mm: use false for bool variable
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
3b3b1a29 28#include <linux/overflow.h>
b5420237 29#include <linux/sizes.h>
7969f226 30#include <linux/sched.h>
1da177e4
LT
31
32struct mempolicy;
33struct anon_vma;
bf181b9f 34struct anon_vma_chain;
4e950f6f 35struct file_ra_state;
e8edc6e0 36struct user_struct;
4e950f6f 37struct writeback_control;
682aa8e1 38struct bdi_writeback;
1da177e4 39
597b7305
MH
40void init_mm_internals(void);
41
fccc9987 42#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 43extern unsigned long max_mapnr;
fccc9987
JL
44
45static inline void set_max_mapnr(unsigned long limit)
46{
47 max_mapnr = limit;
48}
49#else
50static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
51#endif
52
ca79b0c2
AK
53extern atomic_long_t _totalram_pages;
54static inline unsigned long totalram_pages(void)
55{
56 return (unsigned long)atomic_long_read(&_totalram_pages);
57}
58
59static inline void totalram_pages_inc(void)
60{
61 atomic_long_inc(&_totalram_pages);
62}
63
64static inline void totalram_pages_dec(void)
65{
66 atomic_long_dec(&_totalram_pages);
67}
68
69static inline void totalram_pages_add(long count)
70{
71 atomic_long_add(count, &_totalram_pages);
72}
73
1da177e4 74extern void * high_memory;
1da177e4
LT
75extern int page_cluster;
76
77#ifdef CONFIG_SYSCTL
78extern int sysctl_legacy_va_layout;
79#else
80#define sysctl_legacy_va_layout 0
81#endif
82
d07e2259
DC
83#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
84extern const int mmap_rnd_bits_min;
85extern const int mmap_rnd_bits_max;
86extern int mmap_rnd_bits __read_mostly;
87#endif
88#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
89extern const int mmap_rnd_compat_bits_min;
90extern const int mmap_rnd_compat_bits_max;
91extern int mmap_rnd_compat_bits __read_mostly;
92#endif
93
1da177e4
LT
94#include <asm/page.h>
95#include <asm/pgtable.h>
96#include <asm/processor.h>
1da177e4 97
d9344522
AK
98/*
99 * Architectures that support memory tagging (assigning tags to memory regions,
100 * embedding these tags into addresses that point to these memory regions, and
101 * checking that the memory and the pointer tags match on memory accesses)
102 * redefine this macro to strip tags from pointers.
103 * It's defined as noop for arcitectures that don't support memory tagging.
104 */
105#ifndef untagged_addr
106#define untagged_addr(addr) (addr)
107#endif
108
79442ed1
TC
109#ifndef __pa_symbol
110#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
111#endif
112
1dff8083
AB
113#ifndef page_to_virt
114#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
115#endif
116
568c5fe5
LA
117#ifndef lm_alias
118#define lm_alias(x) __va(__pa_symbol(x))
119#endif
120
593befa6
DD
121/*
122 * To prevent common memory management code establishing
123 * a zero page mapping on a read fault.
124 * This macro should be defined within <asm/pgtable.h>.
125 * s390 does this to prevent multiplexing of hardware bits
126 * related to the physical page in case of virtualization.
127 */
128#ifndef mm_forbids_zeropage
129#define mm_forbids_zeropage(X) (0)
130#endif
131
a4a3ede2
PT
132/*
133 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
134 * If an architecture decides to implement their own version of
135 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
136 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 137 */
5470dea4
AD
138#if BITS_PER_LONG == 64
139/* This function must be updated when the size of struct page grows above 80
140 * or reduces below 56. The idea that compiler optimizes out switch()
141 * statement, and only leaves move/store instructions. Also the compiler can
142 * combine write statments if they are both assignments and can be reordered,
143 * this can result in several of the writes here being dropped.
144 */
145#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
146static inline void __mm_zero_struct_page(struct page *page)
147{
148 unsigned long *_pp = (void *)page;
149
150 /* Check that struct page is either 56, 64, 72, or 80 bytes */
151 BUILD_BUG_ON(sizeof(struct page) & 7);
152 BUILD_BUG_ON(sizeof(struct page) < 56);
153 BUILD_BUG_ON(sizeof(struct page) > 80);
154
155 switch (sizeof(struct page)) {
156 case 80:
157 _pp[9] = 0; /* fallthrough */
158 case 72:
159 _pp[8] = 0; /* fallthrough */
160 case 64:
161 _pp[7] = 0; /* fallthrough */
162 case 56:
163 _pp[6] = 0;
164 _pp[5] = 0;
165 _pp[4] = 0;
166 _pp[3] = 0;
167 _pp[2] = 0;
168 _pp[1] = 0;
169 _pp[0] = 0;
170 }
171}
172#else
a4a3ede2
PT
173#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
174#endif
175
ea606cf5
AR
176/*
177 * Default maximum number of active map areas, this limits the number of vmas
178 * per mm struct. Users can overwrite this number by sysctl but there is a
179 * problem.
180 *
181 * When a program's coredump is generated as ELF format, a section is created
182 * per a vma. In ELF, the number of sections is represented in unsigned short.
183 * This means the number of sections should be smaller than 65535 at coredump.
184 * Because the kernel adds some informative sections to a image of program at
185 * generating coredump, we need some margin. The number of extra sections is
186 * 1-3 now and depends on arch. We use "5" as safe margin, here.
187 *
188 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
189 * not a hard limit any more. Although some userspace tools can be surprised by
190 * that.
191 */
192#define MAPCOUNT_ELF_CORE_MARGIN (5)
193#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
194
195extern int sysctl_max_map_count;
196
c9b1d098 197extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 198extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 199
49f0ce5f
JM
200extern int sysctl_overcommit_memory;
201extern int sysctl_overcommit_ratio;
202extern unsigned long sysctl_overcommit_kbytes;
203
32927393
CH
204int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
205 loff_t *);
206int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
207 loff_t *);
49f0ce5f 208
1da177e4
LT
209#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
210
27ac792c
AR
211/* to align the pointer to the (next) page boundary */
212#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
213
0fa73b86 214/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 215#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 216
f86196ea
NB
217#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
218
1da177e4
LT
219/*
220 * Linux kernel virtual memory manager primitives.
221 * The idea being to have a "virtual" mm in the same way
222 * we have a virtual fs - giving a cleaner interface to the
223 * mm details, and allowing different kinds of memory mappings
224 * (from shared memory to executable loading to arbitrary
225 * mmap() functions).
226 */
227
490fc053 228struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
229struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
230void vm_area_free(struct vm_area_struct *);
c43692e8 231
1da177e4 232#ifndef CONFIG_MMU
8feae131
DH
233extern struct rb_root nommu_region_tree;
234extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
235
236extern unsigned int kobjsize(const void *objp);
237#endif
238
239/*
605d9288 240 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 241 * When changing, update also include/trace/events/mmflags.h
1da177e4 242 */
cc2383ec
KK
243#define VM_NONE 0x00000000
244
1da177e4
LT
245#define VM_READ 0x00000001 /* currently active flags */
246#define VM_WRITE 0x00000002
247#define VM_EXEC 0x00000004
248#define VM_SHARED 0x00000008
249
7e2cff42 250/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
251#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
252#define VM_MAYWRITE 0x00000020
253#define VM_MAYEXEC 0x00000040
254#define VM_MAYSHARE 0x00000080
255
256#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 257#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 258#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 259#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 260#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 261
1da177e4
LT
262#define VM_LOCKED 0x00002000
263#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
264
265 /* Used by sys_madvise() */
266#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
267#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
268
269#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
270#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 271#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 272#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 273#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 274#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 275#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 276#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 277#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 278#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 279
d9104d1c
CG
280#ifdef CONFIG_MEM_SOFT_DIRTY
281# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
282#else
283# define VM_SOFTDIRTY 0
284#endif
285
b379d790 286#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
287#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
288#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 289#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 290
63c17fb8
DH
291#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
292#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
293#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
294#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
295#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 296#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
297#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
298#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
299#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
300#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 301#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
302#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
303
5212213a 304#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
305# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
306# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 307# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
308# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
309# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
310#ifdef CONFIG_PPC
311# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
312#else
313# define VM_PKEY_BIT4 0
8f62c883 314#endif
5212213a
RP
315#endif /* CONFIG_ARCH_HAS_PKEYS */
316
317#if defined(CONFIG_X86)
318# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
cc2383ec
KK
319#elif defined(CONFIG_PPC)
320# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
321#elif defined(CONFIG_PARISC)
322# define VM_GROWSUP VM_ARCH_1
323#elif defined(CONFIG_IA64)
324# define VM_GROWSUP VM_ARCH_1
74a04967
KA
325#elif defined(CONFIG_SPARC64)
326# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
327# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
328#elif defined(CONFIG_ARM64)
329# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
330# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
331#elif !defined(CONFIG_MMU)
332# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
333#endif
334
335#ifndef VM_GROWSUP
336# define VM_GROWSUP VM_NONE
337#endif
338
a8bef8ff
MG
339/* Bits set in the VMA until the stack is in its final location */
340#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
341
c62da0c3
AK
342#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
343
344/* Common data flag combinations */
345#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
346 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
347#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
348 VM_MAYWRITE | VM_MAYEXEC)
349#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
350 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
351
352#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
353#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
354#endif
355
1da177e4
LT
356#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
357#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
358#endif
359
360#ifdef CONFIG_STACK_GROWSUP
30bdbb78 361#define VM_STACK VM_GROWSUP
1da177e4 362#else
30bdbb78 363#define VM_STACK VM_GROWSDOWN
1da177e4
LT
364#endif
365
30bdbb78
KK
366#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
367
6cb4d9a2
AK
368/* VMA basic access permission flags */
369#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
370
371
b291f000 372/*
78f11a25 373 * Special vmas that are non-mergable, non-mlock()able.
b291f000 374 */
9050d7eb 375#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 376
b4443772
AK
377/* This mask prevents VMA from being scanned with khugepaged */
378#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
379
a0715cc2
AT
380/* This mask defines which mm->def_flags a process can inherit its parent */
381#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
382
de60f5f1
EM
383/* This mask is used to clear all the VMA flags used by mlock */
384#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
385
2c2d57b5
KA
386/* Arch-specific flags to clear when updating VM flags on protection change */
387#ifndef VM_ARCH_CLEAR
388# define VM_ARCH_CLEAR VM_NONE
389#endif
390#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
391
1da177e4
LT
392/*
393 * mapping from the currently active vm_flags protection bits (the
394 * low four bits) to a page protection mask..
395 */
396extern pgprot_t protection_map[16];
397
c270a7ee
PX
398/**
399 * Fault flag definitions.
400 *
401 * @FAULT_FLAG_WRITE: Fault was a write fault.
402 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
403 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
404 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_sem and wait when retrying.
405 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
406 * @FAULT_FLAG_TRIED: The fault has been tried once.
407 * @FAULT_FLAG_USER: The fault originated in userspace.
408 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
409 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
410 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
411 *
412 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
413 * whether we would allow page faults to retry by specifying these two
414 * fault flags correctly. Currently there can be three legal combinations:
415 *
416 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
417 * this is the first try
418 *
419 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
420 * we've already tried at least once
421 *
422 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
423 *
424 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
425 * be used. Note that page faults can be allowed to retry for multiple times,
426 * in which case we'll have an initial fault with flags (a) then later on
427 * continuous faults with flags (b). We should always try to detect pending
428 * signals before a retry to make sure the continuous page faults can still be
429 * interrupted if necessary.
c270a7ee
PX
430 */
431#define FAULT_FLAG_WRITE 0x01
432#define FAULT_FLAG_MKWRITE 0x02
433#define FAULT_FLAG_ALLOW_RETRY 0x04
434#define FAULT_FLAG_RETRY_NOWAIT 0x08
435#define FAULT_FLAG_KILLABLE 0x10
436#define FAULT_FLAG_TRIED 0x20
437#define FAULT_FLAG_USER 0x40
438#define FAULT_FLAG_REMOTE 0x80
439#define FAULT_FLAG_INSTRUCTION 0x100
440#define FAULT_FLAG_INTERRUPTIBLE 0x200
d0217ac0 441
dde16072
PX
442/*
443 * The default fault flags that should be used by most of the
444 * arch-specific page fault handlers.
