x86: mremap speedup - Enable HAVE_MOVE_PUD
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
9740ca4e 18#include <linux/mmap_lock.h>
08677214 19#include <linux/range.h>
c6f6b596 20#include <linux/pfn.h>
3565fce3 21#include <linux/percpu-refcount.h>
e9da73d6 22#include <linux/bit_spinlock.h>
b0d40c92 23#include <linux/shrinker.h>
9c599024 24#include <linux/resource.h>
e30825f1 25#include <linux/page_ext.h>
8025e5dd 26#include <linux/err.h>
41901567 27#include <linux/page-flags.h>
fe896d18 28#include <linux/page_ref.h>
7b2d55d2 29#include <linux/memremap.h>
3b3b1a29 30#include <linux/overflow.h>
b5420237 31#include <linux/sizes.h>
7969f226 32#include <linux/sched.h>
65fddcfc 33#include <linux/pgtable.h>
1da177e4
LT
34
35struct mempolicy;
36struct anon_vma;
bf181b9f 37struct anon_vma_chain;
4e950f6f 38struct file_ra_state;
e8edc6e0 39struct user_struct;
4e950f6f 40struct writeback_control;
682aa8e1 41struct bdi_writeback;
bce617ed 42struct pt_regs;
1da177e4 43
5ef64cc8
LT
44extern int sysctl_page_lock_unfairness;
45
597b7305
MH
46void init_mm_internals(void);
47
fccc9987 48#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 49extern unsigned long max_mapnr;
fccc9987
JL
50
51static inline void set_max_mapnr(unsigned long limit)
52{
53 max_mapnr = limit;
54}
55#else
56static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
57#endif
58
ca79b0c2
AK
59extern atomic_long_t _totalram_pages;
60static inline unsigned long totalram_pages(void)
61{
62 return (unsigned long)atomic_long_read(&_totalram_pages);
63}
64
65static inline void totalram_pages_inc(void)
66{
67 atomic_long_inc(&_totalram_pages);
68}
69
70static inline void totalram_pages_dec(void)
71{
72 atomic_long_dec(&_totalram_pages);
73}
74
75static inline void totalram_pages_add(long count)
76{
77 atomic_long_add(count, &_totalram_pages);
78}
79
1da177e4 80extern void * high_memory;
1da177e4
LT
81extern int page_cluster;
82
83#ifdef CONFIG_SYSCTL
84extern int sysctl_legacy_va_layout;
85#else
86#define sysctl_legacy_va_layout 0
87#endif
88
d07e2259
DC
89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90extern const int mmap_rnd_bits_min;
91extern const int mmap_rnd_bits_max;
92extern int mmap_rnd_bits __read_mostly;
93#endif
94#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95extern const int mmap_rnd_compat_bits_min;
96extern const int mmap_rnd_compat_bits_max;
97extern int mmap_rnd_compat_bits __read_mostly;
98#endif
99
1da177e4 100#include <asm/page.h>
1da177e4 101#include <asm/processor.h>
1da177e4 102
d9344522
AK
103/*
104 * Architectures that support memory tagging (assigning tags to memory regions,
105 * embedding these tags into addresses that point to these memory regions, and
106 * checking that the memory and the pointer tags match on memory accesses)
107 * redefine this macro to strip tags from pointers.
108 * It's defined as noop for arcitectures that don't support memory tagging.
109 */
110#ifndef untagged_addr
111#define untagged_addr(addr) (addr)
112#endif
113
79442ed1
TC
114#ifndef __pa_symbol
115#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
116#endif
117
1dff8083
AB
118#ifndef page_to_virt
119#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
120#endif
121
568c5fe5
LA
122#ifndef lm_alias
123#define lm_alias(x) __va(__pa_symbol(x))
124#endif
125
593befa6
DD
126/*
127 * To prevent common memory management code establishing
128 * a zero page mapping on a read fault.
129 * This macro should be defined within <asm/pgtable.h>.
130 * s390 does this to prevent multiplexing of hardware bits
131 * related to the physical page in case of virtualization.
132 */
133#ifndef mm_forbids_zeropage
134#define mm_forbids_zeropage(X) (0)
135#endif
136
a4a3ede2
PT
137/*
138 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
139 * If an architecture decides to implement their own version of
140 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
141 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 142 */
5470dea4
AD
143#if BITS_PER_LONG == 64
144/* This function must be updated when the size of struct page grows above 80
145 * or reduces below 56. The idea that compiler optimizes out switch()
146 * statement, and only leaves move/store instructions. Also the compiler can
147 * combine write statments if they are both assignments and can be reordered,
148 * this can result in several of the writes here being dropped.
149 */
150#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
151static inline void __mm_zero_struct_page(struct page *page)
152{
153 unsigned long *_pp = (void *)page;
154
155 /* Check that struct page is either 56, 64, 72, or 80 bytes */
156 BUILD_BUG_ON(sizeof(struct page) & 7);
157 BUILD_BUG_ON(sizeof(struct page) < 56);
158 BUILD_BUG_ON(sizeof(struct page) > 80);
159
160 switch (sizeof(struct page)) {
161 case 80:
df561f66
GS
162 _pp[9] = 0;
163 fallthrough;
5470dea4 164 case 72:
df561f66
GS
165 _pp[8] = 0;
166 fallthrough;
5470dea4 167 case 64:
df561f66
GS
168 _pp[7] = 0;
169 fallthrough;
5470dea4
AD
170 case 56:
171 _pp[6] = 0;
172 _pp[5] = 0;
173 _pp[4] = 0;
174 _pp[3] = 0;
175 _pp[2] = 0;
176 _pp[1] = 0;
177 _pp[0] = 0;
178 }
179}
180#else
a4a3ede2
PT
181#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
182#endif
183
ea606cf5
AR
184/*
185 * Default maximum number of active map areas, this limits the number of vmas
186 * per mm struct. Users can overwrite this number by sysctl but there is a
187 * problem.
188 *
189 * When a program's coredump is generated as ELF format, a section is created
190 * per a vma. In ELF, the number of sections is represented in unsigned short.
191 * This means the number of sections should be smaller than 65535 at coredump.
192 * Because the kernel adds some informative sections to a image of program at
193 * generating coredump, we need some margin. The number of extra sections is
194 * 1-3 now and depends on arch. We use "5" as safe margin, here.
195 *
196 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
197 * not a hard limit any more. Although some userspace tools can be surprised by
198 * that.
199 */
200#define MAPCOUNT_ELF_CORE_MARGIN (5)
201#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
202
203extern int sysctl_max_map_count;
204
c9b1d098 205extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 206extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 207
49f0ce5f
JM
208extern int sysctl_overcommit_memory;
209extern int sysctl_overcommit_ratio;
210extern unsigned long sysctl_overcommit_kbytes;
211
32927393
CH
212int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
213 loff_t *);
214int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
215 loff_t *);
56f3547b
FT
216int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
217 loff_t *);
49f0ce5f 218
1da177e4
LT
219#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
220
27ac792c
AR
221/* to align the pointer to the (next) page boundary */
222#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223
0fa73b86 224/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 225#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 226
f86196ea
NB
227#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
228
1da177e4
LT
229/*
230 * Linux kernel virtual memory manager primitives.
231 * The idea being to have a "virtual" mm in the same way
232 * we have a virtual fs - giving a cleaner interface to the
233 * mm details, and allowing different kinds of memory mappings
234 * (from shared memory to executable loading to arbitrary
235 * mmap() functions).
236 */
237
490fc053 238struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
239struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
240void vm_area_free(struct vm_area_struct *);
c43692e8 241
1da177e4 242#ifndef CONFIG_MMU
8feae131
DH
243extern struct rb_root nommu_region_tree;
244extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
245
246extern unsigned int kobjsize(const void *objp);
247#endif
248
249/*
605d9288 250 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 251 * When changing, update also include/trace/events/mmflags.h
1da177e4 252 */
cc2383ec
KK
253#define VM_NONE 0x00000000
254
1da177e4
LT
255#define VM_READ 0x00000001 /* currently active flags */
256#define VM_WRITE 0x00000002
257#define VM_EXEC 0x00000004
258#define VM_SHARED 0x00000008
259
7e2cff42 260/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
261#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
262#define VM_MAYWRITE 0x00000020
263#define VM_MAYEXEC 0x00000040
264#define VM_MAYSHARE 0x00000080
265
266#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 267#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 268#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 269#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 270#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 271
1da177e4
LT
272#define VM_LOCKED 0x00002000
273#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
274
275 /* Used by sys_madvise() */
276#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
277#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
278
279#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
280#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 281#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 282#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 283#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 284#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 285#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 286#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 287#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 288#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 289
d9104d1c
CG
290#ifdef CONFIG_MEM_SOFT_DIRTY
291# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
292#else
293# define VM_SOFTDIRTY 0
294#endif
295
b379d790 296#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
297#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
298#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 299#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 300
63c17fb8
DH
301#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
302#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
303#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
304#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
305#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 306#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
307#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
308#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
309#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
310#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 311#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
312#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
313
5212213a 314#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
315# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
316# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 317# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
318# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
319# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
320#ifdef CONFIG_PPC
321# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
322#else
323# define VM_PKEY_BIT4 0
8f62c883 324#endif
5212213a
RP
325#endif /* CONFIG_ARCH_HAS_PKEYS */
326
327#if defined(CONFIG_X86)
328# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
329#elif defined(CONFIG_PPC)
330# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
331#elif defined(CONFIG_PARISC)
332# define VM_GROWSUP VM_ARCH_1
333#elif defined(CONFIG_IA64)
334# define VM_GROWSUP VM_ARCH_1
74a04967
KA
335#elif defined(CONFIG_SPARC64)
336# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
337# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
338#elif defined(CONFIG_ARM64)
339# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
340# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
341#elif !defined(CONFIG_MMU)
342# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
343#endif
344
9f341931
CM
345#if defined(CONFIG_ARM64_MTE)
346# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
347# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
348#else
349# define VM_MTE VM_NONE
350# define VM_MTE_ALLOWED VM_NONE
351#endif
352
cc2383ec
KK
353#ifndef VM_GROWSUP
354# define VM_GROWSUP VM_NONE
355#endif
356
a8bef8ff
MG
357/* Bits set in the VMA until the stack is in its final location */
358#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
359
c62da0c3
AK
360#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
361
362/* Common data flag combinations */
363#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
364 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
365#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
366 VM_MAYWRITE | VM_MAYEXEC)
367#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
368 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
369
370#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
371#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
372#endif
373
1da177e4
LT
374#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
375#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
376#endif
377
378#ifdef CONFIG_STACK_GROWSUP
30bdbb78 379#define VM_STACK VM_GROWSUP
1da177e4 380#else
30bdbb78 381#define VM_STACK VM_GROWSDOWN
1da177e4
LT
382#endif
383
30bdbb78
KK
384#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
385
6cb4d9a2
AK
386/* VMA basic access permission flags */
387#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
388
389
b291f000 390/*
78f11a25 391 * Special vmas that are non-mergable, non-mlock()able.
