mm: make early_pfn_to_nid() and related defintions close to each other
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
08677214 18#include <linux/range.h>
c6f6b596 19#include <linux/pfn.h>
3565fce3 20#include <linux/percpu-refcount.h>
e9da73d6 21#include <linux/bit_spinlock.h>
b0d40c92 22#include <linux/shrinker.h>
9c599024 23#include <linux/resource.h>
e30825f1 24#include <linux/page_ext.h>
8025e5dd 25#include <linux/err.h>
fe896d18 26#include <linux/page_ref.h>
7b2d55d2 27#include <linux/memremap.h>
3b3b1a29 28#include <linux/overflow.h>
b5420237 29#include <linux/sizes.h>
7969f226 30#include <linux/sched.h>
1da177e4
LT
31
32struct mempolicy;
33struct anon_vma;
bf181b9f 34struct anon_vma_chain;
4e950f6f 35struct file_ra_state;
e8edc6e0 36struct user_struct;
4e950f6f 37struct writeback_control;
682aa8e1 38struct bdi_writeback;
1da177e4 39
597b7305
MH
40void init_mm_internals(void);
41
fccc9987 42#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 43extern unsigned long max_mapnr;
fccc9987
JL
44
45static inline void set_max_mapnr(unsigned long limit)
46{
47 max_mapnr = limit;
48}
49#else
50static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
51#endif
52
ca79b0c2
AK
53extern atomic_long_t _totalram_pages;
54static inline unsigned long totalram_pages(void)
55{
56 return (unsigned long)atomic_long_read(&_totalram_pages);
57}
58
59static inline void totalram_pages_inc(void)
60{
61 atomic_long_inc(&_totalram_pages);
62}
63
64static inline void totalram_pages_dec(void)
65{
66 atomic_long_dec(&_totalram_pages);
67}
68
69static inline void totalram_pages_add(long count)
70{
71 atomic_long_add(count, &_totalram_pages);
72}
73
1da177e4 74extern void * high_memory;
1da177e4
LT
75extern int page_cluster;
76
77#ifdef CONFIG_SYSCTL
78extern int sysctl_legacy_va_layout;
79#else
80#define sysctl_legacy_va_layout 0
81#endif
82
d07e2259
DC
83#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
84extern const int mmap_rnd_bits_min;
85extern const int mmap_rnd_bits_max;
86extern int mmap_rnd_bits __read_mostly;
87#endif
88#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
89extern const int mmap_rnd_compat_bits_min;
90extern const int mmap_rnd_compat_bits_max;
91extern int mmap_rnd_compat_bits __read_mostly;
92#endif
93
1da177e4
LT
94#include <asm/page.h>
95#include <asm/pgtable.h>
96#include <asm/processor.h>
1da177e4 97
d9344522
AK
98/*
99 * Architectures that support memory tagging (assigning tags to memory regions,
100 * embedding these tags into addresses that point to these memory regions, and
101 * checking that the memory and the pointer tags match on memory accesses)
102 * redefine this macro to strip tags from pointers.
103 * It's defined as noop for arcitectures that don't support memory tagging.
104 */
105#ifndef untagged_addr
106#define untagged_addr(addr) (addr)
107#endif
108
79442ed1
TC
109#ifndef __pa_symbol
110#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
111#endif
112
1dff8083
AB
113#ifndef page_to_virt
114#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
115#endif
116
568c5fe5
LA
117#ifndef lm_alias
118#define lm_alias(x) __va(__pa_symbol(x))
119#endif
120
593befa6
DD
121/*
122 * To prevent common memory management code establishing
123 * a zero page mapping on a read fault.
124 * This macro should be defined within <asm/pgtable.h>.
125 * s390 does this to prevent multiplexing of hardware bits
126 * related to the physical page in case of virtualization.
127 */
128#ifndef mm_forbids_zeropage
129#define mm_forbids_zeropage(X) (0)
130#endif
131
a4a3ede2
PT
132/*
133 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
134 * If an architecture decides to implement their own version of
135 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
136 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 137 */
5470dea4
AD
138#if BITS_PER_LONG == 64
139/* This function must be updated when the size of struct page grows above 80
140 * or reduces below 56. The idea that compiler optimizes out switch()
141 * statement, and only leaves move/store instructions. Also the compiler can
142 * combine write statments if they are both assignments and can be reordered,
143 * this can result in several of the writes here being dropped.
144 */
145#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
146static inline void __mm_zero_struct_page(struct page *page)
147{
148 unsigned long *_pp = (void *)page;
149
150 /* Check that struct page is either 56, 64, 72, or 80 bytes */
151 BUILD_BUG_ON(sizeof(struct page) & 7);
152 BUILD_BUG_ON(sizeof(struct page) < 56);
153 BUILD_BUG_ON(sizeof(struct page) > 80);
154
155 switch (sizeof(struct page)) {
156 case 80:
157 _pp[9] = 0; /* fallthrough */
158 case 72:
159 _pp[8] = 0; /* fallthrough */
160 case 64:
161 _pp[7] = 0; /* fallthrough */
162 case 56:
163 _pp[6] = 0;
164 _pp[5] = 0;
165 _pp[4] = 0;
166 _pp[3] = 0;
167 _pp[2] = 0;
168 _pp[1] = 0;
169 _pp[0] = 0;
170 }
171}
172#else
a4a3ede2
PT
173#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
174#endif
175
ea606cf5
AR
176/*
177 * Default maximum number of active map areas, this limits the number of vmas
178 * per mm struct. Users can overwrite this number by sysctl but there is a
179 * problem.
180 *
181 * When a program's coredump is generated as ELF format, a section is created
182 * per a vma. In ELF, the number of sections is represented in unsigned short.
183 * This means the number of sections should be smaller than 65535 at coredump.
184 * Because the kernel adds some informative sections to a image of program at
185 * generating coredump, we need some margin. The number of extra sections is
186 * 1-3 now and depends on arch. We use "5" as safe margin, here.
187 *
188 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
189 * not a hard limit any more. Although some userspace tools can be surprised by
190 * that.
191 */
192#define MAPCOUNT_ELF_CORE_MARGIN (5)
193#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
194
195extern int sysctl_max_map_count;
196
c9b1d098 197extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 198extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 199
49f0ce5f
JM
200extern int sysctl_overcommit_memory;
201extern int sysctl_overcommit_ratio;
202extern unsigned long sysctl_overcommit_kbytes;
203
204extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
205 size_t *, loff_t *);
206extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
207 size_t *, loff_t *);
208
1da177e4
LT
209#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
210
27ac792c
AR
211/* to align the pointer to the (next) page boundary */
212#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
213
0fa73b86 214/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 215#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 216
f86196ea
NB
217#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
218
1da177e4
LT
219/*
220 * Linux kernel virtual memory manager primitives.
221 * The idea being to have a "virtual" mm in the same way
222 * we have a virtual fs - giving a cleaner interface to the
223 * mm details, and allowing different kinds of memory mappings
224 * (from shared memory to executable loading to arbitrary
225 * mmap() functions).
226 */
227
490fc053 228struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
229struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
230void vm_area_free(struct vm_area_struct *);
c43692e8 231
1da177e4 232#ifndef CONFIG_MMU
8feae131
DH
233extern struct rb_root nommu_region_tree;
234extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
235
236extern unsigned int kobjsize(const void *objp);
237#endif
238
239/*
605d9288 240 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 241 * When changing, update also include/trace/events/mmflags.h
1da177e4 242 */
cc2383ec
KK
243#define VM_NONE 0x00000000
244
1da177e4
LT
245#define VM_READ 0x00000001 /* currently active flags */
246#define VM_WRITE 0x00000002
247#define VM_EXEC 0x00000004
248#define VM_SHARED 0x00000008
249
7e2cff42 250/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
251#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
252#define VM_MAYWRITE 0x00000020
253#define VM_MAYEXEC 0x00000040
254#define VM_MAYSHARE 0x00000080
255
256#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 257#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 258#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 259#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 260#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 261
1da177e4
LT
262#define VM_LOCKED 0x00002000
263#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
264
265 /* Used by sys_madvise() */
266#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
267#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
268
269#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
270#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 271#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 272#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 273#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 274#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 275#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 276#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 277#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 278#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 279
d9104d1c
CG
280#ifdef CONFIG_MEM_SOFT_DIRTY
281# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
282#else
283# define VM_SOFTDIRTY 0
284#endif
285
b379d790 286#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
287#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
288#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 289#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 290
63c17fb8
DH
291#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
292#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
293#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
294#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
295#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 296#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
297#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
298#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
299#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
300#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 301#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
302#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
303
5212213a 304#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
305# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
306# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 307# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
308# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
309# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
310#ifdef CONFIG_PPC
311# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
312#else
313# define VM_PKEY_BIT4 0
8f62c883 314#endif
5212213a
RP
315#endif /* CONFIG_ARCH_HAS_PKEYS */
316
317#if defined(CONFIG_X86)
318# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
cc2383ec
KK
319#elif defined(CONFIG_PPC)
320# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
321#elif defined(CONFIG_PARISC)
322# define VM_GROWSUP VM_ARCH_1
323#elif defined(CONFIG_IA64)
324# define VM_GROWSUP VM_ARCH_1
74a04967
KA
325#elif defined(CONFIG_SPARC64)
326# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
327# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
328#elif defined(CONFIG_ARM64)
329# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
330# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
331#elif !defined(CONFIG_MMU)
332# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
333#endif
334
335#ifndef VM_GROWSUP
336# define VM_GROWSUP VM_NONE
337#endif
338
a8bef8ff
MG
339/* Bits set in the VMA until the stack is in its final location */
340#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
341
c62da0c3
AK
342#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
343
344/* Common data flag combinations */
345#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
346 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
347#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
348 VM_MAYWRITE | VM_MAYEXEC)
349#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
350 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
351
352#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
353#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
354#endif
355
1da177e4
LT
356#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
357#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
358#endif
359
360#ifdef CONFIG_STACK_GROWSUP
30bdbb78 361#define VM_STACK VM_GROWSUP
1da177e4 362#else
30bdbb78 363#define VM_STACK VM_GROWSDOWN
1da177e4
LT
364#endif
365
30bdbb78
KK
366#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
367
6cb4d9a2
AK
368/* VMA basic access permission flags */
369#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
370
371
b291f000 372/*
78f11a25 373 * Special vmas that are non-mergable, non-mlock()able.
b291f000 374 */
9050d7eb 375#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 376
b4443772
AK
377/* This mask prevents VMA from being scanned with khugepaged */
378#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
379
a0715cc2
AT
380/* This mask defines which mm->def_flags a process can inherit its parent */
381#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
382
de60f5f1
EM
383/* This mask is used to clear all the VMA flags used by mlock */
384#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
385
2c2d57b5
KA
386/* Arch-specific flags to clear when updating VM flags on protection change */
387#ifndef VM_ARCH_CLEAR
388# define VM_ARCH_CLEAR VM_NONE
389#endif
390#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
391
1da177e4
LT
392/*
393 * mapping from the currently active vm_flags protection bits (the
394 * low four bits) to a page protection mask..
395 */
396extern pgprot_t protection_map[16];
397
c270a7ee
PX
398/**
399 * Fault flag definitions.
400 *
401 * @FAULT_FLAG_WRITE: Fault was a write fault.
402 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
403 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
404 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_sem and wait when retrying.
405 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
406 * @FAULT_FLAG_TRIED: The fault has been tried once.
407 * @FAULT_FLAG_USER: The fault originated in userspace.
