fs/proc/page.c: add PageAnon check to surely detect thp
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4 8#include <linux/gfp.h>
187f1882 9#include <linux/bug.h>
1da177e4
LT
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
83aeeada 13#include <linux/atomic.h>
9a11b49a 14#include <linux/debug_locks.h>
5b99cd0e 15#include <linux/mm_types.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
e9da73d6 18#include <linux/bit_spinlock.h>
b0d40c92 19#include <linux/shrinker.h>
1da177e4
LT
20
21struct mempolicy;
22struct anon_vma;
bf181b9f 23struct anon_vma_chain;
4e950f6f 24struct file_ra_state;
e8edc6e0 25struct user_struct;
4e950f6f 26struct writeback_control;
1da177e4 27
fccc9987 28#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 29extern unsigned long max_mapnr;
fccc9987
JL
30
31static inline void set_max_mapnr(unsigned long limit)
32{
33 max_mapnr = limit;
34}
35#else
36static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
37#endif
38
4481374c 39extern unsigned long totalram_pages;
1da177e4 40extern void * high_memory;
1da177e4
LT
41extern int page_cluster;
42
43#ifdef CONFIG_SYSCTL
44extern int sysctl_legacy_va_layout;
45#else
46#define sysctl_legacy_va_layout 0
47#endif
48
49#include <asm/page.h>
50#include <asm/pgtable.h>
51#include <asm/processor.h>
1da177e4 52
79442ed1
TC
53#ifndef __pa_symbol
54#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
55#endif
56
c9b1d098 57extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 58extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 59
49f0ce5f
JM
60extern int sysctl_overcommit_memory;
61extern int sysctl_overcommit_ratio;
62extern unsigned long sysctl_overcommit_kbytes;
63
64extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
65 size_t *, loff_t *);
66extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
67 size_t *, loff_t *);
68
1da177e4
LT
69#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
70
27ac792c
AR
71/* to align the pointer to the (next) page boundary */
72#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
73
0fa73b86
AM
74/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
75#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
76
1da177e4
LT
77/*
78 * Linux kernel virtual memory manager primitives.
79 * The idea being to have a "virtual" mm in the same way
80 * we have a virtual fs - giving a cleaner interface to the
81 * mm details, and allowing different kinds of memory mappings
82 * (from shared memory to executable loading to arbitrary
83 * mmap() functions).
84 */
85
c43692e8
CL
86extern struct kmem_cache *vm_area_cachep;
87
1da177e4 88#ifndef CONFIG_MMU
8feae131
DH
89extern struct rb_root nommu_region_tree;
90extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
91
92extern unsigned int kobjsize(const void *objp);
93#endif
94
95/*
605d9288 96 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 97 */
cc2383ec
KK
98#define VM_NONE 0x00000000
99
1da177e4
LT
100#define VM_READ 0x00000001 /* currently active flags */
101#define VM_WRITE 0x00000002
102#define VM_EXEC 0x00000004
103#define VM_SHARED 0x00000008
104
7e2cff42 105/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
106#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
107#define VM_MAYWRITE 0x00000020
108#define VM_MAYEXEC 0x00000040
109#define VM_MAYSHARE 0x00000080
110
111#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 112#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
113#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
114
1da177e4
LT
115#define VM_LOCKED 0x00002000
116#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
117
118 /* Used by sys_madvise() */
119#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
120#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
121
122#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
123#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 124#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 125#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
126#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
127#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 128#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 129#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 130
d9104d1c
CG
131#ifdef CONFIG_MEM_SOFT_DIRTY
132# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
133#else
134# define VM_SOFTDIRTY 0
135#endif
136
b379d790 137#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
138#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
139#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 140#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 141
cc2383ec
KK
142#if defined(CONFIG_X86)
143# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
144#elif defined(CONFIG_PPC)
145# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
146#elif defined(CONFIG_PARISC)
147# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
148#elif defined(CONFIG_METAG)
149# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
150#elif defined(CONFIG_IA64)
151# define VM_GROWSUP VM_ARCH_1
152#elif !defined(CONFIG_MMU)
153# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
154#endif
155
156#ifndef VM_GROWSUP
157# define VM_GROWSUP VM_NONE
158#endif
159
a8bef8ff
MG
160/* Bits set in the VMA until the stack is in its final location */
161#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
162
1da177e4
LT
163#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
164#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
165#endif
166
167#ifdef CONFIG_STACK_GROWSUP
168#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
169#else
170#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
171#endif
172
b291f000 173/*
78f11a25
AA
174 * Special vmas that are non-mergable, non-mlock()able.
175 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 176 */
314e51b9 177#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
b291f000 178
1da177e4
LT
179/*
180 * mapping from the currently active vm_flags protection bits (the
181 * low four bits) to a page protection mask..
182 */
183extern pgprot_t protection_map[16];
184
d0217ac0
NP
185#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
186#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 187#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 188#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 189#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 190#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 191#define FAULT_FLAG_TRIED 0x40 /* second try */
759496ba 192#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
d0217ac0 193
54cb8821 194/*
d0217ac0 195 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
196 * ->fault function. The vma's ->fault is responsible for returning a bitmask
197 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 198 *
d0217ac0 199 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 200 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 201 */
d0217ac0
NP
202struct vm_fault {
203 unsigned int flags; /* FAULT_FLAG_xxx flags */
204 pgoff_t pgoff; /* Logical page offset based on vma */
205 void __user *virtual_address; /* Faulting virtual address */
206
207 struct page *page; /* ->fault handlers should return a
83c54070 208 * page here, unless VM_FAULT_NOPAGE
d0217ac0 209 * is set (which is also implied by
83c54070 210 * VM_FAULT_ERROR).
d0217ac0 211 */
54cb8821 212};
1da177e4
LT
213
214/*
215 * These are the virtual MM functions - opening of an area, closing and
216 * unmapping it (needed to keep files on disk up-to-date etc), pointer
217 * to the functions called when a no-page or a wp-page exception occurs.
218 */
219struct vm_operations_struct {
220 void (*open)(struct vm_area_struct * area);
221 void (*close)(struct vm_area_struct * area);
d0217ac0 222 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
223
224 /* notification that a previously read-only page is about to become
225 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 226 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
227
228 /* called by access_process_vm when get_user_pages() fails, typically
229 * for use by special VMAs that can switch between memory and hardware
230 */
231 int (*access)(struct vm_area_struct *vma, unsigned long addr,
232 void *buf, int len, int write);
1da177e4 233#ifdef CONFIG_NUMA
a6020ed7
LS
234 /*
235 * set_policy() op must add a reference to any non-NULL @new mempolicy
236 * to hold the policy upon return. Caller should pass NULL @new to
237 * remove a policy and fall back to surrounding context--i.e. do not
238 * install a MPOL_DEFAULT policy, nor the task or system default
239 * mempolicy.
240 */
1da177e4 241 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
242
243 /*
244 * get_policy() op must add reference [mpol_get()] to any policy at
245 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
246 * in mm/mempolicy.c will do this automatically.
247 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
248 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
249 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
250 * must return NULL--i.e., do not "fallback" to task or system default
251 * policy.
252 */
1da177e4
LT
253 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
254 unsigned long addr);
7b2259b3
CL
255 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
256 const nodemask_t *to, unsigned long flags);
1da177e4 257#endif
0b173bc4
KK
258 /* called by sys_remap_file_pages() to populate non-linear mapping */
259 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
260 unsigned long size, pgoff_t pgoff);
1da177e4
LT
261};
262
263struct mmu_gather;
264struct inode;
265
349aef0b
AM
266#define page_private(page) ((page)->private)
267#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 268
b12c4ad1
MK
269/* It's valid only if the page is free path or free_list */
270static inline void set_freepage_migratetype(struct page *page, int migratetype)
271{
95e34412 272 page->index = migratetype;
b12c4ad1
MK
273}
274
275/* It's valid only if the page is free path or free_list */
276static inline int get_freepage_migratetype(struct page *page)
277{
95e34412 278 return page->index;
b12c4ad1
MK
279}
280
1da177e4
LT
281/*
282 * FIXME: take this include out, include page-flags.h in
283 * files which need it (119 of them)
284 */
285#include <linux/page-flags.h>
71e3aac0 286#include <linux/huge_mm.h>
1da177e4
LT
287
288/*
289 * Methods to modify the page usage count.
