memblock: improve MEMBLOCK_HOTPLUG documentation
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
9740ca4e 18#include <linux/mmap_lock.h>
08677214 19#include <linux/range.h>
c6f6b596 20#include <linux/pfn.h>
3565fce3 21#include <linux/percpu-refcount.h>
e9da73d6 22#include <linux/bit_spinlock.h>
b0d40c92 23#include <linux/shrinker.h>
9c599024 24#include <linux/resource.h>
e30825f1 25#include <linux/page_ext.h>
8025e5dd 26#include <linux/err.h>
41901567 27#include <linux/page-flags.h>
fe896d18 28#include <linux/page_ref.h>
7b2d55d2 29#include <linux/memremap.h>
3b3b1a29 30#include <linux/overflow.h>
b5420237 31#include <linux/sizes.h>
7969f226 32#include <linux/sched.h>
65fddcfc 33#include <linux/pgtable.h>
34303244 34#include <linux/kasan.h>
1da177e4
LT
35
36struct mempolicy;
37struct anon_vma;
bf181b9f 38struct anon_vma_chain;
4e950f6f 39struct file_ra_state;
e8edc6e0 40struct user_struct;
4e950f6f 41struct writeback_control;
682aa8e1 42struct bdi_writeback;
bce617ed 43struct pt_regs;
1da177e4 44
5ef64cc8
LT
45extern int sysctl_page_lock_unfairness;
46
597b7305
MH
47void init_mm_internals(void);
48
a9ee6cf5 49#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 50extern unsigned long max_mapnr;
fccc9987
JL
51
52static inline void set_max_mapnr(unsigned long limit)
53{
54 max_mapnr = limit;
55}
56#else
57static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
58#endif
59
ca79b0c2
AK
60extern atomic_long_t _totalram_pages;
61static inline unsigned long totalram_pages(void)
62{
63 return (unsigned long)atomic_long_read(&_totalram_pages);
64}
65
66static inline void totalram_pages_inc(void)
67{
68 atomic_long_inc(&_totalram_pages);
69}
70
71static inline void totalram_pages_dec(void)
72{
73 atomic_long_dec(&_totalram_pages);
74}
75
76static inline void totalram_pages_add(long count)
77{
78 atomic_long_add(count, &_totalram_pages);
79}
80
1da177e4 81extern void * high_memory;
1da177e4
LT
82extern int page_cluster;
83
84#ifdef CONFIG_SYSCTL
85extern int sysctl_legacy_va_layout;
86#else
87#define sysctl_legacy_va_layout 0
88#endif
89
d07e2259
DC
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91extern const int mmap_rnd_bits_min;
92extern const int mmap_rnd_bits_max;
93extern int mmap_rnd_bits __read_mostly;
94#endif
95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96extern const int mmap_rnd_compat_bits_min;
97extern const int mmap_rnd_compat_bits_max;
98extern int mmap_rnd_compat_bits __read_mostly;
99#endif
100
1da177e4 101#include <asm/page.h>
1da177e4 102#include <asm/processor.h>
1da177e4 103
d9344522
AK
104/*
105 * Architectures that support memory tagging (assigning tags to memory regions,
106 * embedding these tags into addresses that point to these memory regions, and
107 * checking that the memory and the pointer tags match on memory accesses)
108 * redefine this macro to strip tags from pointers.
f0953a1b 109 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
110 */
111#ifndef untagged_addr
112#define untagged_addr(addr) (addr)
113#endif
114
79442ed1
TC
115#ifndef __pa_symbol
116#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
117#endif
118
1dff8083
AB
119#ifndef page_to_virt
120#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
121#endif
122
568c5fe5
LA
123#ifndef lm_alias
124#define lm_alias(x) __va(__pa_symbol(x))
125#endif
126
593befa6
DD
127/*
128 * To prevent common memory management code establishing
129 * a zero page mapping on a read fault.
130 * This macro should be defined within <asm/pgtable.h>.
131 * s390 does this to prevent multiplexing of hardware bits
132 * related to the physical page in case of virtualization.
133 */
134#ifndef mm_forbids_zeropage
135#define mm_forbids_zeropage(X) (0)
136#endif
137
a4a3ede2
PT
138/*
139 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
140 * If an architecture decides to implement their own version of
141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
142 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 143 */
5470dea4
AD
144#if BITS_PER_LONG == 64
145/* This function must be updated when the size of struct page grows above 80
146 * or reduces below 56. The idea that compiler optimizes out switch()
147 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 148 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
149 * this can result in several of the writes here being dropped.
150 */
151#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
152static inline void __mm_zero_struct_page(struct page *page)
153{
154 unsigned long *_pp = (void *)page;
155
156 /* Check that struct page is either 56, 64, 72, or 80 bytes */
157 BUILD_BUG_ON(sizeof(struct page) & 7);
158 BUILD_BUG_ON(sizeof(struct page) < 56);
159 BUILD_BUG_ON(sizeof(struct page) > 80);
160
161 switch (sizeof(struct page)) {
162 case 80:
df561f66
GS
163 _pp[9] = 0;
164 fallthrough;
5470dea4 165 case 72:
df561f66
GS
166 _pp[8] = 0;
167 fallthrough;
5470dea4 168 case 64:
df561f66
GS
169 _pp[7] = 0;
170 fallthrough;
5470dea4
AD
171 case 56:
172 _pp[6] = 0;
173 _pp[5] = 0;
174 _pp[4] = 0;
175 _pp[3] = 0;
176 _pp[2] = 0;
177 _pp[1] = 0;
178 _pp[0] = 0;
179 }
180}
181#else
a4a3ede2
PT
182#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
183#endif
184
ea606cf5
AR
185/*
186 * Default maximum number of active map areas, this limits the number of vmas
187 * per mm struct. Users can overwrite this number by sysctl but there is a
188 * problem.
189 *
190 * When a program's coredump is generated as ELF format, a section is created
191 * per a vma. In ELF, the number of sections is represented in unsigned short.
192 * This means the number of sections should be smaller than 65535 at coredump.
193 * Because the kernel adds some informative sections to a image of program at
194 * generating coredump, we need some margin. The number of extra sections is
195 * 1-3 now and depends on arch. We use "5" as safe margin, here.
196 *
197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
198 * not a hard limit any more. Although some userspace tools can be surprised by
199 * that.
200 */
201#define MAPCOUNT_ELF_CORE_MARGIN (5)
202#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203
204extern int sysctl_max_map_count;
205
c9b1d098 206extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 207extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 208
49f0ce5f
JM
209extern int sysctl_overcommit_memory;
210extern int sysctl_overcommit_ratio;
211extern unsigned long sysctl_overcommit_kbytes;
212
32927393
CH
213int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 loff_t *);
215int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 loff_t *);
56f3547b
FT
217int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
218 loff_t *);
6d87d0ec
SJ
219/*
220 * Any attempt to mark this function as static leads to build failure
221 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
222 * is referred to by BPF code. This must be visible for error injection.
223 */
224int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
225 pgoff_t index, gfp_t gfp, void **shadowp);
49f0ce5f 226
1cfcee72 227#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 228#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
1cfcee72
MWO
229#else
230#define nth_page(page,n) ((page) + (n))
231#endif
1da177e4 232
27ac792c
AR
233/* to align the pointer to the (next) page boundary */
234#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
235
0fa73b86 236/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 237#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 238
f86196ea
NB
239#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
240
5748fbc5
KW
241void setup_initial_init_mm(void *start_code, void *end_code,
242 void *end_data, void *brk);
243
1da177e4
LT
244/*
245 * Linux kernel virtual memory manager primitives.
246 * The idea being to have a "virtual" mm in the same way
247 * we have a virtual fs - giving a cleaner interface to the
248 * mm details, and allowing different kinds of memory mappings
249 * (from shared memory to executable loading to arbitrary
250 * mmap() functions).
251 */
252
490fc053 253struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
254struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
255void vm_area_free(struct vm_area_struct *);
c43692e8 256
1da177e4 257#ifndef CONFIG_MMU
8feae131
DH
258extern struct rb_root nommu_region_tree;
259extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
260
261extern unsigned int kobjsize(const void *objp);
262#endif
263
264/*
605d9288 265 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 266 * When changing, update also include/trace/events/mmflags.h
1da177e4 267 */
cc2383ec
KK
268#define VM_NONE 0x00000000
269
1da177e4
LT
270#define VM_READ 0x00000001 /* currently active flags */
271#define VM_WRITE 0x00000002
272#define VM_EXEC 0x00000004
273#define VM_SHARED 0x00000008
274
7e2cff42 275/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
276#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
277#define VM_MAYWRITE 0x00000020
278#define VM_MAYEXEC 0x00000040
279#define VM_MAYSHARE 0x00000080
280
281#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 282#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 283#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 284#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 285
1da177e4
LT
286#define VM_LOCKED 0x00002000
287#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
288
289 /* Used by sys_madvise() */
290#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
291#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
292
293#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
294#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 295#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 296#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 297#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 298#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 299#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 300#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 301#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 302#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 303
d9104d1c
CG
304#ifdef CONFIG_MEM_SOFT_DIRTY
305# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
306#else
307# define VM_SOFTDIRTY 0
308#endif
309
b379d790 310#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
311#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
312#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 313#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 314
63c17fb8
DH
315#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
316#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
317#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
318#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 320#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
321#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
322#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
323#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
324#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 325#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
326#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
327
5212213a 328#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
329# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
330# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 331# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
332# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
333# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
334#ifdef CONFIG_PPC
335# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
336#else
337# define VM_PKEY_BIT4 0
8f62c883 338#endif
5212213a
RP
339#endif /* CONFIG_ARCH_HAS_PKEYS */
340
341#if defined(CONFIG_X86)
342# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
343#elif defined(CONFIG_PPC)
344# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
345#elif defined(CONFIG_PARISC)
346# define VM_GROWSUP VM_ARCH_1
347#elif defined(CONFIG_IA64)
348# define VM_GROWSUP VM_ARCH_1
74a04967
KA
349#elif defined(CONFIG_SPARC64)
350# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
351# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
352#elif defined(CONFIG_ARM64)
353# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
354# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
355#elif !defined(CONFIG_MMU)
356# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
357#endif
358
9f341931
CM
359#if defined(CONFIG_ARM64_MTE)
360# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
361# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
362#else
363# define VM_MTE VM_NONE
364# define VM_MTE_ALLOWED VM_NONE
365#endif
366
cc2383ec
KK
367#ifndef VM_GROWSUP
368# define VM_GROWSUP VM_NONE
369#endif
370
7677f7fd
AR
371#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
372# define VM_UFFD_MINOR_BIT 37
373# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
374#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
375# define VM_UFFD_MINOR VM_NONE
376#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
377
a8bef8ff
MG
378/* Bits set in the VMA until the stack is in its final location */
379#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
380
c62da0c3
AK
381#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
382
383/* Common data flag combinations */
384#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
385 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
386#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
387 VM_MAYWRITE | VM_MAYEXEC)
388#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
389 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
390
391#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
392#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
393#endif
394
1da177e4
LT
395#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
396#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
397#endif
398
399#ifdef CONFIG_STACK_GROWSUP
30bdbb78 400#define VM_STACK VM_GROWSUP
1da177e4 401#else
30bdbb78 402#define VM_STACK VM_GROWSDOWN
1da177e4
LT
403#endif
404
30bdbb78
KK
405#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
406
6cb4d9a2
AK
407/* VMA basic access permission flags */
408#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
409
410
b291f000 411/*
78f11a25 412 * Special vmas that are non-mergable, non-mlock()able.
b291f000 413 */
9050d7eb 414#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 415
b4443772
AK
416/* This mask prevents VMA from being scanned with khugepaged */
417#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
418
a0715cc2
AT
419/* This mask defines which mm->def_flags a process can inherit its parent */
420#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
421
de60f5f1
EM
422/* This mask is used to clear all the VMA flags used by mlock */
423#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
424
2c2d57b5
KA
425/* Arch-specific flags to clear when updating VM flags on protection change */
426#ifndef VM_ARCH_CLEAR
427# define VM_ARCH_CLEAR VM_NONE
428#endif
429#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
430
1da177e4
LT
431/*
432 * mapping from the currently active vm_flags protection bits (the
433 * low four bits) to a page protection mask..
