 1937static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9 1938{
1c563432
MK
1939#ifdef CONFIG_CMA
1940 int mt = get_pageblock_migratetype(page);
1941
1942 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1943 return false;
1944#endif
c8070b78
DH
1945 /* The zero page can be "pinned" but gets special handling. */
1946 if (is_zero_page(page))
fcab34b4
AW
1947 return true;
1948
1949 /* Coherent device memory must always allow eviction. */
1950 if (is_device_coherent_page(page))
1951 return false;
1952
1953 /* Otherwise, non-movable zone pages can be pinned. */
1954 return !is_zone_movable_page(page);
8e3560d9
PT
1955}
1956#else
6077c943 1957static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9
PT
1958{
1959 return true;
1960}
1961#endif
1962
6077c943 1963static inline bool folio_is_longterm_pinnable(struct folio *folio)
536939ff 1964{
6077c943 1965 return is_longterm_pinnable_page(&folio->page);
536939ff
MWO
1966}
1967
2f1b6248 1968static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1969{
1970 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1971 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1972}
2f1b6248 1973
348f8b6c
DH
1974static inline void set_page_node(struct page *page, unsigned long node)
1975{
1976 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1977 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1978}
89689ae7 1979
2f1b6248 1980static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1981 unsigned long node, unsigned long pfn)
1da177e4 1982{
348f8b6c
DH
1983 set_page_zone(page, zone);
1984 set_page_node(page, node);
9127ab4f 1985#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1986 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1987#endif
1da177e4
LT
1988}
1989
7b230db3
MWO
1990/**
1991 * folio_nr_pages - The number of pages in the folio.
1992 * @folio: The folio.
1993 *
1994 * Return: A positive power of two.
1995 */
1996static inline long folio_nr_pages(struct folio *folio)
1997{
c3a15bff
MWO
1998 if (!folio_test_large(folio))
1999 return 1;
2000#ifdef CONFIG_64BIT
2001 return folio->_folio_nr_pages;
2002#else
2003 return 1L << folio->_folio_order;
2004#endif
7b230db3
MWO
2005}
2006
21a000fe
MWO
2007/*
2008 * compound_nr() returns the number of pages in this potentially compound
2009 * page. compound_nr() can be called on a tail page, and is defined to
2010 * return 1 in that case.
2011 */
2012static inline unsigned long compound_nr(struct page *page)
2013{
2014 struct folio *folio = (struct folio *)page;
2015
2016 if (!test_bit(PG_head, &folio->flags))
2017 return 1;
2018#ifdef CONFIG_64BIT
2019 return folio->_folio_nr_pages;
2020#else
2021 return 1L << folio->_folio_order;
2022#endif
2023}
2024
2025/**
2026 * thp_nr_pages - The number of regular pages in this huge page.
2027 * @page: The head page of a huge page.
2028 */
2029static inline int thp_nr_pages(struct page *page)
2030{
2031 return folio_nr_pages((struct folio *)page);
2032}
2033
7b230db3
MWO
2034/**
2035 * folio_next - Move to the next physical folio.
2036 * @folio: The folio we're currently operating on.
2037 *
2038 * If you have physically contiguous memory which may span more than
2039 * one folio (eg a &struct bio_vec), use this function to move from one
2040 * folio to the next. Do not use it if the memory is only virtually
2041 * contiguous as the folios are almost certainly not adjacent to each
2042 * other. This is the folio equivalent to writing ``page++``.
2043 *
2044 * Context: We assume that the folios are refcounted and/or locked at a
2045 * higher level and do not adjust the reference counts.
2046 * Return: The next struct folio.
2047 */
2048static inline struct folio *folio_next(struct folio *folio)
2049{
2050 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2051}
2052
2053/**
2054 * folio_shift - The size of the memory described by this folio.
2055 * @folio: The folio.
2056 *
2057 * A folio represents a number of bytes which is a power-of-two in size.
2058 * This function tells you which power-of-two the folio is. See also
2059 * folio_size() and folio_order().
2060 *
2061 * Context: The caller should have a reference on the folio to prevent
2062 * it from being split. It is not necessary for the folio to be locked.
2063 * Return: The base-2 logarithm of the size of this folio.
2064 */
2065static inline unsigned int folio_shift(struct folio *folio)
2066{
2067 return PAGE_SHIFT + folio_order(folio);
2068}
2069
2070/**
2071 * folio_size - The number of bytes in a folio.
2072 * @folio: The folio.
2073 *
2074 * Context: The caller should have a reference on the folio to prevent
2075 * it from being split. It is not necessary for the folio to be locked.
2076 * Return: The number of bytes in this folio.
2077 */
2078static inline size_t folio_size(struct folio *folio)
2079{
2080 return PAGE_SIZE << folio_order(folio);
2081}
2082
fa4e3f5f
VMO
2083/**
2084 * folio_estimated_sharers - Estimate the number of sharers of a folio.
2085 * @folio: The folio.
2086 *
2087 * folio_estimated_sharers() aims to serve as a function to efficiently
2088 * estimate the number of processes sharing a folio. This is done by
2089 * looking at the precise mapcount of the first subpage in the folio, and
2090 * assuming the other subpages are the same. This may not be true for large
2091 * folios. If you want exact mapcounts for exact calculations, look at
2092 * page_mapcount() or folio_total_mapcount().
2093 *
2094 * Return: The estimated number of processes sharing a folio.
2095 */
2096static inline int folio_estimated_sharers(struct folio *folio)
2097{
2098 return page_mapcount(folio_page(folio, 0));
2099}
2100
b424de33
MWO
2101#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2102static inline int arch_make_page_accessible(struct page *page)
2103{
2104 return 0;
2105}
2106#endif
2107
2108#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2109static inline int arch_make_folio_accessible(struct folio *folio)
2110{
2111 int ret;
2112 long i, nr = folio_nr_pages(folio);
2113
2114 for (i = 0; i < nr; i++) {
2115 ret = arch_make_page_accessible(folio_page(folio, i));
2116 if (ret)
2117 break;
2118 }
2119
2120 return ret;
2121}
2122#endif
2123
f6ac2354
CL
2124/*
2125 * Some inline functions in vmstat.h depend on page_zone()
2126 */
2127#include <linux/vmstat.h>
2128
33dd4e0e 2129static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 2130{
1dff8083 2131 return page_to_virt(page);
1da177e4
LT
2132}
2133
2134#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2135#define HASHED_PAGE_VIRTUAL
2136#endif
2137
2138#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
2139static inline void *page_address(const struct page *page)
2140{
2141 return page->virtual;
2142}
2143static inline void set_page_address(struct page *page, void *address)
2144{
2145 page->virtual = address;
2146}
1da177e4
LT
2147#define page_address_init() do { } while(0)
2148#endif
2149
2150#if defined(HASHED_PAGE_VIRTUAL)
f9918794 2151void *page_address(const struct page *page);
1da177e4
LT
2152void set_page_address(struct page *page, void *virtual);
2153void page_address_init(void);
2154#endif
2155
2156#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2157#define page_address(page) lowmem_page_address(page)
2158#define set_page_address(page, address) do { } while(0)
2159#define page_address_init() do { } while(0)
2160#endif
2161
7d4203c1
VB
2162static inline void *folio_address(const struct folio *folio)
2163{
2164 return page_address(&folio->page);
2165}
2166
e39155ea 2167extern void *page_rmapping(struct page *page);
f6ab1f7f
HY
2168extern pgoff_t __page_file_index(struct page *page);
2169
1da177e4
LT
2170/*
2171 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 2172 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
2173 */
2174static inline pgoff_t page_index(struct page *page)
2175{
2176 if (unlikely(PageSwapCache(page)))
f6ab1f7f 2177 return __page_file_index(page);
1da177e4
LT
2178 return page->index;
2179}
2180
2f064f34
MH
2181/*
2182 * Return true only if the page has been allocated with
2183 * ALLOC_NO_WATERMARKS and the low watermark was not
2184 * met implying that the system is under some pressure.
