mm, oom: remove 3% bonus for CAP_SYS_ADMIN processes
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
1da177e4
LT
28
29struct mempolicy;
30struct anon_vma;
bf181b9f 31struct anon_vma_chain;
4e950f6f 32struct file_ra_state;
e8edc6e0 33struct user_struct;
4e950f6f 34struct writeback_control;
682aa8e1 35struct bdi_writeback;
1da177e4 36
597b7305
MH
37void init_mm_internals(void);
38
fccc9987 39#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 40extern unsigned long max_mapnr;
fccc9987
JL
41
42static inline void set_max_mapnr(unsigned long limit)
43{
44 max_mapnr = limit;
45}
46#else
47static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
48#endif
49
4481374c 50extern unsigned long totalram_pages;
1da177e4 51extern void * high_memory;
1da177e4
LT
52extern int page_cluster;
53
54#ifdef CONFIG_SYSCTL
55extern int sysctl_legacy_va_layout;
56#else
57#define sysctl_legacy_va_layout 0
58#endif
59
d07e2259
DC
60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61extern const int mmap_rnd_bits_min;
62extern const int mmap_rnd_bits_max;
63extern int mmap_rnd_bits __read_mostly;
64#endif
65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66extern const int mmap_rnd_compat_bits_min;
67extern const int mmap_rnd_compat_bits_max;
68extern int mmap_rnd_compat_bits __read_mostly;
69#endif
70
1da177e4
LT
71#include <asm/page.h>
72#include <asm/pgtable.h>
73#include <asm/processor.h>
1da177e4 74
79442ed1
TC
75#ifndef __pa_symbol
76#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
77#endif
78
1dff8083
AB
79#ifndef page_to_virt
80#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
81#endif
82
568c5fe5
LA
83#ifndef lm_alias
84#define lm_alias(x) __va(__pa_symbol(x))
85#endif
86
593befa6
DD
87/*
88 * To prevent common memory management code establishing
89 * a zero page mapping on a read fault.
90 * This macro should be defined within <asm/pgtable.h>.
91 * s390 does this to prevent multiplexing of hardware bits
92 * related to the physical page in case of virtualization.
93 */
94#ifndef mm_forbids_zeropage
95#define mm_forbids_zeropage(X) (0)
96#endif
97
a4a3ede2
PT
98/*
99 * On some architectures it is expensive to call memset() for small sizes.
100 * Those architectures should provide their own implementation of "struct page"
101 * zeroing by defining this macro in <asm/pgtable.h>.
102 */
103#ifndef mm_zero_struct_page
104#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
105#endif
106
ea606cf5
AR
107/*
108 * Default maximum number of active map areas, this limits the number of vmas
109 * per mm struct. Users can overwrite this number by sysctl but there is a
110 * problem.
111 *
112 * When a program's coredump is generated as ELF format, a section is created
113 * per a vma. In ELF, the number of sections is represented in unsigned short.
114 * This means the number of sections should be smaller than 65535 at coredump.
115 * Because the kernel adds some informative sections to a image of program at
116 * generating coredump, we need some margin. The number of extra sections is
117 * 1-3 now and depends on arch. We use "5" as safe margin, here.
118 *
119 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
120 * not a hard limit any more. Although some userspace tools can be surprised by
121 * that.
122 */
123#define MAPCOUNT_ELF_CORE_MARGIN (5)
124#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
125
126extern int sysctl_max_map_count;
127
c9b1d098 128extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 129extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 130
49f0ce5f
JM
131extern int sysctl_overcommit_memory;
132extern int sysctl_overcommit_ratio;
133extern unsigned long sysctl_overcommit_kbytes;
134
135extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
136 size_t *, loff_t *);
137extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
138 size_t *, loff_t *);
139
1da177e4
LT
140#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
141
27ac792c
AR
142/* to align the pointer to the (next) page boundary */
143#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
144
0fa73b86 145/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 146#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 147
1da177e4
LT
148/*
149 * Linux kernel virtual memory manager primitives.
150 * The idea being to have a "virtual" mm in the same way
151 * we have a virtual fs - giving a cleaner interface to the
152 * mm details, and allowing different kinds of memory mappings
153 * (from shared memory to executable loading to arbitrary
154 * mmap() functions).
155 */
156
c43692e8
CL
157extern struct kmem_cache *vm_area_cachep;
158
1da177e4 159#ifndef CONFIG_MMU
8feae131
DH
160extern struct rb_root nommu_region_tree;
161extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
162
163extern unsigned int kobjsize(const void *objp);
164#endif
165
166/*
605d9288 167 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 168 * When changing, update also include/trace/events/mmflags.h
1da177e4 169 */
cc2383ec
KK
170#define VM_NONE 0x00000000
171
1da177e4
LT
172#define VM_READ 0x00000001 /* currently active flags */
173#define VM_WRITE 0x00000002
174#define VM_EXEC 0x00000004
175#define VM_SHARED 0x00000008
176
7e2cff42 177/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
178#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
179#define VM_MAYWRITE 0x00000020
180#define VM_MAYEXEC 0x00000040
181#define VM_MAYSHARE 0x00000080
182
183#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 184#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 185#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 186#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 187#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 188
1da177e4
LT
189#define VM_LOCKED 0x00002000
190#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
191
192 /* Used by sys_madvise() */
193#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
194#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
195
196#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
197#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 198#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 199#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 200#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 201#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 202#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 203#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 204#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 205#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 206
d9104d1c
CG
207#ifdef CONFIG_MEM_SOFT_DIRTY
208# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
209#else
210# define VM_SOFTDIRTY 0
211#endif
212
b379d790 213#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
214#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
215#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 216#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 217
63c17fb8
DH
218#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
219#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
220#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
221#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
222#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 223#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
224#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
225#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
226#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
227#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 228#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
229#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
230
cc2383ec
KK
231#if defined(CONFIG_X86)
232# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
233#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
234# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
235# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
236# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
237# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
238# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
239#endif
cc2383ec
KK
240#elif defined(CONFIG_PPC)
241# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
242#elif defined(CONFIG_PARISC)
243# define VM_GROWSUP VM_ARCH_1
244#elif defined(CONFIG_IA64)
245# define VM_GROWSUP VM_ARCH_1
74a04967
KA
246#elif defined(CONFIG_SPARC64)
247# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
248# define VM_ARCH_CLEAR VM_SPARC_ADI
cc2383ec
KK
249#elif !defined(CONFIG_MMU)
250# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
251#endif
252
df3735c5 253#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 254/* MPX specific bounds table or bounds directory */
fa87b91c 255# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
256#else
257# define VM_MPX VM_NONE
4aae7e43
QR
258#endif
259
cc2383ec
KK
260#ifndef VM_GROWSUP
261# define VM_GROWSUP VM_NONE
262#endif
263
a8bef8ff
MG
264/* Bits set in the VMA until the stack is in its final location */
265#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
266
1da177e4
LT
267#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
268#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
269#endif
270
271#ifdef CONFIG_STACK_GROWSUP
30bdbb78 272#define VM_STACK VM_GROWSUP
1da177e4 273#else
30bdbb78 274#define VM_STACK VM_GROWSDOWN
1da177e4
LT
275#endif
276
30bdbb78
KK
277#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
278
b291f000 279/*
78f11a25
AA
280 * Special vmas that are non-mergable, non-mlock()able.
281 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 282 */
9050d7eb 283#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 284
a0715cc2
AT
285/* This mask defines which mm->def_flags a process can inherit its parent */
286#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
287
de60f5f1
EM
288/* This mask is used to clear all the VMA flags used by mlock */
289#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
290
2c2d57b5
KA
291/* Arch-specific flags to clear when updating VM flags on protection change */
292#ifndef VM_ARCH_CLEAR
293# define VM_ARCH_CLEAR VM_NONE
294#endif
295#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
296
1da177e4
LT
297/*
298 * mapping from the currently active vm_flags protection bits (the
299 * low four bits) to a page protection mask..
300 */
301extern pgprot_t protection_map[16];
302
d0217ac0 303#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
304#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
305#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
306#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
307#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
308#define FAULT_FLAG_TRIED 0x20 /* Second try */
309#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 310#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 311#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 312
282a8e03
RZ
313#define FAULT_FLAG_TRACE \
314 { FAULT_FLAG_WRITE, "WRITE" }, \
315 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
316 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
317 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
318 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
319 { FAULT_FLAG_TRIED, "TRIED" }, \
320 { FAULT_FLAG_USER, "USER" }, \
321 { FAULT_FLAG_REMOTE, "REMOTE" }, \
322 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
323
54cb8821 324/*
d0217ac0 325 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
326 * ->fault function. The vma's ->fault is responsible for returning a bitmask
327 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 328 *
c20cd45e
MH
329 * MM layer fills up gfp_mask for page allocations but fault handler might
330 * alter it if its implementation requires a different allocation context.
331 *
9b4bdd2f 332 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 333 */
d0217ac0 334struct vm_fault {
82b0f8c3 335 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 336 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 337 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 338 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 339 unsigned long address; /* Faulting virtual address */
82b0f8c3 340 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 341 * the 'address' */
a2d58167
DJ
342 pud_t *pud; /* Pointer to pud entry matching
343 * the 'address'
344 */
2994302b 345 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 346
3917048d
JK
347 struct page *cow_page; /* Page handler may use for COW fault */
348 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 349 struct page *page; /* ->fault handlers should return a
83c54070 350 * page here, unless VM_FAULT_NOPAGE
d0217ac0 351 * is set (which is also implied by
83c54070 352 * VM_FAULT_ERROR).
d0217ac0 353 */
82b0f8c3 354 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
355 pte_t *pte; /* Pointer to pte entry matching
356 * the 'address'. NULL if the page
357 * table hasn't been allocated.
358 */
359 spinlock_t *ptl; /* Page table lock.
360 * Protects pte page table if 'pte'
361 * is not NULL, otherwise pmd.
362 */
7267ec00
KS
363 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
364 * vm_ops->map_pages() calls
365 * alloc_set_pte() from atomic context.
366 * do_fault_around() pre-allocates
367 * page table to avoid allocation from
368 * atomic context.