290 *
291 * What counts for a page usage:
292 * - cache mapping (page->mapping)
293 * - private data (page->private)
294 * - page mapped in a task's page tables, each mapping
295 * is counted separately
296 *
297 * Also, many kernel routines increase the page count before a critical
298 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
299 */
300
301/*
da6052f7 302 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 303 */
7c8ee9a8
NP
304static inline int put_page_testzero(struct page *page)
305{
725d704e 306 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 307 return atomic_dec_and_test(&page->_count);
7c8ee9a8 308}
1da177e4
LT
309
310/*
7c8ee9a8
NP
311 * Try to grab a ref unless the page has a refcount of zero, return false if
312 * that is the case.
8e0861fa
AK
313 * This can be called when MMU is off so it must not access
314 * any of the virtual mappings.
1da177e4 315 */
7c8ee9a8
NP
316static inline int get_page_unless_zero(struct page *page)
317{
8dc04efb 318 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 319}
1da177e4 320
8e0861fa
AK
321/*
322 * Try to drop a ref unless the page has a refcount of one, return false if
323 * that is the case.
324 * This is to make sure that the refcount won't become zero after this drop.
325 * This can be called when MMU is off so it must not access
326 * any of the virtual mappings.
327 */
328static inline int put_page_unless_one(struct page *page)
329{
330 return atomic_add_unless(&page->_count, -1, 1);
331}
332
53df8fdc
WF
333extern int page_is_ram(unsigned long pfn);
334
48667e7a 335/* Support for virtually mapped pages */
b3bdda02
CL
336struct page *vmalloc_to_page(const void *addr);
337unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 338
0738c4bb
PM
339/*
340 * Determine if an address is within the vmalloc range
341 *
342 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
343 * is no special casing required.
344 */
9e2779fa
CL
345static inline int is_vmalloc_addr(const void *x)
346{
0738c4bb 347#ifdef CONFIG_MMU
9e2779fa
CL
348 unsigned long addr = (unsigned long)x;
349
350 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
351#else
352 return 0;
8ca3ed87 353#endif
0738c4bb 354}
81ac3ad9
KH
355#ifdef CONFIG_MMU
356extern int is_vmalloc_or_module_addr(const void *x);
357#else
934831d0 358static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
359{
360 return 0;
361}
362#endif
9e2779fa 363
e9da73d6
AA
364static inline void compound_lock(struct page *page)
365{
366#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 367 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
368 bit_spin_lock(PG_compound_lock, &page->flags);
369#endif
370}
371
372static inline void compound_unlock(struct page *page)
373{
374#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 375 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
376 bit_spin_unlock(PG_compound_lock, &page->flags);
377#endif
378}
379
380static inline unsigned long compound_lock_irqsave(struct page *page)
381{
382 unsigned long uninitialized_var(flags);
383#ifdef CONFIG_TRANSPARENT_HUGEPAGE
384 local_irq_save(flags);
385 compound_lock(page);
386#endif
387 return flags;
388}
389
390static inline void compound_unlock_irqrestore(struct page *page,
391 unsigned long flags)
392{
393#ifdef CONFIG_TRANSPARENT_HUGEPAGE
394 compound_unlock(page);
395 local_irq_restore(flags);
396#endif
397}
398
d85f3385
CL
399static inline struct page *compound_head(struct page *page)
400{
6d777953 401 if (unlikely(PageTail(page)))
d85f3385
CL
402 return page->first_page;
403 return page;
404}
405
70b50f94
AA
406/*
407 * The atomic page->_mapcount, starts from -1: so that transitions
408 * both from it and to it can be tracked, using atomic_inc_and_test
409 * and atomic_add_negative(-1).
410 */
22b751c3 411static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
412{
413 atomic_set(&(page)->_mapcount, -1);
414}
415
416static inline int page_mapcount(struct page *page)
417{
418 return atomic_read(&(page)->_mapcount) + 1;
419}
420
4c21e2f2 421static inline int page_count(struct page *page)
1da177e4 422{
d85f3385 423 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
424}
425
44518d2b
AA
426#ifdef CONFIG_HUGETLB_PAGE
427extern int PageHeadHuge(struct page *page_head);
428#else /* CONFIG_HUGETLB_PAGE */
429static inline int PageHeadHuge(struct page *page_head)
430{
431 return 0;
432}
433#endif /* CONFIG_HUGETLB_PAGE */
434
435static inline bool __compound_tail_refcounted(struct page *page)
436{
437 return !PageSlab(page) && !PageHeadHuge(page);
438}
439
440/*
441 * This takes a head page as parameter and tells if the
442 * tail page reference counting can be skipped.
443 *
444 * For this to be safe, PageSlab and PageHeadHuge must remain true on
445 * any given page where they return true here, until all tail pins
446 * have been released.
447 */
448static inline bool compound_tail_refcounted(struct page *page)
449{
450 VM_BUG_ON(!PageHead(page));
451 return __compound_tail_refcounted(page);
452}
453
b35a35b5
AA
454static inline void get_huge_page_tail(struct page *page)
455{
456 /*
5eaf1a9e 457 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 458 */
5eaf1a9e 459 VM_BUG_ON(!PageTail(page));
b35a35b5
AA
460 VM_BUG_ON(page_mapcount(page) < 0);
461 VM_BUG_ON(atomic_read(&page->_count) != 0);
5eaf1a9e 462 if (compound_tail_refcounted(page->first_page))
44518d2b 463 atomic_inc(&page->_mapcount);
b35a35b5
AA
464}
465
70b50f94
AA
466extern bool __get_page_tail(struct page *page);
467
1da177e4
LT
468static inline void get_page(struct page *page)
469{
70b50f94
AA
470 if (unlikely(PageTail(page)))
471 if (likely(__get_page_tail(page)))
472 return;
91807063
AA
473 /*
474 * Getting a normal page or the head of a compound page
70b50f94 475 * requires to already have an elevated page->_count.
91807063 476 */
70b50f94 477 VM_BUG_ON(atomic_read(&page->_count) <= 0);
1da177e4
LT
478 atomic_inc(&page->_count);
479}
480
b49af68f
CL
481static inline struct page *virt_to_head_page(const void *x)
482{
483 struct page *page = virt_to_page(x);
484 return compound_head(page);
485}
486
7835e98b
NP
487/*
488 * Setup the page count before being freed into the page allocator for
489 * the first time (boot or memory hotplug)
490 */
491static inline void init_page_count(struct page *page)
492{
493 atomic_set(&page->_count, 1);
494}
495
5f24ce5f
AA
496/*
497 * PageBuddy() indicate that the page is free and in the buddy system
498 * (see mm/page_alloc.c).
ef2b4b95
AA
499 *
500 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
501 * -2 so that an underflow of the page_mapcount() won't be mistaken
502 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
503 * efficiently by most CPU architectures.
