mm: mmap: merge vma after call_mmap() if possible
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
9740ca4e 18#include <linux/mmap_lock.h>
08677214 19#include <linux/range.h>
c6f6b596 20#include <linux/pfn.h>
3565fce3 21#include <linux/percpu-refcount.h>
e9da73d6 22#include <linux/bit_spinlock.h>
b0d40c92 23#include <linux/shrinker.h>
9c599024 24#include <linux/resource.h>
e30825f1 25#include <linux/page_ext.h>
8025e5dd 26#include <linux/err.h>
fe896d18 27#include <linux/page_ref.h>
7b2d55d2 28#include <linux/memremap.h>
3b3b1a29 29#include <linux/overflow.h>
b5420237 30#include <linux/sizes.h>
7969f226 31#include <linux/sched.h>
65fddcfc 32#include <linux/pgtable.h>
1da177e4
LT
33
34struct mempolicy;
35struct anon_vma;
bf181b9f 36struct anon_vma_chain;
4e950f6f 37struct file_ra_state;
e8edc6e0 38struct user_struct;
4e950f6f 39struct writeback_control;
682aa8e1 40struct bdi_writeback;
1da177e4 41
597b7305
MH
42void init_mm_internals(void);
43
fccc9987 44#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 45extern unsigned long max_mapnr;
fccc9987
JL
46
47static inline void set_max_mapnr(unsigned long limit)
48{
49 max_mapnr = limit;
50}
51#else
52static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
53#endif
54
ca79b0c2
AK
55extern atomic_long_t _totalram_pages;
56static inline unsigned long totalram_pages(void)
57{
58 return (unsigned long)atomic_long_read(&_totalram_pages);
59}
60
61static inline void totalram_pages_inc(void)
62{
63 atomic_long_inc(&_totalram_pages);
64}
65
66static inline void totalram_pages_dec(void)
67{
68 atomic_long_dec(&_totalram_pages);
69}
70
71static inline void totalram_pages_add(long count)
72{
73 atomic_long_add(count, &_totalram_pages);
74}
75
1da177e4 76extern void * high_memory;
1da177e4
LT
77extern int page_cluster;
78
79#ifdef CONFIG_SYSCTL
80extern int sysctl_legacy_va_layout;
81#else
82#define sysctl_legacy_va_layout 0
83#endif
84
d07e2259
DC
85#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
86extern const int mmap_rnd_bits_min;
87extern const int mmap_rnd_bits_max;
88extern int mmap_rnd_bits __read_mostly;
89#endif
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
91extern const int mmap_rnd_compat_bits_min;
92extern const int mmap_rnd_compat_bits_max;
93extern int mmap_rnd_compat_bits __read_mostly;
94#endif
95
1da177e4 96#include <asm/page.h>
1da177e4 97#include <asm/processor.h>
1da177e4 98
d9344522
AK
99/*
100 * Architectures that support memory tagging (assigning tags to memory regions,
101 * embedding these tags into addresses that point to these memory regions, and
102 * checking that the memory and the pointer tags match on memory accesses)
103 * redefine this macro to strip tags from pointers.
104 * It's defined as noop for arcitectures that don't support memory tagging.
105 */
106#ifndef untagged_addr
107#define untagged_addr(addr) (addr)
108#endif
109
79442ed1
TC
110#ifndef __pa_symbol
111#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
112#endif
113
1dff8083
AB
114#ifndef page_to_virt
115#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
116#endif
117
568c5fe5
LA
118#ifndef lm_alias
119#define lm_alias(x) __va(__pa_symbol(x))
120#endif
121
593befa6
DD
122/*
123 * To prevent common memory management code establishing
124 * a zero page mapping on a read fault.
125 * This macro should be defined within <asm/pgtable.h>.
126 * s390 does this to prevent multiplexing of hardware bits
127 * related to the physical page in case of virtualization.
128 */
129#ifndef mm_forbids_zeropage
130#define mm_forbids_zeropage(X) (0)
131#endif
132
a4a3ede2
PT
133/*
134 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
135 * If an architecture decides to implement their own version of
136 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
137 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 138 */
5470dea4
AD
139#if BITS_PER_LONG == 64
140/* This function must be updated when the size of struct page grows above 80
141 * or reduces below 56. The idea that compiler optimizes out switch()
142 * statement, and only leaves move/store instructions. Also the compiler can
143 * combine write statments if they are both assignments and can be reordered,
144 * this can result in several of the writes here being dropped.
145 */
146#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
147static inline void __mm_zero_struct_page(struct page *page)
148{
149 unsigned long *_pp = (void *)page;
150
151 /* Check that struct page is either 56, 64, 72, or 80 bytes */
152 BUILD_BUG_ON(sizeof(struct page) & 7);
153 BUILD_BUG_ON(sizeof(struct page) < 56);
154 BUILD_BUG_ON(sizeof(struct page) > 80);
155
156 switch (sizeof(struct page)) {
157 case 80:
158 _pp[9] = 0; /* fallthrough */
159 case 72:
160 _pp[8] = 0; /* fallthrough */
161 case 64:
162 _pp[7] = 0; /* fallthrough */
163 case 56:
164 _pp[6] = 0;
165 _pp[5] = 0;
166 _pp[4] = 0;
167 _pp[3] = 0;
168 _pp[2] = 0;
169 _pp[1] = 0;
170 _pp[0] = 0;
171 }
172}
173#else
a4a3ede2
PT
174#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
175#endif
176
ea606cf5
AR
177/*
178 * Default maximum number of active map areas, this limits the number of vmas
179 * per mm struct. Users can overwrite this number by sysctl but there is a
180 * problem.
181 *
182 * When a program's coredump is generated as ELF format, a section is created
183 * per a vma. In ELF, the number of sections is represented in unsigned short.
184 * This means the number of sections should be smaller than 65535 at coredump.
185 * Because the kernel adds some informative sections to a image of program at
186 * generating coredump, we need some margin. The number of extra sections is
187 * 1-3 now and depends on arch. We use "5" as safe margin, here.
188 *
189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190 * not a hard limit any more. Although some userspace tools can be surprised by
191 * that.
192 */
193#define MAPCOUNT_ELF_CORE_MARGIN (5)
194#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195
196extern int sysctl_max_map_count;
197
c9b1d098 198extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 199extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 200
49f0ce5f
JM
201extern int sysctl_overcommit_memory;
202extern int sysctl_overcommit_ratio;
203extern unsigned long sysctl_overcommit_kbytes;
204
32927393
CH
205int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 loff_t *);
207int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
56f3547b
FT
209int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
49f0ce5f 211
1da177e4
LT
212#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
213
27ac792c
AR
214/* to align the pointer to the (next) page boundary */
215#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
216
0fa73b86 217/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 218#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 219
f86196ea
NB
220#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
221
1da177e4
LT
222/*
223 * Linux kernel virtual memory manager primitives.
224 * The idea being to have a "virtual" mm in the same way
225 * we have a virtual fs - giving a cleaner interface to the
226 * mm details, and allowing different kinds of memory mappings
227 * (from shared memory to executable loading to arbitrary
228 * mmap() functions).
229 */
230
490fc053 231struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
232struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
233void vm_area_free(struct vm_area_struct *);
c43692e8 234
1da177e4 235#ifndef CONFIG_MMU
8feae131
DH
236extern struct rb_root nommu_region_tree;
237extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
238
239extern unsigned int kobjsize(const void *objp);
240#endif
241
242/*
605d9288 243 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 244 * When changing, update also include/trace/events/mmflags.h
1da177e4 245 */
cc2383ec
KK
246#define VM_NONE 0x00000000
247
1da177e4
LT
248#define VM_READ 0x00000001 /* currently active flags */
249#define VM_WRITE 0x00000002
250#define VM_EXEC 0x00000004
251#define VM_SHARED 0x00000008
252
7e2cff42 253/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
254#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
255#define VM_MAYWRITE 0x00000020
256#define VM_MAYEXEC 0x00000040
257#define VM_MAYSHARE 0x00000080
258
259#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 260#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 261#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 262#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 263#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 264
1da177e4
LT
265#define VM_LOCKED 0x00002000
266#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
267
268 /* Used by sys_madvise() */
269#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
270#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
271
272#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
273#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 274#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 275#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 276#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 277#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 278#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 279#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 280#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 281#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 282
d9104d1c
CG
283#ifdef CONFIG_MEM_SOFT_DIRTY
284# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
285#else
286# define VM_SOFTDIRTY 0
287#endif
288
b379d790 289#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
290#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
291#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 292#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 293
63c17fb8
DH
294#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
295#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
296#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
297#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
298#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 299#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
300#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
301#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
302#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
303#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 304#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
305#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
306
5212213a 307#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
308# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
309# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 310# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
311# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
312# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
313#ifdef CONFIG_PPC
314# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
315#else
316# define VM_PKEY_BIT4 0
8f62c883 317#endif
5212213a
RP
318#endif /* CONFIG_ARCH_HAS_PKEYS */
319
320#if defined(CONFIG_X86)
321# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
cc2383ec
KK
322#elif defined(CONFIG_PPC)
323# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
324#elif defined(CONFIG_PARISC)
325# define VM_GROWSUP VM_ARCH_1
326#elif defined(CONFIG_IA64)
327# define VM_GROWSUP VM_ARCH_1
74a04967
KA
328#elif defined(CONFIG_SPARC64)
329# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
330# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
331#elif defined(CONFIG_ARM64)
332# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
333# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
334#elif !defined(CONFIG_MMU)
335# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
336#endif
337
338#ifndef VM_GROWSUP
339# define VM_GROWSUP VM_NONE
340#endif
341
a8bef8ff
MG
342/* Bits set in the VMA until the stack is in its final location */
343#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
344
c62da0c3
AK
345#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
346
347/* Common data flag combinations */
348#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
349 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
350#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
351 VM_MAYWRITE | VM_MAYEXEC)
352#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
353 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
354
355#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
356#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
357#endif
358
1da177e4
LT
359#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
360#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
361#endif
362
363#ifdef CONFIG_STACK_GROWSUP
30bdbb78 364#define VM_STACK VM_GROWSUP
1da177e4 365#else
30bdbb78 366#define VM_STACK VM_GROWSDOWN
1da177e4
LT
367#endif
368
30bdbb78
KK
369#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
370
6cb4d9a2
AK
371/* VMA basic access permission flags */
372#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
373
374
b291f000 375/*
78f11a25 376 * Special vmas that are non-mergable, non-mlock()able.
b291f000 377 */
9050d7eb 378#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 379
b4443772
AK
380/* This mask prevents VMA from being scanned with khugepaged */
381#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
382
a0715cc2
AT
383/* This mask defines which mm->def_flags a process can inherit its parent */
384#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
385
de60f5f1
EM
386/* This mask is used to clear all the VMA flags used by mlock */
387#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
388
2c2d57b5
KA
389/* Arch-specific flags to clear when updating VM flags on protection change */
390#ifndef VM_ARCH_CLEAR
391# define VM_ARCH_CLEAR VM_NONE
392#endif
393#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
394
1da177e4
LT
395/*
396 * mapping from the currently active vm_flags protection bits (the
397 * low four bits) to a page protection mask..
398 */
399extern pgprot_t protection_map[16];
400
c270a7ee
PX
401/**
402 * Fault flag definitions.
403 *
404 * @FAULT_FLAG_WRITE: Fault was a write fault.
405 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
406 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
c1e8d7c6 407 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
c270a7ee
PX
408 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
409 * @FAULT_FLAG_TRIED: The fault has been tried once.
410 * @FAULT_FLAG_USER: The fault originated in userspace.