445 */
446#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
447 FAULT_FLAG_KILLABLE | \
448 FAULT_FLAG_INTERRUPTIBLE)
dde16072 449
4064b982
PX
450/**
451 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
452 *
453 * This is mostly used for places where we want to try to avoid taking
454 * the mmap_sem for too long a time when waiting for another condition
455 * to change, in which case we can try to be polite to release the
456 * mmap_sem in the first round to avoid potential starvation of other
457 * processes that would also want the mmap_sem.
458 *
459 * Return: true if the page fault allows retry and this is the first
460 * attempt of the fault handling; false otherwise.
461 */
462static inline bool fault_flag_allow_retry_first(unsigned int flags)
463{
464 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
465 (!(flags & FAULT_FLAG_TRIED));
466}
467
282a8e03
RZ
468#define FAULT_FLAG_TRACE \
469 { FAULT_FLAG_WRITE, "WRITE" }, \
470 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
471 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
472 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
473 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
474 { FAULT_FLAG_TRIED, "TRIED" }, \
475 { FAULT_FLAG_USER, "USER" }, \
476 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
477 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
478 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 479
54cb8821 480/*
d0217ac0 481 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
482 * ->fault function. The vma's ->fault is responsible for returning a bitmask
483 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 484 *
c20cd45e
MH
485 * MM layer fills up gfp_mask for page allocations but fault handler might
486 * alter it if its implementation requires a different allocation context.
487 *
9b4bdd2f 488 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 489 */
d0217ac0 490struct vm_fault {
82b0f8c3 491 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 492 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 493 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 494 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 495 unsigned long address; /* Faulting virtual address */
82b0f8c3 496 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 497 * the 'address' */
a2d58167
DJ
498 pud_t *pud; /* Pointer to pud entry matching
499 * the 'address'
500 */
2994302b 501 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 502
3917048d 503 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 504 struct page *page; /* ->fault handlers should return a
83c54070 505 * page here, unless VM_FAULT_NOPAGE
d0217ac0 506 * is set (which is also implied by
83c54070 507 * VM_FAULT_ERROR).
d0217ac0 508 */
82b0f8c3 509 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
510 pte_t *pte; /* Pointer to pte entry matching
511 * the 'address'. NULL if the page
512 * table hasn't been allocated.
513 */
514 spinlock_t *ptl; /* Page table lock.
515 * Protects pte page table if 'pte'
516 * is not NULL, otherwise pmd.
517 */
7267ec00
KS
518 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
519 * vm_ops->map_pages() calls
520 * alloc_set_pte() from atomic context.
521 * do_fault_around() pre-allocates
522 * page table to avoid allocation from
523 * atomic context.
524 */
54cb8821 525};
1da177e4 526
c791ace1
DJ
527/* page entry size for vm->huge_fault() */
528enum page_entry_size {
529 PE_SIZE_PTE = 0,
530 PE_SIZE_PMD,
531 PE_SIZE_PUD,
532};
533
1da177e4
LT
534/*
535 * These are the virtual MM functions - opening of an area, closing and
536 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 537 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
538 */
539struct vm_operations_struct {
540 void (*open)(struct vm_area_struct * area);
541 void (*close)(struct vm_area_struct * area);
31383c68 542 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 543 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
544 vm_fault_t (*fault)(struct vm_fault *vmf);
545 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
546 enum page_entry_size pe_size);
82b0f8c3 547 void (*map_pages)(struct vm_fault *vmf,
bae473a4 548 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 549 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
550
551 /* notification that a previously read-only page is about to become
552 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 553 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 554
dd906184 555 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 556 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 557
28b2ee20
RR
558 /* called by access_process_vm when get_user_pages() fails, typically
559 * for use by special VMAs that can switch between memory and hardware
560 */
561 int (*access)(struct vm_area_struct *vma, unsigned long addr,
562 void *buf, int len, int write);
78d683e8
AL
563
564 /* Called by the /proc/PID/maps code to ask the vma whether it
565 * has a special name. Returning non-NULL will also cause this
566 * vma to be dumped unconditionally. */
567 const char *(*name)(struct vm_area_struct *vma);
568
1da177e4 569#ifdef CONFIG_NUMA
a6020ed7
LS
570 /*
571 * set_policy() op must add a reference to any non-NULL @new mempolicy
572 * to hold the policy upon return. Caller should pass NULL @new to
573 * remove a policy and fall back to surrounding context--i.e. do not
574 * install a MPOL_DEFAULT policy, nor the task or system default
575 * mempolicy.
576 */
1da177e4 577 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
578
579 /*
580 * get_policy() op must add reference [mpol_get()] to any policy at
581 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
582 * in mm/mempolicy.c will do this automatically.
583 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
584 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
585 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
586 * must return NULL--i.e., do not "fallback" to task or system default
587 * policy.
588 */
1da177e4
LT
589 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
590 unsigned long addr);
591#endif
667a0a06
DV
592 /*
593 * Called by vm_normal_page() for special PTEs to find the
594 * page for @addr. This is useful if the default behavior
595 * (using pte_page()) would not find the correct page.
596 */
597 struct page *(*find_special_page)(struct vm_area_struct *vma,
598 unsigned long addr);
1da177e4
LT
599};
600
027232da
KS
601static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
602{
bfd40eaf
KS
603 static const struct vm_operations_struct dummy_vm_ops = {};
604
a670468f 605 memset(vma, 0, sizeof(*vma));
027232da 606 vma->vm_mm = mm;
bfd40eaf 607 vma->vm_ops = &dummy_vm_ops;
027232da
KS
608 INIT_LIST_HEAD(&vma->anon_vma_chain);
609}
610
bfd40eaf
KS
611static inline void vma_set_anonymous(struct vm_area_struct *vma)
612{
613 vma->vm_ops = NULL;
614}
615
43675e6f
YS
616static inline bool vma_is_anonymous(struct vm_area_struct *vma)
617{
618 return !vma->vm_ops;
619}
620
222100ee
AK
621static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
622{
623 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
624
625 if (!maybe_stack)
626 return false;
627
628 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
629 VM_STACK_INCOMPLETE_SETUP)
630 return true;
631
632 return false;
633}
634
7969f226
AK
635static inline bool vma_is_foreign(struct vm_area_struct *vma)
636{
637 if (!current->mm)
638 return true;
639
640 if (current->mm != vma->vm_mm)
641 return true;
642
643 return false;
644}
3122e80e
AK
645
646static inline bool vma_is_accessible(struct vm_area_struct *vma)
647{
6cb4d9a2 648 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
649}
650
43675e6f
YS
651#ifdef CONFIG_SHMEM
652/*
653 * The vma_is_shmem is not inline because it is used only by slow
654 * paths in userfault.
655 */
656bool vma_is_shmem(struct vm_area_struct *vma);
657#else
658static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
659#endif
660
661int vma_is_stack_for_current(struct vm_area_struct *vma);
662
8b11ec1b
LT
663/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
664#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
665
1da177e4
LT
666struct mmu_gather;
667struct inode;
668
1da177e4
LT
669/*
670 * FIXME: take this include out, include page-flags.h in
671 * files which need it (119 of them)
672 */
673#include <linux/page-flags.h>
71e3aac0 674#include <linux/huge_mm.h>
1da177e4
LT
675
676/*
677 * Methods to modify the page usage count.
678 *
679 * What counts for a page usage:
680 * - cache mapping (page->mapping)
681 * - private data (page->private)
682 * - page mapped in a task's page tables, each mapping
683 * is counted separately
684 *
685 * Also, many kernel routines increase the page count before a critical
686 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
687 */
688
689/*
da6052f7 690 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 691 */
7c8ee9a8
NP
692static inline int put_page_testzero(struct page *page)
693{
fe896d18
JK
694 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
695 return page_ref_dec_and_test(page);
7c8ee9a8 696}
1da177e4
LT
697
698/*
7c8ee9a8
NP
699 * Try to grab a ref unless the page has a refcount of zero, return false if
700 * that is the case.
8e0861fa
AK
701 * This can be called when MMU is off so it must not access
702 * any of the virtual mappings.
1da177e4 703 */
7c8ee9a8
NP
704static inline int get_page_unless_zero(struct page *page)
705{
fe896d18 706 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 707}
1da177e4 708
53df8fdc 709extern int page_is_ram(unsigned long pfn);
124fe20d
DW
710
711enum {
712 REGION_INTERSECTS,
713 REGION_DISJOINT,
714 REGION_MIXED,
715};
716
1c29f25b
TK
717int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
718 unsigned long desc);
53df8fdc 719
48667e7a 720/* Support for virtually mapped pages */
b3bdda02
CL
721struct page *vmalloc_to_page(const void *addr);
722unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 723
0738c4bb
PM
724/*
725 * Determine if an address is within the vmalloc range
726 *
727 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
728 * is no special casing required.
729 */
9bd3bb67
AK
730
731#ifndef is_ioremap_addr
732#define is_ioremap_addr(x) is_vmalloc_addr(x)
733#endif
734
81ac3ad9 735#ifdef CONFIG_MMU
186525bd 736extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
737extern int is_vmalloc_or_module_addr(const void *x);
738#else
186525bd
IM
739static inline bool is_vmalloc_addr(const void *x)
740{
741 return false;
742}
934831d0 743static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
744{
745 return 0;
746}
747#endif
9e2779fa 748
a7c3e901
MH
749extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
750static inline void *kvmalloc(size_t size, gfp_t flags)
751{
752 return kvmalloc_node(size, flags, NUMA_NO_NODE);
753}
754static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
755{
756 return kvmalloc_node(size, flags | __GFP_ZERO, node);
757}
758static inline void *kvzalloc(size_t size, gfp_t flags)
759{
760 return kvmalloc(size, flags | __GFP_ZERO);
761}
762
752ade68
MH
763static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
764{
3b3b1a29
KC
765 size_t bytes;
766
767 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
768 return NULL;
769
3b3b1a29 770 return kvmalloc(bytes, flags);
752ade68
MH
771}
772
1c542f38
KC
773static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
774{
775 return kvmalloc_array(n, size, flags | __GFP_ZERO);
776}
777
39f1f78d 778extern void kvfree(const void *addr);
d4eaa283 779extern void kvfree_sensitive(const void *addr, size_t len);
39f1f78d 780
6988f31d
KK
781/*
782 * Mapcount of compound page as a whole, does not include mapped sub-pages.
783 *
784 * Must be called only for compound pages or any their tail sub-pages.
785 */
53f9263b
KS
786static inline int compound_mapcount(struct page *page)
787{
5f527c2b 788 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
789 page = compound_head(page);
790 return atomic_read(compound_mapcount_ptr(page)) + 1;
791}
792
70b50f94
AA
793/*
794 * The atomic page->_mapcount, starts from -1: so that transitions
795 * both from it and to it can be tracked, using atomic_inc_and_test
796 * and atomic_add_negative(-1).
797 */
22b751c3 798static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
799{
800 atomic_set(&(page)->_mapcount, -1);
801}
802
b20ce5e0
KS
803int __page_mapcount(struct page *page);
804
6988f31d
KK
805/*
806 * Mapcount of 0-order page; when compound sub-page, includes
807 * compound_mapcount().
808 *
809 * Result is undefined for pages which cannot be mapped into userspace.
810 * For example SLAB or special types of pages. See function page_has_type().
811 * They use this place in struct page differently.