2185 */
1d7bab6a 2186static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
2187{
2188 /*
c07aea3e
MC
2189 * lru.next has bit 1 set if the page is allocated from the
2190 * pfmemalloc reserves. Callers may simply overwrite it if
2191 * they do not need to preserve that information.
2f064f34 2192 */
c07aea3e 2193 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
2194}
2195
02d65d6f
SK
2196/*
2197 * Return true only if the folio has been allocated with
2198 * ALLOC_NO_WATERMARKS and the low watermark was not
2199 * met implying that the system is under some pressure.
2200 */
2201static inline bool folio_is_pfmemalloc(const struct folio *folio)
2202{
2203 /*
2204 * lru.next has bit 1 set if the page is allocated from the
2205 * pfmemalloc reserves. Callers may simply overwrite it if
2206 * they do not need to preserve that information.
2207 */
2208 return (uintptr_t)folio->lru.next & BIT(1);
2209}
2210
2f064f34
MH
2211/*
2212 * Only to be called by the page allocator on a freshly allocated
2213 * page.
2214 */
2215static inline void set_page_pfmemalloc(struct page *page)
2216{
c07aea3e 2217 page->lru.next = (void *)BIT(1);
2f064f34
MH
2218}
2219
2220static inline void clear_page_pfmemalloc(struct page *page)
2221{
c07aea3e 2222 page->lru.next = NULL;
2f064f34
MH
2223}
2224
1c0fe6e3
NP
2225/*
2226 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2227 */
2228extern void pagefault_out_of_memory(void);
2229
1da177e4 2230#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 2231#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 2232#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 2233
ddd588b5 2234/*
7bf02ea2 2235 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
2236 * various contexts.
2237 */
4b59e6c4 2238#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 2239
974f4367
MH
2240extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2241static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2242{
2243 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2244}
1da177e4 2245
21b85b09
MK
2246/*
2247 * Parameter block passed down to zap_pte_range in exceptional cases.
2248 */
2249struct zap_details {
2250 struct folio *single_folio; /* Locked folio to be unmapped */
2251 bool even_cows; /* Zap COWed private pages too? */
2252 zap_flags_t zap_flags; /* Extra flags for zapping */
2253};
2254
2255/*
2256 * Whether to drop the pte markers, for example, the uffd-wp information for
2257 * file-backed memory. This should only be specified when we will completely
2258 * drop the page in the mm, either by truncation or unmapping of the vma. By
2259 * default, the flag is not set.
2260 */
2261#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
04ada095
MK
2262/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2263#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
21b85b09 2264
af7f588d
MD
2265#ifdef CONFIG_SCHED_MM_CID
2266void sched_mm_cid_before_execve(struct task_struct *t);
2267void sched_mm_cid_after_execve(struct task_struct *t);
2268void sched_mm_cid_fork(struct task_struct *t);
2269void sched_mm_cid_exit_signals(struct task_struct *t);
2270static inline int task_mm_cid(struct task_struct *t)
2271{
2272 return t->mm_cid;
2273}
2274#else
2275static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2276static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2277static inline void sched_mm_cid_fork(struct task_struct *t) { }
2278static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2279static inline int task_mm_cid(struct task_struct *t)
2280{
2281 /*
2282 * Use the processor id as a fall-back when the mm cid feature is
2283 * disabled. This provides functional per-cpu data structure accesses
2284 * in user-space, althrough it won't provide the memory usage benefits.
2285 */
2286 return raw_smp_processor_id();
2287}
2288#endif
2289
710ec38b 2290#ifdef CONFIG_MMU
7f43add4 2291extern bool can_do_mlock(void);
710ec38b
AB
2292#else
2293static inline bool can_do_mlock(void) { return false; }
2294#endif
d7c9e99a
AG
2295extern int user_shm_lock(size_t, struct ucounts *);
2296extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 2297
318e9342
VMO
2298struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2299 pte_t pte);
25b2995a
CH
2300struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2301 pte_t pte);
28093f9f
GS
2302struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2303 pmd_t pmd);
7e675137 2304
27d036e3
LR
2305void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2306 unsigned long size);
21b85b09
MK
2307void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2308 unsigned long size, struct zap_details *details);
e9adcfec
MK
2309static inline void zap_vma_pages(struct vm_area_struct *vma)
2310{
2311 zap_page_range_single(vma, vma->vm_start,
2312 vma->vm_end - vma->vm_start, NULL);
2313}
763ecb03
LH
2314void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2315 struct vm_area_struct *start_vma, unsigned long start,
68f48381 2316 unsigned long end, bool mm_wr_locked);
e6473092 2317
ac46d4f3
JG
2318struct mmu_notifier_range;
2319
42b77728 2320void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 2321 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
2322int
2323copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 2324int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 2325 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
2326int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2327 unsigned long *pfn);
d87fe660 2328int follow_phys(struct vm_area_struct *vma, unsigned long address,
2329 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
2330int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2331 void *buf, int len, int write);
1da177e4 2332
7caef267 2333extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 2334extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 2335void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 2336void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 2337int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 2338
7ee1dd3f 2339#ifdef CONFIG_MMU
2b740303 2340extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2341 unsigned long address, unsigned int flags,
2342 struct pt_regs *regs);
64019a2e 2343extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
2344 unsigned long address, unsigned int fault_flags,
2345 bool *unlocked);
977fbdcd
MW
2346void unmap_mapping_pages(struct address_space *mapping,
2347 pgoff_t start, pgoff_t nr, bool even_cows);
2348void unmap_mapping_range(struct address_space *mapping,
2349 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 2350#else
2b740303 2351static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2352 unsigned long address, unsigned int flags,
2353 struct pt_regs *regs)
7ee1dd3f
DH
2354{
2355 /* should never happen if there's no MMU */
2356 BUG();
2357 return VM_FAULT_SIGBUS;
2358}
64019a2e 2359static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 2360 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
2361{
2362 /* should never happen if there's no MMU */
2363 BUG();
2364 return -EFAULT;
2365}
977fbdcd
MW
2366static inline void unmap_mapping_pages(struct address_space *mapping,
2367 pgoff_t start, pgoff_t nr, bool even_cows) { }
2368static inline void unmap_mapping_range(struct address_space *mapping,
2369 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 2370#endif
f33ea7f4 2371
977fbdcd
MW
2372static inline void unmap_shared_mapping_range(struct address_space *mapping,
2373 loff_t const holebegin, loff_t const holelen)
2374{
2375 unmap_mapping_range(mapping, holebegin, holelen, 0);
2376}
2377
2378extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2379 void *buf, int len, unsigned int gup_flags);
5ddd36b9 2380extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 2381 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
2382extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2383 void *buf, int len, unsigned int gup_flags);
1da177e4 2384
64019a2e 2385long get_user_pages_remote(struct mm_struct *mm,
1e987790 2386 unsigned long start, unsigned long nr_pages,
9beae1ea 2387 unsigned int gup_flags, struct page **pages,
5b56d49f 2388 struct vm_area_struct **vmas, int *locked);
64019a2e 2389long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2390 unsigned long start, unsigned long nr_pages,
2391 unsigned int gup_flags, struct page **pages,
2392 struct vm_area_struct **vmas, int *locked);
c12d2da5 2393long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 2394 unsigned int gup_flags, struct page **pages,
cde70140 2395 struct vm_area_struct **vmas);
eddb1c22
JH
2396long pin_user_pages(unsigned long start, unsigned long nr_pages,
2397 unsigned int gup_flags, struct page **pages,
2398 struct vm_area_struct **vmas);
c12d2da5 2399long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 2400 struct page **pages, unsigned int gup_flags);
91429023
JH
2401long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2402 struct page **pages, unsigned int gup_flags);
9a4e9f3b 2403
73b0140b
IW
2404int get_user_pages_fast(unsigned long start, int nr_pages,
2405 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
2406int pin_user_pages_fast(unsigned long start, int nr_pages,
2407 unsigned int gup_flags, struct page **pages);
8025e5dd 2408
79eb597c
DJ
2409int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2410int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2411 struct task_struct *task, bool bypass_rlim);
2412
18022c5d 2413struct kvec;
f3e8fccd 2414struct page *get_dump_page(unsigned long addr);
1da177e4 2415
b5e84594
MWO
2416bool folio_mark_dirty(struct folio *folio);
2417bool set_page_dirty(struct page *page);
1da177e4 2418int set_page_dirty_lock(struct page *page);
b9ea2515 2419
a9090253 2420int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 2421
b6a2fea3
OW
2422extern unsigned long move_page_tables(struct vm_area_struct *vma,
2423 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
2424 unsigned long new_addr, unsigned long len,
2425 bool need_rmap_locks);
58705444
PX
2426
2427/*
2428 * Flags used by change_protection(). For now we make it a bitmap so
2429 * that we can pass in multiple flags just like parameters. However
2430 * for now all the callers are only use one of the flags at the same
2431 * time.