411 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
412 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
413 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
414 *
415 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
416 * whether we would allow page faults to retry by specifying these two
417 * fault flags correctly. Currently there can be three legal combinations:
418 *
419 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
420 * this is the first try
421 *
422 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
423 * we've already tried at least once
424 *
425 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
426 *
427 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
428 * be used. Note that page faults can be allowed to retry for multiple times,
429 * in which case we'll have an initial fault with flags (a) then later on
430 * continuous faults with flags (b). We should always try to detect pending
431 * signals before a retry to make sure the continuous page faults can still be
432 * interrupted if necessary.
c270a7ee
PX
433 */
434#define FAULT_FLAG_WRITE 0x01
435#define FAULT_FLAG_MKWRITE 0x02
436#define FAULT_FLAG_ALLOW_RETRY 0x04
437#define FAULT_FLAG_RETRY_NOWAIT 0x08
438#define FAULT_FLAG_KILLABLE 0x10
439#define FAULT_FLAG_TRIED 0x20
440#define FAULT_FLAG_USER 0x40
441#define FAULT_FLAG_REMOTE 0x80
442#define FAULT_FLAG_INSTRUCTION 0x100
443#define FAULT_FLAG_INTERRUPTIBLE 0x200
d0217ac0 444
dde16072
PX
445/*
446 * The default fault flags that should be used by most of the
447 * arch-specific page fault handlers.
448 */
449#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
450 FAULT_FLAG_KILLABLE | \
451 FAULT_FLAG_INTERRUPTIBLE)
dde16072 452
4064b982
PX
453/**
454 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
455 *
456 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 457 * the mmap_lock for too long a time when waiting for another condition
4064b982 458 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
459 * mmap_lock in the first round to avoid potential starvation of other
460 * processes that would also want the mmap_lock.
4064b982
PX
461 *
462 * Return: true if the page fault allows retry and this is the first
463 * attempt of the fault handling; false otherwise.
464 */
465static inline bool fault_flag_allow_retry_first(unsigned int flags)
466{
467 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
468 (!(flags & FAULT_FLAG_TRIED));
469}
470
282a8e03
RZ
471#define FAULT_FLAG_TRACE \
472 { FAULT_FLAG_WRITE, "WRITE" }, \
473 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
474 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
475 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
476 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
477 { FAULT_FLAG_TRIED, "TRIED" }, \
478 { FAULT_FLAG_USER, "USER" }, \
479 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
480 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
481 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 482
54cb8821 483/*
d0217ac0 484 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
485 * ->fault function. The vma's ->fault is responsible for returning a bitmask
486 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 487 *
c20cd45e
MH
488 * MM layer fills up gfp_mask for page allocations but fault handler might
489 * alter it if its implementation requires a different allocation context.
490 *
9b4bdd2f 491 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 492 */
d0217ac0 493struct vm_fault {
82b0f8c3 494 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 495 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 496 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 497 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 498 unsigned long address; /* Faulting virtual address */
82b0f8c3 499 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 500 * the 'address' */
a2d58167
DJ
501 pud_t *pud; /* Pointer to pud entry matching
502 * the 'address'
503 */
2994302b 504 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 505
3917048d 506 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 507 struct page *page; /* ->fault handlers should return a
83c54070 508 * page here, unless VM_FAULT_NOPAGE
d0217ac0 509 * is set (which is also implied by
83c54070 510 * VM_FAULT_ERROR).
d0217ac0 511 */
82b0f8c3 512 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
513 pte_t *pte; /* Pointer to pte entry matching
514 * the 'address'. NULL if the page
515 * table hasn't been allocated.
516 */
517 spinlock_t *ptl; /* Page table lock.
518 * Protects pte page table if 'pte'
519 * is not NULL, otherwise pmd.
520 */
7267ec00
KS
521 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
522 * vm_ops->map_pages() calls
523 * alloc_set_pte() from atomic context.
524 * do_fault_around() pre-allocates
525 * page table to avoid allocation from
526 * atomic context.
527 */
54cb8821 528};
1da177e4 529
c791ace1
DJ
530/* page entry size for vm->huge_fault() */
531enum page_entry_size {
532 PE_SIZE_PTE = 0,
533 PE_SIZE_PMD,
534 PE_SIZE_PUD,
535};
536
1da177e4
LT
537/*
538 * These are the virtual MM functions - opening of an area, closing and
539 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 540 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
541 */
542struct vm_operations_struct {
543 void (*open)(struct vm_area_struct * area);
544 void (*close)(struct vm_area_struct * area);
31383c68 545 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 546 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
547 vm_fault_t (*fault)(struct vm_fault *vmf);
548 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
549 enum page_entry_size pe_size);
82b0f8c3 550 void (*map_pages)(struct vm_fault *vmf,
bae473a4 551 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 552 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
553
554 /* notification that a previously read-only page is about to become
555 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 556 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 557
dd906184 558 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 559 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 560
28b2ee20
RR
561 /* called by access_process_vm when get_user_pages() fails, typically
562 * for use by special VMAs that can switch between memory and hardware
563 */
564 int (*access)(struct vm_area_struct *vma, unsigned long addr,
565 void *buf, int len, int write);
78d683e8
AL
566
567 /* Called by the /proc/PID/maps code to ask the vma whether it
568 * has a special name. Returning non-NULL will also cause this
569 * vma to be dumped unconditionally. */
570 const char *(*name)(struct vm_area_struct *vma);
571
1da177e4 572#ifdef CONFIG_NUMA
a6020ed7
LS
573 /*
574 * set_policy() op must add a reference to any non-NULL @new mempolicy
575 * to hold the policy upon return. Caller should pass NULL @new to
576 * remove a policy and fall back to surrounding context--i.e. do not
577 * install a MPOL_DEFAULT policy, nor the task or system default
578 * mempolicy.
579 */
1da177e4 580 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
581
582 /*
583 * get_policy() op must add reference [mpol_get()] to any policy at
584 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
585 * in mm/mempolicy.c will do this automatically.
586 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 587 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
588 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
589 * must return NULL--i.e., do not "fallback" to task or system default
590 * policy.
591 */
1da177e4
LT
592 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
593 unsigned long addr);
594#endif
667a0a06
DV
595 /*
596 * Called by vm_normal_page() for special PTEs to find the
597 * page for @addr. This is useful if the default behavior
598 * (using pte_page()) would not find the correct page.
599 */
600 struct page *(*find_special_page)(struct vm_area_struct *vma,
601 unsigned long addr);
1da177e4
LT
602};
603
027232da
KS
604static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
605{
bfd40eaf
KS
606 static const struct vm_operations_struct dummy_vm_ops = {};
607
a670468f 608 memset(vma, 0, sizeof(*vma));
027232da 609 vma->vm_mm = mm;
bfd40eaf 610 vma->vm_ops = &dummy_vm_ops;
027232da
KS
611 INIT_LIST_HEAD(&vma->anon_vma_chain);
612}
613
bfd40eaf
KS
614static inline void vma_set_anonymous(struct vm_area_struct *vma)
615{
616 vma->vm_ops = NULL;
617}
618
43675e6f
YS
619static inline bool vma_is_anonymous(struct vm_area_struct *vma)
620{
621 return !vma->vm_ops;
622}
623
222100ee
AK
624static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
625{
626 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
627
628 if (!maybe_stack)
629 return false;
630
631 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
632 VM_STACK_INCOMPLETE_SETUP)
633 return true;
634
635 return false;
636}
637
7969f226
AK
638static inline bool vma_is_foreign(struct vm_area_struct *vma)
639{
640 if (!current->mm)
641 return true;
642
643 if (current->mm != vma->vm_mm)
644 return true;
645
646 return false;
647}
3122e80e
AK
648
649static inline bool vma_is_accessible(struct vm_area_struct *vma)
650{
6cb4d9a2 651 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
652}
653
43675e6f
YS
654#ifdef CONFIG_SHMEM
655/*
656 * The vma_is_shmem is not inline because it is used only by slow
657 * paths in userfault.
658 */
659bool vma_is_shmem(struct vm_area_struct *vma);
660#else
661static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
662#endif
663
664int vma_is_stack_for_current(struct vm_area_struct *vma);
665
8b11ec1b
LT
666/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
667#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
668
1da177e4
LT
669struct mmu_gather;
670struct inode;
671
1da177e4
LT
672/*
673 * FIXME: take this include out, include page-flags.h in
674 * files which need it (119 of them)
675 */
676#include <linux/page-flags.h>
71e3aac0 677#include <linux/huge_mm.h>
1da177e4
LT
678
679/*
680 * Methods to modify the page usage count.
681 *
682 * What counts for a page usage:
683 * - cache mapping (page->mapping)
684 * - private data (page->private)
685 * - page mapped in a task's page tables, each mapping
686 * is counted separately
687 *
688 * Also, many kernel routines increase the page count before a critical
689 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
690 */
691
692/*
da6052f7 693 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 694 */
7c8ee9a8
NP
695static inline int put_page_testzero(struct page *page)
696{
fe896d18
JK
697 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
698 return page_ref_dec_and_test(page);
7c8ee9a8 699}
1da177e4
LT
700
701/*
7c8ee9a8
NP
702 * Try to grab a ref unless the page has a refcount of zero, return false if
703 * that is the case.
8e0861fa
AK
704 * This can be called when MMU is off so it must not access
705 * any of the virtual mappings.
1da177e4 706 */
7c8ee9a8
NP
707static inline int get_page_unless_zero(struct page *page)
708{
fe896d18 709 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 710}
1da177e4 711
53df8fdc 712extern int page_is_ram(unsigned long pfn);
124fe20d
DW
713
714enum {
715 REGION_INTERSECTS,
716 REGION_DISJOINT,
717 REGION_MIXED,
718};
719
1c29f25b
TK
720int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
721 unsigned long desc);
53df8fdc 722
48667e7a 723/* Support for virtually mapped pages */
b3bdda02
CL
724struct page *vmalloc_to_page(const void *addr);
725unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 726
0738c4bb
PM
727/*
728 * Determine if an address is within the vmalloc range
729 *
730 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
731 * is no special casing required.
732 */
9bd3bb67
AK
733
734#ifndef is_ioremap_addr
735#define is_ioremap_addr(x) is_vmalloc_addr(x)
736#endif
737
81ac3ad9 738#ifdef CONFIG_MMU
186525bd 739extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
740extern int is_vmalloc_or_module_addr(const void *x);
741#else
186525bd
IM
742static inline bool is_vmalloc_addr(const void *x)
743{
744 return false;
745}
934831d0 746static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
747{
748 return 0;
749}
750#endif
9e2779fa 751
a7c3e901
MH
752extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
753static inline void *kvmalloc(size_t size, gfp_t flags)
754{
755 return kvmalloc_node(size, flags, NUMA_NO_NODE);
756}
757static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
758{
759 return kvmalloc_node(size, flags | __GFP_ZERO, node);
760}
761static inline void *kvzalloc(size_t size, gfp_t flags)
762{
763 return kvmalloc(size, flags | __GFP_ZERO);
764}
765
752ade68
MH
766static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
767{
3b3b1a29
KC
768 size_t bytes;
769
770 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
771 return NULL;
772
3b3b1a29 773 return kvmalloc(bytes, flags);
752ade68
MH
774}
775
1c542f38
KC
776static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
777{
778 return kvmalloc_array(n, size, flags | __GFP_ZERO);
779}
780
39f1f78d 781extern void kvfree(const void *addr);
d4eaa283 782extern void kvfree_sensitive(const void *addr, size_t len);
39f1f78d 783
6dc5ea16
JH
784static inline int head_mapcount(struct page *head)
785{
786 return atomic_read(compound_mapcount_ptr(head)) + 1;
787}
788
6988f31d
KK
789/*
790 * Mapcount of compound page as a whole, does not include mapped sub-pages.
791 *
792 * Must be called only for compound pages or any their tail sub-pages.
793 */
53f9263b
KS
794static inline int compound_mapcount(struct page *page)
795{
5f527c2b 796 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 797 page = compound_head(page);
6dc5ea16 798 return head_mapcount(page);
53f9263b
KS
799}
800
70b50f94
AA
801/*
802 * The atomic page->_mapcount, starts from -1: so that transitions
803 * both from it and to it can be tracked, using atomic_inc_and_test
804 * and atomic_add_negative(-1).