812 */
70b50f94
AA
813static inline int page_mapcount(struct page *page)
814{
b20ce5e0
KS
815 if (unlikely(PageCompound(page)))
816 return __page_mapcount(page);
817 return atomic_read(&page->_mapcount) + 1;
818}
819
820#ifdef CONFIG_TRANSPARENT_HUGEPAGE
821int total_mapcount(struct page *page);
6d0a07ed 822int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
823#else
824static inline int total_mapcount(struct page *page)
825{
826 return page_mapcount(page);
70b50f94 827}
6d0a07ed
AA
828static inline int page_trans_huge_mapcount(struct page *page,
829 int *total_mapcount)
830{
831 int mapcount = page_mapcount(page);
832 if (total_mapcount)
833 *total_mapcount = mapcount;
834 return mapcount;
835}
b20ce5e0 836#endif
70b50f94 837
b49af68f
CL
838static inline struct page *virt_to_head_page(const void *x)
839{
840 struct page *page = virt_to_page(x);
ccaafd7f 841
1d798ca3 842 return compound_head(page);
b49af68f
CL
843}
844
ddc58f27
KS
845void __put_page(struct page *page);
846
1d7ea732 847void put_pages_list(struct list_head *pages);
1da177e4 848
8dfcc9ba 849void split_page(struct page *page, unsigned int order);
8dfcc9ba 850
33f2ef89
AW
851/*
852 * Compound pages have a destructor function. Provide a
853 * prototype for that function and accessor functions.
f1e61557 854 * These are _only_ valid on the head of a compound page.
33f2ef89 855 */
f1e61557
KS
856typedef void compound_page_dtor(struct page *);
857
858/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
859enum compound_dtor_id {
860 NULL_COMPOUND_DTOR,
861 COMPOUND_PAGE_DTOR,
862#ifdef CONFIG_HUGETLB_PAGE
863 HUGETLB_PAGE_DTOR,
9a982250
KS
864#endif
865#ifdef CONFIG_TRANSPARENT_HUGEPAGE
866 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
867#endif
868 NR_COMPOUND_DTORS,
869};
ae70eddd 870extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
871
872static inline void set_compound_page_dtor(struct page *page,
f1e61557 873 enum compound_dtor_id compound_dtor)
33f2ef89 874{
f1e61557
KS
875 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
876 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
877}
878
ff45fc3c 879static inline void destroy_compound_page(struct page *page)
33f2ef89 880{
f1e61557 881 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 882 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
883}
884
d00181b9 885static inline unsigned int compound_order(struct page *page)
d85f3385 886{
6d777953 887 if (!PageHead(page))
d85f3385 888 return 0;
e4b294c2 889 return page[1].compound_order;
d85f3385
CL
890}
891
47e29d32
JH
892static inline bool hpage_pincount_available(struct page *page)
893{
894 /*
895 * Can the page->hpage_pinned_refcount field be used? That field is in
896 * the 3rd page of the compound page, so the smallest (2-page) compound
897 * pages cannot support it.
898 */
899 page = compound_head(page);
900 return PageCompound(page) && compound_order(page) > 1;
901}
902
903static inline int compound_pincount(struct page *page)
904{
905 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
906 page = compound_head(page);
907 return atomic_read(compound_pincount_ptr(page));
908}
909
f1e61557 910static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 911{
e4b294c2 912 page[1].compound_order = order;
d85f3385
CL
913}
914
d8c6546b
MWO
915/* Returns the number of pages in this potentially compound page. */
916static inline unsigned long compound_nr(struct page *page)
917{
918 return 1UL << compound_order(page);
919}
920
a50b854e
MWO
921/* Returns the number of bytes in this potentially compound page. */
922static inline unsigned long page_size(struct page *page)
923{
924 return PAGE_SIZE << compound_order(page);
925}
926
94ad9338
MWO
927/* Returns the number of bits needed for the number of bytes in a page */
928static inline unsigned int page_shift(struct page *page)
929{
930 return PAGE_SHIFT + compound_order(page);
931}
932
9a982250
KS
933void free_compound_page(struct page *page);
934
3dece370 935#ifdef CONFIG_MMU
14fd403f
AA
936/*
937 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
938 * servicing faults for write access. In the normal case, do always want
939 * pte_mkwrite. But get_user_pages can cause write faults for mappings
940 * that do not have writing enabled, when used by access_process_vm.
941 */
942static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
943{
944 if (likely(vma->vm_flags & VM_WRITE))
945 pte = pte_mkwrite(pte);
946 return pte;
947}
8c6e50b0 948
9d82c694 949vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
2b740303
SJ
950vm_fault_t finish_fault(struct vm_fault *vmf);
951vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 952#endif
14fd403f 953
1da177e4
LT
954/*
955 * Multiple processes may "see" the same page. E.g. for untouched
956 * mappings of /dev/null, all processes see the same page full of
957 * zeroes, and text pages of executables and shared libraries have
958 * only one copy in memory, at most, normally.
959 *
960 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
961 * page_count() == 0 means the page is free. page->lru is then used for
962 * freelist management in the buddy allocator.
da6052f7 963 * page_count() > 0 means the page has been allocated.
1da177e4 964 *
da6052f7
NP
965 * Pages are allocated by the slab allocator in order to provide memory
966 * to kmalloc and kmem_cache_alloc. In this case, the management of the
967 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
968 * unless a particular usage is carefully commented. (the responsibility of
969 * freeing the kmalloc memory is the caller's, of course).
1da177e4 970 *
da6052f7
NP
971 * A page may be used by anyone else who does a __get_free_page().
972 * In this case, page_count still tracks the references, and should only
973 * be used through the normal accessor functions. The top bits of page->flags
974 * and page->virtual store page management information, but all other fields
975 * are unused and could be used privately, carefully. The management of this
976 * page is the responsibility of the one who allocated it, and those who have
977 * subsequently been given references to it.
978 *
979 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
980 * managed by the Linux memory manager: I/O, buffers, swapping etc.
981 * The following discussion applies only to them.
982 *
da6052f7
NP
983 * A pagecache page contains an opaque `private' member, which belongs to the
984 * page's address_space. Usually, this is the address of a circular list of
985 * the page's disk buffers. PG_private must be set to tell the VM to call
986 * into the filesystem to release these pages.
1da177e4 987 *
da6052f7
NP
988 * A page may belong to an inode's memory mapping. In this case, page->mapping
989 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 990 * in units of PAGE_SIZE.
1da177e4 991 *
da6052f7
NP
992 * If pagecache pages are not associated with an inode, they are said to be
993 * anonymous pages. These may become associated with the swapcache, and in that
994 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 995 *
da6052f7
NP
996 * In either case (swapcache or inode backed), the pagecache itself holds one
997 * reference to the page. Setting PG_private should also increment the
998 * refcount. The each user mapping also has a reference to the page.
1da177e4 999 *
da6052f7 1000 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1001 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1002 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1003 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1004 *
da6052f7 1005 * All pagecache pages may be subject to I/O:
1da177e4
LT
1006 * - inode pages may need to be read from disk,
1007 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1008 * to be written back to the inode on disk,
1009 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1010 * modified may need to be swapped out to swap space and (later) to be read
1011 * back into memory.
1da177e4
LT
1012 */
1013
1014/*
1015 * The zone field is never updated after free_area_init_core()
1016 * sets it, so none of the operations on it need to be atomic.
1da177e4 1017 */
348f8b6c 1018
90572890 1019/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1020#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1021#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1022#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1023#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1024#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1025
348f8b6c 1026/*
25985edc 1027 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1028 * sections we define the shift as 0; that plus a 0 mask ensures
1029 * the compiler will optimise away reference to them.
1030 */
d41dee36
AW
1031#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1032#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1033#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1034#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1035#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1036
bce54bbf
WD
1037/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1038#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1039#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1040#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1041 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1042#else
89689ae7 1043#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1044#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1045 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1046#endif
1047
bd8029b6 1048#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1049
d41dee36
AW
1050#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1051#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1052#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1053#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1054#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1055#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1056
33dd4e0e 1057static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1058{
348f8b6c 1059 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1060}
1da177e4 1061
260ae3f7
DW
1062#ifdef CONFIG_ZONE_DEVICE
1063static inline bool is_zone_device_page(const struct page *page)
1064{
1065 return page_zonenum(page) == ZONE_DEVICE;
1066}
966cf44f
AD
1067extern void memmap_init_zone_device(struct zone *, unsigned long,
1068 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1069#else
1070static inline bool is_zone_device_page(const struct page *page)
1071{
1072 return false;
1073}
7b2d55d2 1074#endif
5042db43 1075
e7638488 1076#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1077void free_devmap_managed_page(struct page *page);
e7638488 1078DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1079
1080static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1081{
1082 if (!static_branch_unlikely(&devmap_managed_key))
1083 return false;
1084 if (!is_zone_device_page(page))
1085 return false;
1086 switch (page->pgmap->type) {
1087 case MEMORY_DEVICE_PRIVATE:
e7638488 1088 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1089 return true;
1090 default:
1091 break;
1092 }
1093 return false;
1094}
1095
07d80269
JH
1096void put_devmap_managed_page(struct page *page);
1097
e7638488 1098#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1099static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1100{
1101 return false;
1102}
07d80269
JH
1103
1104static inline void put_devmap_managed_page(struct page *page)
1105{
1106}
7588adf8 1107#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1108
6b368cd4
JG
1109static inline bool is_device_private_page(const struct page *page)
1110{
7588adf8
RM
1111 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1112 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1113 is_zone_device_page(page) &&
1114 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1115}
e7638488 1116
52916982
LG
1117static inline bool is_pci_p2pdma_page(const struct page *page)
1118{
7588adf8
RM
1119 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1120 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1121 is_zone_device_page(page) &&
1122 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1123}
7b2d55d2 1124
f958d7b5
LT
1125/* 127: arbitrary random number, small enough to assemble well */
1126#define page_ref_zero_or_close_to_overflow(page) \
1127 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1128
3565fce3
DW
1129static inline void get_page(struct page *page)
1130{
1131 page = compound_head(page);
1132 /*
1133 * Getting a normal page or the head of a compound page
0139aa7b 1134 * requires to already have an elevated page->_refcount.
3565fce3 1135 */
f958d7b5 1136 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1137 page_ref_inc(page);
3565fce3
DW
1138}
1139
3faa52c0
JH
1140bool __must_check try_grab_page(struct page *page, unsigned int flags);
1141
88b1a17d
LT
1142static inline __must_check bool try_get_page(struct page *page)
1143{
1144 page = compound_head(page);
1145 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1146 return false;
fe896d18 1147 page_ref_inc(page);
88b1a17d 1148 return true;
3565fce3
DW
1149}
1150
1151static inline void put_page(struct page *page)
1152{
1153 page = compound_head(page);
1154
7b2d55d2 1155 /*
e7638488
DW
1156 * For devmap managed pages we need to catch refcount transition from
1157 * 2 to 1, when refcount reach one it means the page is free and we
1158 * need to inform the device driver through callback. See
7b2d55d2
JG
1159 * include/linux/memremap.h and HMM for details.
1160 */
07d80269
JH
1161 if (page_is_devmap_managed(page)) {
1162 put_devmap_managed_page(page);
7b2d55d2 1163 return;
07d80269 1164 }
7b2d55d2 1165
3565fce3
DW
1166 if (put_page_testzero(page))
1167 __put_page(page);
3565fce3
DW
1168}
1169
3faa52c0
JH
1170/*
1171 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1172 * the page's refcount so that two separate items are tracked: the original page
1173 * reference count, and also a new count of how many pin_user_pages() calls were
1174 * made against the page. ("gup-pinned" is another term for the latter).
1175 *
1176 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1177 * distinct from normal pages. As such, the unpin_user_page() call (and its
1178 * variants) must be used in order to release gup-pinned pages.
