mm/page_alloc.c: remove useless parameter of finalise_ac()
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
3b3b1a29 28#include <linux/overflow.h>
1da177e4
LT
29
30struct mempolicy;
31struct anon_vma;
bf181b9f 32struct anon_vma_chain;
4e950f6f 33struct file_ra_state;
e8edc6e0 34struct user_struct;
4e950f6f 35struct writeback_control;
682aa8e1 36struct bdi_writeback;
1da177e4 37
597b7305
MH
38void init_mm_internals(void);
39
fccc9987 40#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 41extern unsigned long max_mapnr;
fccc9987
JL
42
43static inline void set_max_mapnr(unsigned long limit)
44{
45 max_mapnr = limit;
46}
47#else
48static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
49#endif
50
4481374c 51extern unsigned long totalram_pages;
1da177e4 52extern void * high_memory;
1da177e4
LT
53extern int page_cluster;
54
55#ifdef CONFIG_SYSCTL
56extern int sysctl_legacy_va_layout;
57#else
58#define sysctl_legacy_va_layout 0
59#endif
60
d07e2259
DC
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62extern const int mmap_rnd_bits_min;
63extern const int mmap_rnd_bits_max;
64extern int mmap_rnd_bits __read_mostly;
65#endif
66#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67extern const int mmap_rnd_compat_bits_min;
68extern const int mmap_rnd_compat_bits_max;
69extern int mmap_rnd_compat_bits __read_mostly;
70#endif
71
1da177e4
LT
72#include <asm/page.h>
73#include <asm/pgtable.h>
74#include <asm/processor.h>
1da177e4 75
79442ed1
TC
76#ifndef __pa_symbol
77#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
78#endif
79
1dff8083
AB
80#ifndef page_to_virt
81#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
82#endif
83
568c5fe5
LA
84#ifndef lm_alias
85#define lm_alias(x) __va(__pa_symbol(x))
86#endif
87
593befa6
DD
88/*
89 * To prevent common memory management code establishing
90 * a zero page mapping on a read fault.
91 * This macro should be defined within <asm/pgtable.h>.
92 * s390 does this to prevent multiplexing of hardware bits
93 * related to the physical page in case of virtualization.
94 */
95#ifndef mm_forbids_zeropage
96#define mm_forbids_zeropage(X) (0)
97#endif
98
a4a3ede2
PT
99/*
100 * On some architectures it is expensive to call memset() for small sizes.
101 * Those architectures should provide their own implementation of "struct page"
102 * zeroing by defining this macro in <asm/pgtable.h>.
103 */
104#ifndef mm_zero_struct_page
105#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
106#endif
107
ea606cf5
AR
108/*
109 * Default maximum number of active map areas, this limits the number of vmas
110 * per mm struct. Users can overwrite this number by sysctl but there is a
111 * problem.
112 *
113 * When a program's coredump is generated as ELF format, a section is created
114 * per a vma. In ELF, the number of sections is represented in unsigned short.
115 * This means the number of sections should be smaller than 65535 at coredump.
116 * Because the kernel adds some informative sections to a image of program at
117 * generating coredump, we need some margin. The number of extra sections is
118 * 1-3 now and depends on arch. We use "5" as safe margin, here.
119 *
120 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
121 * not a hard limit any more. Although some userspace tools can be surprised by
122 * that.
123 */
124#define MAPCOUNT_ELF_CORE_MARGIN (5)
125#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
126
127extern int sysctl_max_map_count;
128
c9b1d098 129extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 130extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 131
49f0ce5f
JM
132extern int sysctl_overcommit_memory;
133extern int sysctl_overcommit_ratio;
134extern unsigned long sysctl_overcommit_kbytes;
135
136extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
137 size_t *, loff_t *);
138extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
139 size_t *, loff_t *);
140
1da177e4
LT
141#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
142
27ac792c
AR
143/* to align the pointer to the (next) page boundary */
144#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
145
0fa73b86 146/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 147#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 148
1da177e4
LT
149/*
150 * Linux kernel virtual memory manager primitives.
151 * The idea being to have a "virtual" mm in the same way
152 * we have a virtual fs - giving a cleaner interface to the
153 * mm details, and allowing different kinds of memory mappings
154 * (from shared memory to executable loading to arbitrary
155 * mmap() functions).
156 */
157
c43692e8
CL
158extern struct kmem_cache *vm_area_cachep;
159
1da177e4 160#ifndef CONFIG_MMU
8feae131
DH
161extern struct rb_root nommu_region_tree;
162extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
163
164extern unsigned int kobjsize(const void *objp);
165#endif
166
167/*
605d9288 168 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 169 * When changing, update also include/trace/events/mmflags.h
1da177e4 170 */
cc2383ec
KK
171#define VM_NONE 0x00000000
172
1da177e4
LT
173#define VM_READ 0x00000001 /* currently active flags */
174#define VM_WRITE 0x00000002
175#define VM_EXEC 0x00000004
176#define VM_SHARED 0x00000008
177
7e2cff42 178/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
179#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
180#define VM_MAYWRITE 0x00000020
181#define VM_MAYEXEC 0x00000040
182#define VM_MAYSHARE 0x00000080
183
184#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 185#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 186#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 187#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 188#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 189
1da177e4
LT
190#define VM_LOCKED 0x00002000
191#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
192
193 /* Used by sys_madvise() */
194#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
195#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
196
197#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
198#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 199#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 200#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 201#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 202#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 203#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 204#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 205#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 206#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 207
d9104d1c
CG
208#ifdef CONFIG_MEM_SOFT_DIRTY
209# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
210#else
211# define VM_SOFTDIRTY 0
212#endif
213
b379d790 214#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
215#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
216#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 217#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 218
63c17fb8
DH
219#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
220#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
221#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
222#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
223#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 224#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
225#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
226#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
227#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
228#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 229#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
230#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
231
5212213a 232#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
233# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
234# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 235# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
236# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
237# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
238#ifdef CONFIG_PPC
239# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
240#else
241# define VM_PKEY_BIT4 0
8f62c883 242#endif
5212213a
RP
243#endif /* CONFIG_ARCH_HAS_PKEYS */
244
245#if defined(CONFIG_X86)
246# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
cc2383ec
KK
247#elif defined(CONFIG_PPC)
248# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
249#elif defined(CONFIG_PARISC)
250# define VM_GROWSUP VM_ARCH_1
251#elif defined(CONFIG_IA64)
252# define VM_GROWSUP VM_ARCH_1
74a04967
KA
253#elif defined(CONFIG_SPARC64)
254# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
255# define VM_ARCH_CLEAR VM_SPARC_ADI
cc2383ec
KK
256#elif !defined(CONFIG_MMU)
257# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
258#endif
259
df3735c5 260#if defined(CONFIG_X86_INTEL_MPX)
4aae7e43 261/* MPX specific bounds table or bounds directory */
fa87b91c 262# define VM_MPX VM_HIGH_ARCH_4
df3735c5
RR
263#else
264# define VM_MPX VM_NONE
4aae7e43
QR
265#endif
266
cc2383ec
KK
267#ifndef VM_GROWSUP
268# define VM_GROWSUP VM_NONE
269#endif
270
a8bef8ff
MG
271/* Bits set in the VMA until the stack is in its final location */
272#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
273
1da177e4
LT
274#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
275#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
276#endif
277
278#ifdef CONFIG_STACK_GROWSUP
30bdbb78 279#define VM_STACK VM_GROWSUP
1da177e4 280#else
30bdbb78 281#define VM_STACK VM_GROWSDOWN
1da177e4
LT
282#endif
283
30bdbb78
KK
284#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
285
b291f000 286/*
78f11a25
AA
287 * Special vmas that are non-mergable, non-mlock()able.
288 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 289 */
9050d7eb 290#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 291
a0715cc2
AT
292/* This mask defines which mm->def_flags a process can inherit its parent */
293#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
294
de60f5f1
EM
295/* This mask is used to clear all the VMA flags used by mlock */
296#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
297
2c2d57b5
KA
298/* Arch-specific flags to clear when updating VM flags on protection change */
299#ifndef VM_ARCH_CLEAR
300# define VM_ARCH_CLEAR VM_NONE
301#endif
302#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
303
1da177e4
LT
304/*
305 * mapping from the currently active vm_flags protection bits (the
306 * low four bits) to a page protection mask..
307 */
308extern pgprot_t protection_map[16];
309
d0217ac0 310#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
311#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
312#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
313#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
314#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
315#define FAULT_FLAG_TRIED 0x20 /* Second try */
316#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 317#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 318#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 319
282a8e03
RZ
320#define FAULT_FLAG_TRACE \
321 { FAULT_FLAG_WRITE, "WRITE" }, \
322 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
323 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
324 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
325 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
326 { FAULT_FLAG_TRIED, "TRIED" }, \
327 { FAULT_FLAG_USER, "USER" }, \
328 { FAULT_FLAG_REMOTE, "REMOTE" }, \
329 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
330
54cb8821 331/*
d0217ac0 332 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
333 * ->fault function. The vma's ->fault is responsible for returning a bitmask
334 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 335 *
c20cd45e
MH
336 * MM layer fills up gfp_mask for page allocations but fault handler might
337 * alter it if its implementation requires a different allocation context.
338 *
9b4bdd2f 339 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 340 */
d0217ac0 341struct vm_fault {
82b0f8c3 342 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 343 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 344 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 345 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 346 unsigned long address; /* Faulting virtual address */
82b0f8c3 347 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 348 * the 'address' */
a2d58167
DJ
349 pud_t *pud; /* Pointer to pud entry matching
350 * the 'address'
351 */
2994302b 352 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 353
3917048d
JK
354 struct page *cow_page; /* Page handler may use for COW fault */
355 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 356 struct page *page; /* ->fault handlers should return a
83c54070 357 * page here, unless VM_FAULT_NOPAGE
d0217ac0 358 * is set (which is also implied by
83c54070 359 * VM_FAULT_ERROR).
d0217ac0 360 */
82b0f8c3 361 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
362 pte_t *pte; /* Pointer to pte entry matching
363 * the 'address'. NULL if the page
364 * table hasn't been allocated.
365 */
366 spinlock_t *ptl; /* Page table lock.
367 * Protects pte page table if 'pte'
368 * is not NULL, otherwise pmd.
