mm: remove references to vm_insert_pfn()
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
3b3b1a29 28#include <linux/overflow.h>
1da177e4
LT
29
30struct mempolicy;
31struct anon_vma;
bf181b9f 32struct anon_vma_chain;
4e950f6f 33struct file_ra_state;
e8edc6e0 34struct user_struct;
4e950f6f 35struct writeback_control;
682aa8e1 36struct bdi_writeback;
1da177e4 37
597b7305
MH
38void init_mm_internals(void);
39
fccc9987 40#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 41extern unsigned long max_mapnr;
fccc9987
JL
42
43static inline void set_max_mapnr(unsigned long limit)
44{
45 max_mapnr = limit;
46}
47#else
48static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
49#endif
50
4481374c 51extern unsigned long totalram_pages;
1da177e4 52extern void * high_memory;
1da177e4
LT
53extern int page_cluster;
54
55#ifdef CONFIG_SYSCTL
56extern int sysctl_legacy_va_layout;
57#else
58#define sysctl_legacy_va_layout 0
59#endif
60
d07e2259
DC
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62extern const int mmap_rnd_bits_min;
63extern const int mmap_rnd_bits_max;
64extern int mmap_rnd_bits __read_mostly;
65#endif
66#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67extern const int mmap_rnd_compat_bits_min;
68extern const int mmap_rnd_compat_bits_max;
69extern int mmap_rnd_compat_bits __read_mostly;
70#endif
71
1da177e4
LT
72#include <asm/page.h>
73#include <asm/pgtable.h>
74#include <asm/processor.h>
1da177e4 75
79442ed1
TC
76#ifndef __pa_symbol
77#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
78#endif
79
1dff8083
AB
80#ifndef page_to_virt
81#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
82#endif
83
568c5fe5
LA
84#ifndef lm_alias
85#define lm_alias(x) __va(__pa_symbol(x))
86#endif
87
593befa6
DD
88/*
89 * To prevent common memory management code establishing
90 * a zero page mapping on a read fault.
91 * This macro should be defined within <asm/pgtable.h>.
92 * s390 does this to prevent multiplexing of hardware bits
93 * related to the physical page in case of virtualization.
94 */
95#ifndef mm_forbids_zeropage
96#define mm_forbids_zeropage(X) (0)
97#endif
98
a4a3ede2
PT
99/*
100 * On some architectures it is expensive to call memset() for small sizes.
101 * Those architectures should provide their own implementation of "struct page"
102 * zeroing by defining this macro in <asm/pgtable.h>.
103 */
104#ifndef mm_zero_struct_page
105#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
106#endif
107
ea606cf5
AR
108/*
109 * Default maximum number of active map areas, this limits the number of vmas
110 * per mm struct. Users can overwrite this number by sysctl but there is a
111 * problem.
112 *
113 * When a program's coredump is generated as ELF format, a section is created
114 * per a vma. In ELF, the number of sections is represented in unsigned short.
115 * This means the number of sections should be smaller than 65535 at coredump.
116 * Because the kernel adds some informative sections to a image of program at
117 * generating coredump, we need some margin. The number of extra sections is
118 * 1-3 now and depends on arch. We use "5" as safe margin, here.
119 *
120 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
121 * not a hard limit any more. Although some userspace tools can be surprised by
122 * that.
123 */
124#define MAPCOUNT_ELF_CORE_MARGIN (5)
125#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
126
127extern int sysctl_max_map_count;
128
c9b1d098 129extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 130extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 131
49f0ce5f
JM
132extern int sysctl_overcommit_memory;
133extern int sysctl_overcommit_ratio;
134extern unsigned long sysctl_overcommit_kbytes;
135
136extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
137 size_t *, loff_t *);
138extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
139 size_t *, loff_t *);
140
1da177e4
LT
141#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
142
27ac792c
AR
143/* to align the pointer to the (next) page boundary */
144#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
145
0fa73b86 146/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 147#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 148
1da177e4
LT
149/*
150 * Linux kernel virtual memory manager primitives.
151 * The idea being to have a "virtual" mm in the same way
152 * we have a virtual fs - giving a cleaner interface to the
153 * mm details, and allowing different kinds of memory mappings
154 * (from shared memory to executable loading to arbitrary
155 * mmap() functions).
156 */
157
490fc053 158struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
159struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
160void vm_area_free(struct vm_area_struct *);
c43692e8 161
1da177e4 162#ifndef CONFIG_MMU
8feae131
DH
163extern struct rb_root nommu_region_tree;
164extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
165
166extern unsigned int kobjsize(const void *objp);
167#endif
168
169/*
605d9288 170 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 171 * When changing, update also include/trace/events/mmflags.h
1da177e4 172 */
cc2383ec
KK
173#define VM_NONE 0x00000000
174
1da177e4
LT
175#define VM_READ 0x00000001 /* currently active flags */
176#define VM_WRITE 0x00000002
177#define VM_EXEC 0x00000004
178#define VM_SHARED 0x00000008
179
7e2cff42 180/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
181#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
182#define VM_MAYWRITE 0x00000020
183#define VM_MAYEXEC 0x00000040
184#define VM_MAYSHARE 0x00000080
185
186#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 187#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 188#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 189#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 190#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 191
1da177e4
LT
192#define VM_LOCKED 0x00002000
193#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
194
195 /* Used by sys_madvise() */
196#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
197#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
198
199#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
200#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 201#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 202#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 203#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 204#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 205#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 206#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 207#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 208#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 209
d9104d1c
CG
210#ifdef CONFIG_MEM_SOFT_DIRTY
211# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
212#else
213# define VM_SOFTDIRTY 0
214#endif
215
b379d790 216#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
217#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
218#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 219#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 220
63c17fb8
DH
221#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
222#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
223#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
224#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
225#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 226#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
227#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
228#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
229#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
230#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 231#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
232#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
233
5212213a 234#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
235# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
236# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 237# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
238# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
239# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
240#ifdef CONFIG_PPC
241# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
242#else
243# define VM_PKEY_BIT4 0
8f62c883 244#endif
5212213a
RP
245#endif /* CONFIG_ARCH_HAS_PKEYS */
246
247#if defined(CONFIG_X86)
248# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
cc2383ec
KK
249#elif defined(CONFIG_PPC)
250# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
251#elif defined(CONFIG_PARISC)
252# define VM_GROWSUP VM_ARCH_1
253#elif defined(CONFIG_IA64)
254# define VM_GROWSUP VM_ARCH_1
74a04967
KA
255#elif defined(CONFIG_SPARC64)
256# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
257# define VM_ARCH_CLEAR VM_SPARC_ADI
cc2383ec
KK
258#elif !defined(CONFIG_MMU)
259# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
260#endif
261
df3735c5 262#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 263/* MPX specific bounds table or bounds directory */
fa87b91c 264# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
265#else
266# define VM_MPX VM_NONE
4aae7e43
QR
267#endif
268
cc2383ec
KK
269#ifndef VM_GROWSUP
270# define VM_GROWSUP VM_NONE
271#endif
272
a8bef8ff
MG
273/* Bits set in the VMA until the stack is in its final location */
274#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
275
1da177e4
LT
276#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
277#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
278#endif
279
280#ifdef CONFIG_STACK_GROWSUP
30bdbb78 281#define VM_STACK VM_GROWSUP
1da177e4 282#else
30bdbb78 283#define VM_STACK VM_GROWSDOWN
1da177e4
LT
284#endif
285
30bdbb78
KK
286#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
287
b291f000 288/*
78f11a25
AA
289 * Special vmas that are non-mergable, non-mlock()able.
290 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 291 */
9050d7eb 292#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 293
a0715cc2
AT
294/* This mask defines which mm->def_flags a process can inherit its parent */
295#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
296
de60f5f1
EM
297/* This mask is used to clear all the VMA flags used by mlock */
298#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
299
2c2d57b5
KA
300/* Arch-specific flags to clear when updating VM flags on protection change */
301#ifndef VM_ARCH_CLEAR
302# define VM_ARCH_CLEAR VM_NONE
303#endif
304#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
305
1da177e4
LT
306/*
307 * mapping from the currently active vm_flags protection bits (the
308 * low four bits) to a page protection mask..
309 */
310extern pgprot_t protection_map[16];
311
d0217ac0 312#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
313#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
314#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
315#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
316#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
317#define FAULT_FLAG_TRIED 0x20 /* Second try */
318#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 319#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 320#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 321
282a8e03
RZ
322#define FAULT_FLAG_TRACE \
323 { FAULT_FLAG_WRITE, "WRITE" }, \
324 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
325 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
326 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
327 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
328 { FAULT_FLAG_TRIED, "TRIED" }, \
329 { FAULT_FLAG_USER, "USER" }, \
330 { FAULT_FLAG_REMOTE, "REMOTE" }, \
331 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
332
54cb8821 333/*
d0217ac0 334 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
335 * ->fault function. The vma's ->fault is responsible for returning a bitmask
336 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 337 *
c20cd45e
MH
338 * MM layer fills up gfp_mask for page allocations but fault handler might
339 * alter it if its implementation requires a different allocation context.
340 *
9b4bdd2f 341 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 342 */
d0217ac0 343struct vm_fault {
82b0f8c3 344 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 345 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 346 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 347 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 348 unsigned long address; /* Faulting virtual address */
82b0f8c3 349 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 350 * the 'address' */
a2d58167
DJ
351 pud_t *pud; /* Pointer to pud entry matching
352 * the 'address'
353 */
2994302b 354 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 355
3917048d
JK
356 struct page *cow_page; /* Page handler may use for COW fault */
357 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 358 struct page *page; /* ->fault handlers should return a
83c54070 359 * page here, unless VM_FAULT_NOPAGE
d0217ac0 360 * is set (which is also implied by
83c54070 361 * VM_FAULT_ERROR).
d0217ac0 362 */
82b0f8c3 363 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
364 pte_t *pte; /* Pointer to pte entry matching
365 * the 'address'. NULL if the page
366 * table hasn't been allocated.
367 */
368 spinlock_t *ptl; /* Page table lock.
369 * Protects pte page table if 'pte'
370 * is not NULL, otherwise pmd.
371 */
7267ec00
KS
372 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
373 * vm_ops->map_pages() calls
374 * alloc_set_pte() from atomic context.
375 * do_fault_around() pre-allocates
376 * page table to avoid allocation from
377 * atomic context.