5f24ce5f 504 */
ef2b4b95
AA
505#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
506
5f24ce5f
AA
507static inline int PageBuddy(struct page *page)
508{
ef2b4b95 509 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
510}
511
512static inline void __SetPageBuddy(struct page *page)
513{
514 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 515 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
516}
517
518static inline void __ClearPageBuddy(struct page *page)
519{
520 VM_BUG_ON(!PageBuddy(page));
521 atomic_set(&page->_mapcount, -1);
522}
523
1da177e4 524void put_page(struct page *page);
1d7ea732 525void put_pages_list(struct list_head *pages);
1da177e4 526
8dfcc9ba 527void split_page(struct page *page, unsigned int order);
748446bb 528int split_free_page(struct page *page);
8dfcc9ba 529
33f2ef89
AW
530/*
531 * Compound pages have a destructor function. Provide a
532 * prototype for that function and accessor functions.
533 * These are _only_ valid on the head of a PG_compound page.
534 */
535typedef void compound_page_dtor(struct page *);
536
537static inline void set_compound_page_dtor(struct page *page,
538 compound_page_dtor *dtor)
539{
540 page[1].lru.next = (void *)dtor;
541}
542
543static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
544{
545 return (compound_page_dtor *)page[1].lru.next;
546}
547
d85f3385
CL
548static inline int compound_order(struct page *page)
549{
6d777953 550 if (!PageHead(page))
d85f3385
CL
551 return 0;
552 return (unsigned long)page[1].lru.prev;
553}
554
555static inline void set_compound_order(struct page *page, unsigned long order)
556{
557 page[1].lru.prev = (void *)order;
558}
559
3dece370 560#ifdef CONFIG_MMU
14fd403f
AA
561/*
562 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
563 * servicing faults for write access. In the normal case, do always want
564 * pte_mkwrite. But get_user_pages can cause write faults for mappings
565 * that do not have writing enabled, when used by access_process_vm.
566 */
567static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
568{
569 if (likely(vma->vm_flags & VM_WRITE))
570 pte = pte_mkwrite(pte);
571 return pte;
572}
3dece370 573#endif
14fd403f 574
1da177e4
LT
575/*
576 * Multiple processes may "see" the same page. E.g. for untouched
577 * mappings of /dev/null, all processes see the same page full of
578 * zeroes, and text pages of executables and shared libraries have
579 * only one copy in memory, at most, normally.
580 *
581 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
582 * page_count() == 0 means the page is free. page->lru is then used for
583 * freelist management in the buddy allocator.
da6052f7 584 * page_count() > 0 means the page has been allocated.
1da177e4 585 *
da6052f7
NP
586 * Pages are allocated by the slab allocator in order to provide memory
587 * to kmalloc and kmem_cache_alloc. In this case, the management of the
588 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
589 * unless a particular usage is carefully commented. (the responsibility of
590 * freeing the kmalloc memory is the caller's, of course).
1da177e4 591 *
da6052f7
NP
592 * A page may be used by anyone else who does a __get_free_page().
593 * In this case, page_count still tracks the references, and should only
594 * be used through the normal accessor functions. The top bits of page->flags
595 * and page->virtual store page management information, but all other fields
596 * are unused and could be used privately, carefully. The management of this
597 * page is the responsibility of the one who allocated it, and those who have
598 * subsequently been given references to it.
599 *
600 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
601 * managed by the Linux memory manager: I/O, buffers, swapping etc.
602 * The following discussion applies only to them.
603 *
da6052f7
NP
604 * A pagecache page contains an opaque `private' member, which belongs to the
605 * page's address_space. Usually, this is the address of a circular list of
606 * the page's disk buffers. PG_private must be set to tell the VM to call
607 * into the filesystem to release these pages.
1da177e4 608 *
da6052f7
NP
609 * A page may belong to an inode's memory mapping. In this case, page->mapping
610 * is the pointer to the inode, and page->index is the file offset of the page,
611 * in units of PAGE_CACHE_SIZE.
1da177e4 612 *
da6052f7
NP
613 * If pagecache pages are not associated with an inode, they are said to be
614 * anonymous pages. These may become associated with the swapcache, and in that
615 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 616 *
da6052f7
NP
617 * In either case (swapcache or inode backed), the pagecache itself holds one
618 * reference to the page. Setting PG_private should also increment the
619 * refcount. The each user mapping also has a reference to the page.
1da177e4 620 *
da6052f7
NP
621 * The pagecache pages are stored in a per-mapping radix tree, which is
622 * rooted at mapping->page_tree, and indexed by offset.
623 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
624 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 625 *
da6052f7 626 * All pagecache pages may be subject to I/O:
1da177e4
LT
627 * - inode pages may need to be read from disk,
628 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
629 * to be written back to the inode on disk,
630 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
631 * modified may need to be swapped out to swap space and (later) to be read
632 * back into memory.
1da177e4
LT
633 */
634
635/*
636 * The zone field is never updated after free_area_init_core()
637 * sets it, so none of the operations on it need to be atomic.
1da177e4 638 */
348f8b6c 639
90572890 640/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 641#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
642#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
643#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 644#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 645
348f8b6c 646/*
25985edc 647 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
648 * sections we define the shift as 0; that plus a 0 mask ensures
649 * the compiler will optimise away reference to them.
650 */
d41dee36
AW
651#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
652#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
653#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 654#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 655
bce54bbf
WD
656/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
657#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 658#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
659#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
660 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 661#else
89689ae7 662#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
663#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
664 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
665#endif
666
bd8029b6 667#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 668
9223b419
CL
669#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
670#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
671#endif
672
d41dee36
AW
673#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
674#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
675#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
90572890 676#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1)
89689ae7 677#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 678
33dd4e0e 679static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 680{
348f8b6c 681 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 682}
1da177e4 683
9127ab4f
CS
684#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
685#define SECTION_IN_PAGE_FLAGS
686#endif
687
89689ae7 688/*
7a8010cd
VB
689 * The identification function is mainly used by the buddy allocator for
690 * determining if two pages could be buddies. We are not really identifying
691 * the zone since we could be using the section number id if we do not have
692 * node id available in page flags.
693 * We only guarantee that it will return the same value for two combinable
694 * pages in a zone.