369 */
7267ec00
KS
370 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
371 * vm_ops->map_pages() calls
372 * alloc_set_pte() from atomic context.
373 * do_fault_around() pre-allocates
374 * page table to avoid allocation from
375 * atomic context.
376 */
54cb8821 377};
1da177e4 378
c791ace1
DJ
379/* page entry size for vm->huge_fault() */
380enum page_entry_size {
381 PE_SIZE_PTE = 0,
382 PE_SIZE_PMD,
383 PE_SIZE_PUD,
384};
385
1da177e4
LT
386/*
387 * These are the virtual MM functions - opening of an area, closing and
388 * unmapping it (needed to keep files on disk up-to-date etc), pointer
389 * to the functions called when a no-page or a wp-page exception occurs.
390 */
391struct vm_operations_struct {
392 void (*open)(struct vm_area_struct * area);
393 void (*close)(struct vm_area_struct * area);
31383c68 394 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 395 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
396 vm_fault_t (*fault)(struct vm_fault *vmf);
397 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
398 enum page_entry_size pe_size);
82b0f8c3 399 void (*map_pages)(struct vm_fault *vmf,
bae473a4 400 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 401 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
402
403 /* notification that a previously read-only page is about to become
404 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 405 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 406
dd906184 407 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 408 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 409
28b2ee20
RR
410 /* called by access_process_vm when get_user_pages() fails, typically
411 * for use by special VMAs that can switch between memory and hardware
412 */
413 int (*access)(struct vm_area_struct *vma, unsigned long addr,
414 void *buf, int len, int write);
78d683e8
AL
415
416 /* Called by the /proc/PID/maps code to ask the vma whether it
417 * has a special name. Returning non-NULL will also cause this
418 * vma to be dumped unconditionally. */
419 const char *(*name)(struct vm_area_struct *vma);
420
1da177e4 421#ifdef CONFIG_NUMA
a6020ed7
LS
422 /*
423 * set_policy() op must add a reference to any non-NULL @new mempolicy
424 * to hold the policy upon return. Caller should pass NULL @new to
425 * remove a policy and fall back to surrounding context--i.e. do not
426 * install a MPOL_DEFAULT policy, nor the task or system default
427 * mempolicy.
428 */
1da177e4 429 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
430
431 /*
432 * get_policy() op must add reference [mpol_get()] to any policy at
433 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
434 * in mm/mempolicy.c will do this automatically.
435 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
436 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
437 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
438 * must return NULL--i.e., do not "fallback" to task or system default
439 * policy.
440 */
1da177e4
LT
441 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
442 unsigned long addr);
443#endif
667a0a06
DV
444 /*
445 * Called by vm_normal_page() for special PTEs to find the
446 * page for @addr. This is useful if the default behavior
447 * (using pte_page()) would not find the correct page.
448 */
449 struct page *(*find_special_page)(struct vm_area_struct *vma,
450 unsigned long addr);
1da177e4
LT
451};
452
453struct mmu_gather;
454struct inode;
455
349aef0b
AM
456#define page_private(page) ((page)->private)
457#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 458
5c7fb56e
DW
459#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
460static inline int pmd_devmap(pmd_t pmd)
461{
462 return 0;
463}
a00cc7d9
MW
464static inline int pud_devmap(pud_t pud)
465{
466 return 0;
467}
b59f65fa
KS
468static inline int pgd_devmap(pgd_t pgd)
469{
470 return 0;
471}
5c7fb56e
DW
472#endif
473
1da177e4
LT
474/*
475 * FIXME: take this include out, include page-flags.h in
476 * files which need it (119 of them)
477 */
478#include <linux/page-flags.h>
71e3aac0 479#include <linux/huge_mm.h>
1da177e4
LT
480
481/*
482 * Methods to modify the page usage count.
483 *
484 * What counts for a page usage:
485 * - cache mapping (page->mapping)
486 * - private data (page->private)
487 * - page mapped in a task's page tables, each mapping
488 * is counted separately
489 *
490 * Also, many kernel routines increase the page count before a critical
491 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
492 */
493
494/*
da6052f7 495 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 496 */
7c8ee9a8
NP
497static inline int put_page_testzero(struct page *page)
498{
fe896d18
JK
499 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
500 return page_ref_dec_and_test(page);
7c8ee9a8 501}
1da177e4
LT
502
503/*
7c8ee9a8
NP
504 * Try to grab a ref unless the page has a refcount of zero, return false if
505 * that is the case.
8e0861fa
AK
506 * This can be called when MMU is off so it must not access
507 * any of the virtual mappings.
1da177e4 508 */
7c8ee9a8
NP
509static inline int get_page_unless_zero(struct page *page)
510{
fe896d18 511 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 512}
1da177e4 513
53df8fdc 514extern int page_is_ram(unsigned long pfn);
124fe20d
DW
515
516enum {
517 REGION_INTERSECTS,
518 REGION_DISJOINT,
519 REGION_MIXED,
520};
521
1c29f25b
TK
522int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
523 unsigned long desc);
53df8fdc 524
48667e7a 525/* Support for virtually mapped pages */
b3bdda02
CL
526struct page *vmalloc_to_page(const void *addr);
527unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 528
0738c4bb
PM
529/*
530 * Determine if an address is within the vmalloc range
531 *
532 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
533 * is no special casing required.
534 */
bb00a789 535static inline bool is_vmalloc_addr(const void *x)
9e2779fa 536{
0738c4bb 537#ifdef CONFIG_MMU
9e2779fa
CL
538 unsigned long addr = (unsigned long)x;
539
540 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 541#else
bb00a789 542 return false;
8ca3ed87 543#endif
0738c4bb 544}
81ac3ad9
KH
545#ifdef CONFIG_MMU
546extern int is_vmalloc_or_module_addr(const void *x);
547#else
934831d0 548static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
549{
550 return 0;
551}
552#endif
9e2779fa 553
a7c3e901
MH
554extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
555static inline void *kvmalloc(size_t size, gfp_t flags)
556{
557 return kvmalloc_node(size, flags, NUMA_NO_NODE);
558}
559static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
560{
561 return kvmalloc_node(size, flags | __GFP_ZERO, node);
562}
563static inline void *kvzalloc(size_t size, gfp_t flags)
564{
565 return kvmalloc(size, flags | __GFP_ZERO);
566}
567
752ade68
MH
568static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
569{
3b3b1a29
KC
570 size_t bytes;
571
572 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
573 return NULL;
574
3b3b1a29 575 return kvmalloc(bytes, flags);
752ade68
MH
576}
577
39f1f78d
AV
578extern void kvfree(const void *addr);
579
53f9263b
KS
580static inline atomic_t *compound_mapcount_ptr(struct page *page)
581{
582 return &page[1].compound_mapcount;
583}
584
585static inline int compound_mapcount(struct page *page)
586{
5f527c2b 587 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
588 page = compound_head(page);
589 return atomic_read(compound_mapcount_ptr(page)) + 1;
590}
591
70b50f94
AA
592/*
593 * The atomic page->_mapcount, starts from -1: so that transitions
594 * both from it and to it can be tracked, using atomic_inc_and_test
595 * and atomic_add_negative(-1).
596 */
22b751c3 597static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
598{
599 atomic_set(&(page)->_mapcount, -1);
600}
601
b20ce5e0
KS
602int __page_mapcount(struct page *page);
603
70b50f94
AA
604static inline int page_mapcount(struct page *page)
605{
1d148e21 606 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 607
b20ce5e0
KS
608 if (unlikely(PageCompound(page)))
609 return __page_mapcount(page);
610 return atomic_read(&page->_mapcount) + 1;
611}
612
613#ifdef CONFIG_TRANSPARENT_HUGEPAGE
614int total_mapcount(struct page *page);
6d0a07ed 615int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
616#else
617static inline int total_mapcount(struct page *page)
618{
619 return page_mapcount(page);
70b50f94 620}
6d0a07ed
AA
621static inline int page_trans_huge_mapcount(struct page *page,
622 int *total_mapcount)
623{
624 int mapcount = page_mapcount(page);
625 if (total_mapcount)
626 *total_mapcount = mapcount;
627 return mapcount;
628}
b20ce5e0 629#endif
70b50f94 630
b49af68f
CL
631static inline struct page *virt_to_head_page(const void *x)
632{
633 struct page *page = virt_to_page(x);
ccaafd7f 634
1d798ca3 635 return compound_head(page);
b49af68f
CL
636}
637
ddc58f27
KS
638void __put_page(struct page *page);
639
1d7ea732 640void put_pages_list(struct list_head *pages);
1da177e4 641
8dfcc9ba 642void split_page(struct page *page, unsigned int order);
8dfcc9ba 643
33f2ef89
AW
644/*
645 * Compound pages have a destructor function. Provide a
646 * prototype for that function and accessor functions.
f1e61557 647 * These are _only_ valid on the head of a compound page.
33f2ef89 648 */
f1e61557
KS
649typedef void compound_page_dtor(struct page *);
650
651/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
652enum compound_dtor_id {
653 NULL_COMPOUND_DTOR,
654 COMPOUND_PAGE_DTOR,
655#ifdef CONFIG_HUGETLB_PAGE
656 HUGETLB_PAGE_DTOR,
9a982250
KS
657#endif
658#ifdef CONFIG_TRANSPARENT_HUGEPAGE
659 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
660#endif
661 NR_COMPOUND_DTORS,
662};
663extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
664
665static inline void set_compound_page_dtor(struct page *page,
f1e61557 666 enum compound_dtor_id compound_dtor)
33f2ef89 667{
f1e61557
KS
668 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
669 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
670}
671
672static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
673{
f1e61557
KS
674 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
675 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
676}
677
d00181b9 678static inline unsigned int compound_order(struct page *page)
d85f3385 679{
6d777953 680 if (!PageHead(page))
d85f3385 681 return 0;
e4b294c2 682 return page[1].compound_order;
d85f3385
CL
683}
684
f1e61557 685static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 686{
e4b294c2 687 page[1].compound_order = order;
d85f3385
CL
688}
689
9a982250
KS
690void free_compound_page(struct page *page);
691
3dece370 692#ifdef CONFIG_MMU
14fd403f
AA
693/*
694 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
695 * servicing faults for write access. In the normal case, do always want
696 * pte_mkwrite. But get_user_pages can cause write faults for mappings
697 * that do not have writing enabled, when used by access_process_vm.