1179 *
1180 * Choice of value:
1181 *
1182 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1183 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1184 * simpler, due to the fact that adding an even power of two to the page
1185 * refcount has the effect of using only the upper N bits, for the code that
1186 * counts up using the bias value. This means that the lower bits are left for
1187 * the exclusive use of the original code that increments and decrements by one
1188 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1189 *
3faa52c0
JH
1190 * Of course, once the lower bits overflow into the upper bits (and this is
1191 * OK, because subtraction recovers the original values), then visual inspection
1192 * no longer suffices to directly view the separate counts. However, for normal
1193 * applications that don't have huge page reference counts, this won't be an
1194 * issue.
fc1d8e7c 1195 *
3faa52c0
JH
1196 * Locking: the lockless algorithm described in page_cache_get_speculative()
1197 * and page_cache_gup_pin_speculative() provides safe operation for
1198 * get_user_pages and page_mkclean and other calls that race to set up page
1199 * table entries.
fc1d8e7c 1200 */
3faa52c0 1201#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1202
3faa52c0 1203void unpin_user_page(struct page *page);
f1f6a7dd
JH
1204void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1205 bool make_dirty);
f1f6a7dd 1206void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1207
3faa52c0
JH
1208/**
1209 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1210 *
1211 * This function checks if a page has been pinned via a call to
1212 * pin_user_pages*().
1213 *
1214 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1215 * because it means "definitely not pinned for DMA", but true means "probably
1216 * pinned for DMA, but possibly a false positive due to having at least
1217 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1218 *
1219 * False positives are OK, because: a) it's unlikely for a page to get that many
1220 * refcounts, and b) all the callers of this routine are expected to be able to
1221 * deal gracefully with a false positive.
1222 *
47e29d32
JH
1223 * For huge pages, the result will be exactly correct. That's because we have
1224 * more tracking data available: the 3rd struct page in the compound page is
1225 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1226 * scheme).
1227 *
72ef5e52 1228 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0
JH
1229 *
1230 * @page: pointer to page to be queried.
1231 * @Return: True, if it is likely that the page has been "dma-pinned".
1232 * False, if the page is definitely not dma-pinned.
1233 */
1234static inline bool page_maybe_dma_pinned(struct page *page)
1235{
47e29d32
JH
1236 if (hpage_pincount_available(page))
1237 return compound_pincount(page) > 0;
1238
3faa52c0
JH
1239 /*
1240 * page_ref_count() is signed. If that refcount overflows, then
1241 * page_ref_count() returns a negative value, and callers will avoid
1242 * further incrementing the refcount.
1243 *
1244 * Here, for that overflow case, use the signed bit to count a little
1245 * bit higher via unsigned math, and thus still get an accurate result.
1246 */
1247 return ((unsigned int)page_ref_count(compound_head(page))) >=
1248 GUP_PIN_COUNTING_BIAS;
1249}
1250
9127ab4f
CS
1251#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1252#define SECTION_IN_PAGE_FLAGS
1253#endif
1254
89689ae7 1255/*
7a8010cd
VB
1256 * The identification function is mainly used by the buddy allocator for
1257 * determining if two pages could be buddies. We are not really identifying
1258 * the zone since we could be using the section number id if we do not have
1259 * node id available in page flags.
1260 * We only guarantee that it will return the same value for two combinable
1261 * pages in a zone.
89689ae7 1262 */
cb2b95e1
AW
1263static inline int page_zone_id(struct page *page)
1264{
89689ae7 1265 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1266}
1267
89689ae7 1268#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1269extern int page_to_nid(const struct page *page);
89689ae7 1270#else
33dd4e0e 1271static inline int page_to_nid(const struct page *page)
d41dee36 1272{
f165b378
PT
1273 struct page *p = (struct page *)page;
1274
1275 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1276}
89689ae7
CL
1277#endif
1278
57e0a030 1279#ifdef CONFIG_NUMA_BALANCING
90572890 1280static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1281{
90572890 1282 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1283}
1284
90572890 1285static inline int cpupid_to_pid(int cpupid)
57e0a030 1286{
90572890 1287 return cpupid & LAST__PID_MASK;
57e0a030 1288}
b795854b 1289
90572890 1290static inline int cpupid_to_cpu(int cpupid)
b795854b 1291{
90572890 1292 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1293}
1294
90572890 1295static inline int cpupid_to_nid(int cpupid)
b795854b 1296{
90572890 1297 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1298}
1299
90572890 1300static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1301{
90572890 1302 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1303}
1304
90572890 1305static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1306{
90572890 1307 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1308}
1309
8c8a743c
PZ
1310static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1311{
1312 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1313}
1314
1315#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1316#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1317static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1318{
1ae71d03 1319 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1320}
90572890
PZ
1321
1322static inline int page_cpupid_last(struct page *page)
1323{
1324 return page->_last_cpupid;
1325}
1326static inline void page_cpupid_reset_last(struct page *page)
b795854b 1327{
1ae71d03 1328 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1329}
1330#else
90572890 1331static inline int page_cpupid_last(struct page *page)
75980e97 1332{
90572890 1333 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1334}
1335
90572890 1336extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1337
90572890 1338static inline void page_cpupid_reset_last(struct page *page)
75980e97 1339{
09940a4f 1340 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1341}
90572890
PZ
1342#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1343#else /* !CONFIG_NUMA_BALANCING */
1344static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1345{
90572890 1346 return page_to_nid(page); /* XXX */
57e0a030
MG
1347}
1348
90572890 1349static inline int page_cpupid_last(struct page *page)
57e0a030 1350{
90572890 1351 return page_to_nid(page); /* XXX */
57e0a030
MG
1352}
1353
90572890 1354static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1355{
1356 return -1;
1357}
1358
90572890 1359static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1360{
1361 return -1;
1362}
1363
90572890 1364static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1365{
1366 return -1;
1367}
1368
90572890
PZ
1369static inline int cpu_pid_to_cpupid(int nid, int pid)
1370{
1371 return -1;
1372}
1373
1374static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1375{
1376 return 1;
1377}
1378
90572890 1379static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1380{
1381}
8c8a743c
PZ
1382
1383static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1384{
1385 return false;
1386}
90572890 1387#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1388
2813b9c0
AK
1389#ifdef CONFIG_KASAN_SW_TAGS
1390static inline u8 page_kasan_tag(const struct page *page)
1391{
1392 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1393}
1394
1395static inline void page_kasan_tag_set(struct page *page, u8 tag)
1396{
1397 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1398 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1399}
1400
1401static inline void page_kasan_tag_reset(struct page *page)
1402{
1403 page_kasan_tag_set(page, 0xff);
1404}
1405#else
1406static inline u8 page_kasan_tag(const struct page *page)
1407{
1408 return 0xff;
1409}
1410
1411static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1412static inline void page_kasan_tag_reset(struct page *page) { }
1413#endif
1414
33dd4e0e 1415static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1416{
1417 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1418}
1419
75ef7184
MG
1420static inline pg_data_t *page_pgdat(const struct page *page)
1421{
1422 return NODE_DATA(page_to_nid(page));
1423}
1424
9127ab4f 1425#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1426static inline void set_page_section(struct page *page, unsigned long section)
1427{
1428 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1429 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1430}
1431
aa462abe 1432static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1433{
1434 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1435}
308c05e3 1436#endif
d41dee36 1437
2f1b6248 1438static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1439{
1440 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1441 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1442}
2f1b6248 1443
348f8b6c
DH
1444static inline void set_page_node(struct page *page, unsigned long node)
1445{
1446 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1447 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1448}
89689ae7 1449
2f1b6248 1450static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1451 unsigned long node, unsigned long pfn)
1da177e4 1452{
348f8b6c
DH
1453 set_page_zone(page, zone);
1454 set_page_node(page, node);
9127ab4f 1455#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1456 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1457#endif
1da177e4
LT
1458}
1459
0610c25d
GT
1460#ifdef CONFIG_MEMCG
1461static inline struct mem_cgroup *page_memcg(struct page *page)
1462{
1463 return page->mem_cgroup;
1464}
55779ec7
JW
1465static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1466{
1467 WARN_ON_ONCE(!rcu_read_lock_held());
1468 return READ_ONCE(page->mem_cgroup);
1469}
0610c25d
GT
1470#else
1471static inline struct mem_cgroup *page_memcg(struct page *page)
1472{
1473 return NULL;
1474}
55779ec7
JW
1475static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1476{
1477 WARN_ON_ONCE(!rcu_read_lock_held());
1478 return NULL;
1479}
0610c25d
GT
1480#endif
1481
f6ac2354
CL
1482/*
1483 * Some inline functions in vmstat.h depend on page_zone()
1484 */
1485#include <linux/vmstat.h>
1486
33dd4e0e 1487static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1488{
1dff8083 1489 return page_to_virt(page);
1da177e4
LT
1490}
1491
1492#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1493#define HASHED_PAGE_VIRTUAL
1494#endif
1495
1496#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1497static inline void *page_address(const struct page *page)
1498{
1499 return page->virtual;
1500}
1501static inline void set_page_address(struct page *page, void *address)
1502{
1503 page->virtual = address;
1504}
1da177e4
LT
1505#define page_address_init() do { } while(0)
1506#endif
1507
1508#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1509void *page_address(const struct page *page);
1da177e4
LT
1510void set_page_address(struct page *page, void *virtual);
1511void page_address_init(void);
1512#endif
1513
1514#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1515#define page_address(page) lowmem_page_address(page)
1516#define set_page_address(page, address) do { } while(0)
1517#define page_address_init() do { } while(0)
1518#endif
1519
e39155ea
KS
1520extern void *page_rmapping(struct page *page);
1521extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1522extern struct address_space *page_mapping(struct page *page);
1da177e4 1523
f981c595
MG
1524extern struct address_space *__page_file_mapping(struct page *);
1525
1526static inline
1527struct address_space *page_file_mapping(struct page *page)
1528{
1529 if (unlikely(PageSwapCache(page)))
1530 return __page_file_mapping(page);
1531
1532 return page->mapping;
1533}
1534
f6ab1f7f
HY
1535extern pgoff_t __page_file_index(struct page *page);
1536
1da177e4
LT
1537/*
1538 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1539 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1540 */
1541static inline pgoff_t page_index(struct page *page)
1542{
1543 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1544 return __page_file_index(page);
1da177e4
LT
1545 return page->index;
1546}
1547
1aa8aea5 1548bool page_mapped(struct page *page);
bda807d4 1549struct address_space *page_mapping(struct page *page);
cb9f753a 1550struct address_space *page_mapping_file(struct page *page);
1da177e4 1551
2f064f34
MH
1552/*
1553 * Return true only if the page has been allocated with
1554 * ALLOC_NO_WATERMARKS and the low watermark was not
1555 * met implying that the system is under some pressure.
1556 */
1557static inline bool page_is_pfmemalloc(struct page *page)
1558{
1559 /*
1560 * Page index cannot be this large so this must be
1561 * a pfmemalloc page.
1562 */
1563 return page->index == -1UL;
1564}
1565
1566/*
1567 * Only to be called by the page allocator on a freshly allocated
1568 * page.
1569 */
1570static inline void set_page_pfmemalloc(struct page *page)
1571{
1572 page->index = -1UL;
1573}
1574
1575static inline void clear_page_pfmemalloc(struct page *page)
1576{
1577 page->index = 0;
1578}
1579
1c0fe6e3
NP
1580/*
1581 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1582 */
1583extern void pagefault_out_of_memory(void);
1584
1da177e4
LT
1585#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1586
ddd588b5 1587/*
7bf02ea2 1588 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1589 * various contexts.
1590 */
4b59e6c4 1591#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1592
9af744d7 1593extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1594
710ec38b 1595#ifdef CONFIG_MMU
7f43add4 1596extern bool can_do_mlock(void);
710ec38b
AB
1597#else
1598static inline bool can_do_mlock(void) { return false; }
1599#endif
1da177e4
LT
1600extern int user_shm_lock(size_t, struct user_struct *);
1601extern void user_shm_unlock(size_t, struct user_struct *);
1602
1603/*
1604 * Parameter block passed down to zap_pte_range in exceptional cases.