805 */
22b751c3 806static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
807{
808 atomic_set(&(page)->_mapcount, -1);
809}
810
b20ce5e0
KS
811int __page_mapcount(struct page *page);
812
6988f31d
KK
813/*
814 * Mapcount of 0-order page; when compound sub-page, includes
815 * compound_mapcount().
816 *
817 * Result is undefined for pages which cannot be mapped into userspace.
818 * For example SLAB or special types of pages. See function page_has_type().
819 * They use this place in struct page differently.
820 */
70b50f94
AA
821static inline int page_mapcount(struct page *page)
822{
b20ce5e0
KS
823 if (unlikely(PageCompound(page)))
824 return __page_mapcount(page);
825 return atomic_read(&page->_mapcount) + 1;
826}
827
828#ifdef CONFIG_TRANSPARENT_HUGEPAGE
829int total_mapcount(struct page *page);
6d0a07ed 830int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
831#else
832static inline int total_mapcount(struct page *page)
833{
834 return page_mapcount(page);
70b50f94 835}
6d0a07ed
AA
836static inline int page_trans_huge_mapcount(struct page *page,
837 int *total_mapcount)
838{
839 int mapcount = page_mapcount(page);
840 if (total_mapcount)
841 *total_mapcount = mapcount;
842 return mapcount;
843}
b20ce5e0 844#endif
70b50f94 845
b49af68f
CL
846static inline struct page *virt_to_head_page(const void *x)
847{
848 struct page *page = virt_to_page(x);
ccaafd7f 849
1d798ca3 850 return compound_head(page);
b49af68f
CL
851}
852
ddc58f27
KS
853void __put_page(struct page *page);
854
1d7ea732 855void put_pages_list(struct list_head *pages);
1da177e4 856
8dfcc9ba 857void split_page(struct page *page, unsigned int order);
8dfcc9ba 858
33f2ef89
AW
859/*
860 * Compound pages have a destructor function. Provide a
861 * prototype for that function and accessor functions.
f1e61557 862 * These are _only_ valid on the head of a compound page.
33f2ef89 863 */
f1e61557
KS
864typedef void compound_page_dtor(struct page *);
865
866/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
867enum compound_dtor_id {
868 NULL_COMPOUND_DTOR,
869 COMPOUND_PAGE_DTOR,
870#ifdef CONFIG_HUGETLB_PAGE
871 HUGETLB_PAGE_DTOR,
9a982250
KS
872#endif
873#ifdef CONFIG_TRANSPARENT_HUGEPAGE
874 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
875#endif
876 NR_COMPOUND_DTORS,
877};
ae70eddd 878extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
879
880static inline void set_compound_page_dtor(struct page *page,
f1e61557 881 enum compound_dtor_id compound_dtor)
33f2ef89 882{
f1e61557
KS
883 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
884 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
885}
886
ff45fc3c 887static inline void destroy_compound_page(struct page *page)
33f2ef89 888{
f1e61557 889 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 890 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
891}
892
d00181b9 893static inline unsigned int compound_order(struct page *page)
d85f3385 894{
6d777953 895 if (!PageHead(page))
d85f3385 896 return 0;
e4b294c2 897 return page[1].compound_order;
d85f3385
CL
898}
899
47e29d32
JH
900static inline bool hpage_pincount_available(struct page *page)
901{
902 /*
903 * Can the page->hpage_pinned_refcount field be used? That field is in
904 * the 3rd page of the compound page, so the smallest (2-page) compound
905 * pages cannot support it.
906 */
907 page = compound_head(page);
908 return PageCompound(page) && compound_order(page) > 1;
909}
910
6dc5ea16
JH
911static inline int head_pincount(struct page *head)
912{
913 return atomic_read(compound_pincount_ptr(head));
914}
915
47e29d32
JH
916static inline int compound_pincount(struct page *page)
917{
918 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
919 page = compound_head(page);
6dc5ea16 920 return head_pincount(page);
47e29d32
JH
921}
922
f1e61557 923static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 924{
e4b294c2 925 page[1].compound_order = order;
d85f3385
CL
926}
927
d8c6546b
MWO
928/* Returns the number of pages in this potentially compound page. */
929static inline unsigned long compound_nr(struct page *page)
930{
931 return 1UL << compound_order(page);
932}
933
a50b854e
MWO
934/* Returns the number of bytes in this potentially compound page. */
935static inline unsigned long page_size(struct page *page)
936{
937 return PAGE_SIZE << compound_order(page);
938}
939
94ad9338
MWO
940/* Returns the number of bits needed for the number of bytes in a page */
941static inline unsigned int page_shift(struct page *page)
942{
943 return PAGE_SHIFT + compound_order(page);
944}
945
9a982250
KS
946void free_compound_page(struct page *page);
947
3dece370 948#ifdef CONFIG_MMU
14fd403f
AA
949/*
950 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
951 * servicing faults for write access. In the normal case, do always want
952 * pte_mkwrite. But get_user_pages can cause write faults for mappings
953 * that do not have writing enabled, when used by access_process_vm.
954 */
955static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
956{
957 if (likely(vma->vm_flags & VM_WRITE))
958 pte = pte_mkwrite(pte);
959 return pte;
960}
8c6e50b0 961
9d82c694 962vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
2b740303
SJ
963vm_fault_t finish_fault(struct vm_fault *vmf);
964vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 965#endif
14fd403f 966
1da177e4
LT
967/*
968 * Multiple processes may "see" the same page. E.g. for untouched
969 * mappings of /dev/null, all processes see the same page full of
970 * zeroes, and text pages of executables and shared libraries have
971 * only one copy in memory, at most, normally.
972 *
973 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
974 * page_count() == 0 means the page is free. page->lru is then used for
975 * freelist management in the buddy allocator.
da6052f7 976 * page_count() > 0 means the page has been allocated.
1da177e4 977 *
da6052f7
NP
978 * Pages are allocated by the slab allocator in order to provide memory
979 * to kmalloc and kmem_cache_alloc. In this case, the management of the
980 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
981 * unless a particular usage is carefully commented. (the responsibility of
982 * freeing the kmalloc memory is the caller's, of course).
1da177e4 983 *
da6052f7
NP
984 * A page may be used by anyone else who does a __get_free_page().
985 * In this case, page_count still tracks the references, and should only
986 * be used through the normal accessor functions. The top bits of page->flags
987 * and page->virtual store page management information, but all other fields
988 * are unused and could be used privately, carefully. The management of this
989 * page is the responsibility of the one who allocated it, and those who have
990 * subsequently been given references to it.
991 *
992 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
993 * managed by the Linux memory manager: I/O, buffers, swapping etc.
994 * The following discussion applies only to them.
995 *
da6052f7
NP
996 * A pagecache page contains an opaque `private' member, which belongs to the
997 * page's address_space. Usually, this is the address of a circular list of
998 * the page's disk buffers. PG_private must be set to tell the VM to call
999 * into the filesystem to release these pages.
1da177e4 1000 *
da6052f7
NP
1001 * A page may belong to an inode's memory mapping. In this case, page->mapping
1002 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1003 * in units of PAGE_SIZE.
1da177e4 1004 *
da6052f7
NP
1005 * If pagecache pages are not associated with an inode, they are said to be
1006 * anonymous pages. These may become associated with the swapcache, and in that
1007 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1008 *
da6052f7
NP
1009 * In either case (swapcache or inode backed), the pagecache itself holds one
1010 * reference to the page. Setting PG_private should also increment the
1011 * refcount. The each user mapping also has a reference to the page.
1da177e4 1012 *
da6052f7 1013 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1014 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1015 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1016 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1017 *
da6052f7 1018 * All pagecache pages may be subject to I/O:
1da177e4
LT
1019 * - inode pages may need to be read from disk,
1020 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1021 * to be written back to the inode on disk,
1022 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1023 * modified may need to be swapped out to swap space and (later) to be read
1024 * back into memory.
1da177e4
LT
1025 */
1026
1027/*
1028 * The zone field is never updated after free_area_init_core()
1029 * sets it, so none of the operations on it need to be atomic.
1da177e4 1030 */
348f8b6c 1031
90572890 1032/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1033#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1034#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1035#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1036#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1037#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1038
348f8b6c 1039/*
25985edc 1040 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1041 * sections we define the shift as 0; that plus a 0 mask ensures
1042 * the compiler will optimise away reference to them.
1043 */
d41dee36
AW
1044#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1045#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1046#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1047#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1048#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1049
bce54bbf
WD
1050/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1051#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1052#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1053#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1054 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1055#else
89689ae7 1056#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1057#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1058 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1059#endif
1060
bd8029b6 1061#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1062
d41dee36
AW
1063#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1064#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1065#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1066#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1067#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1068#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1069
33dd4e0e 1070static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1071{
348f8b6c 1072 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1073}
1da177e4 1074
260ae3f7
DW
1075#ifdef CONFIG_ZONE_DEVICE
1076static inline bool is_zone_device_page(const struct page *page)
1077{
1078 return page_zonenum(page) == ZONE_DEVICE;
1079}
966cf44f
AD
1080extern void memmap_init_zone_device(struct zone *, unsigned long,
1081 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1082#else
1083static inline bool is_zone_device_page(const struct page *page)
1084{
1085 return false;
1086}
7b2d55d2 1087#endif
5042db43 1088
e7638488 1089#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1090void free_devmap_managed_page(struct page *page);
e7638488 1091DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1092
1093static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1094{
1095 if (!static_branch_unlikely(&devmap_managed_key))
1096 return false;
1097 if (!is_zone_device_page(page))
1098 return false;
1099 switch (page->pgmap->type) {
1100 case MEMORY_DEVICE_PRIVATE:
e7638488 1101 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1102 return true;
1103 default:
1104 break;
1105 }
1106 return false;
1107}
1108
07d80269
JH
1109void put_devmap_managed_page(struct page *page);
1110
e7638488 1111#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1112static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1113{
1114 return false;
1115}
07d80269
JH
1116
1117static inline void put_devmap_managed_page(struct page *page)
1118{
1119}
7588adf8 1120#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1121
6b368cd4
JG
1122static inline bool is_device_private_page(const struct page *page)
1123{
7588adf8
RM
1124 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1125 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1126 is_zone_device_page(page) &&
1127 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1128}
e7638488 1129
52916982
LG
1130static inline bool is_pci_p2pdma_page(const struct page *page)
1131{
7588adf8
RM
1132 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1133 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1134 is_zone_device_page(page) &&
1135 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1136}
7b2d55d2 1137
f958d7b5
LT
1138/* 127: arbitrary random number, small enough to assemble well */
1139#define page_ref_zero_or_close_to_overflow(page) \
1140 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1141
3565fce3
DW
1142static inline void get_page(struct page *page)
1143{
1144 page = compound_head(page);
1145 /*
1146 * Getting a normal page or the head of a compound page
0139aa7b 1147 * requires to already have an elevated page->_refcount.
3565fce3 1148 */
f958d7b5 1149 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1150 page_ref_inc(page);
3565fce3
DW
1151}
1152
3faa52c0
JH
1153bool __must_check try_grab_page(struct page *page, unsigned int flags);
1154
88b1a17d
LT
1155static inline __must_check bool try_get_page(struct page *page)
1156{
1157 page = compound_head(page);
1158 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1159 return false;
fe896d18 1160 page_ref_inc(page);
88b1a17d 1161 return true;
3565fce3
DW
1162}
1163
1164static inline void put_page(struct page *page)
1165{
1166 page = compound_head(page);
1167
7b2d55d2 1168 /*
e7638488
DW
1169 * For devmap managed pages we need to catch refcount transition from
1170 * 2 to 1, when refcount reach one it means the page is free and we
1171 * need to inform the device driver through callback. See
7b2d55d2
JG
1172 * include/linux/memremap.h and HMM for details.