698 */
699static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
700{
701 if (likely(vma->vm_flags & VM_WRITE))
702 pte = pte_mkwrite(pte);
703 return pte;
704}
8c6e50b0 705
82b0f8c3 706int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 707 struct page *page);
9118c0cb 708int finish_fault(struct vm_fault *vmf);
66a6197c 709int finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 710#endif
14fd403f 711
1da177e4
LT
712/*
713 * Multiple processes may "see" the same page. E.g. for untouched
714 * mappings of /dev/null, all processes see the same page full of
715 * zeroes, and text pages of executables and shared libraries have
716 * only one copy in memory, at most, normally.
717 *
718 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
719 * page_count() == 0 means the page is free. page->lru is then used for
720 * freelist management in the buddy allocator.
da6052f7 721 * page_count() > 0 means the page has been allocated.
1da177e4 722 *
da6052f7
NP
723 * Pages are allocated by the slab allocator in order to provide memory
724 * to kmalloc and kmem_cache_alloc. In this case, the management of the
725 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
726 * unless a particular usage is carefully commented. (the responsibility of
727 * freeing the kmalloc memory is the caller's, of course).
1da177e4 728 *
da6052f7
NP
729 * A page may be used by anyone else who does a __get_free_page().
730 * In this case, page_count still tracks the references, and should only
731 * be used through the normal accessor functions. The top bits of page->flags
732 * and page->virtual store page management information, but all other fields
733 * are unused and could be used privately, carefully. The management of this
734 * page is the responsibility of the one who allocated it, and those who have
735 * subsequently been given references to it.
736 *
737 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
738 * managed by the Linux memory manager: I/O, buffers, swapping etc.
739 * The following discussion applies only to them.
740 *
da6052f7
NP
741 * A pagecache page contains an opaque `private' member, which belongs to the
742 * page's address_space. Usually, this is the address of a circular list of
743 * the page's disk buffers. PG_private must be set to tell the VM to call
744 * into the filesystem to release these pages.
1da177e4 745 *
da6052f7
NP
746 * A page may belong to an inode's memory mapping. In this case, page->mapping
747 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 748 * in units of PAGE_SIZE.
1da177e4 749 *
da6052f7
NP
750 * If pagecache pages are not associated with an inode, they are said to be
751 * anonymous pages. These may become associated with the swapcache, and in that
752 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 753 *
da6052f7
NP
754 * In either case (swapcache or inode backed), the pagecache itself holds one
755 * reference to the page. Setting PG_private should also increment the
756 * refcount. The each user mapping also has a reference to the page.
1da177e4 757 *
da6052f7 758 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 759 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
760 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
761 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 762 *
da6052f7 763 * All pagecache pages may be subject to I/O:
1da177e4
LT
764 * - inode pages may need to be read from disk,
765 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
766 * to be written back to the inode on disk,
767 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
768 * modified may need to be swapped out to swap space and (later) to be read
769 * back into memory.
1da177e4
LT
770 */
771
772/*
773 * The zone field is never updated after free_area_init_core()
774 * sets it, so none of the operations on it need to be atomic.
1da177e4 775 */
348f8b6c 776
90572890 777/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 778#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
779#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
780#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 781#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 782
348f8b6c 783/*
25985edc 784 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
785 * sections we define the shift as 0; that plus a 0 mask ensures
786 * the compiler will optimise away reference to them.
787 */
d41dee36
AW
788#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
789#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
790#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 791#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 792
bce54bbf
WD
793/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
794#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 795#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
796#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
797 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 798#else
89689ae7 799#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
800#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
801 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
802#endif
803
bd8029b6 804#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 805
9223b419
CL
806#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
807#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
808#endif
809
d41dee36
AW
810#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
811#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
812#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 813#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 814#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 815
33dd4e0e 816static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 817{
348f8b6c 818 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 819}
1da177e4 820
260ae3f7
DW
821#ifdef CONFIG_ZONE_DEVICE
822static inline bool is_zone_device_page(const struct page *page)
823{
824 return page_zonenum(page) == ZONE_DEVICE;
825}
826#else
827static inline bool is_zone_device_page(const struct page *page)
828{
829 return false;
830}
7b2d55d2 831#endif
5042db43 832
6b368cd4 833#if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
df6ad698 834void put_zone_device_private_or_public_page(struct page *page);
6b368cd4
JG
835DECLARE_STATIC_KEY_FALSE(device_private_key);
836#define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
837static inline bool is_device_private_page(const struct page *page);
838static inline bool is_device_public_page(const struct page *page);
839#else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
df6ad698 840static inline void put_zone_device_private_or_public_page(struct page *page)
5042db43 841{
5042db43 842}
6b368cd4
JG
843#define IS_HMM_ENABLED 0
844static inline bool is_device_private_page(const struct page *page)
845{
846 return false;
847}
848static inline bool is_device_public_page(const struct page *page)
849{
850 return false;
851}
df6ad698 852#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
260ae3f7 853
7b2d55d2 854
3565fce3
DW
855static inline void get_page(struct page *page)
856{
857 page = compound_head(page);
858 /*
859 * Getting a normal page or the head of a compound page
0139aa7b 860 * requires to already have an elevated page->_refcount.
3565fce3 861 */
fe896d18
JK
862 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
863 page_ref_inc(page);
3565fce3
DW
864}
865
866static inline void put_page(struct page *page)
867{
868 page = compound_head(page);
869
7b2d55d2
JG
870 /*
871 * For private device pages we need to catch refcount transition from
872 * 2 to 1, when refcount reach one it means the private device page is
873 * free and we need to inform the device driver through callback. See
874 * include/linux/memremap.h and HMM for details.
875 */
6b368cd4
JG
876 if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
877 unlikely(is_device_public_page(page)))) {
df6ad698 878 put_zone_device_private_or_public_page(page);
7b2d55d2
JG
879 return;
880 }
881
3565fce3
DW
882 if (put_page_testzero(page))
883 __put_page(page);
3565fce3
DW
884}
885
9127ab4f
CS
886#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
887#define SECTION_IN_PAGE_FLAGS
888#endif
889
89689ae7 890/*
7a8010cd
VB
891 * The identification function is mainly used by the buddy allocator for
892 * determining if two pages could be buddies. We are not really identifying
893 * the zone since we could be using the section number id if we do not have
894 * node id available in page flags.
895 * We only guarantee that it will return the same value for two combinable
896 * pages in a zone.
89689ae7 897 */
cb2b95e1
AW
898static inline int page_zone_id(struct page *page)
899{
89689ae7 900 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
901}
902
25ba77c1 903static inline int zone_to_nid(struct zone *zone)
89fa3024 904{
d5f541ed
CL
905#ifdef CONFIG_NUMA
906 return zone->node;
907#else
908 return 0;
909#endif
89fa3024
CL
910}
911
89689ae7 912#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 913extern int page_to_nid(const struct page *page);
89689ae7 914#else
33dd4e0e 915static inline int page_to_nid(const struct page *page)
d41dee36 916{
f165b378
PT
917 struct page *p = (struct page *)page;
918
919 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 920}
89689ae7
CL
921#endif
922
57e0a030 923#ifdef CONFIG_NUMA_BALANCING
90572890 924static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 925{
90572890 926 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
927}
928
90572890 929static inline int cpupid_to_pid(int cpupid)
57e0a030 930{
90572890 931 return cpupid & LAST__PID_MASK;
57e0a030 932}
b795854b 933
90572890 934static inline int cpupid_to_cpu(int cpupid)
b795854b 935{
90572890 936 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
937}
938
90572890 939static inline int cpupid_to_nid(int cpupid)
b795854b 940{
90572890 941 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
942}
943
90572890 944static inline bool cpupid_pid_unset(int cpupid)
57e0a030 945{
90572890 946 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
947}
948
90572890 949static inline bool cpupid_cpu_unset(int cpupid)
b795854b 950{
90572890 951 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
952}
953
8c8a743c
PZ
954static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
955{
956 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
957}
958
959#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
960#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
961static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 962{
1ae71d03 963 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 964}
90572890
PZ
965
966static inline int page_cpupid_last(struct page *page)
967{
968 return page->_last_cpupid;
969}
970static inline void page_cpupid_reset_last(struct page *page)
b795854b 971{
1ae71d03 972 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
973}
974#else
90572890 975static inline int page_cpupid_last(struct page *page)
75980e97 976{
90572890 977 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
978}
979
90572890 980extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 981
90572890 982static inline void page_cpupid_reset_last(struct page *page)
75980e97 983{
09940a4f 984 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 985}
90572890
PZ
986#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
987#else /* !CONFIG_NUMA_BALANCING */
988static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 989{
90572890 990 return page_to_nid(page); /* XXX */
57e0a030
MG
991}
992
90572890 993static inline int page_cpupid_last(struct page *page)
57e0a030 994{
90572890 995 return page_to_nid(page); /* XXX */
57e0a030
MG
996}
997
90572890 998static inline int cpupid_to_nid(int cpupid)
b795854b
MG
999{
1000 return -1;
1001}
1002
90572890 1003static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1004{
1005 return -1;
1006}
1007
90572890 1008static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1009{
1010 return -1;
1011}
1012
90572890
PZ
1013static inline int cpu_pid_to_cpupid(int nid, int pid)
1014{
1015 return -1;
1016}
1017
1018static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1019{
1020 return 1;
1021}
1022
90572890 1023static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1024{
1025}
8c8a743c
PZ
1026
1027static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1028{
1029 return false;
1030}
90572890 1031#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1032
33dd4e0e 1033static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1034{
1035 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1036}
1037
75ef7184
MG
1038static inline pg_data_t *page_pgdat(const struct page *page)
1039{
1040 return NODE_DATA(page_to_nid(page));
1041}
1042
9127ab4f 1043#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1044static inline void set_page_section(struct page *page, unsigned long section)
1045{
1046 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1047 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1048}
1049
aa462abe 1050static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1051{
1052 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1053}
308c05e3 1054#endif
d41dee36 1055
2f1b6248 1056static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1057{
1058 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1059 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1060}
2f1b6248 1061
348f8b6c
DH
1062static inline void set_page_node(struct page *page, unsigned long node)
1063{
1064 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1065 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1066}
89689ae7 1067
2f1b6248 1068static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1069 unsigned long node, unsigned long pfn)
1da177e4 1070{
348f8b6c
DH
1071 set_page_zone(page, zone);
1072 set_page_node(page, node);
9127ab4f 1073#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1074 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1075#endif
1da177e4
LT
1076}
1077
0610c25d
GT
1078#ifdef CONFIG_MEMCG
1079static inline struct mem_cgroup *page_memcg(struct page *page)
1080{
1081 return page->mem_cgroup;
1082}
55779ec7
JW
1083static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1084{
1085 WARN_ON_ONCE(!rcu_read_lock_held());
1086 return READ_ONCE(page->mem_cgroup);
1087}
0610c25d
GT
1088#else
1089static inline struct mem_cgroup *page_memcg(struct page *page)
1090{
1091 return NULL;
1092}
55779ec7
JW
1093static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1094{
1095 WARN_ON_ONCE(!rcu_read_lock_held());
1096 return NULL;
1097}
0610c25d
GT
1098#endif
1099
f6ac2354
CL
1100/*
1101 * Some inline functions in vmstat.h depend on page_zone()
1102 */
1103#include <linux/vmstat.h>
1104
33dd4e0e 1105static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1106{
1dff8083 1107 return page_to_virt(page);
1da177e4
LT
1108}
1109
1110#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1111#define HASHED_PAGE_VIRTUAL
1112#endif
1113
1114#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1115static inline void *page_address(const struct page *page)
1116{
1117 return page->virtual;
1118}
1119static inline void set_page_address(struct page *page, void *address)
1120{
1121 page->virtual = address;
1122}
1da177e4
LT
1123#define page_address_init() do { } while(0)
1124#endif
1125
1126#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1127void *page_address(const struct page *page);
1da177e4
LT
1128void set_page_address(struct page *page, void *virtual);
1129void page_address_init(void);
1130#endif
1131
1132#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1133#define page_address(page) lowmem_page_address(page)
1134#define set_page_address(page, address) do { } while(0)
1135#define page_address_init() do { } while(0)
1136#endif
1137
e39155ea
KS
1138extern void *page_rmapping(struct page *page);
1139extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1140extern struct address_space *page_mapping(struct page *page);
1da177e4 1141
f981c595
MG
1142extern struct address_space *__page_file_mapping(struct page *);
1143
1144static inline
1145struct address_space *page_file_mapping(struct page *page)
1146{
1147 if (unlikely(PageSwapCache(page)))
1148 return __page_file_mapping(page);
1149
1150 return page->mapping;
1151}
1152
f6ab1f7f
HY
1153extern pgoff_t __page_file_index(struct page *page);
1154
1da177e4
LT
1155/*
1156 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1157 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1158 */
1159static inline pgoff_t page_index(struct page *page)
1160{
1161 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1162 return __page_file_index(page);
1da177e4
LT
1163 return page->index;
1164}
1165
1aa8aea5 1166bool page_mapped(struct page *page);
bda807d4 1167struct address_space *page_mapping(struct page *page);
cb9f753a 1168struct address_space *page_mapping_file(struct page *page);
1da177e4 1169
2f064f34
MH
1170/*
1171 * Return true only if the page has been allocated with
1172 * ALLOC_NO_WATERMARKS and the low watermark was not
1173 * met implying that the system is under some pressure.
