Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
9740ca4e 18#include <linux/mmap_lock.h>
08677214 19#include <linux/range.h>
c6f6b596 20#include <linux/pfn.h>
3565fce3 21#include <linux/percpu-refcount.h>
e9da73d6 22#include <linux/bit_spinlock.h>
b0d40c92 23#include <linux/shrinker.h>
9c599024 24#include <linux/resource.h>
e30825f1 25#include <linux/page_ext.h>
8025e5dd 26#include <linux/err.h>
41901567 27#include <linux/page-flags.h>
fe896d18 28#include <linux/page_ref.h>
7b2d55d2 29#include <linux/memremap.h>
3b3b1a29 30#include <linux/overflow.h>
b5420237 31#include <linux/sizes.h>
7969f226 32#include <linux/sched.h>
65fddcfc 33#include <linux/pgtable.h>
34303244 34#include <linux/kasan.h>
1da177e4
LT
35
36struct mempolicy;
37struct anon_vma;
bf181b9f 38struct anon_vma_chain;
4e950f6f 39struct file_ra_state;
e8edc6e0 40struct user_struct;
4e950f6f 41struct writeback_control;
682aa8e1 42struct bdi_writeback;
bce617ed 43struct pt_regs;
1da177e4 44
5ef64cc8
LT
45extern int sysctl_page_lock_unfairness;
46
597b7305
MH
47void init_mm_internals(void);
48
fccc9987 49#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 50extern unsigned long max_mapnr;
fccc9987
JL
51
52static inline void set_max_mapnr(unsigned long limit)
53{
54 max_mapnr = limit;
55}
56#else
57static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
58#endif
59
ca79b0c2
AK
60extern atomic_long_t _totalram_pages;
61static inline unsigned long totalram_pages(void)
62{
63 return (unsigned long)atomic_long_read(&_totalram_pages);
64}
65
66static inline void totalram_pages_inc(void)
67{
68 atomic_long_inc(&_totalram_pages);
69}
70
71static inline void totalram_pages_dec(void)
72{
73 atomic_long_dec(&_totalram_pages);
74}
75
76static inline void totalram_pages_add(long count)
77{
78 atomic_long_add(count, &_totalram_pages);
79}
80
1da177e4 81extern void * high_memory;
1da177e4
LT
82extern int page_cluster;
83
84#ifdef CONFIG_SYSCTL
85extern int sysctl_legacy_va_layout;
86#else
87#define sysctl_legacy_va_layout 0
88#endif
89
d07e2259
DC
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91extern const int mmap_rnd_bits_min;
92extern const int mmap_rnd_bits_max;
93extern int mmap_rnd_bits __read_mostly;
94#endif
95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96extern const int mmap_rnd_compat_bits_min;
97extern const int mmap_rnd_compat_bits_max;
98extern int mmap_rnd_compat_bits __read_mostly;
99#endif
100
1da177e4 101#include <asm/page.h>
1da177e4 102#include <asm/processor.h>
1da177e4 103
d9344522
AK
104/*
105 * Architectures that support memory tagging (assigning tags to memory regions,
106 * embedding these tags into addresses that point to these memory regions, and
107 * checking that the memory and the pointer tags match on memory accesses)
108 * redefine this macro to strip tags from pointers.
f0953a1b 109 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
110 */
111#ifndef untagged_addr
112#define untagged_addr(addr) (addr)
113#endif
114
79442ed1
TC
115#ifndef __pa_symbol
116#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
117#endif
118
1dff8083
AB
119#ifndef page_to_virt
120#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
121#endif
122
568c5fe5
LA
123#ifndef lm_alias
124#define lm_alias(x) __va(__pa_symbol(x))
125#endif
126
5caf9682
ST
127/*
128 * With CONFIG_CFI_CLANG, the compiler replaces function addresses in
129 * instrumented C code with jump table addresses. Architectures that
130 * support CFI can define this macro to return the actual function address
131 * when needed.
132 */
133#ifndef function_nocfi
134#define function_nocfi(x) (x)
135#endif
136
593befa6
DD
137/*
138 * To prevent common memory management code establishing
139 * a zero page mapping on a read fault.
140 * This macro should be defined within <asm/pgtable.h>.
141 * s390 does this to prevent multiplexing of hardware bits
142 * related to the physical page in case of virtualization.
143 */
144#ifndef mm_forbids_zeropage
145#define mm_forbids_zeropage(X) (0)
146#endif
147
a4a3ede2
PT
148/*
149 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
150 * If an architecture decides to implement their own version of
151 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
152 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 153 */
5470dea4
AD
154#if BITS_PER_LONG == 64
155/* This function must be updated when the size of struct page grows above 80
156 * or reduces below 56. The idea that compiler optimizes out switch()
157 * statement, and only leaves move/store instructions. Also the compiler can
158 * combine write statments if they are both assignments and can be reordered,
159 * this can result in several of the writes here being dropped.
160 */
161#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
162static inline void __mm_zero_struct_page(struct page *page)
163{
164 unsigned long *_pp = (void *)page;
165
166 /* Check that struct page is either 56, 64, 72, or 80 bytes */
167 BUILD_BUG_ON(sizeof(struct page) & 7);
168 BUILD_BUG_ON(sizeof(struct page) < 56);
169 BUILD_BUG_ON(sizeof(struct page) > 80);
170
171 switch (sizeof(struct page)) {
172 case 80:
df561f66
GS
173 _pp[9] = 0;
174 fallthrough;
5470dea4 175 case 72:
df561f66
GS
176 _pp[8] = 0;
177 fallthrough;
5470dea4 178 case 64:
df561f66
GS
179 _pp[7] = 0;
180 fallthrough;
5470dea4
AD
181 case 56:
182 _pp[6] = 0;
183 _pp[5] = 0;
184 _pp[4] = 0;
185 _pp[3] = 0;
186 _pp[2] = 0;
187 _pp[1] = 0;
188 _pp[0] = 0;
189 }
190}
191#else
a4a3ede2
PT
192#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
193#endif
194
ea606cf5
AR
195/*
196 * Default maximum number of active map areas, this limits the number of vmas
197 * per mm struct. Users can overwrite this number by sysctl but there is a
198 * problem.
199 *
200 * When a program's coredump is generated as ELF format, a section is created
201 * per a vma. In ELF, the number of sections is represented in unsigned short.
202 * This means the number of sections should be smaller than 65535 at coredump.
203 * Because the kernel adds some informative sections to a image of program at
204 * generating coredump, we need some margin. The number of extra sections is
205 * 1-3 now and depends on arch. We use "5" as safe margin, here.
206 *
207 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
208 * not a hard limit any more. Although some userspace tools can be surprised by
209 * that.
210 */
211#define MAPCOUNT_ELF_CORE_MARGIN (5)
212#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
213
214extern int sysctl_max_map_count;
215
c9b1d098 216extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 217extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 218
49f0ce5f
JM
219extern int sysctl_overcommit_memory;
220extern int sysctl_overcommit_ratio;
221extern unsigned long sysctl_overcommit_kbytes;
222
32927393
CH
223int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
224 loff_t *);
225int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
226 loff_t *);
56f3547b
FT
227int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
228 loff_t *);
6d87d0ec
SJ
229/*
230 * Any attempt to mark this function as static leads to build failure
231 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
232 * is referred to by BPF code. This must be visible for error injection.
233 */
234int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
235 pgoff_t index, gfp_t gfp, void **shadowp);
49f0ce5f 236
1da177e4
LT
237#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
238
27ac792c
AR
239/* to align the pointer to the (next) page boundary */
240#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
241
0fa73b86 242/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 243#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 244
f86196ea
NB
245#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
246
1da177e4
LT
247/*
248 * Linux kernel virtual memory manager primitives.
249 * The idea being to have a "virtual" mm in the same way
250 * we have a virtual fs - giving a cleaner interface to the
251 * mm details, and allowing different kinds of memory mappings
252 * (from shared memory to executable loading to arbitrary
253 * mmap() functions).
254 */
255
490fc053 256struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
257struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
258void vm_area_free(struct vm_area_struct *);
c43692e8 259
1da177e4 260#ifndef CONFIG_MMU
8feae131
DH
261extern struct rb_root nommu_region_tree;
262extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
263
264extern unsigned int kobjsize(const void *objp);
265#endif
266
267/*
605d9288 268 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 269 * When changing, update also include/trace/events/mmflags.h
1da177e4 270 */
cc2383ec
KK
271#define VM_NONE 0x00000000
272
1da177e4
LT
273#define VM_READ 0x00000001 /* currently active flags */
274#define VM_WRITE 0x00000002
275#define VM_EXEC 0x00000004
276#define VM_SHARED 0x00000008
277
7e2cff42 278/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
279#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
280#define VM_MAYWRITE 0x00000020
281#define VM_MAYEXEC 0x00000040
282#define VM_MAYSHARE 0x00000080
283
284#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 285#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 286#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 287#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 288#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 289
1da177e4
LT
290#define VM_LOCKED 0x00002000
291#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
292
293 /* Used by sys_madvise() */
294#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
295#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
296
297#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
298#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 299#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 300#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 301#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 302#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 303#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 304#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 305#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 306#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 307
d9104d1c
CG
308#ifdef CONFIG_MEM_SOFT_DIRTY
309# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
310#else
311# define VM_SOFTDIRTY 0
312#endif
313
b379d790 314#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
315#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
316#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 317#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 318
63c17fb8
DH
319#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
320#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
321#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
322#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
323#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 324#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
325#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
326#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
327#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
328#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 329#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
330#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
331
5212213a 332#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
333# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
334# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 335# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
336# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
337# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
338#ifdef CONFIG_PPC
339# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
340#else
341# define VM_PKEY_BIT4 0
8f62c883 342#endif
5212213a
RP
343#endif /* CONFIG_ARCH_HAS_PKEYS */
344
345#if defined(CONFIG_X86)
346# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
347#elif defined(CONFIG_PPC)
348# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
349#elif defined(CONFIG_PARISC)
350# define VM_GROWSUP VM_ARCH_1
351#elif defined(CONFIG_IA64)
352# define VM_GROWSUP VM_ARCH_1
74a04967
KA
353#elif defined(CONFIG_SPARC64)
354# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
355# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
356#elif defined(CONFIG_ARM64)
357# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
358# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
359#elif !defined(CONFIG_MMU)
360# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
361#endif
362
9f341931
CM
363#if defined(CONFIG_ARM64_MTE)
364# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
365# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
366#else
367# define VM_MTE VM_NONE
368# define VM_MTE_ALLOWED VM_NONE
369#endif
370
cc2383ec
KK
371#ifndef VM_GROWSUP
372# define VM_GROWSUP VM_NONE
373#endif
374
7677f7fd
AR
375#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
376# define VM_UFFD_MINOR_BIT 37
377# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
378#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
379# define VM_UFFD_MINOR VM_NONE
380#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
381
a8bef8ff
MG
382/* Bits set in the VMA until the stack is in its final location */
383#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
384
c62da0c3
AK
385#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
386
387/* Common data flag combinations */
388#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
389 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
390#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
391 VM_MAYWRITE | VM_MAYEXEC)
392#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
393 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
394
395#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
396#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
397#endif
398
1da177e4
LT
399#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
400#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
401#endif
402
403#ifdef CONFIG_STACK_GROWSUP
30bdbb78 404#define VM_STACK VM_GROWSUP
1da177e4 405#else
30bdbb78 406#define VM_STACK VM_GROWSDOWN
1da177e4
LT
407#endif
408
30bdbb78
KK
409#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
410
6cb4d9a2
AK
411/* VMA basic access permission flags */
412#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
413
414
b291f000 415/*
78f11a25 416 * Special vmas that are non-mergable, non-mlock()able.
b291f000 417 */
9050d7eb 418#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 419
b4443772
AK
420/* This mask prevents VMA from being scanned with khugepaged */
421#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
422
a0715cc2
AT
423/* This mask defines which mm->def_flags a process can inherit its parent */
424#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
425
de60f5f1
EM
426/* This mask is used to clear all the VMA flags used by mlock */
427#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
428
2c2d57b5
KA
429/* Arch-specific flags to clear when updating VM flags on protection change */
430#ifndef VM_ARCH_CLEAR
431# define VM_ARCH_CLEAR VM_NONE
432#endif
433#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
434
1da177e4
LT
435/*
436 * mapping from the currently active vm_flags protection bits (the
437 * low four bits) to a page protection mask..
