mm, page_alloc: more extensive free page checking with debug_pagealloc
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
3b3b1a29 28#include <linux/overflow.h>
b5420237 29#include <linux/sizes.h>
1da177e4
LT
30
31struct mempolicy;
32struct anon_vma;
bf181b9f 33struct anon_vma_chain;
4e950f6f 34struct file_ra_state;
e8edc6e0 35struct user_struct;
4e950f6f 36struct writeback_control;
682aa8e1 37struct bdi_writeback;
1da177e4 38
597b7305
MH
39void init_mm_internals(void);
40
fccc9987 41#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 42extern unsigned long max_mapnr;
fccc9987
JL
43
44static inline void set_max_mapnr(unsigned long limit)
45{
46 max_mapnr = limit;
47}
48#else
49static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
50#endif
51
ca79b0c2
AK
52extern atomic_long_t _totalram_pages;
53static inline unsigned long totalram_pages(void)
54{
55 return (unsigned long)atomic_long_read(&_totalram_pages);
56}
57
58static inline void totalram_pages_inc(void)
59{
60 atomic_long_inc(&_totalram_pages);
61}
62
63static inline void totalram_pages_dec(void)
64{
65 atomic_long_dec(&_totalram_pages);
66}
67
68static inline void totalram_pages_add(long count)
69{
70 atomic_long_add(count, &_totalram_pages);
71}
72
73static inline void totalram_pages_set(long val)
74{
75 atomic_long_set(&_totalram_pages, val);
76}
77
1da177e4 78extern void * high_memory;
1da177e4
LT
79extern int page_cluster;
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
d07e2259
DC
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
1da177e4
LT
98#include <asm/page.h>
99#include <asm/pgtable.h>
100#include <asm/processor.h>
1da177e4 101
d9344522
AK
102/*
103 * Architectures that support memory tagging (assigning tags to memory regions,
104 * embedding these tags into addresses that point to these memory regions, and
105 * checking that the memory and the pointer tags match on memory accesses)
106 * redefine this macro to strip tags from pointers.
107 * It's defined as noop for arcitectures that don't support memory tagging.
108 */
109#ifndef untagged_addr
110#define untagged_addr(addr) (addr)
111#endif
112
79442ed1
TC
113#ifndef __pa_symbol
114#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
115#endif
116
1dff8083
AB
117#ifndef page_to_virt
118#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
119#endif
120
568c5fe5
LA
121#ifndef lm_alias
122#define lm_alias(x) __va(__pa_symbol(x))
123#endif
124
593befa6
DD
125/*
126 * To prevent common memory management code establishing
127 * a zero page mapping on a read fault.
128 * This macro should be defined within <asm/pgtable.h>.
129 * s390 does this to prevent multiplexing of hardware bits
130 * related to the physical page in case of virtualization.
131 */
132#ifndef mm_forbids_zeropage
133#define mm_forbids_zeropage(X) (0)
134#endif
135
a4a3ede2
PT
136/*
137 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
138 * If an architecture decides to implement their own version of
139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
140 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 141 */
5470dea4
AD
142#if BITS_PER_LONG == 64
143/* This function must be updated when the size of struct page grows above 80
144 * or reduces below 56. The idea that compiler optimizes out switch()
145 * statement, and only leaves move/store instructions. Also the compiler can
146 * combine write statments if they are both assignments and can be reordered,
147 * this can result in several of the writes here being dropped.
148 */
149#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
150static inline void __mm_zero_struct_page(struct page *page)
151{
152 unsigned long *_pp = (void *)page;
153
154 /* Check that struct page is either 56, 64, 72, or 80 bytes */
155 BUILD_BUG_ON(sizeof(struct page) & 7);
156 BUILD_BUG_ON(sizeof(struct page) < 56);
157 BUILD_BUG_ON(sizeof(struct page) > 80);
158
159 switch (sizeof(struct page)) {
160 case 80:
161 _pp[9] = 0; /* fallthrough */
162 case 72:
163 _pp[8] = 0; /* fallthrough */
164 case 64:
165 _pp[7] = 0; /* fallthrough */
166 case 56:
167 _pp[6] = 0;
168 _pp[5] = 0;
169 _pp[4] = 0;
170 _pp[3] = 0;
171 _pp[2] = 0;
172 _pp[1] = 0;
173 _pp[0] = 0;
174 }
175}
176#else
a4a3ede2
PT
177#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
178#endif
179
ea606cf5
AR
180/*
181 * Default maximum number of active map areas, this limits the number of vmas
182 * per mm struct. Users can overwrite this number by sysctl but there is a
183 * problem.
184 *
185 * When a program's coredump is generated as ELF format, a section is created
186 * per a vma. In ELF, the number of sections is represented in unsigned short.
187 * This means the number of sections should be smaller than 65535 at coredump.
188 * Because the kernel adds some informative sections to a image of program at
189 * generating coredump, we need some margin. The number of extra sections is
190 * 1-3 now and depends on arch. We use "5" as safe margin, here.
191 *
192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193 * not a hard limit any more. Although some userspace tools can be surprised by
194 * that.
195 */
196#define MAPCOUNT_ELF_CORE_MARGIN (5)
197#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198
199extern int sysctl_max_map_count;
200
c9b1d098 201extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 202extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 203
49f0ce5f
JM
204extern int sysctl_overcommit_memory;
205extern int sysctl_overcommit_ratio;
206extern unsigned long sysctl_overcommit_kbytes;
207
208extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
209 size_t *, loff_t *);
210extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
211 size_t *, loff_t *);
212
1da177e4
LT
213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214
27ac792c
AR
215/* to align the pointer to the (next) page boundary */
216#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
217
0fa73b86 218/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 219#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 220
f86196ea
NB
221#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
222
1da177e4
LT
223/*
224 * Linux kernel virtual memory manager primitives.
225 * The idea being to have a "virtual" mm in the same way
226 * we have a virtual fs - giving a cleaner interface to the
227 * mm details, and allowing different kinds of memory mappings
228 * (from shared memory to executable loading to arbitrary
229 * mmap() functions).
230 */
231
490fc053 232struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
233struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
234void vm_area_free(struct vm_area_struct *);
c43692e8 235
1da177e4 236#ifndef CONFIG_MMU
8feae131
DH
237extern struct rb_root nommu_region_tree;
238extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
239
240extern unsigned int kobjsize(const void *objp);
241#endif
242
243/*
605d9288 244 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 245 * When changing, update also include/trace/events/mmflags.h
1da177e4 246 */
cc2383ec
KK
247#define VM_NONE 0x00000000
248
1da177e4
LT
249#define VM_READ 0x00000001 /* currently active flags */
250#define VM_WRITE 0x00000002
251#define VM_EXEC 0x00000004
252#define VM_SHARED 0x00000008
253
7e2cff42 254/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
255#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
256#define VM_MAYWRITE 0x00000020
257#define VM_MAYEXEC 0x00000040
258#define VM_MAYSHARE 0x00000080
259
260#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 261#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 262#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 263#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 264#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 265
1da177e4
LT
266#define VM_LOCKED 0x00002000
267#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
268
269 /* Used by sys_madvise() */
270#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
271#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
272
273#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
274#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 275#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 276#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 277#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 278#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 279#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 280#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 281#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 282#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 283
d9104d1c
CG
284#ifdef CONFIG_MEM_SOFT_DIRTY
285# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
286#else
287# define VM_SOFTDIRTY 0
288#endif
289
b379d790 290#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
291#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
292#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 293#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 294
63c17fb8
DH
295#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
296#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
297#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
298#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
299#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 300#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
301#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
302#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
303#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
304#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 305#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
306#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
307
5212213a 308#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
309# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
310# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 311# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
312# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
313# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
314#ifdef CONFIG_PPC
315# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
316#else
317# define VM_PKEY_BIT4 0
8f62c883 318#endif
5212213a
RP
319#endif /* CONFIG_ARCH_HAS_PKEYS */
320
321#if defined(CONFIG_X86)
322# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
cc2383ec
KK
323#elif defined(CONFIG_PPC)
324# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
325#elif defined(CONFIG_PARISC)
326# define VM_GROWSUP VM_ARCH_1
327#elif defined(CONFIG_IA64)
328# define VM_GROWSUP VM_ARCH_1
74a04967
KA
329#elif defined(CONFIG_SPARC64)
330# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
331# define VM_ARCH_CLEAR VM_SPARC_ADI
cc2383ec
KK
332#elif !defined(CONFIG_MMU)
333# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
334#endif
335
df3735c5 336#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 337/* MPX specific bounds table or bounds directory */
fa87b91c 338# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
339#else
340# define VM_MPX VM_NONE
4aae7e43
QR
341#endif
342
cc2383ec
KK
343#ifndef VM_GROWSUP
344# define VM_GROWSUP VM_NONE
345#endif
346
a8bef8ff
MG
347/* Bits set in the VMA until the stack is in its final location */
348#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
349
1da177e4
LT
350#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
351#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
352#endif
353
354#ifdef CONFIG_STACK_GROWSUP
30bdbb78 355#define VM_STACK VM_GROWSUP
1da177e4 356#else
30bdbb78 357#define VM_STACK VM_GROWSDOWN
1da177e4
LT
358#endif
359
30bdbb78
KK
360#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
361
b291f000 362/*
78f11a25
AA
363 * Special vmas that are non-mergable, non-mlock()able.
364 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 365 */
9050d7eb 366#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 367
a0715cc2
AT
368/* This mask defines which mm->def_flags a process can inherit its parent */
369#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
370
de60f5f1
EM
371/* This mask is used to clear all the VMA flags used by mlock */
372#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
373
2c2d57b5
KA
374/* Arch-specific flags to clear when updating VM flags on protection change */
375#ifndef VM_ARCH_CLEAR
376# define VM_ARCH_CLEAR VM_NONE
377#endif
378#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
379
1da177e4
LT
380/*
381 * mapping from the currently active vm_flags protection bits (the
382 * low four bits) to a page protection mask..
383 */
384extern pgprot_t protection_map[16];
385
d0217ac0 386#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
387#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
388#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
389#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
390#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
391#define FAULT_FLAG_TRIED 0x20 /* Second try */
392#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 393#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 394#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 395
282a8e03
RZ
396#define FAULT_FLAG_TRACE \
397 { FAULT_FLAG_WRITE, "WRITE" }, \
398 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
399 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
400 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
401 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
402 { FAULT_FLAG_TRIED, "TRIED" }, \
403 { FAULT_FLAG_USER, "USER" }, \
404 { FAULT_FLAG_REMOTE, "REMOTE" }, \
405 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
406
54cb8821 407/*
d0217ac0 408 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
409 * ->fault function. The vma's ->fault is responsible for returning a bitmask
410 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 411 *
c20cd45e
MH
412 * MM layer fills up gfp_mask for page allocations but fault handler might
413 * alter it if its implementation requires a different allocation context.