408 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
409 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
410 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
411 *
412 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
413 * whether we would allow page faults to retry by specifying these two
414 * fault flags correctly. Currently there can be three legal combinations:
415 *
416 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
417 * this is the first try
418 *
419 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
420 * we've already tried at least once
421 *
422 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
423 *
424 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
425 * be used. Note that page faults can be allowed to retry for multiple times,
426 * in which case we'll have an initial fault with flags (a) then later on
427 * continuous faults with flags (b). We should always try to detect pending
428 * signals before a retry to make sure the continuous page faults can still be
429 * interrupted if necessary.
c270a7ee
PX
430 */
431#define FAULT_FLAG_WRITE 0x01
432#define FAULT_FLAG_MKWRITE 0x02
433#define FAULT_FLAG_ALLOW_RETRY 0x04
434#define FAULT_FLAG_RETRY_NOWAIT 0x08
435#define FAULT_FLAG_KILLABLE 0x10
436#define FAULT_FLAG_TRIED 0x20
437#define FAULT_FLAG_USER 0x40
438#define FAULT_FLAG_REMOTE 0x80
439#define FAULT_FLAG_INSTRUCTION 0x100
440#define FAULT_FLAG_INTERRUPTIBLE 0x200
d0217ac0 441
dde16072
PX
442/*
443 * The default fault flags that should be used by most of the
444 * arch-specific page fault handlers.
445 */
446#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
447 FAULT_FLAG_KILLABLE | \
448 FAULT_FLAG_INTERRUPTIBLE)
dde16072 449
4064b982
PX
450/**
451 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
452 *
453 * This is mostly used for places where we want to try to avoid taking
454 * the mmap_sem for too long a time when waiting for another condition
455 * to change, in which case we can try to be polite to release the
456 * mmap_sem in the first round to avoid potential starvation of other
457 * processes that would also want the mmap_sem.
458 *
459 * Return: true if the page fault allows retry and this is the first
460 * attempt of the fault handling; false otherwise.
461 */
462static inline bool fault_flag_allow_retry_first(unsigned int flags)
463{
464 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
465 (!(flags & FAULT_FLAG_TRIED));
466}
467
282a8e03
RZ
468#define FAULT_FLAG_TRACE \
469 { FAULT_FLAG_WRITE, "WRITE" }, \
470 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
471 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
472 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
473 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
474 { FAULT_FLAG_TRIED, "TRIED" }, \
475 { FAULT_FLAG_USER, "USER" }, \
476 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
477 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
478 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 479
54cb8821 480/*
d0217ac0 481 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
482 * ->fault function. The vma's ->fault is responsible for returning a bitmask
483 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 484 *
c20cd45e
MH
485 * MM layer fills up gfp_mask for page allocations but fault handler might
486 * alter it if its implementation requires a different allocation context.
487 *
9b4bdd2f 488 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 489 */
d0217ac0 490struct vm_fault {
82b0f8c3 491 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 492 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 493 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 494 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 495 unsigned long address; /* Faulting virtual address */
82b0f8c3 496 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 497 * the 'address' */
a2d58167
DJ
498 pud_t *pud; /* Pointer to pud entry matching
499 * the 'address'
500 */
2994302b 501 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 502
3917048d
JK
503 struct page *cow_page; /* Page handler may use for COW fault */
504 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
d0217ac0 505 struct page *page; /* ->fault handlers should return a
83c54070 506 * page here, unless VM_FAULT_NOPAGE
d0217ac0 507 * is set (which is also implied by
83c54070 508 * VM_FAULT_ERROR).
d0217ac0 509 */
82b0f8c3 510 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
511 pte_t *pte; /* Pointer to pte entry matching
512 * the 'address'. NULL if the page
513 * table hasn't been allocated.
514 */
515 spinlock_t *ptl; /* Page table lock.
516 * Protects pte page table if 'pte'
517 * is not NULL, otherwise pmd.
518 */
7267ec00
KS
519 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
520 * vm_ops->map_pages() calls
521 * alloc_set_pte() from atomic context.
522 * do_fault_around() pre-allocates
523 * page table to avoid allocation from
524 * atomic context.
525 */
54cb8821 526};
1da177e4 527
c791ace1
DJ
528/* page entry size for vm->huge_fault() */
529enum page_entry_size {
530 PE_SIZE_PTE = 0,
531 PE_SIZE_PMD,
532 PE_SIZE_PUD,
533};
534
1da177e4
LT
535/*
536 * These are the virtual MM functions - opening of an area, closing and
537 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 538 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
539 */
540struct vm_operations_struct {
541 void (*open)(struct vm_area_struct * area);
542 void (*close)(struct vm_area_struct * area);
31383c68 543 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 544 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
545 vm_fault_t (*fault)(struct vm_fault *vmf);
546 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
547 enum page_entry_size pe_size);
82b0f8c3 548 void (*map_pages)(struct vm_fault *vmf,
bae473a4 549 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 550 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
551
552 /* notification that a previously read-only page is about to become
553 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 554 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 555
dd906184 556 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 557 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 558
28b2ee20
RR
559 /* called by access_process_vm when get_user_pages() fails, typically
560 * for use by special VMAs that can switch between memory and hardware
561 */
562 int (*access)(struct vm_area_struct *vma, unsigned long addr,
563 void *buf, int len, int write);
78d683e8
AL
564
565 /* Called by the /proc/PID/maps code to ask the vma whether it
566 * has a special name. Returning non-NULL will also cause this
567 * vma to be dumped unconditionally. */
568 const char *(*name)(struct vm_area_struct *vma);
569
1da177e4 570#ifdef CONFIG_NUMA
a6020ed7
LS
571 /*
572 * set_policy() op must add a reference to any non-NULL @new mempolicy
573 * to hold the policy upon return. Caller should pass NULL @new to
574 * remove a policy and fall back to surrounding context--i.e. do not
575 * install a MPOL_DEFAULT policy, nor the task or system default
576 * mempolicy.
577 */
1da177e4 578 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
579
580 /*
581 * get_policy() op must add reference [mpol_get()] to any policy at
582 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
583 * in mm/mempolicy.c will do this automatically.
584 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
585 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
586 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
587 * must return NULL--i.e., do not "fallback" to task or system default
588 * policy.
589 */
1da177e4
LT
590 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
591 unsigned long addr);
592#endif
667a0a06
DV
593 /*
594 * Called by vm_normal_page() for special PTEs to find the
595 * page for @addr. This is useful if the default behavior
596 * (using pte_page()) would not find the correct page.
597 */
598 struct page *(*find_special_page)(struct vm_area_struct *vma,
599 unsigned long addr);
1da177e4
LT
600};
601
027232da
KS
602static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
603{
bfd40eaf
KS
604 static const struct vm_operations_struct dummy_vm_ops = {};
605
a670468f 606 memset(vma, 0, sizeof(*vma));
027232da 607 vma->vm_mm = mm;
bfd40eaf 608 vma->vm_ops = &dummy_vm_ops;
027232da
KS
609 INIT_LIST_HEAD(&vma->anon_vma_chain);
610}
611
bfd40eaf
KS
612static inline void vma_set_anonymous(struct vm_area_struct *vma)
613{
614 vma->vm_ops = NULL;
615}
616
43675e6f
YS
617static inline bool vma_is_anonymous(struct vm_area_struct *vma)
618{
619 return !vma->vm_ops;
620}
621
222100ee
AK
622static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
623{
624 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
625
626 if (!maybe_stack)
627 return false;
628
629 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
630 VM_STACK_INCOMPLETE_SETUP)
631 return true;
632
633 return false;
634}
635
7969f226
AK
636static inline bool vma_is_foreign(struct vm_area_struct *vma)
637{
638 if (!current->mm)
639 return true;
640
641 if (current->mm != vma->vm_mm)
642 return true;
643
644 return false;
645}
3122e80e
AK
646
647static inline bool vma_is_accessible(struct vm_area_struct *vma)
648{
6cb4d9a2 649 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
650}
651
43675e6f
YS
652#ifdef CONFIG_SHMEM
653/*
654 * The vma_is_shmem is not inline because it is used only by slow
655 * paths in userfault.
656 */
657bool vma_is_shmem(struct vm_area_struct *vma);
658#else
659static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
660#endif
661
662int vma_is_stack_for_current(struct vm_area_struct *vma);
663
8b11ec1b
LT
664/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
665#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
666
1da177e4
LT
667struct mmu_gather;
668struct inode;
669
1da177e4
LT
670/*
671 * FIXME: take this include out, include page-flags.h in
672 * files which need it (119 of them)
673 */
674#include <linux/page-flags.h>
71e3aac0 675#include <linux/huge_mm.h>
1da177e4
LT
676
677/*
678 * Methods to modify the page usage count.
679 *
680 * What counts for a page usage:
681 * - cache mapping (page->mapping)
682 * - private data (page->private)
683 * - page mapped in a task's page tables, each mapping
684 * is counted separately
685 *
686 * Also, many kernel routines increase the page count before a critical
687 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
688 */
689
690/*
da6052f7 691 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 692 */
7c8ee9a8
NP
693static inline int put_page_testzero(struct page *page)
694{
fe896d18
JK
695 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
696 return page_ref_dec_and_test(page);
7c8ee9a8 697}
1da177e4
LT
698
699/*
7c8ee9a8
NP
700 * Try to grab a ref unless the page has a refcount of zero, return false if
701 * that is the case.
8e0861fa
AK
702 * This can be called when MMU is off so it must not access
703 * any of the virtual mappings.
1da177e4 704 */
7c8ee9a8
NP
705static inline int get_page_unless_zero(struct page *page)
706{
fe896d18 707 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 708}
1da177e4 709
53df8fdc 710extern int page_is_ram(unsigned long pfn);
124fe20d
DW
711
712enum {
713 REGION_INTERSECTS,
714 REGION_DISJOINT,
715 REGION_MIXED,
716};
717
1c29f25b
TK
718int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
719 unsigned long desc);
53df8fdc 720
48667e7a 721/* Support for virtually mapped pages */
b3bdda02
CL
722struct page *vmalloc_to_page(const void *addr);
723unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 724
0738c4bb
PM
725/*
726 * Determine if an address is within the vmalloc range
727 *
728 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
729 * is no special casing required.
730 */
9bd3bb67
AK
731
732#ifndef is_ioremap_addr
733#define is_ioremap_addr(x) is_vmalloc_addr(x)
734#endif
735
81ac3ad9 736#ifdef CONFIG_MMU
186525bd 737extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
738extern int is_vmalloc_or_module_addr(const void *x);
739#else
186525bd
IM
740static inline bool is_vmalloc_addr(const void *x)
741{
742 return false;
743}
934831d0 744static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
745{
746 return 0;
747}
748#endif
9e2779fa 749
a7c3e901
MH
750extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
751static inline void *kvmalloc(size_t size, gfp_t flags)
752{
753 return kvmalloc_node(size, flags, NUMA_NO_NODE);
754}
755static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
756{
757 return kvmalloc_node(size, flags | __GFP_ZERO, node);
758}
759static inline void *kvzalloc(size_t size, gfp_t flags)
760{
761 return kvmalloc(size, flags | __GFP_ZERO);
762}
763
752ade68
MH
764static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
765{
3b3b1a29
KC
766 size_t bytes;
767
768 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
769 return NULL;
770
3b3b1a29 771 return kvmalloc(bytes, flags);
752ade68
MH
772}
773
1c542f38
KC
774static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
775{
776 return kvmalloc_array(n, size, flags | __GFP_ZERO);
777}
778
39f1f78d
AV
779extern void kvfree(const void *addr);
780
6988f31d
KK
781/*
782 * Mapcount of compound page as a whole, does not include mapped sub-pages.
783 *
784 * Must be called only for compound pages or any their tail sub-pages.
785 */
53f9263b
KS
786static inline int compound_mapcount(struct page *page)
787{
5f527c2b 788 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
789 page = compound_head(page);
790 return atomic_read(compound_mapcount_ptr(page)) + 1;
791}
792
70b50f94
AA
793/*
794 * The atomic page->_mapcount, starts from -1: so that transitions
795 * both from it and to it can be tracked, using atomic_inc_and_test
796 * and atomic_add_negative(-1).
797 */
22b751c3 798static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
799{
800 atomic_set(&(page)->_mapcount, -1);
801}
802
b20ce5e0
KS
803int __page_mapcount(struct page *page);
804
6988f31d
KK
805/*
806 * Mapcount of 0-order page; when compound sub-page, includes
807 * compound_mapcount().
808 *
809 * Result is undefined for pages which cannot be mapped into userspace.
810 * For example SLAB or special types of pages. See function page_has_type().
