mm: munlock: remove redundant get_page/put_page pair on the fast path
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4 8#include <linux/gfp.h>
187f1882 9#include <linux/bug.h>
1da177e4
LT
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
83aeeada 13#include <linux/atomic.h>
9a11b49a 14#include <linux/debug_locks.h>
5b99cd0e 15#include <linux/mm_types.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
e9da73d6 18#include <linux/bit_spinlock.h>
b0d40c92 19#include <linux/shrinker.h>
1da177e4
LT
20
21struct mempolicy;
22struct anon_vma;
bf181b9f 23struct anon_vma_chain;
4e950f6f 24struct file_ra_state;
e8edc6e0 25struct user_struct;
4e950f6f 26struct writeback_control;
1da177e4 27
fccc9987 28#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 29extern unsigned long max_mapnr;
fccc9987
JL
30
31static inline void set_max_mapnr(unsigned long limit)
32{
33 max_mapnr = limit;
34}
35#else
36static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
37#endif
38
4481374c 39extern unsigned long totalram_pages;
1da177e4 40extern void * high_memory;
1da177e4
LT
41extern int page_cluster;
42
43#ifdef CONFIG_SYSCTL
44extern int sysctl_legacy_va_layout;
45#else
46#define sysctl_legacy_va_layout 0
47#endif
48
49#include <asm/page.h>
50#include <asm/pgtable.h>
51#include <asm/processor.h>
1da177e4 52
c9b1d098 53extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 54extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 55
1da177e4
LT
56#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
57
27ac792c
AR
58/* to align the pointer to the (next) page boundary */
59#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
60
0fa73b86
AM
61/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
62#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
63
1da177e4
LT
64/*
65 * Linux kernel virtual memory manager primitives.
66 * The idea being to have a "virtual" mm in the same way
67 * we have a virtual fs - giving a cleaner interface to the
68 * mm details, and allowing different kinds of memory mappings
69 * (from shared memory to executable loading to arbitrary
70 * mmap() functions).
71 */
72
c43692e8
CL
73extern struct kmem_cache *vm_area_cachep;
74
1da177e4 75#ifndef CONFIG_MMU
8feae131
DH
76extern struct rb_root nommu_region_tree;
77extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
78
79extern unsigned int kobjsize(const void *objp);
80#endif
81
82/*
605d9288 83 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 84 */
cc2383ec
KK
85#define VM_NONE 0x00000000
86
1da177e4
LT
87#define VM_READ 0x00000001 /* currently active flags */
88#define VM_WRITE 0x00000002
89#define VM_EXEC 0x00000004
90#define VM_SHARED 0x00000008
91
7e2cff42 92/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
93#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
94#define VM_MAYWRITE 0x00000020
95#define VM_MAYEXEC 0x00000040
96#define VM_MAYSHARE 0x00000080
97
98#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 99#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
100#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
101
1da177e4
LT
102#define VM_LOCKED 0x00002000
103#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
104
105 /* Used by sys_madvise() */
106#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
107#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
108
109#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
110#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 111#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 112#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
113#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
114#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 115#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 116#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 117
d9104d1c
CG
118#ifdef CONFIG_MEM_SOFT_DIRTY
119# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
120#else
121# define VM_SOFTDIRTY 0
122#endif
123
b379d790 124#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
125#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
126#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 127#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 128
cc2383ec
KK
129#if defined(CONFIG_X86)
130# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
131#elif defined(CONFIG_PPC)
132# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
133#elif defined(CONFIG_PARISC)
134# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
135#elif defined(CONFIG_METAG)
136# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
137#elif defined(CONFIG_IA64)
138# define VM_GROWSUP VM_ARCH_1
139#elif !defined(CONFIG_MMU)
140# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
141#endif
142
143#ifndef VM_GROWSUP
144# define VM_GROWSUP VM_NONE
145#endif
146
a8bef8ff
MG
147/* Bits set in the VMA until the stack is in its final location */
148#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
149
1da177e4
LT
150#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
151#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
152#endif
153
154#ifdef CONFIG_STACK_GROWSUP
155#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
156#else
157#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
158#endif
159
b291f000 160/*
78f11a25
AA
161 * Special vmas that are non-mergable, non-mlock()able.
162 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 163 */
314e51b9 164#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
b291f000 165
1da177e4
LT
166/*
167 * mapping from the currently active vm_flags protection bits (the
168 * low four bits) to a page protection mask..
169 */
170extern pgprot_t protection_map[16];
171
d0217ac0
NP
172#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
173#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 174#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 175#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 176#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 177#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 178#define FAULT_FLAG_TRIED 0x40 /* second try */
d0217ac0 179
54cb8821 180/*
d0217ac0 181 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
182 * ->fault function. The vma's ->fault is responsible for returning a bitmask
183 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 184 *
d0217ac0 185 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 186 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 187 */
d0217ac0
NP
188struct vm_fault {
189 unsigned int flags; /* FAULT_FLAG_xxx flags */
190 pgoff_t pgoff; /* Logical page offset based on vma */
191 void __user *virtual_address; /* Faulting virtual address */
192
193 struct page *page; /* ->fault handlers should return a
83c54070 194 * page here, unless VM_FAULT_NOPAGE
d0217ac0 195 * is set (which is also implied by
83c54070 196 * VM_FAULT_ERROR).
d0217ac0 197 */
54cb8821 198};
1da177e4
LT
199
200/*
201 * These are the virtual MM functions - opening of an area, closing and
202 * unmapping it (needed to keep files on disk up-to-date etc), pointer
203 * to the functions called when a no-page or a wp-page exception occurs.
204 */
205struct vm_operations_struct {
206 void (*open)(struct vm_area_struct * area);
207 void (*close)(struct vm_area_struct * area);
d0217ac0 208 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
209
210 /* notification that a previously read-only page is about to become
211 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 212 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
213
214 /* called by access_process_vm when get_user_pages() fails, typically
215 * for use by special VMAs that can switch between memory and hardware
216 */
217 int (*access)(struct vm_area_struct *vma, unsigned long addr,
218 void *buf, int len, int write);
1da177e4 219#ifdef CONFIG_NUMA
a6020ed7
LS
220 /*
221 * set_policy() op must add a reference to any non-NULL @new mempolicy
222 * to hold the policy upon return. Caller should pass NULL @new to
223 * remove a policy and fall back to surrounding context--i.e. do not
224 * install a MPOL_DEFAULT policy, nor the task or system default
225 * mempolicy.
226 */
1da177e4 227 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
228
229 /*
230 * get_policy() op must add reference [mpol_get()] to any policy at
231 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
232 * in mm/mempolicy.c will do this automatically.
233 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
234 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
235 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
236 * must return NULL--i.e., do not "fallback" to task or system default
237 * policy.