1174 */
1175static inline bool page_is_pfmemalloc(struct page *page)
1176{
1177 /*
1178 * Page index cannot be this large so this must be
1179 * a pfmemalloc page.
1180 */
1181 return page->index == -1UL;
1182}
1183
1184/*
1185 * Only to be called by the page allocator on a freshly allocated
1186 * page.
1187 */
1188static inline void set_page_pfmemalloc(struct page *page)
1189{
1190 page->index = -1UL;
1191}
1192
1193static inline void clear_page_pfmemalloc(struct page *page)
1194{
1195 page->index = 0;
1196}
1197
1da177e4
LT
1198/*
1199 * Different kinds of faults, as returned by handle_mm_fault().
1200 * Used to decide whether a process gets delivered SIGBUS or
1201 * just gets major/minor fault counters bumped up.
1202 */
d0217ac0 1203
83c54070
NP
1204#define VM_FAULT_OOM 0x0001
1205#define VM_FAULT_SIGBUS 0x0002
1206#define VM_FAULT_MAJOR 0x0004
1207#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1208#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1209#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1210#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1211
83c54070
NP
1212#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1213#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1214#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1215#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
b1aa812b 1216#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
caa51d26
JK
1217#define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
1218 * and needs fsync() to complete (for
1219 * synchronous page faults in DAX) */
aa50d3a7 1220
33692f27
LT
1221#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1222 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1223 VM_FAULT_FALLBACK)
aa50d3a7 1224
282a8e03
RZ
1225#define VM_FAULT_RESULT_TRACE \
1226 { VM_FAULT_OOM, "OOM" }, \
1227 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1228 { VM_FAULT_MAJOR, "MAJOR" }, \
1229 { VM_FAULT_WRITE, "WRITE" }, \
1230 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1231 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1232 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1233 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1234 { VM_FAULT_LOCKED, "LOCKED" }, \
1235 { VM_FAULT_RETRY, "RETRY" }, \
1236 { VM_FAULT_FALLBACK, "FALLBACK" }, \
caa51d26
JK
1237 { VM_FAULT_DONE_COW, "DONE_COW" }, \
1238 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
282a8e03 1239
aa50d3a7
AK
1240/* Encode hstate index for a hwpoisoned large page */
1241#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1242#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1243
1c0fe6e3
NP
1244/*
1245 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1246 */
1247extern void pagefault_out_of_memory(void);
1248
1da177e4
LT
1249#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1250
ddd588b5 1251/*
7bf02ea2 1252 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1253 * various contexts.
1254 */
4b59e6c4 1255#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1256
9af744d7 1257extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1258
7f43add4 1259extern bool can_do_mlock(void);
1da177e4
LT
1260extern int user_shm_lock(size_t, struct user_struct *);
1261extern void user_shm_unlock(size_t, struct user_struct *);
1262
1263/*
1264 * Parameter block passed down to zap_pte_range in exceptional cases.
1265 */
1266struct zap_details {
1da177e4
LT
1267 struct address_space *check_mapping; /* Check page->mapping if set */
1268 pgoff_t first_index; /* Lowest page->index to unmap */
1269 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1270};
1271
df6ad698
JG
1272struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1273 pte_t pte, bool with_public_device);
1274#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1275
28093f9f
GS
1276struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1277 pmd_t pmd);
7e675137 1278
c627f9cc
JS
1279int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1280 unsigned long size);
14f5ff5d 1281void zap_page_range(struct vm_area_struct *vma, unsigned long address,
ecf1385d 1282 unsigned long size);
4f74d2c8
LT
1283void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1284 unsigned long start, unsigned long end);
e6473092
MM
1285
1286/**
1287 * mm_walk - callbacks for walk_page_range
a00cc7d9
MW
1288 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1289 * this handler should only handle pud_trans_huge() puds.
1290 * the pmd_entry or pte_entry callbacks will be used for
1291 * regular PUDs.
e6473092 1292 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1293 * this handler is required to be able to handle
1294 * pmd_trans_huge() pmds. They may simply choose to
1295 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1296 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1297 * @pte_hole: if set, called for each hole at all levels
5dc37642 1298 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426 1299 * @test_walk: caller specific callback function to determine whether
f7e2355f 1300 * we walk over the current vma or not. Returning 0
fafaa426
NH
1301 * value means "do page table walk over the current vma,"
1302 * and a negative one means "abort current page table walk
f7e2355f 1303 * right now." 1 means "skip the current vma."