811 * They use this place in struct page differently.
812 */
70b50f94
AA
813static inline int page_mapcount(struct page *page)
814{
b20ce5e0
KS
815 if (unlikely(PageCompound(page)))
816 return __page_mapcount(page);
817 return atomic_read(&page->_mapcount) + 1;
818}
819
820#ifdef CONFIG_TRANSPARENT_HUGEPAGE
821int total_mapcount(struct page *page);
6d0a07ed 822int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
823#else
824static inline int total_mapcount(struct page *page)
825{
826 return page_mapcount(page);
70b50f94 827}
6d0a07ed
AA
828static inline int page_trans_huge_mapcount(struct page *page,
829 int *total_mapcount)
830{
831 int mapcount = page_mapcount(page);
832 if (total_mapcount)
833 *total_mapcount = mapcount;
834 return mapcount;
835}
b20ce5e0 836#endif
70b50f94 837
b49af68f
CL
838static inline struct page *virt_to_head_page(const void *x)
839{
840 struct page *page = virt_to_page(x);
ccaafd7f 841
1d798ca3 842 return compound_head(page);
b49af68f
CL
843}
844
ddc58f27
KS
845void __put_page(struct page *page);
846
1d7ea732 847void put_pages_list(struct list_head *pages);
1da177e4 848
8dfcc9ba 849void split_page(struct page *page, unsigned int order);
8dfcc9ba 850
33f2ef89
AW
851/*
852 * Compound pages have a destructor function. Provide a
853 * prototype for that function and accessor functions.
f1e61557 854 * These are _only_ valid on the head of a compound page.
33f2ef89 855 */
f1e61557
KS
856typedef void compound_page_dtor(struct page *);
857
858/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
859enum compound_dtor_id {
860 NULL_COMPOUND_DTOR,
861 COMPOUND_PAGE_DTOR,
862#ifdef CONFIG_HUGETLB_PAGE
863 HUGETLB_PAGE_DTOR,
9a982250
KS
864#endif
865#ifdef CONFIG_TRANSPARENT_HUGEPAGE
866 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
867#endif
868 NR_COMPOUND_DTORS,
869};
870extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
871
872static inline void set_compound_page_dtor(struct page *page,
f1e61557 873 enum compound_dtor_id compound_dtor)
33f2ef89 874{
f1e61557
KS
875 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
876 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
877}
878
879static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
880{
f1e61557
KS
881 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
882 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
883}
884
d00181b9 885static inline unsigned int compound_order(struct page *page)
d85f3385 886{
6d777953 887 if (!PageHead(page))
d85f3385 888 return 0;
e4b294c2 889 return page[1].compound_order;
d85f3385
CL
890}
891
47e29d32
JH
892static inline bool hpage_pincount_available(struct page *page)
893{
894 /*
895 * Can the page->hpage_pinned_refcount field be used? That field is in
896 * the 3rd page of the compound page, so the smallest (2-page) compound
897 * pages cannot support it.
898 */
899 page = compound_head(page);
900 return PageCompound(page) && compound_order(page) > 1;
901}
902
903static inline int compound_pincount(struct page *page)
904{
905 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
906 page = compound_head(page);
907 return atomic_read(compound_pincount_ptr(page));
908}
909
f1e61557 910static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 911{
e4b294c2 912 page[1].compound_order = order;
d85f3385
CL
913}
914
d8c6546b
MWO
915/* Returns the number of pages in this potentially compound page. */
916static inline unsigned long compound_nr(struct page *page)
917{
918 return 1UL << compound_order(page);
919}
920
a50b854e
MWO
921/* Returns the number of bytes in this potentially compound page. */
922static inline unsigned long page_size(struct page *page)
923{
924 return PAGE_SIZE << compound_order(page);
925}
926
94ad9338
MWO
927/* Returns the number of bits needed for the number of bytes in a page */
928static inline unsigned int page_shift(struct page *page)
929{
930 return PAGE_SHIFT + compound_order(page);
931}
932
9a982250
KS
933void free_compound_page(struct page *page);
934
3dece370 935#ifdef CONFIG_MMU
14fd403f
AA
936/*
937 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
938 * servicing faults for write access. In the normal case, do always want
939 * pte_mkwrite. But get_user_pages can cause write faults for mappings
940 * that do not have writing enabled, when used by access_process_vm.
941 */
942static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
943{
944 if (likely(vma->vm_flags & VM_WRITE))
945 pte = pte_mkwrite(pte);
946 return pte;
947}
8c6e50b0 948
2b740303 949vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 950 struct page *page);
2b740303
SJ
951vm_fault_t finish_fault(struct vm_fault *vmf);
952vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 953#endif
14fd403f 954
1da177e4
LT
955/*
956 * Multiple processes may "see" the same page. E.g. for untouched
957 * mappings of /dev/null, all processes see the same page full of
958 * zeroes, and text pages of executables and shared libraries have
959 * only one copy in memory, at most, normally.
960 *
961 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
962 * page_count() == 0 means the page is free. page->lru is then used for
963 * freelist management in the buddy allocator.
da6052f7 964 * page_count() > 0 means the page has been allocated.
1da177e4 965 *
da6052f7
NP
966 * Pages are allocated by the slab allocator in order to provide memory
967 * to kmalloc and kmem_cache_alloc. In this case, the management of the
968 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
969 * unless a particular usage is carefully commented. (the responsibility of
970 * freeing the kmalloc memory is the caller's, of course).
1da177e4 971 *
da6052f7
NP
972 * A page may be used by anyone else who does a __get_free_page().
973 * In this case, page_count still tracks the references, and should only
974 * be used through the normal accessor functions. The top bits of page->flags
975 * and page->virtual store page management information, but all other fields
976 * are unused and could be used privately, carefully. The management of this
977 * page is the responsibility of the one who allocated it, and those who have
978 * subsequently been given references to it.
979 *
980 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
981 * managed by the Linux memory manager: I/O, buffers, swapping etc.
982 * The following discussion applies only to them.
983 *
da6052f7
NP
984 * A pagecache page contains an opaque `private' member, which belongs to the
985 * page's address_space. Usually, this is the address of a circular list of
986 * the page's disk buffers. PG_private must be set to tell the VM to call
987 * into the filesystem to release these pages.
1da177e4 988 *
da6052f7
NP
989 * A page may belong to an inode's memory mapping. In this case, page->mapping
990 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 991 * in units of PAGE_SIZE.
1da177e4 992 *
da6052f7
NP
993 * If pagecache pages are not associated with an inode, they are said to be
994 * anonymous pages. These may become associated with the swapcache, and in that
995 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 996 *
da6052f7
NP
997 * In either case (swapcache or inode backed), the pagecache itself holds one
998 * reference to the page. Setting PG_private should also increment the
999 * refcount. The each user mapping also has a reference to the page.
1da177e4 1000 *
da6052f7 1001 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1002 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1003 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1004 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1005 *
da6052f7 1006 * All pagecache pages may be subject to I/O:
1da177e4
LT
1007 * - inode pages may need to be read from disk,
1008 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1009 * to be written back to the inode on disk,
1010 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1011 * modified may need to be swapped out to swap space and (later) to be read
1012 * back into memory.
1da177e4
LT
1013 */
1014
1015/*
1016 * The zone field is never updated after free_area_init_core()
1017 * sets it, so none of the operations on it need to be atomic.
1da177e4 1018 */
348f8b6c 1019
90572890 1020/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1021#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1022#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1023#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1024#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1025#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1026
348f8b6c 1027/*
25985edc 1028 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1029 * sections we define the shift as 0; that plus a 0 mask ensures
1030 * the compiler will optimise away reference to them.
1031 */
d41dee36
AW
1032#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1033#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1034#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1035#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1036#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1037
bce54bbf
WD
1038/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1039#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1040#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1041#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1042 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1043#else
89689ae7 1044#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1045#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1046 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1047#endif
1048
bd8029b6 1049#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1050
d41dee36
AW
1051#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1052#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1053#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1054#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1055#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1056#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1057
33dd4e0e 1058static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1059{
348f8b6c 1060 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1061}
1da177e4 1062
260ae3f7
DW
1063#ifdef CONFIG_ZONE_DEVICE
1064static inline bool is_zone_device_page(const struct page *page)
1065{
1066 return page_zonenum(page) == ZONE_DEVICE;
1067}
966cf44f
AD
1068extern void memmap_init_zone_device(struct zone *, unsigned long,
1069 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1070#else
1071static inline bool is_zone_device_page(const struct page *page)
1072{
1073 return false;
1074}
7b2d55d2 1075#endif
5042db43 1076
e7638488 1077#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1078void free_devmap_managed_page(struct page *page);
e7638488 1079DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1080
1081static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1082{
1083 if (!static_branch_unlikely(&devmap_managed_key))
1084 return false;
1085 if (!is_zone_device_page(page))
1086 return false;
1087 switch (page->pgmap->type) {
1088 case MEMORY_DEVICE_PRIVATE:
e7638488 1089 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1090 return true;
1091 default:
1092 break;
1093 }
1094 return false;
1095}
1096
07d80269
JH
1097void put_devmap_managed_page(struct page *page);
1098
e7638488 1099#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1100static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1101{
1102 return false;
1103}
07d80269
JH
1104
1105static inline void put_devmap_managed_page(struct page *page)
1106{
1107}
7588adf8 1108#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1109
6b368cd4
JG
1110static inline bool is_device_private_page(const struct page *page)
1111{
7588adf8
RM
1112 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1113 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1114 is_zone_device_page(page) &&
1115 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1116}
e7638488 1117
52916982
LG
1118static inline bool is_pci_p2pdma_page(const struct page *page)
1119{
7588adf8
RM
1120 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1121 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1122 is_zone_device_page(page) &&
1123 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1124}
7b2d55d2 1125
f958d7b5
LT
1126/* 127: arbitrary random number, small enough to assemble well */
1127#define page_ref_zero_or_close_to_overflow(page) \
1128 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1129
3565fce3
DW
1130static inline void get_page(struct page *page)
1131{
1132 page = compound_head(page);
1133 /*
1134 * Getting a normal page or the head of a compound page
0139aa7b 1135 * requires to already have an elevated page->_refcount.
3565fce3 1136 */
f958d7b5 1137 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1138 page_ref_inc(page);
3565fce3
DW
1139}
1140
3faa52c0
JH
1141bool __must_check try_grab_page(struct page *page, unsigned int flags);
1142
88b1a17d
LT
1143static inline __must_check bool try_get_page(struct page *page)
1144{
1145 page = compound_head(page);
1146 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1147 return false;
fe896d18 1148 page_ref_inc(page);
88b1a17d 1149 return true;
3565fce3
DW
1150}
1151
1152static inline void put_page(struct page *page)
1153{
1154 page = compound_head(page);
1155
7b2d55d2 1156 /*
e7638488
DW
1157 * For devmap managed pages we need to catch refcount transition from
1158 * 2 to 1, when refcount reach one it means the page is free and we
1159 * need to inform the device driver through callback. See
7b2d55d2
JG
1160 * include/linux/memremap.h and HMM for details.
1161 */
07d80269
JH
1162 if (page_is_devmap_managed(page)) {
1163 put_devmap_managed_page(page);
7b2d55d2 1164 return;
07d80269 1165 }
7b2d55d2 1166
3565fce3
DW
1167 if (put_page_testzero(page))
1168 __put_page(page);
3565fce3
DW
1169}
1170
3faa52c0
JH
1171/*
1172 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1173 * the page's refcount so that two separate items are tracked: the original page
1174 * reference count, and also a new count of how many pin_user_pages() calls were
1175 * made against the page. ("gup-pinned" is another term for the latter).
1176 *
1177 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1178 * distinct from normal pages. As such, the unpin_user_page() call (and its
1179 * variants) must be used in order to release gup-pinned pages.