89689ae7 695 */
cb2b95e1
AW
696static inline int page_zone_id(struct page *page)
697{
89689ae7 698 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
699}
700
25ba77c1 701static inline int zone_to_nid(struct zone *zone)
89fa3024 702{
d5f541ed
CL
703#ifdef CONFIG_NUMA
704 return zone->node;
705#else
706 return 0;
707#endif
89fa3024
CL
708}
709
89689ae7 710#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 711extern int page_to_nid(const struct page *page);
89689ae7 712#else
33dd4e0e 713static inline int page_to_nid(const struct page *page)
d41dee36 714{
89689ae7 715 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 716}
89689ae7
CL
717#endif
718
57e0a030 719#ifdef CONFIG_NUMA_BALANCING
90572890 720static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 721{
90572890 722 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
723}
724
90572890 725static inline int cpupid_to_pid(int cpupid)
57e0a030 726{
90572890 727 return cpupid & LAST__PID_MASK;
57e0a030 728}
b795854b 729
90572890 730static inline int cpupid_to_cpu(int cpupid)
b795854b 731{
90572890 732 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
733}
734
90572890 735static inline int cpupid_to_nid(int cpupid)
b795854b 736{
90572890 737 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
738}
739
90572890 740static inline bool cpupid_pid_unset(int cpupid)
57e0a030 741{
90572890 742 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
743}
744
90572890 745static inline bool cpupid_cpu_unset(int cpupid)
b795854b 746{
90572890 747 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
748}
749
8c8a743c
PZ
750static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
751{
752 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
753}
754
755#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
756#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
757static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 758{
90572890 759 return xchg(&page->_last_cpupid, cpupid);
b795854b 760}
90572890
PZ
761
762static inline int page_cpupid_last(struct page *page)
763{
764 return page->_last_cpupid;
765}
766static inline void page_cpupid_reset_last(struct page *page)
b795854b 767{
90572890 768 page->_last_cpupid = -1;
57e0a030
MG
769}
770#else
90572890 771static inline int page_cpupid_last(struct page *page)
75980e97 772{
90572890 773 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
774}
775
90572890 776extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 777
90572890 778static inline void page_cpupid_reset_last(struct page *page)
75980e97 779{
90572890 780 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 781
90572890
PZ
782 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
783 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 784}
90572890
PZ
785#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
786#else /* !CONFIG_NUMA_BALANCING */
787static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 788{
90572890 789 return page_to_nid(page); /* XXX */
57e0a030
MG
790}
791
90572890 792static inline int page_cpupid_last(struct page *page)
57e0a030 793{
90572890 794 return page_to_nid(page); /* XXX */
57e0a030
MG
795}
796
90572890 797static inline int cpupid_to_nid(int cpupid)
b795854b
MG
798{
799 return -1;
800}
801
90572890 802static inline int cpupid_to_pid(int cpupid)
b795854b
MG
803{
804 return -1;
805}
806
90572890 807static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
808{
809 return -1;
810}
811
90572890
PZ
812static inline int cpu_pid_to_cpupid(int nid, int pid)
813{
814 return -1;
815}
816
817static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
818{
819 return 1;
820}
821
90572890 822static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
823{
824}
8c8a743c
PZ
825
826static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
827{
828 return false;
829}
90572890 830#endif /* CONFIG_NUMA_BALANCING */
57e0a030 831
33dd4e0e 832static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
833{
834 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
835}
836
9127ab4f 837#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
838static inline void set_page_section(struct page *page, unsigned long section)
839{
840 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
841 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
842}
843
aa462abe 844static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
845{
846 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
847}
308c05e3 848#endif
d41dee36 849
2f1b6248 850static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
851{
852 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
853 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
854}
2f1b6248 855
348f8b6c
DH
856static inline void set_page_node(struct page *page, unsigned long node)
857{
858 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
859 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 860}
89689ae7 861
2f1b6248 862static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 863 unsigned long node, unsigned long pfn)
1da177e4 864{
348f8b6c
DH
865 set_page_zone(page, zone);
866 set_page_node(page, node);
9127ab4f 867#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 868 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 869#endif
1da177e4
LT
870}
871
f6ac2354
CL
872/*
873 * Some inline functions in vmstat.h depend on page_zone()
874 */
875#include <linux/vmstat.h>
876
33dd4e0e 877static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 878{
aa462abe 879 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
880}
881
882#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
883#define HASHED_PAGE_VIRTUAL
884#endif
885
886#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
887static inline void *page_address(const struct page *page)
888{
889 return page->virtual;
890}
891static inline void set_page_address(struct page *page, void *address)
892{
893 page->virtual = address;
894}
1da177e4
LT
895#define page_address_init() do { } while(0)
896#endif
897
898#if defined(HASHED_PAGE_VIRTUAL)
f9918794 899void *page_address(const struct page *page);
1da177e4
LT
900void set_page_address(struct page *page, void *virtual);
901void page_address_init(void);
902#endif
903
904#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
905#define page_address(page) lowmem_page_address(page)
906#define set_page_address(page, address) do { } while(0)
907#define page_address_init() do { } while(0)
908#endif
909
910/*
911 * On an anonymous page mapped into a user virtual memory area,
912 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
913 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
914 *
915 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
916 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
917 * and then page->mapping points, not to an anon_vma, but to a private
918 * structure which KSM associates with that merged page. See ksm.h.
919 *
920 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
921 *
922 * Please note that, confusingly, "page_mapping" refers to the inode
923 * address_space which maps the page from disk; whereas "page_mapped"
924 * refers to user virtual address space into which the page is mapped.
925 */
926#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
927#define PAGE_MAPPING_KSM 2
928#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 929
9800339b 930extern struct address_space *page_mapping(struct page *page);
1da177e4 931
3ca7b3c5
HD
932/* Neutral page->mapping pointer to address_space or anon_vma or other */
933static inline void *page_rmapping(struct page *page)
934{
935 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
936}
937
f981c595
MG
938extern struct address_space *__page_file_mapping(struct page *);
939
940static inline
941struct address_space *page_file_mapping(struct page *page)
942{
943 if (unlikely(PageSwapCache(page)))
944 return __page_file_mapping(page);
945
946 return page->mapping;
947}
948
1da177e4
LT
949static inline int PageAnon(struct page *page)
950{
951 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
952}
953
954/*
955 * Return the pagecache index of the passed page. Regular pagecache pages
956 * use ->index whereas swapcache pages use ->private
957 */
958static inline pgoff_t page_index(struct page *page)
959{
960 if (unlikely(PageSwapCache(page)))
4c21e2f2 961 return page_private(page);
1da177e4
LT
962 return page->index;
963}
964
f981c595
MG
965extern pgoff_t __page_file_index(struct page *page);
966
967/*
968 * Return the file index of the page. Regular pagecache pages use ->index
969 * whereas swapcache pages use swp_offset(->private)
970 */
971static inline pgoff_t page_file_index(struct page *page)
972{
973 if (unlikely(PageSwapCache(page)))
974 return __page_file_index(page);
975
976 return page->index;
977}
978
1da177e4
LT
979/*
980 * Return true if this page is mapped into pagetables.
981 */
982static inline int page_mapped(struct page *page)
983{
984 return atomic_read(&(page)->_mapcount) >= 0;
985}
986
1da177e4
LT
987/*
988 * Different kinds of faults, as returned by handle_mm_fault().
989 * Used to decide whether a process gets delivered SIGBUS or
990 * just gets major/minor fault counters bumped up.
991 */
d0217ac0 992
83c54070 993#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 994
83c54070
NP
995#define VM_FAULT_OOM 0x0001
996#define VM_FAULT_SIGBUS 0x0002
997#define VM_FAULT_MAJOR 0x0004
998#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
999#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1000#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 1001
83c54070
NP
1002#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1003#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1004#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1005#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1006
aa50d3a7
AK
1007#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1008
1009#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
c0292554 1010 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
aa50d3a7
AK
1011
1012/* Encode hstate index for a hwpoisoned large page */
1013#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1014#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1015
1c0fe6e3
NP
1016/*
1017 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1018 */
1019extern void pagefault_out_of_memory(void);
1020
1da177e4
LT
1021#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1022
ddd588b5 1023/*
7bf02ea2 1024 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1025 * various contexts.
1026 */
4b59e6c4 1027#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1028
7bf02ea2
DR
1029extern void show_free_areas(unsigned int flags);
1030extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1031
1da177e4
LT
1032int shmem_zero_setup(struct vm_area_struct *);
1033
e8edc6e0 1034extern int can_do_mlock(void);
1da177e4
LT
1035extern int user_shm_lock(size_t, struct user_struct *);
1036extern void user_shm_unlock(size_t, struct user_struct *);
1037
1038/*
1039 * Parameter block passed down to zap_pte_range in exceptional cases.