414 *
9b4bdd2f 415 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 416 */
d0217ac0 417struct vm_fault {
82b0f8c3 418 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 419 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 420 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 421 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 422 unsigned long address; /* Faulting virtual address */
82b0f8c3 423 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 424 * the 'address' */
a2d58167
DJ
425 pud_t *pud; /* Pointer to pud entry matching
426 * the 'address'
427 */
2994302b 428 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 429
3917048d
JK
430 struct page *cow_page; /* Page handler may use for COW fault */
431 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 432 struct page *page; /* ->fault handlers should return a
83c54070 433 * page here, unless VM_FAULT_NOPAGE
d0217ac0 434 * is set (which is also implied by
83c54070 435 * VM_FAULT_ERROR).
d0217ac0 436 */
82b0f8c3 437 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
438 pte_t *pte; /* Pointer to pte entry matching
439 * the 'address'. NULL if the page
440 * table hasn't been allocated.
441 */
442 spinlock_t *ptl; /* Page table lock.
443 * Protects pte page table if 'pte'
444 * is not NULL, otherwise pmd.
445 */
7267ec00
KS
446 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
447 * vm_ops->map_pages() calls
448 * alloc_set_pte() from atomic context.
449 * do_fault_around() pre-allocates
450 * page table to avoid allocation from
451 * atomic context.
452 */
54cb8821 453};
1da177e4 454
c791ace1
DJ
455/* page entry size for vm->huge_fault() */
456enum page_entry_size {
457 PE_SIZE_PTE = 0,
458 PE_SIZE_PMD,
459 PE_SIZE_PUD,
460};
461
1da177e4
LT
462/*
463 * These are the virtual MM functions - opening of an area, closing and
464 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 465 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
466 */
467struct vm_operations_struct {
468 void (*open)(struct vm_area_struct * area);
469 void (*close)(struct vm_area_struct * area);
31383c68 470 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 471 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
472 vm_fault_t (*fault)(struct vm_fault *vmf);
473 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
474 enum page_entry_size pe_size);
82b0f8c3 475 void (*map_pages)(struct vm_fault *vmf,
bae473a4 476 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 477 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
478
479 /* notification that a previously read-only page is about to become
480 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 481 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 482
dd906184 483 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 484 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 485
28b2ee20
RR
486 /* called by access_process_vm when get_user_pages() fails, typically
487 * for use by special VMAs that can switch between memory and hardware
488 */
489 int (*access)(struct vm_area_struct *vma, unsigned long addr,
490 void *buf, int len, int write);
78d683e8
AL
491
492 /* Called by the /proc/PID/maps code to ask the vma whether it
493 * has a special name. Returning non-NULL will also cause this
494 * vma to be dumped unconditionally. */
495 const char *(*name)(struct vm_area_struct *vma);
496
1da177e4 497#ifdef CONFIG_NUMA
a6020ed7
LS
498 /*
499 * set_policy() op must add a reference to any non-NULL @new mempolicy
500 * to hold the policy upon return. Caller should pass NULL @new to
501 * remove a policy and fall back to surrounding context--i.e. do not
502 * install a MPOL_DEFAULT policy, nor the task or system default
503 * mempolicy.
504 */
1da177e4 505 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
506
507 /*
508 * get_policy() op must add reference [mpol_get()] to any policy at
509 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
510 * in mm/mempolicy.c will do this automatically.
511 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
512 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
513 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
514 * must return NULL--i.e., do not "fallback" to task or system default
515 * policy.
516 */
1da177e4
LT
517 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
518 unsigned long addr);
519#endif
667a0a06
DV
520 /*
521 * Called by vm_normal_page() for special PTEs to find the
522 * page for @addr. This is useful if the default behavior
523 * (using pte_page()) would not find the correct page.
524 */
525 struct page *(*find_special_page)(struct vm_area_struct *vma,
526 unsigned long addr);
1da177e4
LT
527};
528
027232da
KS
529static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
530{
bfd40eaf
KS
531 static const struct vm_operations_struct dummy_vm_ops = {};
532
a670468f 533 memset(vma, 0, sizeof(*vma));
027232da 534 vma->vm_mm = mm;
bfd40eaf 535 vma->vm_ops = &dummy_vm_ops;
027232da
KS
536 INIT_LIST_HEAD(&vma->anon_vma_chain);
537}
538
bfd40eaf
KS
539static inline void vma_set_anonymous(struct vm_area_struct *vma)
540{
541 vma->vm_ops = NULL;
542}
543
8b11ec1b
LT
544/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
545#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
546
1da177e4
LT
547struct mmu_gather;
548struct inode;
549
5c7fb56e
DW
550#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
551static inline int pmd_devmap(pmd_t pmd)
552{
553 return 0;
554}
a00cc7d9
MW
555static inline int pud_devmap(pud_t pud)
556{
557 return 0;
558}
b59f65fa
KS
559static inline int pgd_devmap(pgd_t pgd)
560{
561 return 0;
562}
5c7fb56e
DW
563#endif
564
1da177e4
LT
565/*
566 * FIXME: take this include out, include page-flags.h in
567 * files which need it (119 of them)
568 */
569#include <linux/page-flags.h>
71e3aac0 570#include <linux/huge_mm.h>
1da177e4
LT
571
572/*
573 * Methods to modify the page usage count.
574 *
575 * What counts for a page usage:
576 * - cache mapping (page->mapping)
577 * - private data (page->private)
578 * - page mapped in a task's page tables, each mapping
579 * is counted separately
580 *
581 * Also, many kernel routines increase the page count before a critical
582 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
583 */
584
585/*
da6052f7 586 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 587 */
7c8ee9a8
NP
588static inline int put_page_testzero(struct page *page)
589{
fe896d18
JK
590 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
591 return page_ref_dec_and_test(page);
7c8ee9a8 592}
1da177e4
LT
593
594/*
7c8ee9a8
NP
595 * Try to grab a ref unless the page has a refcount of zero, return false if
596 * that is the case.
8e0861fa
AK
597 * This can be called when MMU is off so it must not access
598 * any of the virtual mappings.
1da177e4 599 */
7c8ee9a8
NP
600static inline int get_page_unless_zero(struct page *page)
601{
fe896d18 602 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 603}
1da177e4 604
53df8fdc 605extern int page_is_ram(unsigned long pfn);
124fe20d
DW
606
607enum {
608 REGION_INTERSECTS,
609 REGION_DISJOINT,
610 REGION_MIXED,
611};
612
1c29f25b
TK
613int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
614 unsigned long desc);
53df8fdc 615
48667e7a 616/* Support for virtually mapped pages */
b3bdda02
CL
617struct page *vmalloc_to_page(const void *addr);
618unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 619
0738c4bb
PM
620/*
621 * Determine if an address is within the vmalloc range
622 *
623 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
624 * is no special casing required.
625 */
bb00a789 626static inline bool is_vmalloc_addr(const void *x)
9e2779fa 627{
0738c4bb 628#ifdef CONFIG_MMU
9e2779fa
CL
629 unsigned long addr = (unsigned long)x;
630
631 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 632#else
bb00a789 633 return false;
8ca3ed87 634#endif
0738c4bb 635}
9bd3bb67
AK
636
637#ifndef is_ioremap_addr
638#define is_ioremap_addr(x) is_vmalloc_addr(x)
639#endif
640
81ac3ad9
KH
641#ifdef CONFIG_MMU
642extern int is_vmalloc_or_module_addr(const void *x);
643#else
934831d0 644static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
645{
646 return 0;
647}
648#endif
9e2779fa 649
a7c3e901
MH
650extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
651static inline void *kvmalloc(size_t size, gfp_t flags)
652{
653 return kvmalloc_node(size, flags, NUMA_NO_NODE);
654}
655static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
656{
657 return kvmalloc_node(size, flags | __GFP_ZERO, node);
658}
659static inline void *kvzalloc(size_t size, gfp_t flags)
660{
661 return kvmalloc(size, flags | __GFP_ZERO);
662}
663
752ade68
MH
664static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
665{
3b3b1a29
KC
666 size_t bytes;
667
668 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
669 return NULL;
670
3b3b1a29 671 return kvmalloc(bytes, flags);
752ade68
MH
672}
673
1c542f38
KC
674static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
675{
676 return kvmalloc_array(n, size, flags | __GFP_ZERO);
677}
678
39f1f78d
AV
679extern void kvfree(const void *addr);
680
53f9263b
KS
681static inline atomic_t *compound_mapcount_ptr(struct page *page)
682{
683 return &page[1].compound_mapcount;
684}
685
686static inline int compound_mapcount(struct page *page)
687{
5f527c2b 688 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
689 page = compound_head(page);
690 return atomic_read(compound_mapcount_ptr(page)) + 1;
691}
692
70b50f94
AA
693/*
694 * The atomic page->_mapcount, starts from -1: so that transitions
695 * both from it and to it can be tracked, using atomic_inc_and_test
696 * and atomic_add_negative(-1).
697 */
22b751c3 698static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
699{
700 atomic_set(&(page)->_mapcount, -1);
701}
702
b20ce5e0
KS
703int __page_mapcount(struct page *page);
704
70b50f94
AA
705static inline int page_mapcount(struct page *page)
706{
1d148e21 707 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 708
b20ce5e0
KS
709 if (unlikely(PageCompound(page)))
710 return __page_mapcount(page);
711 return atomic_read(&page->_mapcount) + 1;
712}
713
714#ifdef CONFIG_TRANSPARENT_HUGEPAGE
715int total_mapcount(struct page *page);
6d0a07ed 716int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
717#else
718static inline int total_mapcount(struct page *page)
719{
720 return page_mapcount(page);
70b50f94 721}
6d0a07ed
AA
722static inline int page_trans_huge_mapcount(struct page *page,
723 int *total_mapcount)
724{
725 int mapcount = page_mapcount(page);
726 if (total_mapcount)
727 *total_mapcount = mapcount;
728 return mapcount;
729}
b20ce5e0 730#endif
70b50f94 731
b49af68f
CL
732static inline struct page *virt_to_head_page(const void *x)
733{
734 struct page *page = virt_to_page(x);
ccaafd7f 735
1d798ca3 736 return compound_head(page);
b49af68f
CL
737}
738
ddc58f27
KS
739void __put_page(struct page *page);
740
1d7ea732 741void put_pages_list(struct list_head *pages);
1da177e4 742
8dfcc9ba 743void split_page(struct page *page, unsigned int order);
8dfcc9ba 744
33f2ef89
AW
745/*
746 * Compound pages have a destructor function. Provide a
747 * prototype for that function and accessor functions.
f1e61557 748 * These are _only_ valid on the head of a compound page.