369 */
54cb8821 370};
1da177e4 371
c791ace1
DJ
372/* page entry size for vm->huge_fault() */
373enum page_entry_size {
374 PE_SIZE_PTE = 0,
375 PE_SIZE_PMD,
376 PE_SIZE_PUD,
377};
378
1da177e4
LT
379/*
380 * These are the virtual MM functions - opening of an area, closing and
381 * unmapping it (needed to keep files on disk up-to-date etc), pointer
382 * to the functions called when a no-page or a wp-page exception occurs.
383 */
384struct vm_operations_struct {
385 void (*open)(struct vm_area_struct * area);
386 void (*close)(struct vm_area_struct * area);
31383c68 387 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 388 int (*mremap)(struct vm_area_struct * area);
11bac800 389 int (*fault)(struct vm_fault *vmf);
c791ace1 390 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
82b0f8c3 391 void (*map_pages)(struct vm_fault *vmf,
bae473a4 392 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 393 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
394
395 /* notification that a previously read-only page is about to become
396 * writable, if an error is returned it will cause a SIGBUS */
11bac800 397 int (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 398
dd906184 399 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
11bac800 400 int (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 401
28b2ee20
RR
402 /* called by access_process_vm when get_user_pages() fails, typically
403 * for use by special VMAs that can switch between memory and hardware
404 */
405 int (*access)(struct vm_area_struct *vma, unsigned long addr,
406 void *buf, int len, int write);
78d683e8
AL
407
408 /* Called by the /proc/PID/maps code to ask the vma whether it
409 * has a special name. Returning non-NULL will also cause this
410 * vma to be dumped unconditionally. */
411 const char *(*name)(struct vm_area_struct *vma);
412
1da177e4 413#ifdef CONFIG_NUMA
a6020ed7
LS
414 /*
415 * set_policy() op must add a reference to any non-NULL @new mempolicy
416 * to hold the policy upon return. Caller should pass NULL @new to
417 * remove a policy and fall back to surrounding context--i.e. do not
418 * install a MPOL_DEFAULT policy, nor the task or system default
419 * mempolicy.
420 */
1da177e4 421 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
422
423 /*
424 * get_policy() op must add reference [mpol_get()] to any policy at
425 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
426 * in mm/mempolicy.c will do this automatically.
427 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
428 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
429 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
430 * must return NULL--i.e., do not "fallback" to task or system default
431 * policy.
432 */
1da177e4
LT
433 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
434 unsigned long addr);
435#endif
667a0a06
DV
436 /*
437 * Called by vm_normal_page() for special PTEs to find the
438 * page for @addr. This is useful if the default behavior
439 * (using pte_page()) would not find the correct page.
440 */
441 struct page *(*find_special_page)(struct vm_area_struct *vma,
442 unsigned long addr);
1da177e4
LT
443};
444
445struct mmu_gather;
446struct inode;
447
349aef0b
AM
448#define page_private(page) ((page)->private)
449#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 450
5c7fb56e
DW
451#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
452static inline int pmd_devmap(pmd_t pmd)
453{
454 return 0;
455}
a00cc7d9
MW
456static inline int pud_devmap(pud_t pud)
457{
458 return 0;
459}
b59f65fa
KS
460static inline int pgd_devmap(pgd_t pgd)
461{
462 return 0;
463}
5c7fb56e
DW
464#endif
465
1da177e4
LT
466/*
467 * FIXME: take this include out, include page-flags.h in
468 * files which need it (119 of them)
469 */
470#include <linux/page-flags.h>
71e3aac0 471#include <linux/huge_mm.h>
1da177e4
LT
472
473/*
474 * Methods to modify the page usage count.
475 *
476 * What counts for a page usage:
477 * - cache mapping (page->mapping)
478 * - private data (page->private)
479 * - page mapped in a task's page tables, each mapping
480 * is counted separately
481 *
482 * Also, many kernel routines increase the page count before a critical
483 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
484 */
485
486/*
da6052f7 487 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 488 */
7c8ee9a8
NP
489static inline int put_page_testzero(struct page *page)
490{
fe896d18
JK
491 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
492 return page_ref_dec_and_test(page);
7c8ee9a8 493}
1da177e4
LT
494
495/*
7c8ee9a8
NP
496 * Try to grab a ref unless the page has a refcount of zero, return false if
497 * that is the case.
8e0861fa
AK
498 * This can be called when MMU is off so it must not access
499 * any of the virtual mappings.
1da177e4 500 */
7c8ee9a8
NP
501static inline int get_page_unless_zero(struct page *page)
502{
fe896d18 503 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 504}
1da177e4 505
53df8fdc 506extern int page_is_ram(unsigned long pfn);
124fe20d
DW
507
508enum {
509 REGION_INTERSECTS,
510 REGION_DISJOINT,
511 REGION_MIXED,
512};
513
1c29f25b
TK
514int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
515 unsigned long desc);
53df8fdc 516
48667e7a 517/* Support for virtually mapped pages */
b3bdda02
CL
518struct page *vmalloc_to_page(const void *addr);
519unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 520
0738c4bb
PM
521/*
522 * Determine if an address is within the vmalloc range
523 *
524 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
525 * is no special casing required.
526 */
bb00a789 527static inline bool is_vmalloc_addr(const void *x)
9e2779fa 528{
0738c4bb 529#ifdef CONFIG_MMU
9e2779fa
CL
530 unsigned long addr = (unsigned long)x;
531
532 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 533#else
bb00a789 534 return false;
8ca3ed87 535#endif
0738c4bb 536}
81ac3ad9
KH
537#ifdef CONFIG_MMU
538extern int is_vmalloc_or_module_addr(const void *x);
539#else
934831d0 540static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
541{
542 return 0;
543}
544#endif
9e2779fa 545
a7c3e901
MH
546extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
547static inline void *kvmalloc(size_t size, gfp_t flags)
548{
549 return kvmalloc_node(size, flags, NUMA_NO_NODE);
550}
551static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
552{
553 return kvmalloc_node(size, flags | __GFP_ZERO, node);
554}
555static inline void *kvzalloc(size_t size, gfp_t flags)
556{
557 return kvmalloc(size, flags | __GFP_ZERO);
558}
559
752ade68
MH
560static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
561{
562 if (size != 0 && n > SIZE_MAX / size)
563 return NULL;
564
565 return kvmalloc(n * size, flags);
566}
567
39f1f78d
AV
568extern void kvfree(const void *addr);
569
53f9263b
KS
570static inline atomic_t *compound_mapcount_ptr(struct page *page)
571{
572 return &page[1].compound_mapcount;
573}
574
575static inline int compound_mapcount(struct page *page)
576{
5f527c2b 577 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
578 page = compound_head(page);
579 return atomic_read(compound_mapcount_ptr(page)) + 1;
580}
581
70b50f94
AA
582/*
583 * The atomic page->_mapcount, starts from -1: so that transitions
584 * both from it and to it can be tracked, using atomic_inc_and_test
585 * and atomic_add_negative(-1).
586 */
22b751c3 587static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
588{
589 atomic_set(&(page)->_mapcount, -1);
590}
591
b20ce5e0
KS
592int __page_mapcount(struct page *page);
593
70b50f94
AA
594static inline int page_mapcount(struct page *page)
595{
1d148e21 596 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 597
b20ce5e0
KS
598 if (unlikely(PageCompound(page)))
599 return __page_mapcount(page);
600 return atomic_read(&page->_mapcount) + 1;
601}
602
603#ifdef CONFIG_TRANSPARENT_HUGEPAGE
604int total_mapcount(struct page *page);
6d0a07ed 605int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
606#else
607static inline int total_mapcount(struct page *page)
608{
609 return page_mapcount(page);
70b50f94 610}
6d0a07ed
AA
611static inline int page_trans_huge_mapcount(struct page *page,
612 int *total_mapcount)
613{
614 int mapcount = page_mapcount(page);
615 if (total_mapcount)
616 *total_mapcount = mapcount;
617 return mapcount;
618}
b20ce5e0 619#endif
70b50f94 620
b49af68f
CL
621static inline struct page *virt_to_head_page(const void *x)
622{
623 struct page *page = virt_to_page(x);
ccaafd7f 624
1d798ca3 625 return compound_head(page);
b49af68f
CL
626}
627
ddc58f27
KS
628void __put_page(struct page *page);
629
1d7ea732 630void put_pages_list(struct list_head *pages);
1da177e4 631
8dfcc9ba 632void split_page(struct page *page, unsigned int order);
8dfcc9ba 633
33f2ef89
AW
634/*
635 * Compound pages have a destructor function. Provide a
636 * prototype for that function and accessor functions.
f1e61557 637 * These are _only_ valid on the head of a compound page.
33f2ef89 638 */
f1e61557
KS
639typedef void compound_page_dtor(struct page *);
640
641/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
642enum compound_dtor_id {
643 NULL_COMPOUND_DTOR,
644 COMPOUND_PAGE_DTOR,
645#ifdef CONFIG_HUGETLB_PAGE
646 HUGETLB_PAGE_DTOR,
9a982250
KS
647#endif
648#ifdef CONFIG_TRANSPARENT_HUGEPAGE
649 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
650#endif
651 NR_COMPOUND_DTORS,
652};
653extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
654
655static inline void set_compound_page_dtor(struct page *page,
f1e61557 656 enum compound_dtor_id compound_dtor)
33f2ef89 657{
f1e61557
KS
658 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
659 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
660}
661
662static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
663{
f1e61557
KS
664 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
665 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
666}
667
d00181b9 668static inline unsigned int compound_order(struct page *page)
d85f3385 669{
6d777953 670 if (!PageHead(page))
d85f3385 671 return 0;
e4b294c2 672 return page[1].compound_order;
d85f3385
CL
673}
674
f1e61557 675static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 676{
e4b294c2 677 page[1].compound_order = order;
d85f3385
CL
678}
679
9a982250
KS
680void free_compound_page(struct page *page);
681
3dece370 682#ifdef CONFIG_MMU
14fd403f
AA
683/*
684 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
685 * servicing faults for write access. In the normal case, do always want
686 * pte_mkwrite. But get_user_pages can cause write faults for mappings
687 * that do not have writing enabled, when used by access_process_vm.