378 */
54cb8821 379};
1da177e4 380
c791ace1
DJ
381/* page entry size for vm->huge_fault() */
382enum page_entry_size {
383 PE_SIZE_PTE = 0,
384 PE_SIZE_PMD,
385 PE_SIZE_PUD,
386};
387
1da177e4
LT
388/*
389 * These are the virtual MM functions - opening of an area, closing and
390 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 391 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
392 */
393struct vm_operations_struct {
394 void (*open)(struct vm_area_struct * area);
395 void (*close)(struct vm_area_struct * area);
31383c68 396 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 397 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
398 vm_fault_t (*fault)(struct vm_fault *vmf);
399 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
400 enum page_entry_size pe_size);
82b0f8c3 401 void (*map_pages)(struct vm_fault *vmf,
bae473a4 402 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 403 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
404
405 /* notification that a previously read-only page is about to become
406 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 407 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 408
dd906184 409 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 410 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 411
28b2ee20
RR
412 /* called by access_process_vm when get_user_pages() fails, typically
413 * for use by special VMAs that can switch between memory and hardware
414 */
415 int (*access)(struct vm_area_struct *vma, unsigned long addr,
416 void *buf, int len, int write);
78d683e8
AL
417
418 /* Called by the /proc/PID/maps code to ask the vma whether it
419 * has a special name. Returning non-NULL will also cause this
420 * vma to be dumped unconditionally. */
421 const char *(*name)(struct vm_area_struct *vma);
422
1da177e4 423#ifdef CONFIG_NUMA
a6020ed7
LS
424 /*
425 * set_policy() op must add a reference to any non-NULL @new mempolicy
426 * to hold the policy upon return. Caller should pass NULL @new to
427 * remove a policy and fall back to surrounding context--i.e. do not
428 * install a MPOL_DEFAULT policy, nor the task or system default
429 * mempolicy.
430 */
1da177e4 431 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
432
433 /*
434 * get_policy() op must add reference [mpol_get()] to any policy at
435 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
436 * in mm/mempolicy.c will do this automatically.
437 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
438 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
439 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
440 * must return NULL--i.e., do not "fallback" to task or system default
441 * policy.
442 */
1da177e4
LT
443 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
444 unsigned long addr);
445#endif
667a0a06
DV
446 /*
447 * Called by vm_normal_page() for special PTEs to find the
448 * page for @addr. This is useful if the default behavior
449 * (using pte_page()) would not find the correct page.
450 */
451 struct page *(*find_special_page)(struct vm_area_struct *vma,
452 unsigned long addr);
1da177e4
LT
453};
454
027232da
KS
455static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
456{
bfd40eaf
KS
457 static const struct vm_operations_struct dummy_vm_ops = {};
458
a670468f 459 memset(vma, 0, sizeof(*vma));
027232da 460 vma->vm_mm = mm;
bfd40eaf 461 vma->vm_ops = &dummy_vm_ops;
027232da
KS
462 INIT_LIST_HEAD(&vma->anon_vma_chain);
463}
464
bfd40eaf
KS
465static inline void vma_set_anonymous(struct vm_area_struct *vma)
466{
467 vma->vm_ops = NULL;
468}
469
8b11ec1b
LT
470/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
471#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
472
1da177e4
LT
473struct mmu_gather;
474struct inode;
475
349aef0b
AM
476#define page_private(page) ((page)->private)
477#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 478
5c7fb56e
DW
479#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
480static inline int pmd_devmap(pmd_t pmd)
481{
482 return 0;
483}
a00cc7d9
MW
484static inline int pud_devmap(pud_t pud)
485{
486 return 0;
487}
b59f65fa
KS
488static inline int pgd_devmap(pgd_t pgd)
489{
490 return 0;
491}
5c7fb56e
DW
492#endif
493
1da177e4
LT
494/*
495 * FIXME: take this include out, include page-flags.h in
496 * files which need it (119 of them)
497 */
498#include <linux/page-flags.h>
71e3aac0 499#include <linux/huge_mm.h>
1da177e4
LT
500
501/*
502 * Methods to modify the page usage count.
503 *
504 * What counts for a page usage:
505 * - cache mapping (page->mapping)
506 * - private data (page->private)
507 * - page mapped in a task's page tables, each mapping
508 * is counted separately
509 *
510 * Also, many kernel routines increase the page count before a critical
511 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
512 */
513
514/*
da6052f7 515 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 516 */
7c8ee9a8
NP
517static inline int put_page_testzero(struct page *page)
518{
fe896d18
JK
519 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
520 return page_ref_dec_and_test(page);
7c8ee9a8 521}
1da177e4
LT
522
523/*
7c8ee9a8
NP
524 * Try to grab a ref unless the page has a refcount of zero, return false if
525 * that is the case.
8e0861fa
AK
526 * This can be called when MMU is off so it must not access
527 * any of the virtual mappings.
1da177e4 528 */
7c8ee9a8
NP
529static inline int get_page_unless_zero(struct page *page)
530{
fe896d18 531 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 532}
1da177e4 533
53df8fdc 534extern int page_is_ram(unsigned long pfn);
124fe20d
DW
535
536enum {
537 REGION_INTERSECTS,
538 REGION_DISJOINT,
539 REGION_MIXED,
540};
541
1c29f25b
TK
542int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
543 unsigned long desc);
53df8fdc 544
48667e7a 545/* Support for virtually mapped pages */
b3bdda02
CL
546struct page *vmalloc_to_page(const void *addr);
547unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 548
0738c4bb
PM
549/*
550 * Determine if an address is within the vmalloc range
551 *
552 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
553 * is no special casing required.
554 */
bb00a789 555static inline bool is_vmalloc_addr(const void *x)
9e2779fa 556{
0738c4bb 557#ifdef CONFIG_MMU
9e2779fa
CL
558 unsigned long addr = (unsigned long)x;
559
560 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 561#else
bb00a789 562 return false;
8ca3ed87 563#endif
0738c4bb 564}
81ac3ad9
KH
565#ifdef CONFIG_MMU
566extern int is_vmalloc_or_module_addr(const void *x);
567#else
934831d0 568static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
569{
570 return 0;
571}
572#endif
9e2779fa 573
a7c3e901
MH
574extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
575static inline void *kvmalloc(size_t size, gfp_t flags)
576{
577 return kvmalloc_node(size, flags, NUMA_NO_NODE);
578}
579static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
580{
581 return kvmalloc_node(size, flags | __GFP_ZERO, node);
582}
583static inline void *kvzalloc(size_t size, gfp_t flags)
584{
585 return kvmalloc(size, flags | __GFP_ZERO);
586}
587
752ade68
MH
588static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
589{
3b3b1a29
KC
590 size_t bytes;
591
592 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
593 return NULL;
594
3b3b1a29 595 return kvmalloc(bytes, flags);
752ade68
MH
596}
597
1c542f38
KC
598static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
599{
600 return kvmalloc_array(n, size, flags | __GFP_ZERO);
601}
602
39f1f78d
AV
603extern void kvfree(const void *addr);
604
53f9263b
KS
605static inline atomic_t *compound_mapcount_ptr(struct page *page)
606{
607 return &page[1].compound_mapcount;
608}
609
610static inline int compound_mapcount(struct page *page)
611{
5f527c2b 612 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
613 page = compound_head(page);
614 return atomic_read(compound_mapcount_ptr(page)) + 1;
615}
616
70b50f94
AA
617/*
618 * The atomic page->_mapcount, starts from -1: so that transitions
619 * both from it and to it can be tracked, using atomic_inc_and_test
620 * and atomic_add_negative(-1).
621 */
22b751c3 622static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
623{
624 atomic_set(&(page)->_mapcount, -1);
625}
626
b20ce5e0
KS
627int __page_mapcount(struct page *page);
628
70b50f94
AA
629static inline int page_mapcount(struct page *page)
630{
1d148e21 631 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 632
b20ce5e0
KS
633 if (unlikely(PageCompound(page)))
634 return __page_mapcount(page);
635 return atomic_read(&page->_mapcount) + 1;
636}
637
638#ifdef CONFIG_TRANSPARENT_HUGEPAGE
639int total_mapcount(struct page *page);
6d0a07ed 640int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
641#else
642static inline int total_mapcount(struct page *page)
643{
644 return page_mapcount(page);
70b50f94 645}
6d0a07ed
AA
646static inline int page_trans_huge_mapcount(struct page *page,
647 int *total_mapcount)
648{
649 int mapcount = page_mapcount(page);
650 if (total_mapcount)
651 *total_mapcount = mapcount;
652 return mapcount;
653}
b20ce5e0 654#endif
70b50f94 655
b49af68f
CL
656static inline struct page *virt_to_head_page(const void *x)
657{
658 struct page *page = virt_to_page(x);
ccaafd7f 659
1d798ca3 660 return compound_head(page);
b49af68f
CL
661}
662
ddc58f27
KS
663void __put_page(struct page *page);
664
1d7ea732 665void put_pages_list(struct list_head *pages);
1da177e4 666
8dfcc9ba 667void split_page(struct page *page, unsigned int order);
8dfcc9ba 668
33f2ef89
AW
669/*
670 * Compound pages have a destructor function. Provide a
671 * prototype for that function and accessor functions.
f1e61557 672 * These are _only_ valid on the head of a compound page.
33f2ef89 673 */
f1e61557
KS
674typedef void compound_page_dtor(struct page *);
675
676/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
677enum compound_dtor_id {
678 NULL_COMPOUND_DTOR,
679 COMPOUND_PAGE_DTOR,
680#ifdef CONFIG_HUGETLB_PAGE
681 HUGETLB_PAGE_DTOR,
9a982250
KS
682#endif
683#ifdef CONFIG_TRANSPARENT_HUGEPAGE
684 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
685#endif
686 NR_COMPOUND_DTORS,
687};
688extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
689
690static inline void set_compound_page_dtor(struct page *page,
f1e61557 691 enum compound_dtor_id compound_dtor)
33f2ef89 692{
f1e61557
KS
693 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
694 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
695}
696
697static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
698{
f1e61557
KS
699 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
700 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
701}
702
d00181b9 703static inline unsigned int compound_order(struct page *page)
d85f3385 704{
6d777953 705 if (!PageHead(page))
d85f3385 706 return 0;
e4b294c2 707 return page[1].compound_order;
d85f3385
CL
708}
709
f1e61557 710static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 711{
e4b294c2 712 page[1].compound_order = order;
d85f3385
CL
713}
714
9a982250
KS
715void free_compound_page(struct page *page);
716
3dece370 717#ifdef CONFIG_MMU
14fd403f
AA
718/*
719 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
720 * servicing faults for write access. In the normal case, do always want
721 * pte_mkwrite. But get_user_pages can cause write faults for mappings
722 * that do not have writing enabled, when used by access_process_vm.