33f2ef89 749 */
f1e61557
KS
750typedef void compound_page_dtor(struct page *);
751
752/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
753enum compound_dtor_id {
754 NULL_COMPOUND_DTOR,
755 COMPOUND_PAGE_DTOR,
756#ifdef CONFIG_HUGETLB_PAGE
757 HUGETLB_PAGE_DTOR,
9a982250
KS
758#endif
759#ifdef CONFIG_TRANSPARENT_HUGEPAGE
760 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
761#endif
762 NR_COMPOUND_DTORS,
763};
764extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
765
766static inline void set_compound_page_dtor(struct page *page,
f1e61557 767 enum compound_dtor_id compound_dtor)
33f2ef89 768{
f1e61557
KS
769 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
770 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
771}
772
773static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
774{
f1e61557
KS
775 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
776 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
777}
778
d00181b9 779static inline unsigned int compound_order(struct page *page)
d85f3385 780{
6d777953 781 if (!PageHead(page))
d85f3385 782 return 0;
e4b294c2 783 return page[1].compound_order;
d85f3385
CL
784}
785
f1e61557 786static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 787{
e4b294c2 788 page[1].compound_order = order;
d85f3385
CL
789}
790
9a982250
KS
791void free_compound_page(struct page *page);
792
3dece370 793#ifdef CONFIG_MMU
14fd403f
AA
794/*
795 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
796 * servicing faults for write access. In the normal case, do always want
797 * pte_mkwrite. But get_user_pages can cause write faults for mappings
798 * that do not have writing enabled, when used by access_process_vm.
799 */
800static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
801{
802 if (likely(vma->vm_flags & VM_WRITE))
803 pte = pte_mkwrite(pte);
804 return pte;
805}
8c6e50b0 806
2b740303 807vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 808 struct page *page);
2b740303
SJ
809vm_fault_t finish_fault(struct vm_fault *vmf);
810vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 811#endif
14fd403f 812
1da177e4
LT
813/*
814 * Multiple processes may "see" the same page. E.g. for untouched
815 * mappings of /dev/null, all processes see the same page full of
816 * zeroes, and text pages of executables and shared libraries have
817 * only one copy in memory, at most, normally.
818 *
819 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
820 * page_count() == 0 means the page is free. page->lru is then used for
821 * freelist management in the buddy allocator.
da6052f7 822 * page_count() > 0 means the page has been allocated.
1da177e4 823 *
da6052f7
NP
824 * Pages are allocated by the slab allocator in order to provide memory
825 * to kmalloc and kmem_cache_alloc. In this case, the management of the
826 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
827 * unless a particular usage is carefully commented. (the responsibility of
828 * freeing the kmalloc memory is the caller's, of course).
1da177e4 829 *
da6052f7
NP
830 * A page may be used by anyone else who does a __get_free_page().
831 * In this case, page_count still tracks the references, and should only
832 * be used through the normal accessor functions. The top bits of page->flags
833 * and page->virtual store page management information, but all other fields
834 * are unused and could be used privately, carefully. The management of this
835 * page is the responsibility of the one who allocated it, and those who have
836 * subsequently been given references to it.
837 *
838 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
839 * managed by the Linux memory manager: I/O, buffers, swapping etc.
840 * The following discussion applies only to them.
841 *
da6052f7
NP
842 * A pagecache page contains an opaque `private' member, which belongs to the
843 * page's address_space. Usually, this is the address of a circular list of
844 * the page's disk buffers. PG_private must be set to tell the VM to call
845 * into the filesystem to release these pages.
1da177e4 846 *
da6052f7
NP
847 * A page may belong to an inode's memory mapping. In this case, page->mapping
848 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 849 * in units of PAGE_SIZE.
1da177e4 850 *
da6052f7
NP
851 * If pagecache pages are not associated with an inode, they are said to be
852 * anonymous pages. These may become associated with the swapcache, and in that
853 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 854 *
da6052f7
NP
855 * In either case (swapcache or inode backed), the pagecache itself holds one
856 * reference to the page. Setting PG_private should also increment the
857 * refcount. The each user mapping also has a reference to the page.
1da177e4 858 *
da6052f7 859 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 860 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
861 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
862 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 863 *
da6052f7 864 * All pagecache pages may be subject to I/O:
1da177e4
LT
865 * - inode pages may need to be read from disk,
866 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
867 * to be written back to the inode on disk,
868 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
869 * modified may need to be swapped out to swap space and (later) to be read
870 * back into memory.
1da177e4
LT
871 */
872
873/*
874 * The zone field is never updated after free_area_init_core()
875 * sets it, so none of the operations on it need to be atomic.
1da177e4 876 */
348f8b6c 877
90572890 878/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 879#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
880#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
881#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 882#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 883#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 884
348f8b6c 885/*
25985edc 886 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
887 * sections we define the shift as 0; that plus a 0 mask ensures
888 * the compiler will optimise away reference to them.
889 */
d41dee36
AW
890#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
891#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
892#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 893#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 894#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 895
bce54bbf
WD
896/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
897#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 898#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
899#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
900 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 901#else
89689ae7 902#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
903#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
904 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
905#endif
906
bd8029b6 907#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 908
9223b419
CL
909#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
910#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
911#endif
912
d41dee36
AW
913#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
914#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
915#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 916#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 917#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 918#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 919
33dd4e0e 920static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 921{
348f8b6c 922 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 923}
1da177e4 924
260ae3f7
DW
925#ifdef CONFIG_ZONE_DEVICE
926static inline bool is_zone_device_page(const struct page *page)
927{
928 return page_zonenum(page) == ZONE_DEVICE;
929}
966cf44f
AD
930extern void memmap_init_zone_device(struct zone *, unsigned long,
931 unsigned long, struct dev_pagemap *);
260ae3f7
DW
932#else
933static inline bool is_zone_device_page(const struct page *page)
934{
935 return false;
936}
7b2d55d2 937#endif
5042db43 938
e7638488
DW
939#ifdef CONFIG_DEV_PAGEMAP_OPS
940void dev_pagemap_get_ops(void);
941void dev_pagemap_put_ops(void);
942void __put_devmap_managed_page(struct page *page);
943DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
944static inline bool put_devmap_managed_page(struct page *page)
945{
946 if (!static_branch_unlikely(&devmap_managed_key))
947 return false;
948 if (!is_zone_device_page(page))
949 return false;
950 switch (page->pgmap->type) {
951 case MEMORY_DEVICE_PRIVATE:
952 case MEMORY_DEVICE_PUBLIC:
953 case MEMORY_DEVICE_FS_DAX:
954 __put_devmap_managed_page(page);
955 return true;
956 default:
957 break;
958 }
959 return false;
960}
961
962static inline bool is_device_private_page(const struct page *page)
963{
964 return is_zone_device_page(page) &&
965 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
966}
967
968static inline bool is_device_public_page(const struct page *page)
969{
970 return is_zone_device_page(page) &&
971 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
972}
973
52916982
LG
974#ifdef CONFIG_PCI_P2PDMA
975static inline bool is_pci_p2pdma_page(const struct page *page)
976{
977 return is_zone_device_page(page) &&
978 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
979}
980#else /* CONFIG_PCI_P2PDMA */
981static inline bool is_pci_p2pdma_page(const struct page *page)
982{
983 return false;
984}
985#endif /* CONFIG_PCI_P2PDMA */
986
e7638488
DW
987#else /* CONFIG_DEV_PAGEMAP_OPS */
988static inline void dev_pagemap_get_ops(void)
5042db43 989{
5042db43 990}
e7638488
DW
991
992static inline void dev_pagemap_put_ops(void)
993{
994}
995
996static inline bool put_devmap_managed_page(struct page *page)
997{
998 return false;
999}
1000
6b368cd4
JG
1001static inline bool is_device_private_page(const struct page *page)
1002{
1003 return false;
1004}
e7638488 1005
6b368cd4
JG
1006static inline bool is_device_public_page(const struct page *page)
1007{
1008 return false;
1009}
52916982
LG
1010
1011static inline bool is_pci_p2pdma_page(const struct page *page)
1012{
1013 return false;
1014}
e7638488 1015#endif /* CONFIG_DEV_PAGEMAP_OPS */
7b2d55d2 1016
f958d7b5
LT
1017/* 127: arbitrary random number, small enough to assemble well */
1018#define page_ref_zero_or_close_to_overflow(page) \
1019 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1020
3565fce3
DW
1021static inline void get_page(struct page *page)
1022{
1023 page = compound_head(page);
1024 /*
1025 * Getting a normal page or the head of a compound page
0139aa7b 1026 * requires to already have an elevated page->_refcount.
3565fce3 1027 */
f958d7b5 1028 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1029 page_ref_inc(page);
3565fce3
DW
1030}
1031
88b1a17d
LT
1032static inline __must_check bool try_get_page(struct page *page)
1033{
1034 page = compound_head(page);
1035 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1036 return false;
fe896d18 1037 page_ref_inc(page);
88b1a17d 1038 return true;
3565fce3
DW
1039}
1040
1041static inline void put_page(struct page *page)
1042{
1043 page = compound_head(page);
1044
7b2d55d2 1045 /*
e7638488
DW
1046 * For devmap managed pages we need to catch refcount transition from
1047 * 2 to 1, when refcount reach one it means the page is free and we
1048 * need to inform the device driver through callback. See
7b2d55d2
JG
1049 * include/linux/memremap.h and HMM for details.
1050 */
e7638488 1051 if (put_devmap_managed_page(page))
7b2d55d2 1052 return;
7b2d55d2 1053
3565fce3
DW
1054 if (put_page_testzero(page))
1055 __put_page(page);
3565fce3
DW
1056}
1057
fc1d8e7c
JH
1058/**
1059 * put_user_page() - release a gup-pinned page
1060 * @page: pointer to page to be released
1061 *
1062 * Pages that were pinned via get_user_pages*() must be released via
1063 * either put_user_page(), or one of the put_user_pages*() routines
1064 * below. This is so that eventually, pages that are pinned via
1065 * get_user_pages*() can be separately tracked and uniquely handled. In
1066 * particular, interactions with RDMA and filesystems need special
1067 * handling.
1068 *
1069 * put_user_page() and put_page() are not interchangeable, despite this early
1070 * implementation that makes them look the same. put_user_page() calls must
1071 * be perfectly matched up with get_user_page() calls.
1072 */
1073static inline void put_user_page(struct page *page)
1074{
1075 put_page(page);
1076}
1077
1078void put_user_pages_dirty(struct page **pages, unsigned long npages);
1079void put_user_pages_dirty_lock(struct page **pages, unsigned long npages);
1080void put_user_pages(struct page **pages, unsigned long npages);
1081
9127ab4f
CS
1082#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1083#define SECTION_IN_PAGE_FLAGS
1084#endif
1085
89689ae7 1086/*
7a8010cd
VB
1087 * The identification function is mainly used by the buddy allocator for
1088 * determining if two pages could be buddies. We are not really identifying
1089 * the zone since we could be using the section number id if we do not have
1090 * node id available in page flags.