434 */
435extern pgprot_t protection_map[16];
436
c270a7ee 437/**
da2f5eb3 438 * enum fault_flag - Fault flag definitions.
c270a7ee
PX
439 * @FAULT_FLAG_WRITE: Fault was a write fault.
440 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
441 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
c1e8d7c6 442 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
c270a7ee
PX
443 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
444 * @FAULT_FLAG_TRIED: The fault has been tried once.
445 * @FAULT_FLAG_USER: The fault originated in userspace.
446 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
447 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
448 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
449 *
450 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
451 * whether we would allow page faults to retry by specifying these two
452 * fault flags correctly. Currently there can be three legal combinations:
453 *
454 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
455 * this is the first try
456 *
457 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
458 * we've already tried at least once
459 *
460 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
461 *
462 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
463 * be used. Note that page faults can be allowed to retry for multiple times,
464 * in which case we'll have an initial fault with flags (a) then later on
465 * continuous faults with flags (b). We should always try to detect pending
466 * signals before a retry to make sure the continuous page faults can still be
467 * interrupted if necessary.
c270a7ee 468 */
da2f5eb3
MWO
469enum fault_flag {
470 FAULT_FLAG_WRITE = 1 << 0,
471 FAULT_FLAG_MKWRITE = 1 << 1,
472 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
473 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
474 FAULT_FLAG_KILLABLE = 1 << 4,
475 FAULT_FLAG_TRIED = 1 << 5,
476 FAULT_FLAG_USER = 1 << 6,
477 FAULT_FLAG_REMOTE = 1 << 7,
478 FAULT_FLAG_INSTRUCTION = 1 << 8,
479 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
480};
d0217ac0 481
dde16072
PX
482/*
483 * The default fault flags that should be used by most of the
484 * arch-specific page fault handlers.
485 */
486#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
487 FAULT_FLAG_KILLABLE | \
488 FAULT_FLAG_INTERRUPTIBLE)
dde16072 489
4064b982
PX
490/**
491 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 492 * @flags: Fault flags.
4064b982
PX
493 *
494 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 495 * the mmap_lock for too long a time when waiting for another condition
4064b982 496 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
497 * mmap_lock in the first round to avoid potential starvation of other
498 * processes that would also want the mmap_lock.
4064b982
PX
499 *
500 * Return: true if the page fault allows retry and this is the first
501 * attempt of the fault handling; false otherwise.
502 */
da2f5eb3 503static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
504{
505 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
506 (!(flags & FAULT_FLAG_TRIED));
507}
508
282a8e03
RZ
509#define FAULT_FLAG_TRACE \
510 { FAULT_FLAG_WRITE, "WRITE" }, \
511 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
512 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
513 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
514 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
515 { FAULT_FLAG_TRIED, "TRIED" }, \
516 { FAULT_FLAG_USER, "USER" }, \
517 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
518 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
519 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 520
54cb8821 521/*
11192337 522 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
523 * ->fault function. The vma's ->fault is responsible for returning a bitmask
524 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 525 *
c20cd45e
MH
526 * MM layer fills up gfp_mask for page allocations but fault handler might
527 * alter it if its implementation requires a different allocation context.
528 *
9b4bdd2f 529 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 530 */
d0217ac0 531struct vm_fault {
5857c920 532 const struct {
742d3372
WD
533 struct vm_area_struct *vma; /* Target VMA */
534 gfp_t gfp_mask; /* gfp mask to be used for allocations */
535 pgoff_t pgoff; /* Logical page offset based on vma */
536 unsigned long address; /* Faulting virtual address */
537 };
da2f5eb3 538 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 539 * XXX: should really be 'const' */
82b0f8c3 540 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 541 * the 'address' */
a2d58167
DJ
542 pud_t *pud; /* Pointer to pud entry matching
543 * the 'address'
544 */
5db4f15c
YS
545 union {
546 pte_t orig_pte; /* Value of PTE at the time of fault */
547 pmd_t orig_pmd; /* Value of PMD at the time of fault,
548 * used by PMD fault only.
549 */
550 };
d0217ac0 551
3917048d 552 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 553 struct page *page; /* ->fault handlers should return a
83c54070 554 * page here, unless VM_FAULT_NOPAGE
d0217ac0 555 * is set (which is also implied by
83c54070 556 * VM_FAULT_ERROR).
d0217ac0 557 */
82b0f8c3 558 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
559 pte_t *pte; /* Pointer to pte entry matching
560 * the 'address'. NULL if the page
561 * table hasn't been allocated.
562 */
563 spinlock_t *ptl; /* Page table lock.
564 * Protects pte page table if 'pte'
565 * is not NULL, otherwise pmd.
566 */
7267ec00 567 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
568 * vm_ops->map_pages() sets up a page
569 * table from atomic context.
7267ec00
KS
570 * do_fault_around() pre-allocates
571 * page table to avoid allocation from
572 * atomic context.
573 */
54cb8821 574};
1da177e4 575
c791ace1
DJ
576/* page entry size for vm->huge_fault() */
577enum page_entry_size {
578 PE_SIZE_PTE = 0,
579 PE_SIZE_PMD,
580 PE_SIZE_PUD,
581};
582
1da177e4
LT
583/*
584 * These are the virtual MM functions - opening of an area, closing and
585 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 586 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
587 */
588struct vm_operations_struct {
589 void (*open)(struct vm_area_struct * area);
590 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
591 /* Called any time before splitting to check if it's allowed */
592 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 593 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
594 /*
595 * Called by mprotect() to make driver-specific permission
596 * checks before mprotect() is finalised. The VMA must not
597 * be modified. Returns 0 if eprotect() can proceed.
598 */
599 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
600 unsigned long end, unsigned long newflags);
1c8f4220
SJ
601 vm_fault_t (*fault)(struct vm_fault *vmf);
602 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
603 enum page_entry_size pe_size);
f9ce0be7 604 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 605 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 606 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
607
608 /* notification that a previously read-only page is about to become
609 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 610 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 611
dd906184 612 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 613 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 614
28b2ee20 615 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
616 * for use by special VMAs. See also generic_access_phys() for a generic
617 * implementation useful for any iomem mapping.
28b2ee20
RR
618 */
619 int (*access)(struct vm_area_struct *vma, unsigned long addr,
620 void *buf, int len, int write);
78d683e8
AL
621
622 /* Called by the /proc/PID/maps code to ask the vma whether it
623 * has a special name. Returning non-NULL will also cause this
624 * vma to be dumped unconditionally. */
625 const char *(*name)(struct vm_area_struct *vma);
626
1da177e4 627#ifdef CONFIG_NUMA
a6020ed7
LS
628 /*
629 * set_policy() op must add a reference to any non-NULL @new mempolicy
630 * to hold the policy upon return. Caller should pass NULL @new to
631 * remove a policy and fall back to surrounding context--i.e. do not
632 * install a MPOL_DEFAULT policy, nor the task or system default
633 * mempolicy.
634 */
1da177e4 635 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
636
637 /*
638 * get_policy() op must add reference [mpol_get()] to any policy at
639 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
640 * in mm/mempolicy.c will do this automatically.
641 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 642 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
643 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
644 * must return NULL--i.e., do not "fallback" to task or system default
645 * policy.
646 */
1da177e4
LT
647 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
648 unsigned long addr);
649#endif
667a0a06
DV
650 /*
651 * Called by vm_normal_page() for special PTEs to find the
652 * page for @addr. This is useful if the default behavior
653 * (using pte_page()) would not find the correct page.
654 */
655 struct page *(*find_special_page)(struct vm_area_struct *vma,
656 unsigned long addr);
1da177e4
LT
657};
658
027232da
KS
659static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
660{
bfd40eaf
KS
661 static const struct vm_operations_struct dummy_vm_ops = {};
662
a670468f 663 memset(vma, 0, sizeof(*vma));
027232da 664 vma->vm_mm = mm;
bfd40eaf 665 vma->vm_ops = &dummy_vm_ops;
027232da
KS
666 INIT_LIST_HEAD(&vma->anon_vma_chain);
667}
668
bfd40eaf
KS
669static inline void vma_set_anonymous(struct vm_area_struct *vma)
670{
671 vma->vm_ops = NULL;
672}
673
43675e6f
YS
674static inline bool vma_is_anonymous(struct vm_area_struct *vma)
675{
676 return !vma->vm_ops;
677}
678
222100ee
AK
679static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
680{
681 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
682
683 if (!maybe_stack)
684 return false;
685
686 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
687 VM_STACK_INCOMPLETE_SETUP)
688 return true;
689
690 return false;
691}
692
7969f226
AK
693static inline bool vma_is_foreign(struct vm_area_struct *vma)
694{
695 if (!current->mm)
696 return true;
697
698 if (current->mm != vma->vm_mm)
699 return true;
700
701 return false;
702}
3122e80e
AK
703
704static inline bool vma_is_accessible(struct vm_area_struct *vma)
705{
6cb4d9a2 706 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
707}
708
43675e6f
YS
709#ifdef CONFIG_SHMEM
710/*
711 * The vma_is_shmem is not inline because it is used only by slow
712 * paths in userfault.
713 */
714bool vma_is_shmem(struct vm_area_struct *vma);
715#else
716static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
717#endif
718
719int vma_is_stack_for_current(struct vm_area_struct *vma);
720
8b11ec1b
LT
721/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
722#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
723
1da177e4
LT
724struct mmu_gather;
725struct inode;
726
71e3aac0 727#include <linux/huge_mm.h>
1da177e4
LT
728
729/*
730 * Methods to modify the page usage count.
731 *
732 * What counts for a page usage:
733 * - cache mapping (page->mapping)
734 * - private data (page->private)
735 * - page mapped in a task's page tables, each mapping
736 * is counted separately
737 *
738 * Also, many kernel routines increase the page count before a critical
739 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
740 */
741
742/*
da6052f7 743 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 744 */
7c8ee9a8
NP
745static inline int put_page_testzero(struct page *page)
746{
fe896d18
JK
747 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
748 return page_ref_dec_and_test(page);
7c8ee9a8 749}
1da177e4
LT
750
751/*
7c8ee9a8
NP
752 * Try to grab a ref unless the page has a refcount of zero, return false if
753 * that is the case.
8e0861fa
AK
754 * This can be called when MMU is off so it must not access
755 * any of the virtual mappings.
1da177e4 756 */
7c8ee9a8
NP
757static inline int get_page_unless_zero(struct page *page)
758{
fe896d18 759 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 760}
1da177e4 761
53df8fdc 762extern int page_is_ram(unsigned long pfn);
124fe20d
DW
763
764enum {
765 REGION_INTERSECTS,
766 REGION_DISJOINT,
767 REGION_MIXED,
768};
769
1c29f25b
TK
770int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
771 unsigned long desc);
53df8fdc 772
48667e7a 773/* Support for virtually mapped pages */
b3bdda02
CL
774struct page *vmalloc_to_page(const void *addr);
775unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 776
0738c4bb
PM
777/*
778 * Determine if an address is within the vmalloc range
779 *
780 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
781 * is no special casing required.
782 */
9bd3bb67
AK
783
784#ifndef is_ioremap_addr
785#define is_ioremap_addr(x) is_vmalloc_addr(x)
786#endif
787
81ac3ad9 788#ifdef CONFIG_MMU
186525bd 789extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
790extern int is_vmalloc_or_module_addr(const void *x);
791#else
186525bd
IM
792static inline bool is_vmalloc_addr(const void *x)
793{
794 return false;
795}
934831d0 796static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
797{
798 return 0;
799}
800#endif
9e2779fa 801
bac3cf4d 802static inline int head_compound_mapcount(struct page *head)
6dc5ea16
JH
803{
804 return atomic_read(compound_mapcount_ptr(head)) + 1;
805}
806
6988f31d
KK
807/*
808 * Mapcount of compound page as a whole, does not include mapped sub-pages.
809 *
810 * Must be called only for compound pages or any their tail sub-pages.
811 */
53f9263b
KS
812static inline int compound_mapcount(struct page *page)
813{
5f527c2b 814 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 815 page = compound_head(page);
bac3cf4d 816 return head_compound_mapcount(page);
53f9263b
KS
817}
818
70b50f94
AA
819/*
820 * The atomic page->_mapcount, starts from -1: so that transitions
821 * both from it and to it can be tracked, using atomic_inc_and_test
822 * and atomic_add_negative(-1).