238 */
1da177e4
LT
239 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
240 unsigned long addr);
7b2259b3
CL
241 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
242 const nodemask_t *to, unsigned long flags);
1da177e4 243#endif
0b173bc4
KK
244 /* called by sys_remap_file_pages() to populate non-linear mapping */
245 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
246 unsigned long size, pgoff_t pgoff);
1da177e4
LT
247};
248
249struct mmu_gather;
250struct inode;
251
349aef0b
AM
252#define page_private(page) ((page)->private)
253#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 254
b12c4ad1
MK
255/* It's valid only if the page is free path or free_list */
256static inline void set_freepage_migratetype(struct page *page, int migratetype)
257{
95e34412 258 page->index = migratetype;
b12c4ad1
MK
259}
260
261/* It's valid only if the page is free path or free_list */
262static inline int get_freepage_migratetype(struct page *page)
263{
95e34412 264 return page->index;
b12c4ad1
MK
265}
266
1da177e4
LT
267/*
268 * FIXME: take this include out, include page-flags.h in
269 * files which need it (119 of them)
270 */
271#include <linux/page-flags.h>
71e3aac0 272#include <linux/huge_mm.h>
1da177e4
LT
273
274/*
275 * Methods to modify the page usage count.
276 *
277 * What counts for a page usage:
278 * - cache mapping (page->mapping)
279 * - private data (page->private)
280 * - page mapped in a task's page tables, each mapping
281 * is counted separately
282 *
283 * Also, many kernel routines increase the page count before a critical
284 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
285 */
286
287/*
da6052f7 288 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 289 */
7c8ee9a8
NP
290static inline int put_page_testzero(struct page *page)
291{
725d704e 292 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 293 return atomic_dec_and_test(&page->_count);
7c8ee9a8 294}
1da177e4
LT
295
296/*
7c8ee9a8
NP
297 * Try to grab a ref unless the page has a refcount of zero, return false if
298 * that is the case.
1da177e4 299 */
7c8ee9a8
NP
300static inline int get_page_unless_zero(struct page *page)
301{
8dc04efb 302 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 303}
1da177e4 304
53df8fdc
WF
305extern int page_is_ram(unsigned long pfn);
306
48667e7a 307/* Support for virtually mapped pages */
b3bdda02
CL
308struct page *vmalloc_to_page(const void *addr);
309unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 310
0738c4bb
PM
311/*
312 * Determine if an address is within the vmalloc range
313 *
314 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
315 * is no special casing required.
316 */
9e2779fa
CL
317static inline int is_vmalloc_addr(const void *x)
318{
0738c4bb 319#ifdef CONFIG_MMU
9e2779fa
CL
320 unsigned long addr = (unsigned long)x;
321
322 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
323#else
324 return 0;
8ca3ed87 325#endif
0738c4bb 326}
81ac3ad9
KH
327#ifdef CONFIG_MMU
328extern int is_vmalloc_or_module_addr(const void *x);
329#else
934831d0 330static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
331{
332 return 0;
333}
334#endif
9e2779fa 335
e9da73d6
AA
336static inline void compound_lock(struct page *page)
337{
338#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 339 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
340 bit_spin_lock(PG_compound_lock, &page->flags);
341#endif
342}
343
344static inline void compound_unlock(struct page *page)
345{
346#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 347 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
348 bit_spin_unlock(PG_compound_lock, &page->flags);
349#endif
350}
351
352static inline unsigned long compound_lock_irqsave(struct page *page)
353{
354 unsigned long uninitialized_var(flags);
355#ifdef CONFIG_TRANSPARENT_HUGEPAGE
356 local_irq_save(flags);
357 compound_lock(page);
358#endif
359 return flags;
360}
361
362static inline void compound_unlock_irqrestore(struct page *page,
363 unsigned long flags)
364{
365#ifdef CONFIG_TRANSPARENT_HUGEPAGE
366 compound_unlock(page);
367 local_irq_restore(flags);
368#endif
369}
370
d85f3385
CL
371static inline struct page *compound_head(struct page *page)
372{
6d777953 373 if (unlikely(PageTail(page)))
d85f3385
CL
374 return page->first_page;
375 return page;
376}
377
70b50f94
AA
378/*
379 * The atomic page->_mapcount, starts from -1: so that transitions
380 * both from it and to it can be tracked, using atomic_inc_and_test
381 * and atomic_add_negative(-1).
382 */
22b751c3 383static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
384{
385 atomic_set(&(page)->_mapcount, -1);
386}
387
388static inline int page_mapcount(struct page *page)
389{
390 return atomic_read(&(page)->_mapcount) + 1;
391}
392
4c21e2f2 393static inline int page_count(struct page *page)
1da177e4 394{
d85f3385 395 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
396}
397
b35a35b5
AA
398static inline void get_huge_page_tail(struct page *page)
399{
400 /*
401 * __split_huge_page_refcount() cannot run
402 * from under us.
403 */
404 VM_BUG_ON(page_mapcount(page) < 0);
405 VM_BUG_ON(atomic_read(&page->_count) != 0);
406 atomic_inc(&page->_mapcount);
407}
408
70b50f94
AA
409extern bool __get_page_tail(struct page *page);
410
1da177e4
LT
411static inline void get_page(struct page *page)
412{
70b50f94
AA
413 if (unlikely(PageTail(page)))
414 if (likely(__get_page_tail(page)))
415 return;
91807063
AA
416 /*
417 * Getting a normal page or the head of a compound page
70b50f94 418 * requires to already have an elevated page->_count.
91807063 419 */
70b50f94 420 VM_BUG_ON(atomic_read(&page->_count) <= 0);
1da177e4
LT
421 atomic_inc(&page->_count);
422}
423
b49af68f
CL
424static inline struct page *virt_to_head_page(const void *x)
425{
426 struct page *page = virt_to_page(x);
427 return compound_head(page);
428}
429
7835e98b
NP
430/*
431 * Setup the page count before being freed into the page allocator for
432 * the first time (boot or memory hotplug)
433 */
434static inline void init_page_count(struct page *page)
435{
436 atomic_set(&page->_count, 1);
437}
438
5f24ce5f
AA
439/*
440 * PageBuddy() indicate that the page is free and in the buddy system
441 * (see mm/page_alloc.c).
ef2b4b95
AA
442 *
443 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
444 * -2 so that an underflow of the page_mapcount() won't be mistaken
445 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
446 * efficiently by most CPU architectures.
5f24ce5f 447 */
ef2b4b95
AA
448#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
449
5f24ce5f
AA
450static inline int PageBuddy(struct page *page)
451{
ef2b4b95 452 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
453}
454
455static inline void __SetPageBuddy(struct page *page)
456{
457 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 458 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
459}
460
461static inline void __ClearPageBuddy(struct page *page)
462{
463 VM_BUG_ON(!PageBuddy(page));
464 atomic_set(&page->_mapcount, -1);
465}
466
1da177e4 467void put_page(struct page *page);
1d7ea732 468void put_pages_list(struct list_head *pages);
1da177e4 469
8dfcc9ba 470void split_page(struct page *page, unsigned int order);
748446bb 471int split_free_page(struct page *page);
8dfcc9ba 472
33f2ef89
AW
473/*
474 * Compound pages have a destructor function. Provide a
475 * prototype for that function and accessor functions.