438 */
439extern pgprot_t protection_map[16];
440
c270a7ee 441/**
da2f5eb3 442 * enum fault_flag - Fault flag definitions.
c270a7ee
PX
443 * @FAULT_FLAG_WRITE: Fault was a write fault.
444 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
445 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
c1e8d7c6 446 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
c270a7ee
PX
447 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
448 * @FAULT_FLAG_TRIED: The fault has been tried once.
449 * @FAULT_FLAG_USER: The fault originated in userspace.
450 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
451 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
452 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
453 *
454 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
455 * whether we would allow page faults to retry by specifying these two
456 * fault flags correctly. Currently there can be three legal combinations:
457 *
458 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
459 * this is the first try
460 *
461 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
462 * we've already tried at least once
463 *
464 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
465 *
466 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
467 * be used. Note that page faults can be allowed to retry for multiple times,
468 * in which case we'll have an initial fault with flags (a) then later on
469 * continuous faults with flags (b). We should always try to detect pending
470 * signals before a retry to make sure the continuous page faults can still be
471 * interrupted if necessary.
c270a7ee 472 */
da2f5eb3
MWO
473enum fault_flag {
474 FAULT_FLAG_WRITE = 1 << 0,
475 FAULT_FLAG_MKWRITE = 1 << 1,
476 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
477 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
478 FAULT_FLAG_KILLABLE = 1 << 4,
479 FAULT_FLAG_TRIED = 1 << 5,
480 FAULT_FLAG_USER = 1 << 6,
481 FAULT_FLAG_REMOTE = 1 << 7,
482 FAULT_FLAG_INSTRUCTION = 1 << 8,
483 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
484};
d0217ac0 485
dde16072
PX
486/*
487 * The default fault flags that should be used by most of the
488 * arch-specific page fault handlers.
489 */
490#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
491 FAULT_FLAG_KILLABLE | \
492 FAULT_FLAG_INTERRUPTIBLE)
dde16072 493
4064b982
PX
494/**
495 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 496 * @flags: Fault flags.
4064b982
PX
497 *
498 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 499 * the mmap_lock for too long a time when waiting for another condition
4064b982 500 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
501 * mmap_lock in the first round to avoid potential starvation of other
502 * processes that would also want the mmap_lock.
4064b982
PX
503 *
504 * Return: true if the page fault allows retry and this is the first
505 * attempt of the fault handling; false otherwise.
506 */
da2f5eb3 507static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
508{
509 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
510 (!(flags & FAULT_FLAG_TRIED));
511}
512
282a8e03
RZ
513#define FAULT_FLAG_TRACE \
514 { FAULT_FLAG_WRITE, "WRITE" }, \
515 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
516 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
517 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
518 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
519 { FAULT_FLAG_TRIED, "TRIED" }, \
520 { FAULT_FLAG_USER, "USER" }, \
521 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
522 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
523 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 524
54cb8821 525/*
11192337 526 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
527 * ->fault function. The vma's ->fault is responsible for returning a bitmask
528 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 529 *
c20cd45e
MH
530 * MM layer fills up gfp_mask for page allocations but fault handler might
531 * alter it if its implementation requires a different allocation context.
532 *
9b4bdd2f 533 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 534 */
d0217ac0 535struct vm_fault {
5857c920 536 const struct {
742d3372
WD
537 struct vm_area_struct *vma; /* Target VMA */
538 gfp_t gfp_mask; /* gfp mask to be used for allocations */
539 pgoff_t pgoff; /* Logical page offset based on vma */
540 unsigned long address; /* Faulting virtual address */
541 };
da2f5eb3 542 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 543 * XXX: should really be 'const' */
82b0f8c3 544 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 545 * the 'address' */
a2d58167
DJ
546 pud_t *pud; /* Pointer to pud entry matching
547 * the 'address'
548 */
2994302b 549 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 550
3917048d 551 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 552 struct page *page; /* ->fault handlers should return a
83c54070 553 * page here, unless VM_FAULT_NOPAGE
d0217ac0 554 * is set (which is also implied by
83c54070 555 * VM_FAULT_ERROR).
d0217ac0 556 */
82b0f8c3 557 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
558 pte_t *pte; /* Pointer to pte entry matching
559 * the 'address'. NULL if the page
560 * table hasn't been allocated.
561 */
562 spinlock_t *ptl; /* Page table lock.
563 * Protects pte page table if 'pte'
564 * is not NULL, otherwise pmd.
565 */
7267ec00 566 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
567 * vm_ops->map_pages() sets up a page
568 * table from atomic context.
7267ec00
KS
569 * do_fault_around() pre-allocates
570 * page table to avoid allocation from
571 * atomic context.
572 */
54cb8821 573};
1da177e4 574
c791ace1
DJ
575/* page entry size for vm->huge_fault() */
576enum page_entry_size {
577 PE_SIZE_PTE = 0,
578 PE_SIZE_PMD,
579 PE_SIZE_PUD,
580};
581
1da177e4
LT
582/*
583 * These are the virtual MM functions - opening of an area, closing and
584 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 585 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
586 */
587struct vm_operations_struct {
588 void (*open)(struct vm_area_struct * area);
589 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
590 /* Called any time before splitting to check if it's allowed */
591 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 592 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
593 /*
594 * Called by mprotect() to make driver-specific permission
595 * checks before mprotect() is finalised. The VMA must not
596 * be modified. Returns 0 if eprotect() can proceed.
597 */
598 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
599 unsigned long end, unsigned long newflags);
1c8f4220
SJ
600 vm_fault_t (*fault)(struct vm_fault *vmf);
601 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
602 enum page_entry_size pe_size);
f9ce0be7 603 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 604 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 605 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
606
607 /* notification that a previously read-only page is about to become
608 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 609 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 610
dd906184 611 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 612 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 613
28b2ee20 614 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
615 * for use by special VMAs. See also generic_access_phys() for a generic
616 * implementation useful for any iomem mapping.
28b2ee20
RR
617 */
618 int (*access)(struct vm_area_struct *vma, unsigned long addr,
619 void *buf, int len, int write);
78d683e8
AL
620
621 /* Called by the /proc/PID/maps code to ask the vma whether it
622 * has a special name. Returning non-NULL will also cause this
623 * vma to be dumped unconditionally. */
624 const char *(*name)(struct vm_area_struct *vma);
625
1da177e4 626#ifdef CONFIG_NUMA
a6020ed7
LS
627 /*
628 * set_policy() op must add a reference to any non-NULL @new mempolicy
629 * to hold the policy upon return. Caller should pass NULL @new to
630 * remove a policy and fall back to surrounding context--i.e. do not
631 * install a MPOL_DEFAULT policy, nor the task or system default
632 * mempolicy.
633 */
1da177e4 634 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
635
636 /*
637 * get_policy() op must add reference [mpol_get()] to any policy at
638 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
639 * in mm/mempolicy.c will do this automatically.
640 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 641 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
642 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
643 * must return NULL--i.e., do not "fallback" to task or system default
644 * policy.
645 */
1da177e4
LT
646 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
647 unsigned long addr);
648#endif
667a0a06
DV
649 /*
650 * Called by vm_normal_page() for special PTEs to find the
651 * page for @addr. This is useful if the default behavior
652 * (using pte_page()) would not find the correct page.
653 */
654 struct page *(*find_special_page)(struct vm_area_struct *vma,
655 unsigned long addr);
1da177e4
LT
656};
657
027232da
KS
658static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
659{
bfd40eaf
KS
660 static const struct vm_operations_struct dummy_vm_ops = {};
661
a670468f 662 memset(vma, 0, sizeof(*vma));
027232da 663 vma->vm_mm = mm;
bfd40eaf 664 vma->vm_ops = &dummy_vm_ops;
027232da
KS
665 INIT_LIST_HEAD(&vma->anon_vma_chain);
666}
667
bfd40eaf
KS
668static inline void vma_set_anonymous(struct vm_area_struct *vma)
669{
670 vma->vm_ops = NULL;
671}
672
43675e6f
YS
673static inline bool vma_is_anonymous(struct vm_area_struct *vma)
674{
675 return !vma->vm_ops;
676}
677
222100ee
AK
678static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
679{
680 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
681
682 if (!maybe_stack)
683 return false;
684
685 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
686 VM_STACK_INCOMPLETE_SETUP)
687 return true;
688
689 return false;
690}
691
7969f226
AK
692static inline bool vma_is_foreign(struct vm_area_struct *vma)
693{
694 if (!current->mm)
695 return true;
696
697 if (current->mm != vma->vm_mm)
698 return true;
699
700 return false;
701}
3122e80e
AK
702
703static inline bool vma_is_accessible(struct vm_area_struct *vma)
704{
6cb4d9a2 705 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
706}
707
43675e6f
YS
708#ifdef CONFIG_SHMEM
709/*
710 * The vma_is_shmem is not inline because it is used only by slow
711 * paths in userfault.
712 */
713bool vma_is_shmem(struct vm_area_struct *vma);
714#else
715static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
716#endif
717
718int vma_is_stack_for_current(struct vm_area_struct *vma);
719
8b11ec1b
LT
720/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
721#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
722
1da177e4
LT
723struct mmu_gather;
724struct inode;
725
71e3aac0 726#include <linux/huge_mm.h>
1da177e4
LT
727
728/*
729 * Methods to modify the page usage count.
730 *
731 * What counts for a page usage:
732 * - cache mapping (page->mapping)
733 * - private data (page->private)
734 * - page mapped in a task's page tables, each mapping
735 * is counted separately
736 *
737 * Also, many kernel routines increase the page count before a critical
738 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
739 */
740
741/*
da6052f7 742 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 743 */
7c8ee9a8
NP
744static inline int put_page_testzero(struct page *page)
745{
fe896d18
JK
746 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
747 return page_ref_dec_and_test(page);
7c8ee9a8 748}
1da177e4
LT
749
750/*
7c8ee9a8
NP
751 * Try to grab a ref unless the page has a refcount of zero, return false if
752 * that is the case.
8e0861fa
AK
753 * This can be called when MMU is off so it must not access
754 * any of the virtual mappings.
1da177e4 755 */
7c8ee9a8
NP
756static inline int get_page_unless_zero(struct page *page)
757{
fe896d18 758 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 759}
1da177e4 760
53df8fdc 761extern int page_is_ram(unsigned long pfn);
124fe20d
DW
762
763enum {
764 REGION_INTERSECTS,
765 REGION_DISJOINT,
766 REGION_MIXED,
767};
768
1c29f25b
TK
769int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
770 unsigned long desc);
53df8fdc 771
48667e7a 772/* Support for virtually mapped pages */
b3bdda02
CL
773struct page *vmalloc_to_page(const void *addr);
774unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 775
0738c4bb
PM
776/*
777 * Determine if an address is within the vmalloc range
778 *
779 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
780 * is no special casing required.
781 */
9bd3bb67
AK
782
783#ifndef is_ioremap_addr
784#define is_ioremap_addr(x) is_vmalloc_addr(x)
785#endif
786
81ac3ad9 787#ifdef CONFIG_MMU
186525bd 788extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
789extern int is_vmalloc_or_module_addr(const void *x);
790#else
186525bd
IM
791static inline bool is_vmalloc_addr(const void *x)
792{
793 return false;
794}
934831d0 795static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
796{
797 return 0;
798}
799#endif
9e2779fa 800
a7c3e901
MH
801extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
802static inline void *kvmalloc(size_t size, gfp_t flags)
803{
804 return kvmalloc_node(size, flags, NUMA_NO_NODE);
805}
806static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
807{
808 return kvmalloc_node(size, flags | __GFP_ZERO, node);
809}
810static inline void *kvzalloc(size_t size, gfp_t flags)
811{
812 return kvmalloc(size, flags | __GFP_ZERO);
813}
814
752ade68
MH
815static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
816{
3b3b1a29
KC
817 size_t bytes;
818
819 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
820 return NULL;
821
3b3b1a29 822 return kvmalloc(bytes, flags);
752ade68
MH
823}
824
1c542f38
KC
825static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
826{
827 return kvmalloc_array(n, size, flags | __GFP_ZERO);
828}
829
39f1f78d 830extern void kvfree(const void *addr);
d4eaa283 831extern void kvfree_sensitive(const void *addr, size_t len);
39f1f78d 832
bac3cf4d 833static inline int head_compound_mapcount(struct page *head)
6dc5ea16
JH
834{
835 return atomic_read(compound_mapcount_ptr(head)) + 1;
836}
837
6988f31d
KK
838/*
839 * Mapcount of compound page as a whole, does not include mapped sub-pages.