1173 */
07d80269
JH
1174 if (page_is_devmap_managed(page)) {
1175 put_devmap_managed_page(page);
7b2d55d2 1176 return;
07d80269 1177 }
7b2d55d2 1178
3565fce3
DW
1179 if (put_page_testzero(page))
1180 __put_page(page);
3565fce3
DW
1181}
1182
3faa52c0
JH
1183/*
1184 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1185 * the page's refcount so that two separate items are tracked: the original page
1186 * reference count, and also a new count of how many pin_user_pages() calls were
1187 * made against the page. ("gup-pinned" is another term for the latter).
1188 *
1189 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1190 * distinct from normal pages. As such, the unpin_user_page() call (and its
1191 * variants) must be used in order to release gup-pinned pages.
1192 *
1193 * Choice of value:
1194 *
1195 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1196 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1197 * simpler, due to the fact that adding an even power of two to the page
1198 * refcount has the effect of using only the upper N bits, for the code that
1199 * counts up using the bias value. This means that the lower bits are left for
1200 * the exclusive use of the original code that increments and decrements by one
1201 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1202 *
3faa52c0
JH
1203 * Of course, once the lower bits overflow into the upper bits (and this is
1204 * OK, because subtraction recovers the original values), then visual inspection
1205 * no longer suffices to directly view the separate counts. However, for normal
1206 * applications that don't have huge page reference counts, this won't be an
1207 * issue.
fc1d8e7c 1208 *
3faa52c0
JH
1209 * Locking: the lockless algorithm described in page_cache_get_speculative()
1210 * and page_cache_gup_pin_speculative() provides safe operation for
1211 * get_user_pages and page_mkclean and other calls that race to set up page
1212 * table entries.
fc1d8e7c 1213 */
3faa52c0 1214#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1215
3faa52c0 1216void unpin_user_page(struct page *page);
f1f6a7dd
JH
1217void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1218 bool make_dirty);
f1f6a7dd 1219void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1220
3faa52c0
JH
1221/**
1222 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1223 *
1224 * This function checks if a page has been pinned via a call to
1225 * pin_user_pages*().
1226 *
1227 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1228 * because it means "definitely not pinned for DMA", but true means "probably
1229 * pinned for DMA, but possibly a false positive due to having at least
1230 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1231 *
1232 * False positives are OK, because: a) it's unlikely for a page to get that many
1233 * refcounts, and b) all the callers of this routine are expected to be able to
1234 * deal gracefully with a false positive.
1235 *
47e29d32
JH
1236 * For huge pages, the result will be exactly correct. That's because we have
1237 * more tracking data available: the 3rd struct page in the compound page is
1238 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1239 * scheme).
1240 *
72ef5e52 1241 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0
JH
1242 *
1243 * @page: pointer to page to be queried.
1244 * @Return: True, if it is likely that the page has been "dma-pinned".
1245 * False, if the page is definitely not dma-pinned.
1246 */
1247static inline bool page_maybe_dma_pinned(struct page *page)
1248{
47e29d32
JH
1249 if (hpage_pincount_available(page))
1250 return compound_pincount(page) > 0;
1251
3faa52c0
JH
1252 /*
1253 * page_ref_count() is signed. If that refcount overflows, then
1254 * page_ref_count() returns a negative value, and callers will avoid
1255 * further incrementing the refcount.
1256 *
1257 * Here, for that overflow case, use the signed bit to count a little
1258 * bit higher via unsigned math, and thus still get an accurate result.
1259 */
1260 return ((unsigned int)page_ref_count(compound_head(page))) >=
1261 GUP_PIN_COUNTING_BIAS;
1262}
1263
9127ab4f
CS
1264#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1265#define SECTION_IN_PAGE_FLAGS
1266#endif
1267
89689ae7 1268/*
7a8010cd
VB
1269 * The identification function is mainly used by the buddy allocator for
1270 * determining if two pages could be buddies. We are not really identifying
1271 * the zone since we could be using the section number id if we do not have
1272 * node id available in page flags.
1273 * We only guarantee that it will return the same value for two combinable
1274 * pages in a zone.
89689ae7 1275 */
cb2b95e1
AW
1276static inline int page_zone_id(struct page *page)
1277{
89689ae7 1278 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1279}
1280
89689ae7 1281#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1282extern int page_to_nid(const struct page *page);
89689ae7 1283#else
33dd4e0e 1284static inline int page_to_nid(const struct page *page)
d41dee36 1285{
f165b378
PT
1286 struct page *p = (struct page *)page;
1287
1288 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1289}
89689ae7
CL
1290#endif
1291
57e0a030 1292#ifdef CONFIG_NUMA_BALANCING
90572890 1293static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1294{
90572890 1295 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1296}
1297
90572890 1298static inline int cpupid_to_pid(int cpupid)
57e0a030 1299{
90572890 1300 return cpupid & LAST__PID_MASK;
57e0a030 1301}
b795854b 1302
90572890 1303static inline int cpupid_to_cpu(int cpupid)
b795854b 1304{
90572890 1305 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1306}
1307
90572890 1308static inline int cpupid_to_nid(int cpupid)
b795854b 1309{
90572890 1310 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1311}
1312
90572890 1313static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1314{
90572890 1315 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1316}
1317
90572890 1318static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1319{
90572890 1320 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1321}
1322
8c8a743c
PZ
1323static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1324{
1325 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1326}
1327
1328#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1329#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1330static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1331{
1ae71d03 1332 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1333}
90572890
PZ
1334
1335static inline int page_cpupid_last(struct page *page)
1336{
1337 return page->_last_cpupid;
1338}
1339static inline void page_cpupid_reset_last(struct page *page)
b795854b 1340{
1ae71d03 1341 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1342}
1343#else
90572890 1344static inline int page_cpupid_last(struct page *page)
75980e97 1345{
90572890 1346 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1347}
1348
90572890 1349extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1350
90572890 1351static inline void page_cpupid_reset_last(struct page *page)
75980e97 1352{
09940a4f 1353 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1354}
90572890
PZ
1355#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1356#else /* !CONFIG_NUMA_BALANCING */
1357static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1358{
90572890 1359 return page_to_nid(page); /* XXX */
57e0a030
MG
1360}
1361
90572890 1362static inline int page_cpupid_last(struct page *page)
57e0a030 1363{
90572890 1364 return page_to_nid(page); /* XXX */
57e0a030
MG
1365}
1366
90572890 1367static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1368{
1369 return -1;
1370}
1371
90572890 1372static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1373{
1374 return -1;
1375}
1376
90572890 1377static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1378{
1379 return -1;
1380}
1381
90572890
PZ
1382static inline int cpu_pid_to_cpupid(int nid, int pid)
1383{
1384 return -1;
1385}
1386
1387static inline bool cpupid_pid_unset(int cpupid)
b795854b 1388{
2b787449 1389 return true;
b795854b
MG
1390}
1391
90572890 1392static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1393{
1394}
8c8a743c
PZ
1395
1396static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1397{
1398 return false;
1399}
90572890 1400#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1401
2813b9c0
AK
1402#ifdef CONFIG_KASAN_SW_TAGS
1403static inline u8 page_kasan_tag(const struct page *page)
1404{
1405 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1406}
1407
1408static inline void page_kasan_tag_set(struct page *page, u8 tag)
1409{
1410 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1411 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1412}
1413
1414static inline void page_kasan_tag_reset(struct page *page)
1415{
1416 page_kasan_tag_set(page, 0xff);
1417}
1418#else
1419static inline u8 page_kasan_tag(const struct page *page)
1420{
1421 return 0xff;
1422}
1423
1424static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1425static inline void page_kasan_tag_reset(struct page *page) { }
1426#endif
1427
33dd4e0e 1428static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1429{
1430 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1431}
1432
75ef7184
MG
1433static inline pg_data_t *page_pgdat(const struct page *page)
1434{
1435 return NODE_DATA(page_to_nid(page));
1436}
1437
9127ab4f 1438#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1439static inline void set_page_section(struct page *page, unsigned long section)
1440{
1441 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1442 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1443}
1444
aa462abe 1445static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1446{
1447 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1448}
308c05e3 1449#endif
d41dee36 1450
2f1b6248 1451static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1452{
1453 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1454 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1455}
2f1b6248 1456
348f8b6c
DH
1457static inline void set_page_node(struct page *page, unsigned long node)
1458{
1459 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1460 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1461}
89689ae7 1462
2f1b6248 1463static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1464 unsigned long node, unsigned long pfn)
1da177e4 1465{
348f8b6c
DH
1466 set_page_zone(page, zone);
1467 set_page_node(page, node);
9127ab4f 1468#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1469 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1470#endif
1da177e4
LT
1471}
1472
0610c25d
GT
1473#ifdef CONFIG_MEMCG
1474static inline struct mem_cgroup *page_memcg(struct page *page)
1475{
1476 return page->mem_cgroup;
1477}
55779ec7
JW
1478static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1479{
1480 WARN_ON_ONCE(!rcu_read_lock_held());
1481 return READ_ONCE(page->mem_cgroup);
1482}
0610c25d
GT
1483#else
1484static inline struct mem_cgroup *page_memcg(struct page *page)
1485{
1486 return NULL;
1487}
55779ec7
JW
1488static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1489{
1490 WARN_ON_ONCE(!rcu_read_lock_held());
1491 return NULL;
1492}
0610c25d
GT
1493#endif
1494
f6ac2354
CL
1495/*
1496 * Some inline functions in vmstat.h depend on page_zone()
1497 */
1498#include <linux/vmstat.h>
1499
33dd4e0e 1500static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1501{
1dff8083 1502 return page_to_virt(page);
1da177e4
LT
1503}
1504
1505#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1506#define HASHED_PAGE_VIRTUAL
1507#endif
1508
1509#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1510static inline void *page_address(const struct page *page)
1511{
1512 return page->virtual;
1513}
1514static inline void set_page_address(struct page *page, void *address)
1515{
1516 page->virtual = address;
1517}
1da177e4
LT
1518#define page_address_init() do { } while(0)
1519#endif
1520
1521#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1522void *page_address(const struct page *page);
1da177e4
LT
1523void set_page_address(struct page *page, void *virtual);
1524void page_address_init(void);
1525#endif
1526
1527#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1528#define page_address(page) lowmem_page_address(page)
1529#define set_page_address(page, address) do { } while(0)
1530#define page_address_init() do { } while(0)
1531#endif
1532
e39155ea
KS
1533extern void *page_rmapping(struct page *page);
1534extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1535extern struct address_space *page_mapping(struct page *page);
1da177e4 1536
f981c595
MG
1537extern struct address_space *__page_file_mapping(struct page *);
1538
1539static inline
1540struct address_space *page_file_mapping(struct page *page)
1541{
1542 if (unlikely(PageSwapCache(page)))
1543 return __page_file_mapping(page);
1544
1545 return page->mapping;
1546}
1547
f6ab1f7f
HY
1548extern pgoff_t __page_file_index(struct page *page);
1549
1da177e4
LT
1550/*
1551 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1552 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1553 */
1554static inline pgoff_t page_index(struct page *page)
1555{
1556 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1557 return __page_file_index(page);
1da177e4
LT
1558 return page->index;
1559}
1560
1aa8aea5 1561bool page_mapped(struct page *page);
bda807d4 1562struct address_space *page_mapping(struct page *page);
cb9f753a 1563struct address_space *page_mapping_file(struct page *page);
1da177e4 1564
2f064f34
MH
1565/*
1566 * Return true only if the page has been allocated with
1567 * ALLOC_NO_WATERMARKS and the low watermark was not
1568 * met implying that the system is under some pressure.
1569 */
1570static inline bool page_is_pfmemalloc(struct page *page)
1571{
1572 /*
1573 * Page index cannot be this large so this must be
1574 * a pfmemalloc page.