b291f000 392 */
9050d7eb 393#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 394
b4443772
AK
395/* This mask prevents VMA from being scanned with khugepaged */
396#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
397
a0715cc2
AT
398/* This mask defines which mm->def_flags a process can inherit its parent */
399#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
400
de60f5f1
EM
401/* This mask is used to clear all the VMA flags used by mlock */
402#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
403
2c2d57b5
KA
404/* Arch-specific flags to clear when updating VM flags on protection change */
405#ifndef VM_ARCH_CLEAR
406# define VM_ARCH_CLEAR VM_NONE
407#endif
408#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
409
1da177e4
LT
410/*
411 * mapping from the currently active vm_flags protection bits (the
412 * low four bits) to a page protection mask..
413 */
414extern pgprot_t protection_map[16];
415
c270a7ee
PX
416/**
417 * Fault flag definitions.
418 *
419 * @FAULT_FLAG_WRITE: Fault was a write fault.
420 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
421 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
c1e8d7c6 422 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
c270a7ee
PX
423 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
424 * @FAULT_FLAG_TRIED: The fault has been tried once.
425 * @FAULT_FLAG_USER: The fault originated in userspace.
426 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
427 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
428 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
429 *
430 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
431 * whether we would allow page faults to retry by specifying these two
432 * fault flags correctly. Currently there can be three legal combinations:
433 *
434 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
435 * this is the first try
436 *
437 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
438 * we've already tried at least once
439 *
440 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
441 *
442 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
443 * be used. Note that page faults can be allowed to retry for multiple times,
444 * in which case we'll have an initial fault with flags (a) then later on
445 * continuous faults with flags (b). We should always try to detect pending
446 * signals before a retry to make sure the continuous page faults can still be
447 * interrupted if necessary.
c270a7ee
PX
448 */
449#define FAULT_FLAG_WRITE 0x01
450#define FAULT_FLAG_MKWRITE 0x02
451#define FAULT_FLAG_ALLOW_RETRY 0x04
452#define FAULT_FLAG_RETRY_NOWAIT 0x08
453#define FAULT_FLAG_KILLABLE 0x10
454#define FAULT_FLAG_TRIED 0x20
455#define FAULT_FLAG_USER 0x40
456#define FAULT_FLAG_REMOTE 0x80
457#define FAULT_FLAG_INSTRUCTION 0x100
458#define FAULT_FLAG_INTERRUPTIBLE 0x200
d0217ac0 459
dde16072
PX
460/*
461 * The default fault flags that should be used by most of the
462 * arch-specific page fault handlers.
463 */
464#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
465 FAULT_FLAG_KILLABLE | \
466 FAULT_FLAG_INTERRUPTIBLE)
dde16072 467
4064b982
PX
468/**
469 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
470 *
471 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 472 * the mmap_lock for too long a time when waiting for another condition
4064b982 473 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
474 * mmap_lock in the first round to avoid potential starvation of other
475 * processes that would also want the mmap_lock.
4064b982
PX
476 *
477 * Return: true if the page fault allows retry and this is the first
478 * attempt of the fault handling; false otherwise.
479 */
480static inline bool fault_flag_allow_retry_first(unsigned int flags)
481{
482 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
483 (!(flags & FAULT_FLAG_TRIED));
484}
485
282a8e03
RZ
486#define FAULT_FLAG_TRACE \
487 { FAULT_FLAG_WRITE, "WRITE" }, \
488 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
489 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
490 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
491 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
492 { FAULT_FLAG_TRIED, "TRIED" }, \
493 { FAULT_FLAG_USER, "USER" }, \
494 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
495 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
496 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 497
54cb8821 498/*
11192337 499 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
500 * ->fault function. The vma's ->fault is responsible for returning a bitmask
501 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 502 *
c20cd45e
MH
503 * MM layer fills up gfp_mask for page allocations but fault handler might
504 * alter it if its implementation requires a different allocation context.
505 *
9b4bdd2f 506 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 507 */
d0217ac0 508struct vm_fault {
82b0f8c3 509 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 510 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 511 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 512 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 513 unsigned long address; /* Faulting virtual address */
82b0f8c3 514 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 515 * the 'address' */
a2d58167
DJ
516 pud_t *pud; /* Pointer to pud entry matching
517 * the 'address'
518 */
2994302b 519 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 520
3917048d 521 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 522 struct page *page; /* ->fault handlers should return a
83c54070 523 * page here, unless VM_FAULT_NOPAGE
d0217ac0 524 * is set (which is also implied by
83c54070 525 * VM_FAULT_ERROR).
d0217ac0 526 */
82b0f8c3 527 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
528 pte_t *pte; /* Pointer to pte entry matching
529 * the 'address'. NULL if the page
530 * table hasn't been allocated.
531 */
532 spinlock_t *ptl; /* Page table lock.
533 * Protects pte page table if 'pte'
534 * is not NULL, otherwise pmd.
535 */
7267ec00
KS
536 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
537 * vm_ops->map_pages() calls
538 * alloc_set_pte() from atomic context.
539 * do_fault_around() pre-allocates
540 * page table to avoid allocation from
541 * atomic context.
542 */
54cb8821 543};
1da177e4 544
c791ace1
DJ
545/* page entry size for vm->huge_fault() */
546enum page_entry_size {
547 PE_SIZE_PTE = 0,
548 PE_SIZE_PMD,
549 PE_SIZE_PUD,
550};
551
1da177e4
LT
552/*
553 * These are the virtual MM functions - opening of an area, closing and
554 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 555 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
556 */
557struct vm_operations_struct {
558 void (*open)(struct vm_area_struct * area);
559 void (*close)(struct vm_area_struct * area);
31383c68 560 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 561 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
562 vm_fault_t (*fault)(struct vm_fault *vmf);
563 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
564 enum page_entry_size pe_size);
82b0f8c3 565 void (*map_pages)(struct vm_fault *vmf,
bae473a4 566 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 567 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
568
569 /* notification that a previously read-only page is about to become
570 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 571 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 572
dd906184 573 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 574 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 575
28b2ee20
RR
576 /* called by access_process_vm when get_user_pages() fails, typically
577 * for use by special VMAs that can switch between memory and hardware
578 */
579 int (*access)(struct vm_area_struct *vma, unsigned long addr,
580 void *buf, int len, int write);
78d683e8
AL
581
582 /* Called by the /proc/PID/maps code to ask the vma whether it
583 * has a special name. Returning non-NULL will also cause this
584 * vma to be dumped unconditionally. */
585 const char *(*name)(struct vm_area_struct *vma);
586
1da177e4 587#ifdef CONFIG_NUMA
a6020ed7
LS
588 /*
589 * set_policy() op must add a reference to any non-NULL @new mempolicy
590 * to hold the policy upon return. Caller should pass NULL @new to
591 * remove a policy and fall back to surrounding context--i.e. do not
592 * install a MPOL_DEFAULT policy, nor the task or system default
593 * mempolicy.
594 */
1da177e4 595 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
596
597 /*
598 * get_policy() op must add reference [mpol_get()] to any policy at
599 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
600 * in mm/mempolicy.c will do this automatically.
601 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 602 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
603 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
604 * must return NULL--i.e., do not "fallback" to task or system default
605 * policy.
606 */
1da177e4
LT
607 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
608 unsigned long addr);
609#endif
667a0a06
DV
610 /*
611 * Called by vm_normal_page() for special PTEs to find the
612 * page for @addr. This is useful if the default behavior
613 * (using pte_page()) would not find the correct page.
614 */
615 struct page *(*find_special_page)(struct vm_area_struct *vma,
616 unsigned long addr);
1da177e4
LT
617};
618
027232da
KS
619static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
620{
bfd40eaf
KS
621 static const struct vm_operations_struct dummy_vm_ops = {};
622
a670468f 623 memset(vma, 0, sizeof(*vma));
027232da 624 vma->vm_mm = mm;
bfd40eaf 625 vma->vm_ops = &dummy_vm_ops;
027232da
KS
626 INIT_LIST_HEAD(&vma->anon_vma_chain);
627}
628
bfd40eaf
KS
629static inline void vma_set_anonymous(struct vm_area_struct *vma)
630{
631 vma->vm_ops = NULL;
632}
633
43675e6f
YS
634static inline bool vma_is_anonymous(struct vm_area_struct *vma)
635{
636 return !vma->vm_ops;
637}
638
222100ee
AK
639static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
640{
641 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
642
643 if (!maybe_stack)
644 return false;
645
646 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
647 VM_STACK_INCOMPLETE_SETUP)
648 return true;
649
650 return false;
651}
652
7969f226
AK
653static inline bool vma_is_foreign(struct vm_area_struct *vma)
654{
655 if (!current->mm)
656 return true;
657
658 if (current->mm != vma->vm_mm)
659 return true;
660
661 return false;
662}
3122e80e
AK
663
664static inline bool vma_is_accessible(struct vm_area_struct *vma)
665{
6cb4d9a2 666 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
667}
668
43675e6f
YS
669#ifdef CONFIG_SHMEM
670/*
671 * The vma_is_shmem is not inline because it is used only by slow
672 * paths in userfault.