476 * These are _only_ valid on the head of a PG_compound page.
477 */
478typedef void compound_page_dtor(struct page *);
479
480static inline void set_compound_page_dtor(struct page *page,
481 compound_page_dtor *dtor)
482{
483 page[1].lru.next = (void *)dtor;
484}
485
486static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
487{
488 return (compound_page_dtor *)page[1].lru.next;
489}
490
d85f3385
CL
491static inline int compound_order(struct page *page)
492{
6d777953 493 if (!PageHead(page))
d85f3385
CL
494 return 0;
495 return (unsigned long)page[1].lru.prev;
496}
497
37c2ac78
AA
498static inline int compound_trans_order(struct page *page)
499{
500 int order;
501 unsigned long flags;
502
503 if (!PageHead(page))
504 return 0;
505
506 flags = compound_lock_irqsave(page);
507 order = compound_order(page);
508 compound_unlock_irqrestore(page, flags);
509 return order;
510}
511
d85f3385
CL
512static inline void set_compound_order(struct page *page, unsigned long order)
513{
514 page[1].lru.prev = (void *)order;
515}
516
3dece370 517#ifdef CONFIG_MMU
14fd403f
AA
518/*
519 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
520 * servicing faults for write access. In the normal case, do always want
521 * pte_mkwrite. But get_user_pages can cause write faults for mappings
522 * that do not have writing enabled, when used by access_process_vm.
523 */
524static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
525{
526 if (likely(vma->vm_flags & VM_WRITE))
527 pte = pte_mkwrite(pte);
528 return pte;
529}
3dece370 530#endif
14fd403f 531
1da177e4
LT
532/*
533 * Multiple processes may "see" the same page. E.g. for untouched
534 * mappings of /dev/null, all processes see the same page full of
535 * zeroes, and text pages of executables and shared libraries have
536 * only one copy in memory, at most, normally.
537 *
538 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
539 * page_count() == 0 means the page is free. page->lru is then used for
540 * freelist management in the buddy allocator.
da6052f7 541 * page_count() > 0 means the page has been allocated.
1da177e4 542 *
da6052f7
NP
543 * Pages are allocated by the slab allocator in order to provide memory
544 * to kmalloc and kmem_cache_alloc. In this case, the management of the
545 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
546 * unless a particular usage is carefully commented. (the responsibility of
547 * freeing the kmalloc memory is the caller's, of course).
1da177e4 548 *
da6052f7
NP
549 * A page may be used by anyone else who does a __get_free_page().
550 * In this case, page_count still tracks the references, and should only
551 * be used through the normal accessor functions. The top bits of page->flags
552 * and page->virtual store page management information, but all other fields
553 * are unused and could be used privately, carefully. The management of this
554 * page is the responsibility of the one who allocated it, and those who have
555 * subsequently been given references to it.
556 *
557 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
558 * managed by the Linux memory manager: I/O, buffers, swapping etc.
559 * The following discussion applies only to them.
560 *
da6052f7
NP
561 * A pagecache page contains an opaque `private' member, which belongs to the
562 * page's address_space. Usually, this is the address of a circular list of
563 * the page's disk buffers. PG_private must be set to tell the VM to call
564 * into the filesystem to release these pages.
1da177e4 565 *
da6052f7
NP
566 * A page may belong to an inode's memory mapping. In this case, page->mapping
567 * is the pointer to the inode, and page->index is the file offset of the page,
568 * in units of PAGE_CACHE_SIZE.
1da177e4 569 *
da6052f7
NP
570 * If pagecache pages are not associated with an inode, they are said to be
571 * anonymous pages. These may become associated with the swapcache, and in that
572 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 573 *
da6052f7
NP
574 * In either case (swapcache or inode backed), the pagecache itself holds one
575 * reference to the page. Setting PG_private should also increment the
576 * refcount. The each user mapping also has a reference to the page.
1da177e4 577 *
da6052f7
NP
578 * The pagecache pages are stored in a per-mapping radix tree, which is
579 * rooted at mapping->page_tree, and indexed by offset.
580 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
581 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 582 *
da6052f7 583 * All pagecache pages may be subject to I/O:
1da177e4
LT
584 * - inode pages may need to be read from disk,
585 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
586 * to be written back to the inode on disk,
587 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
588 * modified may need to be swapped out to swap space and (later) to be read
589 * back into memory.
1da177e4
LT
590 */
591
592/*
593 * The zone field is never updated after free_area_init_core()
594 * sets it, so none of the operations on it need to be atomic.
1da177e4 595 */
348f8b6c 596
75980e97 597/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
07808b74 598#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
599#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
600#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
75980e97 601#define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
d41dee36 602
348f8b6c 603/*
25985edc 604 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
605 * sections we define the shift as 0; that plus a 0 mask ensures
606 * the compiler will optimise away reference to them.
607 */
d41dee36
AW
608#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
609#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
610#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
75980e97 611#define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
348f8b6c 612
bce54bbf
WD
613/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
614#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 615#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
616#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
617 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 618#else
89689ae7 619#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
620#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
621 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
622#endif
623
bd8029b6 624#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 625
9223b419
CL
626#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
627#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
628#endif
629
d41dee36
AW
630#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
631#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
632#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
75980e97 633#define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
89689ae7 634#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 635
33dd4e0e 636static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 637{
348f8b6c 638 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 639}
1da177e4 640
9127ab4f
CS
641#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
642#define SECTION_IN_PAGE_FLAGS
643#endif
644
89689ae7
CL
645/*
646 * The identification function is only used by the buddy allocator for
647 * determining if two pages could be buddies. We are not really
648 * identifying a zone since we could be using a the section number
649 * id if we have not node id available in page flags.
650 * We guarantee only that it will return the same value for two
651 * combinable pages in a zone.
