mm: methods for teaching filesystems about PG_swapcache pages
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4 8#include <linux/gfp.h>
187f1882 9#include <linux/bug.h>
1da177e4
LT
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
13#include <linux/prio_tree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
1da177e4
LT
21
22struct mempolicy;
23struct anon_vma;
4e950f6f 24struct file_ra_state;
e8edc6e0 25struct user_struct;
4e950f6f 26struct writeback_control;
1da177e4
LT
27
28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29extern unsigned long max_mapnr;
30#endif
31
32extern unsigned long num_physpages;
4481374c 33extern unsigned long totalram_pages;
1da177e4 34extern void * high_memory;
1da177e4
LT
35extern int page_cluster;
36
37#ifdef CONFIG_SYSCTL
38extern int sysctl_legacy_va_layout;
39#else
40#define sysctl_legacy_va_layout 0
41#endif
42
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/processor.h>
1da177e4 46
1da177e4
LT
47#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
27ac792c
AR
49/* to align the pointer to the (next) page boundary */
50#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
1da177e4
LT
52/*
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
58 * mmap() functions).
59 */
60
c43692e8
CL
61extern struct kmem_cache *vm_area_cachep;
62
1da177e4 63#ifndef CONFIG_MMU
8feae131
DH
64extern struct rb_root nommu_region_tree;
65extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
66
67extern unsigned int kobjsize(const void *objp);
68#endif
69
70/*
605d9288 71 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4
LT
72 */
73#define VM_READ 0x00000001 /* currently active flags */
74#define VM_WRITE 0x00000002
75#define VM_EXEC 0x00000004
76#define VM_SHARED 0x00000008
77
7e2cff42 78/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
79#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
80#define VM_MAYWRITE 0x00000020
81#define VM_MAYEXEC 0x00000040
82#define VM_MAYSHARE 0x00000080
83
84#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
8ca3eb08 85#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1da177e4 86#define VM_GROWSUP 0x00000200
8ca3eb08
LT
87#else
88#define VM_GROWSUP 0x00000000
a664b2d8 89#define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
8ca3eb08 90#endif
6aab341e 91#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
92#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
93
94#define VM_EXECUTABLE 0x00001000
95#define VM_LOCKED 0x00002000
96#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
97
98 /* Used by sys_madvise() */
99#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
100#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
101
102#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
103#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 104#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4 105#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 106#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
107#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
108#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
f2d6bfe9 109#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1da177e4 110#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
f2d6bfe9
JW
111#else
112#define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
113#endif
895791da 114#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
accb61fe 115#define VM_NODUMP 0x04000000 /* Do not include in the core dump */
d00806b1 116
d0217ac0 117#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
b379d790 118#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
aba46c50 119#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
895791da 120#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
f8af4da3 121#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 122
a8bef8ff
MG
123/* Bits set in the VMA until the stack is in its final location */
124#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
125
1da177e4
LT
126#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
127#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
128#endif
129
130#ifdef CONFIG_STACK_GROWSUP
131#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
132#else
133#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
134#endif
135
136#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
137#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
138#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
139#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
140#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
141
b291f000 142/*
78f11a25
AA
143 * Special vmas that are non-mergable, non-mlock()able.
144 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000
NP
145 */
146#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
147
1da177e4
LT
148/*
149 * mapping from the currently active vm_flags protection bits (the
150 * low four bits) to a page protection mask..
151 */
152extern pgprot_t protection_map[16];
153
d0217ac0
NP
154#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
155#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 156#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 157#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 158#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 159#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
d0217ac0 160
6bd9cd50 161/*
162 * This interface is used by x86 PAT code to identify a pfn mapping that is
163 * linear over entire vma. This is to optimize PAT code that deals with
164 * marking the physical region with a particular prot. This is not for generic
165 * mm use. Note also that this check will not work if the pfn mapping is
166 * linear for a vma starting at physical address 0. In which case PAT code
167 * falls back to slow path of reserving physical range page by page.
168 */
3c8bb73a 169static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
170{
ca16d140 171 return !!(vma->vm_flags & VM_PFN_AT_MMAP);
3c8bb73a 172}
173
174static inline int is_pfn_mapping(struct vm_area_struct *vma)
175{
ca16d140 176 return !!(vma->vm_flags & VM_PFNMAP);
3c8bb73a 177}
d0217ac0 178
54cb8821 179/*
d0217ac0 180 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
181 * ->fault function. The vma's ->fault is responsible for returning a bitmask
182 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 183 *
d0217ac0
NP
184 * pgoff should be used in favour of virtual_address, if possible. If pgoff
185 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
186 * mapping support.
54cb8821 187 */
d0217ac0
NP
188struct vm_fault {
189 unsigned int flags; /* FAULT_FLAG_xxx flags */
190 pgoff_t pgoff; /* Logical page offset based on vma */
191 void __user *virtual_address; /* Faulting virtual address */
192
193 struct page *page; /* ->fault handlers should return a
83c54070 194 * page here, unless VM_FAULT_NOPAGE
d0217ac0 195 * is set (which is also implied by
83c54070 196 * VM_FAULT_ERROR).
d0217ac0 197 */
54cb8821 198};
1da177e4
LT
199
200/*
201 * These are the virtual MM functions - opening of an area, closing and
202 * unmapping it (needed to keep files on disk up-to-date etc), pointer
203 * to the functions called when a no-page or a wp-page exception occurs.
204 */
205struct vm_operations_struct {
206 void (*open)(struct vm_area_struct * area);
207 void (*close)(struct vm_area_struct * area);
d0217ac0 208 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
209
210 /* notification that a previously read-only page is about to become
211 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 212 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
213
214 /* called by access_process_vm when get_user_pages() fails, typically
215 * for use by special VMAs that can switch between memory and hardware
216 */
217 int (*access)(struct vm_area_struct *vma, unsigned long addr,
218 void *buf, int len, int write);
1da177e4 219#ifdef CONFIG_NUMA
a6020ed7
LS
220 /*
221 * set_policy() op must add a reference to any non-NULL @new mempolicy
222 * to hold the policy upon return. Caller should pass NULL @new to
223 * remove a policy and fall back to surrounding context--i.e. do not
224 * install a MPOL_DEFAULT policy, nor the task or system default
225 * mempolicy.