673 */
674bool vma_is_shmem(struct vm_area_struct *vma);
675#else
676static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
677#endif
678
679int vma_is_stack_for_current(struct vm_area_struct *vma);
680
8b11ec1b
LT
681/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
682#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
683
1da177e4
LT
684struct mmu_gather;
685struct inode;
686
71e3aac0 687#include <linux/huge_mm.h>
1da177e4
LT
688
689/*
690 * Methods to modify the page usage count.
691 *
692 * What counts for a page usage:
693 * - cache mapping (page->mapping)
694 * - private data (page->private)
695 * - page mapped in a task's page tables, each mapping
696 * is counted separately
697 *
698 * Also, many kernel routines increase the page count before a critical
699 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
700 */
701
702/*
da6052f7 703 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 704 */
7c8ee9a8
NP
705static inline int put_page_testzero(struct page *page)
706{
fe896d18
JK
707 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
708 return page_ref_dec_and_test(page);
7c8ee9a8 709}
1da177e4
LT
710
711/*
7c8ee9a8
NP
712 * Try to grab a ref unless the page has a refcount of zero, return false if
713 * that is the case.
8e0861fa
AK
714 * This can be called when MMU is off so it must not access
715 * any of the virtual mappings.
1da177e4 716 */
7c8ee9a8
NP
717static inline int get_page_unless_zero(struct page *page)
718{
fe896d18 719 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 720}
1da177e4 721
53df8fdc 722extern int page_is_ram(unsigned long pfn);
124fe20d
DW
723
724enum {
725 REGION_INTERSECTS,
726 REGION_DISJOINT,
727 REGION_MIXED,
728};
729
1c29f25b
TK
730int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
731 unsigned long desc);
53df8fdc 732
48667e7a 733/* Support for virtually mapped pages */
b3bdda02
CL
734struct page *vmalloc_to_page(const void *addr);
735unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 736
0738c4bb
PM
737/*
738 * Determine if an address is within the vmalloc range
739 *
740 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
741 * is no special casing required.
742 */
9bd3bb67
AK
743
744#ifndef is_ioremap_addr
745#define is_ioremap_addr(x) is_vmalloc_addr(x)
746#endif
747
81ac3ad9 748#ifdef CONFIG_MMU
186525bd 749extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
750extern int is_vmalloc_or_module_addr(const void *x);
751#else
186525bd
IM
752static inline bool is_vmalloc_addr(const void *x)
753{
754 return false;
755}
934831d0 756static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
757{
758 return 0;
759}
760#endif
9e2779fa 761
a7c3e901
MH
762extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
763static inline void *kvmalloc(size_t size, gfp_t flags)
764{
765 return kvmalloc_node(size, flags, NUMA_NO_NODE);
766}
767static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
768{
769 return kvmalloc_node(size, flags | __GFP_ZERO, node);
770}
771static inline void *kvzalloc(size_t size, gfp_t flags)
772{
773 return kvmalloc(size, flags | __GFP_ZERO);
774}
775
752ade68
MH
776static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
777{
3b3b1a29
KC
778 size_t bytes;
779
780 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
781 return NULL;
782
3b3b1a29 783 return kvmalloc(bytes, flags);
752ade68
MH
784}
785
1c542f38
KC
786static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
787{
788 return kvmalloc_array(n, size, flags | __GFP_ZERO);
789}
790
39f1f78d 791extern void kvfree(const void *addr);
d4eaa283 792extern void kvfree_sensitive(const void *addr, size_t len);
39f1f78d 793
bac3cf4d 794static inline int head_compound_mapcount(struct page *head)
6dc5ea16
JH
795{
796 return atomic_read(compound_mapcount_ptr(head)) + 1;
797}
798
6988f31d
KK
799/*
800 * Mapcount of compound page as a whole, does not include mapped sub-pages.
801 *
802 * Must be called only for compound pages or any their tail sub-pages.
803 */
53f9263b
KS
804static inline int compound_mapcount(struct page *page)
805{
5f527c2b 806 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 807 page = compound_head(page);
bac3cf4d 808 return head_compound_mapcount(page);
53f9263b
KS
809}
810
70b50f94
AA
811/*
812 * The atomic page->_mapcount, starts from -1: so that transitions
813 * both from it and to it can be tracked, using atomic_inc_and_test
814 * and atomic_add_negative(-1).
815 */
22b751c3 816static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
817{
818 atomic_set(&(page)->_mapcount, -1);
819}
820
b20ce5e0
KS
821int __page_mapcount(struct page *page);
822
6988f31d
KK
823/*
824 * Mapcount of 0-order page; when compound sub-page, includes
825 * compound_mapcount().
826 *
827 * Result is undefined for pages which cannot be mapped into userspace.
828 * For example SLAB or special types of pages. See function page_has_type().
829 * They use this place in struct page differently.
830 */
70b50f94
AA
831static inline int page_mapcount(struct page *page)
832{
b20ce5e0
KS
833 if (unlikely(PageCompound(page)))
834 return __page_mapcount(page);
835 return atomic_read(&page->_mapcount) + 1;
836}
837
838#ifdef CONFIG_TRANSPARENT_HUGEPAGE
839int total_mapcount(struct page *page);
6d0a07ed 840int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
841#else
842static inline int total_mapcount(struct page *page)
843{
844 return page_mapcount(page);
70b50f94 845}
6d0a07ed
AA
846static inline int page_trans_huge_mapcount(struct page *page,
847 int *total_mapcount)
848{
849 int mapcount = page_mapcount(page);
850 if (total_mapcount)
851 *total_mapcount = mapcount;
852 return mapcount;
853}
b20ce5e0 854#endif
70b50f94 855
b49af68f
CL
856static inline struct page *virt_to_head_page(const void *x)
857{
858 struct page *page = virt_to_page(x);
ccaafd7f 859
1d798ca3 860 return compound_head(page);
b49af68f
CL
861}
862
ddc58f27
KS
863void __put_page(struct page *page);
864
1d7ea732 865void put_pages_list(struct list_head *pages);
1da177e4 866
8dfcc9ba 867void split_page(struct page *page, unsigned int order);
8dfcc9ba 868
33f2ef89
AW
869/*
870 * Compound pages have a destructor function. Provide a
871 * prototype for that function and accessor functions.
f1e61557 872 * These are _only_ valid on the head of a compound page.
33f2ef89 873 */
f1e61557
KS
874typedef void compound_page_dtor(struct page *);
875
876/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
877enum compound_dtor_id {
878 NULL_COMPOUND_DTOR,
879 COMPOUND_PAGE_DTOR,
880#ifdef CONFIG_HUGETLB_PAGE
881 HUGETLB_PAGE_DTOR,
9a982250
KS
882#endif
883#ifdef CONFIG_TRANSPARENT_HUGEPAGE
884 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
885#endif
886 NR_COMPOUND_DTORS,
887};
ae70eddd 888extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
889
890static inline void set_compound_page_dtor(struct page *page,
f1e61557 891 enum compound_dtor_id compound_dtor)
33f2ef89 892{
f1e61557
KS
893 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
894 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
895}
896
ff45fc3c 897static inline void destroy_compound_page(struct page *page)
33f2ef89 898{
f1e61557 899 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 900 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
901}
902
d00181b9 903static inline unsigned int compound_order(struct page *page)
d85f3385 904{
6d777953 905 if (!PageHead(page))
d85f3385 906 return 0;
e4b294c2 907 return page[1].compound_order;
d85f3385
CL
908}
909
47e29d32
JH
910static inline bool hpage_pincount_available(struct page *page)
911{
912 /*
913 * Can the page->hpage_pinned_refcount field be used? That field is in
914 * the 3rd page of the compound page, so the smallest (2-page) compound
915 * pages cannot support it.
916 */
917 page = compound_head(page);
918 return PageCompound(page) && compound_order(page) > 1;
919}
920
bac3cf4d 921static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
922{
923 return atomic_read(compound_pincount_ptr(head));
924}
925
47e29d32
JH
926static inline int compound_pincount(struct page *page)
927{
928 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
929 page = compound_head(page);
bac3cf4d 930 return head_compound_pincount(page);
47e29d32
JH
931}
932
f1e61557 933static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 934{
e4b294c2 935 page[1].compound_order = order;
1378a5ee 936 page[1].compound_nr = 1U << order;
d85f3385
CL
937}
938
d8c6546b
MWO
939/* Returns the number of pages in this potentially compound page. */
940static inline unsigned long compound_nr(struct page *page)
941{
1378a5ee
MWO
942 if (!PageHead(page))
943 return 1;
944 return page[1].compound_nr;
d8c6546b
MWO
945}
946
a50b854e
MWO
947/* Returns the number of bytes in this potentially compound page. */
948static inline unsigned long page_size(struct page *page)
949{
950 return PAGE_SIZE << compound_order(page);
951}
952
94ad9338
MWO
953/* Returns the number of bits needed for the number of bytes in a page */
954static inline unsigned int page_shift(struct page *page)
955{
956 return PAGE_SHIFT + compound_order(page);
957}
958
9a982250
KS
959void free_compound_page(struct page *page);
960
3dece370 961#ifdef CONFIG_MMU
14fd403f
AA
962/*
963 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
964 * servicing faults for write access. In the normal case, do always want
965 * pte_mkwrite. But get_user_pages can cause write faults for mappings
966 * that do not have writing enabled, when used by access_process_vm.
967 */
968static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
969{
970 if (likely(vma->vm_flags & VM_WRITE))
971 pte = pte_mkwrite(pte);
972 return pte;
973}
8c6e50b0 974
9d82c694 975vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
2b740303
SJ
976vm_fault_t finish_fault(struct vm_fault *vmf);
977vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 978#endif
14fd403f 979
1da177e4
LT
980/*
981 * Multiple processes may "see" the same page. E.g. for untouched
982 * mappings of /dev/null, all processes see the same page full of
983 * zeroes, and text pages of executables and shared libraries have
984 * only one copy in memory, at most, normally.
985 *
986 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
987 * page_count() == 0 means the page is free. page->lru is then used for
988 * freelist management in the buddy allocator.
da6052f7 989 * page_count() > 0 means the page has been allocated.
1da177e4 990 *
da6052f7
NP
991 * Pages are allocated by the slab allocator in order to provide memory
992 * to kmalloc and kmem_cache_alloc. In this case, the management of the
993 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
994 * unless a particular usage is carefully commented. (the responsibility of
995 * freeing the kmalloc memory is the caller's, of course).