652 */
cb2b95e1
AW
653static inline int page_zone_id(struct page *page)
654{
89689ae7 655 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
656}
657
25ba77c1 658static inline int zone_to_nid(struct zone *zone)
89fa3024 659{
d5f541ed
CL
660#ifdef CONFIG_NUMA
661 return zone->node;
662#else
663 return 0;
664#endif
89fa3024
CL
665}
666
89689ae7 667#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 668extern int page_to_nid(const struct page *page);
89689ae7 669#else
33dd4e0e 670static inline int page_to_nid(const struct page *page)
d41dee36 671{
89689ae7 672 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 673}
89689ae7
CL
674#endif
675
57e0a030 676#ifdef CONFIG_NUMA_BALANCING
75980e97 677#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
22b751c3 678static inline int page_nid_xchg_last(struct page *page, int nid)
57e0a030
MG
679{
680 return xchg(&page->_last_nid, nid);
681}
682
22b751c3 683static inline int page_nid_last(struct page *page)
57e0a030
MG
684{
685 return page->_last_nid;
686}
22b751c3 687static inline void page_nid_reset_last(struct page *page)
57e0a030
MG
688{
689 page->_last_nid = -1;
690}
691#else
22b751c3 692static inline int page_nid_last(struct page *page)
75980e97
PZ
693{
694 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
695}
696
22b751c3 697extern int page_nid_xchg_last(struct page *page, int nid);
75980e97 698
22b751c3 699static inline void page_nid_reset_last(struct page *page)
75980e97 700{
4468b8f1
MG
701 int nid = (1 << LAST_NID_SHIFT) - 1;
702
703 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
704 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
75980e97
PZ
705}
706#endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
707#else
22b751c3 708static inline int page_nid_xchg_last(struct page *page, int nid)
57e0a030
MG
709{
710 return page_to_nid(page);
711}
712
22b751c3 713static inline int page_nid_last(struct page *page)
57e0a030
MG
714{
715 return page_to_nid(page);
716}
717
22b751c3 718static inline void page_nid_reset_last(struct page *page)
57e0a030
MG
719{
720}
721#endif
722
33dd4e0e 723static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
724{
725 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
726}
727
9127ab4f 728#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
729static inline void set_page_section(struct page *page, unsigned long section)
730{
731 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
732 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
733}
734
aa462abe 735static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
736{
737 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
738}
308c05e3 739#endif
d41dee36 740
2f1b6248 741static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
742{
743 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
744 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
745}
2f1b6248 746
348f8b6c
DH
747static inline void set_page_node(struct page *page, unsigned long node)
748{
749 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
750 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 751}
89689ae7 752
2f1b6248 753static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 754 unsigned long node, unsigned long pfn)
1da177e4 755{
348f8b6c
DH
756 set_page_zone(page, zone);
757 set_page_node(page, node);
9127ab4f 758#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 759 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 760#endif
1da177e4
LT
761}
762
f6ac2354
CL
763/*
764 * Some inline functions in vmstat.h depend on page_zone()
765 */
766#include <linux/vmstat.h>
767
33dd4e0e 768static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 769{
aa462abe 770 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
771}
772
773#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
774#define HASHED_PAGE_VIRTUAL
775#endif
776
777#if defined(WANT_PAGE_VIRTUAL)
778#define page_address(page) ((page)->virtual)
779#define set_page_address(page, address) \
780 do { \
781 (page)->virtual = (address); \
782 } while(0)
783#define page_address_init() do { } while(0)
784#endif
785
786#if defined(HASHED_PAGE_VIRTUAL)
f9918794 787void *page_address(const struct page *page);
1da177e4
LT
788void set_page_address(struct page *page, void *virtual);
789void page_address_init(void);
790#endif
791
792#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
793#define page_address(page) lowmem_page_address(page)
794#define set_page_address(page, address) do { } while(0)
795#define page_address_init() do { } while(0)
796#endif
797
798/*
799 * On an anonymous page mapped into a user virtual memory area,
800 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
801 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
802 *
803 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
804 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
805 * and then page->mapping points, not to an anon_vma, but to a private
806 * structure which KSM associates with that merged page. See ksm.h.
807 *
808 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
809 *
810 * Please note that, confusingly, "page_mapping" refers to the inode
811 * address_space which maps the page from disk; whereas "page_mapped"
812 * refers to user virtual address space into which the page is mapped.
813 */
814#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
815#define PAGE_MAPPING_KSM 2
816#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 817
9800339b 818extern struct address_space *page_mapping(struct page *page);
1da177e4 819
3ca7b3c5
HD
820/* Neutral page->mapping pointer to address_space or anon_vma or other */
821static inline void *page_rmapping(struct page *page)
822{
823 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
824}
825
f981c595
MG
826extern struct address_space *__page_file_mapping(struct page *);
827
828static inline
829struct address_space *page_file_mapping(struct page *page)
830{
831 if (unlikely(PageSwapCache(page)))
832 return __page_file_mapping(page);
833
834 return page->mapping;
835}
836
1da177e4
LT
837static inline int PageAnon(struct page *page)
838{
839 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
840}
841
842/*
843 * Return the pagecache index of the passed page. Regular pagecache pages
844 * use ->index whereas swapcache pages use ->private
845 */
846static inline pgoff_t page_index(struct page *page)
847{
848 if (unlikely(PageSwapCache(page)))
4c21e2f2 849 return page_private(page);
1da177e4
LT
850 return page->index;
851}
852
f981c595
MG
853extern pgoff_t __page_file_index(struct page *page);
854
855/*
856 * Return the file index of the page. Regular pagecache pages use ->index
857 * whereas swapcache pages use swp_offset(->private)
858 */
859static inline pgoff_t page_file_index(struct page *page)
860{
861 if (unlikely(PageSwapCache(page)))
862 return __page_file_index(page);
863
864 return page->index;
865}
866
1da177e4
LT
867/*
868 * Return true if this page is mapped into pagetables.
869 */
870static inline int page_mapped(struct page *page)
871{
872 return atomic_read(&(page)->_mapcount) >= 0;
873}
874
1da177e4
LT
875/*
876 * Different kinds of faults, as returned by handle_mm_fault().
877 * Used to decide whether a process gets delivered SIGBUS or
878 * just gets major/minor fault counters bumped up.
879 */
d0217ac0 880
83c54070 881#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 882
83c54070
NP
883#define VM_FAULT_OOM 0x0001
884#define VM_FAULT_SIGBUS 0x0002
885#define VM_FAULT_MAJOR 0x0004
886#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
887#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
888#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 889
83c54070
NP
890#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
891#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 892#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 893
aa50d3a7
AK
894#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
895
896#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
897 VM_FAULT_HWPOISON_LARGE)
898
899/* Encode hstate index for a hwpoisoned large page */
900#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
901#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 902
1c0fe6e3
NP
903/*
904 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
905 */
906extern void pagefault_out_of_memory(void);
907
1da177e4
LT
908#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
909
ddd588b5 910/*
7bf02ea2 911 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
912 * various contexts.
913 */
4b59e6c4
DR
914#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
915#define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
ddd588b5 916
7bf02ea2
DR
917extern void show_free_areas(unsigned int flags);
918extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 919
1da177e4
LT
920int shmem_zero_setup(struct vm_area_struct *);
921
e8edc6e0 922extern int can_do_mlock(void);
1da177e4
LT
923extern int user_shm_lock(size_t, struct user_struct *);
924extern void user_shm_unlock(size_t, struct user_struct *);
925
926/*
927 * Parameter block passed down to zap_pte_range in exceptional cases.