1091 * We only guarantee that it will return the same value for two combinable
1092 * pages in a zone.
89689ae7 1093 */
cb2b95e1
AW
1094static inline int page_zone_id(struct page *page)
1095{
89689ae7 1096 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1097}
1098
89689ae7 1099#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1100extern int page_to_nid(const struct page *page);
89689ae7 1101#else
33dd4e0e 1102static inline int page_to_nid(const struct page *page)
d41dee36 1103{
f165b378
PT
1104 struct page *p = (struct page *)page;
1105
1106 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1107}
89689ae7
CL
1108#endif
1109
57e0a030 1110#ifdef CONFIG_NUMA_BALANCING
90572890 1111static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1112{
90572890 1113 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1114}
1115
90572890 1116static inline int cpupid_to_pid(int cpupid)
57e0a030 1117{
90572890 1118 return cpupid & LAST__PID_MASK;
57e0a030 1119}
b795854b 1120
90572890 1121static inline int cpupid_to_cpu(int cpupid)
b795854b 1122{
90572890 1123 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1124}
1125
90572890 1126static inline int cpupid_to_nid(int cpupid)
b795854b 1127{
90572890 1128 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1129}
1130
90572890 1131static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1132{
90572890 1133 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1134}
1135
90572890 1136static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1137{
90572890 1138 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1139}
1140
8c8a743c
PZ
1141static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1142{
1143 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1144}
1145
1146#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1147#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1148static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1149{
1ae71d03 1150 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1151}
90572890
PZ
1152
1153static inline int page_cpupid_last(struct page *page)
1154{
1155 return page->_last_cpupid;
1156}
1157static inline void page_cpupid_reset_last(struct page *page)
b795854b 1158{
1ae71d03 1159 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1160}
1161#else
90572890 1162static inline int page_cpupid_last(struct page *page)
75980e97 1163{
90572890 1164 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1165}
1166
90572890 1167extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1168
90572890 1169static inline void page_cpupid_reset_last(struct page *page)
75980e97 1170{
09940a4f 1171 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1172}
90572890
PZ
1173#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1174#else /* !CONFIG_NUMA_BALANCING */
1175static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1176{
90572890 1177 return page_to_nid(page); /* XXX */
57e0a030
MG
1178}
1179
90572890 1180static inline int page_cpupid_last(struct page *page)
57e0a030 1181{
90572890 1182 return page_to_nid(page); /* XXX */
57e0a030
MG
1183}
1184
90572890 1185static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1186{
1187 return -1;
1188}
1189
90572890 1190static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1191{
1192 return -1;
1193}
1194
90572890 1195static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1196{
1197 return -1;
1198}
1199
90572890
PZ
1200static inline int cpu_pid_to_cpupid(int nid, int pid)
1201{
1202 return -1;
1203}
1204
1205static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1206{
1207 return 1;
1208}
1209
90572890 1210static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1211{
1212}
8c8a743c
PZ
1213
1214static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1215{
1216 return false;
1217}
90572890 1218#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1219
2813b9c0
AK
1220#ifdef CONFIG_KASAN_SW_TAGS
1221static inline u8 page_kasan_tag(const struct page *page)
1222{
1223 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1224}
1225
1226static inline void page_kasan_tag_set(struct page *page, u8 tag)
1227{
1228 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1229 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1230}
1231
1232static inline void page_kasan_tag_reset(struct page *page)
1233{
1234 page_kasan_tag_set(page, 0xff);
1235}
1236#else
1237static inline u8 page_kasan_tag(const struct page *page)
1238{
1239 return 0xff;
1240}
1241
1242static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1243static inline void page_kasan_tag_reset(struct page *page) { }
1244#endif
1245
33dd4e0e 1246static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1247{
1248 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1249}
1250
75ef7184
MG
1251static inline pg_data_t *page_pgdat(const struct page *page)
1252{
1253 return NODE_DATA(page_to_nid(page));
1254}
1255
9127ab4f 1256#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1257static inline void set_page_section(struct page *page, unsigned long section)
1258{
1259 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1260 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1261}
1262
aa462abe 1263static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1264{
1265 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1266}
308c05e3 1267#endif
d41dee36 1268
2f1b6248 1269static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1270{
1271 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1272 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1273}
2f1b6248 1274
348f8b6c
DH
1275static inline void set_page_node(struct page *page, unsigned long node)
1276{
1277 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1278 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1279}
89689ae7 1280
2f1b6248 1281static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1282 unsigned long node, unsigned long pfn)
1da177e4 1283{
348f8b6c
DH
1284 set_page_zone(page, zone);
1285 set_page_node(page, node);
9127ab4f 1286#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1287 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1288#endif
1da177e4
LT
1289}
1290
0610c25d
GT
1291#ifdef CONFIG_MEMCG
1292static inline struct mem_cgroup *page_memcg(struct page *page)
1293{
1294 return page->mem_cgroup;
1295}
55779ec7
JW
1296static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1297{
1298 WARN_ON_ONCE(!rcu_read_lock_held());
1299 return READ_ONCE(page->mem_cgroup);
1300}
0610c25d
GT
1301#else
1302static inline struct mem_cgroup *page_memcg(struct page *page)
1303{
1304 return NULL;
1305}
55779ec7
JW
1306static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1307{
1308 WARN_ON_ONCE(!rcu_read_lock_held());
1309 return NULL;
1310}
0610c25d
GT
1311#endif
1312
f6ac2354
CL
1313/*
1314 * Some inline functions in vmstat.h depend on page_zone()
1315 */
1316#include <linux/vmstat.h>
1317
33dd4e0e 1318static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1319{
1dff8083 1320 return page_to_virt(page);
1da177e4
LT
1321}
1322
1323#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1324#define HASHED_PAGE_VIRTUAL
1325#endif
1326
1327#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1328static inline void *page_address(const struct page *page)
1329{
1330 return page->virtual;
1331}
1332static inline void set_page_address(struct page *page, void *address)
1333{
1334 page->virtual = address;
1335}
1da177e4
LT
1336#define page_address_init() do { } while(0)
1337#endif
1338
1339#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1340void *page_address(const struct page *page);
1da177e4
LT
1341void set_page_address(struct page *page, void *virtual);
1342void page_address_init(void);
1343#endif
1344
1345#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1346#define page_address(page) lowmem_page_address(page)
1347#define set_page_address(page, address) do { } while(0)
1348#define page_address_init() do { } while(0)
1349#endif
1350
e39155ea
KS
1351extern void *page_rmapping(struct page *page);
1352extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1353extern struct address_space *page_mapping(struct page *page);
1da177e4 1354
f981c595
MG
1355extern struct address_space *__page_file_mapping(struct page *);
1356
1357static inline
1358struct address_space *page_file_mapping(struct page *page)
1359{
1360 if (unlikely(PageSwapCache(page)))
1361 return __page_file_mapping(page);
1362
1363 return page->mapping;
1364}
1365
f6ab1f7f
HY
1366extern pgoff_t __page_file_index(struct page *page);
1367
1da177e4
LT
1368/*
1369 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1370 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1371 */
1372static inline pgoff_t page_index(struct page *page)
1373{
1374 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1375 return __page_file_index(page);
1da177e4
LT
1376 return page->index;
1377}
1378
1aa8aea5 1379bool page_mapped(struct page *page);
bda807d4 1380struct address_space *page_mapping(struct page *page);
cb9f753a 1381struct address_space *page_mapping_file(struct page *page);
1da177e4 1382
2f064f34
MH
1383/*
1384 * Return true only if the page has been allocated with
1385 * ALLOC_NO_WATERMARKS and the low watermark was not
1386 * met implying that the system is under some pressure.
1387 */
1388static inline bool page_is_pfmemalloc(struct page *page)
1389{
1390 /*
1391 * Page index cannot be this large so this must be
1392 * a pfmemalloc page.
1393 */
1394 return page->index == -1UL;
1395}
1396
1397/*
1398 * Only to be called by the page allocator on a freshly allocated
1399 * page.
1400 */
1401static inline void set_page_pfmemalloc(struct page *page)
1402{
1403 page->index = -1UL;
1404}
1405
1406static inline void clear_page_pfmemalloc(struct page *page)
1407{
1408 page->index = 0;
1409}
1410
1c0fe6e3
NP
1411/*
1412 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1413 */
1414extern void pagefault_out_of_memory(void);
1415
1da177e4
LT
1416#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1417
ddd588b5 1418/*
7bf02ea2 1419 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1420 * various contexts.
1421 */
4b59e6c4 1422#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1423
9af744d7 1424extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1425
7f43add4 1426extern bool can_do_mlock(void);
1da177e4
LT
1427extern int user_shm_lock(size_t, struct user_struct *);
1428extern void user_shm_unlock(size_t, struct user_struct *);
1429
1430/*
1431 * Parameter block passed down to zap_pte_range in exceptional cases.
1432 */
1433struct zap_details {
1da177e4
LT
1434 struct address_space *check_mapping; /* Check page->mapping if set */
1435 pgoff_t first_index; /* Lowest page->index to unmap */
1436 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1437};
1438
df6ad698
JG
1439struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1440 pte_t pte, bool with_public_device);
1441#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1442
28093f9f
GS
1443struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1444 pmd_t pmd);
7e675137 1445
27d036e3
LR
1446void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1447 unsigned long size);
14f5ff5d 1448void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1449 unsigned long size);
4f74d2c8
LT
1450void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1451 unsigned long start, unsigned long end);
e6473092
MM
1452
1453/**
1454 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1455 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1456 * this handler should only handle pud_trans_huge() puds.