2432 */
64fe24a3
DH
2433/*
2434 * Whether we should manually check if we can map individual PTEs writable,
2435 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2436 * PTEs automatically in a writable mapping.
2437 */
2438#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
2439/* Whether this protection change is for NUMA hints */
2440#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2441/* Whether this change is for write protecting */
2442#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2443#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2444#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2445 MM_CP_UFFD_WP_RESOLVE)
58705444 2446
eb309ec8
DH
2447int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2448static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2449{
2450 /*
2451 * We want to check manually if we can change individual PTEs writable
2452 * if we can't do that automatically for all PTEs in a mapping. For
2453 * private mappings, that's always the case when we have write
2454 * permissions as we properly have to handle COW.
2455 */
2456 if (vma->vm_flags & VM_SHARED)
2457 return vma_wants_writenotify(vma, vma->vm_page_prot);
2458 return !!(vma->vm_flags & VM_WRITE);
2459
2460}
6a56ccbc
DH
2461bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2462 pte_t pte);
a79390f5 2463extern long change_protection(struct mmu_gather *tlb,
4a18419f 2464 struct vm_area_struct *vma, unsigned long start,
1ef488ed 2465 unsigned long end, unsigned long cp_flags);
2286a691
LH
2466extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2467 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2468 unsigned long start, unsigned long end, unsigned long newflags);
1da177e4 2469
465a454f
PZ
2470/*
2471 * doesn't attempt to fault and will return short.
2472 */
dadbb612
SJ
2473int get_user_pages_fast_only(unsigned long start, int nr_pages,
2474 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2475
2476static inline bool get_user_page_fast_only(unsigned long addr,
2477 unsigned int gup_flags, struct page **pagep)
2478{
2479 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2480}
d559db08
KH
2481/*
2482 * per-process(per-mm_struct) statistics.
2483 */
d559db08
KH
2484static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2485{
f1a79412 2486 return percpu_counter_read_positive(&mm->rss_stat[member]);
69c97823 2487}
d559db08 2488
f1a79412 2489void mm_trace_rss_stat(struct mm_struct *mm, int member);
b3d1411b 2490
d559db08
KH
2491static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2492{
f1a79412 2493 percpu_counter_add(&mm->rss_stat[member], value);
b3d1411b 2494
f1a79412 2495 mm_trace_rss_stat(mm, member);
d559db08
KH
2496}
2497
2498static inline void inc_mm_counter(struct mm_struct *mm, int member)
2499{
f1a79412 2500 percpu_counter_inc(&mm->rss_stat[member]);
b3d1411b 2501
f1a79412 2502 mm_trace_rss_stat(mm, member);
d559db08
KH
2503}
2504
2505static inline void dec_mm_counter(struct mm_struct *mm, int member)
2506{
f1a79412 2507 percpu_counter_dec(&mm->rss_stat[member]);
b3d1411b 2508
f1a79412 2509 mm_trace_rss_stat(mm, member);
d559db08
KH
2510}
2511
eca56ff9
JM
2512/* Optimized variant when page is already known not to be PageAnon */
2513static inline int mm_counter_file(struct page *page)
2514{
2515 if (PageSwapBacked(page))
2516 return MM_SHMEMPAGES;
2517 return MM_FILEPAGES;
2518}
2519
2520static inline int mm_counter(struct page *page)
2521{
2522 if (PageAnon(page))
2523 return MM_ANONPAGES;
2524 return mm_counter_file(page);
2525}
2526
d559db08
KH
2527static inline unsigned long get_mm_rss(struct mm_struct *mm)
2528{
2529 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2530 get_mm_counter(mm, MM_ANONPAGES) +
2531 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2532}
2533
2534static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2535{
2536 return max(mm->hiwater_rss, get_mm_rss(mm));
2537}
2538
2539static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2540{
2541 return max(mm->hiwater_vm, mm->total_vm);
2542}
2543
2544static inline void update_hiwater_rss(struct mm_struct *mm)
2545{
2546 unsigned long _rss = get_mm_rss(mm);
2547
2548 if ((mm)->hiwater_rss < _rss)
2549 (mm)->hiwater_rss = _rss;
2550}
2551
2552static inline void update_hiwater_vm(struct mm_struct *mm)
2553{
2554 if (mm->hiwater_vm < mm->total_vm)
2555 mm->hiwater_vm = mm->total_vm;
2556}
2557
695f0559
PC
2558static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2559{
2560 mm->hiwater_rss = get_mm_rss(mm);
2561}
2562
d559db08
KH
2563static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2564 struct mm_struct *mm)
2565{
2566 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2567
2568 if (*maxrss < hiwater_rss)
2569 *maxrss = hiwater_rss;
2570}
2571
53bddb4e 2572#if defined(SPLIT_RSS_COUNTING)
05af2e10 2573void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2574#else
05af2e10 2575static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2576{
2577}
2578#endif
465a454f 2579
78e7c5af
AK
2580#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2581static inline int pte_special(pte_t pte)
2582{
2583 return 0;
2584}
2585
2586static inline pte_t pte_mkspecial(pte_t pte)
2587{
2588 return pte;
2589}
2590#endif
2591
17596731 2592#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2593static inline int pte_devmap(pte_t pte)
2594{
2595 return 0;
2596}
2597#endif
2598
25ca1d6c
NK
2599extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2600 spinlock_t **ptl);
2601static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2602 spinlock_t **ptl)
2603{
2604 pte_t *ptep;
2605 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2606 return ptep;
2607}
c9cfcddf 2608
c2febafc
KS
2609#ifdef __PAGETABLE_P4D_FOLDED
2610static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2611 unsigned long address)
2612{
2613 return 0;
2614}
2615#else
2616int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2617#endif
2618
b4e98d9a 2619#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2620static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2621 unsigned long address)
2622{
2623 return 0;
2624}
b4e98d9a
KS
2625static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2626static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2627
5f22df00 2628#else
c2febafc 2629int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2630
b4e98d9a
KS
2631static inline void mm_inc_nr_puds(struct mm_struct *mm)
2632{
6d212db1
MS
2633 if (mm_pud_folded(mm))
2634 return;
af5b0f6a 2635 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2636}
2637
2638static inline void mm_dec_nr_puds(struct mm_struct *mm)
2639{
6d212db1
MS
2640 if (mm_pud_folded(mm))
2641 return;
af5b0f6a 2642 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2643}
5f22df00
NP
2644#endif
2645
2d2f5119 2646#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2647static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2648 unsigned long address)
2649{
2650 return 0;
2651}
dc6c9a35 2652
dc6c9a35
KS
2653static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2654static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2655
5f22df00 2656#else
1bb3630e 2657int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2658
dc6c9a35
KS
2659static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2660{
6d212db1
MS
2661 if (mm_pmd_folded(mm))
2662 return;
af5b0f6a 2663 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2664}
2665
2666static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2667{
6d212db1
MS
2668 if (mm_pmd_folded(mm))
2669 return;
af5b0f6a 2670 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2671}
5f22df00
NP
2672#endif
2673
c4812909 2674#ifdef CONFIG_MMU