226 */
1da177e4 227 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
228
229 /*
230 * get_policy() op must add reference [mpol_get()] to any policy at
231 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
232 * in mm/mempolicy.c will do this automatically.
233 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
234 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
235 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
236 * must return NULL--i.e., do not "fallback" to task or system default
237 * policy.
238 */
1da177e4
LT
239 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
240 unsigned long addr);
7b2259b3
CL
241 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
242 const nodemask_t *to, unsigned long flags);
1da177e4
LT
243#endif
244};
245
246struct mmu_gather;
247struct inode;
248
349aef0b
AM
249#define page_private(page) ((page)->private)
250#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 251
1da177e4
LT
252/*
253 * FIXME: take this include out, include page-flags.h in
254 * files which need it (119 of them)
255 */
256#include <linux/page-flags.h>
71e3aac0 257#include <linux/huge_mm.h>
1da177e4
LT
258
259/*
260 * Methods to modify the page usage count.
261 *
262 * What counts for a page usage:
263 * - cache mapping (page->mapping)
264 * - private data (page->private)
265 * - page mapped in a task's page tables, each mapping
266 * is counted separately
267 *
268 * Also, many kernel routines increase the page count before a critical
269 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
270 */
271
272/*
da6052f7 273 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 274 */
7c8ee9a8
NP
275static inline int put_page_testzero(struct page *page)
276{
725d704e 277 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 278 return atomic_dec_and_test(&page->_count);
7c8ee9a8 279}
1da177e4
LT
280
281/*
7c8ee9a8
NP
282 * Try to grab a ref unless the page has a refcount of zero, return false if
283 * that is the case.
1da177e4 284 */
7c8ee9a8
NP
285static inline int get_page_unless_zero(struct page *page)
286{
8dc04efb 287 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 288}
1da177e4 289
53df8fdc
WF
290extern int page_is_ram(unsigned long pfn);
291
48667e7a 292/* Support for virtually mapped pages */
b3bdda02
CL
293struct page *vmalloc_to_page(const void *addr);
294unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 295
0738c4bb
PM
296/*
297 * Determine if an address is within the vmalloc range
298 *
299 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
300 * is no special casing required.
301 */
9e2779fa
CL
302static inline int is_vmalloc_addr(const void *x)
303{
0738c4bb 304#ifdef CONFIG_MMU
9e2779fa
CL
305 unsigned long addr = (unsigned long)x;
306
307 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
308#else
309 return 0;
8ca3ed87 310#endif
0738c4bb 311}
81ac3ad9
KH
312#ifdef CONFIG_MMU
313extern int is_vmalloc_or_module_addr(const void *x);
314#else
934831d0 315static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
316{
317 return 0;
318}
319#endif
9e2779fa 320
e9da73d6
AA
321static inline void compound_lock(struct page *page)
322{
323#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 324 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
325 bit_spin_lock(PG_compound_lock, &page->flags);
326#endif
327}
328
329static inline void compound_unlock(struct page *page)
330{
331#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 332 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
333 bit_spin_unlock(PG_compound_lock, &page->flags);
334#endif
335}
336
337static inline unsigned long compound_lock_irqsave(struct page *page)
338{
339 unsigned long uninitialized_var(flags);
340#ifdef CONFIG_TRANSPARENT_HUGEPAGE
341 local_irq_save(flags);
342 compound_lock(page);
343#endif
344 return flags;
345}
346
347static inline void compound_unlock_irqrestore(struct page *page,
348 unsigned long flags)
349{
350#ifdef CONFIG_TRANSPARENT_HUGEPAGE
351 compound_unlock(page);
352 local_irq_restore(flags);
353#endif
354}
355
d85f3385
CL
356static inline struct page *compound_head(struct page *page)
357{
6d777953 358 if (unlikely(PageTail(page)))
d85f3385
CL
359 return page->first_page;
360 return page;
361}
362
70b50f94
AA
363/*
364 * The atomic page->_mapcount, starts from -1: so that transitions
365 * both from it and to it can be tracked, using atomic_inc_and_test
366 * and atomic_add_negative(-1).
367 */
368static inline void reset_page_mapcount(struct page *page)
369{
370 atomic_set(&(page)->_mapcount, -1);
371}
372
373static inline int page_mapcount(struct page *page)
374{
375 return atomic_read(&(page)->_mapcount) + 1;
376}
377
4c21e2f2 378static inline int page_count(struct page *page)
1da177e4 379{
d85f3385 380 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
381}
382
b35a35b5
AA
383static inline void get_huge_page_tail(struct page *page)
384{
385 /*
386 * __split_huge_page_refcount() cannot run
387 * from under us.
388 */
389 VM_BUG_ON(page_mapcount(page) < 0);
390 VM_BUG_ON(atomic_read(&page->_count) != 0);
391 atomic_inc(&page->_mapcount);
392}
393
70b50f94
AA
394extern bool __get_page_tail(struct page *page);
395
1da177e4
LT
396static inline void get_page(struct page *page)
397{
70b50f94
AA
398 if (unlikely(PageTail(page)))
399 if (likely(__get_page_tail(page)))
400 return;
91807063
AA
401 /*
402 * Getting a normal page or the head of a compound page
70b50f94 403 * requires to already have an elevated page->_count.
91807063 404 */
70b50f94 405 VM_BUG_ON(atomic_read(&page->_count) <= 0);
1da177e4
LT
406 atomic_inc(&page->_count);
407}
408
b49af68f
CL
409static inline struct page *virt_to_head_page(const void *x)
410{
411 struct page *page = virt_to_page(x);
412 return compound_head(page);
413}
414
7835e98b
NP
415/*
416 * Setup the page count before being freed into the page allocator for
417 * the first time (boot or memory hotplug)
418 */
419static inline void init_page_count(struct page *page)
420{
421 atomic_set(&page->_count, 1);
422}
423
5f24ce5f
AA
424/*
425 * PageBuddy() indicate that the page is free and in the buddy system
426 * (see mm/page_alloc.c).
ef2b4b95
AA
427 *
428 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
429 * -2 so that an underflow of the page_mapcount() won't be mistaken
430 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
431 * efficiently by most CPU architectures.