723 */
724static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
725{
726 if (likely(vma->vm_flags & VM_WRITE))
727 pte = pte_mkwrite(pte);
728 return pte;
729}
8c6e50b0 730
2b740303 731vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 732 struct page *page);
2b740303
SJ
733vm_fault_t finish_fault(struct vm_fault *vmf);
734vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 735#endif
14fd403f 736
1da177e4
LT
737/*
738 * Multiple processes may "see" the same page. E.g. for untouched
739 * mappings of /dev/null, all processes see the same page full of
740 * zeroes, and text pages of executables and shared libraries have
741 * only one copy in memory, at most, normally.
742 *
743 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
744 * page_count() == 0 means the page is free. page->lru is then used for
745 * freelist management in the buddy allocator.
da6052f7 746 * page_count() > 0 means the page has been allocated.
1da177e4 747 *
da6052f7
NP
748 * Pages are allocated by the slab allocator in order to provide memory
749 * to kmalloc and kmem_cache_alloc. In this case, the management of the
750 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
751 * unless a particular usage is carefully commented. (the responsibility of
752 * freeing the kmalloc memory is the caller's, of course).
1da177e4 753 *
da6052f7
NP
754 * A page may be used by anyone else who does a __get_free_page().
755 * In this case, page_count still tracks the references, and should only
756 * be used through the normal accessor functions. The top bits of page->flags
757 * and page->virtual store page management information, but all other fields
758 * are unused and could be used privately, carefully. The management of this
759 * page is the responsibility of the one who allocated it, and those who have
760 * subsequently been given references to it.
761 *
762 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
763 * managed by the Linux memory manager: I/O, buffers, swapping etc.
764 * The following discussion applies only to them.
765 *
da6052f7
NP
766 * A pagecache page contains an opaque `private' member, which belongs to the
767 * page's address_space. Usually, this is the address of a circular list of
768 * the page's disk buffers. PG_private must be set to tell the VM to call
769 * into the filesystem to release these pages.
1da177e4 770 *
da6052f7
NP
771 * A page may belong to an inode's memory mapping. In this case, page->mapping
772 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 773 * in units of PAGE_SIZE.
1da177e4 774 *
da6052f7
NP
775 * If pagecache pages are not associated with an inode, they are said to be
776 * anonymous pages. These may become associated with the swapcache, and in that
777 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 778 *
da6052f7
NP
779 * In either case (swapcache or inode backed), the pagecache itself holds one
780 * reference to the page. Setting PG_private should also increment the
781 * refcount. The each user mapping also has a reference to the page.
1da177e4 782 *
da6052f7 783 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 784 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
785 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
786 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 787 *
da6052f7 788 * All pagecache pages may be subject to I/O:
1da177e4
LT
789 * - inode pages may need to be read from disk,
790 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
791 * to be written back to the inode on disk,
792 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
793 * modified may need to be swapped out to swap space and (later) to be read
794 * back into memory.
1da177e4
LT
795 */
796
797/*
798 * The zone field is never updated after free_area_init_core()
799 * sets it, so none of the operations on it need to be atomic.
1da177e4 800 */
348f8b6c 801
90572890 802/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 803#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
804#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
805#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 806#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 807
348f8b6c 808/*
25985edc 809 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
810 * sections we define the shift as 0; that plus a 0 mask ensures
811 * the compiler will optimise away reference to them.
812 */
d41dee36
AW
813#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
814#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
815#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 816#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 817
bce54bbf
WD
818/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
819#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 820#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
821#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
822 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 823#else
89689ae7 824#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
825#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
826 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
827#endif
828
bd8029b6 829#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 830
9223b419
CL
831#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
832#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
833#endif
834
d41dee36
AW
835#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
836#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
837#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 838#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 839#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 840
33dd4e0e 841static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 842{
348f8b6c 843 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 844}
1da177e4 845
260ae3f7
DW
846#ifdef CONFIG_ZONE_DEVICE
847static inline bool is_zone_device_page(const struct page *page)
848{
849 return page_zonenum(page) == ZONE_DEVICE;
850}
851#else
852static inline bool is_zone_device_page(const struct page *page)
853{
854 return false;
855}
7b2d55d2 856#endif
5042db43 857
e7638488
DW
858#ifdef CONFIG_DEV_PAGEMAP_OPS
859void dev_pagemap_get_ops(void);
860void dev_pagemap_put_ops(void);
861void __put_devmap_managed_page(struct page *page);
862DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
863static inline bool put_devmap_managed_page(struct page *page)
864{
865 if (!static_branch_unlikely(&devmap_managed_key))
866 return false;
867 if (!is_zone_device_page(page))
868 return false;
869 switch (page->pgmap->type) {
870 case MEMORY_DEVICE_PRIVATE:
871 case MEMORY_DEVICE_PUBLIC:
872 case MEMORY_DEVICE_FS_DAX:
873 __put_devmap_managed_page(page);
874 return true;
875 default:
876 break;
877 }
878 return false;
879}
880
881static inline bool is_device_private_page(const struct page *page)
882{
883 return is_zone_device_page(page) &&
884 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
885}
886
887static inline bool is_device_public_page(const struct page *page)
888{
889 return is_zone_device_page(page) &&
890 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
891}
892
52916982
LG
893#ifdef CONFIG_PCI_P2PDMA
894static inline bool is_pci_p2pdma_page(const struct page *page)
895{
896 return is_zone_device_page(page) &&
897 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
898}
899#else /* CONFIG_PCI_P2PDMA */
900static inline bool is_pci_p2pdma_page(const struct page *page)
901{
902 return false;
903}
904#endif /* CONFIG_PCI_P2PDMA */
905
e7638488
DW
906#else /* CONFIG_DEV_PAGEMAP_OPS */
907static inline void dev_pagemap_get_ops(void)
5042db43 908{
5042db43 909}
e7638488
DW
910
911static inline void dev_pagemap_put_ops(void)
912{
913}
914
915static inline bool put_devmap_managed_page(struct page *page)
916{
917 return false;
918}
919
6b368cd4
JG
920static inline bool is_device_private_page(const struct page *page)
921{
922 return false;
923}
e7638488 924
6b368cd4
JG
925static inline bool is_device_public_page(const struct page *page)
926{
927 return false;
928}
52916982
LG
929
930static inline bool is_pci_p2pdma_page(const struct page *page)
931{
932 return false;
933}
e7638488 934#endif /* CONFIG_DEV_PAGEMAP_OPS */
7b2d55d2 935
3565fce3
DW
936static inline void get_page(struct page *page)
937{
938 page = compound_head(page);
939 /*
940 * Getting a normal page or the head of a compound page
0139aa7b 941 * requires to already have an elevated page->_refcount.
3565fce3 942 */
fe896d18
JK
943 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
944 page_ref_inc(page);
3565fce3
DW
945}
946
947static inline void put_page(struct page *page)
948{
949 page = compound_head(page);
950
7b2d55d2 951 /*
e7638488
DW
952 * For devmap managed pages we need to catch refcount transition from
953 * 2 to 1, when refcount reach one it means the page is free and we
954 * need to inform the device driver through callback. See
7b2d55d2
JG
955 * include/linux/memremap.h and HMM for details.
956 */
e7638488 957 if (put_devmap_managed_page(page))
7b2d55d2 958 return;
7b2d55d2 959
3565fce3
DW
960 if (put_page_testzero(page))
961 __put_page(page);
3565fce3
DW
962}
963
9127ab4f
CS
964#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
965#define SECTION_IN_PAGE_FLAGS
966#endif
967
89689ae7 968/*
7a8010cd
VB
969 * The identification function is mainly used by the buddy allocator for
970 * determining if two pages could be buddies. We are not really identifying
971 * the zone since we could be using the section number id if we do not have
972 * node id available in page flags.
973 * We only guarantee that it will return the same value for two combinable
974 * pages in a zone.