840 *
841 * Must be called only for compound pages or any their tail sub-pages.
842 */
53f9263b
KS
843static inline int compound_mapcount(struct page *page)
844{
5f527c2b 845 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 846 page = compound_head(page);
bac3cf4d 847 return head_compound_mapcount(page);
53f9263b
KS
848}
849
70b50f94
AA
850/*
851 * The atomic page->_mapcount, starts from -1: so that transitions
852 * both from it and to it can be tracked, using atomic_inc_and_test
853 * and atomic_add_negative(-1).
854 */
22b751c3 855static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
856{
857 atomic_set(&(page)->_mapcount, -1);
858}
859
b20ce5e0
KS
860int __page_mapcount(struct page *page);
861
6988f31d
KK
862/*
863 * Mapcount of 0-order page; when compound sub-page, includes
864 * compound_mapcount().
865 *
866 * Result is undefined for pages which cannot be mapped into userspace.
867 * For example SLAB or special types of pages. See function page_has_type().
868 * They use this place in struct page differently.
869 */
70b50f94
AA
870static inline int page_mapcount(struct page *page)
871{
b20ce5e0
KS
872 if (unlikely(PageCompound(page)))
873 return __page_mapcount(page);
874 return atomic_read(&page->_mapcount) + 1;
875}
876
877#ifdef CONFIG_TRANSPARENT_HUGEPAGE
878int total_mapcount(struct page *page);
6d0a07ed 879int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
880#else
881static inline int total_mapcount(struct page *page)
882{
883 return page_mapcount(page);
70b50f94 884}
6d0a07ed
AA
885static inline int page_trans_huge_mapcount(struct page *page,
886 int *total_mapcount)
887{
888 int mapcount = page_mapcount(page);
889 if (total_mapcount)
890 *total_mapcount = mapcount;
891 return mapcount;
892}
b20ce5e0 893#endif
70b50f94 894
b49af68f
CL
895static inline struct page *virt_to_head_page(const void *x)
896{
897 struct page *page = virt_to_page(x);
ccaafd7f 898
1d798ca3 899 return compound_head(page);
b49af68f
CL
900}
901
ddc58f27
KS
902void __put_page(struct page *page);
903
1d7ea732 904void put_pages_list(struct list_head *pages);
1da177e4 905
8dfcc9ba 906void split_page(struct page *page, unsigned int order);
8dfcc9ba 907
33f2ef89
AW
908/*
909 * Compound pages have a destructor function. Provide a
910 * prototype for that function and accessor functions.
f1e61557 911 * These are _only_ valid on the head of a compound page.
33f2ef89 912 */
f1e61557
KS
913typedef void compound_page_dtor(struct page *);
914
915/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
916enum compound_dtor_id {
917 NULL_COMPOUND_DTOR,
918 COMPOUND_PAGE_DTOR,
919#ifdef CONFIG_HUGETLB_PAGE
920 HUGETLB_PAGE_DTOR,
9a982250
KS
921#endif
922#ifdef CONFIG_TRANSPARENT_HUGEPAGE
923 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
924#endif
925 NR_COMPOUND_DTORS,
926};
ae70eddd 927extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
928
929static inline void set_compound_page_dtor(struct page *page,
f1e61557 930 enum compound_dtor_id compound_dtor)
33f2ef89 931{
f1e61557
KS
932 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
933 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
934}
935
ff45fc3c 936static inline void destroy_compound_page(struct page *page)
33f2ef89 937{
f1e61557 938 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 939 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
940}
941
d00181b9 942static inline unsigned int compound_order(struct page *page)
d85f3385 943{
6d777953 944 if (!PageHead(page))
d85f3385 945 return 0;
e4b294c2 946 return page[1].compound_order;
d85f3385
CL
947}
948
47e29d32
JH
949static inline bool hpage_pincount_available(struct page *page)
950{
951 /*
952 * Can the page->hpage_pinned_refcount field be used? That field is in
953 * the 3rd page of the compound page, so the smallest (2-page) compound
954 * pages cannot support it.
955 */
956 page = compound_head(page);
957 return PageCompound(page) && compound_order(page) > 1;
958}
959
bac3cf4d 960static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
961{
962 return atomic_read(compound_pincount_ptr(head));
963}
964
47e29d32
JH
965static inline int compound_pincount(struct page *page)
966{
967 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
968 page = compound_head(page);
bac3cf4d 969 return head_compound_pincount(page);
47e29d32
JH
970}
971
f1e61557 972static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 973{
e4b294c2 974 page[1].compound_order = order;
1378a5ee 975 page[1].compound_nr = 1U << order;
d85f3385
CL
976}
977
d8c6546b
MWO
978/* Returns the number of pages in this potentially compound page. */
979static inline unsigned long compound_nr(struct page *page)
980{
1378a5ee
MWO
981 if (!PageHead(page))
982 return 1;
983 return page[1].compound_nr;
d8c6546b
MWO
984}
985
a50b854e
MWO
986/* Returns the number of bytes in this potentially compound page. */
987static inline unsigned long page_size(struct page *page)
988{
989 return PAGE_SIZE << compound_order(page);
990}
991
94ad9338
MWO
992/* Returns the number of bits needed for the number of bytes in a page */
993static inline unsigned int page_shift(struct page *page)
994{
995 return PAGE_SHIFT + compound_order(page);
996}
997
9a982250
KS
998void free_compound_page(struct page *page);
999
3dece370 1000#ifdef CONFIG_MMU
14fd403f
AA
1001/*
1002 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1003 * servicing faults for write access. In the normal case, do always want
1004 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1005 * that do not have writing enabled, when used by access_process_vm.
1006 */
1007static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1008{
1009 if (likely(vma->vm_flags & VM_WRITE))
1010 pte = pte_mkwrite(pte);
1011 return pte;
1012}
8c6e50b0 1013
f9ce0be7 1014vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1015void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1016
2b740303
SJ
1017vm_fault_t finish_fault(struct vm_fault *vmf);
1018vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1019#endif
14fd403f 1020
1da177e4
LT
1021/*
1022 * Multiple processes may "see" the same page. E.g. for untouched
1023 * mappings of /dev/null, all processes see the same page full of
1024 * zeroes, and text pages of executables and shared libraries have
1025 * only one copy in memory, at most, normally.
1026 *
1027 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1028 * page_count() == 0 means the page is free. page->lru is then used for
1029 * freelist management in the buddy allocator.
da6052f7 1030 * page_count() > 0 means the page has been allocated.
1da177e4 1031 *
da6052f7
NP
1032 * Pages are allocated by the slab allocator in order to provide memory
1033 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1034 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1035 * unless a particular usage is carefully commented. (the responsibility of
1036 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1037 *
da6052f7
NP
1038 * A page may be used by anyone else who does a __get_free_page().
1039 * In this case, page_count still tracks the references, and should only
1040 * be used through the normal accessor functions. The top bits of page->flags
1041 * and page->virtual store page management information, but all other fields
1042 * are unused and could be used privately, carefully. The management of this
1043 * page is the responsibility of the one who allocated it, and those who have
1044 * subsequently been given references to it.
1045 *
1046 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1047 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1048 * The following discussion applies only to them.
1049 *
da6052f7
NP
1050 * A pagecache page contains an opaque `private' member, which belongs to the
1051 * page's address_space. Usually, this is the address of a circular list of
1052 * the page's disk buffers. PG_private must be set to tell the VM to call
1053 * into the filesystem to release these pages.
1da177e4 1054 *
da6052f7
NP
1055 * A page may belong to an inode's memory mapping. In this case, page->mapping
1056 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1057 * in units of PAGE_SIZE.
1da177e4 1058 *
da6052f7
NP
1059 * If pagecache pages are not associated with an inode, they are said to be
1060 * anonymous pages. These may become associated with the swapcache, and in that
1061 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1062 *
da6052f7
NP
1063 * In either case (swapcache or inode backed), the pagecache itself holds one
1064 * reference to the page. Setting PG_private should also increment the
1065 * refcount. The each user mapping also has a reference to the page.
1da177e4 1066 *
da6052f7 1067 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1068 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1069 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1070 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1071 *
da6052f7 1072 * All pagecache pages may be subject to I/O:
1da177e4
LT
1073 * - inode pages may need to be read from disk,
1074 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1075 * to be written back to the inode on disk,
1076 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1077 * modified may need to be swapped out to swap space and (later) to be read
1078 * back into memory.
1da177e4
LT
1079 */
1080
1081/*
1082 * The zone field is never updated after free_area_init_core()
1083 * sets it, so none of the operations on it need to be atomic.
1da177e4 1084 */
348f8b6c 1085
90572890 1086/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1087#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1088#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1089#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1090#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1091#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1092
348f8b6c 1093/*
25985edc 1094 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1095 * sections we define the shift as 0; that plus a 0 mask ensures
1096 * the compiler will optimise away reference to them.
1097 */
d41dee36
AW
1098#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1099#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1100#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1101#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1102#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1103
bce54bbf
WD
1104/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1105#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1106#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1107#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1108 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1109#else
89689ae7 1110#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1111#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1112 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1113#endif
1114
bd8029b6 1115#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1116
d41dee36
AW
1117#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1118#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1119#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1120#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1121#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1122#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1123
33dd4e0e 1124static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1125{
c403f6a3 1126 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1127 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1128}
1da177e4 1129
260ae3f7
DW
1130#ifdef CONFIG_ZONE_DEVICE
1131static inline bool is_zone_device_page(const struct page *page)
1132{
1133 return page_zonenum(page) == ZONE_DEVICE;
1134}
966cf44f
AD
1135extern void memmap_init_zone_device(struct zone *, unsigned long,
1136 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1137#else
1138static inline bool is_zone_device_page(const struct page *page)
1139{
1140 return false;
1141}
7b2d55d2 1142#endif
5042db43 1143
8e3560d9
PT
1144static inline bool is_zone_movable_page(const struct page *page)
1145{
1146 return page_zonenum(page) == ZONE_MOVABLE;
1147}
1148
e7638488 1149#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1150void free_devmap_managed_page(struct page *page);
e7638488 1151DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1152
1153static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1154{
1155 if (!static_branch_unlikely(&devmap_managed_key))
1156 return false;
1157 if (!is_zone_device_page(page))
1158 return false;
1159 switch (page->pgmap->type) {
1160 case MEMORY_DEVICE_PRIVATE:
e7638488 1161 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1162 return true;
1163 default:
1164 break;
1165 }
1166 return false;
1167}
1168
07d80269
JH
1169void put_devmap_managed_page(struct page *page);
1170
e7638488 1171#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1172static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1173{
1174 return false;
1175}
07d80269
JH
1176
1177static inline void put_devmap_managed_page(struct page *page)
1178{
1179}
7588adf8 1180#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1181
6b368cd4
JG
1182static inline bool is_device_private_page(const struct page *page)
1183{
7588adf8
RM
1184 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1185 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1186 is_zone_device_page(page) &&
1187 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1188}
e7638488 1189
52916982
LG
1190static inline bool is_pci_p2pdma_page(const struct page *page)
1191{
7588adf8
RM
1192 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1193 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1194 is_zone_device_page(page) &&
1195 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1196}
7b2d55d2 1197
f958d7b5
LT
1198/* 127: arbitrary random number, small enough to assemble well */
1199#define page_ref_zero_or_close_to_overflow(page) \
1200 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1201
3565fce3
DW
1202static inline void get_page(struct page *page)
1203{
1204 page = compound_head(page);
1205 /*
1206 * Getting a normal page or the head of a compound page
0139aa7b 1207 * requires to already have an elevated page->_refcount.
