s390/mm: recfactor global pgste updates
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
1da177e4
LT
22
23struct mempolicy;
24struct anon_vma;
bf181b9f 25struct anon_vma_chain;
4e950f6f 26struct file_ra_state;
e8edc6e0 27struct user_struct;
4e950f6f 28struct writeback_control;
1da177e4 29
fccc9987 30#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 31extern unsigned long max_mapnr;
fccc9987
JL
32
33static inline void set_max_mapnr(unsigned long limit)
34{
35 max_mapnr = limit;
36}
37#else
38static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
39#endif
40
4481374c 41extern unsigned long totalram_pages;
1da177e4 42extern void * high_memory;
1da177e4
LT
43extern int page_cluster;
44
45#ifdef CONFIG_SYSCTL
46extern int sysctl_legacy_va_layout;
47#else
48#define sysctl_legacy_va_layout 0
49#endif
50
51#include <asm/page.h>
52#include <asm/pgtable.h>
53#include <asm/processor.h>
1da177e4 54
79442ed1
TC
55#ifndef __pa_symbol
56#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
57#endif
58
c9b1d098 59extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 60extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 61
49f0ce5f
JM
62extern int sysctl_overcommit_memory;
63extern int sysctl_overcommit_ratio;
64extern unsigned long sysctl_overcommit_kbytes;
65
66extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
67 size_t *, loff_t *);
68extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
69 size_t *, loff_t *);
70
1da177e4
LT
71#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
72
27ac792c
AR
73/* to align the pointer to the (next) page boundary */
74#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
75
0fa73b86
AM
76/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
77#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
78
1da177e4
LT
79/*
80 * Linux kernel virtual memory manager primitives.
81 * The idea being to have a "virtual" mm in the same way
82 * we have a virtual fs - giving a cleaner interface to the
83 * mm details, and allowing different kinds of memory mappings
84 * (from shared memory to executable loading to arbitrary
85 * mmap() functions).
86 */
87
c43692e8
CL
88extern struct kmem_cache *vm_area_cachep;
89
1da177e4 90#ifndef CONFIG_MMU
8feae131
DH
91extern struct rb_root nommu_region_tree;
92extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
93
94extern unsigned int kobjsize(const void *objp);
95#endif
96
97/*
605d9288 98 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 99 */
cc2383ec
KK
100#define VM_NONE 0x00000000
101
1da177e4
LT
102#define VM_READ 0x00000001 /* currently active flags */
103#define VM_WRITE 0x00000002
104#define VM_EXEC 0x00000004
105#define VM_SHARED 0x00000008
106
7e2cff42 107/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
108#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
109#define VM_MAYWRITE 0x00000020
110#define VM_MAYEXEC 0x00000040
111#define VM_MAYSHARE 0x00000080
112
113#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 114#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
115#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
116
1da177e4
LT
117#define VM_LOCKED 0x00002000
118#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
119
120 /* Used by sys_madvise() */
121#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
122#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
123
124#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
125#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 126#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 127#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
128#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
129#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 130#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 131#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 132
d9104d1c
CG
133#ifdef CONFIG_MEM_SOFT_DIRTY
134# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
135#else
136# define VM_SOFTDIRTY 0
137#endif
138
b379d790 139#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
140#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
141#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 142#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 143
cc2383ec
KK
144#if defined(CONFIG_X86)
145# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
146#elif defined(CONFIG_PPC)
147# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
148#elif defined(CONFIG_PARISC)
149# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
150#elif defined(CONFIG_METAG)
151# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
152#elif defined(CONFIG_IA64)
153# define VM_GROWSUP VM_ARCH_1
154#elif !defined(CONFIG_MMU)
155# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
156#endif
157
158#ifndef VM_GROWSUP
159# define VM_GROWSUP VM_NONE
160#endif
161
a8bef8ff
MG
162/* Bits set in the VMA until the stack is in its final location */
163#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
164
1da177e4
LT
165#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
166#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
167#endif
168
169#ifdef CONFIG_STACK_GROWSUP
170#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
171#else
172#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
173#endif
174
b291f000 175/*
78f11a25
AA
176 * Special vmas that are non-mergable, non-mlock()able.
177 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 178 */
9050d7eb 179#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 180
a0715cc2
AT
181/* This mask defines which mm->def_flags a process can inherit its parent */
182#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
183
1da177e4
LT
184/*
185 * mapping from the currently active vm_flags protection bits (the
186 * low four bits) to a page protection mask..
187 */
188extern pgprot_t protection_map[16];
189
d0217ac0
NP
190#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
191#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 192#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 193#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 194#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 195#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 196#define FAULT_FLAG_TRIED 0x40 /* second try */
759496ba 197#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
d0217ac0 198
54cb8821 199/*
d0217ac0 200 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
201 * ->fault function. The vma's ->fault is responsible for returning a bitmask
202 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 203 *
d0217ac0 204 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 205 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 206 */
d0217ac0
NP
207struct vm_fault {
208 unsigned int flags; /* FAULT_FLAG_xxx flags */
209 pgoff_t pgoff; /* Logical page offset based on vma */
210 void __user *virtual_address; /* Faulting virtual address */
211
212 struct page *page; /* ->fault handlers should return a
83c54070 213 * page here, unless VM_FAULT_NOPAGE
d0217ac0 214 * is set (which is also implied by
83c54070 215 * VM_FAULT_ERROR).
d0217ac0 216 */
8c6e50b0
KS
217 /* for ->map_pages() only */
218 pgoff_t max_pgoff; /* map pages for offset from pgoff till
219 * max_pgoff inclusive */
220 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 221};
1da177e4
LT
222
223/*
224 * These are the virtual MM functions - opening of an area, closing and
225 * unmapping it (needed to keep files on disk up-to-date etc), pointer
226 * to the functions called when a no-page or a wp-page exception occurs.
227 */
228struct vm_operations_struct {
229 void (*open)(struct vm_area_struct * area);
230 void (*close)(struct vm_area_struct * area);
d0217ac0 231 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
8c6e50b0 232 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
233
234 /* notification that a previously read-only page is about to become
235 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 236 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
237
238 /* called by access_process_vm when get_user_pages() fails, typically
239 * for use by special VMAs that can switch between memory and hardware
240 */
241 int (*access)(struct vm_area_struct *vma, unsigned long addr,
242 void *buf, int len, int write);
78d683e8
AL
243
244 /* Called by the /proc/PID/maps code to ask the vma whether it
245 * has a special name. Returning non-NULL will also cause this
246 * vma to be dumped unconditionally. */
247 const char *(*name)(struct vm_area_struct *vma);
248
1da177e4 249#ifdef CONFIG_NUMA
a6020ed7
LS
250 /*
251 * set_policy() op must add a reference to any non-NULL @new mempolicy
252 * to hold the policy upon return. Caller should pass NULL @new to
253 * remove a policy and fall back to surrounding context--i.e. do not
254 * install a MPOL_DEFAULT policy, nor the task or system default
255 * mempolicy.
256 */
1da177e4 257 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
258
259 /*
260 * get_policy() op must add reference [mpol_get()] to any policy at
261 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
262 * in mm/mempolicy.c will do this automatically.
263 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
264 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
265 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
266 * must return NULL--i.e., do not "fallback" to task or system default
267 * policy.
268 */
1da177e4
LT
269 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
270 unsigned long addr);
7b2259b3
CL
271 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
272 const nodemask_t *to, unsigned long flags);
1da177e4 273#endif
0b173bc4
KK
274 /* called by sys_remap_file_pages() to populate non-linear mapping */
275 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
276 unsigned long size, pgoff_t pgoff);
1da177e4
LT
277};
278
279struct mmu_gather;
280struct inode;
281
349aef0b
AM
282#define page_private(page) ((page)->private)
283#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 284
b12c4ad1
MK
285/* It's valid only if the page is free path or free_list */
286static inline void set_freepage_migratetype(struct page *page, int migratetype)
287{
95e34412 288 page->index = migratetype;
b12c4ad1
MK
289}
290
291/* It's valid only if the page is free path or free_list */
292static inline int get_freepage_migratetype(struct page *page)
293{
95e34412 294 return page->index;
b12c4ad1
MK
295}
296
1da177e4
LT
297/*
298 * FIXME: take this include out, include page-flags.h in
299 * files which need it (119 of them)
300 */
301#include <linux/page-flags.h>
71e3aac0 302#include <linux/huge_mm.h>
1da177e4
LT
303
304/*
305 * Methods to modify the page usage count.