89689ae7 975 */
cb2b95e1
AW
976static inline int page_zone_id(struct page *page)
977{
89689ae7 978 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
979}
980
89689ae7 981#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 982extern int page_to_nid(const struct page *page);
89689ae7 983#else
33dd4e0e 984static inline int page_to_nid(const struct page *page)
d41dee36 985{
f165b378
PT
986 struct page *p = (struct page *)page;
987
988 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 989}
89689ae7
CL
990#endif
991
57e0a030 992#ifdef CONFIG_NUMA_BALANCING
90572890 993static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 994{
90572890 995 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
996}
997
90572890 998static inline int cpupid_to_pid(int cpupid)
57e0a030 999{
90572890 1000 return cpupid & LAST__PID_MASK;
57e0a030 1001}
b795854b 1002
90572890 1003static inline int cpupid_to_cpu(int cpupid)
b795854b 1004{
90572890 1005 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1006}
1007
90572890 1008static inline int cpupid_to_nid(int cpupid)
b795854b 1009{
90572890 1010 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1011}
1012
90572890 1013static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1014{
90572890 1015 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1016}
1017
90572890 1018static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1019{
90572890 1020 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1021}
1022
8c8a743c
PZ
1023static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1024{
1025 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1026}
1027
1028#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1029#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1030static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1031{
1ae71d03 1032 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1033}
90572890
PZ
1034
1035static inline int page_cpupid_last(struct page *page)
1036{
1037 return page->_last_cpupid;
1038}
1039static inline void page_cpupid_reset_last(struct page *page)
b795854b 1040{
1ae71d03 1041 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1042}
1043#else
90572890 1044static inline int page_cpupid_last(struct page *page)
75980e97 1045{
90572890 1046 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1047}
1048
90572890 1049extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1050
90572890 1051static inline void page_cpupid_reset_last(struct page *page)
75980e97 1052{
09940a4f 1053 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1054}
90572890
PZ
1055#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1056#else /* !CONFIG_NUMA_BALANCING */
1057static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1058{
90572890 1059 return page_to_nid(page); /* XXX */
57e0a030
MG
1060}
1061
90572890 1062static inline int page_cpupid_last(struct page *page)
57e0a030 1063{
90572890 1064 return page_to_nid(page); /* XXX */
57e0a030
MG
1065}
1066
90572890 1067static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1068{
1069 return -1;
1070}
1071
90572890 1072static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1073{
1074 return -1;
1075}
1076
90572890 1077static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1078{
1079 return -1;
1080}
1081
90572890
PZ
1082static inline int cpu_pid_to_cpupid(int nid, int pid)
1083{
1084 return -1;
1085}
1086
1087static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1088{
1089 return 1;
1090}
1091
90572890 1092static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1093{
1094}
8c8a743c
PZ
1095
1096static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1097{
1098 return false;
1099}
90572890 1100#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1101
33dd4e0e 1102static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1103{
1104 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1105}
1106
75ef7184
MG
1107static inline pg_data_t *page_pgdat(const struct page *page)
1108{
1109 return NODE_DATA(page_to_nid(page));
1110}
1111
9127ab4f 1112#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1113static inline void set_page_section(struct page *page, unsigned long section)
1114{
1115 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1116 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1117}
1118
aa462abe 1119static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1120{
1121 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1122}
308c05e3 1123#endif
d41dee36 1124
2f1b6248 1125static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1126{
1127 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1128 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1129}
2f1b6248 1130
348f8b6c
DH
1131static inline void set_page_node(struct page *page, unsigned long node)
1132{
1133 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1134 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1135}
89689ae7 1136
2f1b6248 1137static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1138 unsigned long node, unsigned long pfn)
1da177e4 1139{
348f8b6c
DH
1140 set_page_zone(page, zone);
1141 set_page_node(page, node);
9127ab4f 1142#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1143 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1144#endif
1da177e4
LT
1145}
1146
0610c25d
GT
1147#ifdef CONFIG_MEMCG
1148static inline struct mem_cgroup *page_memcg(struct page *page)
1149{
1150 return page->mem_cgroup;
1151}
55779ec7
JW
1152static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1153{
1154 WARN_ON_ONCE(!rcu_read_lock_held());
1155 return READ_ONCE(page->mem_cgroup);
1156}
0610c25d
GT
1157#else
1158static inline struct mem_cgroup *page_memcg(struct page *page)
1159{
1160 return NULL;
1161}
55779ec7
JW
1162static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1163{
1164 WARN_ON_ONCE(!rcu_read_lock_held());
1165 return NULL;
1166}
0610c25d
GT
1167#endif
1168
f6ac2354
CL
1169/*
1170 * Some inline functions in vmstat.h depend on page_zone()
1171 */
1172#include <linux/vmstat.h>
1173
33dd4e0e 1174static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1175{
1dff8083 1176 return page_to_virt(page);
1da177e4
LT
1177}
1178
1179#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1180#define HASHED_PAGE_VIRTUAL
1181#endif
1182
1183#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1184static inline void *page_address(const struct page *page)
1185{
1186 return page->virtual;
1187}
1188static inline void set_page_address(struct page *page, void *address)
1189{
1190 page->virtual = address;
1191}
1da177e4
LT
1192#define page_address_init() do { } while(0)
1193#endif
1194
1195#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1196void *page_address(const struct page *page);
1da177e4
LT
1197void set_page_address(struct page *page, void *virtual);
1198void page_address_init(void);
1199#endif
1200
1201#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1202#define page_address(page) lowmem_page_address(page)
1203#define set_page_address(page, address) do { } while(0)
1204#define page_address_init() do { } while(0)
1205#endif
1206
e39155ea
KS
1207extern void *page_rmapping(struct page *page);
1208extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1209extern struct address_space *page_mapping(struct page *page);
1da177e4 1210
f981c595
MG
1211extern struct address_space *__page_file_mapping(struct page *);
1212
1213static inline
1214struct address_space *page_file_mapping(struct page *page)
1215{
1216 if (unlikely(PageSwapCache(page)))
1217 return __page_file_mapping(page);
1218
1219 return page->mapping;
1220}
1221
f6ab1f7f
HY
1222extern pgoff_t __page_file_index(struct page *page);
1223
1da177e4
LT
1224/*
1225 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1226 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1227 */
1228static inline pgoff_t page_index(struct page *page)
1229{
1230 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1231 return __page_file_index(page);
1da177e4
LT
1232 return page->index;
1233}
1234
1aa8aea5 1235bool page_mapped(struct page *page);
bda807d4 1236struct address_space *page_mapping(struct page *page);
cb9f753a 1237struct address_space *page_mapping_file(struct page *page);
1da177e4 1238
2f064f34
MH
1239/*
1240 * Return true only if the page has been allocated with
1241 * ALLOC_NO_WATERMARKS and the low watermark was not
1242 * met implying that the system is under some pressure.
1243 */
1244static inline bool page_is_pfmemalloc(struct page *page)
1245{
1246 /*
1247 * Page index cannot be this large so this must be
1248 * a pfmemalloc page.
1249 */
1250 return page->index == -1UL;
1251}
1252
1253/*
1254 * Only to be called by the page allocator on a freshly allocated
1255 * page.
1256 */
1257static inline void set_page_pfmemalloc(struct page *page)
1258{
1259 page->index = -1UL;
1260}
1261
1262static inline void clear_page_pfmemalloc(struct page *page)
1263{
1264 page->index = 0;
1265}
1266
1da177e4
LT
1267/*
1268 * Different kinds of faults, as returned by handle_mm_fault().
1269 * Used to decide whether a process gets delivered SIGBUS or
1270 * just gets major/minor fault counters bumped up.
1271 */
d0217ac0 1272
83c54070
NP
1273#define VM_FAULT_OOM 0x0001
1274#define VM_FAULT_SIGBUS 0x0002
1275#define VM_FAULT_MAJOR 0x0004
1276#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1277#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1278#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1279#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1280
83c54070
NP
1281#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1282#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1283#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1284#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1285#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
caa51d26
JK
1286#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1287 * and needs fsync() to complete (for
1288 * synchronous page faults in DAX) */
aa50d3a7 1289
33692f27
LT
1290#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1291 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1292 VM_FAULT_FALLBACK)
aa50d3a7 1293
282a8e03
RZ
1294#define VM_FAULT_RESULT_TRACE \
1295 { VM_FAULT_OOM, "OOM" }, \
1296 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1297 { VM_FAULT_MAJOR, "MAJOR" }, \
1298 { VM_FAULT_WRITE, "WRITE" }, \
1299 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1300 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1301 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1302 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1303 { VM_FAULT_LOCKED, "LOCKED" }, \
1304 { VM_FAULT_RETRY, "RETRY" }, \
1305 { VM_FAULT_FALLBACK, "FALLBACK" }, \
caa51d26
JK
1306 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1307 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
282a8e03 1308
aa50d3a7
AK
1309/* Encode hstate index for a hwpoisoned large page */
1310#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1311#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1312
1c0fe6e3
NP
1313/*
1314 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1315 */
1316extern void pagefault_out_of_memory(void);
1317
1da177e4
LT
1318#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1319
ddd588b5 1320/*
7bf02ea2 1321 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1322 * various contexts.
1323 */
4b59e6c4 1324#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1325
9af744d7 1326extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1327
7f43add4 1328extern bool can_do_mlock(void);
1da177e4
LT
1329extern int user_shm_lock(size_t, struct user_struct *);
1330extern void user_shm_unlock(size_t, struct user_struct *);
1331
1332/*
1333 * Parameter block passed down to zap_pte_range in exceptional cases.
1334 */
1335struct zap_details {
1da177e4
LT
1336 struct address_space *check_mapping; /* Check page->mapping if set */
1337 pgoff_t first_index; /* Lowest page->index to unmap */
1338 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1339};
1340
df6ad698
JG
1341struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1342 pte_t pte, bool with_public_device);
1343#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1344
28093f9f
GS
1345struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1346 pmd_t pmd);
7e675137 1347
27d036e3
LR
1348void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1349 unsigned long size);
14f5ff5d 1350void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1351 unsigned long size);
4f74d2c8
LT
1352void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1353 unsigned long start, unsigned long end);
e6473092
MM
1354
1355/**
1356 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1357 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1358 * this handler should only handle pud_trans_huge() puds.
1359 * the pmd_entry or pte_entry callbacks will be used for
1360 * regular PUDs.
e6473092 1361 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1362 * this handler is required to be able to handle
1363 * pmd_trans_huge() pmds. They may simply choose to
1364 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1365 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1366 * @pte_hole: if set, called for each hole at all levels
5dc37642 1367 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1368 * @test_walk: caller specific callback function to determine whether
f7e2355f 1369 * we walk over the current vma or not. Returning 0
fafaa426
NH
1370 * value means "do page table walk over the current vma,"
1371 * and a negative one means "abort current page table walk
f7e2355f 1372 * right now." 1 means "skip the current vma."
