[media] vb2: Push mmap_sem down to memops
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
1da177e4
LT
23
24struct mempolicy;
25struct anon_vma;
bf181b9f 26struct anon_vma_chain;
4e950f6f 27struct file_ra_state;
e8edc6e0 28struct user_struct;
4e950f6f 29struct writeback_control;
682aa8e1 30struct bdi_writeback;
1da177e4 31
fccc9987 32#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 33extern unsigned long max_mapnr;
fccc9987
JL
34
35static inline void set_max_mapnr(unsigned long limit)
36{
37 max_mapnr = limit;
38}
39#else
40static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
41#endif
42
4481374c 43extern unsigned long totalram_pages;
1da177e4 44extern void * high_memory;
1da177e4
LT
45extern int page_cluster;
46
47#ifdef CONFIG_SYSCTL
48extern int sysctl_legacy_va_layout;
49#else
50#define sysctl_legacy_va_layout 0
51#endif
52
53#include <asm/page.h>
54#include <asm/pgtable.h>
55#include <asm/processor.h>
1da177e4 56
79442ed1
TC
57#ifndef __pa_symbol
58#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
59#endif
60
593befa6
DD
61/*
62 * To prevent common memory management code establishing
63 * a zero page mapping on a read fault.
64 * This macro should be defined within <asm/pgtable.h>.
65 * s390 does this to prevent multiplexing of hardware bits
66 * related to the physical page in case of virtualization.
67 */
68#ifndef mm_forbids_zeropage
69#define mm_forbids_zeropage(X) (0)
70#endif
71
c9b1d098 72extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 73extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 74
49f0ce5f
JM
75extern int sysctl_overcommit_memory;
76extern int sysctl_overcommit_ratio;
77extern unsigned long sysctl_overcommit_kbytes;
78
79extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
80 size_t *, loff_t *);
81extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
82 size_t *, loff_t *);
83
1da177e4
LT
84#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
85
27ac792c
AR
86/* to align the pointer to the (next) page boundary */
87#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
88
0fa73b86
AM
89/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
90#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
91
1da177e4
LT
92/*
93 * Linux kernel virtual memory manager primitives.
94 * The idea being to have a "virtual" mm in the same way
95 * we have a virtual fs - giving a cleaner interface to the
96 * mm details, and allowing different kinds of memory mappings
97 * (from shared memory to executable loading to arbitrary
98 * mmap() functions).
99 */
100
c43692e8
CL
101extern struct kmem_cache *vm_area_cachep;
102
1da177e4 103#ifndef CONFIG_MMU
8feae131
DH
104extern struct rb_root nommu_region_tree;
105extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
106
107extern unsigned int kobjsize(const void *objp);
108#endif
109
110/*
605d9288 111 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 112 */
cc2383ec
KK
113#define VM_NONE 0x00000000
114
1da177e4
LT
115#define VM_READ 0x00000001 /* currently active flags */
116#define VM_WRITE 0x00000002
117#define VM_EXEC 0x00000004
118#define VM_SHARED 0x00000008
119
7e2cff42 120/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
121#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
122#define VM_MAYWRITE 0x00000020
123#define VM_MAYEXEC 0x00000040
124#define VM_MAYSHARE 0x00000080
125
126#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 127#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
128#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
129
1da177e4
LT
130#define VM_LOCKED 0x00002000
131#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
132
133 /* Used by sys_madvise() */
134#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
135#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
136
137#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
138#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 139#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 140#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 141#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 142#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 143#define VM_ARCH_2 0x02000000
0103bd16 144#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 145
d9104d1c
CG
146#ifdef CONFIG_MEM_SOFT_DIRTY
147# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
148#else
149# define VM_SOFTDIRTY 0
150#endif
151
b379d790 152#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
153#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
154#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 155#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 156
cc2383ec
KK
157#if defined(CONFIG_X86)
158# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
159#elif defined(CONFIG_PPC)
160# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
161#elif defined(CONFIG_PARISC)
162# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
163#elif defined(CONFIG_METAG)
164# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
165#elif defined(CONFIG_IA64)
166# define VM_GROWSUP VM_ARCH_1
167#elif !defined(CONFIG_MMU)
168# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
169#endif
170
4aae7e43
QR
171#if defined(CONFIG_X86)
172/* MPX specific bounds table or bounds directory */
173# define VM_MPX VM_ARCH_2
174#endif
175
cc2383ec
KK
176#ifndef VM_GROWSUP
177# define VM_GROWSUP VM_NONE
178#endif
179
a8bef8ff
MG
180/* Bits set in the VMA until the stack is in its final location */
181#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
182
1da177e4
LT
183#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
184#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
185#endif
186
187#ifdef CONFIG_STACK_GROWSUP
188#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
189#else
190#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
191#endif
192
b291f000 193/*
78f11a25
AA
194 * Special vmas that are non-mergable, non-mlock()able.
195 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 196 */
9050d7eb 197#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 198
a0715cc2
AT
199/* This mask defines which mm->def_flags a process can inherit its parent */
200#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
201
1da177e4
LT
202/*
203 * mapping from the currently active vm_flags protection bits (the
204 * low four bits) to a page protection mask..
205 */
206extern pgprot_t protection_map[16];
207
d0217ac0 208#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
209#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
210#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
211#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
212#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
213#define FAULT_FLAG_TRIED 0x20 /* Second try */
214#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 215
54cb8821 216/*
d0217ac0 217 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
218 * ->fault function. The vma's ->fault is responsible for returning a bitmask
219 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 220 *
9b4bdd2f 221 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 222 */
d0217ac0
NP
223struct vm_fault {
224 unsigned int flags; /* FAULT_FLAG_xxx flags */
225 pgoff_t pgoff; /* Logical page offset based on vma */
226 void __user *virtual_address; /* Faulting virtual address */
227
2e4cdab0 228 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 229 struct page *page; /* ->fault handlers should return a
83c54070 230 * page here, unless VM_FAULT_NOPAGE
d0217ac0 231 * is set (which is also implied by
83c54070 232 * VM_FAULT_ERROR).
d0217ac0 233 */
8c6e50b0
KS
234 /* for ->map_pages() only */
235 pgoff_t max_pgoff; /* map pages for offset from pgoff till
236 * max_pgoff inclusive */
237 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 238};
1da177e4
LT
239
240/*
241 * These are the virtual MM functions - opening of an area, closing and
242 * unmapping it (needed to keep files on disk up-to-date etc), pointer
243 * to the functions called when a no-page or a wp-page exception occurs.
244 */
245struct vm_operations_struct {
246 void (*open)(struct vm_area_struct * area);
247 void (*close)(struct vm_area_struct * area);
d0217ac0 248 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
8c6e50b0 249 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
250
251 /* notification that a previously read-only page is about to become
252 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 253 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 254
dd906184
BH
255 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
256 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
257
28b2ee20
RR
258 /* called by access_process_vm when get_user_pages() fails, typically
259 * for use by special VMAs that can switch between memory and hardware
260 */
261 int (*access)(struct vm_area_struct *vma, unsigned long addr,
262 void *buf, int len, int write);
78d683e8
AL
263
264 /* Called by the /proc/PID/maps code to ask the vma whether it
265 * has a special name. Returning non-NULL will also cause this
266 * vma to be dumped unconditionally. */
267 const char *(*name)(struct vm_area_struct *vma);
268
1da177e4 269#ifdef CONFIG_NUMA
a6020ed7
LS
270 /*
271 * set_policy() op must add a reference to any non-NULL @new mempolicy
272 * to hold the policy upon return. Caller should pass NULL @new to
273 * remove a policy and fall back to surrounding context--i.e. do not
274 * install a MPOL_DEFAULT policy, nor the task or system default
275 * mempolicy.
276 */
1da177e4 277 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
278
279 /*
280 * get_policy() op must add reference [mpol_get()] to any policy at
281 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
282 * in mm/mempolicy.c will do this automatically.
283 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
284 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
285 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
286 * must return NULL--i.e., do not "fallback" to task or system default
287 * policy.
288 */
1da177e4
LT
289 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
290 unsigned long addr);
291#endif
667a0a06
DV
292 /*
293 * Called by vm_normal_page() for special PTEs to find the
294 * page for @addr. This is useful if the default behavior
295 * (using pte_page()) would not find the correct page.