1180 *
1181 * Choice of value:
1182 *
1183 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1184 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1185 * simpler, due to the fact that adding an even power of two to the page
1186 * refcount has the effect of using only the upper N bits, for the code that
1187 * counts up using the bias value. This means that the lower bits are left for
1188 * the exclusive use of the original code that increments and decrements by one
1189 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1190 *
3faa52c0
JH
1191 * Of course, once the lower bits overflow into the upper bits (and this is
1192 * OK, because subtraction recovers the original values), then visual inspection
1193 * no longer suffices to directly view the separate counts. However, for normal
1194 * applications that don't have huge page reference counts, this won't be an
1195 * issue.
fc1d8e7c 1196 *
3faa52c0
JH
1197 * Locking: the lockless algorithm described in page_cache_get_speculative()
1198 * and page_cache_gup_pin_speculative() provides safe operation for
1199 * get_user_pages and page_mkclean and other calls that race to set up page
1200 * table entries.
fc1d8e7c 1201 */
3faa52c0 1202#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1203
3faa52c0 1204void unpin_user_page(struct page *page);
f1f6a7dd
JH
1205void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1206 bool make_dirty);
f1f6a7dd 1207void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1208
3faa52c0
JH
1209/**
1210 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1211 *
1212 * This function checks if a page has been pinned via a call to
1213 * pin_user_pages*().
1214 *
1215 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1216 * because it means "definitely not pinned for DMA", but true means "probably
1217 * pinned for DMA, but possibly a false positive due to having at least
1218 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1219 *
1220 * False positives are OK, because: a) it's unlikely for a page to get that many
1221 * refcounts, and b) all the callers of this routine are expected to be able to
1222 * deal gracefully with a false positive.
1223 *
47e29d32
JH
1224 * For huge pages, the result will be exactly correct. That's because we have
1225 * more tracking data available: the 3rd struct page in the compound page is
1226 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1227 * scheme).
1228 *
72ef5e52 1229 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0
JH
1230 *
1231 * @page: pointer to page to be queried.
1232 * @Return: True, if it is likely that the page has been "dma-pinned".
1233 * False, if the page is definitely not dma-pinned.
1234 */
1235static inline bool page_maybe_dma_pinned(struct page *page)
1236{
47e29d32
JH
1237 if (hpage_pincount_available(page))
1238 return compound_pincount(page) > 0;
1239
3faa52c0
JH
1240 /*
1241 * page_ref_count() is signed. If that refcount overflows, then
1242 * page_ref_count() returns a negative value, and callers will avoid
1243 * further incrementing the refcount.
1244 *
1245 * Here, for that overflow case, use the signed bit to count a little
1246 * bit higher via unsigned math, and thus still get an accurate result.
1247 */
1248 return ((unsigned int)page_ref_count(compound_head(page))) >=
1249 GUP_PIN_COUNTING_BIAS;
1250}
1251
9127ab4f
CS
1252#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1253#define SECTION_IN_PAGE_FLAGS
1254#endif
1255
89689ae7 1256/*
7a8010cd
VB
1257 * The identification function is mainly used by the buddy allocator for
1258 * determining if two pages could be buddies. We are not really identifying
1259 * the zone since we could be using the section number id if we do not have
1260 * node id available in page flags.
1261 * We only guarantee that it will return the same value for two combinable
1262 * pages in a zone.
89689ae7 1263 */
cb2b95e1
AW
1264static inline int page_zone_id(struct page *page)
1265{
89689ae7 1266 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1267}
1268
89689ae7 1269#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1270extern int page_to_nid(const struct page *page);
89689ae7 1271#else
33dd4e0e 1272static inline int page_to_nid(const struct page *page)
d41dee36 1273{
f165b378
PT
1274 struct page *p = (struct page *)page;
1275
1276 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1277}
89689ae7
CL
1278#endif
1279
57e0a030 1280#ifdef CONFIG_NUMA_BALANCING
90572890 1281static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1282{
90572890 1283 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1284}
1285
90572890 1286static inline int cpupid_to_pid(int cpupid)
57e0a030 1287{
90572890 1288 return cpupid & LAST__PID_MASK;
57e0a030 1289}
b795854b 1290
90572890 1291static inline int cpupid_to_cpu(int cpupid)
b795854b 1292{
90572890 1293 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1294}
1295
90572890 1296static inline int cpupid_to_nid(int cpupid)
b795854b 1297{
90572890 1298 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1299}
1300
90572890 1301static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1302{
90572890 1303 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1304}
1305
90572890 1306static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1307{
90572890 1308 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1309}
1310
8c8a743c
PZ
1311static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1312{
1313 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1314}
1315
1316#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1317#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1318static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1319{
1ae71d03 1320 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1321}
90572890
PZ
1322
1323static inline int page_cpupid_last(struct page *page)
1324{
1325 return page->_last_cpupid;
1326}
1327static inline void page_cpupid_reset_last(struct page *page)
b795854b 1328{
1ae71d03 1329 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1330}
1331#else
90572890 1332static inline int page_cpupid_last(struct page *page)
75980e97 1333{
90572890 1334 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1335}
1336
90572890 1337extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1338
90572890 1339static inline void page_cpupid_reset_last(struct page *page)
75980e97 1340{
09940a4f 1341 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1342}
90572890
PZ
1343#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1344#else /* !CONFIG_NUMA_BALANCING */
1345static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1346{
90572890 1347 return page_to_nid(page); /* XXX */
57e0a030
MG
1348}
1349
90572890 1350static inline int page_cpupid_last(struct page *page)
57e0a030 1351{
90572890 1352 return page_to_nid(page); /* XXX */
57e0a030
MG
1353}
1354
90572890 1355static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1356{
1357 return -1;
1358}
1359
90572890 1360static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1361{
1362 return -1;
1363}
1364
90572890 1365static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1366{
1367 return -1;
1368}
1369
90572890
PZ
1370static inline int cpu_pid_to_cpupid(int nid, int pid)
1371{
1372 return -1;
1373}
1374
1375static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
1376{
1377 return 1;
1378}
1379
90572890 1380static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1381{
1382}
8c8a743c
PZ
1383
1384static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1385{
1386 return false;
1387}
90572890 1388#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1389
2813b9c0
AK
1390#ifdef CONFIG_KASAN_SW_TAGS
1391static inline u8 page_kasan_tag(const struct page *page)
1392{
1393 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1394}
1395
1396static inline void page_kasan_tag_set(struct page *page, u8 tag)
1397{
1398 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1399 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1400}
1401
1402static inline void page_kasan_tag_reset(struct page *page)
1403{
1404 page_kasan_tag_set(page, 0xff);
1405}
1406#else
1407static inline u8 page_kasan_tag(const struct page *page)
1408{
1409 return 0xff;
1410}
1411
1412static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1413static inline void page_kasan_tag_reset(struct page *page) { }
1414#endif
1415
33dd4e0e 1416static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1417{
1418 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1419}
1420
75ef7184
MG
1421static inline pg_data_t *page_pgdat(const struct page *page)
1422{
1423 return NODE_DATA(page_to_nid(page));
1424}
1425
9127ab4f 1426#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1427static inline void set_page_section(struct page *page, unsigned long section)
1428{
1429 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1430 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1431}
1432
aa462abe 1433static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1434{
1435 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1436}
308c05e3 1437#endif
d41dee36 1438
2f1b6248 1439static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1440{
1441 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1442 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1443}
2f1b6248 1444
348f8b6c
DH
1445static inline void set_page_node(struct page *page, unsigned long node)
1446{
1447 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1448 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1449}
89689ae7 1450
2f1b6248 1451static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1452 unsigned long node, unsigned long pfn)
1da177e4 1453{
348f8b6c
DH
1454 set_page_zone(page, zone);
1455 set_page_node(page, node);
9127ab4f 1456#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1457 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1458#endif
1da177e4
LT
1459}
1460
0610c25d
GT
1461#ifdef CONFIG_MEMCG
1462static inline struct mem_cgroup *page_memcg(struct page *page)
1463{
1464 return page->mem_cgroup;
1465}
55779ec7
JW
1466static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1467{
1468 WARN_ON_ONCE(!rcu_read_lock_held());
1469 return READ_ONCE(page->mem_cgroup);
1470}
0610c25d
GT
1471#else
1472static inline struct mem_cgroup *page_memcg(struct page *page)
1473{
1474 return NULL;
1475}
55779ec7
JW
1476static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1477{
1478 WARN_ON_ONCE(!rcu_read_lock_held());
1479 return NULL;
1480}
0610c25d
GT
1481#endif
1482
f6ac2354
CL
1483/*
1484 * Some inline functions in vmstat.h depend on page_zone()
1485 */
1486#include <linux/vmstat.h>
1487
33dd4e0e 1488static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1489{
1dff8083 1490 return page_to_virt(page);
1da177e4
LT
1491}
1492
1493#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1494#define HASHED_PAGE_VIRTUAL
1495#endif
1496
1497#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1498static inline void *page_address(const struct page *page)
1499{
1500 return page->virtual;
1501}
1502static inline void set_page_address(struct page *page, void *address)
1503{
1504 page->virtual = address;
1505}
1da177e4
LT
1506#define page_address_init() do { } while(0)
1507#endif
1508
1509#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1510void *page_address(const struct page *page);
1da177e4
LT
1511void set_page_address(struct page *page, void *virtual);
1512void page_address_init(void);
1513#endif
1514
1515#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1516#define page_address(page) lowmem_page_address(page)
1517#define set_page_address(page, address) do { } while(0)
1518#define page_address_init() do { } while(0)
1519#endif
1520
e39155ea
KS
1521extern void *page_rmapping(struct page *page);
1522extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1523extern struct address_space *page_mapping(struct page *page);
1da177e4 1524
f981c595
MG
1525extern struct address_space *__page_file_mapping(struct page *);
1526
1527static inline
1528struct address_space *page_file_mapping(struct page *page)
1529{
1530 if (unlikely(PageSwapCache(page)))
1531 return __page_file_mapping(page);
1532
1533 return page->mapping;
1534}
1535
f6ab1f7f
HY
1536extern pgoff_t __page_file_index(struct page *page);
1537
1da177e4
LT
1538/*
1539 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1540 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1541 */
1542static inline pgoff_t page_index(struct page *page)
1543{
1544 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1545 return __page_file_index(page);
1da177e4
LT
1546 return page->index;
1547}
1548
1aa8aea5 1549bool page_mapped(struct page *page);
bda807d4 1550struct address_space *page_mapping(struct page *page);
cb9f753a 1551struct address_space *page_mapping_file(struct page *page);
1da177e4 1552
2f064f34
MH
1553/*
1554 * Return true only if the page has been allocated with
1555 * ALLOC_NO_WATERMARKS and the low watermark was not
1556 * met implying that the system is under some pressure.
1557 */
1558static inline bool page_is_pfmemalloc(struct page *page)
1559{
1560 /*
1561 * Page index cannot be this large so this must be
1562 * a pfmemalloc page.
1563 */
1564 return page->index == -1UL;
1565}
1566
1567/*
1568 * Only to be called by the page allocator on a freshly allocated
1569 * page.
1570 */
1571static inline void set_page_pfmemalloc(struct page *page)
1572{
1573 page->index = -1UL;
1574}
1575
1576static inline void clear_page_pfmemalloc(struct page *page)
1577{
1578 page->index = 0;
1579}
1580
1c0fe6e3
NP
1581/*
1582 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1583 */
1584extern void pagefault_out_of_memory(void);
1585
1da177e4
LT
1586#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1587
ddd588b5 1588/*
7bf02ea2 1589 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1590 * various contexts.
1591 */
4b59e6c4 1592#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1593
9af744d7 1594extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1595
710ec38b 1596#ifdef CONFIG_MMU
7f43add4 1597extern bool can_do_mlock(void);
710ec38b
AB
1598#else
1599static inline bool can_do_mlock(void) { return false; }
1600#endif
1da177e4
LT
1601extern int user_shm_lock(size_t, struct user_struct *);
1602extern void user_shm_unlock(size_t, struct user_struct *);
1603
1604/*
1605 * Parameter block passed down to zap_pte_range in exceptional cases.