3565fce3 1208 */
f958d7b5 1209 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1210 page_ref_inc(page);
3565fce3
DW
1211}
1212
3faa52c0 1213bool __must_check try_grab_page(struct page *page, unsigned int flags);
0fa5bc40
JM
1214__maybe_unused struct page *try_grab_compound_head(struct page *page, int refs,
1215 unsigned int flags);
1216
3faa52c0 1217
88b1a17d
LT
1218static inline __must_check bool try_get_page(struct page *page)
1219{
1220 page = compound_head(page);
1221 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1222 return false;
fe896d18 1223 page_ref_inc(page);
88b1a17d 1224 return true;
3565fce3
DW
1225}
1226
1227static inline void put_page(struct page *page)
1228{
1229 page = compound_head(page);
1230
7b2d55d2 1231 /*
e7638488
DW
1232 * For devmap managed pages we need to catch refcount transition from
1233 * 2 to 1, when refcount reach one it means the page is free and we
1234 * need to inform the device driver through callback. See
7b2d55d2
JG
1235 * include/linux/memremap.h and HMM for details.
1236 */
07d80269
JH
1237 if (page_is_devmap_managed(page)) {
1238 put_devmap_managed_page(page);
7b2d55d2 1239 return;
07d80269 1240 }
7b2d55d2 1241
3565fce3
DW
1242 if (put_page_testzero(page))
1243 __put_page(page);
3565fce3
DW
1244}
1245
3faa52c0
JH
1246/*
1247 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1248 * the page's refcount so that two separate items are tracked: the original page
1249 * reference count, and also a new count of how many pin_user_pages() calls were
1250 * made against the page. ("gup-pinned" is another term for the latter).
1251 *
1252 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1253 * distinct from normal pages. As such, the unpin_user_page() call (and its
1254 * variants) must be used in order to release gup-pinned pages.
1255 *
1256 * Choice of value:
1257 *
1258 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1259 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1260 * simpler, due to the fact that adding an even power of two to the page
1261 * refcount has the effect of using only the upper N bits, for the code that
1262 * counts up using the bias value. This means that the lower bits are left for
1263 * the exclusive use of the original code that increments and decrements by one
1264 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1265 *
3faa52c0
JH
1266 * Of course, once the lower bits overflow into the upper bits (and this is
1267 * OK, because subtraction recovers the original values), then visual inspection
1268 * no longer suffices to directly view the separate counts. However, for normal
1269 * applications that don't have huge page reference counts, this won't be an
1270 * issue.
fc1d8e7c 1271 *
3faa52c0
JH
1272 * Locking: the lockless algorithm described in page_cache_get_speculative()
1273 * and page_cache_gup_pin_speculative() provides safe operation for
1274 * get_user_pages and page_mkclean and other calls that race to set up page
1275 * table entries.
fc1d8e7c 1276 */
3faa52c0 1277#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1278
3faa52c0 1279void unpin_user_page(struct page *page);
f1f6a7dd
JH
1280void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1281 bool make_dirty);
458a4f78
JM
1282void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1283 bool make_dirty);
f1f6a7dd 1284void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1285
3faa52c0 1286/**
136dfc99
MWO
1287 * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1288 * @page: The page.
3faa52c0
JH
1289 *
1290 * This function checks if a page has been pinned via a call to
136dfc99 1291 * a function in the pin_user_pages() family.
3faa52c0
JH
1292 *
1293 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1294 * because it means "definitely not pinned for DMA", but true means "probably
1295 * pinned for DMA, but possibly a false positive due to having at least
1296 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1297 *
1298 * False positives are OK, because: a) it's unlikely for a page to get that many
1299 * refcounts, and b) all the callers of this routine are expected to be able to
1300 * deal gracefully with a false positive.
1301 *
47e29d32
JH
1302 * For huge pages, the result will be exactly correct. That's because we have
1303 * more tracking data available: the 3rd struct page in the compound page is
1304 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1305 * scheme).
1306 *
72ef5e52 1307 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0 1308 *
136dfc99
MWO
1309 * Return: True, if it is likely that the page has been "dma-pinned".
1310 * False, if the page is definitely not dma-pinned.
3faa52c0
JH
1311 */
1312static inline bool page_maybe_dma_pinned(struct page *page)
1313{
47e29d32
JH
1314 if (hpage_pincount_available(page))
1315 return compound_pincount(page) > 0;
1316
3faa52c0
JH
1317 /*
1318 * page_ref_count() is signed. If that refcount overflows, then
1319 * page_ref_count() returns a negative value, and callers will avoid
1320 * further incrementing the refcount.
1321 *
1322 * Here, for that overflow case, use the signed bit to count a little
1323 * bit higher via unsigned math, and thus still get an accurate result.
1324 */
1325 return ((unsigned int)page_ref_count(compound_head(page))) >=
1326 GUP_PIN_COUNTING_BIAS;
1327}
1328
97a7e473
PX
1329static inline bool is_cow_mapping(vm_flags_t flags)
1330{
1331 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1332}
1333
1334/*
1335 * This should most likely only be called during fork() to see whether we
1336 * should break the cow immediately for a page on the src mm.
1337 */
1338static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1339 struct page *page)
1340{
1341 if (!is_cow_mapping(vma->vm_flags))
1342 return false;
1343
1344 if (!atomic_read(&vma->vm_mm->has_pinned))
1345 return false;
1346
1347 return page_maybe_dma_pinned(page);
1348}
1349
9127ab4f
CS
1350#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1351#define SECTION_IN_PAGE_FLAGS
1352#endif
1353
89689ae7 1354/*
7a8010cd
VB
1355 * The identification function is mainly used by the buddy allocator for
1356 * determining if two pages could be buddies. We are not really identifying
1357 * the zone since we could be using the section number id if we do not have
1358 * node id available in page flags.
1359 * We only guarantee that it will return the same value for two combinable
1360 * pages in a zone.
89689ae7 1361 */
cb2b95e1
AW
1362static inline int page_zone_id(struct page *page)
1363{
89689ae7 1364 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1365}
1366
89689ae7 1367#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1368extern int page_to_nid(const struct page *page);
89689ae7 1369#else
33dd4e0e 1370static inline int page_to_nid(const struct page *page)
d41dee36 1371{
f165b378
PT
1372 struct page *p = (struct page *)page;
1373
1374 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1375}
89689ae7
CL
1376#endif
1377
57e0a030 1378#ifdef CONFIG_NUMA_BALANCING
90572890 1379static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1380{
90572890 1381 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1382}
1383
90572890 1384static inline int cpupid_to_pid(int cpupid)
57e0a030 1385{
90572890 1386 return cpupid & LAST__PID_MASK;
57e0a030 1387}
b795854b 1388
90572890 1389static inline int cpupid_to_cpu(int cpupid)
b795854b 1390{
90572890 1391 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1392}
1393
90572890 1394static inline int cpupid_to_nid(int cpupid)
b795854b 1395{
90572890 1396 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1397}
1398
90572890 1399static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1400{
90572890 1401 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1402}
1403
90572890 1404static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1405{
90572890 1406 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1407}
1408
8c8a743c
PZ
1409static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1410{
1411 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1412}
1413
1414#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1415#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1416static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1417{
1ae71d03 1418 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1419}
90572890
PZ
1420
1421static inline int page_cpupid_last(struct page *page)
1422{
1423 return page->_last_cpupid;
1424}
1425static inline void page_cpupid_reset_last(struct page *page)
b795854b 1426{
1ae71d03 1427 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1428}
1429#else
90572890 1430static inline int page_cpupid_last(struct page *page)
75980e97 1431{
90572890 1432 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1433}
1434
90572890 1435extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1436
90572890 1437static inline void page_cpupid_reset_last(struct page *page)
75980e97 1438{
09940a4f 1439 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1440}
90572890
PZ
1441#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1442#else /* !CONFIG_NUMA_BALANCING */
1443static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1444{
90572890 1445 return page_to_nid(page); /* XXX */
57e0a030
MG
1446}
1447
90572890 1448static inline int page_cpupid_last(struct page *page)
57e0a030 1449{
90572890 1450 return page_to_nid(page); /* XXX */
57e0a030
MG
1451}
1452
90572890 1453static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1454{
1455 return -1;
1456}
1457
90572890 1458static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1459{
1460 return -1;
1461}
1462
90572890 1463static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1464{
1465 return -1;
1466}
1467
90572890
PZ
1468static inline int cpu_pid_to_cpupid(int nid, int pid)
1469{
1470 return -1;
1471}
1472
1473static inline bool cpupid_pid_unset(int cpupid)
b795854b 1474{
2b787449 1475 return true;
b795854b
MG
1476}
1477
90572890 1478static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1479{
1480}
8c8a743c
PZ
1481
1482static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1483{
1484 return false;
1485}
90572890 1486#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1487
2e903b91 1488#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1489
cf10bd4c
AK
1490/*
1491 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1492 * setting tags for all pages to native kernel tag value 0xff, as the default
1493 * value 0x00 maps to 0xff.
1494 */
1495
2813b9c0
AK
1496static inline u8 page_kasan_tag(const struct page *page)
1497{
cf10bd4c
AK
1498 u8 tag = 0xff;
1499
1500 if (kasan_enabled()) {
1501 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1502 tag ^= 0xff;
1503 }
1504
1505 return tag;
2813b9c0
AK
1506}
1507
1508static inline void page_kasan_tag_set(struct page *page, u8 tag)
1509{
34303244 1510 if (kasan_enabled()) {
cf10bd4c 1511 tag ^= 0xff;
34303244
AK
1512 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1513 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1514 }
2813b9c0
AK
1515}
1516
1517static inline void page_kasan_tag_reset(struct page *page)
1518{
34303244
AK
1519 if (kasan_enabled())
1520 page_kasan_tag_set(page, 0xff);
2813b9c0 1521}
34303244
AK
1522
1523#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1524
2813b9c0
AK
1525static inline u8 page_kasan_tag(const struct page *page)
1526{
1527 return 0xff;
1528}
1529
1530static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1531static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1532
1533#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1534
33dd4e0e 1535static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1536{
1537 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1538}
1539
75ef7184
MG
1540static inline pg_data_t *page_pgdat(const struct page *page)
1541{
1542 return NODE_DATA(page_to_nid(page));
1543}
1544
9127ab4f 1545#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1546static inline void set_page_section(struct page *page, unsigned long section)
1547{
1548 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1549 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1550}
1551
aa462abe 1552static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1553{
1554 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1555}
308c05e3 1556#endif
d41dee36 1557
8e3560d9
PT
1558/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1559#ifdef CONFIG_MIGRATION
1560static inline bool is_pinnable_page(struct page *page)
1561{
9afaf30f
PT
1562 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1563 is_zero_pfn(page_to_pfn(page));
8e3560d9
PT
1564}
1565#else
1566static inline bool is_pinnable_page(struct page *page)
1567{
1568 return true;
1569}
1570#endif
1571
2f1b6248 1572static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1573{
1574 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1575 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1576}
2f1b6248 1577
348f8b6c
DH
1578static inline void set_page_node(struct page *page, unsigned long node)
1579{
1580 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1581 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1582}
89689ae7 1583
2f1b6248 1584static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1585 unsigned long node, unsigned long pfn)
1da177e4 1586{
348f8b6c
DH
1587 set_page_zone(page, zone);
1588 set_page_node(page, node);
9127ab4f 1589#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1590 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1591#endif
1da177e4
LT
1592}
1593
f6ac2354
CL
1594/*
1595 * Some inline functions in vmstat.h depend on page_zone()
1596 */
1597#include <linux/vmstat.h>
1598
33dd4e0e 1599static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1600{
1dff8083 1601 return page_to_virt(page);
1da177e4
LT
1602}
1603
1604#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1605#define HASHED_PAGE_VIRTUAL
1606#endif
1607
1608#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1609static inline void *page_address(const struct page *page)
1610{
1611 return page->virtual;
1612}
1613static inline void set_page_address(struct page *page, void *address)
1614{
1615 page->virtual = address;
1616}
1da177e4
LT
1617#define page_address_init() do { } while(0)
1618#endif
1619
1620#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1621void *page_address(const struct page *page);
1da177e4
LT
1622void set_page_address(struct page *page, void *virtual);
1623void page_address_init(void);
1624#endif
1625
1626#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1627#define page_address(page) lowmem_page_address(page)
1628#define set_page_address(page, address) do { } while(0)
1629#define page_address_init() do { } while(0)
1630#endif
1631
e39155ea
KS
1632extern void *page_rmapping(struct page *page);
1633extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1634extern struct address_space *page_mapping(struct page *page);
1da177e4 1635
f981c595
MG
1636extern struct address_space *__page_file_mapping(struct page *);
1637
1638static inline
1639struct address_space *page_file_mapping(struct page *page)
1640{
1641 if (unlikely(PageSwapCache(page)))
1642 return __page_file_mapping(page);
1643
1644 return page->mapping;
1645}
1646
f6ab1f7f
HY
1647extern pgoff_t __page_file_index(struct page *page);
1648
1da177e4
LT
1649/*
1650 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1651 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1652 */
1653static inline pgoff_t page_index(struct page *page)
1654{
1655 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1656 return __page_file_index(page);
1da177e4
LT
1657 return page->index;
1658}
1659
1aa8aea5 1660bool page_mapped(struct page *page);
bda807d4 1661struct address_space *page_mapping(struct page *page);
1da177e4 1662
2f064f34
MH
1663/*
1664 * Return true only if the page has been allocated with
1665 * ALLOC_NO_WATERMARKS and the low watermark was not
1666 * met implying that the system is under some pressure.