1457 * the pmd_entry or pte_entry callbacks will be used for
1458 * regular PUDs.
e6473092 1459 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1460 * this handler is required to be able to handle
1461 * pmd_trans_huge() pmds. They may simply choose to
1462 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1463 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1464 * @pte_hole: if set, called for each hole at all levels
5dc37642 1465 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1466 * @test_walk: caller specific callback function to determine whether
f7e2355f 1467 * we walk over the current vma or not. Returning 0
fafaa426
NH
1468 * value means "do page table walk over the current vma,"
1469 * and a negative one means "abort current page table walk
f7e2355f 1470 * right now." 1 means "skip the current vma."
fafaa426
NH
1471 * @mm: mm_struct representing the target process of page table walk
1472 * @vma: vma currently walked (NULL if walking outside vmas)
1473 * @private: private data for callbacks' usage
e6473092 1474 *
fafaa426 1475 * (see the comment on walk_page_range() for more details)
e6473092
MM
1476 */
1477struct mm_walk {
a00cc7d9
MW
1478 int (*pud_entry)(pud_t *pud, unsigned long addr,
1479 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1480 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1481 unsigned long next, struct mm_walk *walk);
1482 int (*pte_entry)(pte_t *pte, unsigned long addr,
1483 unsigned long next, struct mm_walk *walk);
1484 int (*pte_hole)(unsigned long addr, unsigned long next,
1485 struct mm_walk *walk);
1486 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1487 unsigned long addr, unsigned long next,
1488 struct mm_walk *walk);
fafaa426
NH
1489 int (*test_walk)(unsigned long addr, unsigned long next,
1490 struct mm_walk *walk);
2165009b 1491 struct mm_struct *mm;
fafaa426 1492 struct vm_area_struct *vma;
2165009b 1493 void *private;
e6473092
MM
1494};
1495
ac46d4f3
JG
1496struct mmu_notifier_range;
1497
2165009b
DH
1498int walk_page_range(unsigned long addr, unsigned long end,
1499 struct mm_walk *walk);
900fc5f1 1500int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1501void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1502 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1503int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1504 struct vm_area_struct *vma);
09796395 1505int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
1506 struct mmu_notifier_range *range,
1507 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1508int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1509 unsigned long *pfn);
d87fe660 1510int follow_phys(struct vm_area_struct *vma, unsigned long address,
1511 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1512int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1513 void *buf, int len, int write);
1da177e4 1514
7caef267 1515extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1516extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1517void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1518void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1519int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1520int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1521int invalidate_inode_page(struct page *page);
1522
7ee1dd3f 1523#ifdef CONFIG_MMU
2b740303
SJ
1524extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1525 unsigned long address, unsigned int flags);
5c723ba5 1526extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1527 unsigned long address, unsigned int fault_flags,
1528 bool *unlocked);
977fbdcd
MW
1529void unmap_mapping_pages(struct address_space *mapping,
1530 pgoff_t start, pgoff_t nr, bool even_cows);
1531void unmap_mapping_range(struct address_space *mapping,
1532 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1533#else
2b740303 1534static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
dcddffd4 1535 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1536{
1537 /* should never happen if there's no MMU */
1538 BUG();
1539 return VM_FAULT_SIGBUS;
1540}
5c723ba5
PZ
1541static inline int fixup_user_fault(struct task_struct *tsk,
1542 struct mm_struct *mm, unsigned long address,
4a9e1cda 1543 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1544{
1545 /* should never happen if there's no MMU */
1546 BUG();
1547 return -EFAULT;
1548}
977fbdcd
MW
1549static inline void unmap_mapping_pages(struct address_space *mapping,
1550 pgoff_t start, pgoff_t nr, bool even_cows) { }
1551static inline void unmap_mapping_range(struct address_space *mapping,
1552 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1553#endif
f33ea7f4 1554
977fbdcd
MW
1555static inline void unmap_shared_mapping_range(struct address_space *mapping,
1556 loff_t const holebegin, loff_t const holelen)
1557{
1558 unmap_mapping_range(mapping, holebegin, holelen, 0);
1559}
1560
1561extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1562 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1563extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1564 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1565extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1566 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1567
1e987790
DH
1568long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1569 unsigned long start, unsigned long nr_pages,
9beae1ea 1570 unsigned int gup_flags, struct page **pages,
5b56d49f 1571 struct vm_area_struct **vmas, int *locked);
c12d2da5 1572long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1573 unsigned int gup_flags, struct page **pages,
cde70140 1574 struct vm_area_struct **vmas);
c12d2da5 1575long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1576 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1577long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1578 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1579
73b0140b
IW
1580int get_user_pages_fast(unsigned long start, int nr_pages,
1581 unsigned int gup_flags, struct page **pages);
8025e5dd
JK
1582
1583/* Container for pinned pfns / pages */
1584struct frame_vector {
1585 unsigned int nr_allocated; /* Number of frames we have space for */
1586 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1587 bool got_ref; /* Did we pin pages by getting page ref? */
1588 bool is_pfns; /* Does array contain pages or pfns? */
1589 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1590 * pfns_vector_pages() or pfns_vector_pfns()
1591 * for access */
1592};
1593
1594struct frame_vector *frame_vector_create(unsigned int nr_frames);
1595void frame_vector_destroy(struct frame_vector *vec);
1596int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1597 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1598void put_vaddr_frames(struct frame_vector *vec);
1599int frame_vector_to_pages(struct frame_vector *vec);
1600void frame_vector_to_pfns(struct frame_vector *vec);
1601
1602static inline unsigned int frame_vector_count(struct frame_vector *vec)
1603{
1604 return vec->nr_frames;
1605}
1606
1607static inline struct page **frame_vector_pages(struct frame_vector *vec)
1608{
1609 if (vec->is_pfns) {
1610 int err = frame_vector_to_pages(vec);
1611
1612 if (err)
1613 return ERR_PTR(err);
1614 }
1615 return (struct page **)(vec->ptrs);
1616}
1617
1618static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1619{
1620 if (!vec->is_pfns)
1621 frame_vector_to_pfns(vec);
1622 return (unsigned long *)(vec->ptrs);
1623}
1624
18022c5d
MG
1625struct kvec;
1626int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1627 struct page **pages);
1628int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1629struct page *get_dump_page(unsigned long addr);
1da177e4 1630
cf9a2ae8 1631extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1632extern void do_invalidatepage(struct page *page, unsigned int offset,
1633 unsigned int length);
cf9a2ae8 1634
f82b3764 1635void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1636int __set_page_dirty_nobuffers(struct page *page);
76719325 1637int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1638int redirty_page_for_writepage(struct writeback_control *wbc,
1639 struct page *page);
62cccb8c 1640void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1641void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1642 struct bdi_writeback *wb);
b3c97528 1643int set_page_dirty(struct page *page);
1da177e4 1644int set_page_dirty_lock(struct page *page);
736304f3
JK
1645void __cancel_dirty_page(struct page *page);
1646static inline void cancel_dirty_page(struct page *page)
1647{
1648 /* Avoid atomic ops, locking, etc. when not actually needed. */
1649 if (PageDirty(page))
1650 __cancel_dirty_page(page);
1651}
1da177e4 1652int clear_page_dirty_for_io(struct page *page);
b9ea2515 1653
a9090253 1654int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1655
b5330628
ON
1656static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1657{
1658 return !vma->vm_ops;
1659}
1660
b0506e48
MR
1661#ifdef CONFIG_SHMEM
1662/*
1663 * The vma_is_shmem is not inline because it is used only by slow
1664 * paths in userfault.
1665 */
1666bool vma_is_shmem(struct vm_area_struct *vma);
1667#else
1668static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1669#endif
1670
d17af505 1671int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1672
b6a2fea3
OW
1673extern unsigned long move_page_tables(struct vm_area_struct *vma,
1674 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1675 unsigned long new_addr, unsigned long len,
1676 bool need_rmap_locks);
7da4d641
PZ
1677extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1678 unsigned long end, pgprot_t newprot,
4b10e7d5 1679 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1680extern int mprotect_fixup(struct vm_area_struct *vma,
1681 struct vm_area_struct **pprev, unsigned long start,
1682 unsigned long end, unsigned long newflags);
1da177e4 1683
465a454f
PZ
1684/*
1685 * doesn't attempt to fault and will return short.
1686 */
1687int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1688 struct page **pages);
d559db08
KH
1689/*
1690 * per-process(per-mm_struct) statistics.
1691 */
d559db08
KH
1692static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1693{
69c97823
KK
1694 long val = atomic_long_read(&mm->rss_stat.count[member]);
1695
1696#ifdef SPLIT_RSS_COUNTING
1697 /*
1698 * counter is updated in asynchronous manner and may go to minus.
1699 * But it's never be expected number for users.
1700 */
1701 if (val < 0)
1702 val = 0;
172703b0 1703#endif
69c97823
KK
1704 return (unsigned long)val;
1705}
d559db08
KH
1706
1707static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1708{
172703b0 1709 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1710}
1711
1712static inline void inc_mm_counter(struct mm_struct *mm, int member)
1713{
172703b0 1714 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1715}
1716
1717static inline void dec_mm_counter(struct mm_struct *mm, int member)
1718{
172703b0 1719 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1720}
1721
eca56ff9
JM
1722/* Optimized variant when page is already known not to be PageAnon */
1723static inline int mm_counter_file(struct page *page)
1724{
1725 if (PageSwapBacked(page))
1726 return MM_SHMEMPAGES;
1727 return MM_FILEPAGES;
1728}
1729
1730static inline int mm_counter(struct page *page)
1731{
1732 if (PageAnon(page))
1733 return MM_ANONPAGES;
1734 return mm_counter_file(page);
1735}
1736
d559db08
KH
1737static inline unsigned long get_mm_rss(struct mm_struct *mm)
1738{
1739 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1740 get_mm_counter(mm, MM_ANONPAGES) +
1741 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1742}
1743
1744static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1745{
1746 return max(mm->hiwater_rss, get_mm_rss(mm));
1747}
1748
1749static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1750{
1751 return max(mm->hiwater_vm, mm->total_vm);
1752}
1753
1754static inline void update_hiwater_rss(struct mm_struct *mm)
1755{
1756 unsigned long _rss = get_mm_rss(mm);
1757
1758 if ((mm)->hiwater_rss < _rss)
1759 (mm)->hiwater_rss = _rss;
1760}
1761
1762static inline void update_hiwater_vm(struct mm_struct *mm)
1763{
1764 if (mm->hiwater_vm < mm->total_vm)
1765 mm->hiwater_vm = mm->total_vm;
1766}
1767
695f0559
PC
1768static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1769{
1770 mm->hiwater_rss = get_mm_rss(mm);
1771}
1772
d559db08
KH
1773static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1774 struct mm_struct *mm)
1775{
1776 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1777
1778 if (*maxrss < hiwater_rss)
1779 *maxrss = hiwater_rss;
1780}
1781
53bddb4e 1782#if defined(SPLIT_RSS_COUNTING)
05af2e10 1783void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1784#else
05af2e10 1785static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1786{
1787}
1788#endif
465a454f 1789
3565fce3
DW
1790#ifndef __HAVE_ARCH_PTE_DEVMAP
1791static inline int pte_devmap(pte_t pte)
1792{
1793 return 0;
1794}
1795#endif
1796
6d2329f8 1797int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1798
25ca1d6c
NK
1799extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1800 spinlock_t **ptl);
1801static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1802 spinlock_t **ptl)
1803{
1804 pte_t *ptep;
1805 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1806 return ptep;
1807}
c9cfcddf 1808
c2febafc
KS
1809#ifdef __PAGETABLE_P4D_FOLDED
1810static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1811 unsigned long address)
1812{
1813 return 0;
1814}
1815#else
1816int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1817#endif
1818
b4e98d9a 1819#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1820static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1821 unsigned long address)
1822{
1823 return 0;
1824}
b4e98d9a
KS
1825static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1826static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1827
5f22df00 1828#else
c2febafc 1829int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1830
b4e98d9a
KS
1831static inline void mm_inc_nr_puds(struct mm_struct *mm)
1832{
6d212db1
MS
1833 if (mm_pud_folded(mm))
1834 return;
af5b0f6a 1835 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1836}
1837
1838static inline void mm_dec_nr_puds(struct mm_struct *mm)
1839{
6d212db1
MS
1840 if (mm_pud_folded(mm))
1841 return;
af5b0f6a 1842 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1843}
5f22df00
NP
1844#endif
1845
2d2f5119 1846#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1847static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1848 unsigned long address)
1849{
1850 return 0;
1851}
dc6c9a35 1852
dc6c9a35
KS
1853static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1854static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1855
5f22df00 1856#else
1bb3630e 1857int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1858
dc6c9a35
KS
1859static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1860{
6d212db1
MS
1861 if (mm_pmd_folded(mm))
1862 return;
af5b0f6a 1863 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
1864}
1865
1866static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1867{
6d212db1
MS
1868 if (mm_pmd_folded(mm))
1869 return;
af5b0f6a 1870 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 1871}
5f22df00
NP
1872#endif
1873
c4812909 1874#ifdef CONFIG_MMU
af5b0f6a 1875static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 1876{
af5b0f6a 1877 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
1878}
1879
af5b0f6a 1880static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 1881{
af5b0f6a 1882 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
1883}
1884
1885static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1886{
af5b0f6a 1887 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1888}
1889
1890static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1891{
af5b0f6a 1892 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1893}
1894#else
c4812909 1895
af5b0f6a
KS
1896static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1897static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
1898{
1899 return 0;
1900}
1901
1902static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1903static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1904#endif
1905
4cf58924
JFG
1906int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1907int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 1908
1da177e4
LT
1909/*
1910 * The following ifdef needed to get the 4level-fixup.h header to work.