296 */
297 struct page *(*find_special_page)(struct vm_area_struct *vma,
298 unsigned long addr);
1da177e4
LT
299};
300
301struct mmu_gather;
302struct inode;
303
349aef0b
AM
304#define page_private(page) ((page)->private)
305#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 306
b12c4ad1
MK
307/* It's valid only if the page is free path or free_list */
308static inline void set_freepage_migratetype(struct page *page, int migratetype)
309{
95e34412 310 page->index = migratetype;
b12c4ad1
MK
311}
312
313/* It's valid only if the page is free path or free_list */
314static inline int get_freepage_migratetype(struct page *page)
315{
95e34412 316 return page->index;
b12c4ad1
MK
317}
318
1da177e4
LT
319/*
320 * FIXME: take this include out, include page-flags.h in
321 * files which need it (119 of them)
322 */
323#include <linux/page-flags.h>
71e3aac0 324#include <linux/huge_mm.h>
1da177e4
LT
325
326/*
327 * Methods to modify the page usage count.
328 *
329 * What counts for a page usage:
330 * - cache mapping (page->mapping)
331 * - private data (page->private)
332 * - page mapped in a task's page tables, each mapping
333 * is counted separately
334 *
335 * Also, many kernel routines increase the page count before a critical
336 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
337 */
338
339/*
da6052f7 340 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 341 */
7c8ee9a8
NP
342static inline int put_page_testzero(struct page *page)
343{
309381fe 344 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 345 return atomic_dec_and_test(&page->_count);
7c8ee9a8 346}
1da177e4
LT
347
348/*
7c8ee9a8
NP
349 * Try to grab a ref unless the page has a refcount of zero, return false if
350 * that is the case.
8e0861fa
AK
351 * This can be called when MMU is off so it must not access
352 * any of the virtual mappings.
1da177e4 353 */
7c8ee9a8
NP
354static inline int get_page_unless_zero(struct page *page)
355{
8dc04efb 356 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 357}
1da177e4 358
8e0861fa
AK
359/*
360 * Try to drop a ref unless the page has a refcount of one, return false if
361 * that is the case.
362 * This is to make sure that the refcount won't become zero after this drop.
363 * This can be called when MMU is off so it must not access
364 * any of the virtual mappings.
365 */
366static inline int put_page_unless_one(struct page *page)
367{
368 return atomic_add_unless(&page->_count, -1, 1);
369}
370
53df8fdc 371extern int page_is_ram(unsigned long pfn);
67cf13ce 372extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
53df8fdc 373
48667e7a 374/* Support for virtually mapped pages */
b3bdda02
CL
375struct page *vmalloc_to_page(const void *addr);
376unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 377
0738c4bb
PM
378/*
379 * Determine if an address is within the vmalloc range
380 *
381 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
382 * is no special casing required.
383 */
9e2779fa
CL
384static inline int is_vmalloc_addr(const void *x)
385{
0738c4bb 386#ifdef CONFIG_MMU
9e2779fa
CL
387 unsigned long addr = (unsigned long)x;
388
389 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
390#else
391 return 0;
8ca3ed87 392#endif
0738c4bb 393}
81ac3ad9
KH
394#ifdef CONFIG_MMU
395extern int is_vmalloc_or_module_addr(const void *x);
396#else
934831d0 397static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
398{
399 return 0;
400}
401#endif
9e2779fa 402
39f1f78d
AV
403extern void kvfree(const void *addr);
404
e9da73d6
AA
405static inline void compound_lock(struct page *page)
406{
407#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 408 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
409 bit_spin_lock(PG_compound_lock, &page->flags);
410#endif
411}
412
413static inline void compound_unlock(struct page *page)
414{
415#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 416 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
417 bit_spin_unlock(PG_compound_lock, &page->flags);
418#endif
419}
420
421static inline unsigned long compound_lock_irqsave(struct page *page)
422{
423 unsigned long uninitialized_var(flags);
424#ifdef CONFIG_TRANSPARENT_HUGEPAGE
425 local_irq_save(flags);
426 compound_lock(page);
427#endif
428 return flags;
429}
430
431static inline void compound_unlock_irqrestore(struct page *page,
432 unsigned long flags)
433{
434#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435 compound_unlock(page);
436 local_irq_restore(flags);
437#endif
438}
439
d2ee40ea
JZ
440static inline struct page *compound_head_by_tail(struct page *tail)
441{
442 struct page *head = tail->first_page;
443
444 /*
445 * page->first_page may be a dangling pointer to an old
446 * compound page, so recheck that it is still a tail
447 * page before returning.
448 */
449 smp_rmb();
450 if (likely(PageTail(tail)))
451 return head;
452 return tail;
453}
454
ccaafd7f
JK
455/*
456 * Since either compound page could be dismantled asynchronously in THP
457 * or we access asynchronously arbitrary positioned struct page, there
458 * would be tail flag race. To handle this race, we should call
459 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
460 */
d85f3385
CL
461static inline struct page *compound_head(struct page *page)
462{
d2ee40ea
JZ
463 if (unlikely(PageTail(page)))
464 return compound_head_by_tail(page);
d85f3385
CL
465 return page;
466}
467
ccaafd7f
JK
468/*
469 * If we access compound page synchronously such as access to
470 * allocated page, there is no need to handle tail flag race, so we can
471 * check tail flag directly without any synchronization primitive.
472 */
473static inline struct page *compound_head_fast(struct page *page)
474{
475 if (unlikely(PageTail(page)))
476 return page->first_page;
477 return page;
478}
479
70b50f94
AA
480/*
481 * The atomic page->_mapcount, starts from -1: so that transitions
482 * both from it and to it can be tracked, using atomic_inc_and_test
483 * and atomic_add_negative(-1).
484 */
22b751c3 485static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
486{
487 atomic_set(&(page)->_mapcount, -1);
488}
489
490static inline int page_mapcount(struct page *page)
491{
1d148e21
WY
492 VM_BUG_ON_PAGE(PageSlab(page), page);
493 return atomic_read(&page->_mapcount) + 1;
70b50f94
AA
494}
495
4c21e2f2 496static inline int page_count(struct page *page)
1da177e4 497{
d85f3385 498 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
499}
500
44518d2b
AA
501static inline bool __compound_tail_refcounted(struct page *page)
502{
c761471b 503 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
44518d2b
AA
504}
505
506/*
507 * This takes a head page as parameter and tells if the
508 * tail page reference counting can be skipped.
509 *
510 * For this to be safe, PageSlab and PageHeadHuge must remain true on
511 * any given page where they return true here, until all tail pins
512 * have been released.
513 */
514static inline bool compound_tail_refcounted(struct page *page)
515{
309381fe 516 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
517 return __compound_tail_refcounted(page);
518}
519
b35a35b5
AA
520static inline void get_huge_page_tail(struct page *page)
521{
522 /*
5eaf1a9e 523 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 524 */
309381fe
SL
525 VM_BUG_ON_PAGE(!PageTail(page), page);
526 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
527 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
5eaf1a9e 528 if (compound_tail_refcounted(page->first_page))
44518d2b 529 atomic_inc(&page->_mapcount);
b35a35b5
AA
530}
531
70b50f94
AA
532extern bool __get_page_tail(struct page *page);
533
1da177e4
LT
534static inline void get_page(struct page *page)
535{
70b50f94
AA
536 if (unlikely(PageTail(page)))
537 if (likely(__get_page_tail(page)))
538 return;
91807063
AA
539 /*
540 * Getting a normal page or the head of a compound page
70b50f94 541 * requires to already have an elevated page->_count.
91807063 542 */
309381fe 543 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
544 atomic_inc(&page->_count);
545}
546
b49af68f
CL
547static inline struct page *virt_to_head_page(const void *x)
548{
549 struct page *page = virt_to_page(x);
ccaafd7f
JK
550
551 /*
552 * We don't need to worry about synchronization of tail flag
553 * when we call virt_to_head_page() since it is only called for
554 * already allocated page and this page won't be freed until
555 * this virt_to_head_page() is finished. So use _fast variant.
556 */
557 return compound_head_fast(page);
b49af68f
CL
558}
559
7835e98b
NP
560/*
561 * Setup the page count before being freed into the page allocator for
562 * the first time (boot or memory hotplug)
563 */
564static inline void init_page_count(struct page *page)
565{
566 atomic_set(&page->_count, 1);
567}
568
1da177e4 569void put_page(struct page *page);
1d7ea732 570void put_pages_list(struct list_head *pages);
1da177e4 571
8dfcc9ba 572void split_page(struct page *page, unsigned int order);
748446bb 573int split_free_page(struct page *page);
8dfcc9ba 574
33f2ef89
AW
575/*
576 * Compound pages have a destructor function. Provide a
577 * prototype for that function and accessor functions.