1da177e4 996 *
da6052f7
NP
997 * A page may be used by anyone else who does a __get_free_page().
998 * In this case, page_count still tracks the references, and should only
999 * be used through the normal accessor functions. The top bits of page->flags
1000 * and page->virtual store page management information, but all other fields
1001 * are unused and could be used privately, carefully. The management of this
1002 * page is the responsibility of the one who allocated it, and those who have
1003 * subsequently been given references to it.
1004 *
1005 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1006 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1007 * The following discussion applies only to them.
1008 *
da6052f7
NP
1009 * A pagecache page contains an opaque `private' member, which belongs to the
1010 * page's address_space. Usually, this is the address of a circular list of
1011 * the page's disk buffers. PG_private must be set to tell the VM to call
1012 * into the filesystem to release these pages.
1da177e4 1013 *
da6052f7
NP
1014 * A page may belong to an inode's memory mapping. In this case, page->mapping
1015 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1016 * in units of PAGE_SIZE.
1da177e4 1017 *
da6052f7
NP
1018 * If pagecache pages are not associated with an inode, they are said to be
1019 * anonymous pages. These may become associated with the swapcache, and in that
1020 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1021 *
da6052f7
NP
1022 * In either case (swapcache or inode backed), the pagecache itself holds one
1023 * reference to the page. Setting PG_private should also increment the
1024 * refcount. The each user mapping also has a reference to the page.
1da177e4 1025 *
da6052f7 1026 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1027 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1028 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1029 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1030 *
da6052f7 1031 * All pagecache pages may be subject to I/O:
1da177e4
LT
1032 * - inode pages may need to be read from disk,
1033 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1034 * to be written back to the inode on disk,
1035 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1036 * modified may need to be swapped out to swap space and (later) to be read
1037 * back into memory.
1da177e4
LT
1038 */
1039
1040/*
1041 * The zone field is never updated after free_area_init_core()
1042 * sets it, so none of the operations on it need to be atomic.
1da177e4 1043 */
348f8b6c 1044
90572890 1045/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1046#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1047#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1048#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1049#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1050#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1051
348f8b6c 1052/*
25985edc 1053 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1054 * sections we define the shift as 0; that plus a 0 mask ensures
1055 * the compiler will optimise away reference to them.
1056 */
d41dee36
AW
1057#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1058#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1059#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1060#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1061#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1062
bce54bbf
WD
1063/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1064#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1065#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1066#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1067 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1068#else
89689ae7 1069#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1070#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1071 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1072#endif
1073
bd8029b6 1074#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1075
d41dee36
AW
1076#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1077#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1078#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1079#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1080#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1081#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1082
33dd4e0e 1083static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1084{
c403f6a3 1085 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1086 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1087}
1da177e4 1088
260ae3f7
DW
1089#ifdef CONFIG_ZONE_DEVICE
1090static inline bool is_zone_device_page(const struct page *page)
1091{
1092 return page_zonenum(page) == ZONE_DEVICE;
1093}
966cf44f
AD
1094extern void memmap_init_zone_device(struct zone *, unsigned long,
1095 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1096#else
1097static inline bool is_zone_device_page(const struct page *page)
1098{
1099 return false;
1100}
7b2d55d2 1101#endif
5042db43 1102
e7638488 1103#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1104void free_devmap_managed_page(struct page *page);
e7638488 1105DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1106
1107static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1108{
1109 if (!static_branch_unlikely(&devmap_managed_key))
1110 return false;
1111 if (!is_zone_device_page(page))
1112 return false;
1113 switch (page->pgmap->type) {
1114 case MEMORY_DEVICE_PRIVATE:
e7638488 1115 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1116 return true;
1117 default:
1118 break;
1119 }
1120 return false;
1121}
1122
07d80269
JH
1123void put_devmap_managed_page(struct page *page);
1124
e7638488 1125#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1126static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1127{
1128 return false;
1129}
07d80269
JH
1130
1131static inline void put_devmap_managed_page(struct page *page)
1132{
1133}
7588adf8 1134#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1135
6b368cd4
JG
1136static inline bool is_device_private_page(const struct page *page)
1137{
7588adf8
RM
1138 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1139 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1140 is_zone_device_page(page) &&
1141 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1142}
e7638488 1143
52916982
LG
1144static inline bool is_pci_p2pdma_page(const struct page *page)
1145{
7588adf8
RM
1146 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1147 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1148 is_zone_device_page(page) &&
1149 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1150}
7b2d55d2 1151
f958d7b5
LT
1152/* 127: arbitrary random number, small enough to assemble well */
1153#define page_ref_zero_or_close_to_overflow(page) \
1154 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1155
3565fce3
DW
1156static inline void get_page(struct page *page)
1157{
1158 page = compound_head(page);
1159 /*
1160 * Getting a normal page or the head of a compound page
0139aa7b 1161 * requires to already have an elevated page->_refcount.
3565fce3 1162 */
f958d7b5 1163 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1164 page_ref_inc(page);
3565fce3
DW
1165}
1166
3faa52c0
JH
1167bool __must_check try_grab_page(struct page *page, unsigned int flags);
1168
88b1a17d
LT
1169static inline __must_check bool try_get_page(struct page *page)
1170{
1171 page = compound_head(page);
1172 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1173 return false;
fe896d18 1174 page_ref_inc(page);
88b1a17d 1175 return true;
3565fce3
DW
1176}
1177
1178static inline void put_page(struct page *page)
1179{
1180 page = compound_head(page);
1181
7b2d55d2 1182 /*
e7638488
DW
1183 * For devmap managed pages we need to catch refcount transition from
1184 * 2 to 1, when refcount reach one it means the page is free and we
1185 * need to inform the device driver through callback. See
7b2d55d2
JG
1186 * include/linux/memremap.h and HMM for details.
1187 */
07d80269
JH
1188 if (page_is_devmap_managed(page)) {
1189 put_devmap_managed_page(page);
7b2d55d2 1190 return;
07d80269 1191 }
7b2d55d2 1192
3565fce3
DW
1193 if (put_page_testzero(page))
1194 __put_page(page);
3565fce3
DW
1195}
1196
3faa52c0
JH
1197/*
1198 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1199 * the page's refcount so that two separate items are tracked: the original page
1200 * reference count, and also a new count of how many pin_user_pages() calls were
1201 * made against the page. ("gup-pinned" is another term for the latter).
1202 *
1203 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1204 * distinct from normal pages. As such, the unpin_user_page() call (and its
1205 * variants) must be used in order to release gup-pinned pages.
1206 *
1207 * Choice of value:
1208 *
1209 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1210 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1211 * simpler, due to the fact that adding an even power of two to the page
1212 * refcount has the effect of using only the upper N bits, for the code that
1213 * counts up using the bias value. This means that the lower bits are left for
1214 * the exclusive use of the original code that increments and decrements by one
1215 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1216 *
3faa52c0
JH
1217 * Of course, once the lower bits overflow into the upper bits (and this is
1218 * OK, because subtraction recovers the original values), then visual inspection
1219 * no longer suffices to directly view the separate counts. However, for normal
1220 * applications that don't have huge page reference counts, this won't be an
1221 * issue.
fc1d8e7c 1222 *
3faa52c0
JH
1223 * Locking: the lockless algorithm described in page_cache_get_speculative()
1224 * and page_cache_gup_pin_speculative() provides safe operation for
1225 * get_user_pages and page_mkclean and other calls that race to set up page
1226 * table entries.
fc1d8e7c 1227 */
3faa52c0 1228#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1229
3faa52c0 1230void unpin_user_page(struct page *page);
f1f6a7dd
JH
1231void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1232 bool make_dirty);
f1f6a7dd 1233void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1234
3faa52c0
JH
1235/**
1236 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1237 *
1238 * This function checks if a page has been pinned via a call to
1239 * pin_user_pages*().
1240 *
1241 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1242 * because it means "definitely not pinned for DMA", but true means "probably
1243 * pinned for DMA, but possibly a false positive due to having at least
1244 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1245 *
1246 * False positives are OK, because: a) it's unlikely for a page to get that many
1247 * refcounts, and b) all the callers of this routine are expected to be able to
1248 * deal gracefully with a false positive.
1249 *
47e29d32
JH
1250 * For huge pages, the result will be exactly correct. That's because we have
1251 * more tracking data available: the 3rd struct page in the compound page is
1252 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1253 * scheme).
1254 *
72ef5e52 1255 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0
JH
1256 *
1257 * @page: pointer to page to be queried.
1258 * @Return: True, if it is likely that the page has been "dma-pinned".
1259 * False, if the page is definitely not dma-pinned.
1260 */
1261static inline bool page_maybe_dma_pinned(struct page *page)
1262{
47e29d32
JH
1263 if (hpage_pincount_available(page))
1264 return compound_pincount(page) > 0;
1265
3faa52c0
JH
1266 /*
1267 * page_ref_count() is signed. If that refcount overflows, then
1268 * page_ref_count() returns a negative value, and callers will avoid
1269 * further incrementing the refcount.
1270 *
1271 * Here, for that overflow case, use the signed bit to count a little
1272 * bit higher via unsigned math, and thus still get an accurate result.
1273 */
1274 return ((unsigned int)page_ref_count(compound_head(page))) >=
1275 GUP_PIN_COUNTING_BIAS;
1276}
1277
9127ab4f
CS
1278#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1279#define SECTION_IN_PAGE_FLAGS
1280#endif
1281
89689ae7 1282/*
7a8010cd
VB
1283 * The identification function is mainly used by the buddy allocator for
1284 * determining if two pages could be buddies. We are not really identifying
1285 * the zone since we could be using the section number id if we do not have
1286 * node id available in page flags.
1287 * We only guarantee that it will return the same value for two combinable
1288 * pages in a zone.