5f24ce5f 432 */
ef2b4b95
AA
433#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
434
5f24ce5f
AA
435static inline int PageBuddy(struct page *page)
436{
ef2b4b95 437 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
438}
439
440static inline void __SetPageBuddy(struct page *page)
441{
442 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 443 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
444}
445
446static inline void __ClearPageBuddy(struct page *page)
447{
448 VM_BUG_ON(!PageBuddy(page));
449 atomic_set(&page->_mapcount, -1);
450}
451
1da177e4 452void put_page(struct page *page);
1d7ea732 453void put_pages_list(struct list_head *pages);
1da177e4 454
8dfcc9ba 455void split_page(struct page *page, unsigned int order);
748446bb 456int split_free_page(struct page *page);
8dfcc9ba 457
33f2ef89
AW
458/*
459 * Compound pages have a destructor function. Provide a
460 * prototype for that function and accessor functions.
461 * These are _only_ valid on the head of a PG_compound page.
462 */
463typedef void compound_page_dtor(struct page *);
464
465static inline void set_compound_page_dtor(struct page *page,
466 compound_page_dtor *dtor)
467{
468 page[1].lru.next = (void *)dtor;
469}
470
471static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
472{
473 return (compound_page_dtor *)page[1].lru.next;
474}
475
d85f3385
CL
476static inline int compound_order(struct page *page)
477{
6d777953 478 if (!PageHead(page))
d85f3385
CL
479 return 0;
480 return (unsigned long)page[1].lru.prev;
481}
482
37c2ac78
AA
483static inline int compound_trans_order(struct page *page)
484{
485 int order;
486 unsigned long flags;
487
488 if (!PageHead(page))
489 return 0;
490
491 flags = compound_lock_irqsave(page);
492 order = compound_order(page);
493 compound_unlock_irqrestore(page, flags);
494 return order;
495}
496
d85f3385
CL
497static inline void set_compound_order(struct page *page, unsigned long order)
498{
499 page[1].lru.prev = (void *)order;
500}
501
3dece370 502#ifdef CONFIG_MMU
14fd403f
AA
503/*
504 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
505 * servicing faults for write access. In the normal case, do always want
506 * pte_mkwrite. But get_user_pages can cause write faults for mappings
507 * that do not have writing enabled, when used by access_process_vm.
508 */
509static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
510{
511 if (likely(vma->vm_flags & VM_WRITE))
512 pte = pte_mkwrite(pte);
513 return pte;
514}
3dece370 515#endif
14fd403f 516
1da177e4
LT
517/*
518 * Multiple processes may "see" the same page. E.g. for untouched
519 * mappings of /dev/null, all processes see the same page full of
520 * zeroes, and text pages of executables and shared libraries have
521 * only one copy in memory, at most, normally.
522 *
523 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
524 * page_count() == 0 means the page is free. page->lru is then used for
525 * freelist management in the buddy allocator.
da6052f7 526 * page_count() > 0 means the page has been allocated.
1da177e4 527 *
da6052f7
NP
528 * Pages are allocated by the slab allocator in order to provide memory
529 * to kmalloc and kmem_cache_alloc. In this case, the management of the
530 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
531 * unless a particular usage is carefully commented. (the responsibility of
532 * freeing the kmalloc memory is the caller's, of course).
1da177e4 533 *
da6052f7
NP
534 * A page may be used by anyone else who does a __get_free_page().
535 * In this case, page_count still tracks the references, and should only
536 * be used through the normal accessor functions. The top bits of page->flags
537 * and page->virtual store page management information, but all other fields
538 * are unused and could be used privately, carefully. The management of this
539 * page is the responsibility of the one who allocated it, and those who have
540 * subsequently been given references to it.
541 *
542 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
543 * managed by the Linux memory manager: I/O, buffers, swapping etc.
544 * The following discussion applies only to them.
545 *
da6052f7
NP
546 * A pagecache page contains an opaque `private' member, which belongs to the
547 * page's address_space. Usually, this is the address of a circular list of
548 * the page's disk buffers. PG_private must be set to tell the VM to call
549 * into the filesystem to release these pages.
1da177e4 550 *
da6052f7
NP
551 * A page may belong to an inode's memory mapping. In this case, page->mapping
552 * is the pointer to the inode, and page->index is the file offset of the page,
553 * in units of PAGE_CACHE_SIZE.
1da177e4 554 *
da6052f7
NP
555 * If pagecache pages are not associated with an inode, they are said to be
556 * anonymous pages. These may become associated with the swapcache, and in that
557 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 558 *
da6052f7
NP
559 * In either case (swapcache or inode backed), the pagecache itself holds one
560 * reference to the page. Setting PG_private should also increment the
561 * refcount. The each user mapping also has a reference to the page.
1da177e4 562 *
da6052f7
NP
563 * The pagecache pages are stored in a per-mapping radix tree, which is
564 * rooted at mapping->page_tree, and indexed by offset.
565 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
566 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 567 *
da6052f7 568 * All pagecache pages may be subject to I/O:
1da177e4
LT
569 * - inode pages may need to be read from disk,
570 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
571 * to be written back to the inode on disk,
572 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
573 * modified may need to be swapped out to swap space and (later) to be read
574 * back into memory.
1da177e4
LT
575 */
576
577/*
578 * The zone field is never updated after free_area_init_core()
579 * sets it, so none of the operations on it need to be atomic.
1da177e4 580 */
348f8b6c 581
d41dee36
AW
582
583/*
584 * page->flags layout:
585 *
586 * There are three possibilities for how page->flags get
587 * laid out. The first is for the normal case, without
588 * sparsemem. The second is for sparsemem when there is
589 * plenty of space for node and section. The last is when
590 * we have run out of space and have to fall back to an
591 * alternate (slower) way of determining the node.
592 *
308c05e3
CL
593 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
594 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
595 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
d41dee36 596 */
308c05e3 597#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
598#define SECTIONS_WIDTH SECTIONS_SHIFT
599#else
600#define SECTIONS_WIDTH 0
601#endif
602
603#define ZONES_WIDTH ZONES_SHIFT
604
9223b419 605#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
d41dee36
AW
606#define NODES_WIDTH NODES_SHIFT
607#else
308c05e3
CL
608#ifdef CONFIG_SPARSEMEM_VMEMMAP
609#error "Vmemmap: No space for nodes field in page flags"
610#endif
d41dee36
AW
611#define NODES_WIDTH 0
612#endif
613
614/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 615#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
616#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
617#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
618
619/*
620 * We are going to use the flags for the page to node mapping if its in
621 * there. This includes the case where there is no node, so it is implicit.