823 */
22b751c3 824static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
825{
826 atomic_set(&(page)->_mapcount, -1);
827}
828
b20ce5e0
KS
829int __page_mapcount(struct page *page);
830
6988f31d
KK
831/*
832 * Mapcount of 0-order page; when compound sub-page, includes
833 * compound_mapcount().
834 *
835 * Result is undefined for pages which cannot be mapped into userspace.
836 * For example SLAB or special types of pages. See function page_has_type().
837 * They use this place in struct page differently.
838 */
70b50f94
AA
839static inline int page_mapcount(struct page *page)
840{
b20ce5e0
KS
841 if (unlikely(PageCompound(page)))
842 return __page_mapcount(page);
843 return atomic_read(&page->_mapcount) + 1;
844}
845
846#ifdef CONFIG_TRANSPARENT_HUGEPAGE
847int total_mapcount(struct page *page);
6d0a07ed 848int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
849#else
850static inline int total_mapcount(struct page *page)
851{
852 return page_mapcount(page);
70b50f94 853}
6d0a07ed
AA
854static inline int page_trans_huge_mapcount(struct page *page,
855 int *total_mapcount)
856{
857 int mapcount = page_mapcount(page);
858 if (total_mapcount)
859 *total_mapcount = mapcount;
860 return mapcount;
861}
b20ce5e0 862#endif
70b50f94 863
b49af68f
CL
864static inline struct page *virt_to_head_page(const void *x)
865{
866 struct page *page = virt_to_page(x);
ccaafd7f 867
1d798ca3 868 return compound_head(page);
b49af68f
CL
869}
870
ddc58f27
KS
871void __put_page(struct page *page);
872
1d7ea732 873void put_pages_list(struct list_head *pages);
1da177e4 874
8dfcc9ba 875void split_page(struct page *page, unsigned int order);
79789db0 876void copy_huge_page(struct page *dst, struct page *src);
8dfcc9ba 877
33f2ef89
AW
878/*
879 * Compound pages have a destructor function. Provide a
880 * prototype for that function and accessor functions.
f1e61557 881 * These are _only_ valid on the head of a compound page.
33f2ef89 882 */
f1e61557
KS
883typedef void compound_page_dtor(struct page *);
884
885/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
886enum compound_dtor_id {
887 NULL_COMPOUND_DTOR,
888 COMPOUND_PAGE_DTOR,
889#ifdef CONFIG_HUGETLB_PAGE
890 HUGETLB_PAGE_DTOR,
9a982250
KS
891#endif
892#ifdef CONFIG_TRANSPARENT_HUGEPAGE
893 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
894#endif
895 NR_COMPOUND_DTORS,
896};
ae70eddd 897extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
898
899static inline void set_compound_page_dtor(struct page *page,
f1e61557 900 enum compound_dtor_id compound_dtor)
33f2ef89 901{
f1e61557
KS
902 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
903 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
904}
905
ff45fc3c 906static inline void destroy_compound_page(struct page *page)
33f2ef89 907{
f1e61557 908 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 909 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
910}
911
d00181b9 912static inline unsigned int compound_order(struct page *page)
d85f3385 913{
6d777953 914 if (!PageHead(page))
d85f3385 915 return 0;
e4b294c2 916 return page[1].compound_order;
d85f3385
CL
917}
918
47e29d32
JH
919static inline bool hpage_pincount_available(struct page *page)
920{
921 /*
922 * Can the page->hpage_pinned_refcount field be used? That field is in
923 * the 3rd page of the compound page, so the smallest (2-page) compound
924 * pages cannot support it.
925 */
926 page = compound_head(page);
927 return PageCompound(page) && compound_order(page) > 1;
928}
929
bac3cf4d 930static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
931{
932 return atomic_read(compound_pincount_ptr(head));
933}
934
47e29d32
JH
935static inline int compound_pincount(struct page *page)
936{
937 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
938 page = compound_head(page);
bac3cf4d 939 return head_compound_pincount(page);
47e29d32
JH
940}
941
f1e61557 942static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 943{
e4b294c2 944 page[1].compound_order = order;
1378a5ee 945 page[1].compound_nr = 1U << order;
d85f3385
CL
946}
947
d8c6546b
MWO
948/* Returns the number of pages in this potentially compound page. */
949static inline unsigned long compound_nr(struct page *page)
950{
1378a5ee
MWO
951 if (!PageHead(page))
952 return 1;
953 return page[1].compound_nr;
d8c6546b
MWO
954}
955
a50b854e
MWO
956/* Returns the number of bytes in this potentially compound page. */
957static inline unsigned long page_size(struct page *page)
958{
959 return PAGE_SIZE << compound_order(page);
960}
961
94ad9338
MWO
962/* Returns the number of bits needed for the number of bytes in a page */
963static inline unsigned int page_shift(struct page *page)
964{
965 return PAGE_SHIFT + compound_order(page);
966}
967
9a982250
KS
968void free_compound_page(struct page *page);
969
3dece370 970#ifdef CONFIG_MMU
14fd403f
AA
971/*
972 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
973 * servicing faults for write access. In the normal case, do always want
974 * pte_mkwrite. But get_user_pages can cause write faults for mappings
975 * that do not have writing enabled, when used by access_process_vm.
976 */
977static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
978{
979 if (likely(vma->vm_flags & VM_WRITE))
980 pte = pte_mkwrite(pte);
981 return pte;
982}
8c6e50b0 983
f9ce0be7 984vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 985void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 986
2b740303
SJ
987vm_fault_t finish_fault(struct vm_fault *vmf);
988vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 989#endif
14fd403f 990
1da177e4
LT
991/*
992 * Multiple processes may "see" the same page. E.g. for untouched
993 * mappings of /dev/null, all processes see the same page full of
994 * zeroes, and text pages of executables and shared libraries have
995 * only one copy in memory, at most, normally.
996 *
997 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
998 * page_count() == 0 means the page is free. page->lru is then used for
999 * freelist management in the buddy allocator.
da6052f7 1000 * page_count() > 0 means the page has been allocated.
1da177e4 1001 *
da6052f7
NP
1002 * Pages are allocated by the slab allocator in order to provide memory
1003 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1004 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1005 * unless a particular usage is carefully commented. (the responsibility of
1006 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1007 *
da6052f7
NP
1008 * A page may be used by anyone else who does a __get_free_page().
1009 * In this case, page_count still tracks the references, and should only
1010 * be used through the normal accessor functions. The top bits of page->flags
1011 * and page->virtual store page management information, but all other fields
1012 * are unused and could be used privately, carefully. The management of this
1013 * page is the responsibility of the one who allocated it, and those who have
1014 * subsequently been given references to it.
1015 *
1016 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1017 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1018 * The following discussion applies only to them.
1019 *
da6052f7
NP
1020 * A pagecache page contains an opaque `private' member, which belongs to the
1021 * page's address_space. Usually, this is the address of a circular list of
1022 * the page's disk buffers. PG_private must be set to tell the VM to call
1023 * into the filesystem to release these pages.
1da177e4 1024 *
da6052f7
NP
1025 * A page may belong to an inode's memory mapping. In this case, page->mapping
1026 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1027 * in units of PAGE_SIZE.
1da177e4 1028 *
da6052f7
NP
1029 * If pagecache pages are not associated with an inode, they are said to be
1030 * anonymous pages. These may become associated with the swapcache, and in that
1031 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1032 *
da6052f7
NP
1033 * In either case (swapcache or inode backed), the pagecache itself holds one
1034 * reference to the page. Setting PG_private should also increment the
1035 * refcount. The each user mapping also has a reference to the page.
1da177e4 1036 *
da6052f7 1037 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1038 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1039 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1040 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1041 *
da6052f7 1042 * All pagecache pages may be subject to I/O:
1da177e4
LT
1043 * - inode pages may need to be read from disk,
1044 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1045 * to be written back to the inode on disk,
1046 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1047 * modified may need to be swapped out to swap space and (later) to be read
1048 * back into memory.
1da177e4
LT
1049 */
1050
1051/*
1052 * The zone field is never updated after free_area_init_core()
1053 * sets it, so none of the operations on it need to be atomic.
1da177e4 1054 */
348f8b6c 1055
90572890 1056/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1057#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1058#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1059#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1060#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1061#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1062
348f8b6c 1063/*
25985edc 1064 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1065 * sections we define the shift as 0; that plus a 0 mask ensures
1066 * the compiler will optimise away reference to them.
1067 */
d41dee36
AW
1068#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1069#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1070#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1071#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1072#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1073
bce54bbf
WD
1074/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1075#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1076#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1077#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1078 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1079#else
89689ae7 1080#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1081#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1082 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1083#endif
1084
bd8029b6 1085#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1086
d41dee36
AW
1087#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1088#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1089#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1090#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1091#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1092#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1093
33dd4e0e 1094static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1095{
c403f6a3 1096 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1097 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1098}
1da177e4 1099
260ae3f7
DW
1100#ifdef CONFIG_ZONE_DEVICE
1101static inline bool is_zone_device_page(const struct page *page)
1102{
1103 return page_zonenum(page) == ZONE_DEVICE;
1104}
966cf44f
AD
1105extern void memmap_init_zone_device(struct zone *, unsigned long,
1106 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1107#else
1108static inline bool is_zone_device_page(const struct page *page)
1109{
1110 return false;
1111}
7b2d55d2 1112#endif
5042db43 1113
8e3560d9
PT
1114static inline bool is_zone_movable_page(const struct page *page)
1115{
1116 return page_zonenum(page) == ZONE_MOVABLE;
1117}
1118
e7638488 1119#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1120void free_devmap_managed_page(struct page *page);
e7638488 1121DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1122
1123static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1124{
1125 if (!static_branch_unlikely(&devmap_managed_key))
1126 return false;
1127 if (!is_zone_device_page(page))
1128 return false;
1129 switch (page->pgmap->type) {
1130 case MEMORY_DEVICE_PRIVATE:
e7638488 1131 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1132 return true;
1133 default:
1134 break;
1135 }
1136 return false;
1137}
1138
07d80269
JH
1139void put_devmap_managed_page(struct page *page);
1140
e7638488 1141#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1142static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1143{
1144 return false;
1145}
07d80269
JH
1146
1147static inline void put_devmap_managed_page(struct page *page)
1148{
1149}
7588adf8 1150#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1151
6b368cd4
JG
1152static inline bool is_device_private_page(const struct page *page)
1153{
7588adf8
RM
1154 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1155 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1156 is_zone_device_page(page) &&
1157 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1158}
e7638488 1159
52916982
LG
1160static inline bool is_pci_p2pdma_page(const struct page *page)
1161{
7588adf8
RM
1162 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1163 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1164 is_zone_device_page(page) &&
1165 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1166}
7b2d55d2 1167
f958d7b5
LT
1168/* 127: arbitrary random number, small enough to assemble well */
1169#define page_ref_zero_or_close_to_overflow(page) \
1170 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1171
3565fce3
DW
1172static inline void get_page(struct page *page)
1173{
1174 page = compound_head(page);
1175 /*
1176 * Getting a normal page or the head of a compound page
0139aa7b 1177 * requires to already have an elevated page->_refcount.
3565fce3 1178 */
f958d7b5 1179 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1180 page_ref_inc(page);
3565fce3
DW
1181}
1182
3faa52c0 1183bool __must_check try_grab_page(struct page *page, unsigned int flags);
54d516b1
JH
1184struct page *try_grab_compound_head(struct page *page, int refs,
1185 unsigned int flags);
0fa5bc40 1186
cd1adf1b
LT
1187
1188static inline __must_check bool try_get_page(struct page *page)
1189{
1190 page = compound_head(page);
1191 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1192 return false;
1193 page_ref_inc(page);
1194 return true;
1195}
3565fce3
DW
1196
1197static inline void put_page(struct page *page)
1198{
1199 page = compound_head(page);
1200
7b2d55d2 1201 /*
e7638488
DW
1202 * For devmap managed pages we need to catch refcount transition from
1203 * 2 to 1, when refcount reach one it means the page is free and we
1204 * need to inform the device driver through callback. See
7b2d55d2
JG
1205 * include/linux/memremap.h and HMM for details.