fafaa426
NH
1373 * @mm: mm_struct representing the target process of page table walk
1374 * @vma: vma currently walked (NULL if walking outside vmas)
1375 * @private: private data for callbacks' usage
e6473092 1376 *
fafaa426 1377 * (see the comment on walk_page_range() for more details)
e6473092
MM
1378 */
1379struct mm_walk {
a00cc7d9
MW
1380 int (*pud_entry)(pud_t *pud, unsigned long addr,
1381 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1382 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1383 unsigned long next, struct mm_walk *walk);
1384 int (*pte_entry)(pte_t *pte, unsigned long addr,
1385 unsigned long next, struct mm_walk *walk);
1386 int (*pte_hole)(unsigned long addr, unsigned long next,
1387 struct mm_walk *walk);
1388 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1389 unsigned long addr, unsigned long next,
1390 struct mm_walk *walk);
fafaa426
NH
1391 int (*test_walk)(unsigned long addr, unsigned long next,
1392 struct mm_walk *walk);
2165009b 1393 struct mm_struct *mm;
fafaa426 1394 struct vm_area_struct *vma;
2165009b 1395 void *private;
e6473092
MM
1396};
1397
2165009b
DH
1398int walk_page_range(unsigned long addr, unsigned long end,
1399 struct mm_walk *walk);
900fc5f1 1400int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1401void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1402 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1403int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1404 struct vm_area_struct *vma);
09796395 1405int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 1406 unsigned long *start, unsigned long *end,
09796395 1407 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1408int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1409 unsigned long *pfn);
d87fe660 1410int follow_phys(struct vm_area_struct *vma, unsigned long address,
1411 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1412int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1413 void *buf, int len, int write);
1da177e4 1414
7caef267 1415extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1416extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1417void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1418void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1419int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1420int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1421int invalidate_inode_page(struct page *page);
1422
7ee1dd3f 1423#ifdef CONFIG_MMU
2b740303
SJ
1424extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1425 unsigned long address, unsigned int flags);
5c723ba5 1426extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1427 unsigned long address, unsigned int fault_flags,
1428 bool *unlocked);
977fbdcd
MW
1429void unmap_mapping_pages(struct address_space *mapping,
1430 pgoff_t start, pgoff_t nr, bool even_cows);
1431void unmap_mapping_range(struct address_space *mapping,
1432 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1433#else
2b740303 1434static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
dcddffd4 1435 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1436{
1437 /* should never happen if there's no MMU */
1438 BUG();
1439 return VM_FAULT_SIGBUS;
1440}
5c723ba5
PZ
1441static inline int fixup_user_fault(struct task_struct *tsk,
1442 struct mm_struct *mm, unsigned long address,
4a9e1cda 1443 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1444{
1445 /* should never happen if there's no MMU */
1446 BUG();
1447 return -EFAULT;
1448}
977fbdcd
MW
1449static inline void unmap_mapping_pages(struct address_space *mapping,
1450 pgoff_t start, pgoff_t nr, bool even_cows) { }
1451static inline void unmap_mapping_range(struct address_space *mapping,
1452 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1453#endif
f33ea7f4 1454
977fbdcd
MW
1455static inline void unmap_shared_mapping_range(struct address_space *mapping,
1456 loff_t const holebegin, loff_t const holelen)
1457{
1458 unmap_mapping_range(mapping, holebegin, holelen, 0);
1459}
1460
1461extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1462 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1463extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1464 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1465extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1466 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1467
1e987790
DH
1468long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1469 unsigned long start, unsigned long nr_pages,
9beae1ea 1470 unsigned int gup_flags, struct page **pages,
5b56d49f 1471 struct vm_area_struct **vmas, int *locked);
c12d2da5 1472long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1473 unsigned int gup_flags, struct page **pages,
cde70140 1474 struct vm_area_struct **vmas);
c12d2da5 1475long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1476 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1477long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1478 struct page **pages, unsigned int gup_flags);
2bb6d283
DW
1479#ifdef CONFIG_FS_DAX
1480long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1481 unsigned int gup_flags, struct page **pages,
1482 struct vm_area_struct **vmas);
1483#else
1484static inline long get_user_pages_longterm(unsigned long start,
1485 unsigned long nr_pages, unsigned int gup_flags,
1486 struct page **pages, struct vm_area_struct **vmas)
1487{
1488 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1489}
1490#endif /* CONFIG_FS_DAX */
1491
d2bf6be8
NP
1492int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1493 struct page **pages);
8025e5dd
JK
1494
1495/* Container for pinned pfns / pages */
1496struct frame_vector {
1497 unsigned int nr_allocated; /* Number of frames we have space for */
1498 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1499 bool got_ref; /* Did we pin pages by getting page ref? */
1500 bool is_pfns; /* Does array contain pages or pfns? */
1501 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1502 * pfns_vector_pages() or pfns_vector_pfns()
1503 * for access */
1504};
1505
1506struct frame_vector *frame_vector_create(unsigned int nr_frames);
1507void frame_vector_destroy(struct frame_vector *vec);
1508int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1509 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1510void put_vaddr_frames(struct frame_vector *vec);
1511int frame_vector_to_pages(struct frame_vector *vec);
1512void frame_vector_to_pfns(struct frame_vector *vec);
1513
1514static inline unsigned int frame_vector_count(struct frame_vector *vec)
1515{
1516 return vec->nr_frames;
1517}
1518
1519static inline struct page **frame_vector_pages(struct frame_vector *vec)
1520{
1521 if (vec->is_pfns) {
1522 int err = frame_vector_to_pages(vec);
1523
1524 if (err)
1525 return ERR_PTR(err);
1526 }
1527 return (struct page **)(vec->ptrs);
1528}
1529
1530static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1531{
1532 if (!vec->is_pfns)
1533 frame_vector_to_pfns(vec);
1534 return (unsigned long *)(vec->ptrs);
1535}
1536
18022c5d
MG
1537struct kvec;
1538int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1539 struct page **pages);
1540int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1541struct page *get_dump_page(unsigned long addr);
1da177e4 1542
cf9a2ae8 1543extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1544extern void do_invalidatepage(struct page *page, unsigned int offset,
1545 unsigned int length);
cf9a2ae8 1546
f82b3764 1547void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1548int __set_page_dirty_nobuffers(struct page *page);
76719325 1549int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1550int redirty_page_for_writepage(struct writeback_control *wbc,
1551 struct page *page);
62cccb8c 1552void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1553void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1554 struct bdi_writeback *wb);
b3c97528 1555int set_page_dirty(struct page *page);
1da177e4 1556int set_page_dirty_lock(struct page *page);
736304f3
JK
1557void __cancel_dirty_page(struct page *page);
1558static inline void cancel_dirty_page(struct page *page)
1559{
1560 /* Avoid atomic ops, locking, etc. when not actually needed. */
1561 if (PageDirty(page))
1562 __cancel_dirty_page(page);
1563}
1da177e4 1564int clear_page_dirty_for_io(struct page *page);
b9ea2515 1565
a9090253 1566int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1567
b5330628
ON
1568static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1569{
1570 return !vma->vm_ops;
1571}
1572
b0506e48
MR
1573#ifdef CONFIG_SHMEM
1574/*
1575 * The vma_is_shmem is not inline because it is used only by slow
1576 * paths in userfault.
1577 */
1578bool vma_is_shmem(struct vm_area_struct *vma);
1579#else
1580static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1581#endif
1582
d17af505 1583int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1584
b6a2fea3
OW
1585extern unsigned long move_page_tables(struct vm_area_struct *vma,
1586 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1587 unsigned long new_addr, unsigned long len,
1588 bool need_rmap_locks);
7da4d641
PZ
1589extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1590 unsigned long end, pgprot_t newprot,
4b10e7d5 1591 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1592extern int mprotect_fixup(struct vm_area_struct *vma,
1593 struct vm_area_struct **pprev, unsigned long start,
1594 unsigned long end, unsigned long newflags);
1da177e4 1595
465a454f
PZ
1596/*
1597 * doesn't attempt to fault and will return short.
1598 */
1599int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1600 struct page **pages);
d559db08
KH
1601/*
1602 * per-process(per-mm_struct) statistics.
1603 */
d559db08
KH
1604static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1605{
69c97823
KK
1606 long val = atomic_long_read(&mm->rss_stat.count[member]);
1607
1608#ifdef SPLIT_RSS_COUNTING
1609 /*
1610 * counter is updated in asynchronous manner and may go to minus.
1611 * But it's never be expected number for users.
1612 */
1613 if (val < 0)
1614 val = 0;
172703b0 1615#endif
69c97823
KK
1616 return (unsigned long)val;
1617}
d559db08
KH
1618
1619static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1620{
172703b0 1621 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1622}
1623
1624static inline void inc_mm_counter(struct mm_struct *mm, int member)
1625{
172703b0 1626 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1627}
1628
1629static inline void dec_mm_counter(struct mm_struct *mm, int member)
1630{
172703b0 1631 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1632}
1633
eca56ff9
JM
1634/* Optimized variant when page is already known not to be PageAnon */
1635static inline int mm_counter_file(struct page *page)
1636{
1637 if (PageSwapBacked(page))
1638 return MM_SHMEMPAGES;
1639 return MM_FILEPAGES;
1640}
1641
1642static inline int mm_counter(struct page *page)
1643{
1644 if (PageAnon(page))
1645 return MM_ANONPAGES;
1646 return mm_counter_file(page);
1647}
1648
d559db08
KH
1649static inline unsigned long get_mm_rss(struct mm_struct *mm)
1650{
1651 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1652 get_mm_counter(mm, MM_ANONPAGES) +
1653 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1654}
1655
1656static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1657{
1658 return max(mm->hiwater_rss, get_mm_rss(mm));
1659}
1660
1661static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1662{
1663 return max(mm->hiwater_vm, mm->total_vm);
1664}
1665
1666static inline void update_hiwater_rss(struct mm_struct *mm)
1667{
1668 unsigned long _rss = get_mm_rss(mm);
1669
1670 if ((mm)->hiwater_rss < _rss)
1671 (mm)->hiwater_rss = _rss;
1672}
1673
1674static inline void update_hiwater_vm(struct mm_struct *mm)
1675{
1676 if (mm->hiwater_vm < mm->total_vm)
1677 mm->hiwater_vm = mm->total_vm;
1678}
1679
695f0559
PC
1680static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1681{
1682 mm->hiwater_rss = get_mm_rss(mm);
1683}
1684
d559db08
KH
1685static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1686 struct mm_struct *mm)
1687{
1688 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1689
1690 if (*maxrss < hiwater_rss)
1691 *maxrss = hiwater_rss;
1692}
1693
53bddb4e 1694#if defined(SPLIT_RSS_COUNTING)
05af2e10 1695void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1696#else
05af2e10 1697static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1698{
1699}
1700#endif
465a454f 1701
3565fce3
DW
1702#ifndef __HAVE_ARCH_PTE_DEVMAP
1703static inline int pte_devmap(pte_t pte)
1704{
1705 return 0;
1706}
1707#endif
1708
6d2329f8 1709int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1710
25ca1d6c
NK
1711extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1712 spinlock_t **ptl);
1713static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1714 spinlock_t **ptl)
1715{
1716 pte_t *ptep;
1717 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1718 return ptep;
1719}
c9cfcddf 1720
c2febafc
KS
1721#ifdef __PAGETABLE_P4D_FOLDED
1722static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1723 unsigned long address)
1724{
1725 return 0;
1726}
1727#else
1728int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1729#endif
1730
b4e98d9a 1731#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1732static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1733 unsigned long address)
1734{
1735 return 0;
1736}
b4e98d9a
KS
1737static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1738static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1739
5f22df00 1740#else
c2febafc 1741int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1742
b4e98d9a
KS
1743static inline void mm_inc_nr_puds(struct mm_struct *mm)
1744{
af5b0f6a 1745 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1746}
1747
1748static inline void mm_dec_nr_puds(struct mm_struct *mm)
1749{
af5b0f6a 1750 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1751}
5f22df00
NP
1752#endif
1753
2d2f5119 1754#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1755static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1756 unsigned long address)
1757{
1758 return 0;
1759}
dc6c9a35 1760
dc6c9a35
KS
1761static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1762static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1763
5f22df00 1764#else
1bb3630e 1765int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1766
dc6c9a35
KS
1767static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1768{
af5b0f6a 1769 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
1770}
1771
1772static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1773{
af5b0f6a 1774 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 1775}
5f22df00
NP
1776#endif
1777
c4812909 1778#ifdef CONFIG_MMU
af5b0f6a 1779static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 1780{
af5b0f6a 1781 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
1782}
1783
af5b0f6a 1784static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 1785{
af5b0f6a 1786 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
1787}
1788
1789static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1790{
af5b0f6a 1791 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1792}
1793
1794static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1795{
af5b0f6a 1796 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1797}
1798#else
c4812909 1799
af5b0f6a
KS
1800static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1801static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
1802{
1803 return 0;
1804}
1805
1806static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1807static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1808#endif
1809
3ed3a4f0 1810int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1811int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1812
1da177e4
LT
1813/*
1814 * The following ifdef needed to get the 4level-fixup.h header to work.