928 */
929struct zap_details {
930 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
931 struct address_space *check_mapping; /* Check page->mapping if set */
932 pgoff_t first_index; /* Lowest page->index to unmap */
933 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
934};
935
7e675137
NP
936struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
937 pte_t pte);
938
c627f9cc
JS
939int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
940 unsigned long size);
14f5ff5d 941void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 942 unsigned long size, struct zap_details *);
4f74d2c8
LT
943void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
944 unsigned long start, unsigned long end);
e6473092
MM
945
946/**
947 * mm_walk - callbacks for walk_page_range
948 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
949 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
950 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
951 * this handler is required to be able to handle
952 * pmd_trans_huge() pmds. They may simply choose to
953 * split_huge_page() instead of handling it explicitly.
e6473092
MM
954 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
955 * @pte_hole: if set, called for each hole at all levels
5dc37642 956 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
957 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
958 * is used.
e6473092
MM
959 *
960 * (see walk_page_range for more details)
961 */
962struct mm_walk {
0f157a5b
AM
963 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
964 unsigned long next, struct mm_walk *walk);
965 int (*pud_entry)(pud_t *pud, unsigned long addr,
966 unsigned long next, struct mm_walk *walk);
967 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
968 unsigned long next, struct mm_walk *walk);
969 int (*pte_entry)(pte_t *pte, unsigned long addr,
970 unsigned long next, struct mm_walk *walk);
971 int (*pte_hole)(unsigned long addr, unsigned long next,
972 struct mm_walk *walk);
973 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
974 unsigned long addr, unsigned long next,
975 struct mm_walk *walk);
2165009b
DH
976 struct mm_struct *mm;
977 void *private;
e6473092
MM
978};
979
2165009b
DH
980int walk_page_range(unsigned long addr, unsigned long end,
981 struct mm_walk *walk);
42b77728 982void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 983 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
984int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
985 struct vm_area_struct *vma);
1da177e4
LT
986void unmap_mapping_range(struct address_space *mapping,
987 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
988int follow_pfn(struct vm_area_struct *vma, unsigned long address,
989 unsigned long *pfn);
d87fe660 990int follow_phys(struct vm_area_struct *vma, unsigned long address,
991 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
992int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
993 void *buf, int len, int write);
1da177e4
LT
994
995static inline void unmap_shared_mapping_range(struct address_space *mapping,
996 loff_t const holebegin, loff_t const holelen)
997{
998 unmap_mapping_range(mapping, holebegin, holelen, 0);
999}
1000
25d9e2d1 1001extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 1002extern void truncate_setsize(struct inode *inode, loff_t newsize);
623e3db9 1003void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1004int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1005int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1006int invalidate_inode_page(struct page *page);
1007
7ee1dd3f 1008#ifdef CONFIG_MMU
83c54070 1009extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1010 unsigned long address, unsigned int flags);
5c723ba5
PZ
1011extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1012 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1013#else
1014static inline int handle_mm_fault(struct mm_struct *mm,
1015 struct vm_area_struct *vma, unsigned long address,
d06063cc 1016 unsigned int flags)
7ee1dd3f
DH
1017{
1018 /* should never happen if there's no MMU */
1019 BUG();
1020 return VM_FAULT_SIGBUS;
1021}
5c723ba5
PZ
1022static inline int fixup_user_fault(struct task_struct *tsk,
1023 struct mm_struct *mm, unsigned long address,
1024 unsigned int fault_flags)
1025{
1026 /* should never happen if there's no MMU */
1027 BUG();
1028 return -EFAULT;
1029}
7ee1dd3f 1030#endif
f33ea7f4 1031
1da177e4 1032extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1033extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1034 void *buf, int len, int write);
1da177e4 1035
28a35716
ML
1036long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1037 unsigned long start, unsigned long nr_pages,
1038 unsigned int foll_flags, struct page **pages,
1039 struct vm_area_struct **vmas, int *nonblocking);
1040long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1041 unsigned long start, unsigned long nr_pages,
1042 int write, int force, struct page **pages,
1043 struct vm_area_struct **vmas);
d2bf6be8
NP
1044int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1045 struct page **pages);
18022c5d
MG
1046struct kvec;
1047int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1048 struct page **pages);
1049int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1050struct page *get_dump_page(unsigned long addr);
1da177e4 1051
cf9a2ae8 1052extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1053extern void do_invalidatepage(struct page *page, unsigned int offset,
1054 unsigned int length);
cf9a2ae8 1055
1da177e4 1056int __set_page_dirty_nobuffers(struct page *page);
76719325 1057int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1058int redirty_page_for_writepage(struct writeback_control *wbc,
1059 struct page *page);
e3a7cca1 1060void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1061void account_page_writeback(struct page *page);
b3c97528 1062int set_page_dirty(struct page *page);
1da177e4
LT
1063int set_page_dirty_lock(struct page *page);
1064int clear_page_dirty_for_io(struct page *page);
1065
39aa3cb3 1066/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1067static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1068{
1069 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1070}
1071
a09a79f6
MP
1072static inline int stack_guard_page_start(struct vm_area_struct *vma,
1073 unsigned long addr)
1074{
1075 return (vma->vm_flags & VM_GROWSDOWN) &&
1076 (vma->vm_start == addr) &&
1077 !vma_growsdown(vma->vm_prev, addr);
1078}
1079
1080/* Is the vma a continuation of the stack vma below it? */
1081static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1082{
1083 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1084}
1085
1086static inline int stack_guard_page_end(struct vm_area_struct *vma,
1087 unsigned long addr)
1088{
1089 return (vma->vm_flags & VM_GROWSUP) &&
1090 (vma->vm_end == addr) &&
1091 !vma_growsup(vma->vm_next, addr);
1092}
1093
b7643757
SP
1094extern pid_t
1095vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1096
b6a2fea3
OW
1097extern unsigned long move_page_tables(struct vm_area_struct *vma,
1098 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1099 unsigned long new_addr, unsigned long len,
1100 bool need_rmap_locks);
7da4d641
PZ
1101extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1102 unsigned long end, pgprot_t newprot,
4b10e7d5 1103 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1104extern int mprotect_fixup(struct vm_area_struct *vma,
1105 struct vm_area_struct **pprev, unsigned long start,
1106 unsigned long end, unsigned long newflags);
1da177e4 1107
465a454f
PZ
1108/*
1109 * doesn't attempt to fault and will return short.
1110 */
1111int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1112 struct page **pages);
d559db08
KH
1113/*
1114 * per-process(per-mm_struct) statistics.
1115 */
d559db08
KH
1116static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1117{
69c97823
KK
1118 long val = atomic_long_read(&mm->rss_stat.count[member]);
1119
1120#ifdef SPLIT_RSS_COUNTING
1121 /*
1122 * counter is updated in asynchronous manner and may go to minus.
1123 * But it's never be expected number for users.