1605 */
1606struct zap_details {
1da177e4
LT
1607 struct address_space *check_mapping; /* Check page->mapping if set */
1608 pgoff_t first_index; /* Lowest page->index to unmap */
1609 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1610};
1611
25b2995a
CH
1612struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1613 pte_t pte);
28093f9f
GS
1614struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1615 pmd_t pmd);
7e675137 1616
27d036e3
LR
1617void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1618 unsigned long size);
14f5ff5d 1619void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1620 unsigned long size);
4f74d2c8
LT
1621void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1622 unsigned long start, unsigned long end);
e6473092 1623
ac46d4f3
JG
1624struct mmu_notifier_range;
1625
42b77728 1626void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1627 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1628int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1629 struct vm_area_struct *vma);
09796395 1630int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
1631 struct mmu_notifier_range *range,
1632 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1633int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1634 unsigned long *pfn);
d87fe660 1635int follow_phys(struct vm_area_struct *vma, unsigned long address,
1636 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1637int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1638 void *buf, int len, int write);
1da177e4 1639
7caef267 1640extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1641extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1642void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1643void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1644int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1645int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1646int invalidate_inode_page(struct page *page);
1647
7ee1dd3f 1648#ifdef CONFIG_MMU
2b740303
SJ
1649extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1650 unsigned long address, unsigned int flags);
5c723ba5 1651extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1652 unsigned long address, unsigned int fault_flags,
1653 bool *unlocked);
977fbdcd
MW
1654void unmap_mapping_pages(struct address_space *mapping,
1655 pgoff_t start, pgoff_t nr, bool even_cows);
1656void unmap_mapping_range(struct address_space *mapping,
1657 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1658#else
2b740303 1659static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
dcddffd4 1660 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1661{
1662 /* should never happen if there's no MMU */
1663 BUG();
1664 return VM_FAULT_SIGBUS;
1665}
5c723ba5
PZ
1666static inline int fixup_user_fault(struct task_struct *tsk,
1667 struct mm_struct *mm, unsigned long address,
4a9e1cda 1668 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1669{
1670 /* should never happen if there's no MMU */
1671 BUG();
1672 return -EFAULT;
1673}
977fbdcd
MW
1674static inline void unmap_mapping_pages(struct address_space *mapping,
1675 pgoff_t start, pgoff_t nr, bool even_cows) { }
1676static inline void unmap_mapping_range(struct address_space *mapping,
1677 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1678#endif
f33ea7f4 1679
977fbdcd
MW
1680static inline void unmap_shared_mapping_range(struct address_space *mapping,
1681 loff_t const holebegin, loff_t const holelen)
1682{
1683 unmap_mapping_range(mapping, holebegin, holelen, 0);
1684}
1685
1686extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1687 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1688extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1689 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1690extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1691 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1692
1e987790
DH
1693long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1694 unsigned long start, unsigned long nr_pages,
9beae1ea 1695 unsigned int gup_flags, struct page **pages,
5b56d49f 1696 struct vm_area_struct **vmas, int *locked);
eddb1c22
JH
1697long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1698 unsigned long start, unsigned long nr_pages,
1699 unsigned int gup_flags, struct page **pages,
1700 struct vm_area_struct **vmas, int *locked);
c12d2da5 1701long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1702 unsigned int gup_flags, struct page **pages,
cde70140 1703 struct vm_area_struct **vmas);
eddb1c22
JH
1704long pin_user_pages(unsigned long start, unsigned long nr_pages,
1705 unsigned int gup_flags, struct page **pages,
1706 struct vm_area_struct **vmas);
c12d2da5 1707long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1708 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1709long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1710 struct page **pages, unsigned int gup_flags);
91429023
JH
1711long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1712 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1713
73b0140b
IW
1714int get_user_pages_fast(unsigned long start, int nr_pages,
1715 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1716int pin_user_pages_fast(unsigned long start, int nr_pages,
1717 unsigned int gup_flags, struct page **pages);
8025e5dd 1718
79eb597c
DJ
1719int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1720int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1721 struct task_struct *task, bool bypass_rlim);
1722
8025e5dd
JK
1723/* Container for pinned pfns / pages */
1724struct frame_vector {
1725 unsigned int nr_allocated; /* Number of frames we have space for */
1726 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1727 bool got_ref; /* Did we pin pages by getting page ref? */
1728 bool is_pfns; /* Does array contain pages or pfns? */
57e86fa1 1729 void *ptrs[]; /* Array of pinned pfns / pages. Use
8025e5dd
JK
1730 * pfns_vector_pages() or pfns_vector_pfns()
1731 * for access */
1732};
1733
1734struct frame_vector *frame_vector_create(unsigned int nr_frames);
1735void frame_vector_destroy(struct frame_vector *vec);
1736int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1737 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1738void put_vaddr_frames(struct frame_vector *vec);
1739int frame_vector_to_pages(struct frame_vector *vec);
1740void frame_vector_to_pfns(struct frame_vector *vec);
1741
1742static inline unsigned int frame_vector_count(struct frame_vector *vec)
1743{
1744 return vec->nr_frames;
1745}
1746
1747static inline struct page **frame_vector_pages(struct frame_vector *vec)
1748{
1749 if (vec->is_pfns) {
1750 int err = frame_vector_to_pages(vec);
1751
1752 if (err)
1753 return ERR_PTR(err);
1754 }
1755 return (struct page **)(vec->ptrs);
1756}
1757
1758static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1759{
1760 if (!vec->is_pfns)
1761 frame_vector_to_pfns(vec);
1762 return (unsigned long *)(vec->ptrs);
1763}
1764
18022c5d
MG
1765struct kvec;
1766int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1767 struct page **pages);
1768int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1769struct page *get_dump_page(unsigned long addr);
1da177e4 1770
cf9a2ae8 1771extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1772extern void do_invalidatepage(struct page *page, unsigned int offset,
1773 unsigned int length);
cf9a2ae8 1774
f82b3764 1775void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1776int __set_page_dirty_nobuffers(struct page *page);
76719325 1777int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1778int redirty_page_for_writepage(struct writeback_control *wbc,
1779 struct page *page);
62cccb8c 1780void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1781void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1782 struct bdi_writeback *wb);
b3c97528 1783int set_page_dirty(struct page *page);
1da177e4 1784int set_page_dirty_lock(struct page *page);
736304f3
JK
1785void __cancel_dirty_page(struct page *page);
1786static inline void cancel_dirty_page(struct page *page)
1787{
1788 /* Avoid atomic ops, locking, etc. when not actually needed. */
1789 if (PageDirty(page))
1790 __cancel_dirty_page(page);
1791}
1da177e4 1792int clear_page_dirty_for_io(struct page *page);
b9ea2515 1793
a9090253 1794int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1795
b6a2fea3
OW
1796extern unsigned long move_page_tables(struct vm_area_struct *vma,
1797 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1798 unsigned long new_addr, unsigned long len,
1799 bool need_rmap_locks);
58705444
PX
1800
1801/*
1802 * Flags used by change_protection(). For now we make it a bitmap so
1803 * that we can pass in multiple flags just like parameters. However
1804 * for now all the callers are only use one of the flags at the same
1805 * time.
1806 */
1807/* Whether we should allow dirty bit accounting */
1808#define MM_CP_DIRTY_ACCT (1UL << 0)
1809/* Whether this protection change is for NUMA hints */
1810#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1811/* Whether this change is for write protecting */
1812#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1813#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1814#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1815 MM_CP_UFFD_WP_RESOLVE)
58705444 1816
7da4d641
PZ
1817extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1818 unsigned long end, pgprot_t newprot,
58705444 1819 unsigned long cp_flags);
b6a2fea3
OW
1820extern int mprotect_fixup(struct vm_area_struct *vma,
1821 struct vm_area_struct **pprev, unsigned long start,
1822 unsigned long end, unsigned long newflags);
1da177e4 1823
465a454f
PZ
1824/*
1825 * doesn't attempt to fault and will return short.
1826 */
1827int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1828 struct page **pages);
104acc32
JH
1829int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1830 unsigned int gup_flags, struct page **pages);
d559db08
KH
1831/*
1832 * per-process(per-mm_struct) statistics.
1833 */
d559db08
KH
1834static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1835{
69c97823
KK
1836 long val = atomic_long_read(&mm->rss_stat.count[member]);
1837
1838#ifdef SPLIT_RSS_COUNTING
1839 /*
1840 * counter is updated in asynchronous manner and may go to minus.
1841 * But it's never be expected number for users.