1815 * Remove it when 4level-fixup.h has been removed.
1816 */
1bb3630e 1817#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1818
1819#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1820static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1821 unsigned long address)
1822{
1823 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1824 NULL : p4d_offset(pgd, address);
1825}
1826
1827static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1828 unsigned long address)
1da177e4 1829{
c2febafc
KS
1830 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1831 NULL : pud_offset(p4d, address);
1da177e4 1832}
505a60e2 1833#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1834
1835static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1836{
1bb3630e
HD
1837 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1838 NULL: pmd_offset(pud, address);
1da177e4 1839}
1bb3630e
HD
1840#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1841
57c1ffce 1842#if USE_SPLIT_PTE_PTLOCKS
597d795a 1843#if ALLOC_SPLIT_PTLOCKS
b35f1819 1844void __init ptlock_cache_init(void);
539edb58
PZ
1845extern bool ptlock_alloc(struct page *page);
1846extern void ptlock_free(struct page *page);
1847
1848static inline spinlock_t *ptlock_ptr(struct page *page)
1849{
1850 return page->ptl;
1851}
597d795a 1852#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1853static inline void ptlock_cache_init(void)
1854{
1855}
1856
49076ec2
KS
1857static inline bool ptlock_alloc(struct page *page)
1858{
49076ec2
KS
1859 return true;
1860}
539edb58 1861
49076ec2
KS
1862static inline void ptlock_free(struct page *page)
1863{
49076ec2
KS
1864}
1865
1866static inline spinlock_t *ptlock_ptr(struct page *page)
1867{
539edb58 1868 return &page->ptl;
49076ec2 1869}
597d795a 1870#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1871
1872static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1873{
1874 return ptlock_ptr(pmd_page(*pmd));
1875}
1876
1877static inline bool ptlock_init(struct page *page)
1878{
1879 /*
1880 * prep_new_page() initialize page->private (and therefore page->ptl)
1881 * with 0. Make sure nobody took it in use in between.
1882 *
1883 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1884 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1885 */
309381fe 1886 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1887 if (!ptlock_alloc(page))
1888 return false;
1889 spin_lock_init(ptlock_ptr(page));
1890 return true;
1891}
1892
1893/* Reset page->mapping so free_pages_check won't complain. */
1894static inline void pte_lock_deinit(struct page *page)
1895{
1896 page->mapping = NULL;
1897 ptlock_free(page);
1898}
1899
57c1ffce 1900#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1901/*
1902 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1903 */
49076ec2
KS
1904static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1905{
1906 return &mm->page_table_lock;
1907}
b35f1819 1908static inline void ptlock_cache_init(void) {}
49076ec2
KS
1909static inline bool ptlock_init(struct page *page) { return true; }
1910static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1911#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1912
b35f1819
KS
1913static inline void pgtable_init(void)
1914{
1915 ptlock_cache_init();
1916 pgtable_cache_init();
1917}
1918
390f44e2 1919static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1920{
706874e9
VD
1921 if (!ptlock_init(page))
1922 return false;
1d40a5ea 1923 __SetPageTable(page);
2f569afd 1924 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1925 return true;
2f569afd
MS
1926}
1927
1928static inline void pgtable_page_dtor(struct page *page)
1929{
1930 pte_lock_deinit(page);
1d40a5ea 1931 __ClearPageTable(page);
2f569afd
MS
1932 dec_zone_page_state(page, NR_PAGETABLE);
1933}
1934
c74df32c
HD
1935#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1936({ \
4c21e2f2 1937 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1938 pte_t *__pte = pte_offset_map(pmd, address); \
1939 *(ptlp) = __ptl; \
1940 spin_lock(__ptl); \
1941 __pte; \
1942})
1943
1944#define pte_unmap_unlock(pte, ptl) do { \
1945 spin_unlock(ptl); \
1946 pte_unmap(pte); \
1947} while (0)
1948
3ed3a4f0
KS
1949#define pte_alloc(mm, pmd, address) \
1950 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1951
1952#define pte_alloc_map(mm, pmd, address) \
1953 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1954
c74df32c 1955#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1956 (pte_alloc(mm, pmd, address) ? \
1957 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1958
1bb3630e 1959#define pte_alloc_kernel(pmd, address) \
8ac1f832 1960 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1961 NULL: pte_offset_kernel(pmd, address))
1da177e4 1962
e009bb30
KS
1963#if USE_SPLIT_PMD_PTLOCKS
1964
634391ac
MS
1965static struct page *pmd_to_page(pmd_t *pmd)
1966{
1967 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1968 return virt_to_page((void *)((unsigned long) pmd & mask));
1969}
1970
e009bb30
KS
1971static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1972{
634391ac 1973 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1974}
1975
1976static inline bool pgtable_pmd_page_ctor(struct page *page)
1977{
e009bb30
KS
1978#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1979 page->pmd_huge_pte = NULL;
1980#endif
49076ec2 1981 return ptlock_init(page);
e009bb30
KS
1982}
1983
1984static inline void pgtable_pmd_page_dtor(struct page *page)
1985{
1986#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1987 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1988#endif
49076ec2 1989 ptlock_free(page);
e009bb30
KS
1990}
1991
634391ac 1992#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1993
1994#else
1995
9a86cb7b
KS
1996static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1997{
1998 return &mm->page_table_lock;
1999}
2000
e009bb30
KS
2001static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2002static inline void pgtable_pmd_page_dtor(struct page *page) {}
2003
c389a250 2004#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2005
e009bb30
KS
2006#endif
2007
9a86cb7b
KS
2008static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2009{
2010 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2011 spin_lock(ptl);
2012 return ptl;
2013}
2014
a00cc7d9
MW
2015/*
2016 * No scalability reason to split PUD locks yet, but follow the same pattern
2017 * as the PMD locks to make it easier if we decide to. The VM should not be
2018 * considered ready to switch to split PUD locks yet; there may be places
2019 * which need to be converted from page_table_lock.
2020 */
2021static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2022{
2023 return &mm->page_table_lock;
2024}
2025
2026static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2027{
2028 spinlock_t *ptl = pud_lockptr(mm, pud);
2029
2030 spin_lock(ptl);
2031 return ptl;
2032}
62906027 2033
a00cc7d9 2034extern void __init pagecache_init(void);
1da177e4 2035extern void free_area_init(unsigned long * zones_size);
03e85f9d 2036extern void __init free_area_init_node(int nid, unsigned long * zones_size,
9109fb7b 2037 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
2038extern void free_initmem(void);
2039
69afade7
JL
2040/*
2041 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2042 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2043 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2044 * Return pages freed into the buddy system.
2045 */
11199692 2046extern unsigned long free_reserved_area(void *start, void *end,
69afade7 2047 int poison, char *s);
c3d5f5f0 2048
cfa11e08
JL
2049#ifdef CONFIG_HIGHMEM
2050/*
2051 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2052 * and totalram_pages.
2053 */
2054extern void free_highmem_page(struct page *page);
2055#endif
69afade7 2056
c3d5f5f0 2057extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2058extern void mem_init_print_info(const char *str);
69afade7 2059
4b50bcc7 2060extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2061
69afade7
JL
2062/* Free the reserved page into the buddy system, so it gets managed. */
2063static inline void __free_reserved_page(struct page *page)
2064{
2065 ClearPageReserved(page);
2066 init_page_count(page);
2067 __free_page(page);
2068}
2069
2070static inline void free_reserved_page(struct page *page)
2071{
2072 __free_reserved_page(page);
2073 adjust_managed_page_count(page, 1);
2074}
2075
2076static inline void mark_page_reserved(struct page *page)
2077{
2078 SetPageReserved(page);
2079 adjust_managed_page_count(page, -1);
2080}
2081
2082/*
2083 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2084 * The freed pages will be poisoned with pattern "poison" if it's within
2085 * range [0, UCHAR_MAX].
2086 * Return pages freed into the buddy system.
69afade7
JL
2087 */
2088static inline unsigned long free_initmem_default(int poison)
2089{
2090 extern char __init_begin[], __init_end[];
2091
11199692 2092 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2093 poison, "unused kernel");
2094}
2095
7ee3d4e8
JL
2096static inline unsigned long get_num_physpages(void)
2097{
2098 int nid;
2099 unsigned long phys_pages = 0;
2100
2101 for_each_online_node(nid)
2102 phys_pages += node_present_pages(nid);
2103
2104 return phys_pages;
2105}
2106
0ee332c1 2107#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2108/*
0ee332c1 2109 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2110 * zones, allocate the backing mem_map and account for memory holes in a more
2111 * architecture independent manner. This is a substitute for creating the
2112 * zone_sizes[] and zholes_size[] arrays and passing them to
2113 * free_area_init_node()
2114 *
2115 * An architecture is expected to register range of page frames backed by
0ee332c1 2116 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2117 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2118 * usage, an architecture is expected to do something like
2119 *
2120 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2121 * max_highmem_pfn};
2122 * for_each_valid_physical_page_range()
0ee332c1 2123 * memblock_add_node(base, size, nid)
c713216d
MG
2124 * free_area_init_nodes(max_zone_pfns);
2125 *
0ee332c1
TH
2126 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2127 * registered physical page range. Similarly
2128 * sparse_memory_present_with_active_regions() calls memory_present() for
2129 * each range when SPARSEMEM is enabled.