306 *
307 * What counts for a page usage:
308 * - cache mapping (page->mapping)
309 * - private data (page->private)
310 * - page mapped in a task's page tables, each mapping
311 * is counted separately
312 *
313 * Also, many kernel routines increase the page count before a critical
314 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
315 */
316
317/*
da6052f7 318 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 319 */
7c8ee9a8
NP
320static inline int put_page_testzero(struct page *page)
321{
309381fe 322 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 323 return atomic_dec_and_test(&page->_count);
7c8ee9a8 324}
1da177e4
LT
325
326/*
7c8ee9a8
NP
327 * Try to grab a ref unless the page has a refcount of zero, return false if
328 * that is the case.
8e0861fa
AK
329 * This can be called when MMU is off so it must not access
330 * any of the virtual mappings.
1da177e4 331 */
7c8ee9a8
NP
332static inline int get_page_unless_zero(struct page *page)
333{
8dc04efb 334 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 335}
1da177e4 336
8e0861fa
AK
337/*
338 * Try to drop a ref unless the page has a refcount of one, return false if
339 * that is the case.
340 * This is to make sure that the refcount won't become zero after this drop.
341 * This can be called when MMU is off so it must not access
342 * any of the virtual mappings.
343 */
344static inline int put_page_unless_one(struct page *page)
345{
346 return atomic_add_unless(&page->_count, -1, 1);
347}
348
53df8fdc 349extern int page_is_ram(unsigned long pfn);
67cf13ce 350extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
53df8fdc 351
48667e7a 352/* Support for virtually mapped pages */
b3bdda02
CL
353struct page *vmalloc_to_page(const void *addr);
354unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 355
0738c4bb
PM
356/*
357 * Determine if an address is within the vmalloc range
358 *
359 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
360 * is no special casing required.
361 */
9e2779fa
CL
362static inline int is_vmalloc_addr(const void *x)
363{
0738c4bb 364#ifdef CONFIG_MMU
9e2779fa
CL
365 unsigned long addr = (unsigned long)x;
366
367 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
368#else
369 return 0;
8ca3ed87 370#endif
0738c4bb 371}
81ac3ad9
KH
372#ifdef CONFIG_MMU
373extern int is_vmalloc_or_module_addr(const void *x);
374#else
934831d0 375static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
376{
377 return 0;
378}
379#endif
9e2779fa 380
39f1f78d
AV
381extern void kvfree(const void *addr);
382
e9da73d6
AA
383static inline void compound_lock(struct page *page)
384{
385#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 386 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
387 bit_spin_lock(PG_compound_lock, &page->flags);
388#endif
389}
390
391static inline void compound_unlock(struct page *page)
392{
393#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 394 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
395 bit_spin_unlock(PG_compound_lock, &page->flags);
396#endif
397}
398
399static inline unsigned long compound_lock_irqsave(struct page *page)
400{
401 unsigned long uninitialized_var(flags);
402#ifdef CONFIG_TRANSPARENT_HUGEPAGE
403 local_irq_save(flags);
404 compound_lock(page);
405#endif
406 return flags;
407}
408
409static inline void compound_unlock_irqrestore(struct page *page,
410 unsigned long flags)
411{
412#ifdef CONFIG_TRANSPARENT_HUGEPAGE
413 compound_unlock(page);
414 local_irq_restore(flags);
415#endif
416}
417
d2ee40ea
JZ
418static inline struct page *compound_head_by_tail(struct page *tail)
419{
420 struct page *head = tail->first_page;
421
422 /*
423 * page->first_page may be a dangling pointer to an old
424 * compound page, so recheck that it is still a tail
425 * page before returning.
426 */
427 smp_rmb();
428 if (likely(PageTail(tail)))
429 return head;
430 return tail;
431}
432
d85f3385
CL
433static inline struct page *compound_head(struct page *page)
434{
d2ee40ea
JZ
435 if (unlikely(PageTail(page)))
436 return compound_head_by_tail(page);
d85f3385
CL
437 return page;
438}
439
70b50f94
AA
440/*
441 * The atomic page->_mapcount, starts from -1: so that transitions
442 * both from it and to it can be tracked, using atomic_inc_and_test
443 * and atomic_add_negative(-1).
444 */
22b751c3 445static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
446{
447 atomic_set(&(page)->_mapcount, -1);
448}
449
450static inline int page_mapcount(struct page *page)
451{
452 return atomic_read(&(page)->_mapcount) + 1;
453}
454
4c21e2f2 455static inline int page_count(struct page *page)
1da177e4 456{
d85f3385 457 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
458}
459
44518d2b
AA
460#ifdef CONFIG_HUGETLB_PAGE
461extern int PageHeadHuge(struct page *page_head);
462#else /* CONFIG_HUGETLB_PAGE */
463static inline int PageHeadHuge(struct page *page_head)
464{
465 return 0;
466}
467#endif /* CONFIG_HUGETLB_PAGE */
468
469static inline bool __compound_tail_refcounted(struct page *page)
470{
471 return !PageSlab(page) && !PageHeadHuge(page);
472}
473
474/*
475 * This takes a head page as parameter and tells if the
476 * tail page reference counting can be skipped.
477 *
478 * For this to be safe, PageSlab and PageHeadHuge must remain true on
479 * any given page where they return true here, until all tail pins
480 * have been released.
481 */
482static inline bool compound_tail_refcounted(struct page *page)
483{
309381fe 484 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
485 return __compound_tail_refcounted(page);
486}
487
b35a35b5
AA
488static inline void get_huge_page_tail(struct page *page)
489{
490 /*
5eaf1a9e 491 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 492 */
309381fe
SL
493 VM_BUG_ON_PAGE(!PageTail(page), page);
494 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
495 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
5eaf1a9e 496 if (compound_tail_refcounted(page->first_page))
44518d2b 497 atomic_inc(&page->_mapcount);
b35a35b5
AA
498}
499
70b50f94
AA
500extern bool __get_page_tail(struct page *page);
501
1da177e4
LT
502static inline void get_page(struct page *page)
503{
70b50f94
AA
504 if (unlikely(PageTail(page)))
505 if (likely(__get_page_tail(page)))
506 return;
91807063
AA
507 /*
508 * Getting a normal page or the head of a compound page
70b50f94 509 * requires to already have an elevated page->_count.
91807063 510 */
309381fe 511 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
512 atomic_inc(&page->_count);
513}
514
b49af68f
CL
515static inline struct page *virt_to_head_page(const void *x)
516{
517 struct page *page = virt_to_page(x);
518 return compound_head(page);
519}
520
7835e98b
NP
521/*
522 * Setup the page count before being freed into the page allocator for
523 * the first time (boot or memory hotplug)
524 */
525static inline void init_page_count(struct page *page)
526{
527 atomic_set(&page->_count, 1);
528}
529
5f24ce5f
AA
530/*
531 * PageBuddy() indicate that the page is free and in the buddy system
532 * (see mm/page_alloc.c).
ef2b4b95
AA
533 *
534 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
535 * -2 so that an underflow of the page_mapcount() won't be mistaken
536 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
537 * efficiently by most CPU architectures.