1911 * Remove it when 4level-fixup.h has been removed.
1912 */
1bb3630e 1913#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1914
1915#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1916static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1917 unsigned long address)
1918{
1919 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1920 NULL : p4d_offset(pgd, address);
1921}
1922
1923static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1924 unsigned long address)
1da177e4 1925{
c2febafc
KS
1926 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1927 NULL : pud_offset(p4d, address);
1da177e4 1928}
505a60e2 1929#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1930
1931static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1932{
1bb3630e
HD
1933 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1934 NULL: pmd_offset(pud, address);
1da177e4 1935}
1bb3630e
HD
1936#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1937
57c1ffce 1938#if USE_SPLIT_PTE_PTLOCKS
597d795a 1939#if ALLOC_SPLIT_PTLOCKS
b35f1819 1940void __init ptlock_cache_init(void);
539edb58
PZ
1941extern bool ptlock_alloc(struct page *page);
1942extern void ptlock_free(struct page *page);
1943
1944static inline spinlock_t *ptlock_ptr(struct page *page)
1945{
1946 return page->ptl;
1947}
597d795a 1948#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1949static inline void ptlock_cache_init(void)
1950{
1951}
1952
49076ec2
KS
1953static inline bool ptlock_alloc(struct page *page)
1954{
49076ec2
KS
1955 return true;
1956}
539edb58 1957
49076ec2
KS
1958static inline void ptlock_free(struct page *page)
1959{
49076ec2
KS
1960}
1961
1962static inline spinlock_t *ptlock_ptr(struct page *page)
1963{
539edb58 1964 return &page->ptl;
49076ec2 1965}
597d795a 1966#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1967
1968static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1969{
1970 return ptlock_ptr(pmd_page(*pmd));
1971}
1972
1973static inline bool ptlock_init(struct page *page)
1974{
1975 /*
1976 * prep_new_page() initialize page->private (and therefore page->ptl)
1977 * with 0. Make sure nobody took it in use in between.
1978 *
1979 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1980 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1981 */
309381fe 1982 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1983 if (!ptlock_alloc(page))
1984 return false;
1985 spin_lock_init(ptlock_ptr(page));
1986 return true;
1987}
1988
57c1ffce 1989#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1990/*
1991 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1992 */
49076ec2
KS
1993static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1994{
1995 return &mm->page_table_lock;
1996}
b35f1819 1997static inline void ptlock_cache_init(void) {}
49076ec2 1998static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 1999static inline void ptlock_free(struct page *page) {}
57c1ffce 2000#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2001
b35f1819
KS
2002static inline void pgtable_init(void)
2003{
2004 ptlock_cache_init();
2005 pgtable_cache_init();
2006}
2007
390f44e2 2008static inline bool pgtable_page_ctor(struct page *page)
2f569afd 2009{
706874e9
VD
2010 if (!ptlock_init(page))
2011 return false;
1d40a5ea 2012 __SetPageTable(page);
2f569afd 2013 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 2014 return true;
2f569afd
MS
2015}
2016
2017static inline void pgtable_page_dtor(struct page *page)
2018{
9e247bab 2019 ptlock_free(page);
1d40a5ea 2020 __ClearPageTable(page);
2f569afd
MS
2021 dec_zone_page_state(page, NR_PAGETABLE);
2022}
2023
c74df32c
HD
2024#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2025({ \
4c21e2f2 2026 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2027 pte_t *__pte = pte_offset_map(pmd, address); \
2028 *(ptlp) = __ptl; \
2029 spin_lock(__ptl); \
2030 __pte; \
2031})
2032
2033#define pte_unmap_unlock(pte, ptl) do { \
2034 spin_unlock(ptl); \
2035 pte_unmap(pte); \
2036} while (0)
2037
4cf58924 2038#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2039
2040#define pte_alloc_map(mm, pmd, address) \
4cf58924 2041 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2042
c74df32c 2043#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2044 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2045 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2046
1bb3630e 2047#define pte_alloc_kernel(pmd, address) \
4cf58924 2048 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2049 NULL: pte_offset_kernel(pmd, address))
1da177e4 2050
e009bb30
KS
2051#if USE_SPLIT_PMD_PTLOCKS
2052
634391ac
MS
2053static struct page *pmd_to_page(pmd_t *pmd)
2054{
2055 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2056 return virt_to_page((void *)((unsigned long) pmd & mask));
2057}
2058
e009bb30
KS
2059static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2060{
634391ac 2061 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2062}
2063
2064static inline bool pgtable_pmd_page_ctor(struct page *page)
2065{
e009bb30
KS
2066#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2067 page->pmd_huge_pte = NULL;
2068#endif
49076ec2 2069 return ptlock_init(page);
e009bb30
KS
2070}
2071
2072static inline void pgtable_pmd_page_dtor(struct page *page)
2073{
2074#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2075 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2076#endif
49076ec2 2077 ptlock_free(page);
e009bb30
KS
2078}
2079
634391ac 2080#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2081
2082#else
2083
9a86cb7b
KS
2084static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2085{
2086 return &mm->page_table_lock;
2087}
2088
e009bb30
KS
2089static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2090static inline void pgtable_pmd_page_dtor(struct page *page) {}
2091
c389a250 2092#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2093
e009bb30
KS
2094#endif
2095
9a86cb7b
KS
2096static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2097{
2098 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2099 spin_lock(ptl);
2100 return ptl;
2101}
2102
a00cc7d9
MW
2103/*
2104 * No scalability reason to split PUD locks yet, but follow the same pattern
2105 * as the PMD locks to make it easier if we decide to. The VM should not be
2106 * considered ready to switch to split PUD locks yet; there may be places
2107 * which need to be converted from page_table_lock.
2108 */
2109static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2110{
2111 return &mm->page_table_lock;
2112}
2113
2114static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2115{
2116 spinlock_t *ptl = pud_lockptr(mm, pud);
2117
2118 spin_lock(ptl);
2119 return ptl;
2120}
62906027 2121
a00cc7d9 2122extern void __init pagecache_init(void);
1da177e4 2123extern void free_area_init(unsigned long * zones_size);
03e85f9d 2124extern void __init free_area_init_node(int nid, unsigned long * zones_size,
9109fb7b 2125 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
2126extern void free_initmem(void);
2127
69afade7
JL
2128/*
2129 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2130 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2131 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2132 * Return pages freed into the buddy system.
2133 */
11199692 2134extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2135 int poison, const char *s);
c3d5f5f0 2136
cfa11e08
JL
2137#ifdef CONFIG_HIGHMEM
2138/*
2139 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2140 * and totalram_pages.
2141 */
2142extern void free_highmem_page(struct page *page);
2143#endif
69afade7 2144
c3d5f5f0 2145extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2146extern void mem_init_print_info(const char *str);
69afade7 2147
4b50bcc7 2148extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2149
69afade7
JL
2150/* Free the reserved page into the buddy system, so it gets managed. */
2151static inline void __free_reserved_page(struct page *page)
2152{
2153 ClearPageReserved(page);
2154 init_page_count(page);
2155 __free_page(page);
2156}
2157
2158static inline void free_reserved_page(struct page *page)
2159{
2160 __free_reserved_page(page);
2161 adjust_managed_page_count(page, 1);
2162}
2163
2164static inline void mark_page_reserved(struct page *page)
2165{
2166 SetPageReserved(page);
2167 adjust_managed_page_count(page, -1);
2168}
2169
2170/*
2171 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2172 * The freed pages will be poisoned with pattern "poison" if it's within
2173 * range [0, UCHAR_MAX].
2174 * Return pages freed into the buddy system.