af5b0f6a 2675static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2676{
af5b0f6a 2677 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2678}
2679
af5b0f6a 2680static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2681{
af5b0f6a 2682 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2683}
2684
2685static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2686{
af5b0f6a 2687 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2688}
2689
2690static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2691{
af5b0f6a 2692 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2693}
2694#else
c4812909 2695
af5b0f6a
KS
2696static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2697static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2698{
2699 return 0;
2700}
2701
2702static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2703static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2704#endif
2705
4cf58924
JFG
2706int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2707int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2708
f949286c
MR
2709#if defined(CONFIG_MMU)
2710
c2febafc
KS
2711static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2712 unsigned long address)
2713{
2714 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2715 NULL : p4d_offset(pgd, address);
2716}
2717
2718static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2719 unsigned long address)
1da177e4 2720{
c2febafc
KS
2721 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2722 NULL : pud_offset(p4d, address);
1da177e4 2723}
d8626138 2724
1da177e4
LT
2725static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2726{
1bb3630e
HD
2727 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2728 NULL: pmd_offset(pud, address);
1da177e4 2729}
f949286c 2730#endif /* CONFIG_MMU */
1bb3630e 2731
57c1ffce 2732#if USE_SPLIT_PTE_PTLOCKS
597d795a 2733#if ALLOC_SPLIT_PTLOCKS
b35f1819 2734void __init ptlock_cache_init(void);
539edb58
PZ
2735extern bool ptlock_alloc(struct page *page);
2736extern void ptlock_free(struct page *page);
2737
2738static inline spinlock_t *ptlock_ptr(struct page *page)
2739{
2740 return page->ptl;
2741}
597d795a 2742#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2743static inline void ptlock_cache_init(void)
2744{
2745}
2746
49076ec2
KS
2747static inline bool ptlock_alloc(struct page *page)
2748{
49076ec2
KS
2749 return true;
2750}
539edb58 2751
49076ec2
KS
2752static inline void ptlock_free(struct page *page)
2753{
49076ec2
KS
2754}
2755
2756static inline spinlock_t *ptlock_ptr(struct page *page)
2757{
539edb58 2758 return &page->ptl;
49076ec2 2759}
597d795a 2760#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2761
2762static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2763{
2764 return ptlock_ptr(pmd_page(*pmd));
2765}
2766
2767static inline bool ptlock_init(struct page *page)
2768{
2769 /*
2770 * prep_new_page() initialize page->private (and therefore page->ptl)
2771 * with 0. Make sure nobody took it in use in between.
2772 *
2773 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2774 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2775 */
309381fe 2776 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2777 if (!ptlock_alloc(page))
2778 return false;
2779 spin_lock_init(ptlock_ptr(page));
2780 return true;
2781}
2782
57c1ffce 2783#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2784/*
2785 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2786 */
49076ec2
KS
2787static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2788{
2789 return &mm->page_table_lock;
2790}
b35f1819 2791static inline void ptlock_cache_init(void) {}
49076ec2 2792static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2793static inline void ptlock_free(struct page *page) {}
57c1ffce 2794#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2795
b4ed71f5 2796static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2797{
706874e9
VD
2798 if (!ptlock_init(page))
2799 return false;
1d40a5ea 2800 __SetPageTable(page);
f0c0c115 2801 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2802 return true;
2f569afd
MS
2803}
2804
b4ed71f5 2805static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2806{
9e247bab 2807 ptlock_free(page);
1d40a5ea 2808 __ClearPageTable(page);
f0c0c115 2809 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2810}
2811
c74df32c
HD
2812#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2813({ \
4c21e2f2 2814 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2815 pte_t *__pte = pte_offset_map(pmd, address); \
2816 *(ptlp) = __ptl; \
2817 spin_lock(__ptl); \
2818 __pte; \
2819})
2820
2821#define pte_unmap_unlock(pte, ptl) do { \
2822 spin_unlock(ptl); \
2823 pte_unmap(pte); \
2824} while (0)
2825
4cf58924 2826#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2827
2828#define pte_alloc_map(mm, pmd, address) \
4cf58924 2829 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2830
c74df32c 2831#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2832 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2833 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2834
1bb3630e 2835#define pte_alloc_kernel(pmd, address) \
4cf58924 2836 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2837 NULL: pte_offset_kernel(pmd, address))
1da177e4 2838
e009bb30
KS
2839#if USE_SPLIT_PMD_PTLOCKS
2840
7e25de77 2841static inline struct page *pmd_pgtable_page(pmd_t *pmd)
634391ac
MS
2842{
2843 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2844 return virt_to_page((void *)((unsigned long) pmd & mask));
2845}
2846
e009bb30
KS
2847static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2848{
373dfda2 2849 return ptlock_ptr(pmd_pgtable_page(pmd));
e009bb30
KS
2850}
2851
b2b29d6d 2852static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2853{
e009bb30
KS
2854#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2855 page->pmd_huge_pte = NULL;
2856#endif
49076ec2 2857 return ptlock_init(page);
e009bb30
KS
2858}
2859
b2b29d6d 2860static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2861{
2862#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2863 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2864#endif
49076ec2 2865 ptlock_free(page);
e009bb30
KS
2866}
2867
373dfda2 2868#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
e009bb30
KS
2869
2870#else
2871
9a86cb7b
KS
2872static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2873{
2874 return &mm->page_table_lock;
2875}
2876
b2b29d6d
MW
2877static inline bool pmd_ptlock_init(struct page *page) { return true; }
2878static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2879
c389a250 2880#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2881
e009bb30
KS
2882#endif
2883
9a86cb7b
KS
2884static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2885{
2886 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2887 spin_lock(ptl);
2888 return ptl;
2889}
2890
b2b29d6d
MW
2891static inline bool pgtable_pmd_page_ctor(struct page *page)
2892{
2893 if (!pmd_ptlock_init(page))
2894 return false;
2895 __SetPageTable(page);
f0c0c115 2896 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2897 return true;
2898}
2899
2900static inline void pgtable_pmd_page_dtor(struct page *page)
2901{
2902 pmd_ptlock_free(page);
2903 __ClearPageTable(page);
f0c0c115 2904 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2905}
2906
a00cc7d9
MW
2907/*
2908 * No scalability reason to split PUD locks yet, but follow the same pattern
2909 * as the PMD locks to make it easier if we decide to. The VM should not be
2910 * considered ready to switch to split PUD locks yet; there may be places
2911 * which need to be converted from page_table_lock.