1206 */
07d80269
JH
1207 if (page_is_devmap_managed(page)) {
1208 put_devmap_managed_page(page);
7b2d55d2 1209 return;
07d80269 1210 }
7b2d55d2 1211
3565fce3
DW
1212 if (put_page_testzero(page))
1213 __put_page(page);
3565fce3
DW
1214}
1215
3faa52c0
JH
1216/*
1217 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1218 * the page's refcount so that two separate items are tracked: the original page
1219 * reference count, and also a new count of how many pin_user_pages() calls were
1220 * made against the page. ("gup-pinned" is another term for the latter).
1221 *
1222 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1223 * distinct from normal pages. As such, the unpin_user_page() call (and its
1224 * variants) must be used in order to release gup-pinned pages.
1225 *
1226 * Choice of value:
1227 *
1228 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1229 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1230 * simpler, due to the fact that adding an even power of two to the page
1231 * refcount has the effect of using only the upper N bits, for the code that
1232 * counts up using the bias value. This means that the lower bits are left for
1233 * the exclusive use of the original code that increments and decrements by one
1234 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1235 *
3faa52c0
JH
1236 * Of course, once the lower bits overflow into the upper bits (and this is
1237 * OK, because subtraction recovers the original values), then visual inspection
1238 * no longer suffices to directly view the separate counts. However, for normal
1239 * applications that don't have huge page reference counts, this won't be an
1240 * issue.
fc1d8e7c 1241 *
3faa52c0
JH
1242 * Locking: the lockless algorithm described in page_cache_get_speculative()
1243 * and page_cache_gup_pin_speculative() provides safe operation for
1244 * get_user_pages and page_mkclean and other calls that race to set up page
1245 * table entries.
fc1d8e7c 1246 */
3faa52c0 1247#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1248
3faa52c0 1249void unpin_user_page(struct page *page);
f1f6a7dd
JH
1250void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1251 bool make_dirty);
458a4f78
JM
1252void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1253 bool make_dirty);
f1f6a7dd 1254void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1255
3faa52c0 1256/**
136dfc99
MWO
1257 * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1258 * @page: The page.
3faa52c0
JH
1259 *
1260 * This function checks if a page has been pinned via a call to
136dfc99 1261 * a function in the pin_user_pages() family.
3faa52c0
JH
1262 *
1263 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1264 * because it means "definitely not pinned for DMA", but true means "probably
1265 * pinned for DMA, but possibly a false positive due to having at least
1266 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1267 *
1268 * False positives are OK, because: a) it's unlikely for a page to get that many
1269 * refcounts, and b) all the callers of this routine are expected to be able to
1270 * deal gracefully with a false positive.
1271 *
47e29d32
JH
1272 * For huge pages, the result will be exactly correct. That's because we have
1273 * more tracking data available: the 3rd struct page in the compound page is
1274 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1275 * scheme).
1276 *
72ef5e52 1277 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0 1278 *
136dfc99
MWO
1279 * Return: True, if it is likely that the page has been "dma-pinned".
1280 * False, if the page is definitely not dma-pinned.
3faa52c0
JH
1281 */
1282static inline bool page_maybe_dma_pinned(struct page *page)
1283{
47e29d32
JH
1284 if (hpage_pincount_available(page))
1285 return compound_pincount(page) > 0;
1286
3faa52c0
JH
1287 /*
1288 * page_ref_count() is signed. If that refcount overflows, then
1289 * page_ref_count() returns a negative value, and callers will avoid
1290 * further incrementing the refcount.
1291 *
1292 * Here, for that overflow case, use the signed bit to count a little
1293 * bit higher via unsigned math, and thus still get an accurate result.
1294 */
1295 return ((unsigned int)page_ref_count(compound_head(page))) >=
1296 GUP_PIN_COUNTING_BIAS;
1297}
1298
97a7e473
PX
1299static inline bool is_cow_mapping(vm_flags_t flags)
1300{
1301 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1302}
1303
1304/*
1305 * This should most likely only be called during fork() to see whether we
1306 * should break the cow immediately for a page on the src mm.
1307 */
1308static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1309 struct page *page)
1310{
1311 if (!is_cow_mapping(vma->vm_flags))
1312 return false;
1313
a458b76a 1314 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
97a7e473
PX
1315 return false;
1316
1317 return page_maybe_dma_pinned(page);
1318}
1319
9127ab4f
CS
1320#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1321#define SECTION_IN_PAGE_FLAGS
1322#endif
1323
89689ae7 1324/*
7a8010cd
VB
1325 * The identification function is mainly used by the buddy allocator for
1326 * determining if two pages could be buddies. We are not really identifying
1327 * the zone since we could be using the section number id if we do not have
1328 * node id available in page flags.
1329 * We only guarantee that it will return the same value for two combinable
1330 * pages in a zone.
89689ae7 1331 */
cb2b95e1
AW
1332static inline int page_zone_id(struct page *page)
1333{
89689ae7 1334 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1335}
1336
89689ae7 1337#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1338extern int page_to_nid(const struct page *page);
89689ae7 1339#else
33dd4e0e 1340static inline int page_to_nid(const struct page *page)
d41dee36 1341{
f165b378
PT
1342 struct page *p = (struct page *)page;
1343
1344 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1345}
89689ae7
CL
1346#endif
1347
57e0a030 1348#ifdef CONFIG_NUMA_BALANCING
90572890 1349static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1350{
90572890 1351 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1352}
1353
90572890 1354static inline int cpupid_to_pid(int cpupid)
57e0a030 1355{
90572890 1356 return cpupid & LAST__PID_MASK;
57e0a030 1357}
b795854b 1358
90572890 1359static inline int cpupid_to_cpu(int cpupid)
b795854b 1360{
90572890 1361 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1362}
1363
90572890 1364static inline int cpupid_to_nid(int cpupid)
b795854b 1365{
90572890 1366 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1367}
1368
90572890 1369static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1370{
90572890 1371 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1372}
1373
90572890 1374static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1375{
90572890 1376 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1377}
1378
8c8a743c
PZ
1379static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1380{
1381 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1382}
1383
1384#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1385#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1386static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1387{
1ae71d03 1388 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1389}
90572890
PZ
1390
1391static inline int page_cpupid_last(struct page *page)
1392{
1393 return page->_last_cpupid;
1394}
1395static inline void page_cpupid_reset_last(struct page *page)
b795854b 1396{
1ae71d03 1397 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1398}
1399#else
90572890 1400static inline int page_cpupid_last(struct page *page)
75980e97 1401{
90572890 1402 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1403}
1404
90572890 1405extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1406
90572890 1407static inline void page_cpupid_reset_last(struct page *page)
75980e97 1408{
09940a4f 1409 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1410}
90572890
PZ
1411#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1412#else /* !CONFIG_NUMA_BALANCING */
1413static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1414{
90572890 1415 return page_to_nid(page); /* XXX */
57e0a030
MG
1416}
1417
90572890 1418static inline int page_cpupid_last(struct page *page)
57e0a030 1419{
90572890 1420 return page_to_nid(page); /* XXX */
57e0a030
MG
1421}
1422
90572890 1423static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1424{
1425 return -1;
1426}
1427
90572890 1428static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1429{
1430 return -1;
1431}
1432
90572890 1433static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1434{
1435 return -1;
1436}
1437
90572890
PZ
1438static inline int cpu_pid_to_cpupid(int nid, int pid)
1439{
1440 return -1;
1441}
1442
1443static inline bool cpupid_pid_unset(int cpupid)
b795854b 1444{
2b787449 1445 return true;
b795854b
MG
1446}
1447
90572890 1448static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1449{
1450}
8c8a743c
PZ
1451
1452static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1453{
1454 return false;
1455}
90572890 1456#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1457
2e903b91 1458#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1459
cf10bd4c
AK
1460/*
1461 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1462 * setting tags for all pages to native kernel tag value 0xff, as the default
1463 * value 0x00 maps to 0xff.
1464 */
1465
2813b9c0
AK
1466static inline u8 page_kasan_tag(const struct page *page)
1467{
cf10bd4c
AK
1468 u8 tag = 0xff;
1469
1470 if (kasan_enabled()) {
1471 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1472 tag ^= 0xff;
1473 }
1474
1475 return tag;
2813b9c0
AK
1476}
1477
1478static inline void page_kasan_tag_set(struct page *page, u8 tag)
1479{
34303244 1480 if (kasan_enabled()) {
cf10bd4c 1481 tag ^= 0xff;
34303244
AK
1482 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1483 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1484 }
2813b9c0
AK
1485}
1486
1487static inline void page_kasan_tag_reset(struct page *page)
1488{
34303244
AK
1489 if (kasan_enabled())
1490 page_kasan_tag_set(page, 0xff);
2813b9c0 1491}
34303244
AK
1492
1493#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1494
2813b9c0
AK
1495static inline u8 page_kasan_tag(const struct page *page)
1496{
1497 return 0xff;
1498}
1499
1500static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1501static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1502
1503#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1504
33dd4e0e 1505static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1506{
1507 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1508}
1509
75ef7184
MG
1510static inline pg_data_t *page_pgdat(const struct page *page)
1511{
1512 return NODE_DATA(page_to_nid(page));
1513}
1514
9127ab4f 1515#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1516static inline void set_page_section(struct page *page, unsigned long section)
1517{
1518 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1519 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1520}
1521
aa462abe 1522static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1523{
1524 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1525}
308c05e3 1526#endif
d41dee36 1527
8e3560d9
PT
1528/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1529#ifdef CONFIG_MIGRATION
1530static inline bool is_pinnable_page(struct page *page)
1531{
9afaf30f
PT
1532 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1533 is_zero_pfn(page_to_pfn(page));
8e3560d9
PT
1534}
1535#else
1536static inline bool is_pinnable_page(struct page *page)
1537{
1538 return true;
1539}
1540#endif
1541
2f1b6248 1542static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1543{
1544 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1545 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1546}
2f1b6248 1547
348f8b6c
DH
1548static inline void set_page_node(struct page *page, unsigned long node)
1549{
1550 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1551 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1552}
89689ae7 1553
2f1b6248 1554static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1555 unsigned long node, unsigned long pfn)
1da177e4 1556{
348f8b6c
DH
1557 set_page_zone(page, zone);
1558 set_page_node(page, node);
9127ab4f 1559#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1560 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1561#endif
1da177e4
LT
1562}
1563
f6ac2354
CL
1564/*
1565 * Some inline functions in vmstat.h depend on page_zone()
1566 */
1567#include <linux/vmstat.h>
1568
33dd4e0e 1569static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1570{
1dff8083 1571 return page_to_virt(page);
1da177e4
LT
1572}
1573
1574#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1575#define HASHED_PAGE_VIRTUAL
1576#endif
1577
1578#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1579static inline void *page_address(const struct page *page)
1580{
1581 return page->virtual;
1582}
1583static inline void set_page_address(struct page *page, void *address)
1584{
1585 page->virtual = address;
1586}
1da177e4
LT
1587#define page_address_init() do { } while(0)
1588#endif
1589
1590#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1591void *page_address(const struct page *page);
1da177e4
LT
1592void set_page_address(struct page *page, void *virtual);
1593void page_address_init(void);
1594#endif
1595
1596#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1597#define page_address(page) lowmem_page_address(page)
1598#define set_page_address(page, address) do { } while(0)
1599#define page_address_init() do { } while(0)
1600#endif
1601
e39155ea
KS
1602extern void *page_rmapping(struct page *page);
1603extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1604extern struct address_space *page_mapping(struct page *page);
1da177e4 1605
f981c595
MG
1606extern struct address_space *__page_file_mapping(struct page *);
1607
1608static inline
1609struct address_space *page_file_mapping(struct page *page)
1610{
1611 if (unlikely(PageSwapCache(page)))
1612 return __page_file_mapping(page);
1613
1614 return page->mapping;
1615}
1616
f6ab1f7f
HY
1617extern pgoff_t __page_file_index(struct page *page);
1618
1da177e4
LT
1619/*
1620 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1621 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1622 */
1623static inline pgoff_t page_index(struct page *page)
1624{
1625 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1626 return __page_file_index(page);
1da177e4
LT
1627 return page->index;
1628}
1629
1aa8aea5 1630bool page_mapped(struct page *page);
bda807d4 1631struct address_space *page_mapping(struct page *page);
1da177e4 1632
2f064f34
MH
1633/*
1634 * Return true only if the page has been allocated with
1635 * ALLOC_NO_WATERMARKS and the low watermark was not
1636 * met implying that the system is under some pressure.