1040 */
1041struct zap_details {
1042 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1043 struct address_space *check_mapping; /* Check page->mapping if set */
1044 pgoff_t first_index; /* Lowest page->index to unmap */
1045 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1046};
1047
7e675137
NP
1048struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1049 pte_t pte);
1050
c627f9cc
JS
1051int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1052 unsigned long size);
14f5ff5d 1053void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1054 unsigned long size, struct zap_details *);
4f74d2c8
LT
1055void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1056 unsigned long start, unsigned long end);
e6473092
MM
1057
1058/**
1059 * mm_walk - callbacks for walk_page_range
1060 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1061 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1062 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1063 * this handler is required to be able to handle
1064 * pmd_trans_huge() pmds. They may simply choose to
1065 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1066 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1067 * @pte_hole: if set, called for each hole at all levels
5dc37642 1068 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
1069 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1070 * is used.
e6473092
MM
1071 *
1072 * (see walk_page_range for more details)
1073 */
1074struct mm_walk {
0f157a5b
AM
1075 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1076 unsigned long next, struct mm_walk *walk);
1077 int (*pud_entry)(pud_t *pud, unsigned long addr,
1078 unsigned long next, struct mm_walk *walk);
1079 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1080 unsigned long next, struct mm_walk *walk);
1081 int (*pte_entry)(pte_t *pte, unsigned long addr,
1082 unsigned long next, struct mm_walk *walk);
1083 int (*pte_hole)(unsigned long addr, unsigned long next,
1084 struct mm_walk *walk);
1085 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1086 unsigned long addr, unsigned long next,
1087 struct mm_walk *walk);
2165009b
DH
1088 struct mm_struct *mm;
1089 void *private;
e6473092
MM
1090};
1091
2165009b
DH
1092int walk_page_range(unsigned long addr, unsigned long end,
1093 struct mm_walk *walk);
42b77728 1094void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1095 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1096int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1097 struct vm_area_struct *vma);
1da177e4
LT
1098void unmap_mapping_range(struct address_space *mapping,
1099 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1100int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1101 unsigned long *pfn);
d87fe660 1102int follow_phys(struct vm_area_struct *vma, unsigned long address,
1103 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1104int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1105 void *buf, int len, int write);
1da177e4
LT
1106
1107static inline void unmap_shared_mapping_range(struct address_space *mapping,
1108 loff_t const holebegin, loff_t const holelen)
1109{
1110 unmap_mapping_range(mapping, holebegin, holelen, 0);
1111}
1112
7caef267 1113extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1114extern void truncate_setsize(struct inode *inode, loff_t newsize);
623e3db9 1115void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1116int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1117int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1118int invalidate_inode_page(struct page *page);
1119
7ee1dd3f 1120#ifdef CONFIG_MMU
83c54070 1121extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1122 unsigned long address, unsigned int flags);
5c723ba5
PZ
1123extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1124 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1125#else
1126static inline int handle_mm_fault(struct mm_struct *mm,
1127 struct vm_area_struct *vma, unsigned long address,
d06063cc 1128 unsigned int flags)
7ee1dd3f
DH
1129{
1130 /* should never happen if there's no MMU */
1131 BUG();
1132 return VM_FAULT_SIGBUS;
1133}
5c723ba5
PZ
1134static inline int fixup_user_fault(struct task_struct *tsk,
1135 struct mm_struct *mm, unsigned long address,
1136 unsigned int fault_flags)
1137{
1138 /* should never happen if there's no MMU */
1139 BUG();
1140 return -EFAULT;
1141}
7ee1dd3f 1142#endif
f33ea7f4 1143
1da177e4 1144extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1145extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1146 void *buf, int len, int write);
1da177e4 1147
28a35716
ML
1148long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1149 unsigned long start, unsigned long nr_pages,
1150 unsigned int foll_flags, struct page **pages,
1151 struct vm_area_struct **vmas, int *nonblocking);
1152long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1153 unsigned long start, unsigned long nr_pages,
1154 int write, int force, struct page **pages,
1155 struct vm_area_struct **vmas);
d2bf6be8
NP
1156int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1157 struct page **pages);
18022c5d
MG
1158struct kvec;
1159int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1160 struct page **pages);
1161int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1162struct page *get_dump_page(unsigned long addr);
1da177e4 1163
cf9a2ae8 1164extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1165extern void do_invalidatepage(struct page *page, unsigned int offset,
1166 unsigned int length);
cf9a2ae8 1167
1da177e4 1168int __set_page_dirty_nobuffers(struct page *page);
76719325 1169int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1170int redirty_page_for_writepage(struct writeback_control *wbc,
1171 struct page *page);
e3a7cca1 1172void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1173void account_page_writeback(struct page *page);
b3c97528 1174int set_page_dirty(struct page *page);
1da177e4
LT
1175int set_page_dirty_lock(struct page *page);
1176int clear_page_dirty_for_io(struct page *page);
1177
39aa3cb3 1178/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1179static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1180{
1181 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1182}
1183
a09a79f6
MP
1184static inline int stack_guard_page_start(struct vm_area_struct *vma,
1185 unsigned long addr)
1186{
1187 return (vma->vm_flags & VM_GROWSDOWN) &&
1188 (vma->vm_start == addr) &&
1189 !vma_growsdown(vma->vm_prev, addr);
1190}
1191
1192/* Is the vma a continuation of the stack vma below it? */
1193static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1194{
1195 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1196}
1197
1198static inline int stack_guard_page_end(struct vm_area_struct *vma,
1199 unsigned long addr)
1200{
1201 return (vma->vm_flags & VM_GROWSUP) &&
1202 (vma->vm_end == addr) &&
1203 !vma_growsup(vma->vm_next, addr);
1204}
1205
b7643757
SP
1206extern pid_t
1207vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1208
b6a2fea3
OW
1209extern unsigned long move_page_tables(struct vm_area_struct *vma,
1210 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1211 unsigned long new_addr, unsigned long len,
1212 bool need_rmap_locks);
7da4d641
PZ
1213extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1214 unsigned long end, pgprot_t newprot,
4b10e7d5 1215 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1216extern int mprotect_fixup(struct vm_area_struct *vma,
1217 struct vm_area_struct **pprev, unsigned long start,
1218 unsigned long end, unsigned long newflags);
1da177e4 1219
465a454f
PZ
1220/*
1221 * doesn't attempt to fault and will return short.
1222 */
1223int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1224 struct page **pages);
d559db08
KH
1225/*
1226 * per-process(per-mm_struct) statistics.
1227 */
d559db08
KH
1228static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1229{
69c97823
KK
1230 long val = atomic_long_read(&mm->rss_stat.count[member]);
1231
1232#ifdef SPLIT_RSS_COUNTING
1233 /*
1234 * counter is updated in asynchronous manner and may go to minus.
1235 * But it's never be expected number for users.
1236 */
1237 if (val < 0)
1238 val = 0;
172703b0 1239#endif
69c97823
KK
1240 return (unsigned long)val;
1241}
d559db08
KH
1242
1243static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1244{
172703b0 1245 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1246}
1247
1248static inline void inc_mm_counter(struct mm_struct *mm, int member)
1249{
172703b0 1250 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1251}
1252
1253static inline void dec_mm_counter(struct mm_struct *mm, int member)
1254{
172703b0 1255 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1256}
1257
d559db08
KH
1258static inline unsigned long get_mm_rss(struct mm_struct *mm)
1259{
1260 return get_mm_counter(mm, MM_FILEPAGES) +
1261 get_mm_counter(mm, MM_ANONPAGES);
1262}
1263
1264static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1265{
1266 return max(mm->hiwater_rss, get_mm_rss(mm));
1267}
1268
1269static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1270{
1271 return max(mm->hiwater_vm, mm->total_vm);
1272}
1273
1274static inline void update_hiwater_rss(struct mm_struct *mm)
1275{
1276 unsigned long _rss = get_mm_rss(mm);
1277
1278 if ((mm)->hiwater_rss < _rss)
1279 (mm)->hiwater_rss = _rss;
1280}
1281
1282static inline void update_hiwater_vm(struct mm_struct *mm)
1283{
1284 if (mm->hiwater_vm < mm->total_vm)
1285 mm->hiwater_vm = mm->total_vm;
1286}
1287
1288static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1289 struct mm_struct *mm)
1290{
1291 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1292
1293 if (*maxrss < hiwater_rss)
1294 *maxrss = hiwater_rss;
1295}
1296
53bddb4e 1297#if defined(SPLIT_RSS_COUNTING)
05af2e10 1298void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1299#else
05af2e10 1300static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1301{
1302}
1303#endif
465a454f 1304
4e950f6f 1305int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1306
25ca1d6c
NK
1307extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1308 spinlock_t **ptl);
1309static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1310 spinlock_t **ptl)
1311{
1312 pte_t *ptep;
1313 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1314 return ptep;
1315}
c9cfcddf 1316
5f22df00
NP
1317#ifdef __PAGETABLE_PUD_FOLDED
1318static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1319 unsigned long address)
1320{
1321 return 0;
1322}
1323#else
1bb3630e 1324int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1325#endif
1326
1327#ifdef __PAGETABLE_PMD_FOLDED
1328static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1329 unsigned long address)
1330{
1331 return 0;
1332}
1333#else
1bb3630e 1334int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1335#endif
1336
8ac1f832
AA
1337int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1338 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1339int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1340
1da177e4
LT
1341/*
1342 * The following ifdef needed to get the 4level-fixup.h header to work.