89689ae7 1289 */
cb2b95e1
AW
1290static inline int page_zone_id(struct page *page)
1291{
89689ae7 1292 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1293}
1294
89689ae7 1295#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1296extern int page_to_nid(const struct page *page);
89689ae7 1297#else
33dd4e0e 1298static inline int page_to_nid(const struct page *page)
d41dee36 1299{
f165b378
PT
1300 struct page *p = (struct page *)page;
1301
1302 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1303}
89689ae7
CL
1304#endif
1305
57e0a030 1306#ifdef CONFIG_NUMA_BALANCING
90572890 1307static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1308{
90572890 1309 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1310}
1311
90572890 1312static inline int cpupid_to_pid(int cpupid)
57e0a030 1313{
90572890 1314 return cpupid & LAST__PID_MASK;
57e0a030 1315}
b795854b 1316
90572890 1317static inline int cpupid_to_cpu(int cpupid)
b795854b 1318{
90572890 1319 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1320}
1321
90572890 1322static inline int cpupid_to_nid(int cpupid)
b795854b 1323{
90572890 1324 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1325}
1326
90572890 1327static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1328{
90572890 1329 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1330}
1331
90572890 1332static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1333{
90572890 1334 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1335}
1336
8c8a743c
PZ
1337static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1338{
1339 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1340}
1341
1342#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1343#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1344static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1345{
1ae71d03 1346 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1347}
90572890
PZ
1348
1349static inline int page_cpupid_last(struct page *page)
1350{
1351 return page->_last_cpupid;
1352}
1353static inline void page_cpupid_reset_last(struct page *page)
b795854b 1354{
1ae71d03 1355 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1356}
1357#else
90572890 1358static inline int page_cpupid_last(struct page *page)
75980e97 1359{
90572890 1360 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1361}
1362
90572890 1363extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1364
90572890 1365static inline void page_cpupid_reset_last(struct page *page)
75980e97 1366{
09940a4f 1367 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1368}
90572890
PZ
1369#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1370#else /* !CONFIG_NUMA_BALANCING */
1371static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1372{
90572890 1373 return page_to_nid(page); /* XXX */
57e0a030
MG
1374}
1375
90572890 1376static inline int page_cpupid_last(struct page *page)
57e0a030 1377{
90572890 1378 return page_to_nid(page); /* XXX */
57e0a030
MG
1379}
1380
90572890 1381static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1382{
1383 return -1;
1384}
1385
90572890 1386static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1387{
1388 return -1;
1389}
1390
90572890 1391static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1392{
1393 return -1;
1394}
1395
90572890
PZ
1396static inline int cpu_pid_to_cpupid(int nid, int pid)
1397{
1398 return -1;
1399}
1400
1401static inline bool cpupid_pid_unset(int cpupid)
b795854b 1402{
2b787449 1403 return true;
b795854b
MG
1404}
1405
90572890 1406static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1407{
1408}
8c8a743c
PZ
1409
1410static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1411{
1412 return false;
1413}
90572890 1414#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1415
2813b9c0
AK
1416#ifdef CONFIG_KASAN_SW_TAGS
1417static inline u8 page_kasan_tag(const struct page *page)
1418{
1419 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1420}
1421
1422static inline void page_kasan_tag_set(struct page *page, u8 tag)
1423{
1424 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1425 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1426}
1427
1428static inline void page_kasan_tag_reset(struct page *page)
1429{
1430 page_kasan_tag_set(page, 0xff);
1431}
1432#else
1433static inline u8 page_kasan_tag(const struct page *page)
1434{
1435 return 0xff;
1436}
1437
1438static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1439static inline void page_kasan_tag_reset(struct page *page) { }
1440#endif
1441
33dd4e0e 1442static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1443{
1444 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1445}
1446
75ef7184
MG
1447static inline pg_data_t *page_pgdat(const struct page *page)
1448{
1449 return NODE_DATA(page_to_nid(page));
1450}
1451
9127ab4f 1452#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1453static inline void set_page_section(struct page *page, unsigned long section)
1454{
1455 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1456 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1457}
1458
aa462abe 1459static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1460{
1461 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1462}
308c05e3 1463#endif
d41dee36 1464
2f1b6248 1465static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1466{
1467 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1468 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1469}
2f1b6248 1470
348f8b6c
DH
1471static inline void set_page_node(struct page *page, unsigned long node)
1472{
1473 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1474 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1475}
89689ae7 1476
2f1b6248 1477static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1478 unsigned long node, unsigned long pfn)
1da177e4 1479{
348f8b6c
DH
1480 set_page_zone(page, zone);
1481 set_page_node(page, node);
9127ab4f 1482#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1483 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1484#endif
1da177e4
LT
1485}
1486
0610c25d
GT
1487#ifdef CONFIG_MEMCG
1488static inline struct mem_cgroup *page_memcg(struct page *page)
1489{
1490 return page->mem_cgroup;
1491}
55779ec7
JW
1492static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1493{
1494 WARN_ON_ONCE(!rcu_read_lock_held());
1495 return READ_ONCE(page->mem_cgroup);
1496}
0610c25d
GT
1497#else
1498static inline struct mem_cgroup *page_memcg(struct page *page)
1499{
1500 return NULL;
1501}
55779ec7
JW
1502static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1503{
1504 WARN_ON_ONCE(!rcu_read_lock_held());
1505 return NULL;
1506}
0610c25d
GT
1507#endif
1508
f6ac2354
CL
1509/*
1510 * Some inline functions in vmstat.h depend on page_zone()
1511 */
1512#include <linux/vmstat.h>
1513
33dd4e0e 1514static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1515{
1dff8083 1516 return page_to_virt(page);
1da177e4
LT
1517}
1518
1519#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1520#define HASHED_PAGE_VIRTUAL
1521#endif
1522
1523#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1524static inline void *page_address(const struct page *page)
1525{
1526 return page->virtual;
1527}
1528static inline void set_page_address(struct page *page, void *address)
1529{
1530 page->virtual = address;
1531}
1da177e4
LT
1532#define page_address_init() do { } while(0)
1533#endif
1534
1535#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1536void *page_address(const struct page *page);
1da177e4
LT
1537void set_page_address(struct page *page, void *virtual);
1538void page_address_init(void);
1539#endif
1540
1541#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1542#define page_address(page) lowmem_page_address(page)
1543#define set_page_address(page, address) do { } while(0)
1544#define page_address_init() do { } while(0)
1545#endif
1546
e39155ea
KS
1547extern void *page_rmapping(struct page *page);
1548extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1549extern struct address_space *page_mapping(struct page *page);
1da177e4 1550
f981c595
MG
1551extern struct address_space *__page_file_mapping(struct page *);
1552
1553static inline
1554struct address_space *page_file_mapping(struct page *page)
1555{
1556 if (unlikely(PageSwapCache(page)))
1557 return __page_file_mapping(page);
1558
1559 return page->mapping;
1560}
1561
f6ab1f7f
HY
1562extern pgoff_t __page_file_index(struct page *page);
1563
1da177e4
LT
1564/*
1565 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1566 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1567 */
1568static inline pgoff_t page_index(struct page *page)
1569{
1570 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1571 return __page_file_index(page);
1da177e4
LT
1572 return page->index;
1573}
1574
1aa8aea5 1575bool page_mapped(struct page *page);
bda807d4 1576struct address_space *page_mapping(struct page *page);
cb9f753a 1577struct address_space *page_mapping_file(struct page *page);
1da177e4 1578
2f064f34
MH
1579/*
1580 * Return true only if the page has been allocated with
1581 * ALLOC_NO_WATERMARKS and the low watermark was not
1582 * met implying that the system is under some pressure.
1583 */
1584static inline bool page_is_pfmemalloc(struct page *page)
1585{
1586 /*
1587 * Page index cannot be this large so this must be
1588 * a pfmemalloc page.
1589 */
1590 return page->index == -1UL;
1591}
1592
1593/*
1594 * Only to be called by the page allocator on a freshly allocated
1595 * page.
1596 */
1597static inline void set_page_pfmemalloc(struct page *page)
1598{
1599 page->index = -1UL;
1600}
1601
1602static inline void clear_page_pfmemalloc(struct page *page)
1603{
1604 page->index = 0;
1605}
1606
1c0fe6e3
NP
1607/*
1608 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1609 */
1610extern void pagefault_out_of_memory(void);
1611
1da177e4 1612#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1613#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1da177e4 1614
ddd588b5 1615/*
7bf02ea2 1616 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1617 * various contexts.
1618 */
4b59e6c4 1619#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1620
9af744d7 1621extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1622
710ec38b 1623#ifdef CONFIG_MMU
7f43add4 1624extern bool can_do_mlock(void);
710ec38b
AB
1625#else
1626static inline bool can_do_mlock(void) { return false; }
1627#endif
1da177e4
LT
1628extern int user_shm_lock(size_t, struct user_struct *);
1629extern void user_shm_unlock(size_t, struct user_struct *);
1630
1631/*
1632 * Parameter block passed down to zap_pte_range in exceptional cases.