fafaa426
NH
1304 * @mm: mm_struct representing the target process of page table walk
1305 * @vma: vma currently walked (NULL if walking outside vmas)
1306 * @private: private data for callbacks' usage
e6473092 1307 *
fafaa426 1308 * (see the comment on walk_page_range() for more details)
e6473092
MM
1309 */
1310struct mm_walk {
a00cc7d9
MW
1311 int (*pud_entry)(pud_t *pud, unsigned long addr,
1312 unsigned long next, struct mm_walk *walk);
0f157a5b
AM
1313 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1314 unsigned long next, struct mm_walk *walk);
1315 int (*pte_entry)(pte_t *pte, unsigned long addr,
1316 unsigned long next, struct mm_walk *walk);
1317 int (*pte_hole)(unsigned long addr, unsigned long next,
1318 struct mm_walk *walk);
1319 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1320 unsigned long addr, unsigned long next,
1321 struct mm_walk *walk);
fafaa426
NH
1322 int (*test_walk)(unsigned long addr, unsigned long next,
1323 struct mm_walk *walk);
2165009b 1324 struct mm_struct *mm;
fafaa426 1325 struct vm_area_struct *vma;
2165009b 1326 void *private;
e6473092
MM
1327};
1328
2165009b
DH
1329int walk_page_range(unsigned long addr, unsigned long end,
1330 struct mm_walk *walk);
900fc5f1 1331int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1332void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1333 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1334int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1335 struct vm_area_struct *vma);
09796395 1336int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 1337 unsigned long *start, unsigned long *end,
09796395 1338 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1339int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1340 unsigned long *pfn);
d87fe660 1341int follow_phys(struct vm_area_struct *vma, unsigned long address,
1342 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1343int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1344 void *buf, int len, int write);
1da177e4 1345
7caef267 1346extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1347extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1348void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1349void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1350int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1351int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1352int invalidate_inode_page(struct page *page);
1353
7ee1dd3f 1354#ifdef CONFIG_MMU
dcddffd4
KS
1355extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1356 unsigned int flags);
5c723ba5 1357extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1358 unsigned long address, unsigned int fault_flags,
1359 bool *unlocked);
977fbdcd
MW
1360void unmap_mapping_pages(struct address_space *mapping,
1361 pgoff_t start, pgoff_t nr, bool even_cows);
1362void unmap_mapping_range(struct address_space *mapping,
1363 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1364#else
dcddffd4
KS
1365static inline int handle_mm_fault(struct vm_area_struct *vma,
1366 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1367{
1368 /* should never happen if there's no MMU */
1369 BUG();
1370 return VM_FAULT_SIGBUS;
1371}
5c723ba5
PZ
1372static inline int fixup_user_fault(struct task_struct *tsk,
1373 struct mm_struct *mm, unsigned long address,
4a9e1cda 1374 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1375{
1376 /* should never happen if there's no MMU */
1377 BUG();
1378 return -EFAULT;
1379}
977fbdcd
MW
1380static inline void unmap_mapping_pages(struct address_space *mapping,
1381 pgoff_t start, pgoff_t nr, bool even_cows) { }
1382static inline void unmap_mapping_range(struct address_space *mapping,
1383 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1384#endif
f33ea7f4 1385
977fbdcd
MW
1386static inline void unmap_shared_mapping_range(struct address_space *mapping,
1387 loff_t const holebegin, loff_t const holelen)
1388{
1389 unmap_mapping_range(mapping, holebegin, holelen, 0);
1390}
1391
1392extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1393 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1394extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1395 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1396extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1397 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1398
1e987790
DH
1399long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1400 unsigned long start, unsigned long nr_pages,
9beae1ea 1401 unsigned int gup_flags, struct page **pages,
5b56d49f 1402 struct vm_area_struct **vmas, int *locked);
c12d2da5 1403long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1404 unsigned int gup_flags, struct page **pages,
cde70140 1405 struct vm_area_struct **vmas);
c12d2da5 1406long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1407 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1408long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1409 struct page **pages, unsigned int gup_flags);
2bb6d283
DW
1410#ifdef CONFIG_FS_DAX
1411long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1412 unsigned int gup_flags, struct page **pages,
1413 struct vm_area_struct **vmas);
1414#else
1415static inline long get_user_pages_longterm(unsigned long start,
1416 unsigned long nr_pages, unsigned int gup_flags,
1417 struct page **pages, struct vm_area_struct **vmas)
1418{
1419 return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1420}
1421#endif /* CONFIG_FS_DAX */
1422
d2bf6be8
NP
1423int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1424 struct page **pages);
8025e5dd
JK
1425
1426/* Container for pinned pfns / pages */
1427struct frame_vector {
1428 unsigned int nr_allocated; /* Number of frames we have space for */
1429 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1430 bool got_ref; /* Did we pin pages by getting page ref? */
1431 bool is_pfns; /* Does array contain pages or pfns? */
1432 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1433 * pfns_vector_pages() or pfns_vector_pfns()
1434 * for access */
1435};
1436
1437struct frame_vector *frame_vector_create(unsigned int nr_frames);
1438void frame_vector_destroy(struct frame_vector *vec);
1439int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1440 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1441void put_vaddr_frames(struct frame_vector *vec);
1442int frame_vector_to_pages(struct frame_vector *vec);
1443void frame_vector_to_pfns(struct frame_vector *vec);
1444
1445static inline unsigned int frame_vector_count(struct frame_vector *vec)
1446{
1447 return vec->nr_frames;
1448}
1449
1450static inline struct page **frame_vector_pages(struct frame_vector *vec)
1451{
1452 if (vec->is_pfns) {
1453 int err = frame_vector_to_pages(vec);
1454
1455 if (err)
1456 return ERR_PTR(err);
1457 }
1458 return (struct page **)(vec->ptrs);
1459}
1460
1461static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1462{
1463 if (!vec->is_pfns)
1464 frame_vector_to_pfns(vec);
1465 return (unsigned long *)(vec->ptrs);
1466}
1467
18022c5d
MG
1468struct kvec;
1469int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1470 struct page **pages);
1471int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1472struct page *get_dump_page(unsigned long addr);
1da177e4 1473
cf9a2ae8 1474extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1475extern void do_invalidatepage(struct page *page, unsigned int offset,
1476 unsigned int length);
cf9a2ae8 1477
f82b3764 1478void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1479int __set_page_dirty_nobuffers(struct page *page);
76719325 1480int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1481int redirty_page_for_writepage(struct writeback_control *wbc,
1482 struct page *page);
62cccb8c 1483void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1484void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1485 struct bdi_writeback *wb);
b3c97528 1486int set_page_dirty(struct page *page);
1da177e4 1487int set_page_dirty_lock(struct page *page);
736304f3
JK
1488void __cancel_dirty_page(struct page *page);
1489static inline void cancel_dirty_page(struct page *page)
1490{
1491 /* Avoid atomic ops, locking, etc. when not actually needed. */
1492 if (PageDirty(page))
1493 __cancel_dirty_page(page);
1494}
1da177e4 1495int clear_page_dirty_for_io(struct page *page);
b9ea2515 1496
a9090253 1497int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1498
b5330628
ON
1499static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1500{
1501 return !vma->vm_ops;
1502}
1503
b0506e48
MR
1504#ifdef CONFIG_SHMEM
1505/*
1506 * The vma_is_shmem is not inline because it is used only by slow
1507 * paths in userfault.
1508 */
1509bool vma_is_shmem(struct vm_area_struct *vma);
1510#else
1511static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1512#endif
1513
d17af505 1514int vma_is_stack_for_current(struct vm_area_struct *vma);
b7643757 1515
b6a2fea3
OW
1516extern unsigned long move_page_tables(struct vm_area_struct *vma,
1517 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1518 unsigned long new_addr, unsigned long len,
1519 bool need_rmap_locks);
7da4d641
PZ
1520extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1521 unsigned long end, pgprot_t newprot,
4b10e7d5 1522 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1523extern int mprotect_fixup(struct vm_area_struct *vma,
1524 struct vm_area_struct **pprev, unsigned long start,
1525 unsigned long end, unsigned long newflags);
1da177e4 1526
465a454f
PZ
1527/*
1528 * doesn't attempt to fault and will return short.
1529 */
1530int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1531 struct page **pages);
d559db08
KH
1532/*
1533 * per-process(per-mm_struct) statistics.
1534 */
d559db08
KH
1535static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1536{
69c97823
KK
1537 long val = atomic_long_read(&mm->rss_stat.count[member]);
1538
1539#ifdef SPLIT_RSS_COUNTING
1540 /*
1541 * counter is updated in asynchronous manner and may go to minus.
1542 * But it's never be expected number for users.
1543 */
1544 if (val < 0)
1545 val = 0;
172703b0 1546#endif
69c97823
KK
1547 return (unsigned long)val;
1548}
d559db08
KH
1549
1550static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1551{
172703b0 1552 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1553}
1554
1555static inline void inc_mm_counter(struct mm_struct *mm, int member)
1556{
172703b0 1557 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1558}
1559
1560static inline void dec_mm_counter(struct mm_struct *mm, int member)
1561{
172703b0 1562 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1563}
1564
eca56ff9
JM
1565/* Optimized variant when page is already known not to be PageAnon */
1566static inline int mm_counter_file(struct page *page)
1567{
1568 if (PageSwapBacked(page))
1569 return MM_SHMEMPAGES;
1570 return MM_FILEPAGES;
1571}
1572
1573static inline int mm_counter(struct page *page)
1574{
1575 if (PageAnon(page))
1576 return MM_ANONPAGES;
1577 return mm_counter_file(page);
1578}
1579
d559db08
KH
1580static inline unsigned long get_mm_rss(struct mm_struct *mm)
1581{
1582 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1583 get_mm_counter(mm, MM_ANONPAGES) +
1584 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1585}
1586
1587static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1588{
1589 return max(mm->hiwater_rss, get_mm_rss(mm));
1590}
1591
1592static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1593{
1594 return max(mm->hiwater_vm, mm->total_vm);
1595}
1596
1597static inline void update_hiwater_rss(struct mm_struct *mm)
1598{
1599 unsigned long _rss = get_mm_rss(mm);
1600
1601 if ((mm)->hiwater_rss < _rss)
1602 (mm)->hiwater_rss = _rss;
1603}
1604
1605static inline void update_hiwater_vm(struct mm_struct *mm)
1606{
1607 if (mm->hiwater_vm < mm->total_vm)
1608 mm->hiwater_vm = mm->total_vm;
1609}
1610
695f0559
PC
1611static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1612{
1613 mm->hiwater_rss = get_mm_rss(mm);
1614}
1615
d559db08
KH
1616static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1617 struct mm_struct *mm)
1618{
1619 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1620
1621 if (*maxrss < hiwater_rss)
1622 *maxrss = hiwater_rss;
1623}
1624
53bddb4e 1625#if defined(SPLIT_RSS_COUNTING)
05af2e10 1626void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1627#else
05af2e10 1628static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1629{
1630}
1631#endif
465a454f 1632
3565fce3
DW
1633#ifndef __HAVE_ARCH_PTE_DEVMAP
1634static inline int pte_devmap(pte_t pte)
1635{
1636 return 0;
1637}
1638#endif
1639
6d2329f8 1640int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1641
25ca1d6c
NK
1642extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1643 spinlock_t **ptl);
1644static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1645 spinlock_t **ptl)
1646{
1647 pte_t *ptep;
1648 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1649 return ptep;
1650}
c9cfcddf 1651
c2febafc
KS
1652#ifdef __PAGETABLE_P4D_FOLDED
1653static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1654 unsigned long address)
1655{
1656 return 0;
1657}
1658#else
1659int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1660#endif
1661
b4e98d9a 1662#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1663static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1664 unsigned long address)
1665{
1666 return 0;
1667}
b4e98d9a
KS
1668static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1669static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1670
5f22df00 1671#else
c2febafc 1672int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1673
b4e98d9a
KS
1674static inline void mm_inc_nr_puds(struct mm_struct *mm)
1675{
af5b0f6a 1676 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1677}
1678
1679static inline void mm_dec_nr_puds(struct mm_struct *mm)
1680{
af5b0f6a 1681 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 1682}
5f22df00
NP
1683#endif
1684
2d2f5119 1685#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1686static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1687 unsigned long address)
1688{
1689 return 0;
1690}
dc6c9a35 1691
dc6c9a35
KS
1692static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1693static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1694
5f22df00 1695#else
1bb3630e 1696int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1697
dc6c9a35
KS
1698static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1699{
af5b0f6a 1700 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
1701}
1702
1703static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1704{
af5b0f6a 1705 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 1706}
5f22df00
NP
1707#endif
1708
c4812909 1709#ifdef CONFIG_MMU
af5b0f6a 1710static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 1711{
af5b0f6a 1712 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
1713}
1714
af5b0f6a 1715static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 1716{
af5b0f6a 1717 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
1718}
1719
1720static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1721{
af5b0f6a 1722 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1723}
1724
1725static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1726{
af5b0f6a 1727 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
1728}
1729#else
c4812909 1730
af5b0f6a
KS
1731static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1732static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
1733{
1734 return 0;
1735}
1736
1737static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1738static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1739#endif
1740
3ed3a4f0 1741int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1742int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1743
1da177e4
LT
1744/*
1745 * The following ifdef needed to get the 4level-fixup.h header to work.