1343 * Remove it when 4level-fixup.h has been removed.
1344 */
1bb3630e 1345#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1346static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1347{
1bb3630e
HD
1348 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1349 NULL: pud_offset(pgd, address);
1da177e4
LT
1350}
1351
1352static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1353{
1bb3630e
HD
1354 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1355 NULL: pmd_offset(pud, address);
1da177e4 1356}
1bb3630e
HD
1357#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1358
57c1ffce 1359#if USE_SPLIT_PTE_PTLOCKS
597d795a 1360#if ALLOC_SPLIT_PTLOCKS
b35f1819 1361void __init ptlock_cache_init(void);
539edb58
PZ
1362extern bool ptlock_alloc(struct page *page);
1363extern void ptlock_free(struct page *page);
1364
1365static inline spinlock_t *ptlock_ptr(struct page *page)
1366{
1367 return page->ptl;
1368}
597d795a 1369#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1370static inline void ptlock_cache_init(void)
1371{
1372}
1373
49076ec2
KS
1374static inline bool ptlock_alloc(struct page *page)
1375{
49076ec2
KS
1376 return true;
1377}
539edb58 1378
49076ec2
KS
1379static inline void ptlock_free(struct page *page)
1380{
49076ec2
KS
1381}
1382
1383static inline spinlock_t *ptlock_ptr(struct page *page)
1384{
539edb58 1385 return &page->ptl;
49076ec2 1386}
597d795a 1387#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1388
1389static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1390{
1391 return ptlock_ptr(pmd_page(*pmd));
1392}
1393
1394static inline bool ptlock_init(struct page *page)
1395{
1396 /*
1397 * prep_new_page() initialize page->private (and therefore page->ptl)
1398 * with 0. Make sure nobody took it in use in between.
1399 *
1400 * It can happen if arch try to use slab for page table allocation:
1401 * slab code uses page->slab_cache and page->first_page (for tail
1402 * pages), which share storage with page->ptl.
1403 */
539edb58 1404 VM_BUG_ON(*(unsigned long *)&page->ptl);
49076ec2
KS
1405 if (!ptlock_alloc(page))
1406 return false;
1407 spin_lock_init(ptlock_ptr(page));
1408 return true;
1409}
1410
1411/* Reset page->mapping so free_pages_check won't complain. */
1412static inline void pte_lock_deinit(struct page *page)
1413{
1414 page->mapping = NULL;
1415 ptlock_free(page);
1416}
1417
57c1ffce 1418#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1419/*
1420 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1421 */
49076ec2
KS
1422static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1423{
1424 return &mm->page_table_lock;
1425}
b35f1819 1426static inline void ptlock_cache_init(void) {}
49076ec2
KS
1427static inline bool ptlock_init(struct page *page) { return true; }
1428static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1429#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1430
b35f1819
KS
1431static inline void pgtable_init(void)
1432{
1433 ptlock_cache_init();
1434 pgtable_cache_init();
1435}
1436
390f44e2 1437static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1438{
2f569afd 1439 inc_zone_page_state(page, NR_PAGETABLE);
49076ec2 1440 return ptlock_init(page);
2f569afd
MS
1441}
1442
1443static inline void pgtable_page_dtor(struct page *page)
1444{
1445 pte_lock_deinit(page);
1446 dec_zone_page_state(page, NR_PAGETABLE);
1447}
1448
c74df32c
HD
1449#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1450({ \
4c21e2f2 1451 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1452 pte_t *__pte = pte_offset_map(pmd, address); \
1453 *(ptlp) = __ptl; \
1454 spin_lock(__ptl); \
1455 __pte; \
1456})
1457
1458#define pte_unmap_unlock(pte, ptl) do { \
1459 spin_unlock(ptl); \
1460 pte_unmap(pte); \
1461} while (0)
1462
8ac1f832
AA
1463#define pte_alloc_map(mm, vma, pmd, address) \
1464 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1465 pmd, address))? \
1466 NULL: pte_offset_map(pmd, address))
1bb3630e 1467
c74df32c 1468#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1469 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1470 pmd, address))? \
c74df32c
HD
1471 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1472
1bb3630e 1473#define pte_alloc_kernel(pmd, address) \
8ac1f832 1474 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1475 NULL: pte_offset_kernel(pmd, address))
1da177e4 1476
e009bb30
KS
1477#if USE_SPLIT_PMD_PTLOCKS
1478
1479static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1480{
49076ec2 1481 return ptlock_ptr(virt_to_page(pmd));
e009bb30
KS
1482}
1483
1484static inline bool pgtable_pmd_page_ctor(struct page *page)
1485{
e009bb30
KS
1486#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1487 page->pmd_huge_pte = NULL;
1488#endif
49076ec2 1489 return ptlock_init(page);
e009bb30
KS
1490}
1491
1492static inline void pgtable_pmd_page_dtor(struct page *page)
1493{
1494#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1495 VM_BUG_ON(page->pmd_huge_pte);
1496#endif
49076ec2 1497 ptlock_free(page);
e009bb30
KS
1498}
1499
1500#define pmd_huge_pte(mm, pmd) (virt_to_page(pmd)->pmd_huge_pte)
1501
1502#else
1503
9a86cb7b
KS
1504static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1505{
1506 return &mm->page_table_lock;
1507}
1508
e009bb30
KS
1509static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1510static inline void pgtable_pmd_page_dtor(struct page *page) {}
1511
c389a250 1512#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1513
e009bb30
KS
1514#endif
1515
9a86cb7b
KS
1516static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1517{
1518 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1519 spin_lock(ptl);
1520 return ptl;
1521}
1522
1da177e4 1523extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1524extern void free_area_init_node(int nid, unsigned long * zones_size,
1525 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1526extern void free_initmem(void);
1527
69afade7
JL
1528/*
1529 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1530 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1531 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1532 * Return pages freed into the buddy system.
1533 */
11199692 1534extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1535 int poison, char *s);
c3d5f5f0 1536
cfa11e08
JL
1537#ifdef CONFIG_HIGHMEM
1538/*
1539 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1540 * and totalram_pages.
1541 */
1542extern void free_highmem_page(struct page *page);
1543#endif
69afade7 1544
c3d5f5f0 1545extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1546extern void mem_init_print_info(const char *str);
69afade7
JL
1547
1548/* Free the reserved page into the buddy system, so it gets managed. */
1549static inline void __free_reserved_page(struct page *page)
1550{
1551 ClearPageReserved(page);
1552 init_page_count(page);
1553 __free_page(page);
1554}
1555
1556static inline void free_reserved_page(struct page *page)
1557{
1558 __free_reserved_page(page);
1559 adjust_managed_page_count(page, 1);
1560}
1561
1562static inline void mark_page_reserved(struct page *page)
1563{
1564 SetPageReserved(page);
1565 adjust_managed_page_count(page, -1);
1566}
1567
1568/*
1569 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1570 * The freed pages will be poisoned with pattern "poison" if it's within
1571 * range [0, UCHAR_MAX].