1575 */
1576 return page->index == -1UL;
1577}
1578
1579/*
1580 * Only to be called by the page allocator on a freshly allocated
1581 * page.
1582 */
1583static inline void set_page_pfmemalloc(struct page *page)
1584{
1585 page->index = -1UL;
1586}
1587
1588static inline void clear_page_pfmemalloc(struct page *page)
1589{
1590 page->index = 0;
1591}
1592
1c0fe6e3
NP
1593/*
1594 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1595 */
1596extern void pagefault_out_of_memory(void);
1597
1da177e4
LT
1598#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1599
ddd588b5 1600/*
7bf02ea2 1601 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1602 * various contexts.
1603 */
4b59e6c4 1604#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1605
9af744d7 1606extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1607
710ec38b 1608#ifdef CONFIG_MMU
7f43add4 1609extern bool can_do_mlock(void);
710ec38b
AB
1610#else
1611static inline bool can_do_mlock(void) { return false; }
1612#endif
1da177e4
LT
1613extern int user_shm_lock(size_t, struct user_struct *);
1614extern void user_shm_unlock(size_t, struct user_struct *);
1615
1616/*
1617 * Parameter block passed down to zap_pte_range in exceptional cases.
1618 */
1619struct zap_details {
1da177e4
LT
1620 struct address_space *check_mapping; /* Check page->mapping if set */
1621 pgoff_t first_index; /* Lowest page->index to unmap */
1622 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1623};
1624
25b2995a
CH
1625struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1626 pte_t pte);
28093f9f
GS
1627struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1628 pmd_t pmd);
7e675137 1629
27d036e3
LR
1630void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1631 unsigned long size);
14f5ff5d 1632void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1633 unsigned long size);
4f74d2c8
LT
1634void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1635 unsigned long start, unsigned long end);
e6473092 1636
ac46d4f3
JG
1637struct mmu_notifier_range;
1638
42b77728 1639void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1640 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1641int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1642 struct vm_area_struct *vma);
09796395 1643int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
1644 struct mmu_notifier_range *range,
1645 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1646int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1647 unsigned long *pfn);
d87fe660 1648int follow_phys(struct vm_area_struct *vma, unsigned long address,
1649 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1650int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1651 void *buf, int len, int write);
1da177e4 1652
7caef267 1653extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1654extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1655void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1656void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1657int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1658int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1659int invalidate_inode_page(struct page *page);
1660
7ee1dd3f 1661#ifdef CONFIG_MMU
2b740303
SJ
1662extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1663 unsigned long address, unsigned int flags);
5c723ba5 1664extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1665 unsigned long address, unsigned int fault_flags,
1666 bool *unlocked);
977fbdcd
MW
1667void unmap_mapping_pages(struct address_space *mapping,
1668 pgoff_t start, pgoff_t nr, bool even_cows);
1669void unmap_mapping_range(struct address_space *mapping,
1670 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1671#else
2b740303 1672static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
dcddffd4 1673 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1674{
1675 /* should never happen if there's no MMU */
1676 BUG();
1677 return VM_FAULT_SIGBUS;
1678}
5c723ba5
PZ
1679static inline int fixup_user_fault(struct task_struct *tsk,
1680 struct mm_struct *mm, unsigned long address,
4a9e1cda 1681 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1682{
1683 /* should never happen if there's no MMU */
1684 BUG();
1685 return -EFAULT;
1686}
977fbdcd
MW
1687static inline void unmap_mapping_pages(struct address_space *mapping,
1688 pgoff_t start, pgoff_t nr, bool even_cows) { }
1689static inline void unmap_mapping_range(struct address_space *mapping,
1690 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1691#endif
f33ea7f4 1692
977fbdcd
MW
1693static inline void unmap_shared_mapping_range(struct address_space *mapping,
1694 loff_t const holebegin, loff_t const holelen)
1695{
1696 unmap_mapping_range(mapping, holebegin, holelen, 0);
1697}
1698
1699extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1700 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1701extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1702 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1703extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1704 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1705
1e987790
DH
1706long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1707 unsigned long start, unsigned long nr_pages,
9beae1ea 1708 unsigned int gup_flags, struct page **pages,
5b56d49f 1709 struct vm_area_struct **vmas, int *locked);
eddb1c22
JH
1710long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1711 unsigned long start, unsigned long nr_pages,
1712 unsigned int gup_flags, struct page **pages,
1713 struct vm_area_struct **vmas, int *locked);
c12d2da5 1714long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1715 unsigned int gup_flags, struct page **pages,
cde70140 1716 struct vm_area_struct **vmas);
eddb1c22
JH
1717long pin_user_pages(unsigned long start, unsigned long nr_pages,
1718 unsigned int gup_flags, struct page **pages,
1719 struct vm_area_struct **vmas);
c12d2da5 1720long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1721 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1722long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1723 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1724long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1725 struct page **pages, unsigned int gup_flags);
91429023
JH
1726long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1727 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1728
73b0140b
IW
1729int get_user_pages_fast(unsigned long start, int nr_pages,
1730 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1731int pin_user_pages_fast(unsigned long start, int nr_pages,
1732 unsigned int gup_flags, struct page **pages);
8025e5dd 1733
79eb597c
DJ
1734int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1735int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1736 struct task_struct *task, bool bypass_rlim);
1737
8025e5dd
JK
1738/* Container for pinned pfns / pages */
1739struct frame_vector {
1740 unsigned int nr_allocated; /* Number of frames we have space for */
1741 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1742 bool got_ref; /* Did we pin pages by getting page ref? */
1743 bool is_pfns; /* Does array contain pages or pfns? */
57e86fa1 1744 void *ptrs[]; /* Array of pinned pfns / pages. Use
8025e5dd
JK
1745 * pfns_vector_pages() or pfns_vector_pfns()
1746 * for access */
1747};
1748
1749struct frame_vector *frame_vector_create(unsigned int nr_frames);
1750void frame_vector_destroy(struct frame_vector *vec);
1751int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1752 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1753void put_vaddr_frames(struct frame_vector *vec);
1754int frame_vector_to_pages(struct frame_vector *vec);
1755void frame_vector_to_pfns(struct frame_vector *vec);
1756
1757static inline unsigned int frame_vector_count(struct frame_vector *vec)
1758{
1759 return vec->nr_frames;
1760}
1761
1762static inline struct page **frame_vector_pages(struct frame_vector *vec)
1763{
1764 if (vec->is_pfns) {
1765 int err = frame_vector_to_pages(vec);
1766
1767 if (err)
1768 return ERR_PTR(err);
1769 }
1770 return (struct page **)(vec->ptrs);
1771}
1772
1773static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1774{
1775 if (!vec->is_pfns)
1776 frame_vector_to_pfns(vec);
1777 return (unsigned long *)(vec->ptrs);
1778}
1779
18022c5d
MG
1780struct kvec;
1781int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1782 struct page **pages);
1783int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1784struct page *get_dump_page(unsigned long addr);
1da177e4 1785
cf9a2ae8 1786extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1787extern void do_invalidatepage(struct page *page, unsigned int offset,
1788 unsigned int length);
cf9a2ae8 1789
f82b3764 1790void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1791int __set_page_dirty_nobuffers(struct page *page);
76719325 1792int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1793int redirty_page_for_writepage(struct writeback_control *wbc,
1794 struct page *page);
62cccb8c 1795void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1796void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1797 struct bdi_writeback *wb);
b3c97528 1798int set_page_dirty(struct page *page);
1da177e4 1799int set_page_dirty_lock(struct page *page);
736304f3
JK
1800void __cancel_dirty_page(struct page *page);
1801static inline void cancel_dirty_page(struct page *page)
1802{
1803 /* Avoid atomic ops, locking, etc. when not actually needed. */
1804 if (PageDirty(page))
1805 __cancel_dirty_page(page);
1806}
1da177e4 1807int clear_page_dirty_for_io(struct page *page);
b9ea2515 1808
a9090253 1809int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1810
b6a2fea3
OW
1811extern unsigned long move_page_tables(struct vm_area_struct *vma,
1812 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1813 unsigned long new_addr, unsigned long len,
1814 bool need_rmap_locks);
58705444
PX
1815
1816/*
1817 * Flags used by change_protection(). For now we make it a bitmap so
1818 * that we can pass in multiple flags just like parameters. However
1819 * for now all the callers are only use one of the flags at the same
1820 * time.
1821 */
1822/* Whether we should allow dirty bit accounting */
1823#define MM_CP_DIRTY_ACCT (1UL << 0)
1824/* Whether this protection change is for NUMA hints */
1825#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1826/* Whether this change is for write protecting */
1827#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1828#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1829#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1830 MM_CP_UFFD_WP_RESOLVE)
58705444 1831
7da4d641
PZ
1832extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1833 unsigned long end, pgprot_t newprot,
58705444 1834 unsigned long cp_flags);
b6a2fea3
OW
1835extern int mprotect_fixup(struct vm_area_struct *vma,
1836 struct vm_area_struct **pprev, unsigned long start,
1837 unsigned long end, unsigned long newflags);
1da177e4 1838
465a454f
PZ
1839/*
1840 * doesn't attempt to fault and will return short.
1841 */
dadbb612
SJ
1842int get_user_pages_fast_only(unsigned long start, int nr_pages,
1843 unsigned int gup_flags, struct page **pages);
104acc32
JH
1844int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1845 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1846
1847static inline bool get_user_page_fast_only(unsigned long addr,
1848 unsigned int gup_flags, struct page **pagep)
1849{
1850 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1851}
d559db08
KH
1852/*
1853 * per-process(per-mm_struct) statistics.
1854 */
d559db08
KH
1855static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1856{
69c97823
KK
1857 long val = atomic_long_read(&mm->rss_stat.count[member]);
1858
1859#ifdef SPLIT_RSS_COUNTING
1860 /*
1861 * counter is updated in asynchronous manner and may go to minus.
1862 * But it's never be expected number for users.