1746 * Remove it when 4level-fixup.h has been removed.
1747 */
1bb3630e 1748#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
505a60e2
KS
1749
1750#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
1751static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1752 unsigned long address)
1753{
1754 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1755 NULL : p4d_offset(pgd, address);
1756}
1757
1758static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1759 unsigned long address)
1da177e4 1760{
c2febafc
KS
1761 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1762 NULL : pud_offset(p4d, address);
1da177e4 1763}
505a60e2 1764#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4
LT
1765
1766static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1767{
1bb3630e
HD
1768 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1769 NULL: pmd_offset(pud, address);
1da177e4 1770}
1bb3630e
HD
1771#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1772
57c1ffce 1773#if USE_SPLIT_PTE_PTLOCKS
597d795a 1774#if ALLOC_SPLIT_PTLOCKS
b35f1819 1775void __init ptlock_cache_init(void);
539edb58
PZ
1776extern bool ptlock_alloc(struct page *page);
1777extern void ptlock_free(struct page *page);
1778
1779static inline spinlock_t *ptlock_ptr(struct page *page)
1780{
1781 return page->ptl;
1782}
597d795a 1783#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1784static inline void ptlock_cache_init(void)
1785{
1786}
1787
49076ec2
KS
1788static inline bool ptlock_alloc(struct page *page)
1789{
49076ec2
KS
1790 return true;
1791}
539edb58 1792
49076ec2
KS
1793static inline void ptlock_free(struct page *page)
1794{
49076ec2
KS
1795}
1796
1797static inline spinlock_t *ptlock_ptr(struct page *page)
1798{
539edb58 1799 return &page->ptl;
49076ec2 1800}
597d795a 1801#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1802
1803static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1804{
1805 return ptlock_ptr(pmd_page(*pmd));
1806}
1807
1808static inline bool ptlock_init(struct page *page)
1809{
1810 /*
1811 * prep_new_page() initialize page->private (and therefore page->ptl)
1812 * with 0. Make sure nobody took it in use in between.
1813 *
1814 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1815 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1816 */
309381fe 1817 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1818 if (!ptlock_alloc(page))
1819 return false;
1820 spin_lock_init(ptlock_ptr(page));
1821 return true;
1822}
1823
1824/* Reset page->mapping so free_pages_check won't complain. */
1825static inline void pte_lock_deinit(struct page *page)
1826{
1827 page->mapping = NULL;
1828 ptlock_free(page);
1829}
1830
57c1ffce 1831#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1832/*
1833 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1834 */
49076ec2
KS
1835static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1836{
1837 return &mm->page_table_lock;
1838}
b35f1819 1839static inline void ptlock_cache_init(void) {}
49076ec2
KS
1840static inline bool ptlock_init(struct page *page) { return true; }
1841static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1842#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1843
b35f1819
KS
1844static inline void pgtable_init(void)
1845{
1846 ptlock_cache_init();
1847 pgtable_cache_init();
1848}
1849
390f44e2 1850static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1851{
706874e9
VD
1852 if (!ptlock_init(page))
1853 return false;
2f569afd 1854 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1855 return true;
2f569afd
MS
1856}
1857
1858static inline void pgtable_page_dtor(struct page *page)
1859{
1860 pte_lock_deinit(page);
1861 dec_zone_page_state(page, NR_PAGETABLE);
1862}
1863
c74df32c
HD
1864#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1865({ \
4c21e2f2 1866 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1867 pte_t *__pte = pte_offset_map(pmd, address); \
1868 *(ptlp) = __ptl; \
1869 spin_lock(__ptl); \
1870 __pte; \
1871})
1872
1873#define pte_unmap_unlock(pte, ptl) do { \
1874 spin_unlock(ptl); \
1875 pte_unmap(pte); \
1876} while (0)
1877
3ed3a4f0
KS
1878#define pte_alloc(mm, pmd, address) \
1879 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1880
1881#define pte_alloc_map(mm, pmd, address) \
1882 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1883
c74df32c 1884#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1885 (pte_alloc(mm, pmd, address) ? \
1886 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1887
1bb3630e 1888#define pte_alloc_kernel(pmd, address) \
8ac1f832 1889 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1890 NULL: pte_offset_kernel(pmd, address))
1da177e4 1891
e009bb30
KS
1892#if USE_SPLIT_PMD_PTLOCKS
1893
634391ac
MS
1894static struct page *pmd_to_page(pmd_t *pmd)
1895{
1896 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1897 return virt_to_page((void *)((unsigned long) pmd & mask));
1898}
1899
e009bb30
KS
1900static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1901{
634391ac 1902 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1903}
1904
1905static inline bool pgtable_pmd_page_ctor(struct page *page)
1906{
e009bb30
KS
1907#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1908 page->pmd_huge_pte = NULL;
1909#endif
49076ec2 1910 return ptlock_init(page);
e009bb30
KS
1911}
1912
1913static inline void pgtable_pmd_page_dtor(struct page *page)
1914{
1915#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1916 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1917#endif
49076ec2 1918 ptlock_free(page);
e009bb30
KS
1919}
1920
634391ac 1921#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1922
1923#else
1924
9a86cb7b
KS
1925static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1926{
1927 return &mm->page_table_lock;
1928}
1929
e009bb30
KS
1930static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1931static inline void pgtable_pmd_page_dtor(struct page *page) {}
1932
c389a250 1933#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1934
e009bb30
KS
1935#endif
1936
9a86cb7b
KS
1937static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1938{
1939 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1940 spin_lock(ptl);
1941 return ptl;
1942}
1943
a00cc7d9
MW
1944/*
1945 * No scalability reason to split PUD locks yet, but follow the same pattern
1946 * as the PMD locks to make it easier if we decide to. The VM should not be
1947 * considered ready to switch to split PUD locks yet; there may be places
1948 * which need to be converted from page_table_lock.
1949 */
1950static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1951{
1952 return &mm->page_table_lock;
1953}
1954
1955static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1956{
1957 spinlock_t *ptl = pud_lockptr(mm, pud);
1958
1959 spin_lock(ptl);
1960 return ptl;
1961}
62906027 1962
a00cc7d9 1963extern void __init pagecache_init(void);
1da177e4 1964extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1965extern void free_area_init_node(int nid, unsigned long * zones_size,
1966 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1967extern void free_initmem(void);
1968
69afade7
JL
1969/*
1970 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1971 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1972 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1973 * Return pages freed into the buddy system.
1974 */
11199692 1975extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1976 int poison, char *s);
c3d5f5f0 1977
cfa11e08
JL
1978#ifdef CONFIG_HIGHMEM
1979/*
1980 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1981 * and totalram_pages.
1982 */
1983extern void free_highmem_page(struct page *page);
1984#endif
69afade7 1985
c3d5f5f0 1986extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1987extern void mem_init_print_info(const char *str);
69afade7 1988
4b50bcc7 1989extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 1990
69afade7
JL
1991/* Free the reserved page into the buddy system, so it gets managed. */
1992static inline void __free_reserved_page(struct page *page)
1993{
1994 ClearPageReserved(page);
1995 init_page_count(page);
1996 __free_page(page);
1997}
1998
1999static inline void free_reserved_page(struct page *page)
2000{
2001 __free_reserved_page(page);
2002 adjust_managed_page_count(page, 1);
2003}
2004
2005static inline void mark_page_reserved(struct page *page)
2006{
2007 SetPageReserved(page);
2008 adjust_managed_page_count(page, -1);
2009}
2010
2011/*
2012 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2013 * The freed pages will be poisoned with pattern "poison" if it's within
2014 * range [0, UCHAR_MAX].
2015 * Return pages freed into the buddy system.
69afade7
JL
2016 */
2017static inline unsigned long free_initmem_default(int poison)
2018{
2019 extern char __init_begin[], __init_end[];
2020
11199692 2021 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2022 poison, "unused kernel");
2023}
2024
7ee3d4e8
JL
2025static inline unsigned long get_num_physpages(void)
2026{
2027 int nid;
2028 unsigned long phys_pages = 0;
2029
2030 for_each_online_node(nid)
2031 phys_pages += node_present_pages(nid);
2032
2033 return phys_pages;
2034}
2035
0ee332c1 2036#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2037/*
0ee332c1 2038 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2039 * zones, allocate the backing mem_map and account for memory holes in a more
2040 * architecture independent manner. This is a substitute for creating the
2041 * zone_sizes[] and zholes_size[] arrays and passing them to
2042 * free_area_init_node()
2043 *
2044 * An architecture is expected to register range of page frames backed by
0ee332c1 2045 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2046 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2047 * usage, an architecture is expected to do something like
2048 *
2049 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2050 * max_highmem_pfn};
2051 * for_each_valid_physical_page_range()
0ee332c1 2052 * memblock_add_node(base, size, nid)
c713216d
MG
2053 * free_area_init_nodes(max_zone_pfns);
2054 *
0ee332c1
TH
2055 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2056 * registered physical page range. Similarly
2057 * sparse_memory_present_with_active_regions() calls memory_present() for
2058 * each range when SPARSEMEM is enabled.