578 * These are _only_ valid on the head of a PG_compound page.
579 */
33f2ef89
AW
580
581static inline void set_compound_page_dtor(struct page *page,
582 compound_page_dtor *dtor)
583{
e4b294c2 584 page[1].compound_dtor = dtor;
33f2ef89
AW
585}
586
587static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
588{
e4b294c2 589 return page[1].compound_dtor;
33f2ef89
AW
590}
591
d85f3385
CL
592static inline int compound_order(struct page *page)
593{
6d777953 594 if (!PageHead(page))
d85f3385 595 return 0;
e4b294c2 596 return page[1].compound_order;
d85f3385
CL
597}
598
599static inline void set_compound_order(struct page *page, unsigned long order)
600{
e4b294c2 601 page[1].compound_order = order;
d85f3385
CL
602}
603
3dece370 604#ifdef CONFIG_MMU
14fd403f
AA
605/*
606 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
607 * servicing faults for write access. In the normal case, do always want
608 * pte_mkwrite. But get_user_pages can cause write faults for mappings
609 * that do not have writing enabled, when used by access_process_vm.
610 */
611static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
612{
613 if (likely(vma->vm_flags & VM_WRITE))
614 pte = pte_mkwrite(pte);
615 return pte;
616}
8c6e50b0
KS
617
618void do_set_pte(struct vm_area_struct *vma, unsigned long address,
619 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 620#endif
14fd403f 621
1da177e4
LT
622/*
623 * Multiple processes may "see" the same page. E.g. for untouched
624 * mappings of /dev/null, all processes see the same page full of
625 * zeroes, and text pages of executables and shared libraries have
626 * only one copy in memory, at most, normally.
627 *
628 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
629 * page_count() == 0 means the page is free. page->lru is then used for
630 * freelist management in the buddy allocator.
da6052f7 631 * page_count() > 0 means the page has been allocated.
1da177e4 632 *
da6052f7
NP
633 * Pages are allocated by the slab allocator in order to provide memory
634 * to kmalloc and kmem_cache_alloc. In this case, the management of the
635 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
636 * unless a particular usage is carefully commented. (the responsibility of
637 * freeing the kmalloc memory is the caller's, of course).
1da177e4 638 *
da6052f7
NP
639 * A page may be used by anyone else who does a __get_free_page().
640 * In this case, page_count still tracks the references, and should only
641 * be used through the normal accessor functions. The top bits of page->flags
642 * and page->virtual store page management information, but all other fields
643 * are unused and could be used privately, carefully. The management of this
644 * page is the responsibility of the one who allocated it, and those who have
645 * subsequently been given references to it.
646 *
647 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
648 * managed by the Linux memory manager: I/O, buffers, swapping etc.
649 * The following discussion applies only to them.
650 *
da6052f7
NP
651 * A pagecache page contains an opaque `private' member, which belongs to the
652 * page's address_space. Usually, this is the address of a circular list of
653 * the page's disk buffers. PG_private must be set to tell the VM to call
654 * into the filesystem to release these pages.
1da177e4 655 *
da6052f7
NP
656 * A page may belong to an inode's memory mapping. In this case, page->mapping
657 * is the pointer to the inode, and page->index is the file offset of the page,
658 * in units of PAGE_CACHE_SIZE.
1da177e4 659 *
da6052f7
NP
660 * If pagecache pages are not associated with an inode, they are said to be
661 * anonymous pages. These may become associated with the swapcache, and in that
662 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 663 *
da6052f7
NP
664 * In either case (swapcache or inode backed), the pagecache itself holds one
665 * reference to the page. Setting PG_private should also increment the
666 * refcount. The each user mapping also has a reference to the page.
1da177e4 667 *
da6052f7
NP
668 * The pagecache pages are stored in a per-mapping radix tree, which is
669 * rooted at mapping->page_tree, and indexed by offset.
670 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
671 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 672 *
da6052f7 673 * All pagecache pages may be subject to I/O:
1da177e4
LT
674 * - inode pages may need to be read from disk,
675 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
676 * to be written back to the inode on disk,
677 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
678 * modified may need to be swapped out to swap space and (later) to be read
679 * back into memory.
1da177e4
LT
680 */
681
682/*
683 * The zone field is never updated after free_area_init_core()
684 * sets it, so none of the operations on it need to be atomic.
1da177e4 685 */
348f8b6c 686
90572890 687/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 688#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
689#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
690#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 691#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 692
348f8b6c 693/*
25985edc 694 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
695 * sections we define the shift as 0; that plus a 0 mask ensures
696 * the compiler will optimise away reference to them.
697 */
d41dee36
AW
698#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
699#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
700#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 701#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 702
bce54bbf
WD
703/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
704#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 705#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
706#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
707 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 708#else
89689ae7 709#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
710#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
711 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
712#endif
713
bd8029b6 714#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 715
9223b419
CL
716#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
717#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
718#endif
719
d41dee36
AW
720#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
721#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
722#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 723#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 724#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 725
33dd4e0e 726static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 727{
348f8b6c 728 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 729}
1da177e4 730
9127ab4f
CS
731#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
732#define SECTION_IN_PAGE_FLAGS
733#endif
734
89689ae7 735/*
7a8010cd
VB
736 * The identification function is mainly used by the buddy allocator for
737 * determining if two pages could be buddies. We are not really identifying
738 * the zone since we could be using the section number id if we do not have
739 * node id available in page flags.
740 * We only guarantee that it will return the same value for two combinable
741 * pages in a zone.
89689ae7 742 */
cb2b95e1
AW
743static inline int page_zone_id(struct page *page)
744{
89689ae7 745 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
746}
747
25ba77c1 748static inline int zone_to_nid(struct zone *zone)
89fa3024 749{
d5f541ed
CL
750#ifdef CONFIG_NUMA
751 return zone->node;
752#else
753 return 0;
754#endif
89fa3024
CL
755}
756
89689ae7 757#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 758extern int page_to_nid(const struct page *page);
89689ae7 759#else
33dd4e0e 760static inline int page_to_nid(const struct page *page)
d41dee36 761{
89689ae7 762 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 763}
89689ae7
CL
764#endif
765
57e0a030 766#ifdef CONFIG_NUMA_BALANCING
90572890 767static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 768{
90572890 769 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
770}
771
90572890 772static inline int cpupid_to_pid(int cpupid)
57e0a030 773{
90572890 774 return cpupid & LAST__PID_MASK;
57e0a030 775}
b795854b 776
90572890 777static inline int cpupid_to_cpu(int cpupid)
b795854b 778{
90572890 779 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
780}
781
90572890 782static inline int cpupid_to_nid(int cpupid)
b795854b 783{
90572890 784 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
785}
786
90572890 787static inline bool cpupid_pid_unset(int cpupid)
57e0a030 788{
90572890 789 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
790}
791
90572890 792static inline bool cpupid_cpu_unset(int cpupid)
b795854b 793{
90572890 794 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
795}
796
8c8a743c
PZ
797static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
798{
799 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
800}
801
802#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
803#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
804static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 805{
1ae71d03 806 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 807}
90572890
PZ
808
809static inline int page_cpupid_last(struct page *page)
810{
811 return page->_last_cpupid;
812}
813static inline void page_cpupid_reset_last(struct page *page)
b795854b 814{