2912 */
2913static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2914{
2915 return &mm->page_table_lock;
2916}
2917
2918static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2919{
2920 spinlock_t *ptl = pud_lockptr(mm, pud);
2921
2922 spin_lock(ptl);
2923 return ptl;
2924}
62906027 2925
a00cc7d9 2926extern void __init pagecache_init(void);
49a7f04a
DH
2927extern void free_initmem(void);
2928
69afade7
JL
2929/*
2930 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2931 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2932 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2933 * Return pages freed into the buddy system.
2934 */
11199692 2935extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2936 int poison, const char *s);
c3d5f5f0 2937
c3d5f5f0 2938extern void adjust_managed_page_count(struct page *page, long count);
69afade7 2939
4b50bcc7 2940extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2941
69afade7 2942/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2943static inline void free_reserved_page(struct page *page)
69afade7
JL
2944{
2945 ClearPageReserved(page);
2946 init_page_count(page);
2947 __free_page(page);
69afade7
JL
2948 adjust_managed_page_count(page, 1);
2949}
a0cd7a7c 2950#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2951
2952static inline void mark_page_reserved(struct page *page)
2953{
2954 SetPageReserved(page);
2955 adjust_managed_page_count(page, -1);
2956}
2957
2958/*
2959 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2960 * The freed pages will be poisoned with pattern "poison" if it's within
2961 * range [0, UCHAR_MAX].
2962 * Return pages freed into the buddy system.
69afade7
JL
2963 */
2964static inline unsigned long free_initmem_default(int poison)
2965{
2966 extern char __init_begin[], __init_end[];
2967
11199692 2968 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2969 poison, "unused kernel image (initmem)");
69afade7
JL
2970}
2971
7ee3d4e8
JL
2972static inline unsigned long get_num_physpages(void)
2973{
2974 int nid;
2975 unsigned long phys_pages = 0;
2976
2977 for_each_online_node(nid)
2978 phys_pages += node_present_pages(nid);
2979
2980 return phys_pages;
2981}
2982
c713216d 2983/*
3f08a302 2984 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2985 * zones, allocate the backing mem_map and account for memory holes in an
2986 * architecture independent manner.
c713216d
MG
2987 *
2988 * An architecture is expected to register range of page frames backed by
0ee332c1 2989 * physical memory with memblock_add[_node]() before calling
9691a071 2990 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2991 * usage, an architecture is expected to do something like
2992 *
2993 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2994 * max_highmem_pfn};
2995 * for_each_valid_physical_page_range()
952eea9b 2996 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2997 * free_area_init(max_zone_pfns);
c713216d 2998 */
9691a071 2999void free_area_init(unsigned long *max_zone_pfn);
1e01979c 3000unsigned long node_map_pfn_alignment(void);
32996250
YL
3001unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3002 unsigned long end_pfn);
c713216d
MG
3003extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3004 unsigned long end_pfn);
3005extern void get_pfn_range_for_nid(unsigned int nid,
3006 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 3007
a9ee6cf5 3008#ifndef CONFIG_NUMA
6f24fbd3 3009static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
3010{
3011 return 0;
3012}
3013#else
3014/* please see mm/page_alloc.c */
3015extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
3016#endif
3017
0e0b864e 3018extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 3019extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
3020 unsigned long, unsigned long, enum meminit_context,
3021 struct vmem_altmap *, int migratetype);
bc75d33f 3022extern void setup_per_zone_wmarks(void);
bd3400ea 3023extern void calculate_min_free_kbytes(void);
1b79acc9 3024extern int __meminit init_per_zone_wmark_min(void);
1da177e4 3025extern void mem_init(void);
8feae131 3026extern void __init mmap_init(void);
974f4367
MH
3027
3028extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3029static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
3030{
3031 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
3032}
d02bd27b 3033extern long si_mem_available(void);
1da177e4
LT
3034extern void si_meminfo(struct sysinfo * val);
3035extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
3036#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3037extern unsigned long arch_reserved_kernel_pages(void);
3038#endif
1da177e4 3039
a8e99259
MH
3040extern __printf(3, 4)
3041void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 3042
e7c8d5c9 3043extern void setup_per_cpu_pageset(void);
e7c8d5c9 3044
75f7ad8e
PS
3045/* page_alloc.c */
3046extern int min_free_kbytes;
1c30844d 3047extern int watermark_boost_factor;
795ae7a0 3048extern int watermark_scale_factor;
75f7ad8e 3049
8feae131 3050/* nommu.c */
33e5d769 3051extern atomic_long_t mmap_pages_allocated;
7e660872 3052extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 3053
6b2dbba8 3054/* interval_tree.c */
6b2dbba8 3055void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 3056 struct rb_root_cached *root);
9826a516
ML
3057void vma_interval_tree_insert_after(struct vm_area_struct *node,
3058 struct vm_area_struct *prev,
f808c13f 3059 struct rb_root_cached *root);
6b2dbba8 3060void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
3061 struct rb_root_cached *root);
3062struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
3063 unsigned long start, unsigned long last);
3064struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3065 unsigned long start, unsigned long last);
3066
3067#define vma_interval_tree_foreach(vma, root, start, last) \
3068 for (vma = vma_interval_tree_iter_first(root, start, last); \
3069 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 3070
bf181b9f 3071void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 3072 struct rb_root_cached *root);
bf181b9f 3073void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
3074 struct rb_root_cached *root);
3075struct anon_vma_chain *
3076anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3077 unsigned long start, unsigned long last);
bf181b9f
ML
3078struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3079 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
3080#ifdef CONFIG_DEBUG_VM_RB
3081void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3082#endif
bf181b9f
ML
3083
3084#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3085 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3086 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3087
1da177e4 3088/* mmap.c */
34b4e4aa 3089extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
7c9813e8
LH
3090extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3091 unsigned long start, unsigned long end, pgoff_t pgoff,
3092 struct vm_area_struct *next);
cf51e86d
LH
3093extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3094 unsigned long start, unsigned long end, pgoff_t pgoff);
9760ebff 3095extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
f2ebfe43
LH
3096 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3097 unsigned long end, unsigned long vm_flags, struct anon_vma *,
3098 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3099 struct anon_vma_name *);
1da177e4 3100extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
9760ebff
LH
3101extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3102 unsigned long addr, int new_below);
3103extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3104 unsigned long addr, int new_below);
1da177e4 3105extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 3106extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 3107extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
3108 unsigned long addr, unsigned long len, pgoff_t pgoff,
3109 bool *need_rmap_locks);
1da177e4 3110extern void exit_mmap(struct mm_struct *);
925d1c40 3111
9c599024
CG
3112static inline int check_data_rlimit(unsigned long rlim,
3113 unsigned long new,
3114 unsigned long start,
3115 unsigned long end_data,
3116 unsigned long start_data)
3117{
3118 if (rlim < RLIM_INFINITY) {
3119 if (((new - start) + (end_data - start_data)) > rlim)
3120 return -ENOSPC;
3121 }
3122
3123 return 0;
3124}
3125
7906d00c
AA
3126extern int mm_take_all_locks(struct mm_struct *mm);
3127extern void mm_drop_all_locks(struct mm_struct *mm);
3128
fe69d560 3129extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 3130extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 3131extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 3132extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 3133
84638335
KK
3134extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3135extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3136
2eefd878
DS
3137extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3138 const struct vm_special_mapping *sm);
3935ed6a
SS