1842 */
1843 if (val < 0)
1844 val = 0;
172703b0 1845#endif
69c97823
KK
1846 return (unsigned long)val;
1847}
d559db08 1848
e4dcad20 1849void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1850
d559db08
KH
1851static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1852{
b3d1411b
JFG
1853 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1854
e4dcad20 1855 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1856}
1857
1858static inline void inc_mm_counter(struct mm_struct *mm, int member)
1859{
b3d1411b
JFG
1860 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1861
e4dcad20 1862 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1863}
1864
1865static inline void dec_mm_counter(struct mm_struct *mm, int member)
1866{
b3d1411b
JFG
1867 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1868
e4dcad20 1869 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1870}
1871
eca56ff9
JM
1872/* Optimized variant when page is already known not to be PageAnon */
1873static inline int mm_counter_file(struct page *page)
1874{
1875 if (PageSwapBacked(page))
1876 return MM_SHMEMPAGES;
1877 return MM_FILEPAGES;
1878}
1879
1880static inline int mm_counter(struct page *page)
1881{
1882 if (PageAnon(page))
1883 return MM_ANONPAGES;
1884 return mm_counter_file(page);
1885}
1886
d559db08
KH
1887static inline unsigned long get_mm_rss(struct mm_struct *mm)
1888{
1889 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1890 get_mm_counter(mm, MM_ANONPAGES) +
1891 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1892}
1893
1894static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1895{
1896 return max(mm->hiwater_rss, get_mm_rss(mm));
1897}
1898
1899static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1900{
1901 return max(mm->hiwater_vm, mm->total_vm);
1902}
1903
1904static inline void update_hiwater_rss(struct mm_struct *mm)
1905{
1906 unsigned long _rss = get_mm_rss(mm);
1907
1908 if ((mm)->hiwater_rss < _rss)
1909 (mm)->hiwater_rss = _rss;
1910}
1911
1912static inline void update_hiwater_vm(struct mm_struct *mm)
1913{
1914 if (mm->hiwater_vm < mm->total_vm)
1915 mm->hiwater_vm = mm->total_vm;
1916}
1917
695f0559
PC
1918static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1919{
1920 mm->hiwater_rss = get_mm_rss(mm);
1921}
1922
d559db08
KH
1923static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1924 struct mm_struct *mm)
1925{
1926 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1927
1928 if (*maxrss < hiwater_rss)
1929 *maxrss = hiwater_rss;
1930}
1931
53bddb4e 1932#if defined(SPLIT_RSS_COUNTING)
05af2e10 1933void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1934#else
05af2e10 1935static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1936{
1937}
1938#endif
465a454f 1939
78e7c5af
AK
1940#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1941static inline int pte_special(pte_t pte)
1942{
1943 return 0;
1944}
1945
1946static inline pte_t pte_mkspecial(pte_t pte)
1947{
1948 return pte;
1949}
1950#endif
1951
17596731 1952#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
1953static inline int pte_devmap(pte_t pte)
1954{
1955 return 0;
1956}
1957#endif
1958
6d2329f8 1959int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1960
25ca1d6c
NK
1961extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1962 spinlock_t **ptl);
1963static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1964 spinlock_t **ptl)
1965{
1966 pte_t *ptep;
1967 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1968 return ptep;
1969}
c9cfcddf 1970
c2febafc
KS
1971#ifdef __PAGETABLE_P4D_FOLDED
1972static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1973 unsigned long address)
1974{
1975 return 0;
1976}
1977#else
1978int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1979#endif
1980
b4e98d9a 1981#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1982static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1983 unsigned long address)
1984{
1985 return 0;
1986}
b4e98d9a
KS
1987static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1988static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1989
5f22df00 1990#else
c2febafc 1991int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1992
b4e98d9a
KS
1993static inline void mm_inc_nr_puds(struct mm_struct *mm)
1994{
6d212db1
MS
1995 if (mm_pud_folded(mm))
1996 return;
af5b0f6a 1997 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1998}
1999
2000static inline void mm_dec_nr_puds(struct mm_struct *mm)
2001{
6d212db1
MS
2002 if (mm_pud_folded(mm))
2003 return;
af5b0f6a 2004 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2005}
5f22df00
NP
2006#endif
2007
2d2f5119 2008#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2009static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2010 unsigned long address)
2011{
2012 return 0;
2013}
dc6c9a35 2014
dc6c9a35
KS
2015static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2016static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2017
5f22df00 2018#else
1bb3630e 2019int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2020
dc6c9a35
KS
2021static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2022{
6d212db1
MS
2023 if (mm_pmd_folded(mm))
2024 return;
af5b0f6a 2025 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2026}
2027
2028static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2029{
6d212db1
MS
2030 if (mm_pmd_folded(mm))
2031 return;
af5b0f6a 2032 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2033}
5f22df00
NP
2034#endif
2035
c4812909 2036#ifdef CONFIG_MMU
af5b0f6a 2037static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2038{
af5b0f6a 2039 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2040}
2041
af5b0f6a 2042static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2043{
af5b0f6a 2044 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2045}
2046
2047static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2048{
af5b0f6a 2049 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2050}
2051
2052static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2053{
af5b0f6a 2054 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2055}
2056#else
c4812909 2057
af5b0f6a
KS
2058static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2059static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2060{
2061 return 0;
2062}
2063
2064static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2065static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2066#endif
2067
4cf58924
JFG
2068int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2069int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2070
f949286c
MR
2071#if defined(CONFIG_MMU)
2072
c2febafc
KS
2073static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2074 unsigned long address)
2075{
2076 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2077 NULL : p4d_offset(pgd, address);
2078}
2079
2080static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2081 unsigned long address)
1da177e4 2082{
c2febafc
KS
2083 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2084 NULL : pud_offset(p4d, address);
1da177e4 2085}
d8626138
JR
2086
2087static inline p4d_t *p4d_alloc_track(struct mm_struct *mm, pgd_t *pgd,
2088 unsigned long address,
2089 pgtbl_mod_mask *mod_mask)
2090
2091{
2092 if (unlikely(pgd_none(*pgd))) {
2093 if (__p4d_alloc(mm, pgd, address))
2094 return NULL;
2095 *mod_mask |= PGTBL_PGD_MODIFIED;
2096 }
2097
2098 return p4d_offset(pgd, address);
2099}
2100
d8626138
JR
2101static inline pud_t *pud_alloc_track(struct mm_struct *mm, p4d_t *p4d,
2102 unsigned long address,
2103 pgtbl_mod_mask *mod_mask)
2104{
2105 if (unlikely(p4d_none(*p4d))) {
2106 if (__pud_alloc(mm, p4d, address))
2107 return NULL;
2108 *mod_mask |= PGTBL_P4D_MODIFIED;
2109 }
2110
2111 return pud_offset(p4d, address);
2112}
2113
1da177e4
LT
2114static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2115{
1bb3630e
HD
2116 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2117 NULL: pmd_offset(pud, address);
1da177e4 2118}
d8626138
JR
2119
2120static inline pmd_t *pmd_alloc_track(struct mm_struct *mm, pud_t *pud,
2121 unsigned long address,
2122 pgtbl_mod_mask *mod_mask)
2123{
2124 if (unlikely(pud_none(*pud))) {
2125 if (__pmd_alloc(mm, pud, address))
2126 return NULL;
2127 *mod_mask |= PGTBL_PUD_MODIFIED;
2128 }
2129
2130 return pmd_offset(pud, address);
2131}
f949286c 2132#endif /* CONFIG_MMU */
1bb3630e 2133
57c1ffce 2134#if USE_SPLIT_PTE_PTLOCKS
597d795a 2135#if ALLOC_SPLIT_PTLOCKS
b35f1819 2136void __init ptlock_cache_init(void);
539edb58
PZ
2137extern bool ptlock_alloc(struct page *page);
2138extern void ptlock_free(struct page *page);
2139
2140static inline spinlock_t *ptlock_ptr(struct page *page)
2141{
2142 return page->ptl;
2143}
597d795a 2144#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2145static inline void ptlock_cache_init(void)
2146{
2147}
2148
49076ec2
KS
2149static inline bool ptlock_alloc(struct page *page)
2150{
49076ec2
KS
2151 return true;
2152}
539edb58 2153
49076ec2
KS
2154static inline void ptlock_free(struct page *page)
2155{
49076ec2
KS
2156}
2157
2158static inline spinlock_t *ptlock_ptr(struct page *page)
2159{
539edb58 2160 return &page->ptl;
49076ec2 2161}
597d795a 2162#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2163
2164static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2165{
2166 return ptlock_ptr(pmd_page(*pmd));
2167}
2168
2169static inline bool ptlock_init(struct page *page)
2170{
2171 /*
2172 * prep_new_page() initialize page->private (and therefore page->ptl)
2173 * with 0. Make sure nobody took it in use in between.
2174 *
2175 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2176 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2177 */
309381fe 2178 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2179 if (!ptlock_alloc(page))
2180 return false;
2181 spin_lock_init(ptlock_ptr(page));
2182 return true;
2183}
2184
57c1ffce 2185#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2186/*
2187 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2188 */
49076ec2
KS
2189static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2190{
2191 return &mm->page_table_lock;
2192}
b35f1819 2193static inline void ptlock_cache_init(void) {}
49076ec2 2194static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2195static inline void ptlock_free(struct page *page) {}
57c1ffce 2196#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2197
b35f1819
KS
2198static inline void pgtable_init(void)
2199{
2200 ptlock_cache_init();
2201 pgtable_cache_init();
2202}
2203
b4ed71f5 2204static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2205{
706874e9
VD
2206 if (!ptlock_init(page))
2207 return false;
1d40a5ea 2208 __SetPageTable(page);
2f569afd 2209 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 2210 return true;
2f569afd
MS
2211}
2212
b4ed71f5 2213static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2214{
9e247bab 2215 ptlock_free(page);
1d40a5ea 2216 __ClearPageTable(page);
2f569afd
MS
2217 dec_zone_page_state(page, NR_PAGETABLE);
2218}
2219
c74df32c
HD
2220#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2221({ \
4c21e2f2 2222 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2223 pte_t *__pte = pte_offset_map(pmd, address); \
2224 *(ptlp) = __ptl; \
2225 spin_lock(__ptl); \
2226 __pte; \
2227})
2228
2229#define pte_unmap_unlock(pte, ptl) do { \
2230 spin_unlock(ptl); \
2231 pte_unmap(pte); \
2232} while (0)
2233
4cf58924 2234#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2235
2236#define pte_alloc_map(mm, pmd, address) \
4cf58924 2237 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2238
c74df32c 2239#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2240 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2241 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2242
1bb3630e 2243#define pte_alloc_kernel(pmd, address) \
4cf58924 2244 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2245 NULL: pte_offset_kernel(pmd, address))
1da177e4 2246
d8626138
JR
2247#define pte_alloc_kernel_track(pmd, address, mask) \
2248 ((unlikely(pmd_none(*(pmd))) && \
2249 (__pte_alloc_kernel(pmd) || ({*(mask)|=PGTBL_PMD_MODIFIED;0;})))?\
2250 NULL: pte_offset_kernel(pmd, address))
2251
e009bb30
KS
2252#if USE_SPLIT_PMD_PTLOCKS
2253
634391ac
MS
2254static struct page *pmd_to_page(pmd_t *pmd)
2255{
2256 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2257 return virt_to_page((void *)((unsigned long) pmd & mask));
2258}
2259
e009bb30
KS
2260static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2261{
634391ac 2262 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2263}
2264
2265static inline bool pgtable_pmd_page_ctor(struct page *page)
2266{
e009bb30
KS
2267#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2268 page->pmd_huge_pte = NULL;
2269#endif
49076ec2 2270 return ptlock_init(page);
e009bb30
KS
2271}
2272
2273static inline void pgtable_pmd_page_dtor(struct page *page)
2274{
2275#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2276 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2277#endif
49076ec2 2278 ptlock_free(page);
e009bb30
KS
2279}
2280
634391ac 2281#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2282
2283#else
2284
9a86cb7b
KS
2285static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2286{
2287 return &mm->page_table_lock;
2288}
2289
e009bb30
KS
2290static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2291static inline void pgtable_pmd_page_dtor(struct page *page) {}
2292
c389a250 2293#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2294
e009bb30
KS
2295#endif
2296
9a86cb7b
KS
2297static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2298{
2299 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2300 spin_lock(ptl);
2301 return ptl;
2302}
2303
a00cc7d9
MW
2304/*
2305 * No scalability reason to split PUD locks yet, but follow the same pattern
2306 * as the PMD locks to make it easier if we decide to. The VM should not be
2307 * considered ready to switch to split PUD locks yet; there may be places
2308 * which need to be converted from page_table_lock.
2309 */
2310static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2311{
2312 return &mm->page_table_lock;
2313}
2314
2315static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2316{
2317 spinlock_t *ptl = pud_lockptr(mm, pud);
2318
2319 spin_lock(ptl);
2320 return ptl;
2321}
62906027 2322
a00cc7d9 2323extern void __init pagecache_init(void);
bc9331a1 2324extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2325extern void free_initmem(void);
2326
69afade7
JL
2327/*
2328 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2329 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2330 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2331 * Return pages freed into the buddy system.
2332 */
11199692 2333extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2334 int poison, const char *s);
c3d5f5f0 2335
cfa11e08
JL
2336#ifdef CONFIG_HIGHMEM
2337/*
2338 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2339 * and totalram_pages.
2340 */
2341extern void free_highmem_page(struct page *page);
2342#endif
69afade7 2343
c3d5f5f0 2344extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2345extern void mem_init_print_info(const char *str);
69afade7 2346
4b50bcc7 2347extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2348
69afade7
JL
2349/* Free the reserved page into the buddy system, so it gets managed. */
2350static inline void __free_reserved_page(struct page *page)
2351{
2352 ClearPageReserved(page);
2353 init_page_count(page);
2354 __free_page(page);
2355}
2356
2357static inline void free_reserved_page(struct page *page)
2358{
2359 __free_reserved_page(page);
2360 adjust_managed_page_count(page, 1);
2361}
2362
2363static inline void mark_page_reserved(struct page *page)
2364{
2365 SetPageReserved(page);
2366 adjust_managed_page_count(page, -1);
2367}
2368
2369/*
2370 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2371 * The freed pages will be poisoned with pattern "poison" if it's within
2372 * range [0, UCHAR_MAX].
2373 * Return pages freed into the buddy system.