1667 */
1d7bab6a 1668static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1669{
1670 /*
1671 * Page index cannot be this large so this must be
1672 * a pfmemalloc page.
1673 */
1674 return page->index == -1UL;
1675}
1676
1677/*
1678 * Only to be called by the page allocator on a freshly allocated
1679 * page.
1680 */
1681static inline void set_page_pfmemalloc(struct page *page)
1682{
1683 page->index = -1UL;
1684}
1685
1686static inline void clear_page_pfmemalloc(struct page *page)
1687{
1688 page->index = 0;
1689}
1690
1c0fe6e3
NP
1691/*
1692 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1693 */
1694extern void pagefault_out_of_memory(void);
1695
1da177e4 1696#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1697#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1da177e4 1698
ddd588b5 1699/*
7bf02ea2 1700 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1701 * various contexts.
1702 */
4b59e6c4 1703#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1704
9af744d7 1705extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1706
710ec38b 1707#ifdef CONFIG_MMU
7f43add4 1708extern bool can_do_mlock(void);
710ec38b
AB
1709#else
1710static inline bool can_do_mlock(void) { return false; }
1711#endif
1da177e4
LT
1712extern int user_shm_lock(size_t, struct user_struct *);
1713extern void user_shm_unlock(size_t, struct user_struct *);
1714
1715/*
1716 * Parameter block passed down to zap_pte_range in exceptional cases.
1717 */
1718struct zap_details {
1da177e4
LT
1719 struct address_space *check_mapping; /* Check page->mapping if set */
1720 pgoff_t first_index; /* Lowest page->index to unmap */
1721 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1722};
1723
25b2995a
CH
1724struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1725 pte_t pte);
28093f9f
GS
1726struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1727 pmd_t pmd);
7e675137 1728
27d036e3
LR
1729void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1730 unsigned long size);
14f5ff5d 1731void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1732 unsigned long size);
4f74d2c8
LT
1733void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1734 unsigned long start, unsigned long end);
e6473092 1735
ac46d4f3
JG
1736struct mmu_notifier_range;
1737
42b77728 1738void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1739 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1740int
1741copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
9fd6dad1
PB
1742int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1743 struct mmu_notifier_range *range, pte_t **ptepp,
1744 pmd_t **pmdpp, spinlock_t **ptlp);
ff5c19ed 1745int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 1746 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
1747int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1748 unsigned long *pfn);
d87fe660 1749int follow_phys(struct vm_area_struct *vma, unsigned long address,
1750 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1751int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1752 void *buf, int len, int write);
1da177e4 1753
7caef267 1754extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1755extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1756void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1757void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1758int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1759int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1760int invalidate_inode_page(struct page *page);
1761
7ee1dd3f 1762#ifdef CONFIG_MMU
2b740303 1763extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1764 unsigned long address, unsigned int flags,
1765 struct pt_regs *regs);
64019a2e 1766extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1767 unsigned long address, unsigned int fault_flags,
1768 bool *unlocked);
977fbdcd
MW
1769void unmap_mapping_pages(struct address_space *mapping,
1770 pgoff_t start, pgoff_t nr, bool even_cows);
1771void unmap_mapping_range(struct address_space *mapping,
1772 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1773#else
2b740303 1774static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1775 unsigned long address, unsigned int flags,
1776 struct pt_regs *regs)
7ee1dd3f
DH
1777{
1778 /* should never happen if there's no MMU */
1779 BUG();
1780 return VM_FAULT_SIGBUS;
1781}
64019a2e 1782static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1783 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1784{
1785 /* should never happen if there's no MMU */
1786 BUG();
1787 return -EFAULT;
1788}
977fbdcd
MW
1789static inline void unmap_mapping_pages(struct address_space *mapping,
1790 pgoff_t start, pgoff_t nr, bool even_cows) { }
1791static inline void unmap_mapping_range(struct address_space *mapping,
1792 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1793#endif
f33ea7f4 1794
977fbdcd
MW
1795static inline void unmap_shared_mapping_range(struct address_space *mapping,
1796 loff_t const holebegin, loff_t const holelen)
1797{
1798 unmap_mapping_range(mapping, holebegin, holelen, 0);
1799}
1800
1801extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1802 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1803extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1804 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1805extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1806 void *buf, int len, unsigned int gup_flags);
1da177e4 1807
64019a2e 1808long get_user_pages_remote(struct mm_struct *mm,
1e987790 1809 unsigned long start, unsigned long nr_pages,
9beae1ea 1810 unsigned int gup_flags, struct page **pages,
5b56d49f 1811 struct vm_area_struct **vmas, int *locked);
64019a2e 1812long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1813 unsigned long start, unsigned long nr_pages,
1814 unsigned int gup_flags, struct page **pages,
1815 struct vm_area_struct **vmas, int *locked);
c12d2da5 1816long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1817 unsigned int gup_flags, struct page **pages,
cde70140 1818 struct vm_area_struct **vmas);
eddb1c22
JH
1819long pin_user_pages(unsigned long start, unsigned long nr_pages,
1820 unsigned int gup_flags, struct page **pages,
1821 struct vm_area_struct **vmas);
c12d2da5 1822long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1823 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1824long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1825 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1826long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1827 struct page **pages, unsigned int gup_flags);
91429023
JH
1828long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1829 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1830
73b0140b
IW
1831int get_user_pages_fast(unsigned long start, int nr_pages,
1832 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1833int pin_user_pages_fast(unsigned long start, int nr_pages,
1834 unsigned int gup_flags, struct page **pages);
8025e5dd 1835
79eb597c
DJ
1836int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1837int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1838 struct task_struct *task, bool bypass_rlim);
1839
18022c5d
MG
1840struct kvec;
1841int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1842 struct page **pages);
1843int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1844struct page *get_dump_page(unsigned long addr);
1da177e4 1845
cf9a2ae8 1846extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1847extern void do_invalidatepage(struct page *page, unsigned int offset,
1848 unsigned int length);
cf9a2ae8 1849
f82b3764 1850void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1851int __set_page_dirty_nobuffers(struct page *page);
76719325 1852int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1853int redirty_page_for_writepage(struct writeback_control *wbc,
1854 struct page *page);
62cccb8c 1855void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1856void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1857 struct bdi_writeback *wb);
b3c97528 1858int set_page_dirty(struct page *page);
1da177e4 1859int set_page_dirty_lock(struct page *page);
736304f3
JK
1860void __cancel_dirty_page(struct page *page);
1861static inline void cancel_dirty_page(struct page *page)
1862{
1863 /* Avoid atomic ops, locking, etc. when not actually needed. */
1864 if (PageDirty(page))
1865 __cancel_dirty_page(page);
1866}
1da177e4 1867int clear_page_dirty_for_io(struct page *page);
b9ea2515 1868
a9090253 1869int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1870
b6a2fea3
OW
1871extern unsigned long move_page_tables(struct vm_area_struct *vma,
1872 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1873 unsigned long new_addr, unsigned long len,
1874 bool need_rmap_locks);
58705444
PX
1875
1876/*
1877 * Flags used by change_protection(). For now we make it a bitmap so
1878 * that we can pass in multiple flags just like parameters. However
1879 * for now all the callers are only use one of the flags at the same
1880 * time.
1881 */
1882/* Whether we should allow dirty bit accounting */
1883#define MM_CP_DIRTY_ACCT (1UL << 0)
1884/* Whether this protection change is for NUMA hints */
1885#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1886/* Whether this change is for write protecting */
1887#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1888#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1889#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1890 MM_CP_UFFD_WP_RESOLVE)
58705444 1891
7da4d641
PZ
1892extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1893 unsigned long end, pgprot_t newprot,
58705444 1894 unsigned long cp_flags);
b6a2fea3
OW
1895extern int mprotect_fixup(struct vm_area_struct *vma,
1896 struct vm_area_struct **pprev, unsigned long start,
1897 unsigned long end, unsigned long newflags);
1da177e4 1898
465a454f
PZ
1899/*
1900 * doesn't attempt to fault and will return short.
1901 */
dadbb612
SJ
1902int get_user_pages_fast_only(unsigned long start, int nr_pages,
1903 unsigned int gup_flags, struct page **pages);
104acc32
JH
1904int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1905 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1906
1907static inline bool get_user_page_fast_only(unsigned long addr,
1908 unsigned int gup_flags, struct page **pagep)
1909{
1910 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1911}
d559db08
KH
1912/*
1913 * per-process(per-mm_struct) statistics.
1914 */
d559db08
KH
1915static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1916{
69c97823
KK
1917 long val = atomic_long_read(&mm->rss_stat.count[member]);
1918
1919#ifdef SPLIT_RSS_COUNTING
1920 /*
1921 * counter is updated in asynchronous manner and may go to minus.
1922 * But it's never be expected number for users.