688 */
689static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
690{
691 if (likely(vma->vm_flags & VM_WRITE))
692 pte = pte_mkwrite(pte);
693 return pte;
694}
8c6e50b0 695
82b0f8c3 696int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 697 struct page *page);
9118c0cb 698int finish_fault(struct vm_fault *vmf);
66a6197c 699int finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 700#endif
14fd403f 701
1da177e4
LT
702/*
703 * Multiple processes may "see" the same page. E.g. for untouched
704 * mappings of /dev/null, all processes see the same page full of
705 * zeroes, and text pages of executables and shared libraries have
706 * only one copy in memory, at most, normally.
707 *
708 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
709 * page_count() == 0 means the page is free. page->lru is then used for
710 * freelist management in the buddy allocator.
da6052f7 711 * page_count() > 0 means the page has been allocated.
1da177e4 712 *
da6052f7
NP
713 * Pages are allocated by the slab allocator in order to provide memory
714 * to kmalloc and kmem_cache_alloc. In this case, the management of the
715 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
716 * unless a particular usage is carefully commented. (the responsibility of
717 * freeing the kmalloc memory is the caller's, of course).
1da177e4 718 *
da6052f7
NP
719 * A page may be used by anyone else who does a __get_free_page().
720 * In this case, page_count still tracks the references, and should only
721 * be used through the normal accessor functions. The top bits of page->flags
722 * and page->virtual store page management information, but all other fields
723 * are unused and could be used privately, carefully. The management of this
724 * page is the responsibility of the one who allocated it, and those who have
725 * subsequently been given references to it.
726 *
727 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
728 * managed by the Linux memory manager: I/O, buffers, swapping etc.
729 * The following discussion applies only to them.
730 *
da6052f7
NP
731 * A pagecache page contains an opaque `private' member, which belongs to the
732 * page's address_space. Usually, this is the address of a circular list of
733 * the page's disk buffers. PG_private must be set to tell the VM to call
734 * into the filesystem to release these pages.
1da177e4 735 *
da6052f7
NP
736 * A page may belong to an inode's memory mapping. In this case, page->mapping
737 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 738 * in units of PAGE_SIZE.
1da177e4 739 *
da6052f7
NP
740 * If pagecache pages are not associated with an inode, they are said to be
741 * anonymous pages. These may become associated with the swapcache, and in that
742 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 743 *
da6052f7
NP
744 * In either case (swapcache or inode backed), the pagecache itself holds one
745 * reference to the page. Setting PG_private should also increment the
746 * refcount. The each user mapping also has a reference to the page.
1da177e4 747 *
da6052f7
NP
748 * The pagecache pages are stored in a per-mapping radix tree, which is
749 * rooted at mapping->page_tree, and indexed by offset.
750 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
751 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 752 *
da6052f7 753 * All pagecache pages may be subject to I/O:
1da177e4
LT
754 * - inode pages may need to be read from disk,
755 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
756 * to be written back to the inode on disk,
757 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
758 * modified may need to be swapped out to swap space and (later) to be read
759 * back into memory.
1da177e4
LT
760 */
761
762/*
763 * The zone field is never updated after free_area_init_core()
764 * sets it, so none of the operations on it need to be atomic.
1da177e4 765 */
348f8b6c 766
90572890 767/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 768#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
769#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
770#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 771#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 772
348f8b6c 773/*
25985edc 774 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
775 * sections we define the shift as 0; that plus a 0 mask ensures
776 * the compiler will optimise away reference to them.
777 */
d41dee36
AW
778#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
779#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
780#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 781#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 782
bce54bbf
WD
783/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
784#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 785#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
786#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
787 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 788#else
89689ae7 789#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
790#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
791 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
792#endif
793
bd8029b6 794#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 795
9223b419
CL
796#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
797#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
798#endif
799
d41dee36
AW
800#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
801#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
802#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 803#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 804#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 805
33dd4e0e 806static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 807{
348f8b6c 808 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 809}
1da177e4 810
260ae3f7
DW
811#ifdef CONFIG_ZONE_DEVICE
812static inline bool is_zone_device_page(const struct page *page)
813{
814 return page_zonenum(page) == ZONE_DEVICE;
815}
816#else
817static inline bool is_zone_device_page(const struct page *page)
818{
819 return false;
820}
7b2d55d2 821#endif
5042db43 822
6b368cd4 823#if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
df6ad698 824void put_zone_device_private_or_public_page(struct page *page);
6b368cd4
JG
825DECLARE_STATIC_KEY_FALSE(device_private_key);
826#define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
827static inline bool is_device_private_page(const struct page *page);
828static inline bool is_device_public_page(const struct page *page);
829#else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
df6ad698 830static inline void put_zone_device_private_or_public_page(struct page *page)
5042db43 831{
5042db43 832}
6b368cd4
JG
833#define IS_HMM_ENABLED 0
834static inline bool is_device_private_page(const struct page *page)
835{
836 return false;
837}
838static inline bool is_device_public_page(const struct page *page)
839{
840 return false;
841}
df6ad698 842#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
260ae3f7 843
7b2d55d2 844
3565fce3
DW
845static inline void get_page(struct page *page)
846{
847 page = compound_head(page);
848 /*
849 * Getting a normal page or the head of a compound page
0139aa7b 850 * requires to already have an elevated page->_refcount.
3565fce3 851 */
fe896d18
JK
852 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
853 page_ref_inc(page);
3565fce3
DW
854}
855
856static inline void put_page(struct page *page)
857{
858 page = compound_head(page);
859
7b2d55d2
JG
860 /*
861 * For private device pages we need to catch refcount transition from
862 * 2 to 1, when refcount reach one it means the private device page is
863 * free and we need to inform the device driver through callback. See
864 * include/linux/memremap.h and HMM for details.
865 */
6b368cd4
JG
866 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
867 unlikely(is_device_public_page(page)))) {
df6ad698 868 put_zone_device_private_or_public_page(page);
7b2d55d2
JG
869 return;
870 }
871
3565fce3
DW
872 if (put_page_testzero(page))
873 __put_page(page);
3565fce3
DW
874}
875
9127ab4f
CS
876#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
877#define SECTION_IN_PAGE_FLAGS
878#endif
879
89689ae7 880/*
7a8010cd
VB
881 * The identification function is mainly used by the buddy allocator for
882 * determining if two pages could be buddies. We are not really identifying
883 * the zone since we could be using the section number id if we do not have
884 * node id available in page flags.
885 * We only guarantee that it will return the same value for two combinable
886 * pages in a zone.
89689ae7 887 */
cb2b95e1
AW
888static inline int page_zone_id(struct page *page)
889{
89689ae7 890 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
891}
892
25ba77c1 893static inline int zone_to_nid(struct zone *zone)
89fa3024 894{
d5f541ed
CL
895#ifdef CONFIG_NUMA
896 return zone->node;
897#else
898 return 0;
899#endif
89fa3024
CL
900}
901
89689ae7 902#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 903extern int page_to_nid(const struct page *page);
89689ae7 904#else
33dd4e0e 905static inline int page_to_nid(const struct page *page)
d41dee36 906{
f165b378
PT
907 struct page *p = (struct page *)page;
908
909 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 910}
89689ae7
CL
911#endif
912
57e0a030 913#ifdef CONFIG_NUMA_BALANCING
90572890 914static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 915{
90572890 916 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
917}
918
90572890 919static inline int cpupid_to_pid(int cpupid)
57e0a030 920{
90572890 921 return cpupid & LAST__PID_MASK;
57e0a030 922}
b795854b 923
90572890 924static inline int cpupid_to_cpu(int cpupid)
b795854b 925{
90572890 926 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
927}
928
90572890 929static inline int cpupid_to_nid(int cpupid)
b795854b 930{
90572890 931 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
932}
933
90572890 934static inline bool cpupid_pid_unset(int cpupid)
57e0a030 935{
90572890 936 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
937}
938
90572890 939static inline bool cpupid_cpu_unset(int cpupid)
b795854b 940{
90572890 941 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
942}
943
8c8a743c
PZ
944static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
945{
946 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
947}
948
949#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
950#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
951static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 952{
1ae71d03 953 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 954}
90572890
PZ
955
956static inline int page_cpupid_last(struct page *page)
957{
958 return page->_last_cpupid;
959}
960static inline void page_cpupid_reset_last(struct page *page)
b795854b 961{
1ae71d03 962 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
963}
964#else
90572890 965static inline int page_cpupid_last(struct page *page)
75980e97 966{
90572890 967 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
968}
969
90572890 970extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 971