5f24ce5f 538 */
ef2b4b95
AA
539#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
540
5f24ce5f
AA
541static inline int PageBuddy(struct page *page)
542{
ef2b4b95 543 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
544}
545
546static inline void __SetPageBuddy(struct page *page)
547{
309381fe 548 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
ef2b4b95 549 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
550}
551
552static inline void __ClearPageBuddy(struct page *page)
553{
309381fe 554 VM_BUG_ON_PAGE(!PageBuddy(page), page);
5f24ce5f
AA
555 atomic_set(&page->_mapcount, -1);
556}
557
d6d86c0a
KK
558#define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
559
560static inline int PageBalloon(struct page *page)
561{
562 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
563}
564
565static inline void __SetPageBalloon(struct page *page)
566{
567 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
568 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
569}
570
571static inline void __ClearPageBalloon(struct page *page)
572{
573 VM_BUG_ON_PAGE(!PageBalloon(page), page);
574 atomic_set(&page->_mapcount, -1);
575}
576
1da177e4 577void put_page(struct page *page);
1d7ea732 578void put_pages_list(struct list_head *pages);
1da177e4 579
8dfcc9ba 580void split_page(struct page *page, unsigned int order);
748446bb 581int split_free_page(struct page *page);
8dfcc9ba 582
33f2ef89
AW
583/*
584 * Compound pages have a destructor function. Provide a
585 * prototype for that function and accessor functions.
586 * These are _only_ valid on the head of a PG_compound page.
587 */
588typedef void compound_page_dtor(struct page *);
589
590static inline void set_compound_page_dtor(struct page *page,
591 compound_page_dtor *dtor)
592{
593 page[1].lru.next = (void *)dtor;
594}
595
596static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
597{
598 return (compound_page_dtor *)page[1].lru.next;
599}
600
d85f3385
CL
601static inline int compound_order(struct page *page)
602{
6d777953 603 if (!PageHead(page))
d85f3385
CL
604 return 0;
605 return (unsigned long)page[1].lru.prev;
606}
607
608static inline void set_compound_order(struct page *page, unsigned long order)
609{
610 page[1].lru.prev = (void *)order;
611}
612
3dece370 613#ifdef CONFIG_MMU
14fd403f
AA
614/*
615 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
616 * servicing faults for write access. In the normal case, do always want
617 * pte_mkwrite. But get_user_pages can cause write faults for mappings
618 * that do not have writing enabled, when used by access_process_vm.
619 */
620static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
621{
622 if (likely(vma->vm_flags & VM_WRITE))
623 pte = pte_mkwrite(pte);
624 return pte;
625}
8c6e50b0
KS
626
627void do_set_pte(struct vm_area_struct *vma, unsigned long address,
628 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 629#endif
14fd403f 630
1da177e4
LT
631/*
632 * Multiple processes may "see" the same page. E.g. for untouched
633 * mappings of /dev/null, all processes see the same page full of
634 * zeroes, and text pages of executables and shared libraries have
635 * only one copy in memory, at most, normally.
636 *
637 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
638 * page_count() == 0 means the page is free. page->lru is then used for
639 * freelist management in the buddy allocator.
da6052f7 640 * page_count() > 0 means the page has been allocated.
1da177e4 641 *
da6052f7
NP
642 * Pages are allocated by the slab allocator in order to provide memory
643 * to kmalloc and kmem_cache_alloc. In this case, the management of the
644 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
645 * unless a particular usage is carefully commented. (the responsibility of
646 * freeing the kmalloc memory is the caller's, of course).
1da177e4 647 *
da6052f7
NP
648 * A page may be used by anyone else who does a __get_free_page().
649 * In this case, page_count still tracks the references, and should only
650 * be used through the normal accessor functions. The top bits of page->flags
651 * and page->virtual store page management information, but all other fields
652 * are unused and could be used privately, carefully. The management of this
653 * page is the responsibility of the one who allocated it, and those who have
654 * subsequently been given references to it.
655 *
656 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
657 * managed by the Linux memory manager: I/O, buffers, swapping etc.
658 * The following discussion applies only to them.
659 *
da6052f7
NP
660 * A pagecache page contains an opaque `private' member, which belongs to the
661 * page's address_space. Usually, this is the address of a circular list of
662 * the page's disk buffers. PG_private must be set to tell the VM to call
663 * into the filesystem to release these pages.
1da177e4 664 *
da6052f7
NP
665 * A page may belong to an inode's memory mapping. In this case, page->mapping
666 * is the pointer to the inode, and page->index is the file offset of the page,
667 * in units of PAGE_CACHE_SIZE.
1da177e4 668 *
da6052f7
NP
669 * If pagecache pages are not associated with an inode, they are said to be
670 * anonymous pages. These may become associated with the swapcache, and in that
671 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 672 *
da6052f7
NP
673 * In either case (swapcache or inode backed), the pagecache itself holds one
674 * reference to the page. Setting PG_private should also increment the
675 * refcount. The each user mapping also has a reference to the page.
1da177e4 676 *
da6052f7
NP
677 * The pagecache pages are stored in a per-mapping radix tree, which is
678 * rooted at mapping->page_tree, and indexed by offset.
679 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
680 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 681 *
da6052f7 682 * All pagecache pages may be subject to I/O:
1da177e4
LT
683 * - inode pages may need to be read from disk,
684 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
685 * to be written back to the inode on disk,
686 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
687 * modified may need to be swapped out to swap space and (later) to be read
688 * back into memory.
1da177e4
LT
689 */
690
691/*
692 * The zone field is never updated after free_area_init_core()
693 * sets it, so none of the operations on it need to be atomic.
1da177e4 694 */
348f8b6c 695
90572890 696/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 697#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
698#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
699#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 700#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 701
348f8b6c 702/*
25985edc 703 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
704 * sections we define the shift as 0; that plus a 0 mask ensures
705 * the compiler will optimise away reference to them.
706 */
d41dee36
AW
707#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
708#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
709#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 710#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 711
bce54bbf
WD
712/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
713#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 714#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
715#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
716 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 717#else
89689ae7 718#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
719#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
720 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
721#endif
722
bd8029b6 723#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 724
9223b419
CL
725#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
726#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
727#endif
728
d41dee36
AW
729#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
730#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
731#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 732#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 733#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 734
33dd4e0e 735static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 736{
348f8b6c 737 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 738}
1da177e4 739
9127ab4f
CS
740#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
741#define SECTION_IN_PAGE_FLAGS
742#endif
743
89689ae7 744/*
7a8010cd
VB
745 * The identification function is mainly used by the buddy allocator for
746 * determining if two pages could be buddies. We are not really identifying
747 * the zone since we could be using the section number id if we do not have
748 * node id available in page flags.
749 * We only guarantee that it will return the same value for two combinable
750 * pages in a zone.