c713216d
MG
2059 *
2060 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2061 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2062 */
2063extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2064unsigned long node_map_pfn_alignment(void);
32996250
YL
2065unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2066 unsigned long end_pfn);
c713216d
MG
2067extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2068 unsigned long end_pfn);
2069extern void get_pfn_range_for_nid(unsigned int nid,
2070 unsigned long *start_pfn, unsigned long *end_pfn);
2071extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2072extern void free_bootmem_with_active_regions(int nid,
2073 unsigned long max_low_pfn);
2074extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2075
0ee332c1 2076#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2077
0ee332c1 2078#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2079 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
2080static inline int __early_pfn_to_nid(unsigned long pfn,
2081 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
2082{
2083 return 0;
2084}
2085#else
2086/* please see mm/page_alloc.c */
2087extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2088/* there is a per-arch backend function. */
8a942fde
MG
2089extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2090 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2091#endif
2092
a4a3ede2
PT
2093#ifdef CONFIG_HAVE_MEMBLOCK
2094void zero_resv_unavail(void);
2095#else
2096static inline void zero_resv_unavail(void) {}
2097#endif
2098
0e0b864e 2099extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2100extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2101 enum memmap_context, struct vmem_altmap *);
bc75d33f 2102extern void setup_per_zone_wmarks(void);
1b79acc9 2103extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2104extern void mem_init(void);
8feae131 2105extern void __init mmap_init(void);
9af744d7 2106extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2107extern long si_mem_available(void);
1da177e4
LT
2108extern void si_meminfo(struct sysinfo * val);
2109extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2110#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2111extern unsigned long arch_reserved_kernel_pages(void);
2112#endif
1da177e4 2113
a8e99259
MH
2114extern __printf(3, 4)
2115void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2116
e7c8d5c9 2117extern void setup_per_cpu_pageset(void);
e7c8d5c9 2118
112067f0 2119extern void zone_pcp_update(struct zone *zone);
340175b7 2120extern void zone_pcp_reset(struct zone *zone);
112067f0 2121
75f7ad8e
PS
2122/* page_alloc.c */
2123extern int min_free_kbytes;
795ae7a0 2124extern int watermark_scale_factor;
75f7ad8e 2125
8feae131 2126/* nommu.c */
33e5d769 2127extern atomic_long_t mmap_pages_allocated;
7e660872 2128extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2129
6b2dbba8 2130/* interval_tree.c */
6b2dbba8 2131void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2132 struct rb_root_cached *root);
9826a516
ML
2133void vma_interval_tree_insert_after(struct vm_area_struct *node,
2134 struct vm_area_struct *prev,
f808c13f 2135 struct rb_root_cached *root);
6b2dbba8 2136void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2137 struct rb_root_cached *root);
2138struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2139 unsigned long start, unsigned long last);
2140struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2141 unsigned long start, unsigned long last);
2142
2143#define vma_interval_tree_foreach(vma, root, start, last) \
2144 for (vma = vma_interval_tree_iter_first(root, start, last); \
2145 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2146
bf181b9f 2147void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2148 struct rb_root_cached *root);
bf181b9f 2149void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2150 struct rb_root_cached *root);
2151struct anon_vma_chain *
2152anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2153 unsigned long start, unsigned long last);
bf181b9f
ML
2154struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2155 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2156#ifdef CONFIG_DEBUG_VM_RB
2157void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2158#endif
bf181b9f
ML
2159
2160#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2161 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2162 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2163
1da177e4 2164/* mmap.c */
34b4e4aa 2165extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2166extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2167 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2168 struct vm_area_struct *expand);
2169static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2170 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2171{
2172 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2173}
1da177e4
LT
2174extern struct vm_area_struct *vma_merge(struct mm_struct *,
2175 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2176 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2177 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2178extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2179extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2180 unsigned long addr, int new_below);
2181extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2182 unsigned long addr, int new_below);
1da177e4
LT
2183extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2184extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2185 struct rb_node **, struct rb_node *);
a8fb5618 2186extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2187extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2188 unsigned long addr, unsigned long len, pgoff_t pgoff,
2189 bool *need_rmap_locks);
1da177e4 2190extern void exit_mmap(struct mm_struct *);
925d1c40 2191
9c599024
CG
2192static inline int check_data_rlimit(unsigned long rlim,
2193 unsigned long new,
2194 unsigned long start,
2195 unsigned long end_data,
2196 unsigned long start_data)
2197{
2198 if (rlim < RLIM_INFINITY) {
2199 if (((new - start) + (end_data - start_data)) > rlim)
2200 return -ENOSPC;
2201 }
2202
2203 return 0;
2204}
2205
7906d00c
AA
2206extern int mm_take_all_locks(struct mm_struct *mm);
2207extern void mm_drop_all_locks(struct mm_struct *mm);
2208
38646013
JS
2209extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2210extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2211extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2212
84638335
KK
2213extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2214extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2215
2eefd878
DS
2216extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2217 const struct vm_special_mapping *sm);
3935ed6a
SS
2218extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2219 unsigned long addr, unsigned long len,
a62c34bd
AL
2220 unsigned long flags,
2221 const struct vm_special_mapping *spec);
2222/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2223extern int install_special_mapping(struct mm_struct *mm,
2224 unsigned long addr, unsigned long len,
2225 unsigned long flags, struct page **pages);
1da177e4
LT
2226
2227extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2228
0165ab44 2229extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2230 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2231 struct list_head *uf);
1fcfd8db 2232extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2233 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2234 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2235 struct list_head *uf);
2236extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2237 struct list_head *uf);
1da177e4 2238
1fcfd8db
ON
2239static inline unsigned long
2240do_mmap_pgoff(struct file *file, unsigned long addr,
2241 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2242 unsigned long pgoff, unsigned long *populate,
2243 struct list_head *uf)
1fcfd8db 2244{
897ab3e0 2245 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2246}
2247
bebeb3d6
ML
2248#ifdef CONFIG_MMU
2249extern int __mm_populate(unsigned long addr, unsigned long len,
2250 int ignore_errors);
2251static inline void mm_populate(unsigned long addr, unsigned long len)
2252{
2253 /* Ignore errors */
2254 (void) __mm_populate(addr, len, 1);
2255}
2256#else
2257static inline void mm_populate(unsigned long addr, unsigned long len) {}
2258#endif
2259
e4eb1ff6 2260/* These take the mm semaphore themselves */
5d22fc25 2261extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2262extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2263extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2264extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2265 unsigned long, unsigned long,
2266 unsigned long, unsigned long);
1da177e4 2267
db4fbfb9
ML
2268struct vm_unmapped_area_info {
2269#define VM_UNMAPPED_AREA_TOPDOWN 1
2270 unsigned long flags;
2271 unsigned long length;
2272 unsigned long low_limit;
2273 unsigned long high_limit;
2274 unsigned long align_mask;
2275 unsigned long align_offset;
2276};
2277
2278extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2279extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2280
2281/*
2282 * Search for an unmapped address range.
2283 *
2284 * We are looking for a range that:
2285 * - does not intersect with any VMA;
2286 * - is contained within the [low_limit, high_limit) interval;
2287 * - is at least the desired size.
2288 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2289 */
2290static inline unsigned long
2291vm_unmapped_area(struct vm_unmapped_area_info *info)
2292{
cdd7875e 2293 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2294 return unmapped_area_topdown(info);
cdd7875e
BP
2295 else
2296 return unmapped_area(info);
db4fbfb9
ML
2297}
2298
85821aab 2299/* truncate.c */
1da177e4 2300extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2301extern void truncate_inode_pages_range(struct address_space *,
2302 loff_t lstart, loff_t lend);
91b0abe3 2303extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2304
2305/* generic vm_area_ops exported for stackable file systems */
11bac800 2306extern int filemap_fault(struct vm_fault *vmf);
82b0f8c3 2307extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2308 pgoff_t start_pgoff, pgoff_t end_pgoff);
11bac800 2309extern int filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2310
2311/* mm/page-writeback.c */
2b69c828 2312int __must_check write_one_page(struct page *page);
1cf6e7d8 2313void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2314
2315/* readahead.c */
2316#define VM_MAX_READAHEAD 128 /* kbytes */
2317#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2318
1da177e4 2319int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2320 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2321
2322void page_cache_sync_readahead(struct address_space *mapping,
2323 struct file_ra_state *ra,
2324 struct file *filp,
2325 pgoff_t offset,
2326 unsigned long size);
2327
2328void page_cache_async_readahead(struct address_space *mapping,
2329 struct file_ra_state *ra,
2330 struct file *filp,
2331 struct page *pg,
2332 pgoff_t offset,
2333 unsigned long size);
2334
1be7107f 2335extern unsigned long stack_guard_gap;
d05f3169 2336/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2337extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2338
2339/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2340extern int expand_downwards(struct vm_area_struct *vma,
2341 unsigned long address);
8ca3eb08 2342#if VM_GROWSUP
46dea3d0 2343extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2344#else
fee7e49d 2345 #define expand_upwards(vma, address) (0)
9ab88515 2346#endif
1da177e4
LT
2347
2348/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2349extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2350extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2351 struct vm_area_struct **pprev);
2352
2353/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2354 NULL if none. Assume start_addr < end_addr. */
2355static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2356{
2357 struct vm_area_struct * vma = find_vma(mm,start_addr);
2358
2359 if (vma && end_addr <= vma->vm_start)
2360 vma = NULL;
2361 return vma;
2362}
2363
1be7107f
HD
2364static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2365{
2366 unsigned long vm_start = vma->vm_start;
2367
2368 if (vma->vm_flags & VM_GROWSDOWN) {
2369 vm_start -= stack_guard_gap;
2370 if (vm_start > vma->vm_start)
2371 vm_start = 0;
2372 }
2373 return vm_start;
2374}
2375
2376static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2377{
2378 unsigned long vm_end = vma->vm_end;
2379
2380 if (vma->vm_flags & VM_GROWSUP) {
2381 vm_end += stack_guard_gap;
2382 if (vm_end < vma->vm_end)
2383 vm_end = -PAGE_SIZE;
2384 }
2385 return vm_end;
2386}
2387
1da177e4
LT