1606 */
1607struct zap_details {
1da177e4
LT
1608 struct address_space *check_mapping; /* Check page->mapping if set */
1609 pgoff_t first_index; /* Lowest page->index to unmap */
1610 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1611};
1612
25b2995a
CH
1613struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1614 pte_t pte);
28093f9f
GS
1615struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1616 pmd_t pmd);
7e675137 1617
27d036e3
LR
1618void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1619 unsigned long size);
14f5ff5d 1620void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1621 unsigned long size);
4f74d2c8
LT
1622void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1623 unsigned long start, unsigned long end);
e6473092 1624
ac46d4f3
JG
1625struct mmu_notifier_range;
1626
42b77728 1627void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1628 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1629int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1630 struct vm_area_struct *vma);
09796395 1631int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
1632 struct mmu_notifier_range *range,
1633 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1634int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1635 unsigned long *pfn);
d87fe660 1636int follow_phys(struct vm_area_struct *vma, unsigned long address,
1637 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1638int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1639 void *buf, int len, int write);
1da177e4 1640
7caef267 1641extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1642extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1643void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1644void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1645int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1646int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1647int invalidate_inode_page(struct page *page);
1648
7ee1dd3f 1649#ifdef CONFIG_MMU
2b740303
SJ
1650extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1651 unsigned long address, unsigned int flags);
5c723ba5 1652extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1653 unsigned long address, unsigned int fault_flags,
1654 bool *unlocked);
977fbdcd
MW
1655void unmap_mapping_pages(struct address_space *mapping,
1656 pgoff_t start, pgoff_t nr, bool even_cows);
1657void unmap_mapping_range(struct address_space *mapping,
1658 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1659#else
2b740303 1660static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
dcddffd4 1661 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1662{
1663 /* should never happen if there's no MMU */
1664 BUG();
1665 return VM_FAULT_SIGBUS;
1666}
5c723ba5
PZ
1667static inline int fixup_user_fault(struct task_struct *tsk,
1668 struct mm_struct *mm, unsigned long address,
4a9e1cda 1669 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1670{
1671 /* should never happen if there's no MMU */
1672 BUG();
1673 return -EFAULT;
1674}
977fbdcd
MW
1675static inline void unmap_mapping_pages(struct address_space *mapping,
1676 pgoff_t start, pgoff_t nr, bool even_cows) { }
1677static inline void unmap_mapping_range(struct address_space *mapping,
1678 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1679#endif
f33ea7f4 1680
977fbdcd
MW
1681static inline void unmap_shared_mapping_range(struct address_space *mapping,
1682 loff_t const holebegin, loff_t const holelen)
1683{
1684 unmap_mapping_range(mapping, holebegin, holelen, 0);
1685}
1686
1687extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1688 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1689extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1690 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1691extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1692 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1693
1e987790
DH
1694long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1695 unsigned long start, unsigned long nr_pages,
9beae1ea 1696 unsigned int gup_flags, struct page **pages,
5b56d49f 1697 struct vm_area_struct **vmas, int *locked);
eddb1c22
JH
1698long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1699 unsigned long start, unsigned long nr_pages,
1700 unsigned int gup_flags, struct page **pages,
1701 struct vm_area_struct **vmas, int *locked);
c12d2da5 1702long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1703 unsigned int gup_flags, struct page **pages,
cde70140 1704 struct vm_area_struct **vmas);
eddb1c22
JH
1705long pin_user_pages(unsigned long start, unsigned long nr_pages,
1706 unsigned int gup_flags, struct page **pages,
1707 struct vm_area_struct **vmas);
c12d2da5 1708long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1709 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1710long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1711 struct page **pages, unsigned int gup_flags);
91429023
JH
1712long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1713 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1714
73b0140b
IW
1715int get_user_pages_fast(unsigned long start, int nr_pages,
1716 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1717int pin_user_pages_fast(unsigned long start, int nr_pages,
1718 unsigned int gup_flags, struct page **pages);
8025e5dd 1719
79eb597c
DJ
1720int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1721int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1722 struct task_struct *task, bool bypass_rlim);
1723
8025e5dd
JK
1724/* Container for pinned pfns / pages */
1725struct frame_vector {
1726 unsigned int nr_allocated; /* Number of frames we have space for */
1727 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1728 bool got_ref; /* Did we pin pages by getting page ref? */
1729 bool is_pfns; /* Does array contain pages or pfns? */
1730 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1731 * pfns_vector_pages() or pfns_vector_pfns()
1732 * for access */
1733};
1734
1735struct frame_vector *frame_vector_create(unsigned int nr_frames);
1736void frame_vector_destroy(struct frame_vector *vec);
1737int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1738 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1739void put_vaddr_frames(struct frame_vector *vec);
1740int frame_vector_to_pages(struct frame_vector *vec);
1741void frame_vector_to_pfns(struct frame_vector *vec);
1742
1743static inline unsigned int frame_vector_count(struct frame_vector *vec)
1744{
1745 return vec->nr_frames;
1746}
1747
1748static inline struct page **frame_vector_pages(struct frame_vector *vec)
1749{
1750 if (vec->is_pfns) {
1751 int err = frame_vector_to_pages(vec);
1752
1753 if (err)
1754 return ERR_PTR(err);
1755 }
1756 return (struct page **)(vec->ptrs);
1757}
1758
1759static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1760{
1761 if (!vec->is_pfns)
1762 frame_vector_to_pfns(vec);
1763 return (unsigned long *)(vec->ptrs);
1764}
1765
18022c5d
MG
1766struct kvec;
1767int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1768 struct page **pages);
1769int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1770struct page *get_dump_page(unsigned long addr);
1da177e4 1771
cf9a2ae8 1772extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1773extern void do_invalidatepage(struct page *page, unsigned int offset,
1774 unsigned int length);
cf9a2ae8 1775
f82b3764 1776void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1777int __set_page_dirty_nobuffers(struct page *page);
76719325 1778int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1779int redirty_page_for_writepage(struct writeback_control *wbc,
1780 struct page *page);
62cccb8c 1781void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1782void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1783 struct bdi_writeback *wb);
b3c97528 1784int set_page_dirty(struct page *page);
1da177e4 1785int set_page_dirty_lock(struct page *page);
736304f3
JK
1786void __cancel_dirty_page(struct page *page);
1787static inline void cancel_dirty_page(struct page *page)
1788{
1789 /* Avoid atomic ops, locking, etc. when not actually needed. */
1790 if (PageDirty(page))
1791 __cancel_dirty_page(page);
1792}
1da177e4 1793int clear_page_dirty_for_io(struct page *page);
b9ea2515 1794
a9090253 1795int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1796
b6a2fea3
OW
1797extern unsigned long move_page_tables(struct vm_area_struct *vma,
1798 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1799 unsigned long new_addr, unsigned long len,
1800 bool need_rmap_locks);
58705444
PX
1801
1802/*
1803 * Flags used by change_protection(). For now we make it a bitmap so
1804 * that we can pass in multiple flags just like parameters. However
1805 * for now all the callers are only use one of the flags at the same
1806 * time.
1807 */
1808/* Whether we should allow dirty bit accounting */
1809#define MM_CP_DIRTY_ACCT (1UL << 0)
1810/* Whether this protection change is for NUMA hints */
1811#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1812/* Whether this change is for write protecting */
1813#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1814#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1815#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1816 MM_CP_UFFD_WP_RESOLVE)
58705444 1817
7da4d641
PZ
1818extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1819 unsigned long end, pgprot_t newprot,
58705444 1820 unsigned long cp_flags);
b6a2fea3
OW
1821extern int mprotect_fixup(struct vm_area_struct *vma,
1822 struct vm_area_struct **pprev, unsigned long start,
1823 unsigned long end, unsigned long newflags);
1da177e4 1824
465a454f
PZ
1825/*
1826 * doesn't attempt to fault and will return short.
1827 */
1828int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1829 struct page **pages);
104acc32
JH
1830int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1831 unsigned int gup_flags, struct page **pages);
d559db08
KH
1832/*
1833 * per-process(per-mm_struct) statistics.
1834 */
d559db08
KH
1835static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1836{
69c97823
KK
1837 long val = atomic_long_read(&mm->rss_stat.count[member]);
1838
1839#ifdef SPLIT_RSS_COUNTING
1840 /*
1841 * counter is updated in asynchronous manner and may go to minus.
1842 * But it's never be expected number for users.
1843 */
1844 if (val < 0)
1845 val = 0;
172703b0 1846#endif
69c97823
KK
1847 return (unsigned long)val;
1848}
d559db08 1849
e4dcad20 1850void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1851
d559db08
KH
1852static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1853{
b3d1411b
JFG
1854 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1855
e4dcad20 1856 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1857}
1858
1859static inline void inc_mm_counter(struct mm_struct *mm, int member)
1860{
b3d1411b
JFG
1861 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1862
e4dcad20 1863 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1864}
1865
1866static inline void dec_mm_counter(struct mm_struct *mm, int member)
1867{
b3d1411b
JFG
1868 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1869
e4dcad20 1870 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1871}
1872
eca56ff9
JM
1873/* Optimized variant when page is already known not to be PageAnon */
1874static inline int mm_counter_file(struct page *page)
1875{
1876 if (PageSwapBacked(page))
1877 return MM_SHMEMPAGES;
1878 return MM_FILEPAGES;
1879}
1880
1881static inline int mm_counter(struct page *page)
1882{
1883 if (PageAnon(page))
1884 return MM_ANONPAGES;
1885 return mm_counter_file(page);
1886}
1887
d559db08
KH
1888static inline unsigned long get_mm_rss(struct mm_struct *mm)
1889{
1890 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1891 get_mm_counter(mm, MM_ANONPAGES) +
1892 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1893}
1894
1895static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1896{
1897 return max(mm->hiwater_rss, get_mm_rss(mm));
1898}
1899
1900static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1901{
1902 return max(mm->hiwater_vm, mm->total_vm);
1903}
1904
1905static inline void update_hiwater_rss(struct mm_struct *mm)
1906{
1907 unsigned long _rss = get_mm_rss(mm);
1908
1909 if ((mm)->hiwater_rss < _rss)
1910 (mm)->hiwater_rss = _rss;
1911}
1912
1913static inline void update_hiwater_vm(struct mm_struct *mm)
1914{
1915 if (mm->hiwater_vm < mm->total_vm)
1916 mm->hiwater_vm = mm->total_vm;
1917}
1918
695f0559
PC
1919static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1920{
1921 mm->hiwater_rss = get_mm_rss(mm);
1922}
1923
d559db08
KH
1924static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1925 struct mm_struct *mm)
1926{
1927 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1928
1929 if (*maxrss < hiwater_rss)
1930 *maxrss = hiwater_rss;
1931}
1932
53bddb4e 1933#if defined(SPLIT_RSS_COUNTING)
05af2e10 1934void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1935#else
05af2e10 1936static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1937{
1938}
1939#endif
465a454f 1940
78e7c5af
AK
1941#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1942static inline int pte_special(pte_t pte)
1943{
1944 return 0;
1945}
1946
1947static inline pte_t pte_mkspecial(pte_t pte)
1948{
1949 return pte;
1950}
1951#endif
1952
17596731 1953#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
1954static inline int pte_devmap(pte_t pte)
1955{
1956 return 0;
1957}
1958#endif
1959
6d2329f8 1960int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1961
25ca1d6c
NK
1962extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1963 spinlock_t **ptl);
1964static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1965 spinlock_t **ptl)
1966{
1967 pte_t *ptep;
1968 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1969 return ptep;
1970}
c9cfcddf 1971
c2febafc
KS
1972#ifdef __PAGETABLE_P4D_FOLDED
1973static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1974 unsigned long address)
1975{
1976 return 0;
1977}
1978#else
1979int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1980#endif
1981
b4e98d9a 1982#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1983static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1984 unsigned long address)
1985{
1986 return 0;
1987}
b4e98d9a
KS
1988static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1989static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1990
5f22df00 1991#else
c2febafc 1992int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1993
b4e98d9a
KS
1994static inline void mm_inc_nr_puds(struct mm_struct *mm)
1995{
6d212db1
MS
1996 if (mm_pud_folded(mm))
1997 return;
af5b0f6a 1998 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
1999}
2000
2001static inline void mm_dec_nr_puds(struct mm_struct *mm)
2002{
6d212db1
MS
2003 if (mm_pud_folded(mm))
2004 return;
af5b0f6a 2005 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2006}
5f22df00
NP
2007#endif
2008
2d2f5119 2009#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2010static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2011 unsigned long address)
2012{
2013 return 0;
2014}
dc6c9a35 2015
dc6c9a35
KS
2016static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2017static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2018
5f22df00 2019#else
1bb3630e 2020int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2021
dc6c9a35
KS
2022static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2023{
6d212db1
MS
2024 if (mm_pmd_folded(mm))
2025 return;
af5b0f6a 2026 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2027}
2028
2029static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2030{
6d212db1
MS
2031 if (mm_pmd_folded(mm))
2032 return;
af5b0f6a 2033 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2034}
5f22df00
NP
2035#endif
2036
c4812909 2037#ifdef CONFIG_MMU
af5b0f6a 2038static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2039{
af5b0f6a 2040 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2041}
2042
af5b0f6a 2043static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2044{
af5b0f6a 2045 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2046}
2047
2048static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2049{
af5b0f6a 2050 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2051}
2052
2053static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2054{
af5b0f6a 2055 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2056}
2057#else
c4812909 2058
af5b0f6a
KS
2059static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2060static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2061{
2062 return 0;
2063}
2064
2065static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2066static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2067#endif
2068
4cf58924
JFG
2069int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2070int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2071
f949286c
MR
2072#if defined(CONFIG_MMU)
2073
1da177e4 2074/*
f949286c
MR
2075 * The following ifdef needed to get the 5level-fixup.h header to work.