1923 */
1924 if (val < 0)
1925 val = 0;
172703b0 1926#endif
69c97823
KK
1927 return (unsigned long)val;
1928}
d559db08 1929
e4dcad20 1930void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1931
d559db08
KH
1932static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1933{
b3d1411b
JFG
1934 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1935
e4dcad20 1936 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1937}
1938
1939static inline void inc_mm_counter(struct mm_struct *mm, int member)
1940{
b3d1411b
JFG
1941 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1942
e4dcad20 1943 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1944}
1945
1946static inline void dec_mm_counter(struct mm_struct *mm, int member)
1947{
b3d1411b
JFG
1948 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1949
e4dcad20 1950 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1951}
1952
eca56ff9
JM
1953/* Optimized variant when page is already known not to be PageAnon */
1954static inline int mm_counter_file(struct page *page)
1955{
1956 if (PageSwapBacked(page))
1957 return MM_SHMEMPAGES;
1958 return MM_FILEPAGES;
1959}
1960
1961static inline int mm_counter(struct page *page)
1962{
1963 if (PageAnon(page))
1964 return MM_ANONPAGES;
1965 return mm_counter_file(page);
1966}
1967
d559db08
KH
1968static inline unsigned long get_mm_rss(struct mm_struct *mm)
1969{
1970 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1971 get_mm_counter(mm, MM_ANONPAGES) +
1972 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1973}
1974
1975static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1976{
1977 return max(mm->hiwater_rss, get_mm_rss(mm));
1978}
1979
1980static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1981{
1982 return max(mm->hiwater_vm, mm->total_vm);
1983}
1984
1985static inline void update_hiwater_rss(struct mm_struct *mm)
1986{
1987 unsigned long _rss = get_mm_rss(mm);
1988
1989 if ((mm)->hiwater_rss < _rss)
1990 (mm)->hiwater_rss = _rss;
1991}
1992
1993static inline void update_hiwater_vm(struct mm_struct *mm)
1994{
1995 if (mm->hiwater_vm < mm->total_vm)
1996 mm->hiwater_vm = mm->total_vm;
1997}
1998
695f0559
PC
1999static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2000{
2001 mm->hiwater_rss = get_mm_rss(mm);
2002}
2003
d559db08
KH
2004static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2005 struct mm_struct *mm)
2006{
2007 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2008
2009 if (*maxrss < hiwater_rss)
2010 *maxrss = hiwater_rss;
2011}
2012
53bddb4e 2013#if defined(SPLIT_RSS_COUNTING)
05af2e10 2014void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2015#else
05af2e10 2016static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2017{
2018}
2019#endif
465a454f 2020
78e7c5af
AK
2021#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2022static inline int pte_special(pte_t pte)
2023{
2024 return 0;
2025}
2026
2027static inline pte_t pte_mkspecial(pte_t pte)
2028{
2029 return pte;
2030}
2031#endif
2032
17596731 2033#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2034static inline int pte_devmap(pte_t pte)
2035{
2036 return 0;
2037}
2038#endif
2039
6d2329f8 2040int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 2041
25ca1d6c
NK
2042extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2043 spinlock_t **ptl);
2044static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2045 spinlock_t **ptl)
2046{
2047 pte_t *ptep;
2048 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2049 return ptep;
2050}
c9cfcddf 2051
c2febafc
KS
2052#ifdef __PAGETABLE_P4D_FOLDED
2053static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2054 unsigned long address)
2055{
2056 return 0;
2057}
2058#else
2059int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2060#endif
2061
b4e98d9a 2062#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2063static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2064 unsigned long address)
2065{
2066 return 0;
2067}
b4e98d9a
KS
2068static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2069static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2070
5f22df00 2071#else
c2febafc 2072int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2073
b4e98d9a
KS
2074static inline void mm_inc_nr_puds(struct mm_struct *mm)
2075{
6d212db1
MS
2076 if (mm_pud_folded(mm))
2077 return;
af5b0f6a 2078 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2079}
2080
2081static inline void mm_dec_nr_puds(struct mm_struct *mm)
2082{
6d212db1
MS
2083 if (mm_pud_folded(mm))
2084 return;
af5b0f6a 2085 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2086}
5f22df00
NP
2087#endif
2088
2d2f5119 2089#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2090static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2091 unsigned long address)
2092{
2093 return 0;
2094}
dc6c9a35 2095
dc6c9a35
KS
2096static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2097static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2098
5f22df00 2099#else
1bb3630e 2100int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2101
dc6c9a35
KS
2102static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2103{
6d212db1
MS
2104 if (mm_pmd_folded(mm))
2105 return;
af5b0f6a 2106 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2107}
2108
2109static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2110{
6d212db1
MS
2111 if (mm_pmd_folded(mm))
2112 return;
af5b0f6a 2113 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2114}
5f22df00
NP
2115#endif
2116
c4812909 2117#ifdef CONFIG_MMU
af5b0f6a 2118static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2119{
af5b0f6a 2120 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2121}
2122
af5b0f6a 2123static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2124{
af5b0f6a 2125 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2126}
2127
2128static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2129{
af5b0f6a 2130 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2131}
2132
2133static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2134{
af5b0f6a 2135 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2136}
2137#else
c4812909 2138
af5b0f6a
KS
2139static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2140static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2141{
2142 return 0;
2143}
2144
2145static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2146static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2147#endif
2148
4cf58924
JFG
2149int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2150int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2151
f949286c
MR
2152#if defined(CONFIG_MMU)
2153
c2febafc
KS
2154static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2155 unsigned long address)
2156{
2157 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2158 NULL : p4d_offset(pgd, address);
2159}
2160
2161static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2162 unsigned long address)
1da177e4 2163{
c2febafc
KS
2164 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2165 NULL : pud_offset(p4d, address);
1da177e4 2166}
d8626138 2167
1da177e4
LT
2168static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2169{
1bb3630e
HD
2170 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2171 NULL: pmd_offset(pud, address);
1da177e4 2172}
f949286c 2173#endif /* CONFIG_MMU */
1bb3630e 2174
57c1ffce 2175#if USE_SPLIT_PTE_PTLOCKS
597d795a 2176#if ALLOC_SPLIT_PTLOCKS
b35f1819 2177void __init ptlock_cache_init(void);
539edb58
PZ
2178extern bool ptlock_alloc(struct page *page);
2179extern void ptlock_free(struct page *page);
2180
2181static inline spinlock_t *ptlock_ptr(struct page *page)
2182{
2183 return page->ptl;
2184}
597d795a 2185#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2186static inline void ptlock_cache_init(void)
2187{
2188}
2189
49076ec2
KS
2190static inline bool ptlock_alloc(struct page *page)
2191{
49076ec2
KS
2192 return true;
2193}
539edb58 2194
49076ec2
KS
2195static inline void ptlock_free(struct page *page)
2196{
49076ec2
KS
2197}
2198
2199static inline spinlock_t *ptlock_ptr(struct page *page)
2200{
539edb58 2201 return &page->ptl;
49076ec2 2202}
597d795a 2203#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2204
2205static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2206{
2207 return ptlock_ptr(pmd_page(*pmd));
2208}
2209
2210static inline bool ptlock_init(struct page *page)
2211{
2212 /*
2213 * prep_new_page() initialize page->private (and therefore page->ptl)
2214 * with 0. Make sure nobody took it in use in between.
2215 *
2216 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2217 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2218 */
309381fe 2219 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2220 if (!ptlock_alloc(page))
2221 return false;
2222 spin_lock_init(ptlock_ptr(page));
2223 return true;
2224}
2225
57c1ffce 2226#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2227/*
2228 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2229 */
49076ec2
KS
2230static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2231{
2232 return &mm->page_table_lock;
2233}
b35f1819 2234static inline void ptlock_cache_init(void) {}
49076ec2 2235static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2236static inline void ptlock_free(struct page *page) {}
57c1ffce 2237#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2238
b35f1819
KS
2239static inline void pgtable_init(void)
2240{
2241 ptlock_cache_init();
2242 pgtable_cache_init();
2243}
2244
b4ed71f5 2245static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2246{
706874e9
VD
2247 if (!ptlock_init(page))
2248 return false;
1d40a5ea 2249 __SetPageTable(page);
f0c0c115 2250 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2251 return true;
2f569afd
MS
2252}
2253
b4ed71f5 2254static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2255{
9e247bab 2256 ptlock_free(page);
1d40a5ea 2257 __ClearPageTable(page);
f0c0c115 2258 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2259}
2260
c74df32c
HD
2261#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2262({ \
4c21e2f2 2263 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2264 pte_t *__pte = pte_offset_map(pmd, address); \
2265 *(ptlp) = __ptl; \
2266 spin_lock(__ptl); \
2267 __pte; \
2268})
2269
2270#define pte_unmap_unlock(pte, ptl) do { \
2271 spin_unlock(ptl); \
2272 pte_unmap(pte); \
2273} while (0)
2274
4cf58924 2275#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2276
2277#define pte_alloc_map(mm, pmd, address) \
4cf58924 2278 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2279
c74df32c 2280#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2281 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2282 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2283
1bb3630e 2284#define pte_alloc_kernel(pmd, address) \
4cf58924 2285 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2286 NULL: pte_offset_kernel(pmd, address))
1da177e4 2287
e009bb30
KS
2288#if USE_SPLIT_PMD_PTLOCKS
2289
634391ac
MS
2290static struct page *pmd_to_page(pmd_t *pmd)
2291{
2292 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2293 return virt_to_page((void *)((unsigned long) pmd & mask));
2294}
2295
e009bb30
KS
2296static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2297{
634391ac 2298 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2299}
2300
b2b29d6d 2301static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2302{
e009bb30
KS
2303#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2304 page->pmd_huge_pte = NULL;
2305#endif
49076ec2 2306 return ptlock_init(page);
e009bb30
KS
2307}
2308
b2b29d6d 2309static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2310{
2311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2312 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2313#endif
49076ec2 2314 ptlock_free(page);
e009bb30
KS
2315}
2316
634391ac 2317#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2318
2319#else
2320
9a86cb7b
KS
2321static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2322{
2323 return &mm->page_table_lock;
2324}
2325
b2b29d6d
MW
2326static inline bool pmd_ptlock_init(struct page *page) { return true; }
2327static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2328
c389a250 2329#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2330
e009bb30
KS
2331#endif
2332
9a86cb7b
KS
2333static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2334{
2335 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2336 spin_lock(ptl);
2337 return ptl;
2338}
2339
b2b29d6d
MW
2340static inline bool pgtable_pmd_page_ctor(struct page *page)
2341{
2342 if (!pmd_ptlock_init(page))
2343 return false;
2344 __SetPageTable(page);
f0c0c115 2345 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2346 return true;
2347}
2348
2349static inline void pgtable_pmd_page_dtor(struct page *page)
2350{
2351 pmd_ptlock_free(page);
2352 __ClearPageTable(page);
f0c0c115 2353 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2354}
2355
a00cc7d9
MW
2356/*
2357 * No scalability reason to split PUD locks yet, but follow the same pattern
2358 * as the PMD locks to make it easier if we decide to. The VM should not be
2359 * considered ready to switch to split PUD locks yet; there may be places
2360 * which need to be converted from page_table_lock.
2361 */
2362static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2363{
2364 return &mm->page_table_lock;
2365}
2366
2367static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2368{
2369 spinlock_t *ptl = pud_lockptr(mm, pud);
2370
2371 spin_lock(ptl);
2372 return ptl;
2373}
62906027 2374
a00cc7d9 2375extern void __init pagecache_init(void);
bc9331a1 2376extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2377extern void free_initmem(void);
2378
69afade7
JL
2379/*
2380 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2381 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2382 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2383 * Return pages freed into the buddy system.
2384 */
11199692 2385extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2386 int poison, const char *s);
c3d5f5f0 2387
c3d5f5f0 2388extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2389extern void mem_init_print_info(void);
69afade7 2390
4b50bcc7 2391extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2392
69afade7 2393/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2394static inline void free_reserved_page(struct page *page)
69afade7
JL
2395{
2396 ClearPageReserved(page);
2397 init_page_count(page);
2398 __free_page(page);
69afade7
JL
2399 adjust_managed_page_count(page, 1);
2400}
a0cd7a7c 2401#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2402
2403static inline void mark_page_reserved(struct page *page)
2404{
2405 SetPageReserved(page);
2406 adjust_managed_page_count(page, -1);
2407}
2408
2409/*
2410 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2411 * The freed pages will be poisoned with pattern "poison" if it's within
2412 * range [0, UCHAR_MAX].
2413 * Return pages freed into the buddy system.