89689ae7 751 */
cb2b95e1
AW
752static inline int page_zone_id(struct page *page)
753{
89689ae7 754 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
755}
756
25ba77c1 757static inline int zone_to_nid(struct zone *zone)
89fa3024 758{
d5f541ed
CL
759#ifdef CONFIG_NUMA
760 return zone->node;
761#else
762 return 0;
763#endif
89fa3024
CL
764}
765
89689ae7 766#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 767extern int page_to_nid(const struct page *page);
89689ae7 768#else
33dd4e0e 769static inline int page_to_nid(const struct page *page)
d41dee36 770{
89689ae7 771 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 772}
89689ae7
CL
773#endif
774
57e0a030 775#ifdef CONFIG_NUMA_BALANCING
90572890 776static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 777{
90572890 778 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
779}
780
90572890 781static inline int cpupid_to_pid(int cpupid)
57e0a030 782{
90572890 783 return cpupid & LAST__PID_MASK;
57e0a030 784}
b795854b 785
90572890 786static inline int cpupid_to_cpu(int cpupid)
b795854b 787{
90572890 788 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
789}
790
90572890 791static inline int cpupid_to_nid(int cpupid)
b795854b 792{
90572890 793 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
794}
795
90572890 796static inline bool cpupid_pid_unset(int cpupid)
57e0a030 797{
90572890 798 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
799}
800
90572890 801static inline bool cpupid_cpu_unset(int cpupid)
b795854b 802{
90572890 803 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
804}
805
8c8a743c
PZ
806static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
807{
808 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
809}
810
811#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
812#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
813static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 814{
1ae71d03 815 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 816}
90572890
PZ
817
818static inline int page_cpupid_last(struct page *page)
819{
820 return page->_last_cpupid;
821}
822static inline void page_cpupid_reset_last(struct page *page)
b795854b 823{
1ae71d03 824 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
825}
826#else
90572890 827static inline int page_cpupid_last(struct page *page)
75980e97 828{
90572890 829 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
830}
831
90572890 832extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 833
90572890 834static inline void page_cpupid_reset_last(struct page *page)
75980e97 835{
90572890 836 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 837
90572890
PZ
838 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
839 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 840}
90572890
PZ
841#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
842#else /* !CONFIG_NUMA_BALANCING */
843static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 844{
90572890 845 return page_to_nid(page); /* XXX */
57e0a030
MG
846}
847
90572890 848static inline int page_cpupid_last(struct page *page)
57e0a030 849{
90572890 850 return page_to_nid(page); /* XXX */
57e0a030
MG
851}
852
90572890 853static inline int cpupid_to_nid(int cpupid)
b795854b
MG
854{
855 return -1;
856}
857
90572890 858static inline int cpupid_to_pid(int cpupid)
b795854b
MG
859{
860 return -1;
861}
862
90572890 863static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
864{
865 return -1;
866}
867
90572890
PZ
868static inline int cpu_pid_to_cpupid(int nid, int pid)
869{
870 return -1;
871}
872
873static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
874{
875 return 1;
876}
877
90572890 878static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
879{
880}
8c8a743c
PZ
881
882static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
883{
884 return false;
885}
90572890 886#endif /* CONFIG_NUMA_BALANCING */
57e0a030 887
33dd4e0e 888static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
889{
890 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
891}
892
9127ab4f 893#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
894static inline void set_page_section(struct page *page, unsigned long section)
895{
896 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
897 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
898}
899
aa462abe 900static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
901{
902 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
903}
308c05e3 904#endif
d41dee36 905
2f1b6248 906static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
907{
908 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
909 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
910}
2f1b6248 911
348f8b6c
DH
912static inline void set_page_node(struct page *page, unsigned long node)
913{
914 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
915 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 916}
89689ae7 917
2f1b6248 918static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 919 unsigned long node, unsigned long pfn)
1da177e4 920{
348f8b6c
DH
921 set_page_zone(page, zone);
922 set_page_node(page, node);
9127ab4f 923#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 924 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 925#endif
1da177e4
LT
926}
927
f6ac2354
CL
928/*
929 * Some inline functions in vmstat.h depend on page_zone()
930 */
931#include <linux/vmstat.h>
932
33dd4e0e 933static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 934{
aa462abe 935 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
936}
937
938#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
939#define HASHED_PAGE_VIRTUAL
940#endif
941
942#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
943static inline void *page_address(const struct page *page)
944{
945 return page->virtual;
946}
947static inline void set_page_address(struct page *page, void *address)
948{
949 page->virtual = address;
950}
1da177e4
LT
951#define page_address_init() do { } while(0)
952#endif
953
954#if defined(HASHED_PAGE_VIRTUAL)
f9918794 955void *page_address(const struct page *page);
1da177e4
LT
956void set_page_address(struct page *page, void *virtual);
957void page_address_init(void);
958#endif
959
960#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
961#define page_address(page) lowmem_page_address(page)
962#define set_page_address(page, address) do { } while(0)
963#define page_address_init() do { } while(0)
964#endif
965
966/*
967 * On an anonymous page mapped into a user virtual memory area,
968 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
969 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
970 *
971 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
972 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
973 * and then page->mapping points, not to an anon_vma, but to a private
974 * structure which KSM associates with that merged page. See ksm.h.
975 *
976 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
977 *
978 * Please note that, confusingly, "page_mapping" refers to the inode
979 * address_space which maps the page from disk; whereas "page_mapped"
980 * refers to user virtual address space into which the page is mapped.
981 */
982#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
983#define PAGE_MAPPING_KSM 2
984#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 985
9800339b 986extern struct address_space *page_mapping(struct page *page);
1da177e4 987
3ca7b3c5
HD
988/* Neutral page->mapping pointer to address_space or anon_vma or other */
989static inline void *page_rmapping(struct page *page)
990{
991 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
992}
993
f981c595
MG
994extern struct address_space *__page_file_mapping(struct page *);
995
996static inline
997struct address_space *page_file_mapping(struct page *page)
998{
999 if (unlikely(PageSwapCache(page)))
1000 return __page_file_mapping(page);
1001
1002 return page->mapping;
1003}
1004
1da177e4
LT
1005static inline int PageAnon(struct page *page)
1006{
1007 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1008}
1009
1010/*
1011 * Return the pagecache index of the passed page. Regular pagecache pages
1012 * use ->index whereas swapcache pages use ->private
1013 */
1014static inline pgoff_t page_index(struct page *page)
1015{
1016 if (unlikely(PageSwapCache(page)))
4c21e2f2 1017 return page_private(page);
1da177e4
LT
1018 return page->index;
1019}
1020
f981c595
MG
1021extern pgoff_t __page_file_index(struct page *page);
1022
1023/*
1024 * Return the file index of the page. Regular pagecache pages use ->index
1025 * whereas swapcache pages use swp_offset(->private)
1026 */
1027static inline pgoff_t page_file_index(struct page *page)
1028{
1029 if (unlikely(PageSwapCache(page)))
1030 return __page_file_index(page);
1031
1032 return page->index;
1033}
1034
1da177e4
LT
1035/*
1036 * Return true if this page is mapped into pagetables.
1037 */
1038static inline int page_mapped(struct page *page)
1039{
1040 return atomic_read(&(page)->_mapcount) >= 0;
1041}
1042
1da177e4
LT
1043/*
1044 * Different kinds of faults, as returned by handle_mm_fault().
1045 * Used to decide whether a process gets delivered SIGBUS or
1046 * just gets major/minor fault counters bumped up.
1047 */
d0217ac0 1048
83c54070 1049#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1050
83c54070
NP
1051#define VM_FAULT_OOM 0x0001
1052#define VM_FAULT_SIGBUS 0x0002
1053#define VM_FAULT_MAJOR 0x0004
1054#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1055#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1056#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 1057
83c54070
NP
1058#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1059#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1060#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1061#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1062
aa50d3a7
AK
1063#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1064
1065#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
c0292554 1066 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
aa50d3a7
AK
1067
1068/* Encode hstate index for a hwpoisoned large page */
1069#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1070#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1071
1c0fe6e3
NP
1072/*
1073 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1074 */
1075extern void pagefault_out_of_memory(void);
1076
1da177e4
LT
1077#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1078
ddd588b5 1079/*
7bf02ea2 1080 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1081 * various contexts.
1082 */
4b59e6c4 1083#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1084
7bf02ea2
DR
1085extern void show_free_areas(unsigned int flags);
1086extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1087
1da177e4 1088int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1089#ifdef CONFIG_SHMEM
1090bool shmem_mapping(struct address_space *mapping);
1091#else
1092static inline bool shmem_mapping(struct address_space *mapping)
1093{
1094 return false;
1095}
1096#endif
1da177e4 1097
e8edc6e0 1098extern int can_do_mlock(void);
1da177e4
LT
1099extern int user_shm_lock(size_t, struct user_struct *);
1100extern void user_shm_unlock(size_t, struct user_struct *);
1101
1102/*
1103 * Parameter block passed down to zap_pte_range in exceptional cases.