1863 */
1864 if (val < 0)
1865 val = 0;
172703b0 1866#endif
69c97823
KK
1867 return (unsigned long)val;
1868}
d559db08 1869
e4dcad20 1870void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1871
d559db08
KH
1872static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1873{
b3d1411b
JFG
1874 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1875
e4dcad20 1876 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1877}
1878
1879static inline void inc_mm_counter(struct mm_struct *mm, int member)
1880{
b3d1411b
JFG
1881 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1882
e4dcad20 1883 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1884}
1885
1886static inline void dec_mm_counter(struct mm_struct *mm, int member)
1887{
b3d1411b
JFG
1888 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1889
e4dcad20 1890 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1891}
1892
eca56ff9
JM
1893/* Optimized variant when page is already known not to be PageAnon */
1894static inline int mm_counter_file(struct page *page)
1895{
1896 if (PageSwapBacked(page))
1897 return MM_SHMEMPAGES;
1898 return MM_FILEPAGES;
1899}
1900
1901static inline int mm_counter(struct page *page)
1902{
1903 if (PageAnon(page))
1904 return MM_ANONPAGES;
1905 return mm_counter_file(page);
1906}
1907
d559db08
KH
1908static inline unsigned long get_mm_rss(struct mm_struct *mm)
1909{
1910 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1911 get_mm_counter(mm, MM_ANONPAGES) +
1912 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1913}
1914
1915static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1916{
1917 return max(mm->hiwater_rss, get_mm_rss(mm));
1918}
1919
1920static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1921{
1922 return max(mm->hiwater_vm, mm->total_vm);
1923}
1924
1925static inline void update_hiwater_rss(struct mm_struct *mm)
1926{
1927 unsigned long _rss = get_mm_rss(mm);
1928
1929 if ((mm)->hiwater_rss < _rss)
1930 (mm)->hiwater_rss = _rss;
1931}
1932
1933static inline void update_hiwater_vm(struct mm_struct *mm)
1934{
1935 if (mm->hiwater_vm < mm->total_vm)
1936 mm->hiwater_vm = mm->total_vm;
1937}
1938
695f0559
PC
1939static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1940{
1941 mm->hiwater_rss = get_mm_rss(mm);
1942}
1943
d559db08
KH
1944static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1945 struct mm_struct *mm)
1946{
1947 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1948
1949 if (*maxrss < hiwater_rss)
1950 *maxrss = hiwater_rss;
1951}
1952
53bddb4e 1953#if defined(SPLIT_RSS_COUNTING)
05af2e10 1954void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1955#else
05af2e10 1956static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1957{
1958}
1959#endif
465a454f 1960
78e7c5af
AK
1961#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1962static inline int pte_special(pte_t pte)
1963{
1964 return 0;
1965}
1966
1967static inline pte_t pte_mkspecial(pte_t pte)
1968{
1969 return pte;
1970}
1971#endif
1972
17596731 1973#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
1974static inline int pte_devmap(pte_t pte)
1975{
1976 return 0;
1977}
1978#endif
1979
6d2329f8 1980int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1981
25ca1d6c
NK
1982extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1983 spinlock_t **ptl);
1984static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1985 spinlock_t **ptl)
1986{
1987 pte_t *ptep;
1988 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1989 return ptep;
1990}
c9cfcddf 1991
c2febafc
KS
1992#ifdef __PAGETABLE_P4D_FOLDED
1993static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1994 unsigned long address)
1995{
1996 return 0;
1997}
1998#else
1999int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2000#endif
2001
b4e98d9a 2002#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2003static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2004 unsigned long address)
2005{
2006 return 0;
2007}
b4e98d9a
KS
2008static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2009static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2010
5f22df00 2011#else
c2febafc 2012int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2013
b4e98d9a
KS
2014static inline void mm_inc_nr_puds(struct mm_struct *mm)
2015{
6d212db1
MS
2016 if (mm_pud_folded(mm))
2017 return;
af5b0f6a 2018 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2019}
2020
2021static inline void mm_dec_nr_puds(struct mm_struct *mm)
2022{
6d212db1
MS
2023 if (mm_pud_folded(mm))
2024 return;
af5b0f6a 2025 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2026}
5f22df00
NP
2027#endif
2028
2d2f5119 2029#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2030static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2031 unsigned long address)
2032{
2033 return 0;
2034}
dc6c9a35 2035
dc6c9a35
KS
2036static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2037static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2038
5f22df00 2039#else
1bb3630e 2040int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2041
dc6c9a35
KS
2042static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2043{
6d212db1
MS
2044 if (mm_pmd_folded(mm))
2045 return;
af5b0f6a 2046 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2047}
2048
2049static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2050{
6d212db1
MS
2051 if (mm_pmd_folded(mm))
2052 return;
af5b0f6a 2053 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2054}
5f22df00
NP
2055#endif
2056
c4812909 2057#ifdef CONFIG_MMU
af5b0f6a 2058static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2059{
af5b0f6a 2060 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2061}
2062
af5b0f6a 2063static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2064{
af5b0f6a 2065 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2066}
2067
2068static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2069{
af5b0f6a 2070 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2071}
2072
2073static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2074{
af5b0f6a 2075 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2076}
2077#else
c4812909 2078
af5b0f6a
KS
2079static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2080static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2081{
2082 return 0;
2083}
2084
2085static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2086static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2087#endif
2088
4cf58924
JFG
2089int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2090int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2091
f949286c
MR
2092#if defined(CONFIG_MMU)
2093
c2febafc
KS
2094static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2095 unsigned long address)
2096{
2097 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2098 NULL : p4d_offset(pgd, address);
2099}
2100
2101static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2102 unsigned long address)
1da177e4 2103{
c2febafc
KS
2104 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2105 NULL : pud_offset(p4d, address);
1da177e4 2106}
d8626138 2107
1da177e4
LT
2108static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2109{
1bb3630e
HD
2110 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2111 NULL: pmd_offset(pud, address);
1da177e4 2112}
f949286c 2113#endif /* CONFIG_MMU */
1bb3630e 2114
57c1ffce 2115#if USE_SPLIT_PTE_PTLOCKS
597d795a 2116#if ALLOC_SPLIT_PTLOCKS
b35f1819 2117void __init ptlock_cache_init(void);
539edb58
PZ
2118extern bool ptlock_alloc(struct page *page);
2119extern void ptlock_free(struct page *page);
2120
2121static inline spinlock_t *ptlock_ptr(struct page *page)
2122{
2123 return page->ptl;
2124}
597d795a 2125#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2126static inline void ptlock_cache_init(void)
2127{
2128}
2129
49076ec2
KS
2130static inline bool ptlock_alloc(struct page *page)
2131{
49076ec2
KS
2132 return true;
2133}
539edb58 2134
49076ec2
KS
2135static inline void ptlock_free(struct page *page)
2136{
49076ec2
KS
2137}
2138
2139static inline spinlock_t *ptlock_ptr(struct page *page)
2140{
539edb58 2141 return &page->ptl;
49076ec2 2142}
597d795a 2143#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2144
2145static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2146{
2147 return ptlock_ptr(pmd_page(*pmd));
2148}
2149
2150static inline bool ptlock_init(struct page *page)
2151{
2152 /*
2153 * prep_new_page() initialize page->private (and therefore page->ptl)
2154 * with 0. Make sure nobody took it in use in between.
2155 *
2156 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2157 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2158 */
309381fe 2159 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2160 if (!ptlock_alloc(page))
2161 return false;
2162 spin_lock_init(ptlock_ptr(page));
2163 return true;
2164}
2165
57c1ffce 2166#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2167/*
2168 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2169 */
49076ec2
KS
2170static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2171{
2172 return &mm->page_table_lock;
2173}
b35f1819 2174static inline void ptlock_cache_init(void) {}
49076ec2 2175static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2176static inline void ptlock_free(struct page *page) {}
57c1ffce 2177#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2178
b35f1819
KS
2179static inline void pgtable_init(void)
2180{
2181 ptlock_cache_init();
2182 pgtable_cache_init();
2183}
2184
b4ed71f5 2185static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2186{
706874e9
VD
2187 if (!ptlock_init(page))
2188 return false;
1d40a5ea 2189 __SetPageTable(page);
2f569afd 2190 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 2191 return true;
2f569afd
MS
2192}
2193
b4ed71f5 2194static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2195{
9e247bab 2196 ptlock_free(page);
1d40a5ea 2197 __ClearPageTable(page);
2f569afd
MS
2198 dec_zone_page_state(page, NR_PAGETABLE);
2199}
2200
c74df32c
HD
2201#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2202({ \
4c21e2f2 2203 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2204 pte_t *__pte = pte_offset_map(pmd, address); \
2205 *(ptlp) = __ptl; \
2206 spin_lock(__ptl); \
2207 __pte; \
2208})
2209
2210#define pte_unmap_unlock(pte, ptl) do { \
2211 spin_unlock(ptl); \
2212 pte_unmap(pte); \
2213} while (0)
2214
4cf58924 2215#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2216
2217#define pte_alloc_map(mm, pmd, address) \
4cf58924 2218 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2219
c74df32c 2220#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2221 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2222 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2223
1bb3630e 2224#define pte_alloc_kernel(pmd, address) \
4cf58924 2225 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2226 NULL: pte_offset_kernel(pmd, address))
1da177e4 2227
e009bb30
KS
2228#if USE_SPLIT_PMD_PTLOCKS
2229
634391ac
MS
2230static struct page *pmd_to_page(pmd_t *pmd)
2231{
2232 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2233 return virt_to_page((void *)((unsigned long) pmd & mask));
2234}
2235
e009bb30
KS
2236static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2237{
634391ac 2238 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2239}
2240
2241static inline bool pgtable_pmd_page_ctor(struct page *page)
2242{
e009bb30
KS
2243#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2244 page->pmd_huge_pte = NULL;
2245#endif
49076ec2 2246 return ptlock_init(page);
e009bb30
KS
2247}
2248
2249static inline void pgtable_pmd_page_dtor(struct page *page)
2250{
2251#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2252 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2253#endif
49076ec2 2254 ptlock_free(page);
e009bb30
KS
2255}
2256
634391ac 2257#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2258
2259#else
2260
9a86cb7b
KS
2261static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2262{
2263 return &mm->page_table_lock;
2264}
2265
e009bb30
KS
2266static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2267static inline void pgtable_pmd_page_dtor(struct page *page) {}
2268
c389a250 2269#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2270
e009bb30
KS
2271#endif
2272
9a86cb7b
KS
2273static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2274{
2275 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2276 spin_lock(ptl);
2277 return ptl;
2278}
2279
a00cc7d9
MW
2280/*
2281 * No scalability reason to split PUD locks yet, but follow the same pattern
2282 * as the PMD locks to make it easier if we decide to. The VM should not be
2283 * considered ready to switch to split PUD locks yet; there may be places
2284 * which need to be converted from page_table_lock.
2285 */
2286static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2287{
2288 return &mm->page_table_lock;
2289}
2290
2291static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2292{
2293 spinlock_t *ptl = pud_lockptr(mm, pud);
2294
2295 spin_lock(ptl);
2296 return ptl;
2297}
62906027 2298
a00cc7d9 2299extern void __init pagecache_init(void);
bc9331a1 2300extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2301extern void free_initmem(void);
2302
69afade7
JL
2303/*
2304 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2305 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2306 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2307 * Return pages freed into the buddy system.
2308 */
11199692 2309extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2310 int poison, const char *s);
c3d5f5f0 2311
cfa11e08
JL
2312#ifdef CONFIG_HIGHMEM
2313/*
2314 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2315 * and totalram_pages.
2316 */
2317extern void free_highmem_page(struct page *page);
2318#endif
69afade7 2319
c3d5f5f0 2320extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2321extern void mem_init_print_info(const char *str);
69afade7 2322
4b50bcc7 2323extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2324
69afade7
JL
2325/* Free the reserved page into the buddy system, so it gets managed. */
2326static inline void __free_reserved_page(struct page *page)
2327{
2328 ClearPageReserved(page);
2329 init_page_count(page);
2330 __free_page(page);
2331}
2332
2333static inline void free_reserved_page(struct page *page)
2334{
2335 __free_reserved_page(page);
2336 adjust_managed_page_count(page, 1);
2337}
2338
2339static inline void mark_page_reserved(struct page *page)
2340{
2341 SetPageReserved(page);
2342 adjust_managed_page_count(page, -1);
2343}
2344
2345/*
2346 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2347 * The freed pages will be poisoned with pattern "poison" if it's within
2348 * range [0, UCHAR_MAX].
2349 * Return pages freed into the buddy system.