90572890 972static inline void page_cpupid_reset_last(struct page *page)
75980e97 973{
09940a4f 974 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 975}
90572890
PZ
976#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
977#else /* !CONFIG_NUMA_BALANCING */
978static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 979{
90572890 980 return page_to_nid(page); /* XXX */
57e0a030
MG
981}
982
90572890 983static inline int page_cpupid_last(struct page *page)
57e0a030 984{
90572890 985 return page_to_nid(page); /* XXX */
57e0a030
MG
986}
987
90572890 988static inline int cpupid_to_nid(int cpupid)
b795854b
MG
989{
990 return -1;
991}
992
90572890 993static inline int cpupid_to_pid(int cpupid)
b795854b
MG
994{
995 return -1;
996}
997
90572890 998static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
999{
1000 return -1;
1001}
1002
90572890
PZ
1003static inline int cpu_pid_to_cpupid(int nid, int pid)
1004{
1005 return -1;
1006}
1007
1008static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1009{
1010 return 1;
1011}
1012
90572890 1013static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1014{
1015}
8c8a743c
PZ
1016
1017static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1018{
1019 return false;
1020}
90572890 1021#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1022
33dd4e0e 1023static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1024{
1025 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1026}
1027
75ef7184
MG
1028static inline pg_data_t *page_pgdat(const struct page *page)
1029{
1030 return NODE_DATA(page_to_nid(page));
1031}
1032
9127ab4f 1033#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1034static inline void set_page_section(struct page *page, unsigned long section)
1035{
1036 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1037 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1038}
1039
aa462abe 1040static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1041{
1042 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1043}
308c05e3 1044#endif
d41dee36 1045
2f1b6248 1046static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1047{
1048 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1049 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1050}
2f1b6248 1051
348f8b6c
DH
1052static inline void set_page_node(struct page *page, unsigned long node)
1053{
1054 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1055 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1056}
89689ae7 1057
2f1b6248 1058static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1059 unsigned long node, unsigned long pfn)
1da177e4 1060{
348f8b6c
DH
1061 set_page_zone(page, zone);
1062 set_page_node(page, node);
9127ab4f 1063#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1064 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1065#endif
1da177e4
LT
1066}
1067
0610c25d
GT
1068#ifdef CONFIG_MEMCG
1069static inline struct mem_cgroup *page_memcg(struct page *page)
1070{
1071 return page->mem_cgroup;
1072}
55779ec7
JW
1073static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1074{
1075 WARN_ON_ONCE(!rcu_read_lock_held());
1076 return READ_ONCE(page->mem_cgroup);
1077}
0610c25d
GT
1078#else
1079static inline struct mem_cgroup *page_memcg(struct page *page)
1080{
1081 return NULL;
1082}
55779ec7
JW
1083static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1084{
1085 WARN_ON_ONCE(!rcu_read_lock_held());
1086 return NULL;
1087}
0610c25d
GT
1088#endif
1089
f6ac2354
CL
1090/*
1091 * Some inline functions in vmstat.h depend on page_zone()
1092 */
1093#include <linux/vmstat.h>
1094
33dd4e0e 1095static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1096{
1dff8083 1097 return page_to_virt(page);
1da177e4
LT
1098}
1099
1100#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1101#define HASHED_PAGE_VIRTUAL
1102#endif
1103
1104#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1105static inline void *page_address(const struct page *page)
1106{
1107 return page->virtual;
1108}
1109static inline void set_page_address(struct page *page, void *address)
1110{
1111 page->virtual = address;
1112}
1da177e4
LT
1113#define page_address_init() do { } while(0)
1114#endif
1115
1116#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1117void *page_address(const struct page *page);
1da177e4
LT
1118void set_page_address(struct page *page, void *virtual);
1119void page_address_init(void);
1120#endif
1121
1122#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1123#define page_address(page) lowmem_page_address(page)
1124#define set_page_address(page, address) do { } while(0)
1125#define page_address_init() do { } while(0)
1126#endif
1127
e39155ea
KS
1128extern void *page_rmapping(struct page *page);
1129extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1130extern struct address_space *page_mapping(struct page *page);
1da177e4 1131
f981c595
MG
1132extern struct address_space *__page_file_mapping(struct page *);
1133
1134static inline
1135struct address_space *page_file_mapping(struct page *page)
1136{
1137 if (unlikely(PageSwapCache(page)))
1138 return __page_file_mapping(page);
1139
1140 return page->mapping;
1141}
1142
f6ab1f7f
HY
1143extern pgoff_t __page_file_index(struct page *page);
1144
1da177e4
LT
1145/*
1146 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1147 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1148 */
1149static inline pgoff_t page_index(struct page *page)
1150{
1151 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1152 return __page_file_index(page);
1da177e4
LT
1153 return page->index;
1154}
1155
1aa8aea5 1156bool page_mapped(struct page *page);
bda807d4 1157struct address_space *page_mapping(struct page *page);
cb9f753a 1158struct address_space *page_mapping_file(struct page *page);
1da177e4 1159
2f064f34
MH
1160/*
1161 * Return true only if the page has been allocated with
1162 * ALLOC_NO_WATERMARKS and the low watermark was not
1163 * met implying that the system is under some pressure.
1164 */
1165static inline bool page_is_pfmemalloc(struct page *page)
1166{
1167 /*
1168 * Page index cannot be this large so this must be
1169 * a pfmemalloc page.
1170 */
1171 return page->index == -1UL;
1172}
1173
1174/*
1175 * Only to be called by the page allocator on a freshly allocated
1176 * page.
1177 */
1178static inline void set_page_pfmemalloc(struct page *page)
1179{
1180 page->index = -1UL;
1181}
1182
1183static inline void clear_page_pfmemalloc(struct page *page)
1184{
1185 page->index = 0;
1186}
1187
1da177e4
LT
1188/*
1189 * Different kinds of faults, as returned by handle_mm_fault().
1190 * Used to decide whether a process gets delivered SIGBUS or
1191 * just gets major/minor fault counters bumped up.
1192 */
d0217ac0 1193
83c54070
NP
1194#define VM_FAULT_OOM 0x0001
1195#define VM_FAULT_SIGBUS 0x0002
1196#define VM_FAULT_MAJOR 0x0004
1197#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1198#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1199#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1200#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1201
83c54070
NP
1202#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1203#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1204#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1205#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1206#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
caa51d26
JK
1207#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1208 * and needs fsync() to complete (for
1209 * synchronous page faults in DAX) */
aa50d3a7 1210
33692f27
LT
1211#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1212 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1213 VM_FAULT_FALLBACK)
aa50d3a7 1214
282a8e03
RZ
1215#define VM_FAULT_RESULT_TRACE \
1216 { VM_FAULT_OOM, "OOM" }, \
1217 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1218 { VM_FAULT_MAJOR, "MAJOR" }, \
1219 { VM_FAULT_WRITE, "WRITE" }, \
1220 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1221 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1222 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1223 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1224 { VM_FAULT_LOCKED, "LOCKED" }, \
1225 { VM_FAULT_RETRY, "RETRY" }, \
1226 { VM_FAULT_FALLBACK, "FALLBACK" }, \
caa51d26
JK
1227 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1228 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
282a8e03 1229
aa50d3a7
AK
1230/* Encode hstate index for a hwpoisoned large page */
1231#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1232#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1233
1c0fe6e3
NP
1234/*
1235 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1236 */
1237extern void pagefault_out_of_memory(void);
1238
1da177e4
LT
1239#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1240
ddd588b5 1241/*
7bf02ea2 1242 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1243 * various contexts.
1244 */
4b59e6c4 1245#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1246
9af744d7 1247extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1248
7f43add4 1249extern bool can_do_mlock(void);
1da177e4
LT
1250extern int user_shm_lock(size_t, struct user_struct *);
1251extern void user_shm_unlock(size_t, struct user_struct *);
1252
1253/*
1254 * Parameter block passed down to zap_pte_range in exceptional cases.
1255 */
1256struct zap_details {
1da177e4
LT
1257 struct address_space *check_mapping; /* Check page->mapping if set */
1258 pgoff_t first_index; /* Lowest page->index to unmap */
1259 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1260};
1261
df6ad698
JG
1262struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1263 pte_t pte, bool with_public_device);
1264#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1265
28093f9f
GS
1266struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1267 pmd_t pmd);
7e675137 1268
c627f9cc
JS
1269int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1270 unsigned long size);
14f5ff5d 1271void zap_page_range(struct vm_area_struct *vma, unsigned long address,
ecf1385d 1272 unsigned long size);
4f74d2c8
LT
1273void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1274 unsigned long start, unsigned long end);
e6473092
MM
1275
1276/**
1277 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1278 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1279 * this handler should only handle pud_trans_huge() puds.
1280 * the pmd_entry or pte_entry callbacks will be used for
1281 * regular PUDs.
e6473092 1282 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1283 * this handler is required to be able to handle
1284 * pmd_trans_huge() pmds. They may simply choose to
1285 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1286 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1287 * @pte_hole: if set, called for each hole at all levels
5dc37642 1288 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1289 * @test_walk: caller specific callback function to determine whether
f7e2355f 1290 * we walk over the current vma or not. Returning 0
fafaa426
NH
1291 * value means "do page table walk over the current vma,"
1292 * and a negative one means "abort current page table walk
f7e2355f 1293 * right now." 1 means "skip the current vma."