1104 */
1105struct zap_details {
1106 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1107 struct address_space *check_mapping; /* Check page->mapping if set */
1108 pgoff_t first_index; /* Lowest page->index to unmap */
1109 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1110};
1111
7e675137
NP
1112struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1113 pte_t pte);
1114
c627f9cc
JS
1115int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1116 unsigned long size);
14f5ff5d 1117void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1118 unsigned long size, struct zap_details *);
4f74d2c8
LT
1119void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1120 unsigned long start, unsigned long end);
e6473092
MM
1121
1122/**
1123 * mm_walk - callbacks for walk_page_range
1124 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1125 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1126 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1127 * this handler is required to be able to handle
1128 * pmd_trans_huge() pmds. They may simply choose to
1129 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1130 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1131 * @pte_hole: if set, called for each hole at all levels
5dc37642 1132 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
1133 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1134 * is used.
e6473092
MM
1135 *
1136 * (see walk_page_range for more details)
1137 */
1138struct mm_walk {
0f157a5b
AM
1139 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1140 unsigned long next, struct mm_walk *walk);
1141 int (*pud_entry)(pud_t *pud, unsigned long addr,
1142 unsigned long next, struct mm_walk *walk);
1143 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1144 unsigned long next, struct mm_walk *walk);
1145 int (*pte_entry)(pte_t *pte, unsigned long addr,
1146 unsigned long next, struct mm_walk *walk);
1147 int (*pte_hole)(unsigned long addr, unsigned long next,
1148 struct mm_walk *walk);
1149 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1150 unsigned long addr, unsigned long next,
1151 struct mm_walk *walk);
2165009b
DH
1152 struct mm_struct *mm;
1153 void *private;
e6473092
MM
1154};
1155
2165009b
DH
1156int walk_page_range(unsigned long addr, unsigned long end,
1157 struct mm_walk *walk);
42b77728 1158void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1159 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1160int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1161 struct vm_area_struct *vma);
1da177e4
LT
1162void unmap_mapping_range(struct address_space *mapping,
1163 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1164int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1165 unsigned long *pfn);
d87fe660 1166int follow_phys(struct vm_area_struct *vma, unsigned long address,
1167 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1168int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1169 void *buf, int len, int write);
1da177e4
LT
1170
1171static inline void unmap_shared_mapping_range(struct address_space *mapping,
1172 loff_t const holebegin, loff_t const holelen)
1173{
1174 unmap_mapping_range(mapping, holebegin, holelen, 0);
1175}
1176
7caef267 1177extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1178extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1179void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1180void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1181int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1182int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1183int invalidate_inode_page(struct page *page);
1184
7ee1dd3f 1185#ifdef CONFIG_MMU
83c54070 1186extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1187 unsigned long address, unsigned int flags);
5c723ba5
PZ
1188extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1189 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1190#else
1191static inline int handle_mm_fault(struct mm_struct *mm,
1192 struct vm_area_struct *vma, unsigned long address,
d06063cc 1193 unsigned int flags)
7ee1dd3f
DH
1194{
1195 /* should never happen if there's no MMU */
1196 BUG();
1197 return VM_FAULT_SIGBUS;
1198}
5c723ba5
PZ
1199static inline int fixup_user_fault(struct task_struct *tsk,
1200 struct mm_struct *mm, unsigned long address,
1201 unsigned int fault_flags)
1202{
1203 /* should never happen if there's no MMU */
1204 BUG();
1205 return -EFAULT;
1206}
7ee1dd3f 1207#endif
f33ea7f4 1208
1da177e4 1209extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1210extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1211 void *buf, int len, int write);
1da177e4 1212
28a35716
ML
1213long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1214 unsigned long start, unsigned long nr_pages,
1215 unsigned int foll_flags, struct page **pages,
1216 struct vm_area_struct **vmas, int *nonblocking);
1217long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1218 unsigned long start, unsigned long nr_pages,
1219 int write, int force, struct page **pages,
1220 struct vm_area_struct **vmas);
d2bf6be8
NP
1221int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1222 struct page **pages);
18022c5d
MG
1223struct kvec;
1224int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1225 struct page **pages);
1226int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1227struct page *get_dump_page(unsigned long addr);
1da177e4 1228
cf9a2ae8 1229extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1230extern void do_invalidatepage(struct page *page, unsigned int offset,
1231 unsigned int length);
cf9a2ae8 1232
1da177e4 1233int __set_page_dirty_nobuffers(struct page *page);
76719325 1234int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1235int redirty_page_for_writepage(struct writeback_control *wbc,
1236 struct page *page);
e3a7cca1 1237void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1238void account_page_writeback(struct page *page);
b3c97528 1239int set_page_dirty(struct page *page);
1da177e4
LT
1240int set_page_dirty_lock(struct page *page);
1241int clear_page_dirty_for_io(struct page *page);
a9090253 1242int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1243
39aa3cb3 1244/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1245static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1246{
1247 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1248}
1249
a09a79f6
MP
1250static inline int stack_guard_page_start(struct vm_area_struct *vma,
1251 unsigned long addr)
1252{
1253 return (vma->vm_flags & VM_GROWSDOWN) &&
1254 (vma->vm_start == addr) &&
1255 !vma_growsdown(vma->vm_prev, addr);
1256}
1257
1258/* Is the vma a continuation of the stack vma below it? */
1259static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1260{
1261 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1262}
1263
1264static inline int stack_guard_page_end(struct vm_area_struct *vma,
1265 unsigned long addr)
1266{
1267 return (vma->vm_flags & VM_GROWSUP) &&
1268 (vma->vm_end == addr) &&
1269 !vma_growsup(vma->vm_next, addr);
1270}
1271
58cb6548
ON
1272extern struct task_struct *task_of_stack(struct task_struct *task,
1273 struct vm_area_struct *vma, bool in_group);
b7643757 1274
b6a2fea3
OW
1275extern unsigned long move_page_tables(struct vm_area_struct *vma,
1276 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1277 unsigned long new_addr, unsigned long len,
1278 bool need_rmap_locks);
7da4d641
PZ
1279extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1280 unsigned long end, pgprot_t newprot,
4b10e7d5 1281 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1282extern int mprotect_fixup(struct vm_area_struct *vma,
1283 struct vm_area_struct **pprev, unsigned long start,
1284 unsigned long end, unsigned long newflags);
1da177e4 1285
465a454f
PZ
1286/*
1287 * doesn't attempt to fault and will return short.
1288 */
1289int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1290 struct page **pages);
d559db08
KH
1291/*
1292 * per-process(per-mm_struct) statistics.
1293 */
d559db08
KH
1294static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1295{
69c97823
KK
1296 long val = atomic_long_read(&mm->rss_stat.count[member]);
1297
1298#ifdef SPLIT_RSS_COUNTING
1299 /*
1300 * counter is updated in asynchronous manner and may go to minus.
1301 * But it's never be expected number for users.
1302 */
1303 if (val < 0)
1304 val = 0;
172703b0 1305#endif
69c97823
KK
1306 return (unsigned long)val;
1307}
d559db08
KH
1308
1309static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1310{
172703b0 1311 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1312}
1313
1314static inline void inc_mm_counter(struct mm_struct *mm, int member)
1315{
172703b0 1316 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1317}
1318
1319static inline void dec_mm_counter(struct mm_struct *mm, int member)
1320{
172703b0 1321 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1322}
1323
d559db08
KH
1324static inline unsigned long get_mm_rss(struct mm_struct *mm)
1325{
1326 return get_mm_counter(mm, MM_FILEPAGES) +
1327 get_mm_counter(mm, MM_ANONPAGES);
1328}
1329
1330static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1331{
1332 return max(mm->hiwater_rss, get_mm_rss(mm));
1333}
1334
1335static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1336{
1337 return max(mm->hiwater_vm, mm->total_vm);
1338}
1339
1340static inline void update_hiwater_rss(struct mm_struct *mm)
1341{
1342 unsigned long _rss = get_mm_rss(mm);
1343
1344 if ((mm)->hiwater_rss < _rss)
1345 (mm)->hiwater_rss = _rss;
1346}
1347
1348static inline void update_hiwater_vm(struct mm_struct *mm)
1349{
1350 if (mm->hiwater_vm < mm->total_vm)
1351 mm->hiwater_vm = mm->total_vm;
1352}
1353
1354static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1355 struct mm_struct *mm)
1356{
1357 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1358
1359 if (*maxrss < hiwater_rss)
1360 *maxrss = hiwater_rss;
1361}
1362
53bddb4e 1363#if defined(SPLIT_RSS_COUNTING)
05af2e10 1364void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1365#else
05af2e10 1366static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1367{
1368}
1369#endif
465a454f 1370
4e950f6f 1371int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1372
25ca1d6c
NK
1373extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1374 spinlock_t **ptl);
1375static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1376 spinlock_t **ptl)
1377{
1378 pte_t *ptep;
1379 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1380 return ptep;
1381}
c9cfcddf 1382
5f22df00
NP
1383#ifdef __PAGETABLE_PUD_FOLDED
1384static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1385 unsigned long address)
1386{
1387 return 0;
1388}
1389#else
1bb3630e 1390int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1391#endif
1392
1393#ifdef __PAGETABLE_PMD_FOLDED
1394static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1395 unsigned long address)
1396{
1397 return 0;
1398}
1399#else
1bb3630e 1400int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1401#endif
1402
8ac1f832
AA
1403int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1404 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1405int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1406
1da177e4
LT
1407/*
1408 * The following ifdef needed to get the 4level-fixup.h header to work.