2076 * Remove it when 5level-fixup.h has been removed.
1da177e4 2077 */
505a60e2 2078#ifndef __ARCH_HAS_5LEVEL_HACK
c2febafc
KS
2079static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2080 unsigned long address)
2081{
2082 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2083 NULL : p4d_offset(pgd, address);
2084}
2085
2086static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2087 unsigned long address)
1da177e4 2088{
c2febafc
KS
2089 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2090 NULL : pud_offset(p4d, address);
1da177e4 2091}
d8626138
JR
2092
2093static inline p4d_t *p4d_alloc_track(struct mm_struct *mm, pgd_t *pgd,
2094 unsigned long address,
2095 pgtbl_mod_mask *mod_mask)
2096
2097{
2098 if (unlikely(pgd_none(*pgd))) {
2099 if (__p4d_alloc(mm, pgd, address))
2100 return NULL;
2101 *mod_mask |= PGTBL_PGD_MODIFIED;
2102 }
2103
2104 return p4d_offset(pgd, address);
2105}
2106
505a60e2 2107#endif /* !__ARCH_HAS_5LEVEL_HACK */
1da177e4 2108
d8626138
JR
2109static inline pud_t *pud_alloc_track(struct mm_struct *mm, p4d_t *p4d,
2110 unsigned long address,
2111 pgtbl_mod_mask *mod_mask)
2112{
2113 if (unlikely(p4d_none(*p4d))) {
2114 if (__pud_alloc(mm, p4d, address))
2115 return NULL;
2116 *mod_mask |= PGTBL_P4D_MODIFIED;
2117 }
2118
2119 return pud_offset(p4d, address);
2120}
2121
1da177e4
LT
2122static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2123{
1bb3630e
HD
2124 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2125 NULL: pmd_offset(pud, address);
1da177e4 2126}
d8626138
JR
2127
2128static inline pmd_t *pmd_alloc_track(struct mm_struct *mm, pud_t *pud,
2129 unsigned long address,
2130 pgtbl_mod_mask *mod_mask)
2131{
2132 if (unlikely(pud_none(*pud))) {
2133 if (__pmd_alloc(mm, pud, address))
2134 return NULL;
2135 *mod_mask |= PGTBL_PUD_MODIFIED;
2136 }
2137
2138 return pmd_offset(pud, address);
2139}
f949286c 2140#endif /* CONFIG_MMU */
1bb3630e 2141
57c1ffce 2142#if USE_SPLIT_PTE_PTLOCKS
597d795a 2143#if ALLOC_SPLIT_PTLOCKS
b35f1819 2144void __init ptlock_cache_init(void);
539edb58
PZ
2145extern bool ptlock_alloc(struct page *page);
2146extern void ptlock_free(struct page *page);
2147
2148static inline spinlock_t *ptlock_ptr(struct page *page)
2149{
2150 return page->ptl;
2151}
597d795a 2152#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2153static inline void ptlock_cache_init(void)
2154{
2155}
2156
49076ec2
KS
2157static inline bool ptlock_alloc(struct page *page)
2158{
49076ec2
KS
2159 return true;
2160}
539edb58 2161
49076ec2
KS
2162static inline void ptlock_free(struct page *page)
2163{
49076ec2
KS
2164}
2165
2166static inline spinlock_t *ptlock_ptr(struct page *page)
2167{
539edb58 2168 return &page->ptl;
49076ec2 2169}
597d795a 2170#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2171
2172static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2173{
2174 return ptlock_ptr(pmd_page(*pmd));
2175}
2176
2177static inline bool ptlock_init(struct page *page)
2178{
2179 /*
2180 * prep_new_page() initialize page->private (and therefore page->ptl)
2181 * with 0. Make sure nobody took it in use in between.
2182 *
2183 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2184 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2185 */
309381fe 2186 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2187 if (!ptlock_alloc(page))
2188 return false;
2189 spin_lock_init(ptlock_ptr(page));
2190 return true;
2191}
2192
57c1ffce 2193#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2194/*
2195 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2196 */
49076ec2
KS
2197static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2198{
2199 return &mm->page_table_lock;
2200}
b35f1819 2201static inline void ptlock_cache_init(void) {}
49076ec2 2202static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2203static inline void ptlock_free(struct page *page) {}
57c1ffce 2204#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2205
b35f1819
KS
2206static inline void pgtable_init(void)
2207{
2208 ptlock_cache_init();
2209 pgtable_cache_init();
2210}
2211
b4ed71f5 2212static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2213{
706874e9
VD
2214 if (!ptlock_init(page))
2215 return false;
1d40a5ea 2216 __SetPageTable(page);
2f569afd 2217 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 2218 return true;
2f569afd
MS
2219}
2220
b4ed71f5 2221static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2222{
9e247bab 2223 ptlock_free(page);
1d40a5ea 2224 __ClearPageTable(page);
2f569afd
MS
2225 dec_zone_page_state(page, NR_PAGETABLE);
2226}
2227
c74df32c
HD
2228#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2229({ \
4c21e2f2 2230 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2231 pte_t *__pte = pte_offset_map(pmd, address); \
2232 *(ptlp) = __ptl; \
2233 spin_lock(__ptl); \
2234 __pte; \
2235})
2236
2237#define pte_unmap_unlock(pte, ptl) do { \
2238 spin_unlock(ptl); \
2239 pte_unmap(pte); \
2240} while (0)
2241
4cf58924 2242#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2243
2244#define pte_alloc_map(mm, pmd, address) \
4cf58924 2245 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2246
c74df32c 2247#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2248 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2249 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2250
1bb3630e 2251#define pte_alloc_kernel(pmd, address) \
4cf58924 2252 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2253 NULL: pte_offset_kernel(pmd, address))
1da177e4 2254
d8626138
JR
2255#define pte_alloc_kernel_track(pmd, address, mask) \
2256 ((unlikely(pmd_none(*(pmd))) && \
2257 (__pte_alloc_kernel(pmd) || ({*(mask)|=PGTBL_PMD_MODIFIED;0;})))?\
2258 NULL: pte_offset_kernel(pmd, address))
2259
e009bb30
KS
2260#if USE_SPLIT_PMD_PTLOCKS
2261
634391ac
MS
2262static struct page *pmd_to_page(pmd_t *pmd)
2263{
2264 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2265 return virt_to_page((void *)((unsigned long) pmd & mask));
2266}
2267
e009bb30
KS
2268static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2269{
634391ac 2270 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2271}
2272
2273static inline bool pgtable_pmd_page_ctor(struct page *page)
2274{
e009bb30
KS
2275#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2276 page->pmd_huge_pte = NULL;
2277#endif
49076ec2 2278 return ptlock_init(page);
e009bb30
KS
2279}
2280
2281static inline void pgtable_pmd_page_dtor(struct page *page)
2282{
2283#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2284 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2285#endif
49076ec2 2286 ptlock_free(page);
e009bb30
KS
2287}
2288
634391ac 2289#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2290
2291#else
2292
9a86cb7b
KS
2293static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2294{
2295 return &mm->page_table_lock;
2296}
2297
e009bb30
KS
2298static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2299static inline void pgtable_pmd_page_dtor(struct page *page) {}
2300
c389a250 2301#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2302
e009bb30
KS
2303#endif
2304
9a86cb7b
KS
2305static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2306{
2307 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2308 spin_lock(ptl);
2309 return ptl;
2310}
2311
a00cc7d9
MW
2312/*
2313 * No scalability reason to split PUD locks yet, but follow the same pattern
2314 * as the PMD locks to make it easier if we decide to. The VM should not be
2315 * considered ready to switch to split PUD locks yet; there may be places
2316 * which need to be converted from page_table_lock.
2317 */
2318static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2319{
2320 return &mm->page_table_lock;
2321}
2322
2323static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2324{
2325 spinlock_t *ptl = pud_lockptr(mm, pud);
2326
2327 spin_lock(ptl);
2328 return ptl;
2329}
62906027 2330
a00cc7d9 2331extern void __init pagecache_init(void);
1da177e4 2332extern void free_area_init(unsigned long * zones_size);
03e85f9d 2333extern void __init free_area_init_node(int nid, unsigned long * zones_size,
9109fb7b 2334 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
2335extern void free_initmem(void);
2336
69afade7
JL
2337/*
2338 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2339 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2340 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2341 * Return pages freed into the buddy system.
2342 */
11199692 2343extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2344 int poison, const char *s);
c3d5f5f0 2345
cfa11e08
JL
2346#ifdef CONFIG_HIGHMEM
2347/*
2348 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2349 * and totalram_pages.
2350 */
2351extern void free_highmem_page(struct page *page);
2352#endif
69afade7 2353
c3d5f5f0 2354extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2355extern void mem_init_print_info(const char *str);
69afade7 2356
4b50bcc7 2357extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2358
69afade7
JL
2359/* Free the reserved page into the buddy system, so it gets managed. */
2360static inline void __free_reserved_page(struct page *page)
2361{
2362 ClearPageReserved(page);
2363 init_page_count(page);
2364 __free_page(page);
2365}
2366
2367static inline void free_reserved_page(struct page *page)
2368{
2369 __free_reserved_page(page);
2370 adjust_managed_page_count(page, 1);
2371}
2372
2373static inline void mark_page_reserved(struct page *page)
2374{
2375 SetPageReserved(page);
2376 adjust_managed_page_count(page, -1);
2377}
2378
2379/*
2380 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2381 * The freed pages will be poisoned with pattern "poison" if it's within
2382 * range [0, UCHAR_MAX].
2383 * Return pages freed into the buddy system.