1633 */
1634struct zap_details {
1da177e4
LT
1635 struct address_space *check_mapping; /* Check page->mapping if set */
1636 pgoff_t first_index; /* Lowest page->index to unmap */
1637 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1638};
1639
25b2995a
CH
1640struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1641 pte_t pte);
28093f9f
GS
1642struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1643 pmd_t pmd);
7e675137 1644
27d036e3
LR
1645void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1646 unsigned long size);
14f5ff5d 1647void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1648 unsigned long size);
4f74d2c8
LT
1649void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1650 unsigned long start, unsigned long end);
e6473092 1651
ac46d4f3
JG
1652struct mmu_notifier_range;
1653
42b77728 1654void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1655 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1656int
1657copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
09796395 1658int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
1659 struct mmu_notifier_range *range,
1660 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1661int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1662 unsigned long *pfn);
d87fe660 1663int follow_phys(struct vm_area_struct *vma, unsigned long address,
1664 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1665int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1666 void *buf, int len, int write);
1da177e4 1667
7caef267 1668extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1669extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1670void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1671void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1672int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1673int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1674int invalidate_inode_page(struct page *page);
1675
7ee1dd3f 1676#ifdef CONFIG_MMU
2b740303 1677extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1678 unsigned long address, unsigned int flags,
1679 struct pt_regs *regs);
64019a2e 1680extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1681 unsigned long address, unsigned int fault_flags,
1682 bool *unlocked);
977fbdcd
MW
1683void unmap_mapping_pages(struct address_space *mapping,
1684 pgoff_t start, pgoff_t nr, bool even_cows);
1685void unmap_mapping_range(struct address_space *mapping,
1686 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1687#else
2b740303 1688static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1689 unsigned long address, unsigned int flags,
1690 struct pt_regs *regs)
7ee1dd3f
DH
1691{
1692 /* should never happen if there's no MMU */
1693 BUG();
1694 return VM_FAULT_SIGBUS;
1695}
64019a2e 1696static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1697 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1698{
1699 /* should never happen if there's no MMU */
1700 BUG();
1701 return -EFAULT;
1702}
977fbdcd
MW
1703static inline void unmap_mapping_pages(struct address_space *mapping,
1704 pgoff_t start, pgoff_t nr, bool even_cows) { }
1705static inline void unmap_mapping_range(struct address_space *mapping,
1706 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1707#endif
f33ea7f4 1708
977fbdcd
MW
1709static inline void unmap_shared_mapping_range(struct address_space *mapping,
1710 loff_t const holebegin, loff_t const holelen)
1711{
1712 unmap_mapping_range(mapping, holebegin, holelen, 0);
1713}
1714
1715extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1716 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1717extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1718 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1719extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1720 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1721
64019a2e 1722long get_user_pages_remote(struct mm_struct *mm,
1e987790 1723 unsigned long start, unsigned long nr_pages,
9beae1ea 1724 unsigned int gup_flags, struct page **pages,
5b56d49f 1725 struct vm_area_struct **vmas, int *locked);
64019a2e 1726long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1727 unsigned long start, unsigned long nr_pages,
1728 unsigned int gup_flags, struct page **pages,
1729 struct vm_area_struct **vmas, int *locked);
c12d2da5 1730long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1731 unsigned int gup_flags, struct page **pages,
cde70140 1732 struct vm_area_struct **vmas);
eddb1c22
JH
1733long pin_user_pages(unsigned long start, unsigned long nr_pages,
1734 unsigned int gup_flags, struct page **pages,
1735 struct vm_area_struct **vmas);
c12d2da5 1736long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1737 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1738long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1739 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1740long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1741 struct page **pages, unsigned int gup_flags);
91429023
JH
1742long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1743 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1744
73b0140b
IW
1745int get_user_pages_fast(unsigned long start, int nr_pages,
1746 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1747int pin_user_pages_fast(unsigned long start, int nr_pages,
1748 unsigned int gup_flags, struct page **pages);
8025e5dd 1749
79eb597c
DJ
1750int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1751int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1752 struct task_struct *task, bool bypass_rlim);
1753
8025e5dd
JK
1754/* Container for pinned pfns / pages */
1755struct frame_vector {
1756 unsigned int nr_allocated; /* Number of frames we have space for */
1757 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1758 bool got_ref; /* Did we pin pages by getting page ref? */
1759 bool is_pfns; /* Does array contain pages or pfns? */
57e86fa1 1760 void *ptrs[]; /* Array of pinned pfns / pages. Use
8025e5dd
JK
1761 * pfns_vector_pages() or pfns_vector_pfns()
1762 * for access */
1763};
1764
1765struct frame_vector *frame_vector_create(unsigned int nr_frames);
1766void frame_vector_destroy(struct frame_vector *vec);
1767int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1768 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1769void put_vaddr_frames(struct frame_vector *vec);
1770int frame_vector_to_pages(struct frame_vector *vec);
1771void frame_vector_to_pfns(struct frame_vector *vec);
1772
1773static inline unsigned int frame_vector_count(struct frame_vector *vec)
1774{
1775 return vec->nr_frames;
1776}
1777
1778static inline struct page **frame_vector_pages(struct frame_vector *vec)
1779{
1780 if (vec->is_pfns) {
1781 int err = frame_vector_to_pages(vec);
1782
1783 if (err)
1784 return ERR_PTR(err);
1785 }
1786 return (struct page **)(vec->ptrs);
1787}
1788
1789static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1790{
1791 if (!vec->is_pfns)
1792 frame_vector_to_pfns(vec);
1793 return (unsigned long *)(vec->ptrs);
1794}
1795
18022c5d
MG
1796struct kvec;
1797int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1798 struct page **pages);
1799int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1800struct page *get_dump_page(unsigned long addr);
1da177e4 1801
cf9a2ae8 1802extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1803extern void do_invalidatepage(struct page *page, unsigned int offset,
1804 unsigned int length);
cf9a2ae8 1805
f82b3764 1806void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1807int __set_page_dirty_nobuffers(struct page *page);
76719325 1808int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1809int redirty_page_for_writepage(struct writeback_control *wbc,
1810 struct page *page);
62cccb8c 1811void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1812void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1813 struct bdi_writeback *wb);
b3c97528 1814int set_page_dirty(struct page *page);
1da177e4 1815int set_page_dirty_lock(struct page *page);
736304f3
JK
1816void __cancel_dirty_page(struct page *page);
1817static inline void cancel_dirty_page(struct page *page)
1818{
1819 /* Avoid atomic ops, locking, etc. when not actually needed. */
1820 if (PageDirty(page))
1821 __cancel_dirty_page(page);
1822}
1da177e4 1823int clear_page_dirty_for_io(struct page *page);
b9ea2515 1824
a9090253 1825int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1826
b6a2fea3
OW
1827extern unsigned long move_page_tables(struct vm_area_struct *vma,
1828 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1829 unsigned long new_addr, unsigned long len,
1830 bool need_rmap_locks);
58705444
PX
1831
1832/*
1833 * Flags used by change_protection(). For now we make it a bitmap so
1834 * that we can pass in multiple flags just like parameters. However
1835 * for now all the callers are only use one of the flags at the same
1836 * time.
1837 */
1838/* Whether we should allow dirty bit accounting */
1839#define MM_CP_DIRTY_ACCT (1UL << 0)
1840/* Whether this protection change is for NUMA hints */
1841#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1842/* Whether this change is for write protecting */
1843#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1844#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1845#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1846 MM_CP_UFFD_WP_RESOLVE)
58705444 1847
7da4d641
PZ
1848extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1849 unsigned long end, pgprot_t newprot,
58705444 1850 unsigned long cp_flags);
b6a2fea3
OW
1851extern int mprotect_fixup(struct vm_area_struct *vma,
1852 struct vm_area_struct **pprev, unsigned long start,
1853 unsigned long end, unsigned long newflags);
1da177e4 1854
465a454f
PZ
1855/*
1856 * doesn't attempt to fault and will return short.
1857 */
dadbb612
SJ
1858int get_user_pages_fast_only(unsigned long start, int nr_pages,
1859 unsigned int gup_flags, struct page **pages);
104acc32
JH
1860int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1861 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1862
1863static inline bool get_user_page_fast_only(unsigned long addr,
1864 unsigned int gup_flags, struct page **pagep)
1865{
1866 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1867}
d559db08
KH
1868/*
1869 * per-process(per-mm_struct) statistics.
1870 */
d559db08
KH
1871static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1872{
69c97823
KK
1873 long val = atomic_long_read(&mm->rss_stat.count[member]);
1874
1875#ifdef SPLIT_RSS_COUNTING
1876 /*
1877 * counter is updated in asynchronous manner and may go to minus.
1878 * But it's never be expected number for users.