1637 */
1d7bab6a 1638static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1639{
1640 /*
c07aea3e
MC
1641 * lru.next has bit 1 set if the page is allocated from the
1642 * pfmemalloc reserves. Callers may simply overwrite it if
1643 * they do not need to preserve that information.
2f064f34 1644 */
c07aea3e 1645 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
1646}
1647
1648/*
1649 * Only to be called by the page allocator on a freshly allocated
1650 * page.
1651 */
1652static inline void set_page_pfmemalloc(struct page *page)
1653{
c07aea3e 1654 page->lru.next = (void *)BIT(1);
2f064f34
MH
1655}
1656
1657static inline void clear_page_pfmemalloc(struct page *page)
1658{
c07aea3e 1659 page->lru.next = NULL;
2f064f34
MH
1660}
1661
1c0fe6e3
NP
1662/*
1663 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1664 */
1665extern void pagefault_out_of_memory(void);
1666
1da177e4 1667#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1668#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1da177e4 1669
ddd588b5 1670/*
7bf02ea2 1671 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1672 * various contexts.
1673 */
4b59e6c4 1674#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1675
9af744d7 1676extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1677
710ec38b 1678#ifdef CONFIG_MMU
7f43add4 1679extern bool can_do_mlock(void);
710ec38b
AB
1680#else
1681static inline bool can_do_mlock(void) { return false; }
1682#endif
d7c9e99a
AG
1683extern int user_shm_lock(size_t, struct ucounts *);
1684extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4
LT
1685
1686/*
1687 * Parameter block passed down to zap_pte_range in exceptional cases.
1688 */
1689struct zap_details {
91b61ef3 1690 struct address_space *zap_mapping; /* Check page->mapping if set */
22061a1f 1691 struct page *single_page; /* Locked page to be unmapped */
1da177e4
LT
1692};
1693
91b61ef3
PX
1694/*
1695 * We set details->zap_mappings when we want to unmap shared but keep private
1696 * pages. Return true if skip zapping this page, false otherwise.
1697 */
1698static inline bool
1699zap_skip_check_mapping(struct zap_details *details, struct page *page)
1700{
1701 if (!details || !page)
1702 return false;
1703
1704 return details->zap_mapping &&
1705 (details->zap_mapping != page_rmapping(page));
1706}
1707
25b2995a
CH
1708struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1709 pte_t pte);
28093f9f
GS
1710struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1711 pmd_t pmd);
7e675137 1712
27d036e3
LR
1713void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1714 unsigned long size);
14f5ff5d 1715void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1716 unsigned long size);
4f74d2c8
LT
1717void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1718 unsigned long start, unsigned long end);
e6473092 1719
ac46d4f3
JG
1720struct mmu_notifier_range;
1721
42b77728 1722void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1723 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1724int
1725copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
9fd6dad1
PB
1726int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1727 struct mmu_notifier_range *range, pte_t **ptepp,
1728 pmd_t **pmdpp, spinlock_t **ptlp);
ff5c19ed 1729int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 1730 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
1731int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1732 unsigned long *pfn);
d87fe660 1733int follow_phys(struct vm_area_struct *vma, unsigned long address,
1734 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1735int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1736 void *buf, int len, int write);
1da177e4 1737
7caef267 1738extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1739extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1740void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1741void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1742int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1743int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1744int invalidate_inode_page(struct page *page);
1745
7ee1dd3f 1746#ifdef CONFIG_MMU
2b740303 1747extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1748 unsigned long address, unsigned int flags,
1749 struct pt_regs *regs);
64019a2e 1750extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1751 unsigned long address, unsigned int fault_flags,
1752 bool *unlocked);
22061a1f 1753void unmap_mapping_page(struct page *page);
977fbdcd
MW
1754void unmap_mapping_pages(struct address_space *mapping,
1755 pgoff_t start, pgoff_t nr, bool even_cows);
1756void unmap_mapping_range(struct address_space *mapping,
1757 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1758#else
2b740303 1759static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1760 unsigned long address, unsigned int flags,
1761 struct pt_regs *regs)
7ee1dd3f
DH
1762{
1763 /* should never happen if there's no MMU */
1764 BUG();
1765 return VM_FAULT_SIGBUS;
1766}
64019a2e 1767static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1768 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1769{
1770 /* should never happen if there's no MMU */
1771 BUG();
1772 return -EFAULT;
1773}
22061a1f 1774static inline void unmap_mapping_page(struct page *page) { }
977fbdcd
MW
1775static inline void unmap_mapping_pages(struct address_space *mapping,
1776 pgoff_t start, pgoff_t nr, bool even_cows) { }
1777static inline void unmap_mapping_range(struct address_space *mapping,
1778 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1779#endif
f33ea7f4 1780
977fbdcd
MW
1781static inline void unmap_shared_mapping_range(struct address_space *mapping,
1782 loff_t const holebegin, loff_t const holelen)
1783{
1784 unmap_mapping_range(mapping, holebegin, holelen, 0);
1785}
1786
1787extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1788 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1789extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1790 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1791extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1792 void *buf, int len, unsigned int gup_flags);
1da177e4 1793
64019a2e 1794long get_user_pages_remote(struct mm_struct *mm,
1e987790 1795 unsigned long start, unsigned long nr_pages,
9beae1ea 1796 unsigned int gup_flags, struct page **pages,
5b56d49f 1797 struct vm_area_struct **vmas, int *locked);
64019a2e 1798long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1799 unsigned long start, unsigned long nr_pages,
1800 unsigned int gup_flags, struct page **pages,
1801 struct vm_area_struct **vmas, int *locked);
c12d2da5 1802long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1803 unsigned int gup_flags, struct page **pages,
cde70140 1804 struct vm_area_struct **vmas);
eddb1c22
JH
1805long pin_user_pages(unsigned long start, unsigned long nr_pages,
1806 unsigned int gup_flags, struct page **pages,
1807 struct vm_area_struct **vmas);
c12d2da5 1808long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1809 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1810long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1811 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1812long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1813 struct page **pages, unsigned int gup_flags);
91429023
JH
1814long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1815 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1816
73b0140b
IW
1817int get_user_pages_fast(unsigned long start, int nr_pages,
1818 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1819int pin_user_pages_fast(unsigned long start, int nr_pages,
1820 unsigned int gup_flags, struct page **pages);
8025e5dd 1821
79eb597c
DJ
1822int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1823int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1824 struct task_struct *task, bool bypass_rlim);
1825
18022c5d
MG
1826struct kvec;
1827int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1828 struct page **pages);
f3e8fccd 1829struct page *get_dump_page(unsigned long addr);
1da177e4 1830
cf9a2ae8 1831extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1832extern void do_invalidatepage(struct page *page, unsigned int offset,
1833 unsigned int length);
cf9a2ae8 1834
1da177e4
LT
1835int redirty_page_for_writepage(struct writeback_control *wbc,
1836 struct page *page);
c4843a75 1837void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1838 struct bdi_writeback *wb);
b3c97528 1839int set_page_dirty(struct page *page);
1da177e4 1840int set_page_dirty_lock(struct page *page);
736304f3
JK
1841void __cancel_dirty_page(struct page *page);
1842static inline void cancel_dirty_page(struct page *page)
1843{
1844 /* Avoid atomic ops, locking, etc. when not actually needed. */
1845 if (PageDirty(page))
1846 __cancel_dirty_page(page);
1847}
1da177e4 1848int clear_page_dirty_for_io(struct page *page);
b9ea2515 1849
a9090253 1850int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1851
b6a2fea3
OW
1852extern unsigned long move_page_tables(struct vm_area_struct *vma,
1853 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1854 unsigned long new_addr, unsigned long len,
1855 bool need_rmap_locks);
58705444
PX
1856
1857/*
1858 * Flags used by change_protection(). For now we make it a bitmap so
1859 * that we can pass in multiple flags just like parameters. However
1860 * for now all the callers are only use one of the flags at the same
1861 * time.
1862 */
1863/* Whether we should allow dirty bit accounting */
1864#define MM_CP_DIRTY_ACCT (1UL << 0)
1865/* Whether this protection change is for NUMA hints */
1866#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1867/* Whether this change is for write protecting */
1868#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1869#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1870#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1871 MM_CP_UFFD_WP_RESOLVE)
58705444 1872
7da4d641
PZ
1873extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1874 unsigned long end, pgprot_t newprot,
58705444 1875 unsigned long cp_flags);
b6a2fea3
OW
1876extern int mprotect_fixup(struct vm_area_struct *vma,
1877 struct vm_area_struct **pprev, unsigned long start,
1878 unsigned long end, unsigned long newflags);
1da177e4 1879
465a454f
PZ
1880/*
1881 * doesn't attempt to fault and will return short.
1882 */
dadbb612
SJ
1883int get_user_pages_fast_only(unsigned long start, int nr_pages,
1884 unsigned int gup_flags, struct page **pages);
104acc32
JH
1885int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1886 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1887
1888static inline bool get_user_page_fast_only(unsigned long addr,
1889 unsigned int gup_flags, struct page **pagep)
1890{
1891 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1892}
d559db08
KH
1893/*
1894 * per-process(per-mm_struct) statistics.
1895 */
d559db08
KH
1896static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1897{
69c97823
KK
1898 long val = atomic_long_read(&mm->rss_stat.count[member]);
1899
1900#ifdef SPLIT_RSS_COUNTING
1901 /*
1902 * counter is updated in asynchronous manner and may go to minus.
1903 * But it's never be expected number for users.