69afade7
JL
2374 */
2375static inline unsigned long free_initmem_default(int poison)
2376{
2377 extern char __init_begin[], __init_end[];
2378
11199692 2379 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2380 poison, "unused kernel");
2381}
2382
7ee3d4e8
JL
2383static inline unsigned long get_num_physpages(void)
2384{
2385 int nid;
2386 unsigned long phys_pages = 0;
2387
2388 for_each_online_node(nid)
2389 phys_pages += node_present_pages(nid);
2390
2391 return phys_pages;
2392}
2393
c713216d 2394/*
3f08a302 2395 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2396 * zones, allocate the backing mem_map and account for memory holes in an
2397 * architecture independent manner.
c713216d
MG
2398 *
2399 * An architecture is expected to register range of page frames backed by
0ee332c1 2400 * physical memory with memblock_add[_node]() before calling
9691a071 2401 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2402 * usage, an architecture is expected to do something like
2403 *
2404 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2405 * max_highmem_pfn};
2406 * for_each_valid_physical_page_range()
0ee332c1 2407 * memblock_add_node(base, size, nid)
9691a071 2408 * free_area_init(max_zone_pfns);
c713216d 2409 *
0ee332c1
TH
2410 * sparse_memory_present_with_active_regions() calls memory_present() for
2411 * each range when SPARSEMEM is enabled.
c713216d 2412 */
9691a071 2413void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2414unsigned long node_map_pfn_alignment(void);
32996250
YL
2415unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2416 unsigned long end_pfn);
c713216d
MG
2417extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2418 unsigned long end_pfn);
2419extern void get_pfn_range_for_nid(unsigned int nid,
2420 unsigned long *start_pfn, unsigned long *end_pfn);
2421extern unsigned long find_min_pfn_with_active_regions(void);
c713216d 2422extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2423
3f08a302 2424#ifndef CONFIG_NEED_MULTIPLE_NODES
6f24fbd3 2425static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2426{
2427 return 0;
2428}
2429#else
2430/* please see mm/page_alloc.c */
2431extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2432/* there is a per-arch backend function. */
8a942fde
MG
2433extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2434 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2435#endif
2436
0e0b864e 2437extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2438extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2439 enum memmap_context, struct vmem_altmap *);
bc75d33f 2440extern void setup_per_zone_wmarks(void);
1b79acc9 2441extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2442extern void mem_init(void);
8feae131 2443extern void __init mmap_init(void);
9af744d7 2444extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2445extern long si_mem_available(void);
1da177e4
LT
2446extern void si_meminfo(struct sysinfo * val);
2447extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2448#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2449extern unsigned long arch_reserved_kernel_pages(void);
2450#endif
1da177e4 2451
a8e99259
MH
2452extern __printf(3, 4)
2453void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2454
e7c8d5c9 2455extern void setup_per_cpu_pageset(void);
e7c8d5c9 2456
75f7ad8e
PS
2457/* page_alloc.c */
2458extern int min_free_kbytes;
1c30844d 2459extern int watermark_boost_factor;
795ae7a0 2460extern int watermark_scale_factor;
51930df5 2461extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2462
8feae131 2463/* nommu.c */
33e5d769 2464extern atomic_long_t mmap_pages_allocated;
7e660872 2465extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2466
6b2dbba8 2467/* interval_tree.c */
6b2dbba8 2468void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2469 struct rb_root_cached *root);
9826a516
ML
2470void vma_interval_tree_insert_after(struct vm_area_struct *node,
2471 struct vm_area_struct *prev,
f808c13f 2472 struct rb_root_cached *root);
6b2dbba8 2473void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2474 struct rb_root_cached *root);
2475struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2476 unsigned long start, unsigned long last);
2477struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2478 unsigned long start, unsigned long last);
2479
2480#define vma_interval_tree_foreach(vma, root, start, last) \
2481 for (vma = vma_interval_tree_iter_first(root, start, last); \
2482 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2483
bf181b9f 2484void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2485 struct rb_root_cached *root);
bf181b9f 2486void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2487 struct rb_root_cached *root);
2488struct anon_vma_chain *
2489anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2490 unsigned long start, unsigned long last);
bf181b9f
ML
2491struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2492 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2493#ifdef CONFIG_DEBUG_VM_RB
2494void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2495#endif
bf181b9f
ML
2496
2497#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2498 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2499 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2500
1da177e4 2501/* mmap.c */
34b4e4aa 2502extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2503extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2504 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2505 struct vm_area_struct *expand);
2506static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2507 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2508{
2509 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2510}
1da177e4
LT
2511extern struct vm_area_struct *vma_merge(struct mm_struct *,
2512 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2513 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2514 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2515extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2516extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2517 unsigned long addr, int new_below);
2518extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2519 unsigned long addr, int new_below);
1da177e4
LT
2520extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2521extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2522 struct rb_node **, struct rb_node *);
a8fb5618 2523extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2524extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2525 unsigned long addr, unsigned long len, pgoff_t pgoff,
2526 bool *need_rmap_locks);
1da177e4 2527extern void exit_mmap(struct mm_struct *);
925d1c40 2528
9c599024
CG
2529static inline int check_data_rlimit(unsigned long rlim,
2530 unsigned long new,
2531 unsigned long start,
2532 unsigned long end_data,
2533 unsigned long start_data)
2534{
2535 if (rlim < RLIM_INFINITY) {
2536 if (((new - start) + (end_data - start_data)) > rlim)
2537 return -ENOSPC;
2538 }
2539
2540 return 0;
2541}
2542
7906d00c
AA
2543extern int mm_take_all_locks(struct mm_struct *mm);
2544extern void mm_drop_all_locks(struct mm_struct *mm);
2545
38646013
JS
2546extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2547extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2548extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2549
84638335
KK
2550extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2551extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2552
2eefd878
DS
2553extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2554 const struct vm_special_mapping *sm);
3935ed6a
SS
2555extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2556 unsigned long addr, unsigned long len,
a62c34bd
AL
2557 unsigned long flags,
2558 const struct vm_special_mapping *spec);
2559/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2560extern int install_special_mapping(struct mm_struct *mm,
2561 unsigned long addr, unsigned long len,
2562 unsigned long flags, struct page **pages);
1da177e4 2563
649775be
AG
2564unsigned long randomize_stack_top(unsigned long stack_top);
2565
1da177e4
LT
2566extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2567
0165ab44 2568extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2569 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2570 struct list_head *uf);
1fcfd8db 2571extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2572 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2573 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2574 struct list_head *uf);
85a06835
YS
2575extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2576 struct list_head *uf, bool downgrade);
897ab3e0
MR
2577extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2578 struct list_head *uf);
db08ca25 2579extern int do_madvise(unsigned long start, size_t len_in, int behavior);
1da177e4 2580
1fcfd8db
ON
2581static inline unsigned long
2582do_mmap_pgoff(struct file *file, unsigned long addr,
2583 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2584 unsigned long pgoff, unsigned long *populate,
2585 struct list_head *uf)
1fcfd8db 2586{
897ab3e0 2587 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2588}
2589
bebeb3d6
ML
2590#ifdef CONFIG_MMU
2591extern int __mm_populate(unsigned long addr, unsigned long len,
2592 int ignore_errors);
2593static inline void mm_populate(unsigned long addr, unsigned long len)
2594{
2595 /* Ignore errors */
2596 (void) __mm_populate(addr, len, 1);
2597}
2598#else
2599static inline void mm_populate(unsigned long addr, unsigned long len) {}
2600#endif
2601
e4eb1ff6 2602/* These take the mm semaphore themselves */
5d22fc25 2603extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2604extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2605extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2606extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2607 unsigned long, unsigned long,
2608 unsigned long, unsigned long);
1da177e4 2609
db4fbfb9
ML
2610struct vm_unmapped_area_info {
2611#define VM_UNMAPPED_AREA_TOPDOWN 1
2612 unsigned long flags;
2613 unsigned long length;
2614 unsigned long low_limit;
2615 unsigned long high_limit;
2616 unsigned long align_mask;
2617 unsigned long align_offset;
2618};
2619
baceaf1c 2620extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2621
85821aab 2622/* truncate.c */
1da177e4 2623extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2624extern void truncate_inode_pages_range(struct address_space *,
2625 loff_t lstart, loff_t lend);
91b0abe3 2626extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2627
2628/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2629extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2630extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2631 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2632extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2633
2634/* mm/page-writeback.c */
2b69c828 2635int __must_check write_one_page(struct page *page);
1cf6e7d8 2636void task_dirty_inc(struct task_struct *tsk);
1da177e4 2637
1be7107f 2638extern unsigned long stack_guard_gap;
d05f3169 2639/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2640extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2641
2642/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2643extern int expand_downwards(struct vm_area_struct *vma,
2644 unsigned long address);
8ca3eb08 2645#if VM_GROWSUP
46dea3d0 2646extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2647#else
fee7e49d 2648 #define expand_upwards(vma, address) (0)
9ab88515 2649#endif
1da177e4
LT
2650
2651/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2652extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2653extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2654 struct vm_area_struct **pprev);
2655
2656/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2657 NULL if none. Assume start_addr < end_addr. */
2658static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2659{
2660 struct vm_area_struct * vma = find_vma(mm,start_addr);
2661
2662 if (vma && end_addr <= vma->vm_start)
2663 vma = NULL;
2664 return vma;
2665}
2666
1be7107f
HD
2667static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2668{
2669 unsigned long vm_start = vma->vm_start;
2670
2671 if (vma->vm_flags & VM_GROWSDOWN) {
2672 vm_start -= stack_guard_gap;
2673 if (vm_start > vma->vm_start)
2674 vm_start = 0;
2675 }
2676 return vm_start;
2677}
2678
2679static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2680{
2681 unsigned long vm_end = vma->vm_end;
2682
2683 if (vma->vm_flags & VM_GROWSUP) {
2684 vm_end += stack_guard_gap;
2685 if (vm_end < vma->vm_end)
2686 vm_end = -PAGE_SIZE;
2687 }
2688 return vm_end;
2689}
2690
1da177e4
LT
2691static inline unsigned long vma_pages(struct vm_area_struct *vma)
2692{
2693 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2694}
2695
640708a2
PE
2696/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2697static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2698 unsigned long vm_start, unsigned long vm_end)
2699{
2700 struct vm_area_struct *vma = find_vma(mm, vm_start);
2701
2702 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2703 vma = NULL;
2704
2705 return vma;
2706}
2707
017b1660
MK
2708static inline bool range_in_vma(struct vm_area_struct *vma,
2709 unsigned long start, unsigned long end)
2710{
2711 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2712}
2713
bad849b3 2714#ifdef CONFIG_MMU
804af2cf 2715pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2716void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2717#else
2718static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2719{
2720 return __pgprot(0);
2721}
64e45507
PF
2722static inline void vma_set_page_prot(struct vm_area_struct *vma)
2723{
2724 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2725}
bad849b3
DH
2726#endif
2727
5877231f 2728#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2729unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2730 unsigned long start, unsigned long end);
2731#endif
2732
deceb6cd 2733struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2734int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2735 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2736int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2737int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2738 struct page **pages, unsigned long *num);
a667d745
SJ
2739int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2740 unsigned long num);
2741int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2742 unsigned long num);
ae2b01f3 2743vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2744 unsigned long pfn);
f5e6d1d5
MW
2745vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2746 unsigned long pfn, pgprot_t pgprot);
5d747637 2747vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2748 pfn_t pfn);
574c5b3d
TH
2749vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2750 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2751vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2752 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2753int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2754
1c8f4220
SJ
2755static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2756 unsigned long addr, struct page *page)
2757{
2758 int err = vm_insert_page(vma, addr, page);
2759
2760 if (err == -ENOMEM)
2761 return VM_FAULT_OOM;
2762 if (err < 0 && err != -EBUSY)
2763 return VM_FAULT_SIGBUS;
2764
2765 return VM_FAULT_NOPAGE;
2766}
2767
d97baf94
SJ
2768static inline vm_fault_t vmf_error(int err)
2769{
2770 if (err == -ENOMEM)
2771 return VM_FAULT_OOM;
2772 return VM_FAULT_SIGBUS;
2773}
2774
df06b37f
KB
2775struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2776 unsigned int foll_flags);
240aadee 2777
deceb6cd
HD
2778#define FOLL_WRITE 0x01 /* check pte is writable */
2779#define FOLL_TOUCH 0x02 /* mark page accessed */
2780#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2781#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2782#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2783#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2784 * and return without waiting upon it */
84d33df2 2785#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2786#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2787#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2788#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2789#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2790#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2791#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2792#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2793#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2794#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2795#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2796#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2797#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2798#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2799
2800/*
eddb1c22
JH
2801 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2802 * other. Here is what they mean, and how to use them:
932f4a63
IW
2803 *
2804 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2805 * period _often_ under userspace control. This is in contrast to
2806 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2807 *
2808 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2809 * lifetime enforced by the filesystem and we need guarantees that longterm
2810 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2811 * the filesystem. Ideas for this coordination include revoking the longterm
2812 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2813 * added after the problem with filesystems was found FS DAX VMAs are
2814 * specifically failed. Filesystem pages are still subject to bugs and use of
2815 * FOLL_LONGTERM should be avoided on those pages.