1879 */
1880 if (val < 0)
1881 val = 0;
172703b0 1882#endif
69c97823
KK
1883 return (unsigned long)val;
1884}
d559db08 1885
e4dcad20 1886void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1887
d559db08
KH
1888static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1889{
b3d1411b
JFG
1890 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1891
e4dcad20 1892 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1893}
1894
1895static inline void inc_mm_counter(struct mm_struct *mm, int member)
1896{
b3d1411b
JFG
1897 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1898
e4dcad20 1899 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1900}
1901
1902static inline void dec_mm_counter(struct mm_struct *mm, int member)
1903{
b3d1411b
JFG
1904 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1905
e4dcad20 1906 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1907}
1908
eca56ff9
JM
1909/* Optimized variant when page is already known not to be PageAnon */
1910static inline int mm_counter_file(struct page *page)
1911{
1912 if (PageSwapBacked(page))
1913 return MM_SHMEMPAGES;
1914 return MM_FILEPAGES;
1915}
1916
1917static inline int mm_counter(struct page *page)
1918{
1919 if (PageAnon(page))
1920 return MM_ANONPAGES;
1921 return mm_counter_file(page);
1922}
1923
d559db08
KH
1924static inline unsigned long get_mm_rss(struct mm_struct *mm)
1925{
1926 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1927 get_mm_counter(mm, MM_ANONPAGES) +
1928 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1929}
1930
1931static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1932{
1933 return max(mm->hiwater_rss, get_mm_rss(mm));
1934}
1935
1936static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1937{
1938 return max(mm->hiwater_vm, mm->total_vm);
1939}
1940
1941static inline void update_hiwater_rss(struct mm_struct *mm)
1942{
1943 unsigned long _rss = get_mm_rss(mm);
1944
1945 if ((mm)->hiwater_rss < _rss)
1946 (mm)->hiwater_rss = _rss;
1947}
1948
1949static inline void update_hiwater_vm(struct mm_struct *mm)
1950{
1951 if (mm->hiwater_vm < mm->total_vm)
1952 mm->hiwater_vm = mm->total_vm;
1953}
1954
695f0559
PC
1955static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1956{
1957 mm->hiwater_rss = get_mm_rss(mm);
1958}
1959
d559db08
KH
1960static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1961 struct mm_struct *mm)
1962{
1963 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1964
1965 if (*maxrss < hiwater_rss)
1966 *maxrss = hiwater_rss;
1967}
1968
53bddb4e 1969#if defined(SPLIT_RSS_COUNTING)
05af2e10 1970void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1971#else
05af2e10 1972static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1973{
1974}
1975#endif
465a454f 1976
78e7c5af
AK
1977#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1978static inline int pte_special(pte_t pte)
1979{
1980 return 0;
1981}
1982
1983static inline pte_t pte_mkspecial(pte_t pte)
1984{
1985 return pte;
1986}
1987#endif
1988
17596731 1989#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
1990static inline int pte_devmap(pte_t pte)
1991{
1992 return 0;
1993}
1994#endif
1995
6d2329f8 1996int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1997
25ca1d6c
NK
1998extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1999 spinlock_t **ptl);
2000static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2001 spinlock_t **ptl)
2002{
2003 pte_t *ptep;
2004 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2005 return ptep;
2006}
c9cfcddf 2007
c2febafc
KS
2008#ifdef __PAGETABLE_P4D_FOLDED
2009static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2010 unsigned long address)
2011{
2012 return 0;
2013}
2014#else
2015int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2016#endif
2017
b4e98d9a 2018#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2019static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2020 unsigned long address)
2021{
2022 return 0;
2023}
b4e98d9a
KS
2024static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2025static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2026
5f22df00 2027#else
c2febafc 2028int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2029
b4e98d9a
KS
2030static inline void mm_inc_nr_puds(struct mm_struct *mm)
2031{
6d212db1
MS
2032 if (mm_pud_folded(mm))
2033 return;
af5b0f6a 2034 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2035}
2036
2037static inline void mm_dec_nr_puds(struct mm_struct *mm)
2038{
6d212db1
MS
2039 if (mm_pud_folded(mm))
2040 return;
af5b0f6a 2041 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2042}
5f22df00
NP
2043#endif
2044
2d2f5119 2045#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2046static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2047 unsigned long address)
2048{
2049 return 0;
2050}
dc6c9a35 2051
dc6c9a35
KS
2052static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2053static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2054
5f22df00 2055#else
1bb3630e 2056int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2057
dc6c9a35
KS
2058static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2059{
6d212db1
MS
2060 if (mm_pmd_folded(mm))
2061 return;
af5b0f6a 2062 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2063}
2064
2065static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2066{
6d212db1
MS
2067 if (mm_pmd_folded(mm))
2068 return;
af5b0f6a 2069 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2070}
5f22df00
NP
2071#endif
2072
c4812909 2073#ifdef CONFIG_MMU
af5b0f6a 2074static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2075{
af5b0f6a 2076 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2077}
2078
af5b0f6a 2079static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2080{
af5b0f6a 2081 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2082}
2083
2084static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2085{
af5b0f6a 2086 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2087}
2088
2089static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2090{
af5b0f6a 2091 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2092}
2093#else
c4812909 2094
af5b0f6a
KS
2095static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2096static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2097{
2098 return 0;
2099}
2100
2101static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2102static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2103#endif
2104
4cf58924
JFG
2105int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2106int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2107
f949286c
MR
2108#if defined(CONFIG_MMU)
2109
c2febafc
KS
2110static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2111 unsigned long address)
2112{
2113 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2114 NULL : p4d_offset(pgd, address);
2115}
2116
2117static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2118 unsigned long address)
1da177e4 2119{
c2febafc
KS
2120 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2121 NULL : pud_offset(p4d, address);
1da177e4 2122}
d8626138 2123
1da177e4
LT
2124static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2125{
1bb3630e
HD
2126 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2127 NULL: pmd_offset(pud, address);
1da177e4 2128}
f949286c 2129#endif /* CONFIG_MMU */
1bb3630e 2130
57c1ffce 2131#if USE_SPLIT_PTE_PTLOCKS
597d795a 2132#if ALLOC_SPLIT_PTLOCKS
b35f1819 2133void __init ptlock_cache_init(void);
539edb58
PZ
2134extern bool ptlock_alloc(struct page *page);
2135extern void ptlock_free(struct page *page);
2136
2137static inline spinlock_t *ptlock_ptr(struct page *page)
2138{
2139 return page->ptl;
2140}
597d795a 2141#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2142static inline void ptlock_cache_init(void)
2143{
2144}
2145
49076ec2
KS
2146static inline bool ptlock_alloc(struct page *page)
2147{
49076ec2
KS
2148 return true;
2149}
539edb58 2150
49076ec2
KS
2151static inline void ptlock_free(struct page *page)
2152{
49076ec2
KS
2153}
2154
2155static inline spinlock_t *ptlock_ptr(struct page *page)
2156{
539edb58 2157 return &page->ptl;
49076ec2 2158}
597d795a 2159#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2160
2161static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2162{
2163 return ptlock_ptr(pmd_page(*pmd));
2164}
2165
2166static inline bool ptlock_init(struct page *page)
2167{
2168 /*
2169 * prep_new_page() initialize page->private (and therefore page->ptl)
2170 * with 0. Make sure nobody took it in use in between.
2171 *
2172 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2173 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2174 */
309381fe 2175 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2176 if (!ptlock_alloc(page))
2177 return false;
2178 spin_lock_init(ptlock_ptr(page));
2179 return true;
2180}
2181
57c1ffce 2182#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2183/*
2184 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2185 */
49076ec2
KS
2186static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2187{
2188 return &mm->page_table_lock;
2189}
b35f1819 2190static inline void ptlock_cache_init(void) {}
49076ec2 2191static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2192static inline void ptlock_free(struct page *page) {}
57c1ffce 2193#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2194
b35f1819
KS
2195static inline void pgtable_init(void)
2196{
2197 ptlock_cache_init();
2198 pgtable_cache_init();
2199}
2200
b4ed71f5 2201static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2202{
706874e9
VD
2203 if (!ptlock_init(page))
2204 return false;
1d40a5ea 2205 __SetPageTable(page);
f0c0c115 2206 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2207 return true;
2f569afd
MS
2208}
2209
b4ed71f5 2210static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2211{
9e247bab 2212 ptlock_free(page);
1d40a5ea 2213 __ClearPageTable(page);
f0c0c115 2214 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2215}
2216
c74df32c
HD
2217#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2218({ \
4c21e2f2 2219 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2220 pte_t *__pte = pte_offset_map(pmd, address); \
2221 *(ptlp) = __ptl; \
2222 spin_lock(__ptl); \
2223 __pte; \
2224})
2225
2226#define pte_unmap_unlock(pte, ptl) do { \
2227 spin_unlock(ptl); \
2228 pte_unmap(pte); \
2229} while (0)
2230
4cf58924 2231#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2232
2233#define pte_alloc_map(mm, pmd, address) \
4cf58924 2234 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2235
c74df32c 2236#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2237 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2238 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2239
1bb3630e 2240#define pte_alloc_kernel(pmd, address) \
4cf58924 2241 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2242 NULL: pte_offset_kernel(pmd, address))
1da177e4 2243
e009bb30
KS
2244#if USE_SPLIT_PMD_PTLOCKS
2245
634391ac
MS
2246static struct page *pmd_to_page(pmd_t *pmd)
2247{
2248 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2249 return virt_to_page((void *)((unsigned long) pmd & mask));
2250}
2251
e009bb30
KS
2252static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2253{
634391ac 2254 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2255}
2256
b2b29d6d 2257static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2258{
e009bb30
KS
2259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2260 page->pmd_huge_pte = NULL;
2261#endif
49076ec2 2262 return ptlock_init(page);
e009bb30
KS
2263}
2264
b2b29d6d 2265static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2266{
2267#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2268 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2269#endif
49076ec2 2270 ptlock_free(page);
e009bb30
KS
2271}
2272
634391ac 2273#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2274
2275#else
2276
9a86cb7b
KS
2277static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2278{
2279 return &mm->page_table_lock;
2280}
2281
b2b29d6d
MW
2282static inline bool pmd_ptlock_init(struct page *page) { return true; }
2283static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2284
c389a250 2285#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2286
e009bb30
KS
2287#endif
2288
9a86cb7b
KS
2289static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2290{
2291 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2292 spin_lock(ptl);
2293 return ptl;
2294}
2295
b2b29d6d
MW
2296static inline bool pgtable_pmd_page_ctor(struct page *page)
2297{
2298 if (!pmd_ptlock_init(page))
2299 return false;
2300 __SetPageTable(page);
f0c0c115 2301 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2302 return true;
2303}
2304
2305static inline void pgtable_pmd_page_dtor(struct page *page)
2306{
2307 pmd_ptlock_free(page);
2308 __ClearPageTable(page);
f0c0c115 2309 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2310}
2311
a00cc7d9
MW
2312/*
2313 * No scalability reason to split PUD locks yet, but follow the same pattern
2314 * as the PMD locks to make it easier if we decide to. The VM should not be
2315 * considered ready to switch to split PUD locks yet; there may be places
2316 * which need to be converted from page_table_lock.
2317 */
2318static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2319{
2320 return &mm->page_table_lock;
2321}
2322
2323static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2324{
2325 spinlock_t *ptl = pud_lockptr(mm, pud);
2326
2327 spin_lock(ptl);
2328 return ptl;
2329}
62906027 2330
a00cc7d9 2331extern void __init pagecache_init(void);
bc9331a1 2332extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2333extern void free_initmem(void);
2334
69afade7
JL
2335/*
2336 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2337 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2338 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2339 * Return pages freed into the buddy system.
2340 */
11199692 2341extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2342 int poison, const char *s);
c3d5f5f0 2343
cfa11e08
JL
2344#ifdef CONFIG_HIGHMEM
2345/*
2346 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2347 * and totalram_pages.
2348 */
2349extern void free_highmem_page(struct page *page);
2350#endif
69afade7 2351
c3d5f5f0 2352extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2353extern void mem_init_print_info(const char *str);
69afade7 2354
4b50bcc7 2355extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2356
69afade7
JL
2357/* Free the reserved page into the buddy system, so it gets managed. */
2358static inline void __free_reserved_page(struct page *page)
2359{
2360 ClearPageReserved(page);
2361 init_page_count(page);
2362 __free_page(page);
2363}
2364
2365static inline void free_reserved_page(struct page *page)
2366{
2367 __free_reserved_page(page);
2368 adjust_managed_page_count(page, 1);
2369}
2370
2371static inline void mark_page_reserved(struct page *page)
2372{
2373 SetPageReserved(page);
2374 adjust_managed_page_count(page, -1);
2375}
2376
2377/*
2378 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2379 * The freed pages will be poisoned with pattern "poison" if it's within
2380 * range [0, UCHAR_MAX].
2381 * Return pages freed into the buddy system.