1ae71d03 815 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
816}
817#else
90572890 818static inline int page_cpupid_last(struct page *page)
75980e97 819{
90572890 820 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
821}
822
90572890 823extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 824
90572890 825static inline void page_cpupid_reset_last(struct page *page)
75980e97 826{
90572890 827 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 828
90572890
PZ
829 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
830 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 831}
90572890
PZ
832#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
833#else /* !CONFIG_NUMA_BALANCING */
834static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 835{
90572890 836 return page_to_nid(page); /* XXX */
57e0a030
MG
837}
838
90572890 839static inline int page_cpupid_last(struct page *page)
57e0a030 840{
90572890 841 return page_to_nid(page); /* XXX */
57e0a030
MG
842}
843
90572890 844static inline int cpupid_to_nid(int cpupid)
b795854b
MG
845{
846 return -1;
847}
848
90572890 849static inline int cpupid_to_pid(int cpupid)
b795854b
MG
850{
851 return -1;
852}
853
90572890 854static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
855{
856 return -1;
857}
858
90572890
PZ
859static inline int cpu_pid_to_cpupid(int nid, int pid)
860{
861 return -1;
862}
863
864static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
865{
866 return 1;
867}
868
90572890 869static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
870{
871}
8c8a743c
PZ
872
873static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
874{
875 return false;
876}
90572890 877#endif /* CONFIG_NUMA_BALANCING */
57e0a030 878
33dd4e0e 879static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
880{
881 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
882}
883
9127ab4f 884#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
885static inline void set_page_section(struct page *page, unsigned long section)
886{
887 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
888 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
889}
890
aa462abe 891static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
892{
893 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
894}
308c05e3 895#endif
d41dee36 896
2f1b6248 897static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
898{
899 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
900 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
901}
2f1b6248 902
348f8b6c
DH
903static inline void set_page_node(struct page *page, unsigned long node)
904{
905 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
906 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 907}
89689ae7 908
2f1b6248 909static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 910 unsigned long node, unsigned long pfn)
1da177e4 911{
348f8b6c
DH
912 set_page_zone(page, zone);
913 set_page_node(page, node);
9127ab4f 914#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 915 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 916#endif
1da177e4
LT
917}
918
f6ac2354
CL
919/*
920 * Some inline functions in vmstat.h depend on page_zone()
921 */
922#include <linux/vmstat.h>
923
33dd4e0e 924static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 925{
aa462abe 926 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
927}
928
929#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
930#define HASHED_PAGE_VIRTUAL
931#endif
932
933#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
934static inline void *page_address(const struct page *page)
935{
936 return page->virtual;
937}
938static inline void set_page_address(struct page *page, void *address)
939{
940 page->virtual = address;
941}
1da177e4
LT
942#define page_address_init() do { } while(0)
943#endif
944
945#if defined(HASHED_PAGE_VIRTUAL)
f9918794 946void *page_address(const struct page *page);
1da177e4
LT
947void set_page_address(struct page *page, void *virtual);
948void page_address_init(void);
949#endif
950
951#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
952#define page_address(page) lowmem_page_address(page)
953#define set_page_address(page, address) do { } while(0)
954#define page_address_init() do { } while(0)
955#endif
956
e39155ea
KS
957extern void *page_rmapping(struct page *page);
958extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 959extern struct address_space *page_mapping(struct page *page);
1da177e4 960
f981c595
MG
961extern struct address_space *__page_file_mapping(struct page *);
962
963static inline
964struct address_space *page_file_mapping(struct page *page)
965{
966 if (unlikely(PageSwapCache(page)))
967 return __page_file_mapping(page);
968
969 return page->mapping;
970}
971
1da177e4
LT
972/*
973 * Return the pagecache index of the passed page. Regular pagecache pages
974 * use ->index whereas swapcache pages use ->private
975 */
976static inline pgoff_t page_index(struct page *page)
977{
978 if (unlikely(PageSwapCache(page)))
4c21e2f2 979 return page_private(page);
1da177e4
LT
980 return page->index;
981}
982
f981c595
MG
983extern pgoff_t __page_file_index(struct page *page);
984
985/*
986 * Return the file index of the page. Regular pagecache pages use ->index
987 * whereas swapcache pages use swp_offset(->private)
988 */
989static inline pgoff_t page_file_index(struct page *page)
990{
991 if (unlikely(PageSwapCache(page)))
992 return __page_file_index(page);
993
994 return page->index;
995}
996
1da177e4
LT
997/*
998 * Return true if this page is mapped into pagetables.
999 */
1000static inline int page_mapped(struct page *page)
1001{
1002 return atomic_read(&(page)->_mapcount) >= 0;
1003}
1004
1da177e4
LT
1005/*
1006 * Different kinds of faults, as returned by handle_mm_fault().
1007 * Used to decide whether a process gets delivered SIGBUS or
1008 * just gets major/minor fault counters bumped up.
1009 */
d0217ac0 1010
83c54070 1011#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1012
83c54070
NP
1013#define VM_FAULT_OOM 0x0001
1014#define VM_FAULT_SIGBUS 0x0002
1015#define VM_FAULT_MAJOR 0x0004
1016#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1017#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1018#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1019#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1020
83c54070
NP
1021#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1022#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1023#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1024#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1025
aa50d3a7
AK
1026#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1027
33692f27
LT
1028#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1029 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1030 VM_FAULT_FALLBACK)
aa50d3a7
AK
1031
1032/* Encode hstate index for a hwpoisoned large page */
1033#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1034#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1035
1c0fe6e3
NP
1036/*
1037 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1038 */
1039extern void pagefault_out_of_memory(void);
1040
1da177e4
LT
1041#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1042
ddd588b5 1043/*
7bf02ea2 1044 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1045 * various contexts.
1046 */
4b59e6c4 1047#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1048
7bf02ea2
DR
1049extern void show_free_areas(unsigned int flags);
1050extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1051
1da177e4 1052int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1053#ifdef CONFIG_SHMEM
1054bool shmem_mapping(struct address_space *mapping);
1055#else
1056static inline bool shmem_mapping(struct address_space *mapping)
1057{
1058 return false;
1059}
1060#endif
1da177e4 1061
e8edc6e0 1062extern int can_do_mlock(void);
1da177e4
LT
1063extern int user_shm_lock(size_t, struct user_struct *);
1064extern void user_shm_unlock(size_t, struct user_struct *);
1065
1066/*
1067 * Parameter block passed down to zap_pte_range in exceptional cases.
1068 */
1069struct zap_details {
1da177e4
LT
1070 struct address_space *check_mapping; /* Check page->mapping if set */
1071 pgoff_t first_index; /* Lowest page->index to unmap */
1072 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1073};
1074
7e675137
NP
1075struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1076 pte_t pte);
1077
c627f9cc
JS
1078int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1079 unsigned long size);
14f5ff5d 1080void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1081 unsigned long size, struct zap_details *);
4f74d2c8
LT
1082void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1083 unsigned long start, unsigned long end);
e6473092
MM
1084
1085/**
1086 * mm_walk - callbacks for walk_page_range
e6473092 1087 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1088 * this handler is required to be able to handle
1089 * pmd_trans_huge() pmds. They may simply choose to
1090 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1091 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1092 * @pte_hole: if set, called for each hole at all levels
5dc37642 1093 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1094 * @test_walk: caller specific callback function to determine whether
1095 * we walk over the current vma or not. A positive returned
1096 * value means "do page table walk over the current vma,"
1097 * and a negative one means "abort current page table walk
1098 * right now." 0 means "skip the current vma."