1572 * Return pages freed into the buddy system.
69afade7
JL
1573 */
1574static inline unsigned long free_initmem_default(int poison)
1575{
1576 extern char __init_begin[], __init_end[];
1577
11199692 1578 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1579 poison, "unused kernel");
1580}
1581
7ee3d4e8
JL
1582static inline unsigned long get_num_physpages(void)
1583{
1584 int nid;
1585 unsigned long phys_pages = 0;
1586
1587 for_each_online_node(nid)
1588 phys_pages += node_present_pages(nid);
1589
1590 return phys_pages;
1591}
1592
0ee332c1 1593#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1594/*
0ee332c1 1595 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1596 * zones, allocate the backing mem_map and account for memory holes in a more
1597 * architecture independent manner. This is a substitute for creating the
1598 * zone_sizes[] and zholes_size[] arrays and passing them to
1599 * free_area_init_node()
1600 *
1601 * An architecture is expected to register range of page frames backed by
0ee332c1 1602 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1603 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1604 * usage, an architecture is expected to do something like
1605 *
1606 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1607 * max_highmem_pfn};
1608 * for_each_valid_physical_page_range()
0ee332c1 1609 * memblock_add_node(base, size, nid)
c713216d
MG
1610 * free_area_init_nodes(max_zone_pfns);
1611 *
0ee332c1
TH
1612 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1613 * registered physical page range. Similarly
1614 * sparse_memory_present_with_active_regions() calls memory_present() for
1615 * each range when SPARSEMEM is enabled.
c713216d
MG
1616 *
1617 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1618 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1619 */
1620extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1621unsigned long node_map_pfn_alignment(void);
32996250
YL
1622unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1623 unsigned long end_pfn);
c713216d
MG
1624extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1625 unsigned long end_pfn);
1626extern void get_pfn_range_for_nid(unsigned int nid,
1627 unsigned long *start_pfn, unsigned long *end_pfn);
1628extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1629extern void free_bootmem_with_active_regions(int nid,
1630 unsigned long max_low_pfn);
1631extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1632
0ee332c1 1633#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1634
0ee332c1 1635#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1636 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1637static inline int __early_pfn_to_nid(unsigned long pfn)
1638{
1639 return 0;
1640}
1641#else
1642/* please see mm/page_alloc.c */
1643extern int __meminit early_pfn_to_nid(unsigned long pfn);
1644#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1645/* there is a per-arch backend function. */
1646extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1647#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1648#endif
1649
0e0b864e 1650extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1651extern void memmap_init_zone(unsigned long, int, unsigned long,
1652 unsigned long, enum memmap_context);
bc75d33f 1653extern void setup_per_zone_wmarks(void);
1b79acc9 1654extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1655extern void mem_init(void);
8feae131 1656extern void __init mmap_init(void);
b2b755b5 1657extern void show_mem(unsigned int flags);
1da177e4
LT
1658extern void si_meminfo(struct sysinfo * val);
1659extern void si_meminfo_node(struct sysinfo *val, int nid);
1660
3ee9a4f0
JP
1661extern __printf(3, 4)
1662void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1663
e7c8d5c9 1664extern void setup_per_cpu_pageset(void);
e7c8d5c9 1665
112067f0 1666extern void zone_pcp_update(struct zone *zone);
340175b7 1667extern void zone_pcp_reset(struct zone *zone);
112067f0 1668
75f7ad8e
PS
1669/* page_alloc.c */
1670extern int min_free_kbytes;
1671
8feae131 1672/* nommu.c */
33e5d769 1673extern atomic_long_t mmap_pages_allocated;
7e660872 1674extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1675
6b2dbba8 1676/* interval_tree.c */
6b2dbba8
ML
1677void vma_interval_tree_insert(struct vm_area_struct *node,
1678 struct rb_root *root);
9826a516
ML
1679void vma_interval_tree_insert_after(struct vm_area_struct *node,
1680 struct vm_area_struct *prev,
1681 struct rb_root *root);
6b2dbba8
ML
1682void vma_interval_tree_remove(struct vm_area_struct *node,
1683 struct rb_root *root);
1684struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1685 unsigned long start, unsigned long last);
1686struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1687 unsigned long start, unsigned long last);
1688
1689#define vma_interval_tree_foreach(vma, root, start, last) \
1690 for (vma = vma_interval_tree_iter_first(root, start, last); \
1691 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1692
1693static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1694 struct list_head *list)
1695{
6b2dbba8 1696 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1697}
1698
bf181b9f
ML
1699void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1700 struct rb_root *root);
1701void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1702 struct rb_root *root);
1703struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1704 struct rb_root *root, unsigned long start, unsigned long last);
1705struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1706 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1707#ifdef CONFIG_DEBUG_VM_RB
1708void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1709#endif
bf181b9f
ML
1710
1711#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1712 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1713 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1714
1da177e4 1715/* mmap.c */
34b4e4aa 1716extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1717extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1718 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1719extern struct vm_area_struct *vma_merge(struct mm_struct *,
1720 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1721 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1722 struct mempolicy *);
1723extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1724extern int split_vma(struct mm_struct *,
1725 struct vm_area_struct *, unsigned long addr, int new_below);
1726extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1727extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1728 struct rb_node **, struct rb_node *);
a8fb5618 1729extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1730extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1731 unsigned long addr, unsigned long len, pgoff_t pgoff,
1732 bool *need_rmap_locks);
1da177e4 1733extern void exit_mmap(struct mm_struct *);
925d1c40 1734
7906d00c
AA
1735extern int mm_take_all_locks(struct mm_struct *mm);
1736extern void mm_drop_all_locks(struct mm_struct *mm);
1737
38646013
JS
1738extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1739extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1740
119f657c 1741extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1742extern int install_special_mapping(struct mm_struct *mm,
1743 unsigned long addr, unsigned long len,
1744 unsigned long flags, struct page **pages);
1da177e4
LT
1745
1746extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1747
0165ab44 1748extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1749 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1750extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1751 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1752 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1753extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1754
bebeb3d6
ML
1755#ifdef CONFIG_MMU
1756extern int __mm_populate(unsigned long addr, unsigned long len,
1757 int ignore_errors);
1758static inline void mm_populate(unsigned long addr, unsigned long len)
1759{
1760 /* Ignore errors */
1761 (void) __mm_populate(addr, len, 1);
1762}
1763#else
1764static inline void mm_populate(unsigned long addr, unsigned long len) {}
1765#endif
1766
e4eb1ff6
LT
1767/* These take the mm semaphore themselves */
1768extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1769extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1770extern unsigned long vm_mmap(struct file *, unsigned long,
1771 unsigned long, unsigned long,
1772 unsigned long, unsigned long);
1da177e4 1773
db4fbfb9
ML
1774struct vm_unmapped_area_info {
1775#define VM_UNMAPPED_AREA_TOPDOWN 1
1776 unsigned long flags;
1777 unsigned long length;
1778 unsigned long low_limit;
1779 unsigned long high_limit;
1780 unsigned long align_mask;
1781 unsigned long align_offset;
1782};
1783
1784extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1785extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1786
1787/*
1788 * Search for an unmapped address range.
1789 *
1790 * We are looking for a range that:
1791 * - does not intersect with any VMA;
1792 * - is contained within the [low_limit, high_limit) interval;
1793 * - is at least the desired size.