1904 */
1905 if (val < 0)
1906 val = 0;
172703b0 1907#endif
69c97823
KK
1908 return (unsigned long)val;
1909}
d559db08 1910
e4dcad20 1911void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1912
d559db08
KH
1913static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1914{
b3d1411b
JFG
1915 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1916
e4dcad20 1917 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1918}
1919
1920static inline void inc_mm_counter(struct mm_struct *mm, int member)
1921{
b3d1411b
JFG
1922 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1923
e4dcad20 1924 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1925}
1926
1927static inline void dec_mm_counter(struct mm_struct *mm, int member)
1928{
b3d1411b
JFG
1929 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1930
e4dcad20 1931 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1932}
1933
eca56ff9
JM
1934/* Optimized variant when page is already known not to be PageAnon */
1935static inline int mm_counter_file(struct page *page)
1936{
1937 if (PageSwapBacked(page))
1938 return MM_SHMEMPAGES;
1939 return MM_FILEPAGES;
1940}
1941
1942static inline int mm_counter(struct page *page)
1943{
1944 if (PageAnon(page))
1945 return MM_ANONPAGES;
1946 return mm_counter_file(page);
1947}
1948
d559db08
KH
1949static inline unsigned long get_mm_rss(struct mm_struct *mm)
1950{
1951 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1952 get_mm_counter(mm, MM_ANONPAGES) +
1953 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1954}
1955
1956static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1957{
1958 return max(mm->hiwater_rss, get_mm_rss(mm));
1959}
1960
1961static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1962{
1963 return max(mm->hiwater_vm, mm->total_vm);
1964}
1965
1966static inline void update_hiwater_rss(struct mm_struct *mm)
1967{
1968 unsigned long _rss = get_mm_rss(mm);
1969
1970 if ((mm)->hiwater_rss < _rss)
1971 (mm)->hiwater_rss = _rss;
1972}
1973
1974static inline void update_hiwater_vm(struct mm_struct *mm)
1975{
1976 if (mm->hiwater_vm < mm->total_vm)
1977 mm->hiwater_vm = mm->total_vm;
1978}
1979
695f0559
PC
1980static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1981{
1982 mm->hiwater_rss = get_mm_rss(mm);
1983}
1984
d559db08
KH
1985static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1986 struct mm_struct *mm)
1987{
1988 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1989
1990 if (*maxrss < hiwater_rss)
1991 *maxrss = hiwater_rss;
1992}
1993
53bddb4e 1994#if defined(SPLIT_RSS_COUNTING)
05af2e10 1995void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1996#else
05af2e10 1997static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1998{
1999}
2000#endif
465a454f 2001
78e7c5af
AK
2002#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2003static inline int pte_special(pte_t pte)
2004{
2005 return 0;
2006}
2007
2008static inline pte_t pte_mkspecial(pte_t pte)
2009{
2010 return pte;
2011}
2012#endif
2013
17596731 2014#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2015static inline int pte_devmap(pte_t pte)
2016{
2017 return 0;
2018}
2019#endif
2020
6d2329f8 2021int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 2022
25ca1d6c
NK
2023extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2024 spinlock_t **ptl);
2025static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2026 spinlock_t **ptl)
2027{
2028 pte_t *ptep;
2029 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2030 return ptep;
2031}
c9cfcddf 2032
c2febafc
KS
2033#ifdef __PAGETABLE_P4D_FOLDED
2034static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2035 unsigned long address)
2036{
2037 return 0;
2038}
2039#else
2040int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2041#endif
2042
b4e98d9a 2043#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2044static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2045 unsigned long address)
2046{
2047 return 0;
2048}
b4e98d9a
KS
2049static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2050static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2051
5f22df00 2052#else
c2febafc 2053int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2054
b4e98d9a
KS
2055static inline void mm_inc_nr_puds(struct mm_struct *mm)
2056{
6d212db1
MS
2057 if (mm_pud_folded(mm))
2058 return;
af5b0f6a 2059 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2060}
2061
2062static inline void mm_dec_nr_puds(struct mm_struct *mm)
2063{
6d212db1
MS
2064 if (mm_pud_folded(mm))
2065 return;
af5b0f6a 2066 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2067}
5f22df00
NP
2068#endif
2069
2d2f5119 2070#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2071static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2072 unsigned long address)
2073{
2074 return 0;
2075}
dc6c9a35 2076
dc6c9a35
KS
2077static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2078static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2079
5f22df00 2080#else
1bb3630e 2081int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2082
dc6c9a35
KS
2083static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2084{
6d212db1
MS
2085 if (mm_pmd_folded(mm))
2086 return;
af5b0f6a 2087 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2088}
2089
2090static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2091{
6d212db1
MS
2092 if (mm_pmd_folded(mm))
2093 return;
af5b0f6a 2094 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2095}
5f22df00
NP
2096#endif
2097
c4812909 2098#ifdef CONFIG_MMU
af5b0f6a 2099static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2100{
af5b0f6a 2101 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2102}
2103
af5b0f6a 2104static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2105{
af5b0f6a 2106 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2107}
2108
2109static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2110{
af5b0f6a 2111 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2112}
2113
2114static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2115{
af5b0f6a 2116 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2117}
2118#else
c4812909 2119
af5b0f6a
KS
2120static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2121static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2122{
2123 return 0;
2124}
2125
2126static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2127static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2128#endif
2129
4cf58924
JFG
2130int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2131int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2132
f949286c
MR
2133#if defined(CONFIG_MMU)
2134
c2febafc
KS
2135static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2136 unsigned long address)
2137{
2138 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2139 NULL : p4d_offset(pgd, address);
2140}
2141
2142static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2143 unsigned long address)
1da177e4 2144{
c2febafc
KS
2145 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2146 NULL : pud_offset(p4d, address);
1da177e4 2147}
d8626138 2148
1da177e4
LT
2149static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2150{
1bb3630e
HD
2151 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2152 NULL: pmd_offset(pud, address);
1da177e4 2153}
f949286c 2154#endif /* CONFIG_MMU */
1bb3630e 2155
57c1ffce 2156#if USE_SPLIT_PTE_PTLOCKS
597d795a 2157#if ALLOC_SPLIT_PTLOCKS
b35f1819 2158void __init ptlock_cache_init(void);
539edb58
PZ
2159extern bool ptlock_alloc(struct page *page);
2160extern void ptlock_free(struct page *page);
2161
2162static inline spinlock_t *ptlock_ptr(struct page *page)
2163{
2164 return page->ptl;
2165}
597d795a 2166#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2167static inline void ptlock_cache_init(void)
2168{
2169}
2170
49076ec2
KS
2171static inline bool ptlock_alloc(struct page *page)
2172{
49076ec2
KS
2173 return true;
2174}
539edb58 2175
49076ec2
KS
2176static inline void ptlock_free(struct page *page)
2177{
49076ec2
KS
2178}
2179
2180static inline spinlock_t *ptlock_ptr(struct page *page)
2181{
539edb58 2182 return &page->ptl;
49076ec2 2183}
597d795a 2184#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2185
2186static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2187{
2188 return ptlock_ptr(pmd_page(*pmd));
2189}
2190
2191static inline bool ptlock_init(struct page *page)
2192{
2193 /*
2194 * prep_new_page() initialize page->private (and therefore page->ptl)
2195 * with 0. Make sure nobody took it in use in between.
2196 *
2197 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2198 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2199 */
309381fe 2200 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2201 if (!ptlock_alloc(page))
2202 return false;
2203 spin_lock_init(ptlock_ptr(page));
2204 return true;
2205}
2206
57c1ffce 2207#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2208/*
2209 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2210 */
49076ec2
KS
2211static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2212{
2213 return &mm->page_table_lock;
2214}
b35f1819 2215static inline void ptlock_cache_init(void) {}
49076ec2 2216static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2217static inline void ptlock_free(struct page *page) {}
57c1ffce 2218#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2219
b35f1819
KS
2220static inline void pgtable_init(void)
2221{
2222 ptlock_cache_init();
2223 pgtable_cache_init();
2224}
2225
b4ed71f5 2226static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2227{
706874e9
VD
2228 if (!ptlock_init(page))
2229 return false;
1d40a5ea 2230 __SetPageTable(page);
f0c0c115 2231 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2232 return true;
2f569afd
MS
2233}
2234
b4ed71f5 2235static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2236{
9e247bab 2237 ptlock_free(page);
1d40a5ea 2238 __ClearPageTable(page);
f0c0c115 2239 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2240}
2241
c74df32c
HD
2242#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2243({ \
4c21e2f2 2244 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2245 pte_t *__pte = pte_offset_map(pmd, address); \
2246 *(ptlp) = __ptl; \
2247 spin_lock(__ptl); \
2248 __pte; \
2249})
2250
2251#define pte_unmap_unlock(pte, ptl) do { \
2252 spin_unlock(ptl); \
2253 pte_unmap(pte); \
2254} while (0)
2255
4cf58924 2256#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2257
2258#define pte_alloc_map(mm, pmd, address) \
4cf58924 2259 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2260
c74df32c 2261#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2262 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2263 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2264
1bb3630e 2265#define pte_alloc_kernel(pmd, address) \
4cf58924 2266 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2267 NULL: pte_offset_kernel(pmd, address))
1da177e4 2268
e009bb30
KS
2269#if USE_SPLIT_PMD_PTLOCKS
2270
634391ac
MS
2271static struct page *pmd_to_page(pmd_t *pmd)
2272{
2273 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2274 return virt_to_page((void *)((unsigned long) pmd & mask));
2275}
2276
e009bb30
KS
2277static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2278{
634391ac 2279 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2280}
2281
b2b29d6d 2282static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2283{
e009bb30
KS
2284#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2285 page->pmd_huge_pte = NULL;
2286#endif
49076ec2 2287 return ptlock_init(page);
e009bb30
KS
2288}
2289
b2b29d6d 2290static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2291{
2292#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2293 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2294#endif
49076ec2 2295 ptlock_free(page);
e009bb30
KS
2296}
2297
634391ac 2298#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2299
2300#else
2301
9a86cb7b
KS
2302static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2303{
2304 return &mm->page_table_lock;
2305}
2306
b2b29d6d
MW
2307static inline bool pmd_ptlock_init(struct page *page) { return true; }
2308static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2309
c389a250 2310#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2311
e009bb30
KS
2312#endif
2313
9a86cb7b
KS
2314static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2315{
2316 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2317 spin_lock(ptl);
2318 return ptl;
2319}
2320
b2b29d6d
MW
2321static inline bool pgtable_pmd_page_ctor(struct page *page)
2322{
2323 if (!pmd_ptlock_init(page))
2324 return false;
2325 __SetPageTable(page);
f0c0c115 2326 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2327 return true;
2328}
2329
2330static inline void pgtable_pmd_page_dtor(struct page *page)
2331{
2332 pmd_ptlock_free(page);
2333 __ClearPageTable(page);
f0c0c115 2334 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2335}
2336
a00cc7d9
MW
2337/*
2338 * No scalability reason to split PUD locks yet, but follow the same pattern
2339 * as the PMD locks to make it easier if we decide to. The VM should not be
2340 * considered ready to switch to split PUD locks yet; there may be places
2341 * which need to be converted from page_table_lock.
2342 */
2343static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2344{
2345 return &mm->page_table_lock;
2346}
2347
2348static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2349{
2350 spinlock_t *ptl = pud_lockptr(mm, pud);
2351
2352 spin_lock(ptl);
2353 return ptl;
2354}
62906027 2355
a00cc7d9 2356extern void __init pagecache_init(void);
bc9331a1 2357extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2358extern void free_initmem(void);
2359
69afade7
JL
2360/*
2361 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2362 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2363 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2364 * Return pages freed into the buddy system.
2365 */
11199692 2366extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2367 int poison, const char *s);
c3d5f5f0 2368
c3d5f5f0 2369extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2370extern void mem_init_print_info(void);
69afade7 2371
4b50bcc7 2372extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2373
69afade7 2374/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2375static inline void free_reserved_page(struct page *page)
69afade7
JL
2376{
2377 ClearPageReserved(page);
2378 init_page_count(page);
2379 __free_page(page);
69afade7
JL
2380 adjust_managed_page_count(page, 1);
2381}
a0cd7a7c 2382#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2383
2384static inline void mark_page_reserved(struct page *page)
2385{
2386 SetPageReserved(page);
2387 adjust_managed_page_count(page, -1);
2388}
2389
2390/*
2391 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2392 * The freed pages will be poisoned with pattern "poison" if it's within
2393 * range [0, UCHAR_MAX].
2394 * Return pages freed into the buddy system.
69afade7
JL
2395 */
2396static inline unsigned long free_initmem_default(int poison)
2397{
2398 extern char __init_begin[], __init_end[];
2399
11199692 2400 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2401 poison, "unused kernel image (initmem)");
69afade7
JL
2402}
2403
7ee3d4e8
JL
2404static inline unsigned long get_num_physpages(void)
2405{
2406 int nid;
2407 unsigned long phys_pages = 0;
2408
2409 for_each_online_node(nid)
2410 phys_pages += node_present_pages(nid);
2411
2412 return phys_pages;
2413}
2414
c713216d 2415/*
3f08a302 2416 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2417 * zones, allocate the backing mem_map and account for memory holes in an
2418 * architecture independent manner.