2816 *
2817 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2818 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2819 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2820 * is due to an incompatibility with the FS DAX check and
eddb1c22 2821 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2822 *
eddb1c22
JH
2823 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2824 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2825 * FOLL_LONGTERM is specified.
eddb1c22
JH
2826 *
2827 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2828 * but an additional pin counting system) will be invoked. This is intended for
2829 * anything that gets a page reference and then touches page data (for example,
2830 * Direct IO). This lets the filesystem know that some non-file-system entity is
2831 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2832 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2833 * a call to unpin_user_page().
eddb1c22
JH
2834 *
2835 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2836 * and separate refcounting mechanisms, however, and that means that each has
2837 * its own acquire and release mechanisms:
2838 *
2839 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2840 *
f1f6a7dd 2841 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2842 *
2843 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2844 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2845 * calls applied to them, and that's perfectly OK. This is a constraint on the
2846 * callers, not on the pages.)
2847 *
2848 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2849 * directly by the caller. That's in order to help avoid mismatches when
2850 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2851 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2852 *
72ef5e52 2853 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2854 */
1da177e4 2855
2b740303 2856static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2857{
2858 if (vm_fault & VM_FAULT_OOM)
2859 return -ENOMEM;
2860 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2861 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2862 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2863 return -EFAULT;
2864 return 0;
2865}
2866
8b1e0f81 2867typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2868extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2869 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2870extern int apply_to_existing_page_range(struct mm_struct *mm,
2871 unsigned long address, unsigned long size,
2872 pte_fn_t fn, void *data);
aee16b3c 2873
8823b1db
LA
2874#ifdef CONFIG_PAGE_POISONING
2875extern bool page_poisoning_enabled(void);
2876extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2877#else
2878static inline bool page_poisoning_enabled(void) { return false; }
2879static inline void kernel_poison_pages(struct page *page, int numpages,
2880 int enable) { }
2881#endif
2882
6471384a
AP
2883#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2884DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2885#else
2886DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2887#endif
2888static inline bool want_init_on_alloc(gfp_t flags)
2889{
2890 if (static_branch_unlikely(&init_on_alloc) &&
2891 !page_poisoning_enabled())
2892 return true;
2893 return flags & __GFP_ZERO;
2894}
2895
2896#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2897DECLARE_STATIC_KEY_TRUE(init_on_free);
2898#else
2899DECLARE_STATIC_KEY_FALSE(init_on_free);
2900#endif
2901static inline bool want_init_on_free(void)
2902{
2903 return static_branch_unlikely(&init_on_free) &&
2904 !page_poisoning_enabled();
2905}
2906
8e57f8ac
VB
2907#ifdef CONFIG_DEBUG_PAGEALLOC
2908extern void init_debug_pagealloc(void);
96a2b03f 2909#else
8e57f8ac 2910static inline void init_debug_pagealloc(void) {}
96a2b03f 2911#endif
8e57f8ac
VB
2912extern bool _debug_pagealloc_enabled_early;
2913DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2914
2915static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2916{
2917 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2918 _debug_pagealloc_enabled_early;
2919}
2920
2921/*
2922 * For use in fast paths after init_debug_pagealloc() has run, or when a
2923 * false negative result is not harmful when called too early.
2924 */
2925static inline bool debug_pagealloc_enabled_static(void)
031bc574 2926{
96a2b03f
VB
2927 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2928 return false;
2929
2930 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2931}
2932
d6332692
RE
2933#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2934extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2935
c87cbc1f
VB
2936/*
2937 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2938 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2939 */
031bc574
JK
2940static inline void
2941kernel_map_pages(struct page *page, int numpages, int enable)
2942{
031bc574
JK
2943 __kernel_map_pages(page, numpages, enable);
2944}
8a235efa
RW
2945#ifdef CONFIG_HIBERNATION
2946extern bool kernel_page_present(struct page *page);
40b44137 2947#endif /* CONFIG_HIBERNATION */
d6332692 2948#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2949static inline void
9858db50 2950kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2951#ifdef CONFIG_HIBERNATION
2952static inline bool kernel_page_present(struct page *page) { return true; }
40b44137 2953#endif /* CONFIG_HIBERNATION */
d6332692 2954#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2955
a6c19dfe 2956#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2957extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2958extern int in_gate_area_no_mm(unsigned long addr);
2959extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2960#else
a6c19dfe
AL
2961static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2962{
2963 return NULL;
2964}
2965static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2966static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2967{
2968 return 0;
2969}
1da177e4
LT
2970#endif /* __HAVE_ARCH_GATE_AREA */
2971
44a70ade
MH
2972extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2973
146732ce
JT
2974#ifdef CONFIG_SYSCTL
2975extern int sysctl_drop_caches;
32927393
CH
2976int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2977 loff_t *);
146732ce
JT
2978#endif
2979
cb731d6c
VD
2980void drop_slab(void);
2981void drop_slab_node(int nid);
9d0243bc 2982
7a9166e3
LY
2983#ifndef CONFIG_MMU
2984#define randomize_va_space 0
2985#else
a62eaf15 2986extern int randomize_va_space;
7a9166e3 2987#endif
a62eaf15 2988
045e72ac 2989const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 2990#ifdef CONFIG_MMU
03252919 2991void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
2992#else
2993static inline void print_vma_addr(char *prefix, unsigned long rip)
2994{
2995}
2996#endif
e6e5494c 2997
35fd1eb1 2998void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
2999struct page * __populate_section_memmap(unsigned long pfn,
3000 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3001pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3002p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3003pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
3004pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3005pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 3006void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3007struct vmem_altmap;
a8fc357b
CH
3008void *vmemmap_alloc_block_buf(unsigned long size, int node);
3009void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 3010void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
3011int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3012 int node);
7b73d978
CH
3013int vmemmap_populate(unsigned long start, unsigned long end, int node,
3014 struct vmem_altmap *altmap);
c2b91e2e 3015void vmemmap_populate_print_last(void);
0197518c 3016#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3017void vmemmap_free(unsigned long start, unsigned long end,
3018 struct vmem_altmap *altmap);
0197518c 3019#endif
46723bfa 3020void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3021 unsigned long nr_pages);
6a46079c 3022
82ba011b
AK
3023enum mf_flags {
3024 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3025 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3026 MF_MUST_KILL = 1 << 2,
cf870c70 3027 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3028};
83b57531
EB
3029extern int memory_failure(unsigned long pfn, int flags);
3030extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3031extern void memory_failure_queue_kick(int cpu);
847ce401 3032extern int unpoison_memory(unsigned long pfn);
ead07f6a 3033extern int get_hwpoison_page(struct page *page);
4e41a30c 3034#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
3035extern int sysctl_memory_failure_early_kill;
3036extern int sysctl_memory_failure_recovery;
facb6011 3037extern void shake_page(struct page *p, int access);
5844a486 3038extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3039extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3040
cc637b17
XX
3041
3042/*
3043 * Error handlers for various types of pages.
3044 */
cc3e2af4 3045enum mf_result {
cc637b17
XX
3046 MF_IGNORED, /* Error: cannot be handled */
3047 MF_FAILED, /* Error: handling failed */
3048 MF_DELAYED, /* Will be handled later */
3049 MF_RECOVERED, /* Successfully recovered */
3050};
3051
3052enum mf_action_page_type {
3053 MF_MSG_KERNEL,
3054 MF_MSG_KERNEL_HIGH_ORDER,
3055 MF_MSG_SLAB,
3056 MF_MSG_DIFFERENT_COMPOUND,
3057 MF_MSG_POISONED_HUGE,
3058 MF_MSG_HUGE,
3059 MF_MSG_FREE_HUGE,
31286a84 3060 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3061 MF_MSG_UNMAP_FAILED,
3062 MF_MSG_DIRTY_SWAPCACHE,
3063 MF_MSG_CLEAN_SWAPCACHE,
3064 MF_MSG_DIRTY_MLOCKED_LRU,
3065 MF_MSG_CLEAN_MLOCKED_LRU,
3066 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3067 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3068 MF_MSG_DIRTY_LRU,
3069 MF_MSG_CLEAN_LRU,
3070 MF_MSG_TRUNCATED_LRU,
3071 MF_MSG_BUDDY,
3072 MF_MSG_BUDDY_2ND,
6100e34b 3073 MF_MSG_DAX,
cc637b17
XX
3074 MF_MSG_UNKNOWN,
3075};
3076
47ad8475
AA
3077#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3078extern void clear_huge_page(struct page *page,
c79b57e4 3079 unsigned long addr_hint,
47ad8475
AA
3080 unsigned int pages_per_huge_page);
3081extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3082 unsigned long addr_hint,
3083 struct vm_area_struct *vma,
47ad8475 3084 unsigned int pages_per_huge_page);
fa4d75c1
MK
3085extern long copy_huge_page_from_user(struct page *dst_page,
3086 const void __user *usr_src,
810a56b9
MK
3087 unsigned int pages_per_huge_page,
3088 bool allow_pagefault);
2484ca9b
THV
3089
3090/**
3091 * vma_is_special_huge - Are transhuge page-table entries considered special?
3092 * @vma: Pointer to the struct vm_area_struct to consider
3093 *
3094 * Whether transhuge page-table entries are considered "special" following
3095 * the definition in vm_normal_page().
3096 *
3097 * Return: true if transhuge page-table entries should be considered special,
3098 * false otherwise.
3099 */
3100static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3101{
3102 return vma_is_dax(vma) || (vma->vm_file &&
3103 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3104}
3105
47ad8475
AA
3106#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3107
c0a32fc5
SG
3108#ifdef CONFIG_DEBUG_PAGEALLOC
3109extern unsigned int _debug_guardpage_minorder;
96a2b03f 3110DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3111
3112static inline unsigned int debug_guardpage_minorder(void)
3113{
3114 return _debug_guardpage_minorder;
3115}
3116
e30825f1
JK
3117static inline bool debug_guardpage_enabled(void)
3118{
96a2b03f 3119 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3120}
3121
c0a32fc5
SG
3122static inline bool page_is_guard(struct page *page)
3123{
e30825f1
JK
3124 if (!debug_guardpage_enabled())
3125 return false;
3126
3972f6bb 3127 return PageGuard(page);
c0a32fc5
SG
3128}
3129#else
3130static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3131static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3132static inline bool page_is_guard(struct page *page) { return false; }
3133#endif /* CONFIG_DEBUG_PAGEALLOC */
3134
f9872caf
CS
3135#if MAX_NUMNODES > 1
3136void __init setup_nr_node_ids(void);
3137#else
3138static inline void setup_nr_node_ids(void) {}
3139#endif
3140
010c164a
SL
3141extern int memcmp_pages(struct page *page1, struct page *page2);
3142
3143static inline int pages_identical(struct page *page1, struct page *page2)
3144{
3145 return !memcmp_pages(page1, page2);
3146}
3147
c5acad84
TH
3148#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3149unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3150 pgoff_t first_index, pgoff_t nr,
3151 pgoff_t bitmap_pgoff,
3152 unsigned long *bitmap,
3153 pgoff_t *start,
3154 pgoff_t *end);
3155
3156unsigned long wp_shared_mapping_range(struct address_space *mapping,
3157 pgoff_t first_index, pgoff_t nr);
3158#endif
3159
2374c09b
CH
3160extern int sysctl_nr_trim_pages;
3161
1da177e4
LT
3162#endif /* __KERNEL__ */
3163#endif /* _LINUX_MM_H */