1099 * @mm: mm_struct representing the target process of page table walk
1100 * @vma: vma currently walked (NULL if walking outside vmas)
1101 * @private: private data for callbacks' usage
e6473092 1102 *
fafaa426 1103 * (see the comment on walk_page_range() for more details)
e6473092
MM
1104 */
1105struct mm_walk {
0f157a5b
AM
1106 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1107 unsigned long next, struct mm_walk *walk);
1108 int (*pte_entry)(pte_t *pte, unsigned long addr,
1109 unsigned long next, struct mm_walk *walk);
1110 int (*pte_hole)(unsigned long addr, unsigned long next,
1111 struct mm_walk *walk);
1112 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1113 unsigned long addr, unsigned long next,
1114 struct mm_walk *walk);
fafaa426
NH
1115 int (*test_walk)(unsigned long addr, unsigned long next,
1116 struct mm_walk *walk);
2165009b 1117 struct mm_struct *mm;
fafaa426 1118 struct vm_area_struct *vma;
2165009b 1119 void *private;
e6473092
MM
1120};
1121
2165009b
DH
1122int walk_page_range(unsigned long addr, unsigned long end,
1123 struct mm_walk *walk);
900fc5f1 1124int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1125void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1126 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1127int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1128 struct vm_area_struct *vma);
1da177e4
LT
1129void unmap_mapping_range(struct address_space *mapping,
1130 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1131int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1132 unsigned long *pfn);
d87fe660 1133int follow_phys(struct vm_area_struct *vma, unsigned long address,
1134 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1135int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1136 void *buf, int len, int write);
1da177e4
LT
1137
1138static inline void unmap_shared_mapping_range(struct address_space *mapping,
1139 loff_t const holebegin, loff_t const holelen)
1140{
1141 unmap_mapping_range(mapping, holebegin, holelen, 0);
1142}
1143
7caef267 1144extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1145extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1146void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1147void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1148int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1149int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1150int invalidate_inode_page(struct page *page);
1151
7ee1dd3f 1152#ifdef CONFIG_MMU
83c54070 1153extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1154 unsigned long address, unsigned int flags);
5c723ba5
PZ
1155extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1156 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1157#else
1158static inline int handle_mm_fault(struct mm_struct *mm,
1159 struct vm_area_struct *vma, unsigned long address,
d06063cc 1160 unsigned int flags)
7ee1dd3f
DH
1161{
1162 /* should never happen if there's no MMU */
1163 BUG();
1164 return VM_FAULT_SIGBUS;
1165}
5c723ba5
PZ
1166static inline int fixup_user_fault(struct task_struct *tsk,
1167 struct mm_struct *mm, unsigned long address,
1168 unsigned int fault_flags)
1169{
1170 /* should never happen if there's no MMU */
1171 BUG();
1172 return -EFAULT;
1173}
7ee1dd3f 1174#endif
f33ea7f4 1175
1da177e4 1176extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1177extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1178 void *buf, int len, int write);
1da177e4 1179
28a35716
ML
1180long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1181 unsigned long start, unsigned long nr_pages,
1182 unsigned int foll_flags, struct page **pages,
1183 struct vm_area_struct **vmas, int *nonblocking);
1184long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1185 unsigned long start, unsigned long nr_pages,
1186 int write, int force, struct page **pages,
1187 struct vm_area_struct **vmas);
f0818f47
AA
1188long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1189 unsigned long start, unsigned long nr_pages,
1190 int write, int force, struct page **pages,
1191 int *locked);
0fd71a56
AA
1192long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1193 unsigned long start, unsigned long nr_pages,
1194 int write, int force, struct page **pages,
1195 unsigned int gup_flags);
f0818f47
AA
1196long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1197 unsigned long start, unsigned long nr_pages,
1198 int write, int force, struct page **pages);
d2bf6be8
NP
1199int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1200 struct page **pages);
18022c5d
MG
1201struct kvec;
1202int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1203 struct page **pages);
1204int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1205struct page *get_dump_page(unsigned long addr);
1da177e4 1206
cf9a2ae8 1207extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1208extern void do_invalidatepage(struct page *page, unsigned int offset,
1209 unsigned int length);
cf9a2ae8 1210
1da177e4 1211int __set_page_dirty_nobuffers(struct page *page);
76719325 1212int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1213int redirty_page_for_writepage(struct writeback_control *wbc,
1214 struct page *page);
c4843a75
GT
1215void account_page_dirtied(struct page *page, struct address_space *mapping,
1216 struct mem_cgroup *memcg);
1217void account_page_cleaned(struct page *page, struct address_space *mapping,
682aa8e1 1218 struct mem_cgroup *memcg, struct bdi_writeback *wb);
b3c97528 1219int set_page_dirty(struct page *page);
1da177e4 1220int set_page_dirty_lock(struct page *page);
11f81bec 1221void cancel_dirty_page(struct page *page);
1da177e4 1222int clear_page_dirty_for_io(struct page *page);
b9ea2515 1223
a9090253 1224int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1225
39aa3cb3 1226/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1227static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1228{
1229 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1230}
1231
a09a79f6
MP
1232static inline int stack_guard_page_start(struct vm_area_struct *vma,
1233 unsigned long addr)
1234{
1235 return (vma->vm_flags & VM_GROWSDOWN) &&
1236 (vma->vm_start == addr) &&
1237 !vma_growsdown(vma->vm_prev, addr);
1238}
1239
1240/* Is the vma a continuation of the stack vma below it? */
1241static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1242{
1243 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1244}
1245
1246static inline int stack_guard_page_end(struct vm_area_struct *vma,
1247 unsigned long addr)
1248{
1249 return (vma->vm_flags & VM_GROWSUP) &&
1250 (vma->vm_end == addr) &&
1251 !vma_growsup(vma->vm_next, addr);
1252}
1253
58cb6548
ON
1254extern struct task_struct *task_of_stack(struct task_struct *task,
1255 struct vm_area_struct *vma, bool in_group);
b7643757 1256
b6a2fea3
OW
1257extern unsigned long move_page_tables(struct vm_area_struct *vma,
1258 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1259 unsigned long new_addr, unsigned long len,
1260 bool need_rmap_locks);
7da4d641
PZ
1261extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1262 unsigned long end, pgprot_t newprot,
4b10e7d5 1263 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1264extern int mprotect_fixup(struct vm_area_struct *vma,
1265 struct vm_area_struct **pprev, unsigned long start,
1266 unsigned long end, unsigned long newflags);
1da177e4 1267
465a454f
PZ
1268/*
1269 * doesn't attempt to fault and will return short.
1270 */
1271int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1272 struct page **pages);
d559db08
KH
1273/*
1274 * per-process(per-mm_struct) statistics.
1275 */
d559db08
KH
1276static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1277{
69c97823
KK
1278 long val = atomic_long_read(&mm->rss_stat.count[member]);
1279
1280#ifdef SPLIT_RSS_COUNTING
1281 /*
1282 * counter is updated in asynchronous manner and may go to minus.
1283 * But it's never be expected number for users.
1284 */
1285 if (val < 0)
1286 val = 0;
172703b0 1287#endif
69c97823
KK
1288 return (unsigned long)val;
1289}
d559db08
KH
1290
1291static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1292{
172703b0 1293 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1294}
1295
1296static inline void inc_mm_counter(struct mm_struct *mm, int member)
1297{
172703b0 1298 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1299}
1300
1301static inline void dec_mm_counter(struct mm_struct *mm, int member)
1302{
172703b0 1303 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1304}
1305
d559db08
KH
1306static inline unsigned long get_mm_rss(struct mm_struct *mm)
1307{
1308 return get_mm_counter(mm, MM_FILEPAGES) +
1309 get_mm_counter(mm, MM_ANONPAGES);
1310}
1311
1312static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1313{
1314 return max(mm->hiwater_rss, get_mm_rss(mm));
1315}
1316
1317static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1318{
1319 return max(mm->hiwater_vm, mm->total_vm);
1320}
1321
1322static inline void update_hiwater_rss(struct mm_struct *mm)
1323{
1324 unsigned long _rss = get_mm_rss(mm);
1325
1326 if ((mm)->hiwater_rss < _rss)
1327 (mm)->hiwater_rss = _rss;
1328}
1329
1330static inline void update_hiwater_vm(struct mm_struct *mm)
1331{
1332 if (mm->hiwater_vm < mm->total_vm)
1333 mm->hiwater_vm = mm->total_vm;
1334}
1335
695f0559
PC
1336static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1337{
1338 mm->hiwater_rss = get_mm_rss(mm);
1339}
1340
d559db08
KH
1341static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1342 struct mm_struct *mm)
1343{
1344 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1345
1346 if (*maxrss < hiwater_rss)
1347 *maxrss = hiwater_rss;
1348}
1349
53bddb4e 1350#if defined(SPLIT_RSS_COUNTING)
05af2e10 1351void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1352#else
05af2e10 1353static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1354{
1355}
1356#endif
465a454f 1357
4e950f6f 1358int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1359
25ca1d6c
NK
1360extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1361 spinlock_t **ptl);
1362static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1363 spinlock_t **ptl)
1364{
1365 pte_t *ptep;
1366 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1367 return ptep;
1368}
c9cfcddf 1369
5f22df00
NP
1370#ifdef __PAGETABLE_PUD_FOLDED
1371static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1372 unsigned long address)
1373{
1374 return 0;
1375}
1376#else
1bb3630e 1377int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1378#endif
1379
2d2f5119 1380#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1381static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1382 unsigned long address)
1383{
1384 return 0;
1385}
dc6c9a35 1386
2d2f5119
KS
1387static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1388
dc6c9a35
KS
1389static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1390{
1391 return 0;
1392}
1393
1394static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1395static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1396
5f22df00 1397#else
1bb3630e 1398int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1399
2d2f5119
KS
1400static inline void mm_nr_pmds_init(struct mm_struct *mm)
1401{
1402 atomic_long_set(&mm->nr_pmds, 0);
1403}
1404
dc6c9a35
KS
1405static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1406{
1407 return atomic_long_read(&mm->nr_pmds);
1408}
1409
1410static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1411{
1412 atomic_long_inc(&mm->nr_pmds);
1413}
1414
1415static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1416{
1417 atomic_long_dec(&mm->nr_pmds);
1418}
5f22df00
NP
1419#endif
1420
8ac1f832
AA
1421int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1422 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1423int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1424
1da177e4
LT
1425/*
1426 * The following ifdef needed to get the 4level-fixup.h header to work.
1427 * Remove it when 4level-fixup.h has been removed.