622 */
89689ae7
CL
623#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
624#define NODE_NOT_IN_PAGE_FLAGS
625#endif
d41dee36 626
348f8b6c 627/*
25985edc 628 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
629 * sections we define the shift as 0; that plus a 0 mask ensures
630 * the compiler will optimise away reference to them.
631 */
d41dee36
AW
632#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
633#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
634#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 635
bce54bbf
WD
636/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
637#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 638#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
639#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
640 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 641#else
89689ae7 642#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
643#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
644 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
645#endif
646
bd8029b6 647#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 648
9223b419
CL
649#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
650#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
651#endif
652
d41dee36
AW
653#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
654#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
655#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 656#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 657
33dd4e0e 658static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 659{
348f8b6c 660 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 661}
1da177e4 662
89689ae7
CL
663/*
664 * The identification function is only used by the buddy allocator for
665 * determining if two pages could be buddies. We are not really
666 * identifying a zone since we could be using a the section number
667 * id if we have not node id available in page flags.
668 * We guarantee only that it will return the same value for two
669 * combinable pages in a zone.
670 */
cb2b95e1
AW
671static inline int page_zone_id(struct page *page)
672{
89689ae7 673 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
674}
675
25ba77c1 676static inline int zone_to_nid(struct zone *zone)
89fa3024 677{
d5f541ed
CL
678#ifdef CONFIG_NUMA
679 return zone->node;
680#else
681 return 0;
682#endif
89fa3024
CL
683}
684
89689ae7 685#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 686extern int page_to_nid(const struct page *page);
89689ae7 687#else
33dd4e0e 688static inline int page_to_nid(const struct page *page)
d41dee36 689{
89689ae7 690 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 691}
89689ae7
CL
692#endif
693
33dd4e0e 694static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
695{
696 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
697}
698
308c05e3 699#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
bf4e8902
DK
700static inline void set_page_section(struct page *page, unsigned long section)
701{
702 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
703 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
704}
705
aa462abe 706static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
707{
708 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
709}
308c05e3 710#endif
d41dee36 711
2f1b6248 712static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
713{
714 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
715 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
716}
2f1b6248 717
348f8b6c
DH
718static inline void set_page_node(struct page *page, unsigned long node)
719{
720 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
721 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 722}
89689ae7 723
2f1b6248 724static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 725 unsigned long node, unsigned long pfn)
1da177e4 726{
348f8b6c
DH
727 set_page_zone(page, zone);
728 set_page_node(page, node);
bf4e8902 729#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36 730 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 731#endif
1da177e4
LT
732}
733
f6ac2354
CL
734/*
735 * Some inline functions in vmstat.h depend on page_zone()
736 */
737#include <linux/vmstat.h>
738
33dd4e0e 739static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 740{
aa462abe 741 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
742}
743
744#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
745#define HASHED_PAGE_VIRTUAL
746#endif
747
748#if defined(WANT_PAGE_VIRTUAL)
749#define page_address(page) ((page)->virtual)
750#define set_page_address(page, address) \
751 do { \
752 (page)->virtual = (address); \
753 } while(0)
754#define page_address_init() do { } while(0)
755#endif
756
757#if defined(HASHED_PAGE_VIRTUAL)
f9918794 758void *page_address(const struct page *page);
1da177e4
LT
759void set_page_address(struct page *page, void *virtual);
760void page_address_init(void);
761#endif
762
763#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
764#define page_address(page) lowmem_page_address(page)
765#define set_page_address(page, address) do { } while(0)
766#define page_address_init() do { } while(0)
767#endif
768
769/*
770 * On an anonymous page mapped into a user virtual memory area,
771 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
772 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
773 *
774 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
775 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
776 * and then page->mapping points, not to an anon_vma, but to a private
777 * structure which KSM associates with that merged page. See ksm.h.
778 *
779 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
780 *
781 * Please note that, confusingly, "page_mapping" refers to the inode
782 * address_space which maps the page from disk; whereas "page_mapped"
783 * refers to user virtual address space into which the page is mapped.
784 */
785#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
786#define PAGE_MAPPING_KSM 2
787#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4
LT
788
789extern struct address_space swapper_space;
790static inline struct address_space *page_mapping(struct page *page)
791{
792 struct address_space *mapping = page->mapping;
793
b5fab14e 794 VM_BUG_ON(PageSlab(page));
1da177e4
LT
795 if (unlikely(PageSwapCache(page)))
796 mapping = &swapper_space;
e20e8779 797 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
1da177e4
LT
798 mapping = NULL;
799 return mapping;
800}
801
3ca7b3c5
HD
802/* Neutral page->mapping pointer to address_space or anon_vma or other */
803static inline void *page_rmapping(struct page *page)
804{
805 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
806}
807
f981c595
MG
808extern struct address_space *__page_file_mapping(struct page *);
809
810static inline
811struct address_space *page_file_mapping(struct page *page)
812{
813 if (unlikely(PageSwapCache(page)))
814 return __page_file_mapping(page);
815
816 return page->mapping;
817}
818
1da177e4
LT
819static inline int PageAnon(struct page *page)
820{
821 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
822}
823
824/*
825 * Return the pagecache index of the passed page. Regular pagecache pages
826 * use ->index whereas swapcache pages use ->private
827 */
828static inline pgoff_t page_index(struct page *page)
829{
830 if (unlikely(PageSwapCache(page)))
4c21e2f2 831 return page_private(page);
1da177e4
LT
832 return page->index;
833}
834
f981c595
MG
835extern pgoff_t __page_file_index(struct page *page);
836
837/*
838 * Return the file index of the page. Regular pagecache pages use ->index
839 * whereas swapcache pages use swp_offset(->private)
840 */
841static inline pgoff_t page_file_index(struct page *page)
842{
843 if (unlikely(PageSwapCache(page)))
844 return __page_file_index(page);
845
846 return page->index;
847}
848
1da177e4
LT
849/*
850 * Return true if this page is mapped into pagetables.
851 */
852static inline int page_mapped(struct page *page)
853{
854 return atomic_read(&(page)->_mapcount) >= 0;
855}
856
1da177e4
LT
857/*
858 * Different kinds of faults, as returned by handle_mm_fault().
859 * Used to decide whether a process gets delivered SIGBUS or
860 * just gets major/minor fault counters bumped up.