c713216d
MG
2419 *
2420 * An architecture is expected to register range of page frames backed by
0ee332c1 2421 * physical memory with memblock_add[_node]() before calling
9691a071 2422 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2423 * usage, an architecture is expected to do something like
2424 *
2425 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2426 * max_highmem_pfn};
2427 * for_each_valid_physical_page_range()
0ee332c1 2428 * memblock_add_node(base, size, nid)
9691a071 2429 * free_area_init(max_zone_pfns);
c713216d 2430 */
9691a071 2431void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2432unsigned long node_map_pfn_alignment(void);
32996250
YL
2433unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2434 unsigned long end_pfn);
c713216d
MG
2435extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2436 unsigned long end_pfn);
2437extern void get_pfn_range_for_nid(unsigned int nid,
2438 unsigned long *start_pfn, unsigned long *end_pfn);
2439extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2440
a9ee6cf5 2441#ifndef CONFIG_NUMA
6f24fbd3 2442static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2443{
2444 return 0;
2445}
2446#else
2447/* please see mm/page_alloc.c */
2448extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2449#endif
2450
0e0b864e 2451extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2452extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2453 unsigned long, unsigned long, enum meminit_context,
2454 struct vmem_altmap *, int migratetype);
bc75d33f 2455extern void setup_per_zone_wmarks(void);
bd3400ea 2456extern void calculate_min_free_kbytes(void);
1b79acc9 2457extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2458extern void mem_init(void);
8feae131 2459extern void __init mmap_init(void);
9af744d7 2460extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2461extern long si_mem_available(void);
1da177e4
LT
2462extern void si_meminfo(struct sysinfo * val);
2463extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2464#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2465extern unsigned long arch_reserved_kernel_pages(void);
2466#endif
1da177e4 2467
a8e99259
MH
2468extern __printf(3, 4)
2469void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2470
e7c8d5c9 2471extern void setup_per_cpu_pageset(void);
e7c8d5c9 2472
75f7ad8e
PS
2473/* page_alloc.c */
2474extern int min_free_kbytes;
1c30844d 2475extern int watermark_boost_factor;
795ae7a0 2476extern int watermark_scale_factor;
51930df5 2477extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2478
8feae131 2479/* nommu.c */
33e5d769 2480extern atomic_long_t mmap_pages_allocated;
7e660872 2481extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2482
6b2dbba8 2483/* interval_tree.c */
6b2dbba8 2484void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2485 struct rb_root_cached *root);
9826a516
ML
2486void vma_interval_tree_insert_after(struct vm_area_struct *node,
2487 struct vm_area_struct *prev,
f808c13f 2488 struct rb_root_cached *root);
6b2dbba8 2489void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2490 struct rb_root_cached *root);
2491struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2492 unsigned long start, unsigned long last);
2493struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2494 unsigned long start, unsigned long last);
2495
2496#define vma_interval_tree_foreach(vma, root, start, last) \
2497 for (vma = vma_interval_tree_iter_first(root, start, last); \
2498 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2499
bf181b9f 2500void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2501 struct rb_root_cached *root);
bf181b9f 2502void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2503 struct rb_root_cached *root);
2504struct anon_vma_chain *
2505anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2506 unsigned long start, unsigned long last);
bf181b9f
ML
2507struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2508 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2509#ifdef CONFIG_DEBUG_VM_RB
2510void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2511#endif
bf181b9f
ML
2512
2513#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2514 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2515 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2516
1da177e4 2517/* mmap.c */
34b4e4aa 2518extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2519extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2520 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2521 struct vm_area_struct *expand);
2522static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2523 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2524{
2525 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2526}
1da177e4
LT
2527extern struct vm_area_struct *vma_merge(struct mm_struct *,
2528 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2529 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2530 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2531extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2532extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2533 unsigned long addr, int new_below);
2534extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2535 unsigned long addr, int new_below);
1da177e4
LT
2536extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2537extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2538 struct rb_node **, struct rb_node *);
a8fb5618 2539extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2540extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2541 unsigned long addr, unsigned long len, pgoff_t pgoff,
2542 bool *need_rmap_locks);
1da177e4 2543extern void exit_mmap(struct mm_struct *);
925d1c40 2544
9c599024
CG
2545static inline int check_data_rlimit(unsigned long rlim,
2546 unsigned long new,
2547 unsigned long start,
2548 unsigned long end_data,
2549 unsigned long start_data)
2550{
2551 if (rlim < RLIM_INFINITY) {
2552 if (((new - start) + (end_data - start_data)) > rlim)
2553 return -ENOSPC;
2554 }
2555
2556 return 0;
2557}
2558
7906d00c
AA
2559extern int mm_take_all_locks(struct mm_struct *mm);
2560extern void mm_drop_all_locks(struct mm_struct *mm);
2561
fe69d560 2562extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 2563extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 2564extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2565extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2566
84638335
KK
2567extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2568extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2569
2eefd878
DS
2570extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2571 const struct vm_special_mapping *sm);
3935ed6a
SS
2572extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2573 unsigned long addr, unsigned long len,
a62c34bd
AL
2574 unsigned long flags,
2575 const struct vm_special_mapping *spec);
2576/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2577extern int install_special_mapping(struct mm_struct *mm,
2578 unsigned long addr, unsigned long len,
2579 unsigned long flags, struct page **pages);
1da177e4 2580
649775be
AG
2581unsigned long randomize_stack_top(unsigned long stack_top);
2582
1da177e4
LT
2583extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2584
0165ab44 2585extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2586 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2587 struct list_head *uf);
1fcfd8db 2588extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2589 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2590 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2591extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2592 struct list_head *uf, bool downgrade);
897ab3e0
MR
2593extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2594 struct list_head *uf);
0726b01e 2595extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2596
bebeb3d6
ML
2597#ifdef CONFIG_MMU
2598extern int __mm_populate(unsigned long addr, unsigned long len,
2599 int ignore_errors);
2600static inline void mm_populate(unsigned long addr, unsigned long len)
2601{
2602 /* Ignore errors */
2603 (void) __mm_populate(addr, len, 1);
2604}
2605#else
2606static inline void mm_populate(unsigned long addr, unsigned long len) {}
2607#endif
2608
e4eb1ff6 2609/* These take the mm semaphore themselves */
5d22fc25 2610extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2611extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2612extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2613extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2614 unsigned long, unsigned long,
2615 unsigned long, unsigned long);
1da177e4 2616
db4fbfb9
ML
2617struct vm_unmapped_area_info {
2618#define VM_UNMAPPED_AREA_TOPDOWN 1
2619 unsigned long flags;
2620 unsigned long length;
2621 unsigned long low_limit;
2622 unsigned long high_limit;
2623 unsigned long align_mask;
2624 unsigned long align_offset;
2625};
2626
baceaf1c 2627extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2628
85821aab 2629/* truncate.c */
1da177e4 2630extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2631extern void truncate_inode_pages_range(struct address_space *,
2632 loff_t lstart, loff_t lend);
91b0abe3 2633extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2634
2635/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2636extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2637extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2638 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2639extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2640
2641/* mm/page-writeback.c */
2b69c828 2642int __must_check write_one_page(struct page *page);
1cf6e7d8 2643void task_dirty_inc(struct task_struct *tsk);
1da177e4 2644
1be7107f 2645extern unsigned long stack_guard_gap;
d05f3169 2646/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2647extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2648
11192337 2649/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2650extern int expand_downwards(struct vm_area_struct *vma,
2651 unsigned long address);
8ca3eb08 2652#if VM_GROWSUP
46dea3d0 2653extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2654#else
fee7e49d 2655 #define expand_upwards(vma, address) (0)
9ab88515 2656#endif
1da177e4
LT
2657
2658/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2659extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2660extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2661 struct vm_area_struct **pprev);
2662
ce6d42f2
LH
2663/**
2664 * find_vma_intersection() - Look up the first VMA which intersects the interval
2665 * @mm: The process address space.
2666 * @start_addr: The inclusive start user address.
2667 * @end_addr: The exclusive end user address.
2668 *
2669 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2670 * start_addr < end_addr.
2671 */
2672static inline
2673struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2674 unsigned long start_addr,
2675 unsigned long end_addr)
1da177e4 2676{
ce6d42f2 2677 struct vm_area_struct *vma = find_vma(mm, start_addr);
1da177e4
LT
2678
2679 if (vma && end_addr <= vma->vm_start)
2680 vma = NULL;
2681 return vma;
2682}
2683
ce6d42f2
LH
2684/**
2685 * vma_lookup() - Find a VMA at a specific address
2686 * @mm: The process address space.
2687 * @addr: The user address.
2688 *
2689 * Return: The vm_area_struct at the given address, %NULL otherwise.
2690 */
2691static inline
2692struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2693{
2694 struct vm_area_struct *vma = find_vma(mm, addr);
2695
2696 if (vma && addr < vma->vm_start)
2697 vma = NULL;
2698
2699 return vma;
2700}
2701
1be7107f
HD
2702static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2703{
2704 unsigned long vm_start = vma->vm_start;
2705
2706 if (vma->vm_flags & VM_GROWSDOWN) {
2707 vm_start -= stack_guard_gap;
2708 if (vm_start > vma->vm_start)
2709 vm_start = 0;
2710 }
2711 return vm_start;
2712}
2713
2714static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2715{
2716 unsigned long vm_end = vma->vm_end;
2717
2718 if (vma->vm_flags & VM_GROWSUP) {
2719 vm_end += stack_guard_gap;
2720 if (vm_end < vma->vm_end)
2721 vm_end = -PAGE_SIZE;
2722 }
2723 return vm_end;
2724}
2725
1da177e4
LT
2726static inline unsigned long vma_pages(struct vm_area_struct *vma)
2727{
2728 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2729}
2730
640708a2
PE
2731/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2732static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2733 unsigned long vm_start, unsigned long vm_end)
2734{
2735 struct vm_area_struct *vma = find_vma(mm, vm_start);
2736
2737 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2738 vma = NULL;
2739
2740 return vma;
2741}
2742
017b1660
MK
2743static inline bool range_in_vma(struct vm_area_struct *vma,
2744 unsigned long start, unsigned long end)
2745{
2746 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2747}
2748
bad849b3 2749#ifdef CONFIG_MMU
804af2cf 2750pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2751void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2752#else
2753static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2754{
2755 return __pgprot(0);
2756}
64e45507
PF
2757static inline void vma_set_page_prot(struct vm_area_struct *vma)
2758{
2759 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2760}
bad849b3
DH
2761#endif
2762
295992fb
CK
2763void vma_set_file(struct vm_area_struct *vma, struct file *file);
2764
5877231f 2765#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2766unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2767 unsigned long start, unsigned long end);
2768#endif
2769
deceb6cd 2770struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2771int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2772 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
2773int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2774 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 2775int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2776int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2777 struct page **pages, unsigned long *num);
a667d745
SJ
2778int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2779 unsigned long num);
2780int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2781 unsigned long num);
ae2b01f3 2782vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2783 unsigned long pfn);
f5e6d1d5
MW
2784vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2785 unsigned long pfn, pgprot_t pgprot);
5d747637 2786vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2787 pfn_t pfn);
574c5b3d
TH
2788vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2789 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2790vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2791 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2792int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2793
1c8f4220
SJ
2794static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2795 unsigned long addr, struct page *page)
2796{
2797 int err = vm_insert_page(vma, addr, page);
2798
2799 if (err == -ENOMEM)
2800 return VM_FAULT_OOM;
2801 if (err < 0 && err != -EBUSY)
2802 return VM_FAULT_SIGBUS;
2803
2804 return VM_FAULT_NOPAGE;
2805}
2806
f8f6ae5d
JG
2807#ifndef io_remap_pfn_range
2808static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2809 unsigned long addr, unsigned long pfn,
2810 unsigned long size, pgprot_t prot)
2811{
2812 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2813}
2814#endif
2815
d97baf94
SJ
2816static inline vm_fault_t vmf_error(int err)
2817{
2818 if (err == -ENOMEM)
2819 return VM_FAULT_OOM;
2820 return VM_FAULT_SIGBUS;
2821}
2822
df06b37f
KB
2823struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2824 unsigned int foll_flags);
240aadee 2825
deceb6cd
HD
2826#define FOLL_WRITE 0x01 /* check pte is writable */
2827#define FOLL_TOUCH 0x02 /* mark page accessed */
2828#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2829#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2830#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2831#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2832 * and return without waiting upon it */
84d33df2 2833#define FOLL_POPULATE 0x40 /* fault in page */
69ebb83e 2834#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2835#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2836#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2837#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2838#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2839#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2840#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2841#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2842#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2843#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2844#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2845#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2846
2847/*
eddb1c22
JH
2848 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2849 * other. Here is what they mean, and how to use them:
932f4a63
IW
2850 *
2851 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2852 * period _often_ under userspace control. This is in contrast to
2853 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2854 *
2855 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2856 * lifetime enforced by the filesystem and we need guarantees that longterm
2857 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2858 * the filesystem. Ideas for this coordination include revoking the longterm
2859 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2860 * added after the problem with filesystems was found FS DAX VMAs are
2861 * specifically failed. Filesystem pages are still subject to bugs and use of
2862 * FOLL_LONGTERM should be avoided on those pages.
2863 *
2864 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2865 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2866 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2867 * is due to an incompatibility with the FS DAX check and
eddb1c22 2868 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2869 *
eddb1c22
JH
2870 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2871 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2872 * FOLL_LONGTERM is specified.
eddb1c22
JH
2873 *
2874 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2875 * but an additional pin counting system) will be invoked. This is intended for
2876 * anything that gets a page reference and then touches page data (for example,
2877 * Direct IO). This lets the filesystem know that some non-file-system entity is
2878 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2879 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2880 * a call to unpin_user_page().
eddb1c22
JH
2881 *
2882 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2883 * and separate refcounting mechanisms, however, and that means that each has
2884 * its own acquire and release mechanisms:
2885 *
2886 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2887 *
f1f6a7dd 2888 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2889 *
2890 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2891 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2892 * calls applied to them, and that's perfectly OK. This is a constraint on the
2893 * callers, not on the pages.)