1428 */
1bb3630e 1429#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1430static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1431{
1bb3630e
HD
1432 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1433 NULL: pud_offset(pgd, address);
1da177e4
LT
1434}
1435
1436static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1437{
1bb3630e
HD
1438 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1439 NULL: pmd_offset(pud, address);
1da177e4 1440}
1bb3630e
HD
1441#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1442
57c1ffce 1443#if USE_SPLIT_PTE_PTLOCKS
597d795a 1444#if ALLOC_SPLIT_PTLOCKS
b35f1819 1445void __init ptlock_cache_init(void);
539edb58
PZ
1446extern bool ptlock_alloc(struct page *page);
1447extern void ptlock_free(struct page *page);
1448
1449static inline spinlock_t *ptlock_ptr(struct page *page)
1450{
1451 return page->ptl;
1452}
597d795a 1453#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1454static inline void ptlock_cache_init(void)
1455{
1456}
1457
49076ec2
KS
1458static inline bool ptlock_alloc(struct page *page)
1459{
49076ec2
KS
1460 return true;
1461}
539edb58 1462
49076ec2
KS
1463static inline void ptlock_free(struct page *page)
1464{
49076ec2
KS
1465}
1466
1467static inline spinlock_t *ptlock_ptr(struct page *page)
1468{
539edb58 1469 return &page->ptl;
49076ec2 1470}
597d795a 1471#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1472
1473static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1474{
1475 return ptlock_ptr(pmd_page(*pmd));
1476}
1477
1478static inline bool ptlock_init(struct page *page)
1479{
1480 /*
1481 * prep_new_page() initialize page->private (and therefore page->ptl)
1482 * with 0. Make sure nobody took it in use in between.
1483 *
1484 * It can happen if arch try to use slab for page table allocation:
1485 * slab code uses page->slab_cache and page->first_page (for tail
1486 * pages), which share storage with page->ptl.
1487 */
309381fe 1488 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1489 if (!ptlock_alloc(page))
1490 return false;
1491 spin_lock_init(ptlock_ptr(page));
1492 return true;
1493}
1494
1495/* Reset page->mapping so free_pages_check won't complain. */
1496static inline void pte_lock_deinit(struct page *page)
1497{
1498 page->mapping = NULL;
1499 ptlock_free(page);
1500}
1501
57c1ffce 1502#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1503/*
1504 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1505 */
49076ec2
KS
1506static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1507{
1508 return &mm->page_table_lock;
1509}
b35f1819 1510static inline void ptlock_cache_init(void) {}
49076ec2
KS
1511static inline bool ptlock_init(struct page *page) { return true; }
1512static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1513#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1514
b35f1819
KS
1515static inline void pgtable_init(void)
1516{
1517 ptlock_cache_init();
1518 pgtable_cache_init();
1519}
1520
390f44e2 1521static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1522{
2f569afd 1523 inc_zone_page_state(page, NR_PAGETABLE);
49076ec2 1524 return ptlock_init(page);
2f569afd
MS
1525}
1526
1527static inline void pgtable_page_dtor(struct page *page)
1528{
1529 pte_lock_deinit(page);
1530 dec_zone_page_state(page, NR_PAGETABLE);
1531}
1532
c74df32c
HD
1533#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1534({ \
4c21e2f2 1535 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1536 pte_t *__pte = pte_offset_map(pmd, address); \
1537 *(ptlp) = __ptl; \
1538 spin_lock(__ptl); \
1539 __pte; \
1540})
1541
1542#define pte_unmap_unlock(pte, ptl) do { \
1543 spin_unlock(ptl); \
1544 pte_unmap(pte); \
1545} while (0)
1546
8ac1f832
AA
1547#define pte_alloc_map(mm, vma, pmd, address) \
1548 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1549 pmd, address))? \
1550 NULL: pte_offset_map(pmd, address))
1bb3630e 1551
c74df32c 1552#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1553 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1554 pmd, address))? \
c74df32c
HD
1555 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1556
1bb3630e 1557#define pte_alloc_kernel(pmd, address) \
8ac1f832 1558 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1559 NULL: pte_offset_kernel(pmd, address))
1da177e4 1560
e009bb30
KS
1561#if USE_SPLIT_PMD_PTLOCKS
1562
634391ac
MS
1563static struct page *pmd_to_page(pmd_t *pmd)
1564{
1565 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1566 return virt_to_page((void *)((unsigned long) pmd & mask));
1567}
1568
e009bb30
KS
1569static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1570{
634391ac 1571 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1572}
1573
1574static inline bool pgtable_pmd_page_ctor(struct page *page)
1575{
e009bb30
KS
1576#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1577 page->pmd_huge_pte = NULL;
1578#endif
49076ec2 1579 return ptlock_init(page);
e009bb30
KS
1580}
1581
1582static inline void pgtable_pmd_page_dtor(struct page *page)
1583{
1584#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1585 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1586#endif
49076ec2 1587 ptlock_free(page);
e009bb30
KS
1588}
1589
634391ac 1590#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1591
1592#else
1593
9a86cb7b
KS
1594static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1595{
1596 return &mm->page_table_lock;
1597}
1598
e009bb30
KS
1599static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1600static inline void pgtable_pmd_page_dtor(struct page *page) {}
1601
c389a250 1602#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1603
e009bb30
KS
1604#endif
1605
9a86cb7b
KS
1606static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1607{
1608 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1609 spin_lock(ptl);
1610 return ptl;
1611}
1612
1da177e4 1613extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1614extern void free_area_init_node(int nid, unsigned long * zones_size,
1615 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1616extern void free_initmem(void);
1617
69afade7
JL
1618/*
1619 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1620 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1621 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1622 * Return pages freed into the buddy system.
1623 */
11199692 1624extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1625 int poison, char *s);
c3d5f5f0 1626
cfa11e08
JL
1627#ifdef CONFIG_HIGHMEM
1628/*
1629 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1630 * and totalram_pages.
1631 */
1632extern void free_highmem_page(struct page *page);
1633#endif
69afade7 1634
c3d5f5f0 1635extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1636extern void mem_init_print_info(const char *str);
69afade7 1637
92923ca3
NZ
1638extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1639
69afade7
JL
1640/* Free the reserved page into the buddy system, so it gets managed. */
1641static inline void __free_reserved_page(struct page *page)
1642{
1643 ClearPageReserved(page);
1644 init_page_count(page);
1645 __free_page(page);
1646}
1647
1648static inline void free_reserved_page(struct page *page)
1649{
1650 __free_reserved_page(page);
1651 adjust_managed_page_count(page, 1);
1652}
1653
1654static inline void mark_page_reserved(struct page *page)
1655{
1656 SetPageReserved(page);
1657 adjust_managed_page_count(page, -1);
1658}
1659
1660/*
1661 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1662 * The freed pages will be poisoned with pattern "poison" if it's within
1663 * range [0, UCHAR_MAX].
1664 * Return pages freed into the buddy system.
69afade7
JL
1665 */
1666static inline unsigned long free_initmem_default(int poison)
1667{
1668 extern char __init_begin[], __init_end[];
1669
11199692 1670 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1671 poison, "unused kernel");
1672}
1673
7ee3d4e8
JL
1674static inline unsigned long get_num_physpages(void)
1675{
1676 int nid;
1677 unsigned long phys_pages = 0;
1678
1679 for_each_online_node(nid)
1680 phys_pages += node_present_pages(nid);
1681
1682 return phys_pages;
1683}
1684
0ee332c1 1685#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1686/*
0ee332c1 1687 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1688 * zones, allocate the backing mem_map and account for memory holes in a more
1689 * architecture independent manner. This is a substitute for creating the
1690 * zone_sizes[] and zholes_size[] arrays and passing them to
1691 * free_area_init_node()
1692 *
1693 * An architecture is expected to register range of page frames backed by
0ee332c1 1694 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1695 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1696 * usage, an architecture is expected to do something like
1697 *
1698 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1699 * max_highmem_pfn};
1700 * for_each_valid_physical_page_range()
0ee332c1 1701 * memblock_add_node(base, size, nid)
c713216d
MG
1702 * free_area_init_nodes(max_zone_pfns);
1703 *
0ee332c1
TH
1704 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1705 * registered physical page range. Similarly
1706 * sparse_memory_present_with_active_regions() calls memory_present() for
1707 * each range when SPARSEMEM is enabled.