1794 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1795 */
1796static inline unsigned long
1797vm_unmapped_area(struct vm_unmapped_area_info *info)
1798{
1799 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1800 return unmapped_area(info);
1801 else
1802 return unmapped_area_topdown(info);
1803}
1804
85821aab 1805/* truncate.c */
1da177e4 1806extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1807extern void truncate_inode_pages_range(struct address_space *,
1808 loff_t lstart, loff_t lend);
1da177e4
LT
1809
1810/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1811extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
4fcf1c62 1812extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1813
1814/* mm/page-writeback.c */
1815int write_one_page(struct page *page, int wait);
1cf6e7d8 1816void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1817
1818/* readahead.c */
1819#define VM_MAX_READAHEAD 128 /* kbytes */
1820#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1821
1da177e4 1822int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1823 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1824
1825void page_cache_sync_readahead(struct address_space *mapping,
1826 struct file_ra_state *ra,
1827 struct file *filp,
1828 pgoff_t offset,
1829 unsigned long size);
1830
1831void page_cache_async_readahead(struct address_space *mapping,
1832 struct file_ra_state *ra,
1833 struct file *filp,
1834 struct page *pg,
1835 pgoff_t offset,
1836 unsigned long size);
1837
1da177e4 1838unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1839unsigned long ra_submit(struct file_ra_state *ra,
1840 struct address_space *mapping,
1841 struct file *filp);
1da177e4 1842
d05f3169 1843/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1844extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1845
1846/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1847extern int expand_downwards(struct vm_area_struct *vma,
1848 unsigned long address);
8ca3eb08 1849#if VM_GROWSUP
46dea3d0 1850extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
LT
1851#else
1852 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1853#endif
1da177e4
LT
1854
1855/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1856extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1857extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1858 struct vm_area_struct **pprev);
1859
1860/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1861 NULL if none. Assume start_addr < end_addr. */
1862static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1863{
1864 struct vm_area_struct * vma = find_vma(mm,start_addr);
1865
1866 if (vma && end_addr <= vma->vm_start)
1867 vma = NULL;
1868 return vma;
1869}
1870
1871static inline unsigned long vma_pages(struct vm_area_struct *vma)
1872{
1873 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1874}
1875
640708a2
PE
1876/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1877static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1878 unsigned long vm_start, unsigned long vm_end)
1879{
1880 struct vm_area_struct *vma = find_vma(mm, vm_start);
1881
1882 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1883 vma = NULL;
1884
1885 return vma;
1886}
1887
bad849b3 1888#ifdef CONFIG_MMU
804af2cf 1889pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1890#else
1891static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1892{
1893 return __pgprot(0);
1894}
1895#endif
1896
b24f53a0 1897#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
4b10e7d5 1898unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1899 unsigned long start, unsigned long end);
1900#endif
1901
deceb6cd 1902struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1903int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1904 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1905int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1906int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1907 unsigned long pfn);
423bad60
NP
1908int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1909 unsigned long pfn);
b4cbb197
LT
1910int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1911
deceb6cd 1912
240aadee
ML
1913struct page *follow_page_mask(struct vm_area_struct *vma,
1914 unsigned long address, unsigned int foll_flags,
1915 unsigned int *page_mask);
1916
1917static inline struct page *follow_page(struct vm_area_struct *vma,
1918 unsigned long address, unsigned int foll_flags)
1919{
1920 unsigned int unused_page_mask;
1921 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1922}
1923
deceb6cd
HD
1924#define FOLL_WRITE 0x01 /* check pte is writable */
1925#define FOLL_TOUCH 0x02 /* mark page accessed */
1926#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1927#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1928#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1929#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1930 * and return without waiting upon it */
110d74a9 1931#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1932#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1933#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 1934#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 1935#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1da177e4 1936
2f569afd 1937typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1938 void *data);
1939extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1940 unsigned long size, pte_fn_t fn, void *data);
1941
1da177e4 1942#ifdef CONFIG_PROC_FS
ab50b8ed 1943void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1944#else
ab50b8ed 1945static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1946 unsigned long flags, struct file *file, long pages)
1947{
44de9d0c 1948 mm->total_vm += pages;
1da177e4
LT
1949}
1950#endif /* CONFIG_PROC_FS */
1951
12d6f21e 1952#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1953extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1954#ifdef CONFIG_HIBERNATION
1955extern bool kernel_page_present(struct page *page);
1956#endif /* CONFIG_HIBERNATION */
12d6f21e 1957#else
1da177e4 1958static inline void
9858db50 1959kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1960#ifdef CONFIG_HIBERNATION
1961static inline bool kernel_page_present(struct page *page) { return true; }
1962#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1963#endif
1964
31db58b3 1965extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1966#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1967int in_gate_area_no_mm(unsigned long addr);
83b964bb 1968int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1969#else
cae5d390
SW
1970int in_gate_area_no_mm(unsigned long addr);
1971#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1972#endif /* __HAVE_ARCH_GATE_AREA */
1973
146732ce
JT
1974#ifdef CONFIG_SYSCTL
1975extern int sysctl_drop_caches;
8d65af78 1976int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1977 void __user *, size_t *, loff_t *);
146732ce
JT
1978#endif
1979
a09ed5e0 1980unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1981 unsigned long nr_pages_scanned,
1982 unsigned long lru_pages);
9d0243bc 1983
7a9166e3
LY
1984#ifndef CONFIG_MMU
1985#define randomize_va_space 0
1986#else
a62eaf15 1987extern int randomize_va_space;
7a9166e3 1988#endif
a62eaf15 1989
045e72ac 1990const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1991void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1992
9bdac914
YL
1993void sparse_mem_maps_populate_node(struct page **map_map,
1994 unsigned long pnum_begin,
1995 unsigned long pnum_end,
1996 unsigned long map_count,
1997 int nodeid);
1998
98f3cfc1 1999struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2000pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2001pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2002pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2003pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2004void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2005void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2006void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2007int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2008 int node);
2009int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2010void vmemmap_populate_print_last(void);
0197518c 2011#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2012void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2013#endif
46723bfa
YI
2014void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2015 unsigned long size);
6a46079c 2016
82ba011b
AK
2017enum mf_flags {
2018 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2019 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2020 MF_MUST_KILL = 1 << 2,
cf870c70 2021 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2022};
cd42f4a3 2023extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2024extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2025extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
2026extern int sysctl_memory_failure_early_kill;
2027extern int sysctl_memory_failure_recovery;
facb6011 2028extern void shake_page(struct page *p, int access);
293c07e3 2029extern atomic_long_t num_poisoned_pages;
facb6011 2030extern int soft_offline_page(struct page *page, int flags);
6a46079c 2031
f0b791a3
DH
2032extern void dump_page(struct page *page, char *reason);
2033extern void dump_page_badflags(struct page *page, char *reason,
2034 unsigned long badflags);
718a3821 2035
47ad8475
AA
2036#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2037extern void clear_huge_page(struct page *page,
2038 unsigned long addr,
2039 unsigned int pages_per_huge_page);
2040extern void copy_user_huge_page(struct page *dst, struct page *src,
2041 unsigned long addr, struct vm_area_struct *vma,
2042 unsigned int pages_per_huge_page);
2043#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2044
c0a32fc5
SG
2045#ifdef CONFIG_DEBUG_PAGEALLOC
2046extern unsigned int _debug_guardpage_minorder;
2047
2048static inline unsigned int debug_guardpage_minorder(void)
2049{
2050 return _debug_guardpage_minorder;
2051}
2052
2053static inline bool page_is_guard(struct page *page)
2054{
2055 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2056}
2057#else
2058static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2059static inline bool page_is_guard(struct page *page) { return false; }
2060#endif /* CONFIG_DEBUG_PAGEALLOC */
2061
f9872caf
CS
2062#if MAX_NUMNODES > 1
2063void __init setup_nr_node_ids(void);
2064#else
2065static inline void setup_nr_node_ids(void) {}
2066#endif
2067
1da177e4
LT
2068#endif /* __KERNEL__ */
2069#endif /* _LINUX_MM_H */