1124 */
1125 if (val < 0)
1126 val = 0;
172703b0 1127#endif
69c97823
KK
1128 return (unsigned long)val;
1129}
d559db08
KH
1130
1131static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1132{
172703b0 1133 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1134}
1135
1136static inline void inc_mm_counter(struct mm_struct *mm, int member)
1137{
172703b0 1138 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1139}
1140
1141static inline void dec_mm_counter(struct mm_struct *mm, int member)
1142{
172703b0 1143 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1144}
1145
d559db08
KH
1146static inline unsigned long get_mm_rss(struct mm_struct *mm)
1147{
1148 return get_mm_counter(mm, MM_FILEPAGES) +
1149 get_mm_counter(mm, MM_ANONPAGES);
1150}
1151
1152static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1153{
1154 return max(mm->hiwater_rss, get_mm_rss(mm));
1155}
1156
1157static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1158{
1159 return max(mm->hiwater_vm, mm->total_vm);
1160}
1161
1162static inline void update_hiwater_rss(struct mm_struct *mm)
1163{
1164 unsigned long _rss = get_mm_rss(mm);
1165
1166 if ((mm)->hiwater_rss < _rss)
1167 (mm)->hiwater_rss = _rss;
1168}
1169
1170static inline void update_hiwater_vm(struct mm_struct *mm)
1171{
1172 if (mm->hiwater_vm < mm->total_vm)
1173 mm->hiwater_vm = mm->total_vm;
1174}
1175
1176static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1177 struct mm_struct *mm)
1178{
1179 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1180
1181 if (*maxrss < hiwater_rss)
1182 *maxrss = hiwater_rss;
1183}
1184
53bddb4e 1185#if defined(SPLIT_RSS_COUNTING)
05af2e10 1186void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1187#else
05af2e10 1188static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1189{
1190}
1191#endif
465a454f 1192
4e950f6f 1193int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1194
25ca1d6c
NK
1195extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1196 spinlock_t **ptl);
1197static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1198 spinlock_t **ptl)
1199{
1200 pte_t *ptep;
1201 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1202 return ptep;
1203}
c9cfcddf 1204
5f22df00
NP
1205#ifdef __PAGETABLE_PUD_FOLDED
1206static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1207 unsigned long address)
1208{
1209 return 0;
1210}
1211#else
1bb3630e 1212int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1213#endif
1214
1215#ifdef __PAGETABLE_PMD_FOLDED
1216static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1217 unsigned long address)
1218{
1219 return 0;
1220}
1221#else
1bb3630e 1222int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1223#endif
1224
8ac1f832
AA
1225int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1226 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1227int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1228
1da177e4
LT
1229/*
1230 * The following ifdef needed to get the 4level-fixup.h header to work.
1231 * Remove it when 4level-fixup.h has been removed.
1232 */
1bb3630e 1233#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1234static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1235{
1bb3630e
HD
1236 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1237 NULL: pud_offset(pgd, address);
1da177e4
LT
1238}
1239
1240static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1241{
1bb3630e
HD
1242 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1243 NULL: pmd_offset(pud, address);
1da177e4 1244}
1bb3630e
HD
1245#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1246
f7d0b926 1247#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1248/*
1249 * We tuck a spinlock to guard each pagetable page into its struct page,
1250 * at page->private, with BUILD_BUG_ON to make sure that this will not
1251 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1252 * When freeing, reset page->mapping so free_pages_check won't complain.
1253 */
349aef0b 1254#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1255#define pte_lock_init(_page) do { \
1256 spin_lock_init(__pte_lockptr(_page)); \
1257} while (0)
1258#define pte_lock_deinit(page) ((page)->mapping = NULL)
1259#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1260#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1261/*
1262 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1263 */
1264#define pte_lock_init(page) do {} while (0)
1265#define pte_lock_deinit(page) do {} while (0)
1266#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1267#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1268
2f569afd
MS
1269static inline void pgtable_page_ctor(struct page *page)
1270{
1271 pte_lock_init(page);
1272 inc_zone_page_state(page, NR_PAGETABLE);
1273}
1274
1275static inline void pgtable_page_dtor(struct page *page)
1276{
1277 pte_lock_deinit(page);
1278 dec_zone_page_state(page, NR_PAGETABLE);
1279}
1280
c74df32c
HD
1281#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1282({ \
4c21e2f2 1283 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1284 pte_t *__pte = pte_offset_map(pmd, address); \
1285 *(ptlp) = __ptl; \
1286 spin_lock(__ptl); \
1287 __pte; \
1288})
1289
1290#define pte_unmap_unlock(pte, ptl) do { \
1291 spin_unlock(ptl); \
1292 pte_unmap(pte); \
1293} while (0)
1294
8ac1f832
AA
1295#define pte_alloc_map(mm, vma, pmd, address) \
1296 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1297 pmd, address))? \
1298 NULL: pte_offset_map(pmd, address))
1bb3630e 1299
c74df32c 1300#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1301 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1302 pmd, address))? \
c74df32c
HD
1303 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1304
1bb3630e 1305#define pte_alloc_kernel(pmd, address) \
8ac1f832 1306 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1307 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1308
1309extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1310extern void free_area_init_node(int nid, unsigned long * zones_size,
1311 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1312extern void free_initmem(void);
1313
69afade7
JL
1314/*
1315 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1316 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1317 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1318 * Return pages freed into the buddy system.
1319 */
11199692 1320extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1321 int poison, char *s);
c3d5f5f0 1322
cfa11e08
JL
1323#ifdef CONFIG_HIGHMEM
1324/*
1325 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1326 * and totalram_pages.
1327 */
1328extern void free_highmem_page(struct page *page);
1329#endif
69afade7 1330
c3d5f5f0 1331extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1332extern void mem_init_print_info(const char *str);
69afade7
JL
1333
1334/* Free the reserved page into the buddy system, so it gets managed. */
1335static inline void __free_reserved_page(struct page *page)
1336{
1337 ClearPageReserved(page);
1338 init_page_count(page);
1339 __free_page(page);
1340}
1341
1342static inline void free_reserved_page(struct page *page)
1343{
1344 __free_reserved_page(page);
1345 adjust_managed_page_count(page, 1);
1346}
1347
1348static inline void mark_page_reserved(struct page *page)
1349{
1350 SetPageReserved(page);
1351 adjust_managed_page_count(page, -1);
1352}
1353
1354/*
1355 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1356 * The freed pages will be poisoned with pattern "poison" if it's within
1357 * range [0, UCHAR_MAX].
1358 * Return pages freed into the buddy system.
69afade7
JL
1359 */
1360static inline unsigned long free_initmem_default(int poison)
1361{
1362 extern char __init_begin[], __init_end[];
1363
11199692 1364 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1365 poison, "unused kernel");
1366}
1367
7ee3d4e8
JL
1368static inline unsigned long get_num_physpages(void)
1369{
1370 int nid;
1371 unsigned long phys_pages = 0;
1372
1373 for_each_online_node(nid)
1374 phys_pages += node_present_pages(nid);
1375
1376 return phys_pages;
1377}
1378
0ee332c1 1379#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1380/*
0ee332c1 1381 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1382 * zones, allocate the backing mem_map and account for memory holes in a more
1383 * architecture independent manner. This is a substitute for creating the
1384 * zone_sizes[] and zholes_size[] arrays and passing them to
1385 * free_area_init_node()
1386 *
1387 * An architecture is expected to register range of page frames backed by
0ee332c1 1388 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1389 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1390 * usage, an architecture is expected to do something like
1391 *
1392 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1393 * max_highmem_pfn};
1394 * for_each_valid_physical_page_range()
0ee332c1 1395 * memblock_add_node(base, size, nid)
c713216d
MG
1396 * free_area_init_nodes(max_zone_pfns);
1397 *
0ee332c1
TH
1398 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1399 * registered physical page range. Similarly
1400 * sparse_memory_present_with_active_regions() calls memory_present() for
1401 * each range when SPARSEMEM is enabled.