3139extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3140 unsigned long addr, unsigned long len,
a62c34bd
AL
3141 unsigned long flags,
3142 const struct vm_special_mapping *spec);
3143/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
3144extern int install_special_mapping(struct mm_struct *mm,
3145 unsigned long addr, unsigned long len,
3146 unsigned long flags, struct page **pages);
1da177e4 3147
649775be 3148unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 3149unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 3150
1da177e4
LT
3151extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3152
0165ab44 3153extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
3154 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3155 struct list_head *uf);
1fcfd8db 3156extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 3157 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 3158 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
183654ce 3159extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
11f9a21a
LH
3160 unsigned long start, size_t len, struct list_head *uf,
3161 bool downgrade);
897ab3e0
MR
3162extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3163 struct list_head *uf);
0726b01e 3164extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 3165
bebeb3d6 3166#ifdef CONFIG_MMU
27b26701
LH
3167extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3168 unsigned long start, unsigned long end,
3169 struct list_head *uf, bool downgrade);
bebeb3d6
ML
3170extern int __mm_populate(unsigned long addr, unsigned long len,
3171 int ignore_errors);
3172static inline void mm_populate(unsigned long addr, unsigned long len)
3173{
3174 /* Ignore errors */
3175 (void) __mm_populate(addr, len, 1);
3176}
3177#else
3178static inline void mm_populate(unsigned long addr, unsigned long len) {}
3179#endif
3180
e4eb1ff6 3181/* These take the mm semaphore themselves */
5d22fc25 3182extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 3183extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 3184extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 3185extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
3186 unsigned long, unsigned long,
3187 unsigned long, unsigned long);
1da177e4 3188
db4fbfb9
ML
3189struct vm_unmapped_area_info {
3190#define VM_UNMAPPED_AREA_TOPDOWN 1
3191 unsigned long flags;
3192 unsigned long length;
3193 unsigned long low_limit;
3194 unsigned long high_limit;
3195 unsigned long align_mask;
3196 unsigned long align_offset;
3197};
3198
baceaf1c 3199extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 3200
85821aab 3201/* truncate.c */
1da177e4 3202extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
3203extern void truncate_inode_pages_range(struct address_space *,
3204 loff_t lstart, loff_t lend);
91b0abe3 3205extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
3206
3207/* generic vm_area_ops exported for stackable file systems */
2bcd6454 3208extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 3209extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 3210 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 3211extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 3212
1be7107f 3213extern unsigned long stack_guard_gap;
d05f3169 3214/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 3215extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 3216
11192337 3217/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
3218extern int expand_downwards(struct vm_area_struct *vma,
3219 unsigned long address);
8ca3eb08 3220#if VM_GROWSUP
46dea3d0 3221extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 3222#else
fee7e49d 3223 #define expand_upwards(vma, address) (0)
9ab88515 3224#endif
1da177e4
LT
3225
3226/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3227extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3228extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3229 struct vm_area_struct **pprev);
3230
abdba2dd
LH
3231/*
3232 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3233 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 3234 */
ce6d42f2 3235struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 3236 unsigned long start_addr, unsigned long end_addr);
1da177e4 3237
ce6d42f2
LH
3238/**
3239 * vma_lookup() - Find a VMA at a specific address
3240 * @mm: The process address space.
3241 * @addr: The user address.
3242 *
3243 * Return: The vm_area_struct at the given address, %NULL otherwise.
3244 */
3245static inline
3246struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3247{
d7c62295 3248 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
3249}
3250
1be7107f
HD
3251static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3252{
3253 unsigned long vm_start = vma->vm_start;
3254
3255 if (vma->vm_flags & VM_GROWSDOWN) {
3256 vm_start -= stack_guard_gap;
3257 if (vm_start > vma->vm_start)
3258 vm_start = 0;
3259 }
3260 return vm_start;
3261}
3262
3263static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3264{
3265 unsigned long vm_end = vma->vm_end;
3266
3267 if (vma->vm_flags & VM_GROWSUP) {
3268 vm_end += stack_guard_gap;
3269 if (vm_end < vma->vm_end)
3270 vm_end = -PAGE_SIZE;
3271 }
3272 return vm_end;
3273}
3274
1da177e4
LT
3275static inline unsigned long vma_pages(struct vm_area_struct *vma)
3276{
3277 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3278}
3279
640708a2
PE
3280/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3281static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3282 unsigned long vm_start, unsigned long vm_end)
3283{
dc8635b2 3284 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
3285
3286 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3287 vma = NULL;
3288
3289 return vma;
3290}
3291
017b1660
MK
3292static inline bool range_in_vma(struct vm_area_struct *vma,
3293 unsigned long start, unsigned long end)
3294{
3295 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3296}
3297
bad849b3 3298#ifdef CONFIG_MMU
804af2cf 3299pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 3300void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
3301#else
3302static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3303{
3304 return __pgprot(0);
3305}
64e45507
PF
3306static inline void vma_set_page_prot(struct vm_area_struct *vma)
3307{
3308 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3309}
bad849b3
DH
3310#endif
3311
295992fb
CK
3312void vma_set_file(struct vm_area_struct *vma, struct file *file);
3313
5877231f 3314#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 3315unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
3316 unsigned long start, unsigned long end);
3317#endif
3318
deceb6cd 3319struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
3320int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3321 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
3322int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3323 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 3324int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
3325int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3326 struct page **pages, unsigned long *num);
a667d745
SJ
3327int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3328 unsigned long num);
3329int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3330 unsigned long num);
ae2b01f3 3331vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 3332 unsigned long pfn);
f5e6d1d5
MW
3333vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3334 unsigned long pfn, pgprot_t pgprot);
5d747637 3335vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 3336 pfn_t pfn);
ab77dab4
SJ
3337vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3338 unsigned long addr, pfn_t pfn);
b4cbb197
LT
3339int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3340
1c8f4220
SJ
3341static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3342 unsigned long addr, struct page *page)
3343{
3344 int err = vm_insert_page(vma, addr, page);
3345
3346 if (err == -ENOMEM)
3347 return VM_FAULT_OOM;
3348 if (err < 0 && err != -EBUSY)
3349 return VM_FAULT_SIGBUS;
3350
3351 return VM_FAULT_NOPAGE;
3352}
3353
f8f6ae5d
JG
3354#ifndef io_remap_pfn_range
3355static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3356 unsigned long addr, unsigned long pfn,
3357 unsigned long size, pgprot_t prot)
3358{
3359 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3360}
3361#endif
3362
d97baf94
SJ
3363static inline vm_fault_t vmf_error(int err)
3364{
3365 if (err == -ENOMEM)
3366 return VM_FAULT_OOM;
3367 return VM_FAULT_SIGBUS;
3368}
3369
df06b37f
KB
3370struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3371 unsigned int foll_flags);
240aadee 3372
2b740303 3373static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3374{
3375 if (vm_fault & VM_FAULT_OOM)
3376 return -ENOMEM;
3377 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3378 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3379 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3380 return -EFAULT;
3381 return 0;
3382}
3383
474098ed
DH
3384/*
3385 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3386 * a (NUMA hinting) fault is required.