c713216d
MG
1708 *
1709 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1710 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1711 */
1712extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1713unsigned long node_map_pfn_alignment(void);
32996250
YL
1714unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1715 unsigned long end_pfn);
c713216d
MG
1716extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1717 unsigned long end_pfn);
1718extern void get_pfn_range_for_nid(unsigned int nid,
1719 unsigned long *start_pfn, unsigned long *end_pfn);
1720extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1721extern void free_bootmem_with_active_regions(int nid,
1722 unsigned long max_low_pfn);
1723extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1724
0ee332c1 1725#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1726
0ee332c1 1727#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1728 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1729static inline int __early_pfn_to_nid(unsigned long pfn,
1730 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1731{
1732 return 0;
1733}
1734#else
1735/* please see mm/page_alloc.c */
1736extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1737/* there is a per-arch backend function. */
8a942fde
MG
1738extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1739 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1740#endif
1741
0e0b864e 1742extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1743extern void memmap_init_zone(unsigned long, int, unsigned long,
1744 unsigned long, enum memmap_context);
bc75d33f 1745extern void setup_per_zone_wmarks(void);
1b79acc9 1746extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1747extern void mem_init(void);
8feae131 1748extern void __init mmap_init(void);
b2b755b5 1749extern void show_mem(unsigned int flags);
1da177e4
LT
1750extern void si_meminfo(struct sysinfo * val);
1751extern void si_meminfo_node(struct sysinfo *val, int nid);
1752
3ee9a4f0
JP
1753extern __printf(3, 4)
1754void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1755
e7c8d5c9 1756extern void setup_per_cpu_pageset(void);
e7c8d5c9 1757
112067f0 1758extern void zone_pcp_update(struct zone *zone);
340175b7 1759extern void zone_pcp_reset(struct zone *zone);
112067f0 1760
75f7ad8e
PS
1761/* page_alloc.c */
1762extern int min_free_kbytes;
1763
8feae131 1764/* nommu.c */
33e5d769 1765extern atomic_long_t mmap_pages_allocated;
7e660872 1766extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1767
6b2dbba8 1768/* interval_tree.c */
6b2dbba8
ML
1769void vma_interval_tree_insert(struct vm_area_struct *node,
1770 struct rb_root *root);
9826a516
ML
1771void vma_interval_tree_insert_after(struct vm_area_struct *node,
1772 struct vm_area_struct *prev,
1773 struct rb_root *root);
6b2dbba8
ML
1774void vma_interval_tree_remove(struct vm_area_struct *node,
1775 struct rb_root *root);
1776struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1777 unsigned long start, unsigned long last);
1778struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1779 unsigned long start, unsigned long last);
1780
1781#define vma_interval_tree_foreach(vma, root, start, last) \
1782 for (vma = vma_interval_tree_iter_first(root, start, last); \
1783 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1784
bf181b9f
ML
1785void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1786 struct rb_root *root);
1787void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1788 struct rb_root *root);
1789struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1790 struct rb_root *root, unsigned long start, unsigned long last);
1791struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1792 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1793#ifdef CONFIG_DEBUG_VM_RB
1794void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1795#endif
bf181b9f
ML
1796
1797#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1798 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1799 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1800
1da177e4 1801/* mmap.c */
34b4e4aa 1802extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1803extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1804 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1805extern struct vm_area_struct *vma_merge(struct mm_struct *,
1806 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1807 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1808 struct mempolicy *);
1809extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1810extern int split_vma(struct mm_struct *,
1811 struct vm_area_struct *, unsigned long addr, int new_below);
1812extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1813extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1814 struct rb_node **, struct rb_node *);
a8fb5618 1815extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1816extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1817 unsigned long addr, unsigned long len, pgoff_t pgoff,
1818 bool *need_rmap_locks);
1da177e4 1819extern void exit_mmap(struct mm_struct *);
925d1c40 1820
9c599024
CG
1821static inline int check_data_rlimit(unsigned long rlim,
1822 unsigned long new,
1823 unsigned long start,
1824 unsigned long end_data,
1825 unsigned long start_data)
1826{
1827 if (rlim < RLIM_INFINITY) {
1828 if (((new - start) + (end_data - start_data)) > rlim)
1829 return -ENOSPC;
1830 }
1831
1832 return 0;
1833}
1834
7906d00c
AA
1835extern int mm_take_all_locks(struct mm_struct *mm);
1836extern void mm_drop_all_locks(struct mm_struct *mm);
1837
38646013
JS
1838extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1839extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1840
119f657c 1841extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1842extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1843 unsigned long addr, unsigned long len,
a62c34bd
AL
1844 unsigned long flags,
1845 const struct vm_special_mapping *spec);
1846/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1847extern int install_special_mapping(struct mm_struct *mm,
1848 unsigned long addr, unsigned long len,
1849 unsigned long flags, struct page **pages);
1da177e4
LT
1850
1851extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1852
0165ab44 1853extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1854 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1855extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1856 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1857 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1858extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1859
bebeb3d6
ML
1860#ifdef CONFIG_MMU
1861extern int __mm_populate(unsigned long addr, unsigned long len,
1862 int ignore_errors);
1863static inline void mm_populate(unsigned long addr, unsigned long len)
1864{
1865 /* Ignore errors */
1866 (void) __mm_populate(addr, len, 1);
1867}
1868#else
1869static inline void mm_populate(unsigned long addr, unsigned long len) {}
1870#endif
1871
e4eb1ff6
LT
1872/* These take the mm semaphore themselves */
1873extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1874extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1875extern unsigned long vm_mmap(struct file *, unsigned long,
1876 unsigned long, unsigned long,
1877 unsigned long, unsigned long);
1da177e4 1878
db4fbfb9
ML
1879struct vm_unmapped_area_info {
1880#define VM_UNMAPPED_AREA_TOPDOWN 1
1881 unsigned long flags;
1882 unsigned long length;
1883 unsigned long low_limit;
1884 unsigned long high_limit;
1885 unsigned long align_mask;
1886 unsigned long align_offset;
1887};
1888
1889extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1890extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1891
1892/*
1893 * Search for an unmapped address range.
1894 *
1895 * We are looking for a range that:
1896 * - does not intersect with any VMA;
1897 * - is contained within the [low_limit, high_limit) interval;
1898 * - is at least the desired size.