c713216d
MG
1402 *
1403 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1404 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1405 */
1406extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1407unsigned long node_map_pfn_alignment(void);
32996250
YL
1408unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1409 unsigned long end_pfn);
c713216d
MG
1410extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1411 unsigned long end_pfn);
1412extern void get_pfn_range_for_nid(unsigned int nid,
1413 unsigned long *start_pfn, unsigned long *end_pfn);
1414extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1415extern void free_bootmem_with_active_regions(int nid,
1416 unsigned long max_low_pfn);
1417extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1418
0ee332c1 1419#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1420
0ee332c1 1421#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1422 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1423static inline int __early_pfn_to_nid(unsigned long pfn)
1424{
1425 return 0;
1426}
1427#else
1428/* please see mm/page_alloc.c */
1429extern int __meminit early_pfn_to_nid(unsigned long pfn);
1430#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1431/* there is a per-arch backend function. */
1432extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1433#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1434#endif
1435
0e0b864e 1436extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1437extern void memmap_init_zone(unsigned long, int, unsigned long,
1438 unsigned long, enum memmap_context);
bc75d33f 1439extern void setup_per_zone_wmarks(void);
1b79acc9 1440extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1441extern void mem_init(void);
8feae131 1442extern void __init mmap_init(void);
b2b755b5 1443extern void show_mem(unsigned int flags);
1da177e4
LT
1444extern void si_meminfo(struct sysinfo * val);
1445extern void si_meminfo_node(struct sysinfo *val, int nid);
1446
3ee9a4f0
JP
1447extern __printf(3, 4)
1448void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1449
e7c8d5c9 1450extern void setup_per_cpu_pageset(void);
e7c8d5c9 1451
112067f0 1452extern void zone_pcp_update(struct zone *zone);
340175b7 1453extern void zone_pcp_reset(struct zone *zone);
112067f0 1454
75f7ad8e
PS
1455/* page_alloc.c */
1456extern int min_free_kbytes;
1457
8feae131 1458/* nommu.c */
33e5d769 1459extern atomic_long_t mmap_pages_allocated;
7e660872 1460extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1461
6b2dbba8 1462/* interval_tree.c */
6b2dbba8
ML
1463void vma_interval_tree_insert(struct vm_area_struct *node,
1464 struct rb_root *root);
9826a516
ML
1465void vma_interval_tree_insert_after(struct vm_area_struct *node,
1466 struct vm_area_struct *prev,
1467 struct rb_root *root);
6b2dbba8
ML
1468void vma_interval_tree_remove(struct vm_area_struct *node,
1469 struct rb_root *root);
1470struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1471 unsigned long start, unsigned long last);
1472struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1473 unsigned long start, unsigned long last);
1474
1475#define vma_interval_tree_foreach(vma, root, start, last) \
1476 for (vma = vma_interval_tree_iter_first(root, start, last); \
1477 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1478
1479static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1480 struct list_head *list)
1481{
6b2dbba8 1482 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1483}
1484
bf181b9f
ML
1485void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1486 struct rb_root *root);
1487void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1488 struct rb_root *root);
1489struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1490 struct rb_root *root, unsigned long start, unsigned long last);
1491struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1492 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1493#ifdef CONFIG_DEBUG_VM_RB
1494void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1495#endif
bf181b9f
ML
1496
1497#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1498 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1499 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1500
1da177e4 1501/* mmap.c */
34b4e4aa 1502extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1503extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1504 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1505extern struct vm_area_struct *vma_merge(struct mm_struct *,
1506 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1507 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1508 struct mempolicy *);
1509extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1510extern int split_vma(struct mm_struct *,
1511 struct vm_area_struct *, unsigned long addr, int new_below);
1512extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1513extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1514 struct rb_node **, struct rb_node *);
a8fb5618 1515extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1516extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1517 unsigned long addr, unsigned long len, pgoff_t pgoff,
1518 bool *need_rmap_locks);
1da177e4 1519extern void exit_mmap(struct mm_struct *);
925d1c40 1520
7906d00c
AA
1521extern int mm_take_all_locks(struct mm_struct *mm);
1522extern void mm_drop_all_locks(struct mm_struct *mm);
1523
38646013
JS
1524extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1525extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1526
119f657c 1527extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1528extern int install_special_mapping(struct mm_struct *mm,
1529 unsigned long addr, unsigned long len,
1530 unsigned long flags, struct page **pages);
1da177e4
LT
1531
1532extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1533
0165ab44 1534extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1535 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1536extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1537 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1538 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1539extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1540
bebeb3d6
ML
1541#ifdef CONFIG_MMU
1542extern int __mm_populate(unsigned long addr, unsigned long len,
1543 int ignore_errors);
1544static inline void mm_populate(unsigned long addr, unsigned long len)
1545{
1546 /* Ignore errors */
1547 (void) __mm_populate(addr, len, 1);
1548}
1549#else
1550static inline void mm_populate(unsigned long addr, unsigned long len) {}
1551#endif
1552
e4eb1ff6
LT
1553/* These take the mm semaphore themselves */
1554extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1555extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1556extern unsigned long vm_mmap(struct file *, unsigned long,
1557 unsigned long, unsigned long,
1558 unsigned long, unsigned long);
1da177e4 1559
db4fbfb9
ML
1560struct vm_unmapped_area_info {
1561#define VM_UNMAPPED_AREA_TOPDOWN 1
1562 unsigned long flags;
1563 unsigned long length;
1564 unsigned long low_limit;
1565 unsigned long high_limit;
1566 unsigned long align_mask;
1567 unsigned long align_offset;
1568};
1569
1570extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1571extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1572
1573/*
1574 * Search for an unmapped address range.
1575 *
1576 * We are looking for a range that:
1577 * - does not intersect with any VMA;
1578 * - is contained within the [low_limit, high_limit) interval;
1579 * - is at least the desired size.