69afade7
JL
2350 */
2351static inline unsigned long free_initmem_default(int poison)
2352{
2353 extern char __init_begin[], __init_end[];
2354
11199692 2355 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2356 poison, "unused kernel");
2357}
2358
7ee3d4e8
JL
2359static inline unsigned long get_num_physpages(void)
2360{
2361 int nid;
2362 unsigned long phys_pages = 0;
2363
2364 for_each_online_node(nid)
2365 phys_pages += node_present_pages(nid);
2366
2367 return phys_pages;
2368}
2369
c713216d 2370/*
3f08a302 2371 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2372 * zones, allocate the backing mem_map and account for memory holes in an
2373 * architecture independent manner.
c713216d
MG
2374 *
2375 * An architecture is expected to register range of page frames backed by
0ee332c1 2376 * physical memory with memblock_add[_node]() before calling
9691a071 2377 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2378 * usage, an architecture is expected to do something like
2379 *
2380 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2381 * max_highmem_pfn};
2382 * for_each_valid_physical_page_range()
0ee332c1 2383 * memblock_add_node(base, size, nid)
9691a071 2384 * free_area_init(max_zone_pfns);
c713216d 2385 *
0ee332c1
TH
2386 * sparse_memory_present_with_active_regions() calls memory_present() for
2387 * each range when SPARSEMEM is enabled.
c713216d 2388 */
9691a071 2389void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2390unsigned long node_map_pfn_alignment(void);
32996250
YL
2391unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2392 unsigned long end_pfn);
c713216d
MG
2393extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2394 unsigned long end_pfn);
2395extern void get_pfn_range_for_nid(unsigned int nid,
2396 unsigned long *start_pfn, unsigned long *end_pfn);
2397extern unsigned long find_min_pfn_with_active_regions(void);
c713216d 2398extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 2399
3f08a302 2400#ifndef CONFIG_NEED_MULTIPLE_NODES
6f24fbd3 2401static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2402{
2403 return 0;
2404}
2405#else
2406/* please see mm/page_alloc.c */
2407extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2408/* there is a per-arch backend function. */
8a942fde
MG
2409extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2410 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2411#endif
2412
0e0b864e 2413extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2414extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2415 enum memmap_context, struct vmem_altmap *);
bc75d33f 2416extern void setup_per_zone_wmarks(void);
1b79acc9 2417extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2418extern void mem_init(void);
8feae131 2419extern void __init mmap_init(void);
9af744d7 2420extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2421extern long si_mem_available(void);
1da177e4
LT
2422extern void si_meminfo(struct sysinfo * val);
2423extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2424#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2425extern unsigned long arch_reserved_kernel_pages(void);
2426#endif
1da177e4 2427
a8e99259
MH
2428extern __printf(3, 4)
2429void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2430
e7c8d5c9 2431extern void setup_per_cpu_pageset(void);
e7c8d5c9 2432
75f7ad8e
PS
2433/* page_alloc.c */
2434extern int min_free_kbytes;
1c30844d 2435extern int watermark_boost_factor;
795ae7a0 2436extern int watermark_scale_factor;
51930df5 2437extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2438
8feae131 2439/* nommu.c */
33e5d769 2440extern atomic_long_t mmap_pages_allocated;
7e660872 2441extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2442
6b2dbba8 2443/* interval_tree.c */
6b2dbba8 2444void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2445 struct rb_root_cached *root);
9826a516
ML
2446void vma_interval_tree_insert_after(struct vm_area_struct *node,
2447 struct vm_area_struct *prev,
f808c13f 2448 struct rb_root_cached *root);
6b2dbba8 2449void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2450 struct rb_root_cached *root);
2451struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2452 unsigned long start, unsigned long last);
2453struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2454 unsigned long start, unsigned long last);
2455
2456#define vma_interval_tree_foreach(vma, root, start, last) \
2457 for (vma = vma_interval_tree_iter_first(root, start, last); \
2458 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2459
bf181b9f 2460void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2461 struct rb_root_cached *root);
bf181b9f 2462void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2463 struct rb_root_cached *root);
2464struct anon_vma_chain *
2465anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2466 unsigned long start, unsigned long last);
bf181b9f
ML
2467struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2468 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2469#ifdef CONFIG_DEBUG_VM_RB
2470void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2471#endif
bf181b9f
ML
2472
2473#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2474 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2475 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2476
1da177e4 2477/* mmap.c */
34b4e4aa 2478extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2479extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2480 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2481 struct vm_area_struct *expand);
2482static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2483 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2484{
2485 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2486}
1da177e4
LT
2487extern struct vm_area_struct *vma_merge(struct mm_struct *,
2488 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2489 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2490 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2491extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2492extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2493 unsigned long addr, int new_below);
2494extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2495 unsigned long addr, int new_below);
1da177e4
LT
2496extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2497extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2498 struct rb_node **, struct rb_node *);
a8fb5618 2499extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2500extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2501 unsigned long addr, unsigned long len, pgoff_t pgoff,
2502 bool *need_rmap_locks);
1da177e4 2503extern void exit_mmap(struct mm_struct *);
925d1c40 2504
9c599024
CG
2505static inline int check_data_rlimit(unsigned long rlim,
2506 unsigned long new,
2507 unsigned long start,
2508 unsigned long end_data,
2509 unsigned long start_data)
2510{
2511 if (rlim < RLIM_INFINITY) {
2512 if (((new - start) + (end_data - start_data)) > rlim)
2513 return -ENOSPC;
2514 }
2515
2516 return 0;
2517}
2518
7906d00c
AA
2519extern int mm_take_all_locks(struct mm_struct *mm);
2520extern void mm_drop_all_locks(struct mm_struct *mm);
2521
38646013
JS
2522extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2523extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2524extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2525
84638335
KK
2526extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2527extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2528
2eefd878
DS
2529extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2530 const struct vm_special_mapping *sm);
3935ed6a
SS
2531extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2532 unsigned long addr, unsigned long len,
a62c34bd
AL
2533 unsigned long flags,
2534 const struct vm_special_mapping *spec);
2535/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2536extern int install_special_mapping(struct mm_struct *mm,
2537 unsigned long addr, unsigned long len,
2538 unsigned long flags, struct page **pages);
1da177e4 2539
649775be
AG
2540unsigned long randomize_stack_top(unsigned long stack_top);
2541
1da177e4
LT
2542extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2543
0165ab44 2544extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2545 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2546 struct list_head *uf);
1fcfd8db 2547extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2548 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2549 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2550 struct list_head *uf);
85a06835
YS
2551extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2552 struct list_head *uf, bool downgrade);
897ab3e0
MR
2553extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2554 struct list_head *uf);
db08ca25 2555extern int do_madvise(unsigned long start, size_t len_in, int behavior);
1da177e4 2556
1fcfd8db
ON
2557static inline unsigned long
2558do_mmap_pgoff(struct file *file, unsigned long addr,
2559 unsigned long len, unsigned long prot, unsigned long flags,
897ab3e0
MR
2560 unsigned long pgoff, unsigned long *populate,
2561 struct list_head *uf)
1fcfd8db 2562{
897ab3e0 2563 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
1fcfd8db
ON
2564}
2565
bebeb3d6
ML
2566#ifdef CONFIG_MMU
2567extern int __mm_populate(unsigned long addr, unsigned long len,
2568 int ignore_errors);
2569static inline void mm_populate(unsigned long addr, unsigned long len)
2570{
2571 /* Ignore errors */
2572 (void) __mm_populate(addr, len, 1);
2573}
2574#else
2575static inline void mm_populate(unsigned long addr, unsigned long len) {}
2576#endif
2577
e4eb1ff6 2578/* These take the mm semaphore themselves */
5d22fc25 2579extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2580extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2581extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2582extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2583 unsigned long, unsigned long,
2584 unsigned long, unsigned long);
1da177e4 2585
db4fbfb9
ML
2586struct vm_unmapped_area_info {
2587#define VM_UNMAPPED_AREA_TOPDOWN 1
2588 unsigned long flags;
2589 unsigned long length;
2590 unsigned long low_limit;
2591 unsigned long high_limit;
2592 unsigned long align_mask;
2593 unsigned long align_offset;
2594};
2595
baceaf1c 2596extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2597
85821aab 2598/* truncate.c */
1da177e4 2599extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2600extern void truncate_inode_pages_range(struct address_space *,
2601 loff_t lstart, loff_t lend);
91b0abe3 2602extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2603
2604/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2605extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2606extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2607 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2608extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2609
2610/* mm/page-writeback.c */
2b69c828 2611int __must_check write_one_page(struct page *page);
1cf6e7d8 2612void task_dirty_inc(struct task_struct *tsk);
1da177e4 2613
1be7107f 2614extern unsigned long stack_guard_gap;
d05f3169 2615/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2616extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2617
2618/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2619extern int expand_downwards(struct vm_area_struct *vma,
2620 unsigned long address);
8ca3eb08 2621#if VM_GROWSUP
46dea3d0 2622extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2623#else
fee7e49d 2624 #define expand_upwards(vma, address) (0)
9ab88515 2625#endif
1da177e4
LT
2626
2627/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2628extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2629extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2630 struct vm_area_struct **pprev);
2631
2632/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2633 NULL if none. Assume start_addr < end_addr. */
2634static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2635{
2636 struct vm_area_struct * vma = find_vma(mm,start_addr);
2637
2638 if (vma && end_addr <= vma->vm_start)
2639 vma = NULL;
2640 return vma;
2641}
2642
1be7107f
HD
2643static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2644{
2645 unsigned long vm_start = vma->vm_start;
2646
2647 if (vma->vm_flags & VM_GROWSDOWN) {
2648 vm_start -= stack_guard_gap;
2649 if (vm_start > vma->vm_start)
2650 vm_start = 0;
2651 }
2652 return vm_start;
2653}
2654
2655static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2656{
2657 unsigned long vm_end = vma->vm_end;
2658
2659 if (vma->vm_flags & VM_GROWSUP) {
2660 vm_end += stack_guard_gap;
2661 if (vm_end < vma->vm_end)
2662 vm_end = -PAGE_SIZE;
2663 }
2664 return vm_end;
2665}
2666
1da177e4
LT
2667static inline unsigned long vma_pages(struct vm_area_struct *vma)
2668{
2669 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2670}
2671
640708a2
PE
2672/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2673static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2674 unsigned long vm_start, unsigned long vm_end)
2675{
2676 struct vm_area_struct *vma = find_vma(mm, vm_start);
2677
2678 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2679 vma = NULL;
2680
2681 return vma;
2682}
2683
017b1660
MK
2684static inline bool range_in_vma(struct vm_area_struct *vma,
2685 unsigned long start, unsigned long end)
2686{
2687 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2688}
2689
bad849b3 2690#ifdef CONFIG_MMU
804af2cf 2691pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2692void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2693#else
2694static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2695{
2696 return __pgprot(0);
2697}
64e45507
PF
2698static inline void vma_set_page_prot(struct vm_area_struct *vma)
2699{
2700 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2701}
bad849b3
DH
2702#endif
2703
5877231f 2704#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2705unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2706 unsigned long start, unsigned long end);
2707#endif
2708
deceb6cd 2709struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2710int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2711 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2712int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2713int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2714 struct page **pages, unsigned long *num);
a667d745
SJ
2715int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2716 unsigned long num);
2717int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2718 unsigned long num);
ae2b01f3 2719vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2720 unsigned long pfn);
f5e6d1d5
MW
2721vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2722 unsigned long pfn, pgprot_t pgprot);
5d747637 2723vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2724 pfn_t pfn);
574c5b3d
TH
2725vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2726 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2727vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2728 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2729int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2730
1c8f4220
SJ
2731static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2732 unsigned long addr, struct page *page)
2733{
2734 int err = vm_insert_page(vma, addr, page);
2735
2736 if (err == -ENOMEM)
2737 return VM_FAULT_OOM;
2738 if (err < 0 && err != -EBUSY)
2739 return VM_FAULT_SIGBUS;
2740
2741 return VM_FAULT_NOPAGE;
2742}
2743
d97baf94
SJ
2744static inline vm_fault_t vmf_error(int err)
2745{
2746 if (err == -ENOMEM)
2747 return VM_FAULT_OOM;
2748 return VM_FAULT_SIGBUS;
2749}
2750
df06b37f
KB
2751struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2752 unsigned int foll_flags);
240aadee 2753
deceb6cd
HD
2754#define FOLL_WRITE 0x01 /* check pte is writable */
2755#define FOLL_TOUCH 0x02 /* mark page accessed */
2756#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2757#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2758#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2759#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2760 * and return without waiting upon it */
84d33df2 2761#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2762#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2763#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2764#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2765#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2766#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2767#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2768#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2769#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2770#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2771#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2772#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2773#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2774#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2775
2776/*
eddb1c22
JH
2777 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2778 * other. Here is what they mean, and how to use them:
932f4a63
IW
2779 *
2780 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2781 * period _often_ under userspace control. This is in contrast to
2782 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2783 *
2784 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2785 * lifetime enforced by the filesystem and we need guarantees that longterm
2786 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2787 * the filesystem. Ideas for this coordination include revoking the longterm
2788 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2789 * added after the problem with filesystems was found FS DAX VMAs are
2790 * specifically failed. Filesystem pages are still subject to bugs and use of
2791 * FOLL_LONGTERM should be avoided on those pages.