69afade7
JL
2384 */
2385static inline unsigned long free_initmem_default(int poison)
2386{
2387 extern char __init_begin[], __init_end[];
2388
11199692 2389 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2390 poison, "unused kernel");
2391}
2392
7ee3d4e8
JL
2393static inline unsigned long get_num_physpages(void)
2394{
2395 int nid;
2396 unsigned long phys_pages = 0;
2397
2398 for_each_online_node(nid)
2399 phys_pages += node_present_pages(nid);
2400
2401 return phys_pages;
2402}
2403
0ee332c1 2404#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 2405/*
0ee332c1 2406 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
2407 * zones, allocate the backing mem_map and account for memory holes in a more
2408 * architecture independent manner. This is a substitute for creating the
2409 * zone_sizes[] and zholes_size[] arrays and passing them to
2410 * free_area_init_node()
2411 *
2412 * An architecture is expected to register range of page frames backed by
0ee332c1 2413 * physical memory with memblock_add[_node]() before calling
c713216d
MG
2414 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2415 * usage, an architecture is expected to do something like
2416 *
2417 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2418 * max_highmem_pfn};
2419 * for_each_valid_physical_page_range()
0ee332c1 2420 * memblock_add_node(base, size, nid)
c713216d
MG
2421 * free_area_init_nodes(max_zone_pfns);
2422 *
0ee332c1
TH
2423 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2424 * registered physical page range. Similarly
2425 * sparse_memory_present_with_active_regions() calls memory_present() for
2426 * each range when SPARSEMEM is enabled.
c713216d
MG
2427 *
2428 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 2429 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
2430 */
2431extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 2432unsigned long node_map_pfn_alignment(void);
32996250
YL
2433unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2434 unsigned long end_pfn);
c713216d
MG
2435extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2436 unsigned long end_pfn);
2437extern void get_pfn_range_for_nid(unsigned int nid,
2438 unsigned long *start_pfn, unsigned long *end_pfn);
2439extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
2440extern void free_bootmem_with_active_regions(int nid,
2441 unsigned long max_low_pfn);
2442extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2443
0ee332c1 2444#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 2445
0ee332c1 2446#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 2447 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
6f24fbd3 2448static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7 2449{
6f24fbd3 2450 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
f2dbcfa7
KH
2451 return 0;
2452}
2453#else
2454/* please see mm/page_alloc.c */
2455extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2456/* there is a per-arch backend function. */
8a942fde
MG
2457extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2458 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2459#endif
2460
0e0b864e 2461extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2462extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2463 enum memmap_context, struct vmem_altmap *);
bc75d33f 2464extern void setup_per_zone_wmarks(void);
1b79acc9 2465extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2466extern void mem_init(void);
8feae131 2467extern void __init mmap_init(void);
9af744d7 2468extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2469extern long si_mem_available(void);
1da177e4
LT
2470extern void si_meminfo(struct sysinfo * val);
2471extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2472#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2473extern unsigned long arch_reserved_kernel_pages(void);
2474#endif
1da177e4 2475
a8e99259
MH
2476extern __printf(3, 4)
2477void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2478
e7c8d5c9 2479extern void setup_per_cpu_pageset(void);
e7c8d5c9 2480
75f7ad8e
PS
2481/* page_alloc.c */
2482extern int min_free_kbytes;
1c30844d 2483extern int watermark_boost_factor;
795ae7a0 2484extern int watermark_scale_factor;
75f7ad8e 2485
8feae131 2486/* nommu.c */
33e5d769 2487extern atomic_long_t mmap_pages_allocated;
7e660872 2488extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2489
6b2dbba8 2490/* interval_tree.c */
6b2dbba8 2491void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2492 struct rb_root_cached *root);
9826a516
ML
2493void vma_interval_tree_insert_after(struct vm_area_struct *node,
2494 struct vm_area_struct *prev,
f808c13f 2495 struct rb_root_cached *root);
6b2dbba8 2496void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2497 struct rb_root_cached *root);
2498struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2499 unsigned long start, unsigned long last);
2500struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2501 unsigned long start, unsigned long last);
2502
2503#define vma_interval_tree_foreach(vma, root, start, last) \
2504 for (vma = vma_interval_tree_iter_first(root, start, last); \
2505 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2506
bf181b9f 2507void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2508 struct rb_root_cached *root);
bf181b9f 2509void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2510 struct rb_root_cached *root);
2511struct anon_vma_chain *
2512anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2513 unsigned long start, unsigned long last);
bf181b9f
ML
2514struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2515 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2516#ifdef CONFIG_DEBUG_VM_RB
2517void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2518#endif
bf181b9f
ML
2519
2520#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2521 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2522 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2523
1da177e4 2524/* mmap.c */
34b4e4aa 2525extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2526extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2527 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2528 struct vm_area_struct *expand);
2529static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2530 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2531{
2532 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2533}
1da177e4
LT
2534extern struct vm_area_struct *vma_merge(struct mm_struct *,
2535 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2536 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2537 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2538extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2539extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2540 unsigned long addr, int new_below);
2541extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2542 unsigned long addr, int new_below);
1da177e4
LT
2543extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2544extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2545 struct rb_node **, struct rb_node *);
a8fb5618 2546extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2547extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2548 unsigned long addr, unsigned long len, pgoff_t pgoff,
2549 bool *need_rmap_locks);
1da177e4 2550extern void exit_mmap(struct mm_struct *);
925d1c40 2551
9c599024
CG
2552static inline int check_data_rlimit(unsigned long rlim,
2553 unsigned long new,
2554 unsigned long start,
2555 unsigned long end_data,
2556 unsigned long start_data)
2557{
2558 if (rlim < RLIM_INFINITY) {
2559 if (((new - start) + (end_data - start_data)) > rlim)
2560 return -ENOSPC;
2561 }
2562
2563 return 0;
2564}
2565
7906d00c
AA
2566extern int mm_take_all_locks(struct mm_struct *mm);
2567extern void mm_drop_all_locks(struct mm_struct *mm);
2568
38646013
JS
2569extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2570extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2571extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2572
84638335
KK
2573extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2574extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2575
2eefd878
DS
2576extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2577 const struct vm_special_mapping *sm);
3935ed6a
SS
2578extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2579 unsigned long addr, unsigned long len,
a62c34bd
AL
2580 unsigned long flags,
2581 const struct vm_special_mapping *spec);
2582/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2583extern int install_special_mapping(struct mm_struct *mm,
2584 unsigned long addr, unsigned long len,
2585 unsigned long flags, struct page **pages);
1da177e4 2586
649775be
AG
2587unsigned long randomize_stack_top(unsigned long stack_top);
2588
1da177e4
LT
2589extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2590
0165ab44 2591extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2592 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2593 struct list_head *uf);
1fcfd8db 2594extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2595 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2596 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2597 struct list_head *uf);
85a06835
YS
2598extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2599 struct list_head *uf, bool downgrade);
897ab3e0
MR
2600extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2601 struct list_head *uf);
db08ca25 2602extern int do_madvise(unsigned long start, size_t len_in, int behavior);
1da177e4 2603
1fcfd8db
ON
2604static inline unsigned long
2605do_mmap_pgoff(struct file *file, unsigned long addr,
2606 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2607 unsigned long pgoff, unsigned long *populate,
2608 struct list_head *uf)
1fcfd8db 2609{
897ab3e0 2610 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2611}
2612
bebeb3d6
ML
2613#ifdef CONFIG_MMU
2614extern int __mm_populate(unsigned long addr, unsigned long len,
2615 int ignore_errors);
2616static inline void mm_populate(unsigned long addr, unsigned long len)
2617{
2618 /* Ignore errors */
2619 (void) __mm_populate(addr, len, 1);
2620}
2621#else
2622static inline void mm_populate(unsigned long addr, unsigned long len) {}
2623#endif
2624
e4eb1ff6 2625/* These take the mm semaphore themselves */
5d22fc25 2626extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2627extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2628extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2629extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2630 unsigned long, unsigned long,
2631 unsigned long, unsigned long);
1da177e4 2632
db4fbfb9
ML
2633struct vm_unmapped_area_info {
2634#define VM_UNMAPPED_AREA_TOPDOWN 1
2635 unsigned long flags;
2636 unsigned long length;
2637 unsigned long low_limit;
2638 unsigned long high_limit;
2639 unsigned long align_mask;
2640 unsigned long align_offset;
2641};
2642
baceaf1c 2643extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2644
85821aab 2645/* truncate.c */
1da177e4 2646extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2647extern void truncate_inode_pages_range(struct address_space *,
2648 loff_t lstart, loff_t lend);
91b0abe3 2649extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2650
2651/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2652extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2653extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2654 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2655extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2656
2657/* mm/page-writeback.c */
2b69c828 2658int __must_check write_one_page(struct page *page);
1cf6e7d8 2659void task_dirty_inc(struct task_struct *tsk);
1da177e4 2660
1be7107f 2661extern unsigned long stack_guard_gap;
d05f3169 2662/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2663extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2664
2665/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2666extern int expand_downwards(struct vm_area_struct *vma,
2667 unsigned long address);
8ca3eb08 2668#if VM_GROWSUP
46dea3d0 2669extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2670#else
fee7e49d 2671 #define expand_upwards(vma, address) (0)
9ab88515 2672#endif
1da177e4
LT
2673
2674/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2675extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2676extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2677 struct vm_area_struct **pprev);
2678
2679/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2680 NULL if none. Assume start_addr < end_addr. */
2681static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2682{
2683 struct vm_area_struct * vma = find_vma(mm,start_addr);
2684
2685 if (vma && end_addr <= vma->vm_start)
2686 vma = NULL;
2687 return vma;
2688}
2689
1be7107f
HD
2690static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2691{
2692 unsigned long vm_start = vma->vm_start;
2693
2694 if (vma->vm_flags & VM_GROWSDOWN) {
2695 vm_start -= stack_guard_gap;
2696 if (vm_start > vma->vm_start)
2697 vm_start = 0;
2698 }
2699 return vm_start;
2700}
2701
2702static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2703{
2704 unsigned long vm_end = vma->vm_end;
2705
2706 if (vma->vm_flags & VM_GROWSUP) {
2707 vm_end += stack_guard_gap;
2708 if (vm_end < vma->vm_end)
2709 vm_end = -PAGE_SIZE;
2710 }
2711 return vm_end;
2712}
2713
1da177e4
LT
2714static inline unsigned long vma_pages(struct vm_area_struct *vma)
2715{
2716 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2717}
2718
640708a2
PE
2719/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2720static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2721 unsigned long vm_start, unsigned long vm_end)
2722{
2723 struct vm_area_struct *vma = find_vma(mm, vm_start);
2724
2725 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2726 vma = NULL;
2727
2728 return vma;
2729}
2730
017b1660
MK
2731static inline bool range_in_vma(struct vm_area_struct *vma,
2732 unsigned long start, unsigned long end)
2733{
2734 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2735}
2736
bad849b3 2737#ifdef CONFIG_MMU
804af2cf 2738pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2739void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2740#else
2741static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2742{
2743 return __pgprot(0);
2744}
64e45507
PF
2745static inline void vma_set_page_prot(struct vm_area_struct *vma)
2746{
2747 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2748}
bad849b3
DH
2749#endif
2750
5877231f 2751#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2752unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2753 unsigned long start, unsigned long end);
2754#endif
2755
deceb6cd 2756struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2757int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2758 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2759int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2760int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2761 struct page **pages, unsigned long *num);
a667d745
SJ
2762int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2763 unsigned long num);
2764int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2765 unsigned long num);
ae2b01f3 2766vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2767 unsigned long pfn);
f5e6d1d5
MW
2768vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2769 unsigned long pfn, pgprot_t pgprot);
5d747637 2770vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2771 pfn_t pfn);
574c5b3d
TH
2772vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2773 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2774vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2775 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2776int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2777
1c8f4220
SJ
2778static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2779 unsigned long addr, struct page *page)
2780{
2781 int err = vm_insert_page(vma, addr, page);
2782
2783 if (err == -ENOMEM)
2784 return VM_FAULT_OOM;
2785 if (err < 0 && err != -EBUSY)
2786 return VM_FAULT_SIGBUS;
2787
2788 return VM_FAULT_NOPAGE;
2789}
2790
d97baf94
SJ
2791static inline vm_fault_t vmf_error(int err)
2792{
2793 if (err == -ENOMEM)
2794 return VM_FAULT_OOM;
2795 return VM_FAULT_SIGBUS;
2796}
2797
df06b37f
KB
2798struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2799 unsigned int foll_flags);
240aadee 2800
deceb6cd
HD
2801#define FOLL_WRITE 0x01 /* check pte is writable */
2802#define FOLL_TOUCH 0x02 /* mark page accessed */
2803#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2804#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2805#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2806#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2807 * and return without waiting upon it */
84d33df2 2808#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2809#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2810#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2811#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2812#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2813#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2814#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2815#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2816#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2817#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2818#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2819#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2820#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2821#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2822
2823/*
eddb1c22
JH
2824 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2825 * other. Here is what they mean, and how to use them:
932f4a63
IW
2826 *
2827 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2828 * period _often_ under userspace control. This is in contrast to
2829 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2830 *
2831 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2832 * lifetime enforced by the filesystem and we need guarantees that longterm
2833 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2834 * the filesystem. Ideas for this coordination include revoking the longterm
2835 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2836 * added after the problem with filesystems was found FS DAX VMAs are
2837 * specifically failed. Filesystem pages are still subject to bugs and use of
2838 * FOLL_LONGTERM should be avoided on those pages.