2388static inline unsigned long vma_pages(struct vm_area_struct *vma)
2389{
2390 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2391}
2392
640708a2
PE
2393/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2394static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2395 unsigned long vm_start, unsigned long vm_end)
2396{
2397 struct vm_area_struct *vma = find_vma(mm, vm_start);
2398
2399 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2400 vma = NULL;
2401
2402 return vma;
2403}
2404
bad849b3 2405#ifdef CONFIG_MMU
804af2cf 2406pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2407void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2408#else
2409static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2410{
2411 return __pgprot(0);
2412}
64e45507
PF
2413static inline void vma_set_page_prot(struct vm_area_struct *vma)
2414{
2415 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2416}
bad849b3
DH
2417#endif
2418
5877231f 2419#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2420unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2421 unsigned long start, unsigned long end);
2422#endif
2423
deceb6cd 2424struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2425int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2426 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2427int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2428int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2429 unsigned long pfn);
1745cbc5
AL
2430int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2431 unsigned long pfn, pgprot_t pgprot);
423bad60 2432int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2433 pfn_t pfn);
ab77dab4
SJ
2434vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2435 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2436int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2437
1c8f4220
SJ
2438static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2439 unsigned long addr, struct page *page)
2440{
2441 int err = vm_insert_page(vma, addr, page);
2442
2443 if (err == -ENOMEM)
2444 return VM_FAULT_OOM;
2445 if (err < 0 && err != -EBUSY)
2446 return VM_FAULT_SIGBUS;
2447
2448 return VM_FAULT_NOPAGE;
2449}
2450
2451static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
2452 unsigned long addr, pfn_t pfn)
2453{
2454 int err = vm_insert_mixed(vma, addr, pfn);
2455
2456 if (err == -ENOMEM)
2457 return VM_FAULT_OOM;
2458 if (err < 0 && err != -EBUSY)
2459 return VM_FAULT_SIGBUS;
2460
2461 return VM_FAULT_NOPAGE;
2462}
2463
2464static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
2465 unsigned long addr, unsigned long pfn)
2466{
2467 int err = vm_insert_pfn(vma, addr, pfn);
2468
2469 if (err == -ENOMEM)
2470 return VM_FAULT_OOM;
2471 if (err < 0 && err != -EBUSY)
2472 return VM_FAULT_SIGBUS;
2473
2474 return VM_FAULT_NOPAGE;
2475}
deceb6cd 2476
d97baf94
SJ
2477static inline vm_fault_t vmf_error(int err)
2478{
2479 if (err == -ENOMEM)
2480 return VM_FAULT_OOM;
2481 return VM_FAULT_SIGBUS;
2482}
2483
240aadee
ML
2484struct page *follow_page_mask(struct vm_area_struct *vma,
2485 unsigned long address, unsigned int foll_flags,
2486 unsigned int *page_mask);
2487
2488static inline struct page *follow_page(struct vm_area_struct *vma,
2489 unsigned long address, unsigned int foll_flags)
2490{
2491 unsigned int unused_page_mask;
2492 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2493}
2494
deceb6cd
HD
2495#define FOLL_WRITE 0x01 /* check pte is writable */
2496#define FOLL_TOUCH 0x02 /* mark page accessed */
2497#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2498#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2499#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2500#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2501 * and return without waiting upon it */
84d33df2 2502#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2503#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2504#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2505#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2506#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2507#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2508#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2509#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2510#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2511#define FOLL_ANON 0x8000 /* don't do file mappings */
1da177e4 2512
9a291a7c
JM
2513static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2514{
2515 if (vm_fault & VM_FAULT_OOM)
2516 return -ENOMEM;
2517 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2518 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2519 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2520 return -EFAULT;
2521 return 0;
2522}
2523
2f569afd 2524typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2525 void *data);
2526extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2527 unsigned long size, pte_fn_t fn, void *data);
2528
1da177e4 2529
8823b1db
LA
2530#ifdef CONFIG_PAGE_POISONING
2531extern bool page_poisoning_enabled(void);
2532extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2533extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2534#else
2535static inline bool page_poisoning_enabled(void) { return false; }
2536static inline void kernel_poison_pages(struct page *page, int numpages,
2537 int enable) { }
1414c7f4 2538static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2539#endif
2540
12d6f21e 2541#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2542extern bool _debug_pagealloc_enabled;
2543extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2544
2545static inline bool debug_pagealloc_enabled(void)
2546{
2547 return _debug_pagealloc_enabled;
2548}
2549
2550static inline void
2551kernel_map_pages(struct page *page, int numpages, int enable)
2552{
2553 if (!debug_pagealloc_enabled())
2554 return;
2555
2556 __kernel_map_pages(page, numpages, enable);
2557}
8a235efa
RW
2558#ifdef CONFIG_HIBERNATION
2559extern bool kernel_page_present(struct page *page);
40b44137
JK
2560#endif /* CONFIG_HIBERNATION */
2561#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2562static inline void
9858db50 2563kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2564#ifdef CONFIG_HIBERNATION
2565static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2566#endif /* CONFIG_HIBERNATION */
2567static inline bool debug_pagealloc_enabled(void)
2568{
2569 return false;
2570}
2571#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2572
a6c19dfe 2573#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2574extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2575extern int in_gate_area_no_mm(unsigned long addr);
2576extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2577#else
a6c19dfe
AL
2578static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2579{
2580 return NULL;
2581}
2582static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2583static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2584{
2585 return 0;
2586}
1da177e4
LT
2587#endif /* __HAVE_ARCH_GATE_AREA */
2588
44a70ade
MH
2589extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2590
146732ce
JT
2591#ifdef CONFIG_SYSCTL
2592extern int sysctl_drop_caches;
8d65af78 2593int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2594 void __user *, size_t *, loff_t *);
146732ce
JT
2595#endif
2596
cb731d6c
VD
2597void drop_slab(void);
2598void drop_slab_node(int nid);
9d0243bc 2599
7a9166e3
LY
2600#ifndef CONFIG_MMU
2601#define randomize_va_space 0
2602#else
a62eaf15 2603extern int randomize_va_space;
7a9166e3 2604#endif
a62eaf15 2605
045e72ac 2606const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2607void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2608
9bdac914
YL
2609void sparse_mem_maps_populate_node(struct page **map_map,
2610 unsigned long pnum_begin,
2611 unsigned long pnum_end,
2612 unsigned long map_count,
2613 int nodeid);
2614
7b73d978
CH
2615struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2616 struct vmem_altmap *altmap);
29c71111 2617pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2618p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2619pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
2620pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2621pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2622void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2623struct vmem_altmap;
a8fc357b
CH
2624void *vmemmap_alloc_block_buf(unsigned long size, int node);
2625void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 2626void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2627int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2628 int node);
7b73d978
CH
2629int vmemmap_populate(unsigned long start, unsigned long end, int node,
2630 struct vmem_altmap *altmap);
c2b91e2e 2631void vmemmap_populate_print_last(void);
0197518c 2632#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2633void vmemmap_free(unsigned long start, unsigned long end,
2634 struct vmem_altmap *altmap);
0197518c 2635#endif
46723bfa 2636void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2637 unsigned long nr_pages);
6a46079c 2638
82ba011b
AK
2639enum mf_flags {
2640 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2641 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2642 MF_MUST_KILL = 1 << 2,
cf870c70 2643 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2644};
83b57531
EB
2645extern int memory_failure(unsigned long pfn, int flags);
2646extern void memory_failure_queue(unsigned long pfn, int flags);
847ce401 2647extern int unpoison_memory(unsigned long pfn);
ead07f6a 2648extern int get_hwpoison_page(struct page *page);
4e41a30c 2649#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2650extern int sysctl_memory_failure_early_kill;
2651extern int sysctl_memory_failure_recovery;
facb6011 2652extern void shake_page(struct page *p, int access);
5844a486 2653extern atomic_long_t num_poisoned_pages __read_mostly;
facb6011 2654extern int soft_offline_page(struct page *page, int flags);
6a46079c 2655
cc637b17
XX
2656
2657/*
2658 * Error handlers for various types of pages.
2659 */
cc3e2af4 2660enum mf_result {
cc637b17
XX
2661 MF_IGNORED, /* Error: cannot be handled */
2662 MF_FAILED, /* Error: handling failed */
2663 MF_DELAYED, /* Will be handled later */
2664 MF_RECOVERED, /* Successfully recovered */
2665};
2666
2667enum mf_action_page_type {
2668 MF_MSG_KERNEL,
2669 MF_MSG_KERNEL_HIGH_ORDER,
2670 MF_MSG_SLAB,
2671 MF_MSG_DIFFERENT_COMPOUND,
2672 MF_MSG_POISONED_HUGE,
2673 MF_MSG_HUGE,
2674 MF_MSG_FREE_HUGE,
31286a84 2675 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
2676 MF_MSG_UNMAP_FAILED,
2677 MF_MSG_DIRTY_SWAPCACHE,
2678 MF_MSG_CLEAN_SWAPCACHE,
2679 MF_MSG_DIRTY_MLOCKED_LRU,
2680 MF_MSG_CLEAN_MLOCKED_LRU,
2681 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2682 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2683 MF_MSG_DIRTY_LRU,
2684 MF_MSG_CLEAN_LRU,
2685 MF_MSG_TRUNCATED_LRU,
2686 MF_MSG_BUDDY,
2687 MF_MSG_BUDDY_2ND,
2688 MF_MSG_UNKNOWN,
2689};
2690
47ad8475
AA
2691#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2692extern void clear_huge_page(struct page *page,
c79b57e4 2693 unsigned long addr_hint,
47ad8475
AA
2694 unsigned int pages_per_huge_page);
2695extern void copy_user_huge_page(struct page *dst, struct page *src,
2696 unsigned long addr, struct vm_area_struct *vma,
2697 unsigned int pages_per_huge_page);
fa4d75c1
MK
2698extern long copy_huge_page_from_user(struct page *dst_page,
2699 const void __user *usr_src,
810a56b9
MK
2700 unsigned int pages_per_huge_page,
2701 bool allow_pagefault);
47ad8475
AA
2702#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2703
e30825f1 2704extern struct page_ext_operations debug_guardpage_ops;
e30825f1 2705
c0a32fc5
SG
2706#ifdef CONFIG_DEBUG_PAGEALLOC
2707extern unsigned int _debug_guardpage_minorder;
e30825f1 2708extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2709
2710static inline unsigned int debug_guardpage_minorder(void)
2711{
2712 return _debug_guardpage_minorder;
2713}
2714
e30825f1
JK
2715static inline bool debug_guardpage_enabled(void)
2716{
2717 return _debug_guardpage_enabled;
2718}
2719
c0a32fc5
SG
2720static inline bool page_is_guard(struct page *page)
2721{
e30825f1
JK
2722 struct page_ext *page_ext;
2723
2724 if (!debug_guardpage_enabled())
2725 return false;
2726
2727 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2728 if (unlikely(!page_ext))
2729 return false;
2730
e30825f1 2731 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2732}
2733#else
2734static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2735static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2736static inline bool page_is_guard(struct page *page) { return false; }
2737#endif /* CONFIG_DEBUG_PAGEALLOC */
2738
f9872caf
CS
2739#if MAX_NUMNODES > 1
2740void __init setup_nr_node_ids(void);
2741#else
2742static inline void setup_nr_node_ids(void) {}
2743#endif
2744
1da177e4
LT
2745#endif /* __KERNEL__ */
2746#endif /* _LINUX_MM_H */