c713216d
MG
2130 *
2131 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2132 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2133 */
2134extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2135unsigned long node_map_pfn_alignment(void);
32996250
YL
2136unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2137 unsigned long end_pfn);
c713216d
MG
2138extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2139 unsigned long end_pfn);
2140extern void get_pfn_range_for_nid(unsigned int nid,
2141 unsigned long *start_pfn, unsigned long *end_pfn);
2142extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2143extern void free_bootmem_with_active_regions(int nid,
2144 unsigned long max_low_pfn);
2145extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2146
0ee332c1 2147#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2148
0ee332c1 2149#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2150 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2151static inline int __early_pfn_to_nid(unsigned long pfn,
2152 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2153{
2154 return 0;
2155}
2156#else
2157/* please see mm/page_alloc.c */
2158extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2159/* there is a per-arch backend function. */
8a942fde
MG
2160extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2161 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2162#endif
2163
d1b47a7c 2164#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
a4a3ede2
PT
2165void zero_resv_unavail(void);
2166#else
2167static inline void zero_resv_unavail(void) {}
2168#endif
2169
0e0b864e 2170extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2171extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2172 enum memmap_context, struct vmem_altmap *);
bc75d33f 2173extern void setup_per_zone_wmarks(void);
1b79acc9 2174extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2175extern void mem_init(void);
8feae131 2176extern void __init mmap_init(void);
9af744d7 2177extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2178extern long si_mem_available(void);
1da177e4
LT
2179extern void si_meminfo(struct sysinfo * val);
2180extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2181#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2182extern unsigned long arch_reserved_kernel_pages(void);
2183#endif
1da177e4 2184
a8e99259
MH
2185extern __printf(3, 4)
2186void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2187
e7c8d5c9 2188extern void setup_per_cpu_pageset(void);
e7c8d5c9 2189
112067f0 2190extern void zone_pcp_update(struct zone *zone);
340175b7 2191extern void zone_pcp_reset(struct zone *zone);
112067f0 2192
75f7ad8e
PS
2193/* page_alloc.c */
2194extern int min_free_kbytes;
795ae7a0 2195extern int watermark_scale_factor;
75f7ad8e 2196
8feae131 2197/* nommu.c */
33e5d769 2198extern atomic_long_t mmap_pages_allocated;
7e660872 2199extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2200
6b2dbba8 2201/* interval_tree.c */
6b2dbba8 2202void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2203 struct rb_root_cached *root);
9826a516
ML
2204void vma_interval_tree_insert_after(struct vm_area_struct *node,
2205 struct vm_area_struct *prev,
f808c13f 2206 struct rb_root_cached *root);
6b2dbba8 2207void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2208 struct rb_root_cached *root);
2209struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2210 unsigned long start, unsigned long last);
2211struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2212 unsigned long start, unsigned long last);
2213
2214#define vma_interval_tree_foreach(vma, root, start, last) \
2215 for (vma = vma_interval_tree_iter_first(root, start, last); \
2216 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2217
bf181b9f 2218void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2219 struct rb_root_cached *root);
bf181b9f 2220void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2221 struct rb_root_cached *root);
2222struct anon_vma_chain *
2223anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2224 unsigned long start, unsigned long last);
bf181b9f
ML
2225struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2226 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2227#ifdef CONFIG_DEBUG_VM_RB
2228void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2229#endif
bf181b9f
ML
2230
2231#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2232 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2233 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2234
1da177e4 2235/* mmap.c */
34b4e4aa 2236extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2237extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2238 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2239 struct vm_area_struct *expand);
2240static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2241 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2242{
2243 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2244}
1da177e4
LT
2245extern struct vm_area_struct *vma_merge(struct mm_struct *,
2246 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2247 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2248 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2249extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2250extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2251 unsigned long addr, int new_below);
2252extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2253 unsigned long addr, int new_below);
1da177e4
LT
2254extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2255extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2256 struct rb_node **, struct rb_node *);
a8fb5618 2257extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2258extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2259 unsigned long addr, unsigned long len, pgoff_t pgoff,
2260 bool *need_rmap_locks);
1da177e4 2261extern void exit_mmap(struct mm_struct *);
925d1c40 2262
9c599024
CG
2263static inline int check_data_rlimit(unsigned long rlim,
2264 unsigned long new,
2265 unsigned long start,
2266 unsigned long end_data,
2267 unsigned long start_data)
2268{
2269 if (rlim < RLIM_INFINITY) {
2270 if (((new - start) + (end_data - start_data)) > rlim)
2271 return -ENOSPC;
2272 }
2273
2274 return 0;
2275}
2276
7906d00c
AA
2277extern int mm_take_all_locks(struct mm_struct *mm);
2278extern void mm_drop_all_locks(struct mm_struct *mm);
2279
38646013
JS
2280extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2281extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2282extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2283
84638335
KK
2284extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2285extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2286
2eefd878
DS
2287extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2288 const struct vm_special_mapping *sm);
3935ed6a
SS
2289extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2290 unsigned long addr, unsigned long len,
a62c34bd
AL
2291 unsigned long flags,
2292 const struct vm_special_mapping *spec);
2293/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2294extern int install_special_mapping(struct mm_struct *mm,
2295 unsigned long addr, unsigned long len,
2296 unsigned long flags, struct page **pages);
1da177e4
LT
2297
2298extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2299
0165ab44 2300extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2301 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2302 struct list_head *uf);
1fcfd8db 2303extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2304 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2305 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2306 struct list_head *uf);
2307extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2308 struct list_head *uf);
1da177e4 2309
1fcfd8db
ON
2310static inline unsigned long
2311do_mmap_pgoff(struct file *file, unsigned long addr,
2312 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2313 unsigned long pgoff, unsigned long *populate,
2314 struct list_head *uf)
1fcfd8db 2315{
897ab3e0 2316 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2317}
2318
bebeb3d6
ML
2319#ifdef CONFIG_MMU
2320extern int __mm_populate(unsigned long addr, unsigned long len,
2321 int ignore_errors);
2322static inline void mm_populate(unsigned long addr, unsigned long len)
2323{
2324 /* Ignore errors */
2325 (void) __mm_populate(addr, len, 1);
2326}
2327#else
2328static inline void mm_populate(unsigned long addr, unsigned long len) {}
2329#endif
2330
e4eb1ff6 2331/* These take the mm semaphore themselves */
5d22fc25 2332extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2333extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2334extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2335extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2336 unsigned long, unsigned long,
2337 unsigned long, unsigned long);
1da177e4 2338
db4fbfb9
ML
2339struct vm_unmapped_area_info {
2340#define VM_UNMAPPED_AREA_TOPDOWN 1
2341 unsigned long flags;
2342 unsigned long length;
2343 unsigned long low_limit;
2344 unsigned long high_limit;
2345 unsigned long align_mask;
2346 unsigned long align_offset;
2347};
2348
2349extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2350extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2351
2352/*
2353 * Search for an unmapped address range.
2354 *
2355 * We are looking for a range that:
2356 * - does not intersect with any VMA;
2357 * - is contained within the [low_limit, high_limit) interval;
2358 * - is at least the desired size.
2359 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2360 */
2361static inline unsigned long
2362vm_unmapped_area(struct vm_unmapped_area_info *info)
2363{
cdd7875e 2364 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2365 return unmapped_area_topdown(info);
cdd7875e
BP
2366 else
2367 return unmapped_area(info);
db4fbfb9
ML
2368}
2369
85821aab 2370/* truncate.c */
1da177e4 2371extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2372extern void truncate_inode_pages_range(struct address_space *,
2373 loff_t lstart, loff_t lend);
91b0abe3 2374extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2375
2376/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2377extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2378extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2379 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2380extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2381
2382/* mm/page-writeback.c */
2b69c828 2383int __must_check write_one_page(struct page *page);
1cf6e7d8 2384void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2385
2386/* readahead.c */
2387#define VM_MAX_READAHEAD 128 /* kbytes */
2388#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2389
1da177e4 2390int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2391 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2392
2393void page_cache_sync_readahead(struct address_space *mapping,
2394 struct file_ra_state *ra,
2395 struct file *filp,
2396 pgoff_t offset,
2397 unsigned long size);
2398
2399void page_cache_async_readahead(struct address_space *mapping,
2400 struct file_ra_state *ra,
2401 struct file *filp,
2402 struct page *pg,
2403 pgoff_t offset,
2404 unsigned long size);
2405
1be7107f 2406extern unsigned long stack_guard_gap;
d05f3169 2407/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2408extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2409
2410/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2411extern int expand_downwards(struct vm_area_struct *vma,
2412 unsigned long address);
8ca3eb08 2413#if VM_GROWSUP
46dea3d0 2414extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2415#else
fee7e49d 2416 #define expand_upwards(vma, address) (0)
9ab88515 2417#endif
1da177e4
LT
2418
2419/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2420extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2421extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2422 struct vm_area_struct **pprev);
2423
2424/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2425 NULL if none. Assume start_addr < end_addr. */
2426static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2427{
2428 struct vm_area_struct * vma = find_vma(mm,start_addr);
2429
2430 if (vma && end_addr <= vma->vm_start)
2431 vma = NULL;
2432 return vma;
2433}
2434
1be7107f
HD
2435static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2436{
2437 unsigned long vm_start = vma->vm_start;
2438
2439 if (vma->vm_flags & VM_GROWSDOWN) {
2440 vm_start -= stack_guard_gap;
2441 if (vm_start > vma->vm_start)
2442 vm_start = 0;
2443 }
2444 return vm_start;
2445}
2446
2447static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2448{
2449 unsigned long vm_end = vma->vm_end;
2450
2451 if (vma->vm_flags & VM_GROWSUP) {