861 */
d0217ac0 862
83c54070 863#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 864
83c54070
NP
865#define VM_FAULT_OOM 0x0001
866#define VM_FAULT_SIGBUS 0x0002
867#define VM_FAULT_MAJOR 0x0004
868#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
869#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
870#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 871
83c54070
NP
872#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
873#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 874#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 875
aa50d3a7
AK
876#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
877
878#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
879 VM_FAULT_HWPOISON_LARGE)
880
881/* Encode hstate index for a hwpoisoned large page */
882#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
883#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 884
1c0fe6e3
NP
885/*
886 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
887 */
888extern void pagefault_out_of_memory(void);
889
1da177e4
LT
890#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
891
ddd588b5 892/*
7bf02ea2 893 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
894 * various contexts.
895 */
896#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
897
7bf02ea2
DR
898extern void show_free_areas(unsigned int flags);
899extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 900
1da177e4
LT
901int shmem_zero_setup(struct vm_area_struct *);
902
e8edc6e0 903extern int can_do_mlock(void);
1da177e4
LT
904extern int user_shm_lock(size_t, struct user_struct *);
905extern void user_shm_unlock(size_t, struct user_struct *);
906
907/*
908 * Parameter block passed down to zap_pte_range in exceptional cases.
909 */
910struct zap_details {
911 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
912 struct address_space *check_mapping; /* Check page->mapping if set */
913 pgoff_t first_index; /* Lowest page->index to unmap */
914 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
915};
916
7e675137
NP
917struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
918 pte_t pte);
919
c627f9cc
JS
920int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
921 unsigned long size);
14f5ff5d 922void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 923 unsigned long size, struct zap_details *);
4f74d2c8
LT
924void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
925 unsigned long start, unsigned long end);
e6473092
MM
926
927/**
928 * mm_walk - callbacks for walk_page_range
929 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
930 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
931 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
932 * this handler is required to be able to handle
933 * pmd_trans_huge() pmds. They may simply choose to
934 * split_huge_page() instead of handling it explicitly.
e6473092
MM
935 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
936 * @pte_hole: if set, called for each hole at all levels
5dc37642 937 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
938 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
939 * is used.
e6473092
MM
940 *
941 * (see walk_page_range for more details)
942 */
943struct mm_walk {
2165009b
DH
944 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
945 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
946 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
947 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
948 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
116354d1
NH
949 int (*hugetlb_entry)(pte_t *, unsigned long,
950 unsigned long, unsigned long, struct mm_walk *);
2165009b
DH
951 struct mm_struct *mm;
952 void *private;
e6473092
MM
953};
954
2165009b
DH
955int walk_page_range(unsigned long addr, unsigned long end,
956 struct mm_walk *walk);
42b77728 957void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 958 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
959int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
960 struct vm_area_struct *vma);
1da177e4
LT
961void unmap_mapping_range(struct address_space *mapping,
962 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
963int follow_pfn(struct vm_area_struct *vma, unsigned long address,
964 unsigned long *pfn);
d87fe660 965int follow_phys(struct vm_area_struct *vma, unsigned long address,
966 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
967int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
968 void *buf, int len, int write);
1da177e4
LT
969
970static inline void unmap_shared_mapping_range(struct address_space *mapping,
971 loff_t const holebegin, loff_t const holelen)
972{
973 unmap_mapping_range(mapping, holebegin, holelen, 0);
974}
975
25d9e2d1 976extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 977extern void truncate_setsize(struct inode *inode, loff_t newsize);
25d9e2d1 978extern int vmtruncate(struct inode *inode, loff_t offset);
623e3db9 979void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 980int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 981int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
982int invalidate_inode_page(struct page *page);
983
7ee1dd3f 984#ifdef CONFIG_MMU
83c54070 985extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 986 unsigned long address, unsigned int flags);
5c723ba5
PZ
987extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
988 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
989#else
990static inline int handle_mm_fault(struct mm_struct *mm,
991 struct vm_area_struct *vma, unsigned long address,
d06063cc 992 unsigned int flags)
7ee1dd3f
DH
993{
994 /* should never happen if there's no MMU */
995 BUG();
996 return VM_FAULT_SIGBUS;
997}
5c723ba5
PZ
998static inline int fixup_user_fault(struct task_struct *tsk,
999 struct mm_struct *mm, unsigned long address,
1000 unsigned int fault_flags)
1001{
1002 /* should never happen if there's no MMU */
1003 BUG();
1004 return -EFAULT;
1005}
7ee1dd3f 1006#endif
f33ea7f4 1007
1da177e4
LT
1008extern int make_pages_present(unsigned long addr, unsigned long end);
1009extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1010extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1011 void *buf, int len, int write);
1da177e4 1012
0014bd99
HY
1013int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1014 unsigned long start, int len, unsigned int foll_flags,
1015 struct page **pages, struct vm_area_struct **vmas,
1016 int *nonblocking);
d2bf6be8 1017int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1018 unsigned long start, int nr_pages, int write, int force,
d2bf6be8
NP
1019 struct page **pages, struct vm_area_struct **vmas);
1020int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1021 struct page **pages);
f3e8fccd 1022struct page *get_dump_page(unsigned long addr);
1da177e4 1023
cf9a2ae8
DH
1024extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1025extern void do_invalidatepage(struct page *page, unsigned long offset);
1026
1da177e4 1027int __set_page_dirty_nobuffers(struct page *page);
76719325 1028int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1029int redirty_page_for_writepage(struct writeback_control *wbc,
1030 struct page *page);
e3a7cca1 1031void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1032void account_page_writeback(struct page *page);
b3c97528 1033int set_page_dirty(struct page *page);
1da177e4
LT
1034int set_page_dirty_lock(struct page *page);
1035int clear_page_dirty_for_io(struct page *page);
1036
39aa3cb3 1037/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1038static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1039{
1040 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1041}
1042
a09a79f6
MP
1043static inline int stack_guard_page_start(struct vm_area_struct *vma,
1044 unsigned long addr)
1045{
1046 return (vma->vm_flags & VM_GROWSDOWN) &&
1047 (vma->vm_start == addr) &&
1048 !vma_growsdown(vma->vm_prev, addr);
1049}
1050
1051/* Is the vma a continuation of the stack vma below it? */
1052static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1053{
1054 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1055}
1056
1057static inline int stack_guard_page_end(struct vm_area_struct *vma,
1058 unsigned long addr)
1059{
1060 return (vma->vm_flags & VM_GROWSUP) &&
1061 (vma->vm_end == addr) &&
1062 !vma_growsup(vma->vm_next, addr);
1063}
1064
b7643757
SP
1065extern pid_t
1066vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1067
b6a2fea3
OW
1068extern unsigned long move_page_tables(struct vm_area_struct *vma,
1069 unsigned long old_addr, struct vm_area_struct *new_vma,
1070 unsigned long new_addr, unsigned long len);
1da177e4
LT
1071extern unsigned long do_mremap(unsigned long addr,
1072 unsigned long old_len, unsigned long new_len,
1073 unsigned long flags, unsigned long new_addr);
b6a2fea3
OW
1074extern int mprotect_fixup(struct vm_area_struct *vma,
1075 struct vm_area_struct **pprev, unsigned long start,
1076 unsigned long end, unsigned long newflags);
1da177e4 1077
465a454f
PZ
1078/*
1079 * doesn't attempt to fault and will return short.