2839 *
2840 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2841 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2842 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2843 * is due to an incompatibility with the FS DAX check and
eddb1c22 2844 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2845 *
eddb1c22
JH
2846 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2847 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2848 * FOLL_LONGTERM is specified.
eddb1c22
JH
2849 *
2850 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2851 * but an additional pin counting system) will be invoked. This is intended for
2852 * anything that gets a page reference and then touches page data (for example,
2853 * Direct IO). This lets the filesystem know that some non-file-system entity is
2854 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2855 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2856 * a call to unpin_user_page().
eddb1c22
JH
2857 *
2858 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2859 * and separate refcounting mechanisms, however, and that means that each has
2860 * its own acquire and release mechanisms:
2861 *
2862 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2863 *
f1f6a7dd 2864 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2865 *
2866 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2867 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2868 * calls applied to them, and that's perfectly OK. This is a constraint on the
2869 * callers, not on the pages.)
2870 *
2871 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2872 * directly by the caller. That's in order to help avoid mismatches when
2873 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2874 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2875 *
72ef5e52 2876 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2877 */
1da177e4 2878
2b740303 2879static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2880{
2881 if (vm_fault & VM_FAULT_OOM)
2882 return -ENOMEM;
2883 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2884 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2885 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2886 return -EFAULT;
2887 return 0;
2888}
2889
8b1e0f81 2890typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2891extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2892 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2893extern int apply_to_existing_page_range(struct mm_struct *mm,
2894 unsigned long address, unsigned long size,
2895 pte_fn_t fn, void *data);
aee16b3c 2896
8823b1db
LA
2897#ifdef CONFIG_PAGE_POISONING
2898extern bool page_poisoning_enabled(void);
2899extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2900#else
2901static inline bool page_poisoning_enabled(void) { return false; }
2902static inline void kernel_poison_pages(struct page *page, int numpages,
2903 int enable) { }
2904#endif
2905
6471384a
AP
2906#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2907DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2908#else
2909DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2910#endif
2911static inline bool want_init_on_alloc(gfp_t flags)
2912{
2913 if (static_branch_unlikely(&init_on_alloc) &&
2914 !page_poisoning_enabled())
2915 return true;
2916 return flags & __GFP_ZERO;
2917}
2918
2919#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2920DECLARE_STATIC_KEY_TRUE(init_on_free);
2921#else
2922DECLARE_STATIC_KEY_FALSE(init_on_free);
2923#endif
2924static inline bool want_init_on_free(void)
2925{
2926 return static_branch_unlikely(&init_on_free) &&
2927 !page_poisoning_enabled();
2928}
2929
8e57f8ac
VB
2930#ifdef CONFIG_DEBUG_PAGEALLOC
2931extern void init_debug_pagealloc(void);
96a2b03f 2932#else
8e57f8ac 2933static inline void init_debug_pagealloc(void) {}
96a2b03f 2934#endif
8e57f8ac
VB
2935extern bool _debug_pagealloc_enabled_early;
2936DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2937
2938static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2939{
2940 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2941 _debug_pagealloc_enabled_early;
2942}
2943
2944/*
2945 * For use in fast paths after init_debug_pagealloc() has run, or when a
2946 * false negative result is not harmful when called too early.
2947 */
2948static inline bool debug_pagealloc_enabled_static(void)
031bc574 2949{
96a2b03f
VB
2950 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2951 return false;
2952
2953 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2954}
2955
d6332692
RE
2956#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2957extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2958
c87cbc1f
VB
2959/*
2960 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2961 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2962 */
031bc574
JK
2963static inline void
2964kernel_map_pages(struct page *page, int numpages, int enable)
2965{
031bc574
JK
2966 __kernel_map_pages(page, numpages, enable);
2967}
8a235efa
RW
2968#ifdef CONFIG_HIBERNATION
2969extern bool kernel_page_present(struct page *page);
40b44137 2970#endif /* CONFIG_HIBERNATION */
d6332692 2971#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2972static inline void
9858db50 2973kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2974#ifdef CONFIG_HIBERNATION
2975static inline bool kernel_page_present(struct page *page) { return true; }
40b44137 2976#endif /* CONFIG_HIBERNATION */
d6332692 2977#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2978
a6c19dfe 2979#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2980extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2981extern int in_gate_area_no_mm(unsigned long addr);
2982extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2983#else
a6c19dfe
AL
2984static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2985{
2986 return NULL;
2987}
2988static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2989static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2990{
2991 return 0;
2992}
1da177e4
LT
2993#endif /* __HAVE_ARCH_GATE_AREA */
2994
44a70ade
MH
2995extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2996
146732ce
JT
2997#ifdef CONFIG_SYSCTL
2998extern int sysctl_drop_caches;
8d65af78 2999int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 3000 void __user *, size_t *, loff_t *);
146732ce
JT
3001#endif
3002
cb731d6c
VD
3003void drop_slab(void);
3004void drop_slab_node(int nid);
9d0243bc 3005
7a9166e3
LY
3006#ifndef CONFIG_MMU
3007#define randomize_va_space 0
3008#else
a62eaf15 3009extern int randomize_va_space;
7a9166e3 3010#endif
a62eaf15 3011
045e72ac 3012const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3013#ifdef CONFIG_MMU
03252919 3014void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3015#else
3016static inline void print_vma_addr(char *prefix, unsigned long rip)
3017{
3018}
3019#endif
e6e5494c 3020
35fd1eb1 3021void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
3022struct page * __populate_section_memmap(unsigned long pfn,
3023 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3024pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3025p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3026pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111
AW
3027pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3028pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 3029void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3030struct vmem_altmap;
a8fc357b
CH
3031void *vmemmap_alloc_block_buf(unsigned long size, int node);
3032void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
8f6aac41 3033void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
3034int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3035 int node);
7b73d978
CH
3036int vmemmap_populate(unsigned long start, unsigned long end, int node,
3037 struct vmem_altmap *altmap);
c2b91e2e 3038void vmemmap_populate_print_last(void);
0197518c 3039#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3040void vmemmap_free(unsigned long start, unsigned long end,
3041 struct vmem_altmap *altmap);
0197518c 3042#endif
46723bfa 3043void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3044 unsigned long nr_pages);
6a46079c 3045
82ba011b
AK
3046enum mf_flags {
3047 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3048 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3049 MF_MUST_KILL = 1 << 2,
cf870c70 3050 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3051};
83b57531
EB
3052extern int memory_failure(unsigned long pfn, int flags);
3053extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3054extern void memory_failure_queue_kick(int cpu);
847ce401 3055extern int unpoison_memory(unsigned long pfn);
ead07f6a 3056extern int get_hwpoison_page(struct page *page);
4e41a30c 3057#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
3058extern int sysctl_memory_failure_early_kill;
3059extern int sysctl_memory_failure_recovery;
facb6011 3060extern void shake_page(struct page *p, int access);
5844a486 3061extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3062extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3063
cc637b17
XX
3064
3065/*
3066 * Error handlers for various types of pages.
3067 */
cc3e2af4 3068enum mf_result {
cc637b17
XX
3069 MF_IGNORED, /* Error: cannot be handled */
3070 MF_FAILED, /* Error: handling failed */
3071 MF_DELAYED, /* Will be handled later */
3072 MF_RECOVERED, /* Successfully recovered */
3073};
3074
3075enum mf_action_page_type {
3076 MF_MSG_KERNEL,
3077 MF_MSG_KERNEL_HIGH_ORDER,
3078 MF_MSG_SLAB,
3079 MF_MSG_DIFFERENT_COMPOUND,
3080 MF_MSG_POISONED_HUGE,
3081 MF_MSG_HUGE,
3082 MF_MSG_FREE_HUGE,
31286a84 3083 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3084 MF_MSG_UNMAP_FAILED,
3085 MF_MSG_DIRTY_SWAPCACHE,
3086 MF_MSG_CLEAN_SWAPCACHE,
3087 MF_MSG_DIRTY_MLOCKED_LRU,
3088 MF_MSG_CLEAN_MLOCKED_LRU,
3089 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3090 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3091 MF_MSG_DIRTY_LRU,
3092 MF_MSG_CLEAN_LRU,
3093 MF_MSG_TRUNCATED_LRU,
3094 MF_MSG_BUDDY,
3095 MF_MSG_BUDDY_2ND,
6100e34b 3096 MF_MSG_DAX,
cc637b17
XX
3097 MF_MSG_UNKNOWN,
3098};
3099
47ad8475
AA
3100#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3101extern void clear_huge_page(struct page *page,
c79b57e4 3102 unsigned long addr_hint,
47ad8475
AA
3103 unsigned int pages_per_huge_page);
3104extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3105 unsigned long addr_hint,
3106 struct vm_area_struct *vma,
47ad8475 3107 unsigned int pages_per_huge_page);
fa4d75c1
MK
3108extern long copy_huge_page_from_user(struct page *dst_page,
3109 const void __user *usr_src,
810a56b9
MK
3110 unsigned int pages_per_huge_page,
3111 bool allow_pagefault);
2484ca9b
THV
3112
3113/**
3114 * vma_is_special_huge - Are transhuge page-table entries considered special?
3115 * @vma: Pointer to the struct vm_area_struct to consider
3116 *
3117 * Whether transhuge page-table entries are considered "special" following
3118 * the definition in vm_normal_page().
3119 *
3120 * Return: true if transhuge page-table entries should be considered special,
3121 * false otherwise.
3122 */
3123static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3124{
3125 return vma_is_dax(vma) || (vma->vm_file &&
3126 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3127}
3128
47ad8475
AA
3129#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3130
c0a32fc5
SG
3131#ifdef CONFIG_DEBUG_PAGEALLOC
3132extern unsigned int _debug_guardpage_minorder;
96a2b03f 3133DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3134
3135static inline unsigned int debug_guardpage_minorder(void)
3136{
3137 return _debug_guardpage_minorder;
3138}
3139
e30825f1
JK
3140static inline bool debug_guardpage_enabled(void)
3141{
96a2b03f 3142 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3143}
3144
c0a32fc5
SG
3145static inline bool page_is_guard(struct page *page)
3146{
e30825f1
JK
3147 if (!debug_guardpage_enabled())
3148 return false;
3149
3972f6bb 3150 return PageGuard(page);
c0a32fc5
SG
3151}
3152#else
3153static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3154static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3155static inline bool page_is_guard(struct page *page) { return false; }
3156#endif /* CONFIG_DEBUG_PAGEALLOC */
3157
f9872caf
CS
3158#if MAX_NUMNODES > 1
3159void __init setup_nr_node_ids(void);
3160#else
3161static inline void setup_nr_node_ids(void) {}
3162#endif
3163
010c164a
SL
3164extern int memcmp_pages(struct page *page1, struct page *page2);
3165
3166static inline int pages_identical(struct page *page1, struct page *page2)
3167{
3168 return !memcmp_pages(page1, page2);
3169}
3170
c5acad84
TH
3171#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3172unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3173 pgoff_t first_index, pgoff_t nr,
3174 pgoff_t bitmap_pgoff,
3175 unsigned long *bitmap,
3176 pgoff_t *start,
3177 pgoff_t *end);
3178
3179unsigned long wp_shared_mapping_range(struct address_space *mapping,
3180 pgoff_t first_index, pgoff_t nr);
3181#endif
3182
1da177e4
LT
3183#endif /* __KERNEL__ */
3184#endif /* _LINUX_MM_H */