69afade7
JL
2175 */
2176static inline unsigned long free_initmem_default(int poison)
2177{
2178 extern char __init_begin[], __init_end[];
2179
11199692 2180 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2181 poison, "unused kernel");
2182}
2183
7ee3d4e8
JL
2184static inline unsigned long get_num_physpages(void)
2185{
2186 int nid;
2187 unsigned long phys_pages = 0;
2188
2189 for_each_online_node(nid)
2190 phys_pages += node_present_pages(nid);
2191
2192 return phys_pages;
2193}
2194
0ee332c1 2195#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2196/*
0ee332c1 2197 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2198 * zones, allocate the backing mem_map and account for memory holes in a more
2199 * architecture independent manner. This is a substitute for creating the
2200 * zone_sizes[] and zholes_size[] arrays and passing them to
2201 * free_area_init_node()
2202 *
2203 * An architecture is expected to register range of page frames backed by
0ee332c1 2204 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2205 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2206 * usage, an architecture is expected to do something like
2207 *
2208 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2209 * max_highmem_pfn};
2210 * for_each_valid_physical_page_range()
0ee332c1 2211 * memblock_add_node(base, size, nid)
c713216d
MG
2212 * free_area_init_nodes(max_zone_pfns);
2213 *
0ee332c1
TH
2214 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2215 * registered physical page range. Similarly
2216 * sparse_memory_present_with_active_regions() calls memory_present() for
2217 * each range when SPARSEMEM is enabled.
c713216d
MG
2218 *
2219 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2220 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2221 */
2222extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2223unsigned long node_map_pfn_alignment(void);
32996250
YL
2224unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2225 unsigned long end_pfn);
c713216d
MG
2226extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2227 unsigned long end_pfn);
2228extern void get_pfn_range_for_nid(unsigned int nid,
2229 unsigned long *start_pfn, unsigned long *end_pfn);
2230extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2231extern void free_bootmem_with_active_regions(int nid,
2232 unsigned long max_low_pfn);
2233extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2234
0ee332c1 2235#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2236
0ee332c1 2237#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2238 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2239static inline int __early_pfn_to_nid(unsigned long pfn,
2240 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2241{
2242 return 0;
2243}
2244#else
2245/* please see mm/page_alloc.c */
2246extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2247/* there is a per-arch backend function. */
8a942fde
MG
2248extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2249 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2250#endif
2251
aca52c39 2252#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
a4a3ede2
PT
2253void zero_resv_unavail(void);
2254#else
2255static inline void zero_resv_unavail(void) {}
2256#endif
2257
0e0b864e 2258extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2259extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2260 enum memmap_context, struct vmem_altmap *);
bc75d33f 2261extern void setup_per_zone_wmarks(void);
1b79acc9 2262extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2263extern void mem_init(void);
8feae131 2264extern void __init mmap_init(void);
9af744d7 2265extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2266extern long si_mem_available(void);
1da177e4
LT
2267extern void si_meminfo(struct sysinfo * val);
2268extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2269#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2270extern unsigned long arch_reserved_kernel_pages(void);
2271#endif
1da177e4 2272
a8e99259
MH
2273extern __printf(3, 4)
2274void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2275
e7c8d5c9 2276extern void setup_per_cpu_pageset(void);
e7c8d5c9 2277
112067f0 2278extern void zone_pcp_update(struct zone *zone);
340175b7 2279extern void zone_pcp_reset(struct zone *zone);
112067f0 2280
75f7ad8e
PS
2281/* page_alloc.c */
2282extern int min_free_kbytes;
1c30844d 2283extern int watermark_boost_factor;
795ae7a0 2284extern int watermark_scale_factor;
75f7ad8e 2285
8feae131 2286/* nommu.c */
33e5d769 2287extern atomic_long_t mmap_pages_allocated;
7e660872 2288extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2289
6b2dbba8 2290/* interval_tree.c */
6b2dbba8 2291void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2292 struct rb_root_cached *root);
9826a516
ML
2293void vma_interval_tree_insert_after(struct vm_area_struct *node,
2294 struct vm_area_struct *prev,
f808c13f 2295 struct rb_root_cached *root);
6b2dbba8 2296void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2297 struct rb_root_cached *root);
2298struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2299 unsigned long start, unsigned long last);
2300struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2301 unsigned long start, unsigned long last);
2302
2303#define vma_interval_tree_foreach(vma, root, start, last) \
2304 for (vma = vma_interval_tree_iter_first(root, start, last); \
2305 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2306
bf181b9f 2307void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2308 struct rb_root_cached *root);
bf181b9f 2309void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2310 struct rb_root_cached *root);
2311struct anon_vma_chain *
2312anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2313 unsigned long start, unsigned long last);
bf181b9f
ML
2314struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2315 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2316#ifdef CONFIG_DEBUG_VM_RB
2317void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2318#endif
bf181b9f
ML
2319
2320#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2321 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2322 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2323
1da177e4 2324/* mmap.c */
34b4e4aa 2325extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2326extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2327 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2328 struct vm_area_struct *expand);
2329static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2330 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2331{
2332 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2333}
1da177e4
LT
2334extern struct vm_area_struct *vma_merge(struct mm_struct *,
2335 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2336 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2337 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2338extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2339extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2340 unsigned long addr, int new_below);
2341extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2342 unsigned long addr, int new_below);
1da177e4
LT
2343extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2344extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2345 struct rb_node **, struct rb_node *);
a8fb5618 2346extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2347extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2348 unsigned long addr, unsigned long len, pgoff_t pgoff,
2349 bool *need_rmap_locks);
1da177e4 2350extern void exit_mmap(struct mm_struct *);
925d1c40 2351
9c599024
CG
2352static inline int check_data_rlimit(unsigned long rlim,
2353 unsigned long new,
2354 unsigned long start,
2355 unsigned long end_data,
2356 unsigned long start_data)
2357{
2358 if (rlim < RLIM_INFINITY) {
2359 if (((new - start) + (end_data - start_data)) > rlim)
2360 return -ENOSPC;
2361 }
2362
2363 return 0;
2364}
2365
7906d00c
AA
2366extern int mm_take_all_locks(struct mm_struct *mm);
2367extern void mm_drop_all_locks(struct mm_struct *mm);
2368
38646013
JS
2369extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2370extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2371extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2372
84638335
KK
2373extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2374extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2375
2eefd878
DS
2376extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2377 const struct vm_special_mapping *sm);
3935ed6a
SS
2378extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2379 unsigned long addr, unsigned long len,
a62c34bd
AL
2380 unsigned long flags,
2381 const struct vm_special_mapping *spec);
2382/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2383extern int install_special_mapping(struct mm_struct *mm,
2384 unsigned long addr, unsigned long len,
2385 unsigned long flags, struct page **pages);
1da177e4
LT
2386
2387extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2388
0165ab44 2389extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2390 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2391 struct list_head *uf);
1fcfd8db 2392extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2393 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2394 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2395 struct list_head *uf);
85a06835
YS
2396extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2397 struct list_head *uf, bool downgrade);
897ab3e0
MR
2398extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2399 struct list_head *uf);
1da177e4 2400
1fcfd8db
ON
2401static inline unsigned long
2402do_mmap_pgoff(struct file *file, unsigned long addr,
2403 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2404 unsigned long pgoff, unsigned long *populate,
2405 struct list_head *uf)
1fcfd8db 2406{
897ab3e0 2407 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2408}
2409
bebeb3d6
ML
2410#ifdef CONFIG_MMU
2411extern int __mm_populate(unsigned long addr, unsigned long len,
2412 int ignore_errors);
2413static inline void mm_populate(unsigned long addr, unsigned long len)
2414{
2415 /* Ignore errors */
2416 (void) __mm_populate(addr, len, 1);
2417}
2418#else
2419static inline void mm_populate(unsigned long addr, unsigned long len) {}
2420#endif
2421
e4eb1ff6 2422/* These take the mm semaphore themselves */
5d22fc25 2423extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2424extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2425extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2426extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2427 unsigned long, unsigned long,
2428 unsigned long, unsigned long);
1da177e4 2429
db4fbfb9
ML
2430struct vm_unmapped_area_info {
2431#define VM_UNMAPPED_AREA_TOPDOWN 1
2432 unsigned long flags;
2433 unsigned long length;
2434 unsigned long low_limit;
2435 unsigned long high_limit;
2436 unsigned long align_mask;
2437 unsigned long align_offset;
2438};
2439
2440extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2441extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2442
2443/*
2444 * Search for an unmapped address range.
2445 *
2446 * We are looking for a range that:
2447 * - does not intersect with any VMA;
2448 * - is contained within the [low_limit, high_limit) interval;
2449 * - is at least the desired size.
2450 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2451 */
2452static inline unsigned long
2453vm_unmapped_area(struct vm_unmapped_area_info *info)
2454{
cdd7875e 2455 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2456 return unmapped_area_topdown(info);
cdd7875e
BP
2457 else
2458 return unmapped_area(info);
db4fbfb9
ML
2459}
2460
85821aab 2461/* truncate.c */
1da177e4 2462extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2463extern void truncate_inode_pages_range(struct address_space *,
2464 loff_t lstart, loff_t lend);
91b0abe3 2465extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2466
2467/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2468extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2469extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2470 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2471extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2472
2473/* mm/page-writeback.c */
2b69c828 2474int __must_check write_one_page(struct page *page);
1cf6e7d8 2475void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2476
2477/* readahead.c */
b5420237 2478#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
1da177e4 2479
1da177e4 2480int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2481 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2482
2483void page_cache_sync_readahead(struct address_space *mapping,
2484 struct file_ra_state *ra,
2485 struct file *filp,
2486 pgoff_t offset,
2487 unsigned long size);
2488
2489void page_cache_async_readahead(struct address_space *mapping,
2490 struct file_ra_state *ra,
2491 struct file *filp,
2492 struct page *pg,
2493 pgoff_t offset,
2494 unsigned long size);
2495
1be7107f 2496extern unsigned long stack_guard_gap;
d05f3169 2497/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2498extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2499
2500/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2501extern int expand_downwards(struct vm_area_struct *vma,
2502 unsigned long address);
8ca3eb08 2503#if VM_GROWSUP
46dea3d0 2504extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2505#else
fee7e49d 2506 #define expand_upwards(vma, address) (0)
9ab88515 2507#endif
1da177e4
LT
2508
2509/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2510extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2511extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2512 struct vm_area_struct **pprev);
2513
2514/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2515 NULL if none. Assume start_addr < end_addr. */
2516static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2517{
2518 struct vm_area_struct * vma = find_vma(mm,start_addr);
2519
2520 if (vma && end_addr <= vma->vm_start)
2521 vma = NULL;
2522 return vma;
2523}
2524
1be7107f
HD
2525static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2526{
2527 unsigned long vm_start = vma->vm_start;
2528
2529 if (vma->vm_flags & VM_GROWSDOWN) {
2530 vm_start -= stack_guard_gap;
2531 if (vm_start > vma->vm_start)
2532 vm_start = 0;
2533 }
2534 return vm_start;
2535}
2536
2537static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2538{
2539 unsigned long vm_end = vma->vm_end;
2540
2541 if (vma->vm_flags & VM_GROWSUP) {
2542 vm_end += stack_guard_gap;
2543 if (vm_end < vma->vm_end)
2544 vm_end = -PAGE_SIZE;
2545 }
2546 return vm_end;
2547}
2548
1da177e4
LT
2549static inline unsigned long vma_pages(struct vm_area_struct *vma)
2550{
2551 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2552}
2553
640708a2
PE
2554/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2555static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2556 unsigned long vm_start, unsigned long vm_end)
2557{
2558 struct vm_area_struct *vma = find_vma(mm, vm_start);
2559
2560 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2561 vma = NULL;
2562
2563 return vma;
2564}
2565
017b1660
MK
2566static inline bool range_in_vma(struct vm_area_struct *vma,
2567 unsigned long start, unsigned long end)
2568{
2569 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2570}
2571
bad849b3 2572#ifdef CONFIG_MMU
804af2cf 2573pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2574void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2575#else
2576static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2577{
2578 return __pgprot(0);
2579}
64e45507
PF
2580static inline void vma_set_page_prot(struct vm_area_struct *vma)
2581{
2582 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2583}
bad849b3
DH
2584#endif
2585
5877231f 2586#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2587unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2588 unsigned long start, unsigned long end);
2589#endif
2590
deceb6cd 2591struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2592int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2593 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2594int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
a667d745
SJ
2595int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2596 unsigned long num);
2597int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2598 unsigned long num);
ae2b01f3 2599vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2600 unsigned long pfn);
f5e6d1d5
MW
2601vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2602 unsigned long pfn, pgprot_t pgprot);
5d747637 2603vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2604 pfn_t pfn);
ab77dab4
SJ
2605vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2606 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2607int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2608
1c8f4220
SJ
2609static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2610 unsigned long addr, struct page *page)
2611{
2612 int err = vm_insert_page(vma, addr, page);
2613
2614 if (err == -ENOMEM)
2615 return VM_FAULT_OOM;
2616 if (err < 0 && err != -EBUSY)
2617 return VM_FAULT_SIGBUS;
2618
2619 return VM_FAULT_NOPAGE;
2620}
2621
d97baf94
SJ
2622static inline vm_fault_t vmf_error(int err)
2623{
2624 if (err == -ENOMEM)
2625 return VM_FAULT_OOM;
2626 return VM_FAULT_SIGBUS;
2627}
2628
df06b37f
KB
2629struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2630 unsigned int foll_flags);
240aadee 2631
deceb6cd
HD
2632#define FOLL_WRITE 0x01 /* check pte is writable */
2633#define FOLL_TOUCH 0x02 /* mark page accessed */
2634#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2635#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2636#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2637#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2638 * and return without waiting upon it */
84d33df2 2639#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2640#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2641#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2642#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2643#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2644#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2645#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2646#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2647#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2648#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63
IW
2649#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2650
2651/*
2652 * NOTE on FOLL_LONGTERM:
2653 *
2654 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2655 * period _often_ under userspace control. This is contrasted with
2656 * iov_iter_get_pages() where usages which are transient.