1080 */
1081int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1082 struct page **pages);
d559db08
KH
1083/*
1084 * per-process(per-mm_struct) statistics.
1085 */
d559db08
KH
1086static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1087{
69c97823
KK
1088 long val = atomic_long_read(&mm->rss_stat.count[member]);
1089
1090#ifdef SPLIT_RSS_COUNTING
1091 /*
1092 * counter is updated in asynchronous manner and may go to minus.
1093 * But it's never be expected number for users.
1094 */
1095 if (val < 0)
1096 val = 0;
172703b0 1097#endif
69c97823
KK
1098 return (unsigned long)val;
1099}
d559db08
KH
1100
1101static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1102{
172703b0 1103 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1104}
1105
1106static inline void inc_mm_counter(struct mm_struct *mm, int member)
1107{
172703b0 1108 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1109}
1110
1111static inline void dec_mm_counter(struct mm_struct *mm, int member)
1112{
172703b0 1113 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1114}
1115
d559db08
KH
1116static inline unsigned long get_mm_rss(struct mm_struct *mm)
1117{
1118 return get_mm_counter(mm, MM_FILEPAGES) +
1119 get_mm_counter(mm, MM_ANONPAGES);
1120}
1121
1122static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1123{
1124 return max(mm->hiwater_rss, get_mm_rss(mm));
1125}
1126
1127static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1128{
1129 return max(mm->hiwater_vm, mm->total_vm);
1130}
1131
1132static inline void update_hiwater_rss(struct mm_struct *mm)
1133{
1134 unsigned long _rss = get_mm_rss(mm);
1135
1136 if ((mm)->hiwater_rss < _rss)
1137 (mm)->hiwater_rss = _rss;
1138}
1139
1140static inline void update_hiwater_vm(struct mm_struct *mm)
1141{
1142 if (mm->hiwater_vm < mm->total_vm)
1143 mm->hiwater_vm = mm->total_vm;
1144}
1145
1146static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1147 struct mm_struct *mm)
1148{
1149 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1150
1151 if (*maxrss < hiwater_rss)
1152 *maxrss = hiwater_rss;
1153}
1154
53bddb4e 1155#if defined(SPLIT_RSS_COUNTING)
05af2e10 1156void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1157#else
05af2e10 1158static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1159{
1160}
1161#endif
465a454f 1162
4e950f6f 1163int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1164
25ca1d6c
NK
1165extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1166 spinlock_t **ptl);
1167static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1168 spinlock_t **ptl)
1169{
1170 pte_t *ptep;
1171 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1172 return ptep;
1173}
c9cfcddf 1174
5f22df00
NP
1175#ifdef __PAGETABLE_PUD_FOLDED
1176static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1177 unsigned long address)
1178{
1179 return 0;
1180}
1181#else
1bb3630e 1182int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1183#endif
1184
1185#ifdef __PAGETABLE_PMD_FOLDED
1186static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1187 unsigned long address)
1188{
1189 return 0;
1190}
1191#else
1bb3630e 1192int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1193#endif
1194
8ac1f832
AA
1195int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1196 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1197int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1198
1da177e4
LT
1199/*
1200 * The following ifdef needed to get the 4level-fixup.h header to work.
1201 * Remove it when 4level-fixup.h has been removed.
1202 */
1bb3630e 1203#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1204static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1205{
1bb3630e
HD
1206 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1207 NULL: pud_offset(pgd, address);
1da177e4
LT
1208}
1209
1210static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1211{
1bb3630e
HD
1212 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1213 NULL: pmd_offset(pud, address);
1da177e4 1214}
1bb3630e
HD
1215#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1216
f7d0b926 1217#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1218/*
1219 * We tuck a spinlock to guard each pagetable page into its struct page,
1220 * at page->private, with BUILD_BUG_ON to make sure that this will not
1221 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1222 * When freeing, reset page->mapping so free_pages_check won't complain.