1899 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1900 */
1901static inline unsigned long
1902vm_unmapped_area(struct vm_unmapped_area_info *info)
1903{
cdd7875e 1904 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 1905 return unmapped_area_topdown(info);
cdd7875e
BP
1906 else
1907 return unmapped_area(info);
db4fbfb9
ML
1908}
1909
85821aab 1910/* truncate.c */
1da177e4 1911extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1912extern void truncate_inode_pages_range(struct address_space *,
1913 loff_t lstart, loff_t lend);
91b0abe3 1914extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
1915
1916/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1917extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 1918extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 1919extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1920
1921/* mm/page-writeback.c */
1922int write_one_page(struct page *page, int wait);
1cf6e7d8 1923void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1924
1925/* readahead.c */
1926#define VM_MAX_READAHEAD 128 /* kbytes */
1927#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1928
1da177e4 1929int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1930 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1931
1932void page_cache_sync_readahead(struct address_space *mapping,
1933 struct file_ra_state *ra,
1934 struct file *filp,
1935 pgoff_t offset,
1936 unsigned long size);
1937
1938void page_cache_async_readahead(struct address_space *mapping,
1939 struct file_ra_state *ra,
1940 struct file *filp,
1941 struct page *pg,
1942 pgoff_t offset,
1943 unsigned long size);
1944
1da177e4
LT
1945unsigned long max_sane_readahead(unsigned long nr);
1946
d05f3169 1947/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1948extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1949
1950/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1951extern int expand_downwards(struct vm_area_struct *vma,
1952 unsigned long address);
8ca3eb08 1953#if VM_GROWSUP
46dea3d0 1954extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 1955#else
fee7e49d 1956 #define expand_upwards(vma, address) (0)
9ab88515 1957#endif
1da177e4
LT
1958
1959/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1960extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1961extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1962 struct vm_area_struct **pprev);
1963
1964/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1965 NULL if none. Assume start_addr < end_addr. */
1966static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1967{
1968 struct vm_area_struct * vma = find_vma(mm,start_addr);
1969
1970 if (vma && end_addr <= vma->vm_start)
1971 vma = NULL;
1972 return vma;
1973}
1974
1975static inline unsigned long vma_pages(struct vm_area_struct *vma)
1976{
1977 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1978}
1979
640708a2
PE
1980/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1981static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1982 unsigned long vm_start, unsigned long vm_end)
1983{
1984 struct vm_area_struct *vma = find_vma(mm, vm_start);
1985
1986 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1987 vma = NULL;
1988
1989 return vma;
1990}
1991
bad849b3 1992#ifdef CONFIG_MMU
804af2cf 1993pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 1994void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
1995#else
1996static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1997{
1998 return __pgprot(0);
1999}
64e45507
PF
2000static inline void vma_set_page_prot(struct vm_area_struct *vma)
2001{
2002 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2003}
bad849b3
DH
2004#endif
2005
5877231f 2006#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2007unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2008 unsigned long start, unsigned long end);
2009#endif
2010
deceb6cd 2011struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2012int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2013 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2014int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2015int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2016 unsigned long pfn);
423bad60
NP
2017int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2018 unsigned long pfn);
b4cbb197
LT
2019int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2020
deceb6cd 2021
240aadee
ML
2022struct page *follow_page_mask(struct vm_area_struct *vma,
2023 unsigned long address, unsigned int foll_flags,
2024 unsigned int *page_mask);
2025
2026static inline struct page *follow_page(struct vm_area_struct *vma,
2027 unsigned long address, unsigned int foll_flags)
2028{
2029 unsigned int unused_page_mask;
2030 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2031}
2032
deceb6cd
HD
2033#define FOLL_WRITE 0x01 /* check pte is writable */
2034#define FOLL_TOUCH 0x02 /* mark page accessed */
2035#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2036#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2037#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2038#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2039 * and return without waiting upon it */
84d33df2 2040#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2041#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2042#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2043#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2044#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2045#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1da177e4 2046
2f569afd 2047typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2048 void *data);
2049extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2050 unsigned long size, pte_fn_t fn, void *data);
2051
1da177e4 2052#ifdef CONFIG_PROC_FS
ab50b8ed 2053void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 2054#else
ab50b8ed 2055static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
2056 unsigned long flags, struct file *file, long pages)
2057{
44de9d0c 2058 mm->total_vm += pages;
1da177e4
LT
2059}
2060#endif /* CONFIG_PROC_FS */
2061
12d6f21e 2062#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2063extern bool _debug_pagealloc_enabled;
2064extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2065
2066static inline bool debug_pagealloc_enabled(void)
2067{
2068 return _debug_pagealloc_enabled;
2069}
2070
2071static inline void
2072kernel_map_pages(struct page *page, int numpages, int enable)
2073{
2074 if (!debug_pagealloc_enabled())
2075 return;
2076
2077 __kernel_map_pages(page, numpages, enable);
2078}
8a235efa
RW
2079#ifdef CONFIG_HIBERNATION
2080extern bool kernel_page_present(struct page *page);
2081#endif /* CONFIG_HIBERNATION */
12d6f21e 2082#else
1da177e4 2083static inline void
9858db50 2084kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2085#ifdef CONFIG_HIBERNATION
2086static inline bool kernel_page_present(struct page *page) { return true; }
2087#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2088#endif
2089
a6c19dfe 2090#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2091extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2092extern int in_gate_area_no_mm(unsigned long addr);
2093extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2094#else
a6c19dfe
AL
2095static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2096{
2097 return NULL;
2098}
2099static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2100static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2101{
2102 return 0;
2103}
1da177e4
LT
2104#endif /* __HAVE_ARCH_GATE_AREA */
2105
146732ce
JT
2106#ifdef CONFIG_SYSCTL
2107extern int sysctl_drop_caches;
8d65af78 2108int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2109 void __user *, size_t *, loff_t *);
146732ce
JT
2110#endif
2111
cb731d6c
VD
2112void drop_slab(void);
2113void drop_slab_node(int nid);
9d0243bc 2114
7a9166e3
LY
2115#ifndef CONFIG_MMU
2116#define randomize_va_space 0
2117#else
a62eaf15 2118extern int randomize_va_space;
7a9166e3 2119#endif
a62eaf15 2120
045e72ac 2121const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2122void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2123
9bdac914
YL
2124void sparse_mem_maps_populate_node(struct page **map_map,
2125 unsigned long pnum_begin,
2126 unsigned long pnum_end,
2127 unsigned long map_count,
2128 int nodeid);
2129
98f3cfc1 2130struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2131pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2132pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2133pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2134pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2135void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2136void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2137void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2138int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2139 int node);
2140int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2141void vmemmap_populate_print_last(void);
0197518c 2142#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2143void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2144#endif
46723bfa
YI
2145void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2146 unsigned long size);
6a46079c 2147
82ba011b
AK
2148enum mf_flags {
2149 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2150 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2151 MF_MUST_KILL = 1 << 2,
cf870c70 2152 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2153};
cd42f4a3 2154extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2155extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2156extern int unpoison_memory(unsigned long pfn);
ead07f6a 2157extern int get_hwpoison_page(struct page *page);
6a46079c
AK
2158extern int sysctl_memory_failure_early_kill;
2159extern int sysctl_memory_failure_recovery;
facb6011 2160extern void shake_page(struct page *p, int access);
293c07e3 2161extern atomic_long_t num_poisoned_pages;
facb6011 2162extern int soft_offline_page(struct page *page, int flags);
6a46079c 2163
cc637b17
XX
2164
2165/*
2166 * Error handlers for various types of pages.
2167 */
cc3e2af4 2168enum mf_result {
cc637b17
XX
2169 MF_IGNORED, /* Error: cannot be handled */
2170 MF_FAILED, /* Error: handling failed */
2171 MF_DELAYED, /* Will be handled later */
2172 MF_RECOVERED, /* Successfully recovered */
2173};
2174
2175enum mf_action_page_type {
2176 MF_MSG_KERNEL,
2177 MF_MSG_KERNEL_HIGH_ORDER,
2178 MF_MSG_SLAB,
2179 MF_MSG_DIFFERENT_COMPOUND,
2180 MF_MSG_POISONED_HUGE,
2181 MF_MSG_HUGE,
2182 MF_MSG_FREE_HUGE,
2183 MF_MSG_UNMAP_FAILED,
2184 MF_MSG_DIRTY_SWAPCACHE,
2185 MF_MSG_CLEAN_SWAPCACHE,
2186 MF_MSG_DIRTY_MLOCKED_LRU,
2187 MF_MSG_CLEAN_MLOCKED_LRU,
2188 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2189 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2190 MF_MSG_DIRTY_LRU,
2191 MF_MSG_CLEAN_LRU,
2192 MF_MSG_TRUNCATED_LRU,
2193 MF_MSG_BUDDY,
2194 MF_MSG_BUDDY_2ND,
2195 MF_MSG_UNKNOWN,
2196};
2197
47ad8475
AA
2198#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2199extern void clear_huge_page(struct page *page,
2200 unsigned long addr,
2201 unsigned int pages_per_huge_page);
2202extern void copy_user_huge_page(struct page *dst, struct page *src,
2203 unsigned long addr, struct vm_area_struct *vma,
2204 unsigned int pages_per_huge_page);
2205#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2206
e30825f1
JK
2207extern struct page_ext_operations debug_guardpage_ops;
2208extern struct page_ext_operations page_poisoning_ops;
2209
c0a32fc5
SG
2210#ifdef CONFIG_DEBUG_PAGEALLOC
2211extern unsigned int _debug_guardpage_minorder;
e30825f1 2212extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2213
2214static inline unsigned int debug_guardpage_minorder(void)
2215{
2216 return _debug_guardpage_minorder;
2217}
2218
e30825f1
JK
2219static inline bool debug_guardpage_enabled(void)
2220{
2221 return _debug_guardpage_enabled;
2222}
2223
c0a32fc5
SG
2224static inline bool page_is_guard(struct page *page)
2225{
e30825f1
JK
2226 struct page_ext *page_ext;
2227
2228 if (!debug_guardpage_enabled())
2229 return false;
2230
2231 page_ext = lookup_page_ext(page);
2232 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2233}
2234#else
2235static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2236static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2237static inline bool page_is_guard(struct page *page) { return false; }
2238#endif /* CONFIG_DEBUG_PAGEALLOC */
2239
f9872caf
CS
2240#if MAX_NUMNODES > 1
2241void __init setup_nr_node_ids(void);
2242#else
2243static inline void setup_nr_node_ids(void) {}
2244#endif
2245
1da177e4
LT
2246#endif /* __KERNEL__ */
2247#endif /* _LINUX_MM_H */