fafaa426
NH
1294 * @mm: mm_struct representing the target process of page table walk
1295 * @vma: vma currently walked (NULL if walking outside vmas)
1296 * @private: private data for callbacks' usage
e6473092 1297 *
fafaa426 1298 * (see the comment on walk_page_range() for more details)
e6473092
MM
1299 */
1300struct mm_walk {
a00cc7d9
MW
1301 int (*pud_entry)(pud_t *pud, unsigned long addr,
1302 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1303 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1304 unsigned long next, struct mm_walk *walk);
1305 int (*pte_entry)(pte_t *pte, unsigned long addr,
1306 unsigned long next, struct mm_walk *walk);
1307 int (*pte_hole)(unsigned long addr, unsigned long next,
1308 struct mm_walk *walk);
1309 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1310 unsigned long addr, unsigned long next,
1311 struct mm_walk *walk);
fafaa426
NH
1312 int (*test_walk)(unsigned long addr, unsigned long next,
1313 struct mm_walk *walk);
2165009b 1314 struct mm_struct *mm;
fafaa426 1315 struct vm_area_struct *vma;
2165009b 1316 void *private;
e6473092
MM
1317};
1318
2165009b
DH
1319int walk_page_range(unsigned long addr, unsigned long end,
1320 struct mm_walk *walk);
900fc5f1 1321int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1322void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1323 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1324int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1325 struct vm_area_struct *vma);
09796395 1326int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 1327 unsigned long *start, unsigned long *end,
09796395 1328 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1329int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1330 unsigned long *pfn);
d87fe660 1331int follow_phys(struct vm_area_struct *vma, unsigned long address,
1332 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1333int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1334 void *buf, int len, int write);
1da177e4 1335
7caef267 1336extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1337extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1338void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1339void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1340int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1341int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1342int invalidate_inode_page(struct page *page);
1343
7ee1dd3f 1344#ifdef CONFIG_MMU
dcddffd4
KS
1345extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1346 unsigned int flags);
5c723ba5 1347extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1348 unsigned long address, unsigned int fault_flags,
1349 bool *unlocked);
977fbdcd
MW
1350void unmap_mapping_pages(struct address_space *mapping,
1351 pgoff_t start, pgoff_t nr, bool even_cows);
1352void unmap_mapping_range(struct address_space *mapping,
1353 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1354#else
dcddffd4
KS
1355static inline int handle_mm_fault(struct vm_area_struct *vma,
1356 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1357{
1358 /* should never happen if there's no MMU */
1359 BUG();
1360 return VM_FAULT_SIGBUS;
1361}
5c723ba5
PZ
1362static inline int fixup_user_fault(struct task_struct *tsk,
1363 struct mm_struct *mm, unsigned long address,
4a9e1cda 1364 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1365{
1366 /* should never happen if there's no MMU */
1367 BUG();
1368 return -EFAULT;
1369}
977fbdcd
MW
1370static inline void unmap_mapping_pages(struct address_space *mapping,
1371 pgoff_t start, pgoff_t nr, bool even_cows) { }
1372static inline void unmap_mapping_range(struct address_space *mapping,
1373 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1374#endif
f33ea7f4 1375
977fbdcd
MW
1376static inline void unmap_shared_mapping_range(struct address_space *mapping,
1377 loff_t const holebegin, loff_t const holelen)
1378{
1379 unmap_mapping_range(mapping, holebegin, holelen, 0);
1380}
1381
1382extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1383 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1384extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1385 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1386extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1387 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1388
1e987790
DH
1389long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1390 unsigned long start, unsigned long nr_pages,
9beae1ea 1391 unsigned int gup_flags, struct page **pages,
5b56d49f 1392 struct vm_area_struct **vmas, int *locked);
c12d2da5 1393long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1394 unsigned int gup_flags, struct page **pages,
cde70140 1395 struct vm_area_struct **vmas);
c12d2da5 1396long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1397 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1398long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1399 struct page **pages, unsigned int gup_flags);
2bb6d283
DW
1400#ifdef CONFIG_FS_DAX
1401long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1402 unsigned int gup_flags, struct page **pages,
1403 struct vm_area_struct **vmas);
1404#else
1405static inline long get_user_pages_longterm(unsigned long start,
1406 unsigned long nr_pages, unsigned int gup_flags,
1407 struct page **pages, struct vm_area_struct **vmas)
1408{
1409 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1410}
1411#endif /* CONFIG_FS_DAX */
1412
d2bf6be8
NP
1413int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1414 struct page **pages);
8025e5dd
JK
1415
1416/* Container for pinned pfns / pages */
1417struct frame_vector {
1418 unsigned int nr_allocated; /* Number of frames we have space for */
1419 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1420 bool got_ref; /* Did we pin pages by getting page ref? */
1421 bool is_pfns; /* Does array contain pages or pfns? */
1422 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1423 * pfns_vector_pages() or pfns_vector_pfns()
1424 * for access */
1425};
1426
1427struct frame_vector *frame_vector_create(unsigned int nr_frames);
1428void frame_vector_destroy(struct frame_vector *vec);
1429int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1430 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1431void put_vaddr_frames(struct frame_vector *vec);
1432int frame_vector_to_pages(struct frame_vector *vec);
1433void frame_vector_to_pfns(struct frame_vector *vec);
1434
1435static inline unsigned int frame_vector_count(struct frame_vector *vec)
1436{
1437 return vec->nr_frames;
1438}
1439
1440static inline struct page **frame_vector_pages(struct frame_vector *vec)
1441{
1442 if (vec->is_pfns) {
1443 int err = frame_vector_to_pages(vec);
1444
1445 if (err)
1446 return ERR_PTR(err);
1447 }
1448 return (struct page **)(vec->ptrs);
1449}
1450
1451static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1452{
1453 if (!vec->is_pfns)
1454 frame_vector_to_pfns(vec);
1455 return (unsigned long *)(vec->ptrs);
1456}
1457
18022c5d
MG
1458struct kvec;
1459int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1460 struct page **pages);
1461int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1462struct page *get_dump_page(unsigned long addr);
1da177e4 1463
cf9a2ae8 1464extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1465extern void do_invalidatepage(struct page *page, unsigned int offset,
1466 unsigned int length);
cf9a2ae8 1467
1da177e4 1468int __set_page_dirty_nobuffers(struct page *page);
76719325 1469int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1470int redirty_page_for_writepage(struct writeback_control *wbc,
1471 struct page *page);
62cccb8c 1472void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1473void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1474 struct bdi_writeback *wb);
b3c97528 1475int set_page_dirty(struct page *page);
1da177e4 1476int set_page_dirty_lock(struct page *page);
736304f3
JK
1477void __cancel_dirty_page(struct page *page);
1478static inline void cancel_dirty_page(struct page *page)
1479{
1480 /* Avoid atomic ops, locking, etc. when not actually needed. */
1481 if (PageDirty(page))
1482 __cancel_dirty_page(page);
1483}
1da177e4 1484int clear_page_dirty_for_io(struct page *page);
b9ea2515 1485
a9090253 1486int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1487
b5330628
ON
1488static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1489{
1490 return !vma->vm_ops;
1491}
1492
b0506e48
MR
1493#ifdef CONFIG_SHMEM
1494/*
1495 * The vma_is_shmem is not inline because it is used only by slow
1496 * paths in userfault.
1497 */
1498bool vma_is_shmem(struct vm_area_struct *vma);
1499#else
1500static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1501#endif
1502
d17af505 1503int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1504
b6a2fea3
OW
1505extern unsigned long move_page_tables(struct vm_area_struct *vma,
1506 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1507 unsigned long new_addr, unsigned long len,
1508 bool need_rmap_locks);
7da4d641
PZ
1509extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1510 unsigned long end, pgprot_t newprot,
4b10e7d5 1511 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1512extern int mprotect_fixup(struct vm_area_struct *vma,
1513 struct vm_area_struct **pprev, unsigned long start,
1514 unsigned long end, unsigned long newflags);
1da177e4 1515
465a454f
PZ
1516/*
1517 * doesn't attempt to fault and will return short.
1518 */
1519int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1520 struct page **pages);
d559db08
KH
1521/*
1522 * per-process(per-mm_struct) statistics.
1523 */
d559db08
KH
1524static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1525{
69c97823
KK
1526 long val = atomic_long_read(&mm->rss_stat.count[member]);
1527
1528#ifdef SPLIT_RSS_COUNTING
1529 /*
1530 * counter is updated in asynchronous manner and may go to minus.
1531 * But it's never be expected number for users.
1532 */
1533 if (val < 0)
1534 val = 0;
172703b0 1535#endif
69c97823
KK
1536 return (unsigned long)val;
1537}
d559db08
KH
1538
1539static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1540{
172703b0 1541 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1542}
1543
1544static inline void inc_mm_counter(struct mm_struct *mm, int member)
1545{
172703b0 1546 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1547}
1548
1549static inline void dec_mm_counter(struct mm_struct *mm, int member)
1550{
172703b0 1551 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1552}
1553
eca56ff9
JM
1554/* Optimized variant when page is already known not to be PageAnon */
1555static inline int mm_counter_file(struct page *page)
1556{
1557 if (PageSwapBacked(page))
1558 return MM_SHMEMPAGES;
1559 return MM_FILEPAGES;
1560}
1561
1562static inline int mm_counter(struct page *page)
1563{
1564 if (PageAnon(page))
1565 return MM_ANONPAGES;
1566 return mm_counter_file(page);
1567}
1568
d559db08
KH
1569static inline unsigned long get_mm_rss(struct mm_struct *mm)
1570{
1571 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1572 get_mm_counter(mm, MM_ANONPAGES) +
1573 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1574}
1575
1576static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1577{
1578 return max(mm->hiwater_rss, get_mm_rss(mm));
1579}
1580
1581static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1582{
1583 return max(mm->hiwater_vm, mm->total_vm);
1584}
1585
1586static inline void update_hiwater_rss(struct mm_struct *mm)
1587{
1588 unsigned long _rss = get_mm_rss(mm);
1589
1590 if ((mm)->hiwater_rss < _rss)
1591 (mm)->hiwater_rss = _rss;
1592}
1593
1594static inline void update_hiwater_vm(struct mm_struct *mm)
1595{
1596 if (mm->hiwater_vm < mm->total_vm)
1597 mm->hiwater_vm = mm->total_vm;
1598}
1599
695f0559
PC
1600static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1601{
1602 mm->hiwater_rss = get_mm_rss(mm);
1603}
1604
d559db08
KH
1605static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1606 struct mm_struct *mm)
1607{
1608 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1609
1610 if (*maxrss < hiwater_rss)
1611 *maxrss = hiwater_rss;
1612}
1613
53bddb4e 1614#if defined(SPLIT_RSS_COUNTING)
05af2e10 1615void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1616#else
05af2e10 1617static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1618{
1619}
1620#endif
465a454f 1621
3565fce3
DW
1622#ifndef __HAVE_ARCH_PTE_DEVMAP
1623static inline int pte_devmap(pte_t pte)
1624{
1625 return 0;
1626}
1627#endif
1628
6d2329f8 1629int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1630
25ca1d6c
NK
1631extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1632 spinlock_t **ptl);
1633static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1634 spinlock_t **ptl)
1635{
1636 pte_t *ptep;
1637 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1638 return ptep;
1639}
c9cfcddf 1640
c2febafc
KS
1641#ifdef __PAGETABLE_P4D_FOLDED
1642static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1643 unsigned long address)
1644{
1645 return 0;
1646}
1647#else
1648int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1649#endif
1650
b4e98d9a 1651#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1652static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1653 unsigned long address)
1654{
1655 return 0;
1656}
b4e98d9a
KS
1657static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1658static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1659
5f22df00 1660#else
c2febafc 1661int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1662
b4e98d9a
KS
1663static inline void mm_inc_nr_puds(struct mm_struct *mm)
1664{
af5b0f6a 1665 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1666}
1667
1668static inline void mm_dec_nr_puds(struct mm_struct *mm)
1669{
af5b0f6a 1670 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1671}
5f22df00
NP
1672#endif
1673
2d2f5119 1674#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1675static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1676 unsigned long address)
1677{
1678 return 0;
1679}
dc6c9a35 1680
dc6c9a35
KS
1681static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1682static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1683
5f22df00 1684#else
1bb3630e 1685int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1686
dc6c9a35
KS
1687static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1688{
af5b0f6a 1689 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
1690}
1691
1692static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1693{
af5b0f6a 1694 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 1695}
5f22df00
NP
1696#endif
1697
c4812909 1698#ifdef CONFIG_MMU
af5b0f6a 1699static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 1700{
af5b0f6a 1701 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
1702}
1703
af5b0f6a 1704static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 1705{
af5b0f6a 1706 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
1707}
1708
1709static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1710{
af5b0f6a 1711 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1712}
1713
1714static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1715{
af5b0f6a 1716 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1717}
1718#else
c4812909 1719
af5b0f6a
KS
1720static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1721static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
1722{
1723 return 0;
1724}
1725
1726static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1727static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1728#endif
1729
3ed3a4f0 1730int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1731int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1732
1da177e4
LT
1733/*
1734 * The following ifdef needed to get the 4level-fixup.h header to work.