69afade7
JL
2414 */
2415static inline unsigned long free_initmem_default(int poison)
2416{
2417 extern char __init_begin[], __init_end[];
2418
11199692 2419 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2420 poison, "unused kernel");
2421}
2422
7ee3d4e8
JL
2423static inline unsigned long get_num_physpages(void)
2424{
2425 int nid;
2426 unsigned long phys_pages = 0;
2427
2428 for_each_online_node(nid)
2429 phys_pages += node_present_pages(nid);
2430
2431 return phys_pages;
2432}
2433
c713216d 2434/*
3f08a302 2435 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2436 * zones, allocate the backing mem_map and account for memory holes in an
2437 * architecture independent manner.
c713216d
MG
2438 *
2439 * An architecture is expected to register range of page frames backed by
0ee332c1 2440 * physical memory with memblock_add[_node]() before calling
9691a071 2441 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2442 * usage, an architecture is expected to do something like
2443 *
2444 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2445 * max_highmem_pfn};
2446 * for_each_valid_physical_page_range()
0ee332c1 2447 * memblock_add_node(base, size, nid)
9691a071 2448 * free_area_init(max_zone_pfns);
c713216d 2449 */
9691a071 2450void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2451unsigned long node_map_pfn_alignment(void);
32996250
YL
2452unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2453 unsigned long end_pfn);
c713216d
MG
2454extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2455 unsigned long end_pfn);
2456extern void get_pfn_range_for_nid(unsigned int nid,
2457 unsigned long *start_pfn, unsigned long *end_pfn);
2458extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2459
3f08a302 2460#ifndef CONFIG_NEED_MULTIPLE_NODES
6f24fbd3 2461static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2462{
2463 return 0;
2464}
2465#else
2466/* please see mm/page_alloc.c */
2467extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2468#endif
2469
0e0b864e 2470extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2471extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2472 unsigned long, unsigned long, enum meminit_context,
2473 struct vmem_altmap *, int migratetype);
3256ff83 2474extern void memmap_init_zone(struct zone *zone);
bc75d33f 2475extern void setup_per_zone_wmarks(void);
1b79acc9 2476extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2477extern void mem_init(void);
8feae131 2478extern void __init mmap_init(void);
9af744d7 2479extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2480extern long si_mem_available(void);
1da177e4
LT
2481extern void si_meminfo(struct sysinfo * val);
2482extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2483#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2484extern unsigned long arch_reserved_kernel_pages(void);
2485#endif
1da177e4 2486
a8e99259
MH
2487extern __printf(3, 4)
2488void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2489
e7c8d5c9 2490extern void setup_per_cpu_pageset(void);
e7c8d5c9 2491
75f7ad8e
PS
2492/* page_alloc.c */
2493extern int min_free_kbytes;
1c30844d 2494extern int watermark_boost_factor;
795ae7a0 2495extern int watermark_scale_factor;
51930df5 2496extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2497
8feae131 2498/* nommu.c */
33e5d769 2499extern atomic_long_t mmap_pages_allocated;
7e660872 2500extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2501
6b2dbba8 2502/* interval_tree.c */
6b2dbba8 2503void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2504 struct rb_root_cached *root);
9826a516
ML
2505void vma_interval_tree_insert_after(struct vm_area_struct *node,
2506 struct vm_area_struct *prev,
f808c13f 2507 struct rb_root_cached *root);
6b2dbba8 2508void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2509 struct rb_root_cached *root);
2510struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2511 unsigned long start, unsigned long last);
2512struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2513 unsigned long start, unsigned long last);
2514
2515#define vma_interval_tree_foreach(vma, root, start, last) \
2516 for (vma = vma_interval_tree_iter_first(root, start, last); \
2517 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2518
bf181b9f 2519void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2520 struct rb_root_cached *root);
bf181b9f 2521void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2522 struct rb_root_cached *root);
2523struct anon_vma_chain *
2524anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2525 unsigned long start, unsigned long last);
bf181b9f
ML
2526struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2527 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2528#ifdef CONFIG_DEBUG_VM_RB
2529void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2530#endif
bf181b9f
ML
2531
2532#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2533 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2534 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2535
1da177e4 2536/* mmap.c */
34b4e4aa 2537extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2538extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2539 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2540 struct vm_area_struct *expand);
2541static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2542 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2543{
2544 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2545}
1da177e4
LT
2546extern struct vm_area_struct *vma_merge(struct mm_struct *,
2547 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2548 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2549 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2550extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2551extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2552 unsigned long addr, int new_below);
2553extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2554 unsigned long addr, int new_below);
1da177e4
LT
2555extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2556extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2557 struct rb_node **, struct rb_node *);
a8fb5618 2558extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2559extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2560 unsigned long addr, unsigned long len, pgoff_t pgoff,
2561 bool *need_rmap_locks);
1da177e4 2562extern void exit_mmap(struct mm_struct *);
925d1c40 2563
9c599024
CG
2564static inline int check_data_rlimit(unsigned long rlim,
2565 unsigned long new,
2566 unsigned long start,
2567 unsigned long end_data,
2568 unsigned long start_data)
2569{
2570 if (rlim < RLIM_INFINITY) {
2571 if (((new - start) + (end_data - start_data)) > rlim)
2572 return -ENOSPC;
2573 }
2574
2575 return 0;
2576}
2577
7906d00c
AA
2578extern int mm_take_all_locks(struct mm_struct *mm);
2579extern void mm_drop_all_locks(struct mm_struct *mm);
2580
38646013
JS
2581extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2582extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2583extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2584
84638335
KK
2585extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2586extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2587
2eefd878
DS
2588extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2589 const struct vm_special_mapping *sm);
3935ed6a
SS
2590extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2591 unsigned long addr, unsigned long len,
a62c34bd
AL
2592 unsigned long flags,
2593 const struct vm_special_mapping *spec);
2594/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2595extern int install_special_mapping(struct mm_struct *mm,
2596 unsigned long addr, unsigned long len,
2597 unsigned long flags, struct page **pages);
1da177e4 2598
649775be
AG
2599unsigned long randomize_stack_top(unsigned long stack_top);
2600
1da177e4
LT
2601extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2602
0165ab44 2603extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2604 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2605 struct list_head *uf);
1fcfd8db 2606extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2607 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2608 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2609extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2610 struct list_head *uf, bool downgrade);
897ab3e0
MR
2611extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2612 struct list_head *uf);
0726b01e 2613extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2614
bebeb3d6
ML
2615#ifdef CONFIG_MMU
2616extern int __mm_populate(unsigned long addr, unsigned long len,
2617 int ignore_errors);
2618static inline void mm_populate(unsigned long addr, unsigned long len)
2619{
2620 /* Ignore errors */
2621 (void) __mm_populate(addr, len, 1);
2622}
2623#else
2624static inline void mm_populate(unsigned long addr, unsigned long len) {}
2625#endif
2626
e4eb1ff6 2627/* These take the mm semaphore themselves */
5d22fc25 2628extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2629extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2630extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2631extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2632 unsigned long, unsigned long,
2633 unsigned long, unsigned long);
1da177e4 2634
db4fbfb9
ML
2635struct vm_unmapped_area_info {
2636#define VM_UNMAPPED_AREA_TOPDOWN 1
2637 unsigned long flags;
2638 unsigned long length;
2639 unsigned long low_limit;
2640 unsigned long high_limit;
2641 unsigned long align_mask;
2642 unsigned long align_offset;
2643};
2644
baceaf1c 2645extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2646
85821aab 2647/* truncate.c */
1da177e4 2648extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2649extern void truncate_inode_pages_range(struct address_space *,
2650 loff_t lstart, loff_t lend);
91b0abe3 2651extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2652
2653/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2654extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2655extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2656 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2657extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2658
2659/* mm/page-writeback.c */
2b69c828 2660int __must_check write_one_page(struct page *page);
1cf6e7d8 2661void task_dirty_inc(struct task_struct *tsk);
1da177e4 2662
1be7107f 2663extern unsigned long stack_guard_gap;
d05f3169 2664/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2665extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2666
11192337 2667/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2668extern int expand_downwards(struct vm_area_struct *vma,
2669 unsigned long address);
8ca3eb08 2670#if VM_GROWSUP
46dea3d0 2671extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2672#else
fee7e49d 2673 #define expand_upwards(vma, address) (0)
9ab88515 2674#endif
1da177e4
LT
2675
2676/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2677extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2678extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2679 struct vm_area_struct **pprev);
2680
2681/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2682 NULL if none. Assume start_addr < end_addr. */
2683static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2684{
2685 struct vm_area_struct * vma = find_vma(mm,start_addr);
2686
2687 if (vma && end_addr <= vma->vm_start)
2688 vma = NULL;
2689 return vma;
2690}
2691
1be7107f
HD
2692static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2693{
2694 unsigned long vm_start = vma->vm_start;
2695
2696 if (vma->vm_flags & VM_GROWSDOWN) {
2697 vm_start -= stack_guard_gap;
2698 if (vm_start > vma->vm_start)
2699 vm_start = 0;
2700 }
2701 return vm_start;
2702}
2703
2704static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2705{
2706 unsigned long vm_end = vma->vm_end;
2707
2708 if (vma->vm_flags & VM_GROWSUP) {
2709 vm_end += stack_guard_gap;
2710 if (vm_end < vma->vm_end)
2711 vm_end = -PAGE_SIZE;
2712 }
2713 return vm_end;
2714}
2715
1da177e4
LT
2716static inline unsigned long vma_pages(struct vm_area_struct *vma)
2717{
2718 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2719}
2720
640708a2
PE
2721/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2722static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2723 unsigned long vm_start, unsigned long vm_end)
2724{
2725 struct vm_area_struct *vma = find_vma(mm, vm_start);
2726
2727 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2728 vma = NULL;
2729
2730 return vma;
2731}
2732
017b1660
MK
2733static inline bool range_in_vma(struct vm_area_struct *vma,
2734 unsigned long start, unsigned long end)
2735{
2736 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2737}
2738
bad849b3 2739#ifdef CONFIG_MMU
804af2cf 2740pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2741void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2742#else
2743static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2744{
2745 return __pgprot(0);
2746}
64e45507
PF
2747static inline void vma_set_page_prot(struct vm_area_struct *vma)
2748{
2749 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2750}
bad849b3
DH
2751#endif
2752
295992fb
CK
2753void vma_set_file(struct vm_area_struct *vma, struct file *file);
2754
5877231f 2755#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2756unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2757 unsigned long start, unsigned long end);
2758#endif
2759
deceb6cd 2760struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2761int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2762 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
2763int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2764 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 2765int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2766int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2767 struct page **pages, unsigned long *num);
a667d745
SJ
2768int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2769 unsigned long num);
2770int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2771 unsigned long num);
ae2b01f3 2772vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2773 unsigned long pfn);
f5e6d1d5
MW
2774vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2775 unsigned long pfn, pgprot_t pgprot);
5d747637 2776vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2777 pfn_t pfn);
574c5b3d
TH
2778vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2779 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2780vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2781 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2782int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2783
1c8f4220
SJ
2784static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2785 unsigned long addr, struct page *page)
2786{
2787 int err = vm_insert_page(vma, addr, page);
2788
2789 if (err == -ENOMEM)
2790 return VM_FAULT_OOM;
2791 if (err < 0 && err != -EBUSY)
2792 return VM_FAULT_SIGBUS;
2793
2794 return VM_FAULT_NOPAGE;
2795}
2796
f8f6ae5d
JG
2797#ifndef io_remap_pfn_range
2798static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2799 unsigned long addr, unsigned long pfn,
2800 unsigned long size, pgprot_t prot)
2801{
2802 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2803}
2804#endif
2805
d97baf94
SJ
2806static inline vm_fault_t vmf_error(int err)
2807{
2808 if (err == -ENOMEM)
2809 return VM_FAULT_OOM;
2810 return VM_FAULT_SIGBUS;
2811}
2812
df06b37f
KB
2813struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2814 unsigned int foll_flags);
240aadee 2815
deceb6cd
HD
2816#define FOLL_WRITE 0x01 /* check pte is writable */
2817#define FOLL_TOUCH 0x02 /* mark page accessed */
2818#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2819#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2820#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2821#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2822 * and return without waiting upon it */
84d33df2 2823#define FOLL_POPULATE 0x40 /* fault in page */
69ebb83e 2824#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2825#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2826#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2827#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2828#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2829#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2830#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2831#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2832#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2833#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2834#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2835#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2836
2837/*
eddb1c22
JH
2838 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2839 * other. Here is what they mean, and how to use them:
932f4a63
IW
2840 *
2841 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2842 * period _often_ under userspace control. This is in contrast to
2843 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2844 *
2845 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2846 * lifetime enforced by the filesystem and we need guarantees that longterm
2847 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2848 * the filesystem. Ideas for this coordination include revoking the longterm
2849 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2850 * added after the problem with filesystems was found FS DAX VMAs are
2851 * specifically failed. Filesystem pages are still subject to bugs and use of
2852 * FOLL_LONGTERM should be avoided on those pages.