1223 */
349aef0b 1224#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1225#define pte_lock_init(_page) do { \
1226 spin_lock_init(__pte_lockptr(_page)); \
1227} while (0)
1228#define pte_lock_deinit(page) ((page)->mapping = NULL)
1229#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1230#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1231/*
1232 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1233 */
1234#define pte_lock_init(page) do {} while (0)
1235#define pte_lock_deinit(page) do {} while (0)
1236#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1237#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1238
2f569afd
MS
1239static inline void pgtable_page_ctor(struct page *page)
1240{
1241 pte_lock_init(page);
1242 inc_zone_page_state(page, NR_PAGETABLE);
1243}
1244
1245static inline void pgtable_page_dtor(struct page *page)
1246{
1247 pte_lock_deinit(page);
1248 dec_zone_page_state(page, NR_PAGETABLE);
1249}
1250
c74df32c
HD
1251#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1252({ \
4c21e2f2 1253 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1254 pte_t *__pte = pte_offset_map(pmd, address); \
1255 *(ptlp) = __ptl; \
1256 spin_lock(__ptl); \
1257 __pte; \
1258})
1259
1260#define pte_unmap_unlock(pte, ptl) do { \
1261 spin_unlock(ptl); \
1262 pte_unmap(pte); \
1263} while (0)
1264
8ac1f832
AA
1265#define pte_alloc_map(mm, vma, pmd, address) \
1266 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1267 pmd, address))? \
1268 NULL: pte_offset_map(pmd, address))
1bb3630e 1269
c74df32c 1270#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1271 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1272 pmd, address))? \
c74df32c
HD
1273 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1274
1bb3630e 1275#define pte_alloc_kernel(pmd, address) \
8ac1f832 1276 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1277 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1278
1279extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1280extern void free_area_init_node(int nid, unsigned long * zones_size,
1281 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1282extern void free_initmem(void);
1283
0ee332c1 1284#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1285/*
0ee332c1 1286 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1287 * zones, allocate the backing mem_map and account for memory holes in a more
1288 * architecture independent manner. This is a substitute for creating the
1289 * zone_sizes[] and zholes_size[] arrays and passing them to
1290 * free_area_init_node()
1291 *
1292 * An architecture is expected to register range of page frames backed by
0ee332c1 1293 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1294 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1295 * usage, an architecture is expected to do something like
1296 *
1297 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1298 * max_highmem_pfn};
1299 * for_each_valid_physical_page_range()
0ee332c1 1300 * memblock_add_node(base, size, nid)
c713216d
MG
1301 * free_area_init_nodes(max_zone_pfns);
1302 *
0ee332c1
TH
1303 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1304 * registered physical page range. Similarly
1305 * sparse_memory_present_with_active_regions() calls memory_present() for
1306 * each range when SPARSEMEM is enabled.
c713216d
MG
1307 *
1308 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1309 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1310 */
1311extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1312unsigned long node_map_pfn_alignment(void);
32996250
YL
1313unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1314 unsigned long end_pfn);
c713216d
MG
1315extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1316 unsigned long end_pfn);
1317extern void get_pfn_range_for_nid(unsigned int nid,
1318 unsigned long *start_pfn, unsigned long *end_pfn);
1319extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1320extern void free_bootmem_with_active_regions(int nid,
1321 unsigned long max_low_pfn);
1322extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1323
0ee332c1 1324#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1325
0ee332c1 1326#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1327 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1328static inline int __early_pfn_to_nid(unsigned long pfn)
1329{
1330 return 0;
1331}
1332#else
1333/* please see mm/page_alloc.c */
1334extern int __meminit early_pfn_to_nid(unsigned long pfn);
1335#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1336/* there is a per-arch backend function. */
1337extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1338#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1339#endif
1340
0e0b864e 1341extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1342extern void memmap_init_zone(unsigned long, int, unsigned long,
1343 unsigned long, enum memmap_context);
bc75d33f 1344extern void setup_per_zone_wmarks(void);
1b79acc9 1345extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1346extern void mem_init(void);
8feae131 1347extern void __init mmap_init(void);
b2b755b5 1348extern void show_mem(unsigned int flags);
1da177e4
LT
1349extern void si_meminfo(struct sysinfo * val);
1350extern void si_meminfo_node(struct sysinfo *val, int nid);
3461b0af 1351extern int after_bootmem;
1da177e4 1352
3ee9a4f0
JP
1353extern __printf(3, 4)
1354void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1355
e7c8d5c9 1356extern void setup_per_cpu_pageset(void);
e7c8d5c9 1357
112067f0 1358extern void zone_pcp_update(struct zone *zone);
340175b7 1359extern void zone_pcp_reset(struct zone *zone);
112067f0 1360
8feae131 1361/* nommu.c */
33e5d769 1362extern atomic_long_t mmap_pages_allocated;
7e660872 1363extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1364
1da177e4
LT
1365/* prio_tree.c */
1366void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1367void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1368void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1369struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1370 struct prio_tree_iter *iter);
1371
1372#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1373 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1374 (vma = vma_prio_tree_next(vma, iter)); )
1375
1376static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1377 struct list_head *list)
1378{
1379 vma->shared.vm_set.parent = NULL;
1380 list_add_tail(&vma->shared.vm_set.list, list);
1381}
1382
1383/* mmap.c */
34b4e4aa 1384extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1385extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1386 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1387extern struct vm_area_struct *vma_merge(struct mm_struct *,
1388 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1389 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1390 struct mempolicy *);
1391extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1392extern int split_vma(struct mm_struct *,
1393 struct vm_area_struct *, unsigned long addr, int new_below);
1394extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1395extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1396 struct rb_node **, struct rb_node *);
a8fb5618 1397extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1398extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1399 unsigned long addr, unsigned long len, pgoff_t pgoff);
1400extern void exit_mmap(struct mm_struct *);
925d1c40 1401
7906d00c
AA
1402extern int mm_take_all_locks(struct mm_struct *mm);
1403extern void mm_drop_all_locks(struct mm_struct *mm);
1404
925d1c40
MH
1405/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1406extern void added_exe_file_vma(struct mm_struct *mm);
1407extern void removed_exe_file_vma(struct mm_struct *mm);
38646013
JS
1408extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1409extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1410
119f657c 1411extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1412extern int install_special_mapping(struct mm_struct *mm,
1413 unsigned long addr, unsigned long len,
1414 unsigned long flags, struct page **pages);
1da177e4
LT
1415
1416extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1417
0165ab44
MS
1418extern unsigned long mmap_region(struct file *file, unsigned long addr,
1419 unsigned long len, unsigned long flags,
ca16d140 1420 vm_flags_t vm_flags, unsigned long pgoff);
e3fc629d 1421extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
6be5ceb0
LT
1422 unsigned long, unsigned long,
1423 unsigned long, unsigned long);
1da177e4
LT
1424extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1425
e4eb1ff6
LT
1426/* These take the mm semaphore themselves */
1427extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1428extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1429extern unsigned long vm_mmap(struct file *, unsigned long,
1430 unsigned long, unsigned long,