1409 * Remove it when 4level-fixup.h has been removed.
1410 */
1bb3630e 1411#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1412static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1413{
1bb3630e
HD
1414 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1415 NULL: pud_offset(pgd, address);
1da177e4
LT
1416}
1417
1418static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1419{
1bb3630e
HD
1420 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1421 NULL: pmd_offset(pud, address);
1da177e4 1422}
1bb3630e
HD
1423#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1424
57c1ffce 1425#if USE_SPLIT_PTE_PTLOCKS
597d795a 1426#if ALLOC_SPLIT_PTLOCKS
b35f1819 1427void __init ptlock_cache_init(void);
539edb58
PZ
1428extern bool ptlock_alloc(struct page *page);
1429extern void ptlock_free(struct page *page);
1430
1431static inline spinlock_t *ptlock_ptr(struct page *page)
1432{
1433 return page->ptl;
1434}
597d795a 1435#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1436static inline void ptlock_cache_init(void)
1437{
1438}
1439
49076ec2
KS
1440static inline bool ptlock_alloc(struct page *page)
1441{
49076ec2
KS
1442 return true;
1443}
539edb58 1444
49076ec2
KS
1445static inline void ptlock_free(struct page *page)
1446{
49076ec2
KS
1447}
1448
1449static inline spinlock_t *ptlock_ptr(struct page *page)
1450{
539edb58 1451 return &page->ptl;
49076ec2 1452}
597d795a 1453#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1454
1455static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1456{
1457 return ptlock_ptr(pmd_page(*pmd));
1458}
1459
1460static inline bool ptlock_init(struct page *page)
1461{
1462 /*
1463 * prep_new_page() initialize page->private (and therefore page->ptl)
1464 * with 0. Make sure nobody took it in use in between.
1465 *
1466 * It can happen if arch try to use slab for page table allocation:
1467 * slab code uses page->slab_cache and page->first_page (for tail
1468 * pages), which share storage with page->ptl.
1469 */
309381fe 1470 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1471 if (!ptlock_alloc(page))
1472 return false;
1473 spin_lock_init(ptlock_ptr(page));
1474 return true;
1475}
1476
1477/* Reset page->mapping so free_pages_check won't complain. */
1478static inline void pte_lock_deinit(struct page *page)
1479{
1480 page->mapping = NULL;
1481 ptlock_free(page);
1482}
1483
57c1ffce 1484#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1485/*
1486 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1487 */
49076ec2
KS
1488static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1489{
1490 return &mm->page_table_lock;
1491}
b35f1819 1492static inline void ptlock_cache_init(void) {}
49076ec2
KS
1493static inline bool ptlock_init(struct page *page) { return true; }
1494static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1495#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1496
b35f1819
KS
1497static inline void pgtable_init(void)
1498{
1499 ptlock_cache_init();
1500 pgtable_cache_init();
1501}
1502
390f44e2 1503static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1504{
2f569afd 1505 inc_zone_page_state(page, NR_PAGETABLE);
49076ec2 1506 return ptlock_init(page);
2f569afd
MS
1507}
1508
1509static inline void pgtable_page_dtor(struct page *page)
1510{
1511 pte_lock_deinit(page);
1512 dec_zone_page_state(page, NR_PAGETABLE);
1513}
1514
c74df32c
HD
1515#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1516({ \
4c21e2f2 1517 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1518 pte_t *__pte = pte_offset_map(pmd, address); \
1519 *(ptlp) = __ptl; \
1520 spin_lock(__ptl); \
1521 __pte; \
1522})
1523
1524#define pte_unmap_unlock(pte, ptl) do { \
1525 spin_unlock(ptl); \
1526 pte_unmap(pte); \
1527} while (0)
1528
8ac1f832
AA
1529#define pte_alloc_map(mm, vma, pmd, address) \
1530 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1531 pmd, address))? \
1532 NULL: pte_offset_map(pmd, address))
1bb3630e 1533
c74df32c 1534#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1535 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1536 pmd, address))? \
c74df32c
HD
1537 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1538
1bb3630e 1539#define pte_alloc_kernel(pmd, address) \
8ac1f832 1540 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1541 NULL: pte_offset_kernel(pmd, address))
1da177e4 1542
e009bb30
KS
1543#if USE_SPLIT_PMD_PTLOCKS
1544
634391ac
MS
1545static struct page *pmd_to_page(pmd_t *pmd)
1546{
1547 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1548 return virt_to_page((void *)((unsigned long) pmd & mask));
1549}
1550
e009bb30
KS
1551static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1552{
634391ac 1553 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1554}
1555
1556static inline bool pgtable_pmd_page_ctor(struct page *page)
1557{
e009bb30
KS
1558#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1559 page->pmd_huge_pte = NULL;
1560#endif
49076ec2 1561 return ptlock_init(page);
e009bb30
KS
1562}
1563
1564static inline void pgtable_pmd_page_dtor(struct page *page)
1565{
1566#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1567 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1568#endif
49076ec2 1569 ptlock_free(page);
e009bb30
KS
1570}
1571
634391ac 1572#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1573
1574#else
1575
9a86cb7b
KS
1576static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1577{
1578 return &mm->page_table_lock;
1579}
1580
e009bb30
KS
1581static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1582static inline void pgtable_pmd_page_dtor(struct page *page) {}
1583
c389a250 1584#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1585
e009bb30
KS
1586#endif
1587
9a86cb7b
KS
1588static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1589{
1590 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1591 spin_lock(ptl);
1592 return ptl;
1593}
1594
1da177e4 1595extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1596extern void free_area_init_node(int nid, unsigned long * zones_size,
1597 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1598extern void free_initmem(void);
1599
69afade7
JL
1600/*
1601 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1602 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1603 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1604 * Return pages freed into the buddy system.
1605 */
11199692 1606extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1607 int poison, char *s);
c3d5f5f0 1608
cfa11e08
JL
1609#ifdef CONFIG_HIGHMEM
1610/*
1611 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1612 * and totalram_pages.
1613 */
1614extern void free_highmem_page(struct page *page);
1615#endif
69afade7 1616
c3d5f5f0 1617extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1618extern void mem_init_print_info(const char *str);
69afade7
JL
1619
1620/* Free the reserved page into the buddy system, so it gets managed. */
1621static inline void __free_reserved_page(struct page *page)
1622{
1623 ClearPageReserved(page);
1624 init_page_count(page);
1625 __free_page(page);
1626}
1627
1628static inline void free_reserved_page(struct page *page)
1629{
1630 __free_reserved_page(page);
1631 adjust_managed_page_count(page, 1);
1632}
1633
1634static inline void mark_page_reserved(struct page *page)
1635{
1636 SetPageReserved(page);
1637 adjust_managed_page_count(page, -1);
1638}
1639
1640/*
1641 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1642 * The freed pages will be poisoned with pattern "poison" if it's within
1643 * range [0, UCHAR_MAX].