1735 * Remove it when 4level-fixup.h has been removed.
1736 */
1bb3630e 1737#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1738
1739#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1740static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1741 unsigned long address)
1742{
1743 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1744 NULL : p4d_offset(pgd, address);
1745}
1746
1747static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1748 unsigned long address)
1da177e4 1749{
c2febafc
KS
1750 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1751 NULL : pud_offset(p4d, address);
1da177e4 1752}
505a60e2 1753#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1754
1755static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1756{
1bb3630e
HD
1757 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1758 NULL: pmd_offset(pud, address);
1da177e4 1759}
1bb3630e
HD
1760#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1761
57c1ffce 1762#if USE_SPLIT_PTE_PTLOCKS
597d795a 1763#if ALLOC_SPLIT_PTLOCKS
b35f1819 1764void __init ptlock_cache_init(void);
539edb58
PZ
1765extern bool ptlock_alloc(struct page *page);
1766extern void ptlock_free(struct page *page);
1767
1768static inline spinlock_t *ptlock_ptr(struct page *page)
1769{
1770 return page->ptl;
1771}
597d795a 1772#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1773static inline void ptlock_cache_init(void)
1774{
1775}
1776
49076ec2
KS
1777static inline bool ptlock_alloc(struct page *page)
1778{
49076ec2
KS
1779 return true;
1780}
539edb58 1781
49076ec2
KS
1782static inline void ptlock_free(struct page *page)
1783{
49076ec2
KS
1784}
1785
1786static inline spinlock_t *ptlock_ptr(struct page *page)
1787{
539edb58 1788 return &page->ptl;
49076ec2 1789}
597d795a 1790#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1791
1792static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1793{
1794 return ptlock_ptr(pmd_page(*pmd));
1795}
1796
1797static inline bool ptlock_init(struct page *page)
1798{
1799 /*
1800 * prep_new_page() initialize page->private (and therefore page->ptl)
1801 * with 0. Make sure nobody took it in use in between.
1802 *
1803 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1804 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1805 */
309381fe 1806 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1807 if (!ptlock_alloc(page))
1808 return false;
1809 spin_lock_init(ptlock_ptr(page));
1810 return true;
1811}
1812
1813/* Reset page->mapping so free_pages_check won't complain. */
1814static inline void pte_lock_deinit(struct page *page)
1815{
1816 page->mapping = NULL;
1817 ptlock_free(page);
1818}
1819
57c1ffce 1820#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1821/*
1822 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1823 */
49076ec2
KS
1824static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1825{
1826 return &mm->page_table_lock;
1827}
b35f1819 1828static inline void ptlock_cache_init(void) {}
49076ec2
KS
1829static inline bool ptlock_init(struct page *page) { return true; }
1830static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1831#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1832
b35f1819
KS
1833static inline void pgtable_init(void)
1834{
1835 ptlock_cache_init();
1836 pgtable_cache_init();
1837}
1838
390f44e2 1839static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1840{
706874e9
VD
1841 if (!ptlock_init(page))
1842 return false;
2f569afd 1843 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1844 return true;
2f569afd
MS
1845}
1846
1847static inline void pgtable_page_dtor(struct page *page)
1848{
1849 pte_lock_deinit(page);
1850 dec_zone_page_state(page, NR_PAGETABLE);
1851}
1852
c74df32c
HD
1853#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1854({ \
4c21e2f2 1855 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1856 pte_t *__pte = pte_offset_map(pmd, address); \
1857 *(ptlp) = __ptl; \
1858 spin_lock(__ptl); \
1859 __pte; \
1860})
1861
1862#define pte_unmap_unlock(pte, ptl) do { \
1863 spin_unlock(ptl); \
1864 pte_unmap(pte); \
1865} while (0)
1866
3ed3a4f0
KS
1867#define pte_alloc(mm, pmd, address) \
1868 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1869
1870#define pte_alloc_map(mm, pmd, address) \
1871 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1872
c74df32c 1873#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1874 (pte_alloc(mm, pmd, address) ? \
1875 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1876
1bb3630e 1877#define pte_alloc_kernel(pmd, address) \
8ac1f832 1878 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1879 NULL: pte_offset_kernel(pmd, address))
1da177e4 1880
e009bb30
KS
1881#if USE_SPLIT_PMD_PTLOCKS
1882
634391ac
MS
1883static struct page *pmd_to_page(pmd_t *pmd)
1884{
1885 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1886 return virt_to_page((void *)((unsigned long) pmd & mask));
1887}
1888
e009bb30
KS
1889static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1890{
634391ac 1891 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1892}
1893
1894static inline bool pgtable_pmd_page_ctor(struct page *page)
1895{
e009bb30
KS
1896#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1897 page->pmd_huge_pte = NULL;
1898#endif
49076ec2 1899 return ptlock_init(page);
e009bb30
KS
1900}
1901
1902static inline void pgtable_pmd_page_dtor(struct page *page)
1903{
1904#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1905 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1906#endif
49076ec2 1907 ptlock_free(page);
e009bb30
KS
1908}
1909
634391ac 1910#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1911
1912#else
1913
9a86cb7b
KS
1914static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1915{
1916 return &mm->page_table_lock;
1917}
1918
e009bb30
KS
1919static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1920static inline void pgtable_pmd_page_dtor(struct page *page) {}
1921
c389a250 1922#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1923
e009bb30
KS
1924#endif
1925
9a86cb7b
KS
1926static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1927{
1928 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1929 spin_lock(ptl);
1930 return ptl;
1931}
1932
a00cc7d9
MW
1933/*
1934 * No scalability reason to split PUD locks yet, but follow the same pattern
1935 * as the PMD locks to make it easier if we decide to. The VM should not be
1936 * considered ready to switch to split PUD locks yet; there may be places
1937 * which need to be converted from page_table_lock.
1938 */
1939static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1940{
1941 return &mm->page_table_lock;
1942}
1943
1944static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1945{
1946 spinlock_t *ptl = pud_lockptr(mm, pud);
1947
1948 spin_lock(ptl);
1949 return ptl;
1950}
62906027 1951
a00cc7d9 1952extern void __init pagecache_init(void);
1da177e4 1953extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1954extern void free_area_init_node(int nid, unsigned long * zones_size,
1955 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1956extern void free_initmem(void);
1957
69afade7
JL
1958/*
1959 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1960 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1961 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1962 * Return pages freed into the buddy system.
1963 */
11199692 1964extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1965 int poison, char *s);
c3d5f5f0 1966
cfa11e08
JL
1967#ifdef CONFIG_HIGHMEM
1968/*
1969 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1970 * and totalram_pages.
1971 */
1972extern void free_highmem_page(struct page *page);
1973#endif
69afade7 1974
c3d5f5f0 1975extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1976extern void mem_init_print_info(const char *str);
69afade7 1977
4b50bcc7 1978extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 1979
69afade7
JL
1980/* Free the reserved page into the buddy system, so it gets managed. */
1981static inline void __free_reserved_page(struct page *page)
1982{
1983 ClearPageReserved(page);
1984 init_page_count(page);
1985 __free_page(page);
1986}
1987
1988static inline void free_reserved_page(struct page *page)
1989{
1990 __free_reserved_page(page);
1991 adjust_managed_page_count(page, 1);
1992}
1993
1994static inline void mark_page_reserved(struct page *page)
1995{
1996 SetPageReserved(page);
1997 adjust_managed_page_count(page, -1);
1998}
1999
2000/*
2001 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2002 * The freed pages will be poisoned with pattern "poison" if it's within
2003 * range [0, UCHAR_MAX].
2004 * Return pages freed into the buddy system.
69afade7
JL
2005 */
2006static inline unsigned long free_initmem_default(int poison)
2007{
2008 extern char __init_begin[], __init_end[];
2009
11199692 2010 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2011 poison, "unused kernel");
2012}
2013
7ee3d4e8
JL
2014static inline unsigned long get_num_physpages(void)
2015{
2016 int nid;
2017 unsigned long phys_pages = 0;
2018
2019 for_each_online_node(nid)
2020 phys_pages += node_present_pages(nid);
2021
2022 return phys_pages;
2023}
2024
0ee332c1 2025#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2026/*
0ee332c1 2027 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2028 * zones, allocate the backing mem_map and account for memory holes in a more
2029 * architecture independent manner. This is a substitute for creating the
2030 * zone_sizes[] and zholes_size[] arrays and passing them to
2031 * free_area_init_node()
2032 *
2033 * An architecture is expected to register range of page frames backed by
0ee332c1 2034 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2035 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2036 * usage, an architecture is expected to do something like
2037 *
2038 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2039 * max_highmem_pfn};
2040 * for_each_valid_physical_page_range()
0ee332c1 2041 * memblock_add_node(base, size, nid)
c713216d
MG
2042 * free_area_init_nodes(max_zone_pfns);
2043 *
0ee332c1
TH
2044 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2045 * registered physical page range. Similarly
2046 * sparse_memory_present_with_active_regions() calls memory_present() for
2047 * each range when SPARSEMEM is enabled.