1431 unsigned long, unsigned long);
1da177e4 1432
85821aab 1433/* truncate.c */
1da177e4 1434extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1435extern void truncate_inode_pages_range(struct address_space *,
1436 loff_t lstart, loff_t lend);
1da177e4
LT
1437
1438/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1439extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1da177e4
LT
1440
1441/* mm/page-writeback.c */
1442int write_one_page(struct page *page, int wait);
1cf6e7d8 1443void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1444
1445/* readahead.c */
1446#define VM_MAX_READAHEAD 128 /* kbytes */
1447#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1448
1da177e4 1449int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1450 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1451
1452void page_cache_sync_readahead(struct address_space *mapping,
1453 struct file_ra_state *ra,
1454 struct file *filp,
1455 pgoff_t offset,
1456 unsigned long size);
1457
1458void page_cache_async_readahead(struct address_space *mapping,
1459 struct file_ra_state *ra,
1460 struct file *filp,
1461 struct page *pg,
1462 pgoff_t offset,
1463 unsigned long size);
1464
1da177e4 1465unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1466unsigned long ra_submit(struct file_ra_state *ra,
1467 struct address_space *mapping,
1468 struct file *filp);
1da177e4 1469
d05f3169 1470/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1471extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1472
1473/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1474extern int expand_downwards(struct vm_area_struct *vma,
1475 unsigned long address);
8ca3eb08 1476#if VM_GROWSUP
46dea3d0 1477extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
LT
1478#else
1479 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1480#endif
1da177e4
LT
1481
1482/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1483extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1484extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1485 struct vm_area_struct **pprev);
1486
1487/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1488 NULL if none. Assume start_addr < end_addr. */
1489static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1490{
1491 struct vm_area_struct * vma = find_vma(mm,start_addr);
1492
1493 if (vma && end_addr <= vma->vm_start)
1494 vma = NULL;
1495 return vma;
1496}
1497
1498static inline unsigned long vma_pages(struct vm_area_struct *vma)
1499{
1500 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1501}
1502
640708a2
PE
1503/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1504static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1505 unsigned long vm_start, unsigned long vm_end)
1506{
1507 struct vm_area_struct *vma = find_vma(mm, vm_start);
1508
1509 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1510 vma = NULL;
1511
1512 return vma;
1513}
1514
bad849b3 1515#ifdef CONFIG_MMU
804af2cf 1516pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1517#else
1518static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1519{
1520 return __pgprot(0);
1521}
1522#endif
1523
deceb6cd 1524struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1525int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1526 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1527int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1528int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1529 unsigned long pfn);
423bad60
NP
1530int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1531 unsigned long pfn);
deceb6cd 1532
6aab341e 1533struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1534 unsigned int foll_flags);
1535#define FOLL_WRITE 0x01 /* check pte is writable */
1536#define FOLL_TOUCH 0x02 /* mark page accessed */
1537#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1538#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1539#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1540#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1541 * and return without waiting upon it */
110d74a9 1542#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1543#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1544#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1da177e4 1545
2f569afd 1546typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1547 void *data);
1548extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1549 unsigned long size, pte_fn_t fn, void *data);
1550
1da177e4 1551#ifdef CONFIG_PROC_FS
ab50b8ed 1552void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1553#else
ab50b8ed 1554static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1555 unsigned long flags, struct file *file, long pages)
1556{
44de9d0c 1557 mm->total_vm += pages;
1da177e4
LT
1558}
1559#endif /* CONFIG_PROC_FS */
1560
12d6f21e 1561#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1562extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1563#ifdef CONFIG_HIBERNATION
1564extern bool kernel_page_present(struct page *page);
1565#endif /* CONFIG_HIBERNATION */
12d6f21e 1566#else
1da177e4 1567static inline void
9858db50 1568kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1569#ifdef CONFIG_HIBERNATION
1570static inline bool kernel_page_present(struct page *page) { return true; }
1571#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1572#endif
1573
31db58b3 1574extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1575#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1576int in_gate_area_no_mm(unsigned long addr);
83b964bb 1577int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1578#else
cae5d390
SW
1579int in_gate_area_no_mm(unsigned long addr);
1580#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1581#endif /* __HAVE_ARCH_GATE_AREA */
1582
8d65af78 1583int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1584 void __user *, size_t *, loff_t *);
a09ed5e0 1585unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1586 unsigned long nr_pages_scanned,
1587 unsigned long lru_pages);
9d0243bc 1588
7a9166e3
LY
1589#ifndef CONFIG_MMU
1590#define randomize_va_space 0
1591#else
a62eaf15 1592extern int randomize_va_space;
7a9166e3 1593#endif
a62eaf15 1594
045e72ac 1595const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1596void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1597
9bdac914
YL
1598void sparse_mem_maps_populate_node(struct page **map_map,
1599 unsigned long pnum_begin,
1600 unsigned long pnum_end,
1601 unsigned long map_count,
1602 int nodeid);
1603
98f3cfc1 1604struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1605pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1606pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1607pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1608pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1609void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1610void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1611void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1612int vmemmap_populate_basepages(struct page *start_page,
1613 unsigned long pages, int node);
1614int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1615void vmemmap_populate_print_last(void);
8f6aac41 1616
6a46079c 1617
82ba011b
AK
1618enum mf_flags {
1619 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 1620 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 1621 MF_MUST_KILL = 1 << 2,
82ba011b 1622};
cd42f4a3 1623extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 1624extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 1625extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1626extern int sysctl_memory_failure_early_kill;
1627extern int sysctl_memory_failure_recovery;
facb6011 1628extern void shake_page(struct page *p, int access);
6a46079c 1629extern atomic_long_t mce_bad_pages;
facb6011 1630extern int soft_offline_page(struct page *page, int flags);
6a46079c 1631
718a3821
WF
1632extern void dump_page(struct page *page);
1633
47ad8475
AA
1634#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1635extern void clear_huge_page(struct page *page,
1636 unsigned long addr,
1637 unsigned int pages_per_huge_page);
1638extern void copy_user_huge_page(struct page *dst, struct page *src,
1639 unsigned long addr, struct vm_area_struct *vma,
1640 unsigned int pages_per_huge_page);
1641#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1642
c0a32fc5
SG
1643#ifdef CONFIG_DEBUG_PAGEALLOC
1644extern unsigned int _debug_guardpage_minorder;
1645
1646static inline unsigned int debug_guardpage_minorder(void)
1647{
1648 return _debug_guardpage_minorder;
1649}
1650
1651static inline bool page_is_guard(struct page *page)
1652{
1653 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1654}
1655#else
1656static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1657static inline bool page_is_guard(struct page *page) { return false; }
1658#endif /* CONFIG_DEBUG_PAGEALLOC */
1659
1da177e4
LT
1660#endif /* __KERNEL__ */
1661#endif /* _LINUX_MM_H */