1644 * Return pages freed into the buddy system.
69afade7
JL
1645 */
1646static inline unsigned long free_initmem_default(int poison)
1647{
1648 extern char __init_begin[], __init_end[];
1649
11199692 1650 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1651 poison, "unused kernel");
1652}
1653
7ee3d4e8
JL
1654static inline unsigned long get_num_physpages(void)
1655{
1656 int nid;
1657 unsigned long phys_pages = 0;
1658
1659 for_each_online_node(nid)
1660 phys_pages += node_present_pages(nid);
1661
1662 return phys_pages;
1663}
1664
0ee332c1 1665#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1666/*
0ee332c1 1667 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1668 * zones, allocate the backing mem_map and account for memory holes in a more
1669 * architecture independent manner. This is a substitute for creating the
1670 * zone_sizes[] and zholes_size[] arrays and passing them to
1671 * free_area_init_node()
1672 *
1673 * An architecture is expected to register range of page frames backed by
0ee332c1 1674 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1675 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1676 * usage, an architecture is expected to do something like
1677 *
1678 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1679 * max_highmem_pfn};
1680 * for_each_valid_physical_page_range()
0ee332c1 1681 * memblock_add_node(base, size, nid)
c713216d
MG
1682 * free_area_init_nodes(max_zone_pfns);
1683 *
0ee332c1
TH
1684 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1685 * registered physical page range. Similarly
1686 * sparse_memory_present_with_active_regions() calls memory_present() for
1687 * each range when SPARSEMEM is enabled.
c713216d
MG
1688 *
1689 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1690 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1691 */
1692extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1693unsigned long node_map_pfn_alignment(void);
32996250
YL
1694unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1695 unsigned long end_pfn);
c713216d
MG
1696extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1697 unsigned long end_pfn);
1698extern void get_pfn_range_for_nid(unsigned int nid,
1699 unsigned long *start_pfn, unsigned long *end_pfn);
1700extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1701extern void free_bootmem_with_active_regions(int nid,
1702 unsigned long max_low_pfn);
1703extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1704
0ee332c1 1705#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1706
0ee332c1 1707#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1708 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1709static inline int __early_pfn_to_nid(unsigned long pfn)
1710{
1711 return 0;
1712}
1713#else
1714/* please see mm/page_alloc.c */
1715extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1716/* there is a per-arch backend function. */
1717extern int __meminit __early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1718#endif
1719
0e0b864e 1720extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1721extern void memmap_init_zone(unsigned long, int, unsigned long,
1722 unsigned long, enum memmap_context);
bc75d33f 1723extern void setup_per_zone_wmarks(void);
1b79acc9 1724extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1725extern void mem_init(void);
8feae131 1726extern void __init mmap_init(void);
b2b755b5 1727extern void show_mem(unsigned int flags);
1da177e4
LT
1728extern void si_meminfo(struct sysinfo * val);
1729extern void si_meminfo_node(struct sysinfo *val, int nid);
1730
3ee9a4f0
JP
1731extern __printf(3, 4)
1732void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1733
e7c8d5c9 1734extern void setup_per_cpu_pageset(void);
e7c8d5c9 1735
112067f0 1736extern void zone_pcp_update(struct zone *zone);
340175b7 1737extern void zone_pcp_reset(struct zone *zone);
112067f0 1738
75f7ad8e
PS
1739/* page_alloc.c */
1740extern int min_free_kbytes;
1741
8feae131 1742/* nommu.c */
33e5d769 1743extern atomic_long_t mmap_pages_allocated;
7e660872 1744extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1745
6b2dbba8 1746/* interval_tree.c */
6b2dbba8
ML
1747void vma_interval_tree_insert(struct vm_area_struct *node,
1748 struct rb_root *root);
9826a516
ML
1749void vma_interval_tree_insert_after(struct vm_area_struct *node,
1750 struct vm_area_struct *prev,
1751 struct rb_root *root);
6b2dbba8
ML
1752void vma_interval_tree_remove(struct vm_area_struct *node,
1753 struct rb_root *root);
1754struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1755 unsigned long start, unsigned long last);
1756struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1757 unsigned long start, unsigned long last);
1758
1759#define vma_interval_tree_foreach(vma, root, start, last) \
1760 for (vma = vma_interval_tree_iter_first(root, start, last); \
1761 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1762
1763static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1764 struct list_head *list)
1765{
6b2dbba8 1766 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1767}
1768
bf181b9f
ML
1769void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1770 struct rb_root *root);
1771void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1772 struct rb_root *root);
1773struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1774 struct rb_root *root, unsigned long start, unsigned long last);
1775struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1776 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1777#ifdef CONFIG_DEBUG_VM_RB
1778void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1779#endif
bf181b9f
ML
1780
1781#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1782 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1783 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1784
1da177e4 1785/* mmap.c */
34b4e4aa 1786extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1787extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1788 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1789extern struct vm_area_struct *vma_merge(struct mm_struct *,
1790 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1791 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1792 struct mempolicy *);
1793extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1794extern int split_vma(struct mm_struct *,
1795 struct vm_area_struct *, unsigned long addr, int new_below);
1796extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1797extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1798 struct rb_node **, struct rb_node *);
a8fb5618 1799extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1800extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1801 unsigned long addr, unsigned long len, pgoff_t pgoff,
1802 bool *need_rmap_locks);
1da177e4 1803extern void exit_mmap(struct mm_struct *);
925d1c40 1804
9c599024
CG
1805static inline int check_data_rlimit(unsigned long rlim,
1806 unsigned long new,
1807 unsigned long start,
1808 unsigned long end_data,
1809 unsigned long start_data)
1810{
1811 if (rlim < RLIM_INFINITY) {
1812 if (((new - start) + (end_data - start_data)) > rlim)
1813 return -ENOSPC;
1814 }
1815
1816 return 0;
1817}
1818
7906d00c
AA
1819extern int mm_take_all_locks(struct mm_struct *mm);
1820extern void mm_drop_all_locks(struct mm_struct *mm);
1821
38646013
JS
1822extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1823extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1824
119f657c 1825extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1826extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1827 unsigned long addr, unsigned long len,
a62c34bd
AL
1828 unsigned long flags,
1829 const struct vm_special_mapping *spec);
1830/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1831extern int install_special_mapping(struct mm_struct *mm,
1832 unsigned long addr, unsigned long len,
1833 unsigned long flags, struct page **pages);
1da177e4
LT
1834
1835extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1836
0165ab44 1837extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1838 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1839extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1840 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1841 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1842extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1843
bebeb3d6
ML
1844#ifdef CONFIG_MMU
1845extern int __mm_populate(unsigned long addr, unsigned long len,
1846 int ignore_errors);
1847static inline void mm_populate(unsigned long addr, unsigned long len)
1848{
1849 /* Ignore errors */
1850 (void) __mm_populate(addr, len, 1);
1851}
1852#else
1853static inline void mm_populate(unsigned long addr, unsigned long len) {}
1854#endif
1855
e4eb1ff6
LT
1856/* These take the mm semaphore themselves */
1857extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1858extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1859extern unsigned long vm_mmap(struct file *, unsigned long,
1860 unsigned long, unsigned long,
1861 unsigned long, unsigned long);
1da177e4 1862
db4fbfb9
ML
1863struct vm_unmapped_area_info {
1864#define VM_UNMAPPED_AREA_TOPDOWN 1
1865 unsigned long flags;
1866 unsigned long length;
1867 unsigned long low_limit;
1868 unsigned long high_limit;
1869 unsigned long align_mask;
1870 unsigned long align_offset;
1871};
1872
1873extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1874extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1875
1876/*
1877 * Search for an unmapped address range.
1878 *
1879 * We are looking for a range that:
1880 * - does not intersect with any VMA;
1881 * - is contained within the [low_limit, high_limit) interval;
1882 * - is at least the desired size.