c713216d
MG
2048 *
2049 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2050 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2051 */
2052extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2053unsigned long node_map_pfn_alignment(void);
32996250
YL
2054unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2055 unsigned long end_pfn);
c713216d
MG
2056extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2057 unsigned long end_pfn);
2058extern void get_pfn_range_for_nid(unsigned int nid,
2059 unsigned long *start_pfn, unsigned long *end_pfn);
2060extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2061extern void free_bootmem_with_active_regions(int nid,
2062 unsigned long max_low_pfn);
2063extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2064
0ee332c1 2065#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2066
0ee332c1 2067#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2068 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2069static inline int __early_pfn_to_nid(unsigned long pfn,
2070 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2071{
2072 return 0;
2073}
2074#else
2075/* please see mm/page_alloc.c */
2076extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2077/* there is a per-arch backend function. */
8a942fde
MG
2078extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2079 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2080#endif
2081
a4a3ede2
PT
2082#ifdef CONFIG_HAVE_MEMBLOCK
2083void zero_resv_unavail(void);
2084#else
2085static inline void zero_resv_unavail(void) {}
2086#endif
2087
0e0b864e 2088extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2089extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2090 enum memmap_context, struct vmem_altmap *);
bc75d33f 2091extern void setup_per_zone_wmarks(void);
1b79acc9 2092extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2093extern void mem_init(void);
8feae131 2094extern void __init mmap_init(void);
9af744d7 2095extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2096extern long si_mem_available(void);
1da177e4
LT
2097extern void si_meminfo(struct sysinfo * val);
2098extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2099#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2100extern unsigned long arch_reserved_kernel_pages(void);
2101#endif
1da177e4 2102
a8e99259
MH
2103extern __printf(3, 4)
2104void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2105
e7c8d5c9 2106extern void setup_per_cpu_pageset(void);
e7c8d5c9 2107
112067f0 2108extern void zone_pcp_update(struct zone *zone);
340175b7 2109extern void zone_pcp_reset(struct zone *zone);
112067f0 2110
75f7ad8e
PS
2111/* page_alloc.c */
2112extern int min_free_kbytes;
795ae7a0 2113extern int watermark_scale_factor;
75f7ad8e 2114
8feae131 2115/* nommu.c */
33e5d769 2116extern atomic_long_t mmap_pages_allocated;
7e660872 2117extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2118
6b2dbba8 2119/* interval_tree.c */
6b2dbba8 2120void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2121 struct rb_root_cached *root);
9826a516
ML
2122void vma_interval_tree_insert_after(struct vm_area_struct *node,
2123 struct vm_area_struct *prev,
f808c13f 2124 struct rb_root_cached *root);
6b2dbba8 2125void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2126 struct rb_root_cached *root);
2127struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2128 unsigned long start, unsigned long last);
2129struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2130 unsigned long start, unsigned long last);
2131
2132#define vma_interval_tree_foreach(vma, root, start, last) \
2133 for (vma = vma_interval_tree_iter_first(root, start, last); \
2134 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2135
bf181b9f 2136void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2137 struct rb_root_cached *root);
bf181b9f 2138void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2139 struct rb_root_cached *root);
2140struct anon_vma_chain *
2141anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2142 unsigned long start, unsigned long last);
bf181b9f
ML
2143struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2144 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2145#ifdef CONFIG_DEBUG_VM_RB
2146void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2147#endif
bf181b9f
ML
2148
2149#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2150 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2151 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2152
1da177e4 2153/* mmap.c */
34b4e4aa 2154extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2155extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2156 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2157 struct vm_area_struct *expand);
2158static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2159 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2160{
2161 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2162}
1da177e4
LT
2163extern struct vm_area_struct *vma_merge(struct mm_struct *,
2164 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2165 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2166 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2167extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2168extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2169 unsigned long addr, int new_below);
2170extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2171 unsigned long addr, int new_below);
1da177e4
LT
2172extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2173extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2174 struct rb_node **, struct rb_node *);
a8fb5618 2175extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2176extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2177 unsigned long addr, unsigned long len, pgoff_t pgoff,
2178 bool *need_rmap_locks);
1da177e4 2179extern void exit_mmap(struct mm_struct *);
925d1c40 2180
9c599024
CG
2181static inline int check_data_rlimit(unsigned long rlim,
2182 unsigned long new,
2183 unsigned long start,
2184 unsigned long end_data,
2185 unsigned long start_data)
2186{
2187 if (rlim < RLIM_INFINITY) {
2188 if (((new - start) + (end_data - start_data)) > rlim)
2189 return -ENOSPC;
2190 }
2191
2192 return 0;
2193}
2194
7906d00c
AA
2195extern int mm_take_all_locks(struct mm_struct *mm);
2196extern void mm_drop_all_locks(struct mm_struct *mm);
2197
38646013
JS
2198extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2199extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2200extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2201
84638335
KK
2202extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2203extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2204
2eefd878
DS
2205extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2206 const struct vm_special_mapping *sm);
3935ed6a
SS
2207extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2208 unsigned long addr, unsigned long len,
a62c34bd
AL
2209 unsigned long flags,
2210 const struct vm_special_mapping *spec);
2211/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2212extern int install_special_mapping(struct mm_struct *mm,
2213 unsigned long addr, unsigned long len,
2214 unsigned long flags, struct page **pages);
1da177e4
LT
2215
2216extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2217
0165ab44 2218extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2219 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2220 struct list_head *uf);
1fcfd8db 2221extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2222 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2223 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2224 struct list_head *uf);
2225extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2226 struct list_head *uf);
1da177e4 2227
1fcfd8db
ON
2228static inline unsigned long
2229do_mmap_pgoff(struct file *file, unsigned long addr,
2230 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2231 unsigned long pgoff, unsigned long *populate,
2232 struct list_head *uf)
1fcfd8db 2233{
897ab3e0 2234 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2235}
2236
bebeb3d6
ML
2237#ifdef CONFIG_MMU
2238extern int __mm_populate(unsigned long addr, unsigned long len,
2239 int ignore_errors);
2240static inline void mm_populate(unsigned long addr, unsigned long len)
2241{
2242 /* Ignore errors */
2243 (void) __mm_populate(addr, len, 1);
2244}
2245#else
2246static inline void mm_populate(unsigned long addr, unsigned long len) {}
2247#endif
2248
e4eb1ff6 2249/* These take the mm semaphore themselves */
5d22fc25 2250extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2251extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2252extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2253extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2254 unsigned long, unsigned long,
2255 unsigned long, unsigned long);
1da177e4 2256
db4fbfb9
ML
2257struct vm_unmapped_area_info {
2258#define VM_UNMAPPED_AREA_TOPDOWN 1
2259 unsigned long flags;
2260 unsigned long length;
2261 unsigned long low_limit;
2262 unsigned long high_limit;
2263 unsigned long align_mask;
2264 unsigned long align_offset;
2265};
2266
2267extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2268extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2269
2270/*
2271 * Search for an unmapped address range.
2272 *
2273 * We are looking for a range that:
2274 * - does not intersect with any VMA;
2275 * - is contained within the [low_limit, high_limit) interval;
2276 * - is at least the desired size.
2277 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2278 */
2279static inline unsigned long
2280vm_unmapped_area(struct vm_unmapped_area_info *info)
2281{
cdd7875e 2282 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2283 return unmapped_area_topdown(info);
cdd7875e
BP
2284 else
2285 return unmapped_area(info);
db4fbfb9
ML
2286}
2287
85821aab 2288/* truncate.c */
1da177e4 2289extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2290extern void truncate_inode_pages_range(struct address_space *,
2291 loff_t lstart, loff_t lend);
91b0abe3 2292extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2293
2294/* generic vm_area_ops exported for stackable file systems */
11bac800 2295extern int filemap_fault(struct vm_fault *vmf);
82b0f8c3 2296extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2297 pgoff_t start_pgoff, pgoff_t end_pgoff);
11bac800 2298extern int filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2299
2300/* mm/page-writeback.c */
2b69c828 2301int __must_check write_one_page(struct page *page);
1cf6e7d8 2302void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2303
2304/* readahead.c */
2305#define VM_MAX_READAHEAD 128 /* kbytes */
2306#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2307
1da177e4 2308int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2309 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2310
2311void page_cache_sync_readahead(struct address_space *mapping,
2312 struct file_ra_state *ra,
2313 struct file *filp,
2314 pgoff_t offset,
2315 unsigned long size);
2316
2317void page_cache_async_readahead(struct address_space *mapping,
2318 struct file_ra_state *ra,
2319 struct file *filp,
2320 struct page *pg,
2321 pgoff_t offset,
2322 unsigned long size);
2323
1be7107f 2324extern unsigned long stack_guard_gap;
d05f3169 2325/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2326extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2327
2328/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2329extern int expand_downwards(struct vm_area_struct *vma,
2330 unsigned long address);
8ca3eb08 2331#if VM_GROWSUP
46dea3d0 2332extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2333#else
fee7e49d 2334 #define expand_upwards(vma, address) (0)
9ab88515 2335#endif
1da177e4
LT
2336
2337/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2338extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2339extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2340 struct vm_area_struct **pprev);
2341
2342/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2343 NULL if none. Assume start_addr < end_addr. */
2344static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2345{
2346 struct vm_area_struct * vma = find_vma(mm,start_addr);
2347
2348 if (vma && end_addr <= vma->vm_start)
2349 vma = NULL;
2350 return vma;
2351}
2352
1be7107f
HD