2792 *
2793 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2794 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2795 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2796 * is due to an incompatibility with the FS DAX check and
eddb1c22 2797 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2798 *
eddb1c22
JH
2799 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2800 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2801 * FOLL_LONGTERM is specified.
eddb1c22
JH
2802 *
2803 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2804 * but an additional pin counting system) will be invoked. This is intended for
2805 * anything that gets a page reference and then touches page data (for example,
2806 * Direct IO). This lets the filesystem know that some non-file-system entity is
2807 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2808 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2809 * a call to unpin_user_page().
eddb1c22
JH
2810 *
2811 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2812 * and separate refcounting mechanisms, however, and that means that each has
2813 * its own acquire and release mechanisms:
2814 *
2815 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2816 *
f1f6a7dd 2817 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2818 *
2819 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2820 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2821 * calls applied to them, and that's perfectly OK. This is a constraint on the
2822 * callers, not on the pages.)
2823 *
2824 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2825 * directly by the caller. That's in order to help avoid mismatches when
2826 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2827 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2828 *
72ef5e52 2829 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2830 */
1da177e4 2831
2b740303 2832static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2833{
2834 if (vm_fault & VM_FAULT_OOM)
2835 return -ENOMEM;
2836 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2837 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2838 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2839 return -EFAULT;
2840 return 0;
2841}
2842
8b1e0f81 2843typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2844extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2845 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2846extern int apply_to_existing_page_range(struct mm_struct *mm,
2847 unsigned long address, unsigned long size,
2848 pte_fn_t fn, void *data);
aee16b3c 2849
8823b1db
LA
2850#ifdef CONFIG_PAGE_POISONING
2851extern bool page_poisoning_enabled(void);
2852extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2853#else
2854static inline bool page_poisoning_enabled(void) { return false; }
2855static inline void kernel_poison_pages(struct page *page, int numpages,
2856 int enable) { }
2857#endif
2858
6471384a
AP
2859#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2860DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2861#else
2862DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2863#endif
2864static inline bool want_init_on_alloc(gfp_t flags)
2865{
2866 if (static_branch_unlikely(&init_on_alloc) &&
2867 !page_poisoning_enabled())
2868 return true;
2869 return flags & __GFP_ZERO;
2870}
2871
2872#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2873DECLARE_STATIC_KEY_TRUE(init_on_free);
2874#else
2875DECLARE_STATIC_KEY_FALSE(init_on_free);
2876#endif
2877static inline bool want_init_on_free(void)
2878{
2879 return static_branch_unlikely(&init_on_free) &&
2880 !page_poisoning_enabled();
2881}
2882
8e57f8ac
VB
2883#ifdef CONFIG_DEBUG_PAGEALLOC
2884extern void init_debug_pagealloc(void);
96a2b03f 2885#else
8e57f8ac 2886static inline void init_debug_pagealloc(void) {}
96a2b03f 2887#endif
8e57f8ac
VB
2888extern bool _debug_pagealloc_enabled_early;
2889DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2890
2891static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2892{
2893 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2894 _debug_pagealloc_enabled_early;
2895}
2896
2897/*
2898 * For use in fast paths after init_debug_pagealloc() has run, or when a
2899 * false negative result is not harmful when called too early.
2900 */
2901static inline bool debug_pagealloc_enabled_static(void)
031bc574 2902{
96a2b03f
VB
2903 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2904 return false;
2905
2906 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2907}
2908
d6332692
RE
2909#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2910extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2911
c87cbc1f
VB
2912/*
2913 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2914 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2915 */
031bc574
JK
2916static inline void
2917kernel_map_pages(struct page *page, int numpages, int enable)
2918{
031bc574
JK
2919 __kernel_map_pages(page, numpages, enable);
2920}
8a235efa
RW
2921#ifdef CONFIG_HIBERNATION
2922extern bool kernel_page_present(struct page *page);
40b44137 2923#endif /* CONFIG_HIBERNATION */
d6332692 2924#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2925static inline void
9858db50 2926kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2927#ifdef CONFIG_HIBERNATION
2928static inline bool kernel_page_present(struct page *page) { return true; }
40b44137 2929#endif /* CONFIG_HIBERNATION */
d6332692 2930#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2931
a6c19dfe 2932#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2933extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2934extern int in_gate_area_no_mm(unsigned long addr);
2935extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2936#else
a6c19dfe
AL
2937static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2938{
2939 return NULL;
2940}
2941static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2942static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2943{
2944 return 0;
2945}
1da177e4
LT
2946#endif /* __HAVE_ARCH_GATE_AREA */
2947
44a70ade
MH
2948extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2949
146732ce
JT
2950#ifdef CONFIG_SYSCTL
2951extern int sysctl_drop_caches;
32927393
CH
2952int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2953 loff_t *);
146732ce
JT
2954#endif
2955
cb731d6c
VD
2956void drop_slab(void);
2957void drop_slab_node(int nid);
9d0243bc 2958
7a9166e3
LY
2959#ifndef CONFIG_MMU
2960#define randomize_va_space 0
2961#else
a62eaf15 2962extern int randomize_va_space;
7a9166e3 2963#endif
a62eaf15 2964
045e72ac 2965const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 2966#ifdef CONFIG_MMU
03252919 2967void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
2968#else
2969static inline void print_vma_addr(char *prefix, unsigned long rip)
2970{
2971}
2972#endif
e6e5494c 2973
35fd1eb1 2974void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
2975struct page * __populate_section_memmap(unsigned long pfn,
2976 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 2977pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2978p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2979pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 2980pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
2981pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
2982 struct vmem_altmap *altmap);
8f6aac41 2983void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2984struct vmem_altmap;
56993b4e
AK
2985void *vmemmap_alloc_block_buf(unsigned long size, int node,
2986 struct vmem_altmap *altmap);
8f6aac41 2987void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 2988int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 2989 int node, struct vmem_altmap *altmap);
7b73d978
CH
2990int vmemmap_populate(unsigned long start, unsigned long end, int node,
2991 struct vmem_altmap *altmap);
c2b91e2e 2992void vmemmap_populate_print_last(void);
0197518c 2993#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2994void vmemmap_free(unsigned long start, unsigned long end,
2995 struct vmem_altmap *altmap);
0197518c 2996#endif
46723bfa 2997void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2998 unsigned long nr_pages);
6a46079c 2999
82ba011b
AK
3000enum mf_flags {
3001 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3002 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3003 MF_MUST_KILL = 1 << 2,
cf870c70 3004 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3005};
83b57531
EB
3006extern int memory_failure(unsigned long pfn, int flags);
3007extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3008extern void memory_failure_queue_kick(int cpu);
847ce401 3009extern int unpoison_memory(unsigned long pfn);
ead07f6a 3010extern int get_hwpoison_page(struct page *page);
4e41a30c 3011#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
3012extern int sysctl_memory_failure_early_kill;
3013extern int sysctl_memory_failure_recovery;
facb6011 3014extern void shake_page(struct page *p, int access);
5844a486 3015extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3016extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3017
cc637b17
XX
3018
3019/*
3020 * Error handlers for various types of pages.
3021 */
cc3e2af4 3022enum mf_result {
cc637b17
XX
3023 MF_IGNORED, /* Error: cannot be handled */
3024 MF_FAILED, /* Error: handling failed */
3025 MF_DELAYED, /* Will be handled later */
3026 MF_RECOVERED, /* Successfully recovered */
3027};
3028
3029enum mf_action_page_type {
3030 MF_MSG_KERNEL,
3031 MF_MSG_KERNEL_HIGH_ORDER,
3032 MF_MSG_SLAB,
3033 MF_MSG_DIFFERENT_COMPOUND,
3034 MF_MSG_POISONED_HUGE,
3035 MF_MSG_HUGE,
3036 MF_MSG_FREE_HUGE,
31286a84 3037 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3038 MF_MSG_UNMAP_FAILED,
3039 MF_MSG_DIRTY_SWAPCACHE,
3040 MF_MSG_CLEAN_SWAPCACHE,
3041 MF_MSG_DIRTY_MLOCKED_LRU,
3042 MF_MSG_CLEAN_MLOCKED_LRU,
3043 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3044 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3045 MF_MSG_DIRTY_LRU,
3046 MF_MSG_CLEAN_LRU,
3047 MF_MSG_TRUNCATED_LRU,
3048 MF_MSG_BUDDY,
3049 MF_MSG_BUDDY_2ND,
6100e34b 3050 MF_MSG_DAX,
cc637b17
XX
3051 MF_MSG_UNKNOWN,
3052};
3053
47ad8475
AA
3054#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3055extern void clear_huge_page(struct page *page,
c79b57e4 3056 unsigned long addr_hint,
47ad8475
AA
3057 unsigned int pages_per_huge_page);
3058extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3059 unsigned long addr_hint,
3060 struct vm_area_struct *vma,
47ad8475 3061 unsigned int pages_per_huge_page);
fa4d75c1
MK
3062extern long copy_huge_page_from_user(struct page *dst_page,
3063 const void __user *usr_src,
810a56b9
MK
3064 unsigned int pages_per_huge_page,
3065 bool allow_pagefault);
2484ca9b
THV
3066
3067/**
3068 * vma_is_special_huge - Are transhuge page-table entries considered special?
3069 * @vma: Pointer to the struct vm_area_struct to consider
3070 *
3071 * Whether transhuge page-table entries are considered "special" following
3072 * the definition in vm_normal_page().
3073 *
3074 * Return: true if transhuge page-table entries should be considered special,
3075 * false otherwise.
3076 */
3077static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3078{
3079 return vma_is_dax(vma) || (vma->vm_file &&
3080 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3081}
3082
47ad8475
AA
3083#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3084
c0a32fc5
SG
3085#ifdef CONFIG_DEBUG_PAGEALLOC
3086extern unsigned int _debug_guardpage_minorder;
96a2b03f 3087DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3088
3089static inline unsigned int debug_guardpage_minorder(void)
3090{
3091 return _debug_guardpage_minorder;
3092}
3093
e30825f1
JK
3094static inline bool debug_guardpage_enabled(void)
3095{
96a2b03f 3096 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3097}
3098
c0a32fc5
SG
3099static inline bool page_is_guard(struct page *page)
3100{
e30825f1
JK
3101 if (!debug_guardpage_enabled())
3102 return false;
3103
3972f6bb 3104 return PageGuard(page);
c0a32fc5
SG
3105}
3106#else
3107static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3108static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3109static inline bool page_is_guard(struct page *page) { return false; }
3110#endif /* CONFIG_DEBUG_PAGEALLOC */
3111
f9872caf
CS
3112#if MAX_NUMNODES > 1
3113void __init setup_nr_node_ids(void);
3114#else
3115static inline void setup_nr_node_ids(void) {}
3116#endif
3117
010c164a
SL
3118extern int memcmp_pages(struct page *page1, struct page *page2);
3119
3120static inline int pages_identical(struct page *page1, struct page *page2)
3121{
3122 return !memcmp_pages(page1, page2);
3123}
3124
c5acad84
TH
3125#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3126unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3127 pgoff_t first_index, pgoff_t nr,
3128 pgoff_t bitmap_pgoff,
3129 unsigned long *bitmap,
3130 pgoff_t *start,
3131 pgoff_t *end);
3132
3133unsigned long wp_shared_mapping_range(struct address_space *mapping,
3134 pgoff_t first_index, pgoff_t nr);
3135#endif
3136
2374c09b
CH
3137extern int sysctl_nr_trim_pages;
3138
1da177e4
LT
3139#endif /* __KERNEL__ */
3140#endif /* _LINUX_MM_H */