2853 *
2854 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2855 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2856 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2857 * is due to an incompatibility with the FS DAX check and
eddb1c22 2858 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2859 *
eddb1c22
JH
2860 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2861 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2862 * FOLL_LONGTERM is specified.
eddb1c22
JH
2863 *
2864 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2865 * but an additional pin counting system) will be invoked. This is intended for
2866 * anything that gets a page reference and then touches page data (for example,
2867 * Direct IO). This lets the filesystem know that some non-file-system entity is
2868 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2869 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2870 * a call to unpin_user_page().
eddb1c22
JH
2871 *
2872 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2873 * and separate refcounting mechanisms, however, and that means that each has
2874 * its own acquire and release mechanisms:
2875 *
2876 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2877 *
f1f6a7dd 2878 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2879 *
2880 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2881 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2882 * calls applied to them, and that's perfectly OK. This is a constraint on the
2883 * callers, not on the pages.)
2884 *
2885 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2886 * directly by the caller. That's in order to help avoid mismatches when
2887 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2888 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2889 *
72ef5e52 2890 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2891 */
1da177e4 2892
2b740303 2893static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2894{
2895 if (vm_fault & VM_FAULT_OOM)
2896 return -ENOMEM;
2897 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2898 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2899 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2900 return -EFAULT;
2901 return 0;
2902}
2903
8b1e0f81 2904typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2905extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2906 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2907extern int apply_to_existing_page_range(struct mm_struct *mm,
2908 unsigned long address, unsigned long size,
2909 pte_fn_t fn, void *data);
aee16b3c 2910
04013513 2911extern void init_mem_debugging_and_hardening(void);
8823b1db 2912#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
2913extern void __kernel_poison_pages(struct page *page, int numpages);
2914extern void __kernel_unpoison_pages(struct page *page, int numpages);
2915extern bool _page_poisoning_enabled_early;
2916DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2917static inline bool page_poisoning_enabled(void)
2918{
2919 return _page_poisoning_enabled_early;
2920}
2921/*
2922 * For use in fast paths after init_mem_debugging() has run, or when a
2923 * false negative result is not harmful when called too early.
2924 */
2925static inline bool page_poisoning_enabled_static(void)
2926{
2927 return static_branch_unlikely(&_page_poisoning_enabled);
2928}
2929static inline void kernel_poison_pages(struct page *page, int numpages)
2930{
2931 if (page_poisoning_enabled_static())
2932 __kernel_poison_pages(page, numpages);
2933}
2934static inline void kernel_unpoison_pages(struct page *page, int numpages)
2935{
2936 if (page_poisoning_enabled_static())
2937 __kernel_unpoison_pages(page, numpages);
2938}
8823b1db
LA
2939#else
2940static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 2941static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 2942static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
2943static inline void kernel_poison_pages(struct page *page, int numpages) { }
2944static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
2945#endif
2946
51cba1eb 2947DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
2948static inline bool want_init_on_alloc(gfp_t flags)
2949{
51cba1eb
KC
2950 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
2951 &init_on_alloc))
6471384a
AP
2952 return true;
2953 return flags & __GFP_ZERO;
2954}
2955
51cba1eb 2956DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
2957static inline bool want_init_on_free(void)
2958{
51cba1eb
KC
2959 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
2960 &init_on_free);
6471384a
AP
2961}
2962
8e57f8ac
VB
2963extern bool _debug_pagealloc_enabled_early;
2964DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2965
2966static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2967{
2968 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2969 _debug_pagealloc_enabled_early;
2970}
2971
2972/*
2973 * For use in fast paths after init_debug_pagealloc() has run, or when a
2974 * false negative result is not harmful when called too early.
2975 */
2976static inline bool debug_pagealloc_enabled_static(void)
031bc574 2977{
96a2b03f
VB
2978 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2979 return false;
2980
2981 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2982}
2983
5d6ad668 2984#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 2985/*
5d6ad668
MR
2986 * To support DEBUG_PAGEALLOC architecture must ensure that
2987 * __kernel_map_pages() never fails
c87cbc1f 2988 */
d6332692
RE
2989extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2990
77bc7fd6
MR
2991static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2992{
2993 if (debug_pagealloc_enabled_static())
2994 __kernel_map_pages(page, numpages, 1);
2995}
2996
2997static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
2998{
2999 if (debug_pagealloc_enabled_static())
3000 __kernel_map_pages(page, numpages, 0);
3001}
5d6ad668 3002#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3003static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3004static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3005#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3006
a6c19dfe 3007#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3008extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3009extern int in_gate_area_no_mm(unsigned long addr);
3010extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3011#else
a6c19dfe
AL
3012static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3013{
3014 return NULL;
3015}
3016static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3017static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3018{
3019 return 0;
3020}
1da177e4
LT
3021#endif /* __HAVE_ARCH_GATE_AREA */
3022
44a70ade
MH
3023extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3024
146732ce
JT
3025#ifdef CONFIG_SYSCTL
3026extern int sysctl_drop_caches;
32927393
CH
3027int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3028 loff_t *);
146732ce
JT
3029#endif
3030
cb731d6c
VD
3031void drop_slab(void);
3032void drop_slab_node(int nid);
9d0243bc 3033
7a9166e3
LY
3034#ifndef CONFIG_MMU
3035#define randomize_va_space 0
3036#else
a62eaf15 3037extern int randomize_va_space;
7a9166e3 3038#endif
a62eaf15 3039
045e72ac 3040const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3041#ifdef CONFIG_MMU
03252919 3042void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3043#else
3044static inline void print_vma_addr(char *prefix, unsigned long rip)
3045{
3046}
3047#endif
e6e5494c 3048
35fd1eb1 3049void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
3050struct page * __populate_section_memmap(unsigned long pfn,
3051 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3052pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3053p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3054pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3055pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
3056pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3057 struct vmem_altmap *altmap);
8f6aac41 3058void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3059struct vmem_altmap;
56993b4e
AK
3060void *vmemmap_alloc_block_buf(unsigned long size, int node,
3061 struct vmem_altmap *altmap);
8f6aac41 3062void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3063int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3064 int node, struct vmem_altmap *altmap);
7b73d978
CH
3065int vmemmap_populate(unsigned long start, unsigned long end, int node,
3066 struct vmem_altmap *altmap);
c2b91e2e 3067void vmemmap_populate_print_last(void);
0197518c 3068#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3069void vmemmap_free(unsigned long start, unsigned long end,
3070 struct vmem_altmap *altmap);
0197518c 3071#endif
46723bfa 3072void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3073 unsigned long nr_pages);
6a46079c 3074
82ba011b
AK
3075enum mf_flags {
3076 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3077 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3078 MF_MUST_KILL = 1 << 2,
cf870c70 3079 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3080};
83b57531
EB
3081extern int memory_failure(unsigned long pfn, int flags);
3082extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3083extern void memory_failure_queue_kick(int cpu);
847ce401 3084extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3085extern int sysctl_memory_failure_early_kill;
3086extern int sysctl_memory_failure_recovery;
facb6011 3087extern void shake_page(struct page *p, int access);
5844a486 3088extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3089extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3090
cc637b17
XX
3091
3092/*
3093 * Error handlers for various types of pages.
3094 */
cc3e2af4 3095enum mf_result {
cc637b17
XX
3096 MF_IGNORED, /* Error: cannot be handled */
3097 MF_FAILED, /* Error: handling failed */
3098 MF_DELAYED, /* Will be handled later */
3099 MF_RECOVERED, /* Successfully recovered */
3100};
3101
3102enum mf_action_page_type {
3103 MF_MSG_KERNEL,
3104 MF_MSG_KERNEL_HIGH_ORDER,
3105 MF_MSG_SLAB,
3106 MF_MSG_DIFFERENT_COMPOUND,
3107 MF_MSG_POISONED_HUGE,
3108 MF_MSG_HUGE,
3109 MF_MSG_FREE_HUGE,
31286a84 3110 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3111 MF_MSG_UNMAP_FAILED,
3112 MF_MSG_DIRTY_SWAPCACHE,
3113 MF_MSG_CLEAN_SWAPCACHE,
3114 MF_MSG_DIRTY_MLOCKED_LRU,
3115 MF_MSG_CLEAN_MLOCKED_LRU,
3116 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3117 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3118 MF_MSG_DIRTY_LRU,
3119 MF_MSG_CLEAN_LRU,
3120 MF_MSG_TRUNCATED_LRU,
3121 MF_MSG_BUDDY,
3122 MF_MSG_BUDDY_2ND,
6100e34b 3123 MF_MSG_DAX,
5d1fd5dc 3124 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3125 MF_MSG_UNKNOWN,
3126};
3127
47ad8475
AA
3128#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3129extern void clear_huge_page(struct page *page,
c79b57e4 3130 unsigned long addr_hint,
47ad8475
AA
3131 unsigned int pages_per_huge_page);
3132extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3133 unsigned long addr_hint,
3134 struct vm_area_struct *vma,
47ad8475 3135 unsigned int pages_per_huge_page);
fa4d75c1
MK
3136extern long copy_huge_page_from_user(struct page *dst_page,
3137 const void __user *usr_src,
810a56b9
MK
3138 unsigned int pages_per_huge_page,
3139 bool allow_pagefault);
2484ca9b
THV
3140
3141/**
3142 * vma_is_special_huge - Are transhuge page-table entries considered special?
3143 * @vma: Pointer to the struct vm_area_struct to consider
3144 *
3145 * Whether transhuge page-table entries are considered "special" following
3146 * the definition in vm_normal_page().
3147 *
3148 * Return: true if transhuge page-table entries should be considered special,
3149 * false otherwise.
3150 */
3151static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3152{
3153 return vma_is_dax(vma) || (vma->vm_file &&
3154 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3155}
3156
47ad8475
AA
3157#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3158
c0a32fc5
SG
3159#ifdef CONFIG_DEBUG_PAGEALLOC
3160extern unsigned int _debug_guardpage_minorder;
96a2b03f 3161DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3162
3163static inline unsigned int debug_guardpage_minorder(void)
3164{
3165 return _debug_guardpage_minorder;
3166}
3167
e30825f1
JK
3168static inline bool debug_guardpage_enabled(void)
3169{
96a2b03f 3170 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3171}
3172
c0a32fc5
SG
3173static inline bool page_is_guard(struct page *page)
3174{
e30825f1
JK
3175 if (!debug_guardpage_enabled())
3176 return false;
3177
3972f6bb 3178 return PageGuard(page);
c0a32fc5
SG
3179}
3180#else
3181static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3182static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3183static inline bool page_is_guard(struct page *page) { return false; }
3184#endif /* CONFIG_DEBUG_PAGEALLOC */
3185
f9872caf
CS
3186#if MAX_NUMNODES > 1
3187void __init setup_nr_node_ids(void);
3188#else
3189static inline void setup_nr_node_ids(void) {}
3190#endif
3191
010c164a
SL
3192extern int memcmp_pages(struct page *page1, struct page *page2);
3193
3194static inline int pages_identical(struct page *page1, struct page *page2)
3195{
3196 return !memcmp_pages(page1, page2);
3197}
3198
c5acad84
TH
3199#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3200unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3201 pgoff_t first_index, pgoff_t nr,
3202 pgoff_t bitmap_pgoff,
3203 unsigned long *bitmap,
3204 pgoff_t *start,
3205 pgoff_t *end);
3206
3207unsigned long wp_shared_mapping_range(struct address_space *mapping,
3208 pgoff_t first_index, pgoff_t nr);
3209#endif
3210
2374c09b
CH
3211extern int sysctl_nr_trim_pages;
3212
5bb1bb35 3213#ifdef CONFIG_PRINTK
8e7f37f2 3214void mem_dump_obj(void *object);
5bb1bb35
PM
3215#else
3216static inline void mem_dump_obj(void *object) {}
3217#endif
8e7f37f2 3218
1da177e4
LT
3219#endif /* __KERNEL__ */
3220#endif /* _LINUX_MM_H */