2353static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2354{
2355 unsigned long vm_start = vma->vm_start;
2356
2357 if (vma->vm_flags & VM_GROWSDOWN) {
2358 vm_start -= stack_guard_gap;
2359 if (vm_start > vma->vm_start)
2360 vm_start = 0;
2361 }
2362 return vm_start;
2363}
2364
2365static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2366{
2367 unsigned long vm_end = vma->vm_end;
2368
2369 if (vma->vm_flags & VM_GROWSUP) {
2370 vm_end += stack_guard_gap;
2371 if (vm_end < vma->vm_end)
2372 vm_end = -PAGE_SIZE;
2373 }
2374 return vm_end;
2375}
2376
1da177e4
LT
2377static inline unsigned long vma_pages(struct vm_area_struct *vma)
2378{
2379 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2380}
2381
640708a2
PE
2382/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2383static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2384 unsigned long vm_start, unsigned long vm_end)
2385{
2386 struct vm_area_struct *vma = find_vma(mm, vm_start);
2387
2388 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2389 vma = NULL;
2390
2391 return vma;
2392}
2393
bad849b3 2394#ifdef CONFIG_MMU
804af2cf 2395pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2396void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2397#else
2398static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2399{
2400 return __pgprot(0);
2401}
64e45507
PF
2402static inline void vma_set_page_prot(struct vm_area_struct *vma)
2403{
2404 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2405}
bad849b3
DH
2406#endif
2407
5877231f 2408#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2409unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2410 unsigned long start, unsigned long end);
2411#endif
2412
deceb6cd 2413struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2414int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2415 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2416int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2417int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2418 unsigned long pfn);
1745cbc5
AL
2419int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2420 unsigned long pfn, pgprot_t pgprot);
423bad60 2421int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2422 pfn_t pfn);
b2770da6
RZ
2423int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2424 pfn_t pfn);
b4cbb197
LT
2425int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2426
deceb6cd 2427
240aadee
ML
2428struct page *follow_page_mask(struct vm_area_struct *vma,
2429 unsigned long address, unsigned int foll_flags,
2430 unsigned int *page_mask);
2431
2432static inline struct page *follow_page(struct vm_area_struct *vma,
2433 unsigned long address, unsigned int foll_flags)
2434{
2435 unsigned int unused_page_mask;
2436 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2437}
2438
deceb6cd
HD
2439#define FOLL_WRITE 0x01 /* check pte is writable */
2440#define FOLL_TOUCH 0x02 /* mark page accessed */
2441#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2442#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2443#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2444#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2445 * and return without waiting upon it */
84d33df2 2446#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2447#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2448#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2449#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2450#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2451#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2452#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2453#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2454#define FOLL_COW 0x4000 /* internal GUP flag */
1da177e4 2455
9a291a7c
JM
2456static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2457{
2458 if (vm_fault & VM_FAULT_OOM)
2459 return -ENOMEM;
2460 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2461 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2462 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2463 return -EFAULT;
2464 return 0;
2465}
2466
2f569afd 2467typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2468 void *data);
2469extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2470 unsigned long size, pte_fn_t fn, void *data);
2471
1da177e4 2472
8823b1db
LA
2473#ifdef CONFIG_PAGE_POISONING
2474extern bool page_poisoning_enabled(void);
2475extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2476extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2477#else
2478static inline bool page_poisoning_enabled(void) { return false; }
2479static inline void kernel_poison_pages(struct page *page, int numpages,
2480 int enable) { }
1414c7f4 2481static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2482#endif
2483
12d6f21e 2484#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2485extern bool _debug_pagealloc_enabled;
2486extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2487
2488static inline bool debug_pagealloc_enabled(void)
2489{
2490 return _debug_pagealloc_enabled;
2491}
2492
2493static inline void
2494kernel_map_pages(struct page *page, int numpages, int enable)
2495{
2496 if (!debug_pagealloc_enabled())
2497 return;
2498
2499 __kernel_map_pages(page, numpages, enable);
2500}
8a235efa
RW
2501#ifdef CONFIG_HIBERNATION
2502extern bool kernel_page_present(struct page *page);
40b44137
JK
2503#endif /* CONFIG_HIBERNATION */
2504#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2505static inline void
9858db50 2506kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2507#ifdef CONFIG_HIBERNATION
2508static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2509#endif /* CONFIG_HIBERNATION */
2510static inline bool debug_pagealloc_enabled(void)
2511{
2512 return false;
2513}
2514#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2515
a6c19dfe 2516#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2517extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2518extern int in_gate_area_no_mm(unsigned long addr);
2519extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2520#else
a6c19dfe
AL
2521static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2522{
2523 return NULL;
2524}
2525static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2526static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2527{
2528 return 0;
2529}
1da177e4
LT
2530#endif /* __HAVE_ARCH_GATE_AREA */
2531
44a70ade
MH
2532extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2533
146732ce
JT
2534#ifdef CONFIG_SYSCTL
2535extern int sysctl_drop_caches;
8d65af78 2536int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2537 void __user *, size_t *, loff_t *);
146732ce
JT
2538#endif
2539
cb731d6c
VD
2540void drop_slab(void);
2541void drop_slab_node(int nid);
9d0243bc 2542
7a9166e3
LY
2543#ifndef CONFIG_MMU
2544#define randomize_va_space 0
2545#else
a62eaf15 2546extern int randomize_va_space;
7a9166e3 2547#endif
a62eaf15 2548
045e72ac 2549const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2550void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2551
9bdac914
YL
2552void sparse_mem_maps_populate_node(struct page **map_map,
2553 unsigned long pnum_begin,
2554 unsigned long pnum_end,
2555 unsigned long map_count,
2556 int nodeid);
2557
7b73d978
CH
2558struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2559 struct vmem_altmap *altmap);
29c71111 2560pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2561p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2562pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2563pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2564pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2565void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2566struct vmem_altmap;
a8fc357b
CH
2567void *vmemmap_alloc_block_buf(unsigned long size, int node);
2568void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 2569void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2570int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2571 int node);
7b73d978
CH
2572int vmemmap_populate(unsigned long start, unsigned long end, int node,
2573 struct vmem_altmap *altmap);
c2b91e2e 2574void vmemmap_populate_print_last(void);
0197518c 2575#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2576void vmemmap_free(unsigned long start, unsigned long end,
2577 struct vmem_altmap *altmap);
0197518c 2578#endif
46723bfa 2579void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2580 unsigned long nr_pages);
6a46079c 2581
82ba011b
AK
2582enum mf_flags {
2583 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2584 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2585 MF_MUST_KILL = 1 << 2,
cf870c70 2586 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2587};
83b57531
EB
2588extern int memory_failure(unsigned long pfn, int flags);
2589extern void memory_failure_queue(unsigned long pfn, int flags);
847ce401 2590extern int unpoison_memory(unsigned long pfn);
ead07f6a 2591extern int get_hwpoison_page(struct page *page);
4e41a30c 2592#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2593extern int sysctl_memory_failure_early_kill;
2594extern int sysctl_memory_failure_recovery;
facb6011 2595extern void shake_page(struct page *p, int access);
5844a486 2596extern atomic_long_t num_poisoned_pages __read_mostly;
facb6011 2597extern int soft_offline_page(struct page *page, int flags);
6a46079c 2598
cc637b17
XX
2599
2600/*
2601 * Error handlers for various types of pages.
2602 */
cc3e2af4 2603enum mf_result {
cc637b17
XX
2604 MF_IGNORED, /* Error: cannot be handled */
2605 MF_FAILED, /* Error: handling failed */
2606 MF_DELAYED, /* Will be handled later */
2607 MF_RECOVERED, /* Successfully recovered */
2608};
2609
2610enum mf_action_page_type {
2611 MF_MSG_KERNEL,
2612 MF_MSG_KERNEL_HIGH_ORDER,
2613 MF_MSG_SLAB,
2614 MF_MSG_DIFFERENT_COMPOUND,
2615 MF_MSG_POISONED_HUGE,
2616 MF_MSG_HUGE,
2617 MF_MSG_FREE_HUGE,
31286a84 2618 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
2619 MF_MSG_UNMAP_FAILED,
2620 MF_MSG_DIRTY_SWAPCACHE,
2621 MF_MSG_CLEAN_SWAPCACHE,
2622 MF_MSG_DIRTY_MLOCKED_LRU,
2623 MF_MSG_CLEAN_MLOCKED_LRU,
2624 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2625 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2626 MF_MSG_DIRTY_LRU,
2627 MF_MSG_CLEAN_LRU,
2628 MF_MSG_TRUNCATED_LRU,
2629 MF_MSG_BUDDY,
2630 MF_MSG_BUDDY_2ND,
2631 MF_MSG_UNKNOWN,
2632};
2633
47ad8475
AA
2634#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2635extern void clear_huge_page(struct page *page,
c79b57e4 2636 unsigned long addr_hint,
47ad8475
AA
2637 unsigned int pages_per_huge_page);
2638extern void copy_user_huge_page(struct page *dst, struct page *src,
2639 unsigned long addr, struct vm_area_struct *vma,
2640 unsigned int pages_per_huge_page);
fa4d75c1
MK
2641extern long copy_huge_page_from_user(struct page *dst_page,
2642 const void __user *usr_src,
810a56b9
MK
2643 unsigned int pages_per_huge_page,
2644 bool allow_pagefault);
47ad8475
AA
2645#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2646
e30825f1 2647extern struct page_ext_operations debug_guardpage_ops;
e30825f1 2648
c0a32fc5
SG
2649#ifdef CONFIG_DEBUG_PAGEALLOC
2650extern unsigned int _debug_guardpage_minorder;
e30825f1 2651extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2652
2653static inline unsigned int debug_guardpage_minorder(void)
2654{
2655 return _debug_guardpage_minorder;
2656}
2657
e30825f1
JK
2658static inline bool debug_guardpage_enabled(void)
2659{
2660 return _debug_guardpage_enabled;
2661}
2662
c0a32fc5
SG
2663static inline bool page_is_guard(struct page *page)
2664{
e30825f1
JK
2665 struct page_ext *page_ext;
2666
2667 if (!debug_guardpage_enabled())
2668 return false;
2669
2670 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2671 if (unlikely(!page_ext))
2672 return false;
2673
e30825f1 2674 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2675}
2676#else
2677static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2678static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2679static inline bool page_is_guard(struct page *page) { return false; }
2680#endif /* CONFIG_DEBUG_PAGEALLOC */
2681
f9872caf
CS
2682#if MAX_NUMNODES > 1
2683void __init setup_nr_node_ids(void);
2684#else
2685static inline void setup_nr_node_ids(void) {}
2686#endif
2687
1da177e4
LT
2688#endif /* __KERNEL__ */
2689#endif /* _LINUX_MM_H */