1883 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1884 */
1885static inline unsigned long
1886vm_unmapped_area(struct vm_unmapped_area_info *info)
1887{
1888 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1889 return unmapped_area(info);
1890 else
1891 return unmapped_area_topdown(info);
1892}
1893
85821aab 1894/* truncate.c */
1da177e4 1895extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1896extern void truncate_inode_pages_range(struct address_space *,
1897 loff_t lstart, loff_t lend);
91b0abe3 1898extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
1899
1900/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1901extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 1902extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 1903extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1904
1905/* mm/page-writeback.c */
1906int write_one_page(struct page *page, int wait);
1cf6e7d8 1907void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1908
1909/* readahead.c */
1910#define VM_MAX_READAHEAD 128 /* kbytes */
1911#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1912
1da177e4 1913int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1914 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1915
1916void page_cache_sync_readahead(struct address_space *mapping,
1917 struct file_ra_state *ra,
1918 struct file *filp,
1919 pgoff_t offset,
1920 unsigned long size);
1921
1922void page_cache_async_readahead(struct address_space *mapping,
1923 struct file_ra_state *ra,
1924 struct file *filp,
1925 struct page *pg,
1926 pgoff_t offset,
1927 unsigned long size);
1928
1da177e4
LT
1929unsigned long max_sane_readahead(unsigned long nr);
1930
d05f3169 1931/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1932extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1933
1934/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1935extern int expand_downwards(struct vm_area_struct *vma,
1936 unsigned long address);
8ca3eb08 1937#if VM_GROWSUP
46dea3d0 1938extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
LT
1939#else
1940 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1941#endif
1da177e4
LT
1942
1943/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1944extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1945extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1946 struct vm_area_struct **pprev);
1947
1948/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1949 NULL if none. Assume start_addr < end_addr. */
1950static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1951{
1952 struct vm_area_struct * vma = find_vma(mm,start_addr);
1953
1954 if (vma && end_addr <= vma->vm_start)
1955 vma = NULL;
1956 return vma;
1957}
1958
1959static inline unsigned long vma_pages(struct vm_area_struct *vma)
1960{
1961 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1962}
1963
640708a2
PE
1964/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1965static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1966 unsigned long vm_start, unsigned long vm_end)
1967{
1968 struct vm_area_struct *vma = find_vma(mm, vm_start);
1969
1970 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1971 vma = NULL;
1972
1973 return vma;
1974}
1975
bad849b3 1976#ifdef CONFIG_MMU
804af2cf 1977pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 1978void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
1979#else
1980static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1981{
1982 return __pgprot(0);
1983}
64e45507
PF
1984static inline void vma_set_page_prot(struct vm_area_struct *vma)
1985{
1986 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
1987}
bad849b3
DH
1988#endif
1989
5877231f 1990#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 1991unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1992 unsigned long start, unsigned long end);
1993#endif
1994
deceb6cd 1995struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1996int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1997 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1998int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1999int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2000 unsigned long pfn);
423bad60
NP
2001int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2002 unsigned long pfn);
b4cbb197
LT
2003int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2004
deceb6cd 2005
240aadee
ML
2006struct page *follow_page_mask(struct vm_area_struct *vma,
2007 unsigned long address, unsigned int foll_flags,
2008 unsigned int *page_mask);
2009
2010static inline struct page *follow_page(struct vm_area_struct *vma,
2011 unsigned long address, unsigned int foll_flags)
2012{
2013 unsigned int unused_page_mask;
2014 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2015}
2016
deceb6cd
HD
2017#define FOLL_WRITE 0x01 /* check pte is writable */
2018#define FOLL_TOUCH 0x02 /* mark page accessed */
2019#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2020#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2021#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2022#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2023 * and return without waiting upon it */
110d74a9 2024#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 2025#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2026#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2027#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2028#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2029#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1da177e4 2030
2f569afd 2031typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2032 void *data);
2033extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2034 unsigned long size, pte_fn_t fn, void *data);
2035
1da177e4 2036#ifdef CONFIG_PROC_FS
ab50b8ed 2037void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 2038#else
ab50b8ed 2039static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
2040 unsigned long flags, struct file *file, long pages)
2041{
44de9d0c 2042 mm->total_vm += pages;
1da177e4
LT
2043}
2044#endif /* CONFIG_PROC_FS */
2045
12d6f21e 2046#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 2047extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
2048#ifdef CONFIG_HIBERNATION
2049extern bool kernel_page_present(struct page *page);
2050#endif /* CONFIG_HIBERNATION */
12d6f21e 2051#else
1da177e4 2052static inline void
9858db50 2053kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2054#ifdef CONFIG_HIBERNATION
2055static inline bool kernel_page_present(struct page *page) { return true; }
2056#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2057#endif
2058
a6c19dfe 2059#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2060extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2061extern int in_gate_area_no_mm(unsigned long addr);
2062extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2063#else
a6c19dfe
AL
2064static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2065{
2066 return NULL;
2067}
2068static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2069static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2070{
2071 return 0;
2072}
1da177e4
LT
2073#endif /* __HAVE_ARCH_GATE_AREA */
2074
146732ce
JT
2075#ifdef CONFIG_SYSCTL
2076extern int sysctl_drop_caches;
8d65af78 2077int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2078 void __user *, size_t *, loff_t *);
146732ce
JT
2079#endif
2080
a09ed5e0 2081unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
2082 unsigned long nr_pages_scanned,
2083 unsigned long lru_pages);
9d0243bc 2084
7a9166e3
LY
2085#ifndef CONFIG_MMU
2086#define randomize_va_space 0
2087#else
a62eaf15 2088extern int randomize_va_space;
7a9166e3 2089#endif
a62eaf15 2090
045e72ac 2091const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2092void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2093
9bdac914
YL
2094void sparse_mem_maps_populate_node(struct page **map_map,
2095 unsigned long pnum_begin,
2096 unsigned long pnum_end,
2097 unsigned long map_count,
2098 int nodeid);
2099
98f3cfc1 2100struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2101pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2102pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2103pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2104pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2105void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2106void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2107void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2108int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2109 int node);
2110int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2111void vmemmap_populate_print_last(void);
0197518c 2112#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2113void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2114#endif
46723bfa
YI
2115void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2116 unsigned long size);
6a46079c 2117
82ba011b
AK
2118enum mf_flags {
2119 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2120 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2121 MF_MUST_KILL = 1 << 2,
cf870c70 2122 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2123};
cd42f4a3 2124extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2125extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2126extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
2127extern int sysctl_memory_failure_early_kill;
2128extern int sysctl_memory_failure_recovery;
facb6011 2129extern void shake_page(struct page *p, int access);
293c07e3 2130extern atomic_long_t num_poisoned_pages;
facb6011 2131extern int soft_offline_page(struct page *page, int flags);
6a46079c 2132
47ad8475
AA
2133#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2134extern void clear_huge_page(struct page *page,
2135 unsigned long addr,
2136 unsigned int pages_per_huge_page);
2137extern void copy_user_huge_page(struct page *dst, struct page *src,
2138 unsigned long addr, struct vm_area_struct *vma,
2139 unsigned int pages_per_huge_page);
2140#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2141
c0a32fc5
SG
2142#ifdef CONFIG_DEBUG_PAGEALLOC
2143extern unsigned int _debug_guardpage_minorder;
2144
2145static inline unsigned int debug_guardpage_minorder(void)
2146{
2147 return _debug_guardpage_minorder;
2148}
2149
2150static inline bool page_is_guard(struct page *page)
2151{
2152 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2153}
2154#else
2155static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2156static inline bool page_is_guard(struct page *page) { return false; }
2157#endif /* CONFIG_DEBUG_PAGEALLOC */
2158
f9872caf
CS
2159#if MAX_NUMNODES > 1
2160void __init setup_nr_node_ids(void);
2161#else
2162static inline void setup_nr_node_ids(void) {}
2163#endif
2164
1da177e4
LT
2165#endif /* __KERNEL__ */
2166#endif /* _LINUX_MM_H */