2452 vm_end += stack_guard_gap;
2453 if (vm_end < vma->vm_end)
2454 vm_end = -PAGE_SIZE;
2455 }
2456 return vm_end;
2457}
2458
1da177e4
LT
2459static inline unsigned long vma_pages(struct vm_area_struct *vma)
2460{
2461 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2462}
2463
640708a2
PE
2464/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2465static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2466 unsigned long vm_start, unsigned long vm_end)
2467{
2468 struct vm_area_struct *vma = find_vma(mm, vm_start);
2469
2470 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2471 vma = NULL;
2472
2473 return vma;
2474}
2475
017b1660
MK
2476static inline bool range_in_vma(struct vm_area_struct *vma,
2477 unsigned long start, unsigned long end)
2478{
2479 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2480}
2481
bad849b3 2482#ifdef CONFIG_MMU
804af2cf 2483pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2484void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2485#else
2486static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2487{
2488 return __pgprot(0);
2489}
64e45507
PF
2490static inline void vma_set_page_prot(struct vm_area_struct *vma)
2491{
2492 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2493}
bad849b3
DH
2494#endif
2495
5877231f 2496#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2497unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2498 unsigned long start, unsigned long end);
2499#endif
2500
deceb6cd 2501struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2502int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2503 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2504int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2505int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2506 unsigned long pfn);
f5e6d1d5
MW
2507vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2508 unsigned long pfn, pgprot_t pgprot);
5d747637 2509vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2510 pfn_t pfn);
ab77dab4
SJ
2511vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2512 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2513int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2514
1c8f4220
SJ
2515static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2516 unsigned long addr, struct page *page)
2517{
2518 int err = vm_insert_page(vma, addr, page);
2519
2520 if (err == -ENOMEM)
2521 return VM_FAULT_OOM;
2522 if (err < 0 && err != -EBUSY)
2523 return VM_FAULT_SIGBUS;
2524
2525 return VM_FAULT_NOPAGE;
2526}
2527
1c8f4220
SJ
2528static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
2529 unsigned long addr, unsigned long pfn)
2530{
2531 int err = vm_insert_pfn(vma, addr, pfn);
2532
2533 if (err == -ENOMEM)
2534 return VM_FAULT_OOM;
2535 if (err < 0 && err != -EBUSY)
2536 return VM_FAULT_SIGBUS;
2537
2538 return VM_FAULT_NOPAGE;
2539}
deceb6cd 2540
d97baf94
SJ
2541static inline vm_fault_t vmf_error(int err)
2542{
2543 if (err == -ENOMEM)
2544 return VM_FAULT_OOM;
2545 return VM_FAULT_SIGBUS;
2546}
2547
240aadee
ML
2548struct page *follow_page_mask(struct vm_area_struct *vma,
2549 unsigned long address, unsigned int foll_flags,
2550 unsigned int *page_mask);
2551
2552static inline struct page *follow_page(struct vm_area_struct *vma,
2553 unsigned long address, unsigned int foll_flags)
2554{
2555 unsigned int unused_page_mask;
2556 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2557}
2558
deceb6cd
HD
2559#define FOLL_WRITE 0x01 /* check pte is writable */
2560#define FOLL_TOUCH 0x02 /* mark page accessed */
2561#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2562#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2563#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2564#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2565 * and return without waiting upon it */
84d33df2 2566#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2567#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2568#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2569#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2570#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2571#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2572#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2573#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2574#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2575#define FOLL_ANON 0x8000 /* don't do file mappings */
1da177e4 2576
2b740303 2577static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2578{
2579 if (vm_fault & VM_FAULT_OOM)
2580 return -ENOMEM;
2581 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2582 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2583 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2584 return -EFAULT;
2585 return 0;
2586}
2587
2f569afd 2588typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2589 void *data);
2590extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2591 unsigned long size, pte_fn_t fn, void *data);
2592
1da177e4 2593
8823b1db
LA
2594#ifdef CONFIG_PAGE_POISONING
2595extern bool page_poisoning_enabled(void);
2596extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2597#else
2598static inline bool page_poisoning_enabled(void) { return false; }
2599static inline void kernel_poison_pages(struct page *page, int numpages,
2600 int enable) { }
2601#endif
2602
12d6f21e 2603#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2604extern bool _debug_pagealloc_enabled;
2605extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2606
2607static inline bool debug_pagealloc_enabled(void)
2608{
2609 return _debug_pagealloc_enabled;
2610}
2611
2612static inline void
2613kernel_map_pages(struct page *page, int numpages, int enable)
2614{
2615 if (!debug_pagealloc_enabled())
2616 return;
2617
2618 __kernel_map_pages(page, numpages, enable);
2619}
8a235efa
RW
2620#ifdef CONFIG_HIBERNATION
2621extern bool kernel_page_present(struct page *page);
40b44137
JK
2622#endif /* CONFIG_HIBERNATION */
2623#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2624static inline void
9858db50 2625kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2626#ifdef CONFIG_HIBERNATION
2627static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2628#endif /* CONFIG_HIBERNATION */
2629static inline bool debug_pagealloc_enabled(void)
2630{
2631 return false;
2632}
2633#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2634
a6c19dfe 2635#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2636extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2637extern int in_gate_area_no_mm(unsigned long addr);
2638extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2639#else
a6c19dfe
AL
2640static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2641{
2642 return NULL;
2643}
2644static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2645static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2646{
2647 return 0;
2648}
1da177e4
LT
2649#endif /* __HAVE_ARCH_GATE_AREA */
2650
44a70ade
MH
2651extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2652
146732ce
JT
2653#ifdef CONFIG_SYSCTL
2654extern int sysctl_drop_caches;
8d65af78 2655int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2656 void __user *, size_t *, loff_t *);
146732ce
JT
2657#endif
2658
cb731d6c
VD
2659void drop_slab(void);
2660void drop_slab_node(int nid);
9d0243bc 2661
7a9166e3
LY
2662#ifndef CONFIG_MMU
2663#define randomize_va_space 0
2664#else
a62eaf15 2665extern int randomize_va_space;
7a9166e3 2666#endif
a62eaf15 2667
045e72ac 2668const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2669void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2670
35fd1eb1 2671void *sparse_buffer_alloc(unsigned long size);
7b73d978
CH
2672struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2673 struct vmem_altmap *altmap);
29c71111 2674pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2675p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2676pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2677pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2678pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2679void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2680struct vmem_altmap;
a8fc357b
CH
2681void *vmemmap_alloc_block_buf(unsigned long size, int node);
2682void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 2683void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2684int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2685 int node);
7b73d978
CH
2686int vmemmap_populate(unsigned long start, unsigned long end, int node,
2687 struct vmem_altmap *altmap);
c2b91e2e 2688void vmemmap_populate_print_last(void);
0197518c 2689#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2690void vmemmap_free(unsigned long start, unsigned long end,
2691 struct vmem_altmap *altmap);
0197518c 2692#endif
46723bfa 2693void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2694 unsigned long nr_pages);
6a46079c 2695
82ba011b
AK
2696enum mf_flags {
2697 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2698 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2699 MF_MUST_KILL = 1 << 2,
cf870c70 2700 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2701};
83b57531
EB
2702extern int memory_failure(unsigned long pfn, int flags);
2703extern void memory_failure_queue(unsigned long pfn, int flags);
847ce401 2704extern int unpoison_memory(unsigned long pfn);
ead07f6a 2705extern int get_hwpoison_page(struct page *page);
4e41a30c 2706#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2707extern int sysctl_memory_failure_early_kill;
2708extern int sysctl_memory_failure_recovery;
facb6011 2709extern void shake_page(struct page *p, int access);
5844a486 2710extern atomic_long_t num_poisoned_pages __read_mostly;
facb6011 2711extern int soft_offline_page(struct page *page, int flags);
6a46079c 2712
cc637b17
XX
2713
2714/*
2715 * Error handlers for various types of pages.
2716 */
cc3e2af4 2717enum mf_result {
cc637b17
XX
2718 MF_IGNORED, /* Error: cannot be handled */
2719 MF_FAILED, /* Error: handling failed */
2720 MF_DELAYED, /* Will be handled later */
2721 MF_RECOVERED, /* Successfully recovered */
2722};
2723
2724enum mf_action_page_type {
2725 MF_MSG_KERNEL,
2726 MF_MSG_KERNEL_HIGH_ORDER,
2727 MF_MSG_SLAB,
2728 MF_MSG_DIFFERENT_COMPOUND,
2729 MF_MSG_POISONED_HUGE,
2730 MF_MSG_HUGE,
2731 MF_MSG_FREE_HUGE,
31286a84 2732 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
2733 MF_MSG_UNMAP_FAILED,
2734 MF_MSG_DIRTY_SWAPCACHE,
2735 MF_MSG_CLEAN_SWAPCACHE,
2736 MF_MSG_DIRTY_MLOCKED_LRU,
2737 MF_MSG_CLEAN_MLOCKED_LRU,
2738 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2739 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2740 MF_MSG_DIRTY_LRU,
2741 MF_MSG_CLEAN_LRU,
2742 MF_MSG_TRUNCATED_LRU,
2743 MF_MSG_BUDDY,
2744 MF_MSG_BUDDY_2ND,
6100e34b 2745 MF_MSG_DAX,
cc637b17
XX
2746 MF_MSG_UNKNOWN,
2747};
2748
47ad8475
AA
2749#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2750extern void clear_huge_page(struct page *page,
c79b57e4 2751 unsigned long addr_hint,
47ad8475
AA
2752 unsigned int pages_per_huge_page);
2753extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
2754 unsigned long addr_hint,
2755 struct vm_area_struct *vma,
47ad8475 2756 unsigned int pages_per_huge_page);
fa4d75c1
MK
2757extern long copy_huge_page_from_user(struct page *dst_page,
2758 const void __user *usr_src,
810a56b9
MK
2759 unsigned int pages_per_huge_page,
2760 bool allow_pagefault);
47ad8475
AA
2761#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2762
e30825f1 2763extern struct page_ext_operations debug_guardpage_ops;
e30825f1 2764
c0a32fc5
SG
2765#ifdef CONFIG_DEBUG_PAGEALLOC
2766extern unsigned int _debug_guardpage_minorder;
e30825f1 2767extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2768
2769static inline unsigned int debug_guardpage_minorder(void)
2770{
2771 return _debug_guardpage_minorder;
2772}
2773
e30825f1
JK
2774static inline bool debug_guardpage_enabled(void)
2775{
2776 return _debug_guardpage_enabled;
2777}
2778
c0a32fc5
SG
2779static inline bool page_is_guard(struct page *page)
2780{
e30825f1
JK
2781 struct page_ext *page_ext;
2782
2783 if (!debug_guardpage_enabled())
2784 return false;
2785
2786 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2787 if (unlikely(!page_ext))
2788 return false;
2789
e30825f1 2790 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2791}
2792#else
2793static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2794static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2795static inline bool page_is_guard(struct page *page) { return false; }
2796#endif /* CONFIG_DEBUG_PAGEALLOC */
2797
f9872caf
CS
2798#if MAX_NUMNODES > 1
2799void __init setup_nr_node_ids(void);
2800#else
2801static inline void setup_nr_node_ids(void) {}
2802#endif
2803
1da177e4
LT
2804#endif /* __KERNEL__ */
2805#endif /* _LINUX_MM_H */