2657 *
2658 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2659 * lifetime enforced by the filesystem and we need guarantees that longterm
2660 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2661 * the filesystem. Ideas for this coordination include revoking the longterm
2662 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2663 * added after the problem with filesystems was found FS DAX VMAs are
2664 * specifically failed. Filesystem pages are still subject to bugs and use of
2665 * FOLL_LONGTERM should be avoided on those pages.
2666 *
2667 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2668 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2669 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2670 * is due to an incompatibility with the FS DAX check and
2671 * FAULT_FLAG_ALLOW_RETRY
2672 *
2673 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2674 * that region. And so CMA attempts to migrate the page before pinning when
2675 * FOLL_LONGTERM is specified.
2676 */
1da177e4 2677
2b740303 2678static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2679{
2680 if (vm_fault & VM_FAULT_OOM)
2681 return -ENOMEM;
2682 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2683 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2684 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2685 return -EFAULT;
2686 return 0;
2687}
2688
2f569afd 2689typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2690 void *data);
2691extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2692 unsigned long size, pte_fn_t fn, void *data);
2693
1da177e4 2694
8823b1db
LA
2695#ifdef CONFIG_PAGE_POISONING
2696extern bool page_poisoning_enabled(void);
2697extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2698#else
2699static inline bool page_poisoning_enabled(void) { return false; }
2700static inline void kernel_poison_pages(struct page *page, int numpages,
2701 int enable) { }
2702#endif
2703
96a2b03f
VB
2704#ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
2705DECLARE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
2706#else
2707DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2708#endif
031bc574
JK
2709
2710static inline bool debug_pagealloc_enabled(void)
2711{
96a2b03f
VB
2712 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2713 return false;
2714
2715 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2716}
2717
d6332692
RE
2718#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2719extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2720
031bc574
JK
2721static inline void
2722kernel_map_pages(struct page *page, int numpages, int enable)
2723{
031bc574
JK
2724 __kernel_map_pages(page, numpages, enable);
2725}
8a235efa
RW
2726#ifdef CONFIG_HIBERNATION
2727extern bool kernel_page_present(struct page *page);
40b44137 2728#endif /* CONFIG_HIBERNATION */
d6332692 2729#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2730static inline void
9858db50 2731kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2732#ifdef CONFIG_HIBERNATION
2733static inline bool kernel_page_present(struct page *page) { return true; }
40b44137 2734#endif /* CONFIG_HIBERNATION */
d6332692 2735#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2736
a6c19dfe 2737#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2738extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2739extern int in_gate_area_no_mm(unsigned long addr);
2740extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2741#else
a6c19dfe
AL
2742static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2743{
2744 return NULL;
2745}
2746static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2747static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2748{
2749 return 0;
2750}
1da177e4
LT
2751#endif /* __HAVE_ARCH_GATE_AREA */
2752
44a70ade
MH
2753extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2754
146732ce
JT
2755#ifdef CONFIG_SYSCTL
2756extern int sysctl_drop_caches;
8d65af78 2757int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2758 void __user *, size_t *, loff_t *);
146732ce
JT
2759#endif
2760
cb731d6c
VD
2761void drop_slab(void);
2762void drop_slab_node(int nid);
9d0243bc 2763
7a9166e3
LY
2764#ifndef CONFIG_MMU
2765#define randomize_va_space 0
2766#else
a62eaf15 2767extern int randomize_va_space;
7a9166e3 2768#endif
a62eaf15 2769
045e72ac 2770const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2771void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2772
35fd1eb1 2773void *sparse_buffer_alloc(unsigned long size);
7b73d978
CH
2774struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2775 struct vmem_altmap *altmap);
29c71111 2776pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2777p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2778pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2779pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2780pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2781void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2782struct vmem_altmap;
a8fc357b
CH
2783void *vmemmap_alloc_block_buf(unsigned long size, int node);
2784void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 2785void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2786int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2787 int node);
7b73d978
CH
2788int vmemmap_populate(unsigned long start, unsigned long end, int node,
2789 struct vmem_altmap *altmap);
c2b91e2e 2790void vmemmap_populate_print_last(void);
0197518c 2791#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2792void vmemmap_free(unsigned long start, unsigned long end,
2793 struct vmem_altmap *altmap);
0197518c 2794#endif
46723bfa 2795void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2796 unsigned long nr_pages);
6a46079c 2797
82ba011b
AK
2798enum mf_flags {
2799 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2800 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2801 MF_MUST_KILL = 1 << 2,
cf870c70 2802 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2803};
83b57531
EB
2804extern int memory_failure(unsigned long pfn, int flags);
2805extern void memory_failure_queue(unsigned long pfn, int flags);
847ce401 2806extern int unpoison_memory(unsigned long pfn);
ead07f6a 2807extern int get_hwpoison_page(struct page *page);
4e41a30c 2808#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2809extern int sysctl_memory_failure_early_kill;
2810extern int sysctl_memory_failure_recovery;
facb6011 2811extern void shake_page(struct page *p, int access);
5844a486 2812extern atomic_long_t num_poisoned_pages __read_mostly;
facb6011 2813extern int soft_offline_page(struct page *page, int flags);
6a46079c 2814
cc637b17
XX
2815
2816/*
2817 * Error handlers for various types of pages.
2818 */
cc3e2af4 2819enum mf_result {
cc637b17
XX
2820 MF_IGNORED, /* Error: cannot be handled */
2821 MF_FAILED, /* Error: handling failed */
2822 MF_DELAYED, /* Will be handled later */
2823 MF_RECOVERED, /* Successfully recovered */
2824};
2825
2826enum mf_action_page_type {
2827 MF_MSG_KERNEL,
2828 MF_MSG_KERNEL_HIGH_ORDER,
2829 MF_MSG_SLAB,
2830 MF_MSG_DIFFERENT_COMPOUND,
2831 MF_MSG_POISONED_HUGE,
2832 MF_MSG_HUGE,
2833 MF_MSG_FREE_HUGE,
31286a84 2834 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
2835 MF_MSG_UNMAP_FAILED,
2836 MF_MSG_DIRTY_SWAPCACHE,
2837 MF_MSG_CLEAN_SWAPCACHE,
2838 MF_MSG_DIRTY_MLOCKED_LRU,
2839 MF_MSG_CLEAN_MLOCKED_LRU,
2840 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2841 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2842 MF_MSG_DIRTY_LRU,
2843 MF_MSG_CLEAN_LRU,
2844 MF_MSG_TRUNCATED_LRU,
2845 MF_MSG_BUDDY,
2846 MF_MSG_BUDDY_2ND,
6100e34b 2847 MF_MSG_DAX,
cc637b17
XX
2848 MF_MSG_UNKNOWN,
2849};
2850
47ad8475
AA
2851#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2852extern void clear_huge_page(struct page *page,
c79b57e4 2853 unsigned long addr_hint,
47ad8475
AA
2854 unsigned int pages_per_huge_page);
2855extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
2856 unsigned long addr_hint,
2857 struct vm_area_struct *vma,
47ad8475 2858 unsigned int pages_per_huge_page);
fa4d75c1
MK
2859extern long copy_huge_page_from_user(struct page *dst_page,
2860 const void __user *usr_src,
810a56b9
MK
2861 unsigned int pages_per_huge_page,
2862 bool allow_pagefault);
47ad8475
AA
2863#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2864
e30825f1 2865extern struct page_ext_operations debug_guardpage_ops;
e30825f1 2866
c0a32fc5
SG
2867#ifdef CONFIG_DEBUG_PAGEALLOC
2868extern unsigned int _debug_guardpage_minorder;
96a2b03f 2869DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
2870
2871static inline unsigned int debug_guardpage_minorder(void)
2872{
2873 return _debug_guardpage_minorder;
2874}
2875
e30825f1
JK
2876static inline bool debug_guardpage_enabled(void)
2877{
96a2b03f 2878 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
2879}
2880
c0a32fc5
SG
2881static inline bool page_is_guard(struct page *page)
2882{
e30825f1
JK
2883 struct page_ext *page_ext;
2884
2885 if (!debug_guardpage_enabled())
2886 return false;
2887
2888 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2889 if (unlikely(!page_ext))
2890 return false;
2891
e30825f1 2892 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2893}
2894#else
2895static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2896static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2897static inline bool page_is_guard(struct page *page) { return false; }
2898#endif /* CONFIG_DEBUG_PAGEALLOC */
2899
f9872caf
CS
2900#if MAX_NUMNODES > 1
2901void __init setup_nr_node_ids(void);
2902#else
2903static inline void setup_nr_node_ids(void) {}
2904#endif
2905
1da177e4
LT
2906#endif /* __KERNEL__ */
2907#endif /* _LINUX_MM_H */