2894 *
2895 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2896 * directly by the caller. That's in order to help avoid mismatches when
2897 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2898 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2899 *
72ef5e52 2900 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2901 */
1da177e4 2902
2b740303 2903static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2904{
2905 if (vm_fault & VM_FAULT_OOM)
2906 return -ENOMEM;
2907 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2908 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2909 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2910 return -EFAULT;
2911 return 0;
2912}
2913
8b1e0f81 2914typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2915extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2916 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2917extern int apply_to_existing_page_range(struct mm_struct *mm,
2918 unsigned long address, unsigned long size,
2919 pte_fn_t fn, void *data);
aee16b3c 2920
04013513 2921extern void init_mem_debugging_and_hardening(void);
8823b1db 2922#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
2923extern void __kernel_poison_pages(struct page *page, int numpages);
2924extern void __kernel_unpoison_pages(struct page *page, int numpages);
2925extern bool _page_poisoning_enabled_early;
2926DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2927static inline bool page_poisoning_enabled(void)
2928{
2929 return _page_poisoning_enabled_early;
2930}
2931/*
2932 * For use in fast paths after init_mem_debugging() has run, or when a
2933 * false negative result is not harmful when called too early.
2934 */
2935static inline bool page_poisoning_enabled_static(void)
2936{
2937 return static_branch_unlikely(&_page_poisoning_enabled);
2938}
2939static inline void kernel_poison_pages(struct page *page, int numpages)
2940{
2941 if (page_poisoning_enabled_static())
2942 __kernel_poison_pages(page, numpages);
2943}
2944static inline void kernel_unpoison_pages(struct page *page, int numpages)
2945{
2946 if (page_poisoning_enabled_static())
2947 __kernel_unpoison_pages(page, numpages);
2948}
8823b1db
LA
2949#else
2950static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 2951static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 2952static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
2953static inline void kernel_poison_pages(struct page *page, int numpages) { }
2954static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
2955#endif
2956
51cba1eb 2957DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
2958static inline bool want_init_on_alloc(gfp_t flags)
2959{
51cba1eb
KC
2960 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
2961 &init_on_alloc))
6471384a
AP
2962 return true;
2963 return flags & __GFP_ZERO;
2964}
2965
51cba1eb 2966DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
2967static inline bool want_init_on_free(void)
2968{
51cba1eb
KC
2969 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
2970 &init_on_free);
6471384a
AP
2971}
2972
8e57f8ac
VB
2973extern bool _debug_pagealloc_enabled_early;
2974DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2975
2976static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2977{
2978 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2979 _debug_pagealloc_enabled_early;
2980}
2981
2982/*
2983 * For use in fast paths after init_debug_pagealloc() has run, or when a
2984 * false negative result is not harmful when called too early.
2985 */
2986static inline bool debug_pagealloc_enabled_static(void)
031bc574 2987{
96a2b03f
VB
2988 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2989 return false;
2990
2991 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2992}
2993
5d6ad668 2994#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 2995/*
5d6ad668
MR
2996 * To support DEBUG_PAGEALLOC architecture must ensure that
2997 * __kernel_map_pages() never fails
c87cbc1f 2998 */
d6332692
RE
2999extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3000
77bc7fd6
MR
3001static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3002{
3003 if (debug_pagealloc_enabled_static())
3004 __kernel_map_pages(page, numpages, 1);
3005}
3006
3007static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3008{
3009 if (debug_pagealloc_enabled_static())
3010 __kernel_map_pages(page, numpages, 0);
3011}
5d6ad668 3012#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3013static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3014static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3015#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3016
a6c19dfe 3017#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3018extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3019extern int in_gate_area_no_mm(unsigned long addr);
3020extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3021#else
a6c19dfe
AL
3022static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3023{
3024 return NULL;
3025}
3026static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3027static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3028{
3029 return 0;
3030}
1da177e4
LT
3031#endif /* __HAVE_ARCH_GATE_AREA */
3032
44a70ade
MH
3033extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3034
146732ce
JT
3035#ifdef CONFIG_SYSCTL
3036extern int sysctl_drop_caches;
32927393
CH
3037int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3038 loff_t *);
146732ce
JT
3039#endif
3040
cb731d6c
VD
3041void drop_slab(void);
3042void drop_slab_node(int nid);
9d0243bc 3043
7a9166e3
LY
3044#ifndef CONFIG_MMU
3045#define randomize_va_space 0
3046#else
a62eaf15 3047extern int randomize_va_space;
7a9166e3 3048#endif
a62eaf15 3049
045e72ac 3050const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3051#ifdef CONFIG_MMU
03252919 3052void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3053#else
3054static inline void print_vma_addr(char *prefix, unsigned long rip)
3055{
3056}
3057#endif
e6e5494c 3058
3bc2b6a7
MS
3059int vmemmap_remap_free(unsigned long start, unsigned long end,
3060 unsigned long reuse);
ad2fa371
MS
3061int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3062 unsigned long reuse, gfp_t gfp_mask);
f41f2ed4 3063
35fd1eb1 3064void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
3065struct page * __populate_section_memmap(unsigned long pfn,
3066 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3067pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3068p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3069pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3070pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
3071pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3072 struct vmem_altmap *altmap);
8f6aac41 3073void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3074struct vmem_altmap;
56993b4e
AK
3075void *vmemmap_alloc_block_buf(unsigned long size, int node,
3076 struct vmem_altmap *altmap);
8f6aac41 3077void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3078int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3079 int node, struct vmem_altmap *altmap);
7b73d978
CH
3080int vmemmap_populate(unsigned long start, unsigned long end, int node,
3081 struct vmem_altmap *altmap);
c2b91e2e 3082void vmemmap_populate_print_last(void);
0197518c 3083#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3084void vmemmap_free(unsigned long start, unsigned long end,
3085 struct vmem_altmap *altmap);
0197518c 3086#endif
46723bfa 3087void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3088 unsigned long nr_pages);
6a46079c 3089
82ba011b
AK
3090enum mf_flags {
3091 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3092 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3093 MF_MUST_KILL = 1 << 2,
cf870c70 3094 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3095};
83b57531
EB
3096extern int memory_failure(unsigned long pfn, int flags);
3097extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3098extern void memory_failure_queue_kick(int cpu);
847ce401 3099extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3100extern int sysctl_memory_failure_early_kill;
3101extern int sysctl_memory_failure_recovery;
d0505e9f 3102extern void shake_page(struct page *p);
5844a486 3103extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3104extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3105
cc637b17
XX
3106
3107/*
3108 * Error handlers for various types of pages.
3109 */
cc3e2af4 3110enum mf_result {
cc637b17
XX
3111 MF_IGNORED, /* Error: cannot be handled */
3112 MF_FAILED, /* Error: handling failed */
3113 MF_DELAYED, /* Will be handled later */
3114 MF_RECOVERED, /* Successfully recovered */
3115};
3116
3117enum mf_action_page_type {
3118 MF_MSG_KERNEL,
3119 MF_MSG_KERNEL_HIGH_ORDER,
3120 MF_MSG_SLAB,
3121 MF_MSG_DIFFERENT_COMPOUND,
3122 MF_MSG_POISONED_HUGE,
3123 MF_MSG_HUGE,
3124 MF_MSG_FREE_HUGE,
31286a84 3125 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3126 MF_MSG_UNMAP_FAILED,
3127 MF_MSG_DIRTY_SWAPCACHE,
3128 MF_MSG_CLEAN_SWAPCACHE,
3129 MF_MSG_DIRTY_MLOCKED_LRU,
3130 MF_MSG_CLEAN_MLOCKED_LRU,
3131 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3132 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3133 MF_MSG_DIRTY_LRU,
3134 MF_MSG_CLEAN_LRU,
3135 MF_MSG_TRUNCATED_LRU,
3136 MF_MSG_BUDDY,
3137 MF_MSG_BUDDY_2ND,
6100e34b 3138 MF_MSG_DAX,
5d1fd5dc 3139 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3140 MF_MSG_UNKNOWN,
3141};
3142
47ad8475
AA
3143#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3144extern void clear_huge_page(struct page *page,
c79b57e4 3145 unsigned long addr_hint,
47ad8475
AA
3146 unsigned int pages_per_huge_page);
3147extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3148 unsigned long addr_hint,
3149 struct vm_area_struct *vma,
47ad8475 3150 unsigned int pages_per_huge_page);
fa4d75c1
MK
3151extern long copy_huge_page_from_user(struct page *dst_page,
3152 const void __user *usr_src,
810a56b9
MK
3153 unsigned int pages_per_huge_page,
3154 bool allow_pagefault);
2484ca9b
THV
3155
3156/**
3157 * vma_is_special_huge - Are transhuge page-table entries considered special?
3158 * @vma: Pointer to the struct vm_area_struct to consider
3159 *
3160 * Whether transhuge page-table entries are considered "special" following
3161 * the definition in vm_normal_page().
3162 *
3163 * Return: true if transhuge page-table entries should be considered special,
3164 * false otherwise.
3165 */
3166static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3167{
3168 return vma_is_dax(vma) || (vma->vm_file &&
3169 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3170}
3171
47ad8475
AA
3172#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3173
c0a32fc5
SG
3174#ifdef CONFIG_DEBUG_PAGEALLOC
3175extern unsigned int _debug_guardpage_minorder;
96a2b03f 3176DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3177
3178static inline unsigned int debug_guardpage_minorder(void)
3179{
3180 return _debug_guardpage_minorder;
3181}
3182
e30825f1
JK
3183static inline bool debug_guardpage_enabled(void)
3184{
96a2b03f 3185 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3186}
3187
c0a32fc5
SG
3188static inline bool page_is_guard(struct page *page)
3189{
e30825f1
JK
3190 if (!debug_guardpage_enabled())
3191 return false;
3192
3972f6bb 3193 return PageGuard(page);
c0a32fc5
SG
3194}
3195#else
3196static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3197static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3198static inline bool page_is_guard(struct page *page) { return false; }
3199#endif /* CONFIG_DEBUG_PAGEALLOC */
3200
f9872caf
CS
3201#if MAX_NUMNODES > 1
3202void __init setup_nr_node_ids(void);
3203#else
3204static inline void setup_nr_node_ids(void) {}
3205#endif
3206
010c164a
SL
3207extern int memcmp_pages(struct page *page1, struct page *page2);
3208
3209static inline int pages_identical(struct page *page1, struct page *page2)
3210{
3211 return !memcmp_pages(page1, page2);
3212}
3213
c5acad84
TH
3214#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3215unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3216 pgoff_t first_index, pgoff_t nr,
3217 pgoff_t bitmap_pgoff,
3218 unsigned long *bitmap,
3219 pgoff_t *start,
3220 pgoff_t *end);
3221
3222unsigned long wp_shared_mapping_range(struct address_space *mapping,
3223 pgoff_t first_index, pgoff_t nr);
3224#endif
3225
2374c09b
CH
3226extern int sysctl_nr_trim_pages;
3227
5bb1bb35 3228#ifdef CONFIG_PRINTK
8e7f37f2 3229void mem_dump_obj(void *object);
5bb1bb35
PM
3230#else
3231static inline void mem_dump_obj(void *object) {}
3232#endif
8e7f37f2 3233
22247efd
PX
3234/**
3235 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3236 * @seals: the seals to check
3237 * @vma: the vma to operate on
3238 *
3239 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3240 * the vma flags. Return 0 if check pass, or <0 for errors.
3241 */
3242static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3243{
3244 if (seals & F_SEAL_FUTURE_WRITE) {
3245 /*
3246 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3247 * "future write" seal active.
3248 */
3249 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3250 return -EPERM;
3251
3252 /*
3253 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3254 * MAP_SHARED and read-only, take care to not allow mprotect to
3255 * revert protections on such mappings. Do this only for shared
3256 * mappings. For private mappings, don't need to mask
3257 * VM_MAYWRITE as we still want them to be COW-writable.
3258 */
3259 if (vma->vm_flags & VM_SHARED)
3260 vma->vm_flags &= ~(VM_MAYWRITE);
3261 }
3262
3263 return 0;
3264}
3265
1da177e4
LT
3266#endif /* __KERNEL__ */
3267#endif /* _LINUX_MM_H */