3387 */
3388static inline bool gup_can_follow_protnone(unsigned int flags)
3389{
3390 /*
3391 * FOLL_FORCE has to be able to make progress even if the VMA is
3392 * inaccessible. Further, FOLL_FORCE access usually does not represent
3393 * application behaviour and we should avoid triggering NUMA hinting
3394 * faults.
3395 */
3396 return flags & FOLL_FORCE;
3397}
3398
8b1e0f81 3399typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3400extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3401 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3402extern int apply_to_existing_page_range(struct mm_struct *mm,
3403 unsigned long address, unsigned long size,
3404 pte_fn_t fn, void *data);
aee16b3c 3405
8823b1db 3406#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3407extern void __kernel_poison_pages(struct page *page, int numpages);
3408extern void __kernel_unpoison_pages(struct page *page, int numpages);
3409extern bool _page_poisoning_enabled_early;
3410DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3411static inline bool page_poisoning_enabled(void)
3412{
3413 return _page_poisoning_enabled_early;
3414}
3415/*
3416 * For use in fast paths after init_mem_debugging() has run, or when a
3417 * false negative result is not harmful when called too early.
3418 */
3419static inline bool page_poisoning_enabled_static(void)
3420{
3421 return static_branch_unlikely(&_page_poisoning_enabled);
3422}
3423static inline void kernel_poison_pages(struct page *page, int numpages)
3424{
3425 if (page_poisoning_enabled_static())
3426 __kernel_poison_pages(page, numpages);
3427}
3428static inline void kernel_unpoison_pages(struct page *page, int numpages)
3429{
3430 if (page_poisoning_enabled_static())
3431 __kernel_unpoison_pages(page, numpages);
3432}
8823b1db
LA
3433#else
3434static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3435static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3436static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3437static inline void kernel_poison_pages(struct page *page, int numpages) { }
3438static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3439#endif
3440
51cba1eb 3441DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3442static inline bool want_init_on_alloc(gfp_t flags)
3443{
51cba1eb
KC
3444 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3445 &init_on_alloc))
6471384a
AP
3446 return true;
3447 return flags & __GFP_ZERO;
3448}
3449
51cba1eb 3450DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3451static inline bool want_init_on_free(void)
3452{
51cba1eb
KC
3453 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3454 &init_on_free);
6471384a
AP
3455}
3456
8e57f8ac
VB
3457extern bool _debug_pagealloc_enabled_early;
3458DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3459
3460static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3461{
3462 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3463 _debug_pagealloc_enabled_early;
3464}
3465
3466/*
3467 * For use in fast paths after init_debug_pagealloc() has run, or when a
3468 * false negative result is not harmful when called too early.
3469 */
3470static inline bool debug_pagealloc_enabled_static(void)
031bc574 3471{
96a2b03f
VB
3472 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3473 return false;
3474
3475 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3476}
3477
5d6ad668 3478#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3479/*
5d6ad668
MR
3480 * To support DEBUG_PAGEALLOC architecture must ensure that
3481 * __kernel_map_pages() never fails
c87cbc1f 3482 */
d6332692
RE
3483extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3484
77bc7fd6
MR
3485static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3486{
3487 if (debug_pagealloc_enabled_static())
3488 __kernel_map_pages(page, numpages, 1);
3489}
3490
3491static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3492{
3493 if (debug_pagealloc_enabled_static())
3494 __kernel_map_pages(page, numpages, 0);
3495}
5d6ad668 3496#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3497static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3498static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3499#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3500
a6c19dfe 3501#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3502extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3503extern int in_gate_area_no_mm(unsigned long addr);
3504extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3505#else
a6c19dfe
AL
3506static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3507{
3508 return NULL;
3509}
3510static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3511static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3512{
3513 return 0;
3514}
1da177e4
LT
3515#endif /* __HAVE_ARCH_GATE_AREA */
3516
44a70ade
MH
3517extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3518
146732ce
JT
3519#ifdef CONFIG_SYSCTL
3520extern int sysctl_drop_caches;
32927393
CH
3521int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3522 loff_t *);
146732ce
JT
3523#endif
3524
cb731d6c 3525void drop_slab(void);
9d0243bc 3526
7a9166e3
LY
3527#ifndef CONFIG_MMU
3528#define randomize_va_space 0
3529#else
a62eaf15 3530extern int randomize_va_space;
7a9166e3 3531#endif
a62eaf15 3532
045e72ac 3533const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3534#ifdef CONFIG_MMU
03252919 3535void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3536#else
3537static inline void print_vma_addr(char *prefix, unsigned long rip)
3538{
3539}
3540#endif
e6e5494c 3541
35fd1eb1 3542void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3543struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3544 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3545 struct dev_pagemap *pgmap);
7b09f5af
FC
3546void pmd_init(void *addr);
3547void pud_init(void *addr);
29c71111 3548pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3549p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3550pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3551pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3552pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3553 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3554void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3555struct vmem_altmap;
56993b4e
AK
3556void *vmemmap_alloc_block_buf(unsigned long size, int node,
3557 struct vmem_altmap *altmap);
8f6aac41 3558void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2045a3b8
FC
3559void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3560 unsigned long addr, unsigned long next);
3561int vmemmap_check_pmd(pmd_t *pmd, int node,
3562 unsigned long addr, unsigned long next);
0aad818b 3563int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3564 int node, struct vmem_altmap *altmap);
2045a3b8
FC
3565int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3566 int node, struct vmem_altmap *altmap);
7b73d978
CH
3567int vmemmap_populate(unsigned long start, unsigned long end, int node,
3568 struct vmem_altmap *altmap);
c2b91e2e 3569void vmemmap_populate_print_last(void);
0197518c 3570#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3571void vmemmap_free(unsigned long start, unsigned long end,
3572 struct vmem_altmap *altmap);
0197518c 3573#endif
87a7ae75 3574
0b376f1e 3575#ifdef CONFIG_ARCH_WANT_OPTIMIZE_VMEMMAP
87a7ae75
AK
3576static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3577 struct dev_pagemap *pgmap)
3578{
3579 return is_power_of_2(sizeof(struct page)) &&
3580 pgmap && (pgmap_vmemmap_nr(pgmap) > 1) && !altmap;
3581}
3582#else
3583static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3584 struct dev_pagemap *pgmap)
3585{
3586 return false;
3587}
3588#endif
3589
46723bfa 3590void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3591 unsigned long nr_pages);
6a46079c 3592
82ba011b
AK
3593enum mf_flags {
3594 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3595 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3596 MF_MUST_KILL = 1 << 2,
cf870c70 3597 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3598 MF_UNPOISON = 1 << 4,
67f22ba7 3599 MF_SW_SIMULATED = 1 << 5,
38f6d293 3600 MF_NO_RETRY = 1 << 6,
82ba011b 3601};
c36e2024
SR
3602int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3603 unsigned long count, int mf_flags);
83b57531 3604extern int memory_failure(unsigned long pfn, int flags);
06202231 3605extern void memory_failure_queue_kick(int cpu);
847ce401 3606extern int unpoison_memory(unsigned long pfn);
d0505e9f 3607extern void shake_page(struct page *p);
5844a486 3608extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3609extern int soft_offline_page(unsigned long pfn, int flags);
405ce051 3610#ifdef CONFIG_MEMORY_FAILURE
d302c239 3611extern void memory_failure_queue(unsigned long pfn, int flags);
e591ef7d
NH
3612extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3613 bool *migratable_cleared);
5033091d
NH
3614void num_poisoned_pages_inc(unsigned long pfn);
3615void num_poisoned_pages_sub(unsigned long pfn, long i);
4248d008 3616struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
405ce051 3617#else
d302c239
TL
3618static inline void memory_failure_queue(unsigned long pfn, int flags)
3619{
3620}
3621
e591ef7d
NH
3622static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3623 bool *migratable_cleared)
405ce051
NH
3624{
3625 return 0;
3626}
d027122d 3627
a46c9304 3628static inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
3629{
3630}
5033091d
NH
3631
3632static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3633{
3634}
3635#endif
3636
4248d008
LX
3637#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3638void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3639 struct vm_area_struct *vma, struct list_head *to_kill,
3640 unsigned long ksm_addr);
3641#endif
3642
5033091d
NH
3643#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3644extern void memblk_nr_poison_inc(unsigned long pfn);
3645extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3646#else
3647static inline void memblk_nr_poison_inc(unsigned long pfn)
3648{
3649}
3650
3651static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3652{
3653}
405ce051 3654#endif
6a46079c 3655
03b122da
TL
3656#ifndef arch_memory_failure
3657static inline int arch_memory_failure(unsigned long pfn, int flags)
3658{
3659 return -ENXIO;
3660}
3661#endif
3662
3663#ifndef arch_is_platform_page
3664static inline bool arch_is_platform_page(u64 paddr)
3665{
3666 return false;
3667}
3668#endif
cc637b17
XX
3669
3670/*
3671 * Error handlers for various types of pages.