1580 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1581 */
1582static inline unsigned long
1583vm_unmapped_area(struct vm_unmapped_area_info *info)
1584{
1585 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1586 return unmapped_area(info);
1587 else
1588 return unmapped_area_topdown(info);
1589}
1590
85821aab 1591/* truncate.c */
1da177e4 1592extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1593extern void truncate_inode_pages_range(struct address_space *,
1594 loff_t lstart, loff_t lend);
1da177e4
LT
1595
1596/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1597extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
4fcf1c62 1598extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1599
1600/* mm/page-writeback.c */
1601int write_one_page(struct page *page, int wait);
1cf6e7d8 1602void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1603
1604/* readahead.c */
1605#define VM_MAX_READAHEAD 128 /* kbytes */
1606#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1607
1da177e4 1608int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1609 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1610
1611void page_cache_sync_readahead(struct address_space *mapping,
1612 struct file_ra_state *ra,
1613 struct file *filp,
1614 pgoff_t offset,
1615 unsigned long size);
1616
1617void page_cache_async_readahead(struct address_space *mapping,
1618 struct file_ra_state *ra,
1619 struct file *filp,
1620 struct page *pg,
1621 pgoff_t offset,
1622 unsigned long size);
1623
1da177e4 1624unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1625unsigned long ra_submit(struct file_ra_state *ra,
1626 struct address_space *mapping,
1627 struct file *filp);
1da177e4 1628
d05f3169 1629/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1630extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1631
1632/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1633extern int expand_downwards(struct vm_area_struct *vma,
1634 unsigned long address);
8ca3eb08 1635#if VM_GROWSUP
46dea3d0 1636extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
LT
1637#else
1638 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1639#endif
1da177e4
LT
1640
1641/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1642extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1643extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1644 struct vm_area_struct **pprev);
1645
1646/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1647 NULL if none. Assume start_addr < end_addr. */
1648static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1649{
1650 struct vm_area_struct * vma = find_vma(mm,start_addr);
1651
1652 if (vma && end_addr <= vma->vm_start)
1653 vma = NULL;
1654 return vma;
1655}
1656
1657static inline unsigned long vma_pages(struct vm_area_struct *vma)
1658{
1659 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1660}
1661
640708a2
PE
1662/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1663static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1664 unsigned long vm_start, unsigned long vm_end)
1665{
1666 struct vm_area_struct *vma = find_vma(mm, vm_start);
1667
1668 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1669 vma = NULL;
1670
1671 return vma;
1672}
1673
bad849b3 1674#ifdef CONFIG_MMU
804af2cf 1675pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1676#else
1677static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1678{
1679 return __pgprot(0);
1680}
1681#endif
1682
b24f53a0 1683#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
4b10e7d5 1684unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1685 unsigned long start, unsigned long end);
1686#endif
1687
deceb6cd 1688struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1689int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1690 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1691int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1692int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1693 unsigned long pfn);
423bad60
NP
1694int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1695 unsigned long pfn);
b4cbb197
LT
1696int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1697
deceb6cd 1698
240aadee
ML
1699struct page *follow_page_mask(struct vm_area_struct *vma,
1700 unsigned long address, unsigned int foll_flags,
1701 unsigned int *page_mask);
1702
1703static inline struct page *follow_page(struct vm_area_struct *vma,
1704 unsigned long address, unsigned int foll_flags)
1705{
1706 unsigned int unused_page_mask;
1707 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1708}
1709
deceb6cd
HD
1710#define FOLL_WRITE 0x01 /* check pte is writable */
1711#define FOLL_TOUCH 0x02 /* mark page accessed */
1712#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1713#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1714#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1715#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1716 * and return without waiting upon it */
110d74a9 1717#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1718#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1719#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 1720#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 1721#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1da177e4 1722
2f569afd 1723typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1724 void *data);
1725extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1726 unsigned long size, pte_fn_t fn, void *data);
1727
1da177e4 1728#ifdef CONFIG_PROC_FS
ab50b8ed 1729void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1730#else
ab50b8ed 1731static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1732 unsigned long flags, struct file *file, long pages)
1733{
44de9d0c 1734 mm->total_vm += pages;
1da177e4
LT
1735}
1736#endif /* CONFIG_PROC_FS */
1737
12d6f21e 1738#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1739extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1740#ifdef CONFIG_HIBERNATION
1741extern bool kernel_page_present(struct page *page);
1742#endif /* CONFIG_HIBERNATION */
12d6f21e 1743#else
1da177e4 1744static inline void
9858db50 1745kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1746#ifdef CONFIG_HIBERNATION
1747static inline bool kernel_page_present(struct page *page) { return true; }
1748#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1749#endif
1750
31db58b3 1751extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1752#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1753int in_gate_area_no_mm(unsigned long addr);
83b964bb 1754int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1755#else
cae5d390
SW
1756int in_gate_area_no_mm(unsigned long addr);
1757#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1758#endif /* __HAVE_ARCH_GATE_AREA */
1759
146732ce
JT
1760#ifdef CONFIG_SYSCTL
1761extern int sysctl_drop_caches;
8d65af78 1762int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1763 void __user *, size_t *, loff_t *);
146732ce
JT
1764#endif
1765
a09ed5e0 1766unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1767 unsigned long nr_pages_scanned,
1768 unsigned long lru_pages);
9d0243bc 1769
7a9166e3
LY
1770#ifndef CONFIG_MMU
1771#define randomize_va_space 0
1772#else
a62eaf15 1773extern int randomize_va_space;
7a9166e3 1774#endif
a62eaf15 1775
045e72ac 1776const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1777void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1778
9bdac914
YL
1779void sparse_mem_maps_populate_node(struct page **map_map,
1780 unsigned long pnum_begin,
1781 unsigned long pnum_end,
1782 unsigned long map_count,
1783 int nodeid);
1784
98f3cfc1 1785struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1786pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1787pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1788pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1789pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1790void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1791void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1792void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
1793int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1794 int node);
1795int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 1796void vmemmap_populate_print_last(void);
0197518c 1797#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 1798void vmemmap_free(unsigned long start, unsigned long end);
0197518c 1799#endif
46723bfa
YI
1800void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1801 unsigned long size);
6a46079c 1802
82ba011b
AK
1803enum mf_flags {
1804 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 1805 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 1806 MF_MUST_KILL = 1 << 2,
cf870c70 1807 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 1808};
cd42f4a3 1809extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 1810extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 1811extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1812extern int sysctl_memory_failure_early_kill;
1813extern int sysctl_memory_failure_recovery;
facb6011 1814extern void shake_page(struct page *p, int access);
293c07e3 1815extern atomic_long_t num_poisoned_pages;
facb6011 1816extern int soft_offline_page(struct page *page, int flags);
6a46079c 1817
718a3821
WF
1818extern void dump_page(struct page *page);
1819
47ad8475
AA
1820#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1821extern void clear_huge_page(struct page *page,
1822 unsigned long addr,
1823 unsigned int pages_per_huge_page);
1824extern void copy_user_huge_page(struct page *dst, struct page *src,
1825 unsigned long addr, struct vm_area_struct *vma,
1826 unsigned int pages_per_huge_page);
1827#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1828
c0a32fc5
SG
1829#ifdef CONFIG_DEBUG_PAGEALLOC
1830extern unsigned int _debug_guardpage_minorder;
1831
1832static inline unsigned int debug_guardpage_minorder(void)
1833{
1834 return _debug_guardpage_minorder;
1835}
1836
1837static inline bool page_is_guard(struct page *page)
1838{
1839 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1840}
1841#else
1842static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1843static inline bool page_is_guard(struct page *page) { return false; }
1844#endif /* CONFIG_DEBUG_PAGEALLOC */
1845
f9872caf
CS
1846#if MAX_NUMNODES > 1
1847void __init setup_nr_node_ids(void);
1848#else
1849static inline void setup_nr_node_ids(void) {}
1850#endif
1851
1da177e4
LT
1852#endif /* __KERNEL__ */
1853#endif /* _LINUX_MM_H */