3672 */
cc3e2af4 3673enum mf_result {
cc637b17
XX
3674 MF_IGNORED, /* Error: cannot be handled */
3675 MF_FAILED, /* Error: handling failed */
3676 MF_DELAYED, /* Will be handled later */
3677 MF_RECOVERED, /* Successfully recovered */
3678};
3679
3680enum mf_action_page_type {
3681 MF_MSG_KERNEL,
3682 MF_MSG_KERNEL_HIGH_ORDER,
3683 MF_MSG_SLAB,
3684 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3685 MF_MSG_HUGE,
3686 MF_MSG_FREE_HUGE,
3687 MF_MSG_UNMAP_FAILED,
3688 MF_MSG_DIRTY_SWAPCACHE,
3689 MF_MSG_CLEAN_SWAPCACHE,
3690 MF_MSG_DIRTY_MLOCKED_LRU,
3691 MF_MSG_CLEAN_MLOCKED_LRU,
3692 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3693 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3694 MF_MSG_DIRTY_LRU,
3695 MF_MSG_CLEAN_LRU,
3696 MF_MSG_TRUNCATED_LRU,
3697 MF_MSG_BUDDY,
6100e34b 3698 MF_MSG_DAX,
5d1fd5dc 3699 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3700 MF_MSG_UNKNOWN,
3701};
3702
44b8f8bf
JY
3703/*
3704 * Sysfs entries for memory failure handling statistics.
3705 */
3706extern const struct attribute_group memory_failure_attr_group;
3707
47ad8475
AA
3708#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3709extern void clear_huge_page(struct page *page,
c79b57e4 3710 unsigned long addr_hint,
47ad8475 3711 unsigned int pages_per_huge_page);
1cb9dc4b
LS
3712int copy_user_large_folio(struct folio *dst, struct folio *src,
3713 unsigned long addr_hint,
3714 struct vm_area_struct *vma);
e87340ca
Z
3715long copy_folio_from_user(struct folio *dst_folio,
3716 const void __user *usr_src,
3717 bool allow_pagefault);
2484ca9b
THV
3718
3719/**
3720 * vma_is_special_huge - Are transhuge page-table entries considered special?
3721 * @vma: Pointer to the struct vm_area_struct to consider
3722 *
3723 * Whether transhuge page-table entries are considered "special" following
3724 * the definition in vm_normal_page().
3725 *
3726 * Return: true if transhuge page-table entries should be considered special,
3727 * false otherwise.
3728 */
3729static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3730{
3731 return vma_is_dax(vma) || (vma->vm_file &&
3732 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3733}
3734
47ad8475
AA
3735#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3736
c0a32fc5
SG
3737#ifdef CONFIG_DEBUG_PAGEALLOC
3738extern unsigned int _debug_guardpage_minorder;
96a2b03f 3739DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3740
3741static inline unsigned int debug_guardpage_minorder(void)
3742{
3743 return _debug_guardpage_minorder;
3744}
3745
e30825f1
JK
3746static inline bool debug_guardpage_enabled(void)
3747{
96a2b03f 3748 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3749}
3750
c0a32fc5
SG
3751static inline bool page_is_guard(struct page *page)
3752{
e30825f1
JK
3753 if (!debug_guardpage_enabled())
3754 return false;
3755
3972f6bb 3756 return PageGuard(page);
c0a32fc5
SG
3757}
3758#else
3759static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3760static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3761static inline bool page_is_guard(struct page *page) { return false; }
3762#endif /* CONFIG_DEBUG_PAGEALLOC */
3763
f9872caf
CS
3764#if MAX_NUMNODES > 1
3765void __init setup_nr_node_ids(void);
3766#else
3767static inline void setup_nr_node_ids(void) {}
3768#endif
3769
010c164a
SL
3770extern int memcmp_pages(struct page *page1, struct page *page2);
3771
3772static inline int pages_identical(struct page *page1, struct page *page2)
3773{
3774 return !memcmp_pages(page1, page2);
3775}
3776
c5acad84
TH
3777#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3778unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3779 pgoff_t first_index, pgoff_t nr,
3780 pgoff_t bitmap_pgoff,
3781 unsigned long *bitmap,
3782 pgoff_t *start,
3783 pgoff_t *end);
3784
3785unsigned long wp_shared_mapping_range(struct address_space *mapping,
3786 pgoff_t first_index, pgoff_t nr);
3787#endif
3788
2374c09b
CH
3789extern int sysctl_nr_trim_pages;
3790
5bb1bb35 3791#ifdef CONFIG_PRINTK
8e7f37f2 3792void mem_dump_obj(void *object);
5bb1bb35
PM
3793#else
3794static inline void mem_dump_obj(void *object) {}
3795#endif
8e7f37f2 3796
22247efd
PX
3797/**
3798 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3799 * @seals: the seals to check
3800 * @vma: the vma to operate on
3801 *
3802 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3803 * the vma flags. Return 0 if check pass, or <0 for errors.
3804 */
3805static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3806{
3807 if (seals & F_SEAL_FUTURE_WRITE) {
3808 /*
3809 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3810 * "future write" seal active.
3811 */
3812 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3813 return -EPERM;
3814
3815 /*
3816 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3817 * MAP_SHARED and read-only, take care to not allow mprotect to
3818 * revert protections on such mappings. Do this only for shared
3819 * mappings. For private mappings, don't need to mask
3820 * VM_MAYWRITE as we still want them to be COW-writable.
3821 */
3822 if (vma->vm_flags & VM_SHARED)
1c71222e 3823 vm_flags_clear(vma, VM_MAYWRITE);
22247efd
PX
3824 }
3825
3826 return 0;
3827}
3828
9a10064f
CC
3829#ifdef CONFIG_ANON_VMA_NAME
3830int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
3831 unsigned long len_in,
3832 struct anon_vma_name *anon_name);
9a10064f
CC
3833#else
3834static inline int
3835madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 3836 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
3837 return 0;
3838}
3839#endif
3840
1da177e4 3841#endif /* _LINUX_MM_H */