69afade7
JL
2382 */
2383static inline unsigned long free_initmem_default(int poison)
2384{
2385 extern char __init_begin[], __init_end[];
2386
11199692 2387 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2388 poison, "unused kernel");
2389}
2390
7ee3d4e8
JL
2391static inline unsigned long get_num_physpages(void)
2392{
2393 int nid;
2394 unsigned long phys_pages = 0;
2395
2396 for_each_online_node(nid)
2397 phys_pages += node_present_pages(nid);
2398
2399 return phys_pages;
2400}
2401
c713216d 2402/*
3f08a302 2403 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2404 * zones, allocate the backing mem_map and account for memory holes in an
2405 * architecture independent manner.
c713216d
MG
2406 *
2407 * An architecture is expected to register range of page frames backed by
0ee332c1 2408 * physical memory with memblock_add[_node]() before calling
9691a071 2409 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2410 * usage, an architecture is expected to do something like
2411 *
2412 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2413 * max_highmem_pfn};
2414 * for_each_valid_physical_page_range()
0ee332c1 2415 * memblock_add_node(base, size, nid)
9691a071 2416 * free_area_init(max_zone_pfns);
c713216d 2417 */
9691a071 2418void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2419unsigned long node_map_pfn_alignment(void);
32996250
YL
2420unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2421 unsigned long end_pfn);
c713216d
MG
2422extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2423 unsigned long end_pfn);
2424extern void get_pfn_range_for_nid(unsigned int nid,
2425 unsigned long *start_pfn, unsigned long *end_pfn);
2426extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2427
3f08a302 2428#ifndef CONFIG_NEED_MULTIPLE_NODES
6f24fbd3 2429static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2430{
2431 return 0;
2432}
2433#else
2434/* please see mm/page_alloc.c */
2435extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2436/* there is a per-arch backend function. */
8a942fde
MG
2437extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2438 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2439#endif
2440
0e0b864e 2441extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7 2442extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
d882c006 2443 enum meminit_context, struct vmem_altmap *, int migratetype);
bc75d33f 2444extern void setup_per_zone_wmarks(void);
1b79acc9 2445extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2446extern void mem_init(void);
8feae131 2447extern void __init mmap_init(void);
9af744d7 2448extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2449extern long si_mem_available(void);
1da177e4
LT
2450extern void si_meminfo(struct sysinfo * val);
2451extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2452#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2453extern unsigned long arch_reserved_kernel_pages(void);
2454#endif
1da177e4 2455
a8e99259
MH
2456extern __printf(3, 4)
2457void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2458
e7c8d5c9 2459extern void setup_per_cpu_pageset(void);
e7c8d5c9 2460
75f7ad8e
PS
2461/* page_alloc.c */
2462extern int min_free_kbytes;
1c30844d 2463extern int watermark_boost_factor;
795ae7a0 2464extern int watermark_scale_factor;
51930df5 2465extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2466
8feae131 2467/* nommu.c */
33e5d769 2468extern atomic_long_t mmap_pages_allocated;
7e660872 2469extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2470
6b2dbba8 2471/* interval_tree.c */
6b2dbba8 2472void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2473 struct rb_root_cached *root);
9826a516
ML
2474void vma_interval_tree_insert_after(struct vm_area_struct *node,
2475 struct vm_area_struct *prev,
f808c13f 2476 struct rb_root_cached *root);
6b2dbba8 2477void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2478 struct rb_root_cached *root);
2479struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2480 unsigned long start, unsigned long last);
2481struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2482 unsigned long start, unsigned long last);
2483
2484#define vma_interval_tree_foreach(vma, root, start, last) \
2485 for (vma = vma_interval_tree_iter_first(root, start, last); \
2486 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2487
bf181b9f 2488void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2489 struct rb_root_cached *root);
bf181b9f 2490void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2491 struct rb_root_cached *root);
2492struct anon_vma_chain *
2493anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2494 unsigned long start, unsigned long last);
bf181b9f
ML
2495struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2496 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2497#ifdef CONFIG_DEBUG_VM_RB
2498void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2499#endif
bf181b9f
ML
2500
2501#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2502 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2503 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2504
1da177e4 2505/* mmap.c */
34b4e4aa 2506extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2507extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2508 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2509 struct vm_area_struct *expand);
2510static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2511 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2512{
2513 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2514}
1da177e4
LT
2515extern struct vm_area_struct *vma_merge(struct mm_struct *,
2516 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2517 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2518 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2519extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2520extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2521 unsigned long addr, int new_below);
2522extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2523 unsigned long addr, int new_below);
1da177e4
LT
2524extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2525extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2526 struct rb_node **, struct rb_node *);
a8fb5618 2527extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2528extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2529 unsigned long addr, unsigned long len, pgoff_t pgoff,
2530 bool *need_rmap_locks);
1da177e4 2531extern void exit_mmap(struct mm_struct *);
925d1c40 2532
9c599024
CG
2533static inline int check_data_rlimit(unsigned long rlim,
2534 unsigned long new,
2535 unsigned long start,
2536 unsigned long end_data,
2537 unsigned long start_data)
2538{
2539 if (rlim < RLIM_INFINITY) {
2540 if (((new - start) + (end_data - start_data)) > rlim)
2541 return -ENOSPC;
2542 }
2543
2544 return 0;
2545}
2546
7906d00c
AA
2547extern int mm_take_all_locks(struct mm_struct *mm);
2548extern void mm_drop_all_locks(struct mm_struct *mm);
2549
38646013
JS
2550extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2551extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2552extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2553
84638335
KK
2554extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2555extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2556
2eefd878
DS
2557extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2558 const struct vm_special_mapping *sm);
3935ed6a
SS
2559extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2560 unsigned long addr, unsigned long len,
a62c34bd
AL
2561 unsigned long flags,
2562 const struct vm_special_mapping *spec);
2563/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2564extern int install_special_mapping(struct mm_struct *mm,
2565 unsigned long addr, unsigned long len,
2566 unsigned long flags, struct page **pages);
1da177e4 2567
649775be
AG
2568unsigned long randomize_stack_top(unsigned long stack_top);
2569
1da177e4
LT
2570extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2571
0165ab44 2572extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2573 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2574 struct list_head *uf);
1fcfd8db 2575extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2576 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2577 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2578extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2579 struct list_head *uf, bool downgrade);
897ab3e0
MR
2580extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2581 struct list_head *uf);
0726b01e 2582extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2583
bebeb3d6
ML
2584#ifdef CONFIG_MMU
2585extern int __mm_populate(unsigned long addr, unsigned long len,
2586 int ignore_errors);
2587static inline void mm_populate(unsigned long addr, unsigned long len)
2588{
2589 /* Ignore errors */
2590 (void) __mm_populate(addr, len, 1);
2591}
2592#else
2593static inline void mm_populate(unsigned long addr, unsigned long len) {}
2594#endif
2595
e4eb1ff6 2596/* These take the mm semaphore themselves */
5d22fc25 2597extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2598extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2599extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2600extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2601 unsigned long, unsigned long,
2602 unsigned long, unsigned long);
1da177e4 2603
db4fbfb9
ML
2604struct vm_unmapped_area_info {
2605#define VM_UNMAPPED_AREA_TOPDOWN 1
2606 unsigned long flags;
2607 unsigned long length;
2608 unsigned long low_limit;
2609 unsigned long high_limit;
2610 unsigned long align_mask;
2611 unsigned long align_offset;
2612};
2613
baceaf1c 2614extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2615
85821aab 2616/* truncate.c */
1da177e4 2617extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2618extern void truncate_inode_pages_range(struct address_space *,
2619 loff_t lstart, loff_t lend);
91b0abe3 2620extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2621
2622/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2623extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2624extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2625 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2626extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2627
2628/* mm/page-writeback.c */
2b69c828 2629int __must_check write_one_page(struct page *page);
1cf6e7d8 2630void task_dirty_inc(struct task_struct *tsk);
1da177e4 2631
1be7107f 2632extern unsigned long stack_guard_gap;
d05f3169 2633/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2634extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2635
11192337 2636/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2637extern int expand_downwards(struct vm_area_struct *vma,
2638 unsigned long address);
8ca3eb08 2639#if VM_GROWSUP
46dea3d0 2640extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2641#else
fee7e49d 2642 #define expand_upwards(vma, address) (0)
9ab88515 2643#endif
1da177e4
LT
2644
2645/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2646extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2647extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2648 struct vm_area_struct **pprev);
2649
2650/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2651 NULL if none. Assume start_addr < end_addr. */
2652static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2653{
2654 struct vm_area_struct * vma = find_vma(mm,start_addr);
2655
2656 if (vma && end_addr <= vma->vm_start)
2657 vma = NULL;
2658 return vma;
2659}
2660
1be7107f
HD
2661static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2662{
2663 unsigned long vm_start = vma->vm_start;
2664
2665 if (vma->vm_flags & VM_GROWSDOWN) {
2666 vm_start -= stack_guard_gap;
2667 if (vm_start > vma->vm_start)
2668 vm_start = 0;
2669 }
2670 return vm_start;
2671}
2672
2673static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2674{
2675 unsigned long vm_end = vma->vm_end;
2676
2677 if (vma->vm_flags & VM_GROWSUP) {
2678 vm_end += stack_guard_gap;
2679 if (vm_end < vma->vm_end)
2680 vm_end = -PAGE_SIZE;
2681 }
2682 return vm_end;
2683}
2684
1da177e4
LT
2685static inline unsigned long vma_pages(struct vm_area_struct *vma)
2686{
2687 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2688}
2689
640708a2
PE
2690/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2691static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2692 unsigned long vm_start, unsigned long vm_end)
2693{
2694 struct vm_area_struct *vma = find_vma(mm, vm_start);
2695
2696 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2697 vma = NULL;
2698
2699 return vma;
2700}
2701
017b1660
MK
2702static inline bool range_in_vma(struct vm_area_struct *vma,
2703 unsigned long start, unsigned long end)
2704{
2705 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2706}
2707
bad849b3 2708#ifdef CONFIG_MMU
804af2cf 2709pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2710void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2711#else
2712static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2713{
2714 return __pgprot(0);
2715}
64e45507
PF
2716static inline void vma_set_page_prot(struct vm_area_struct *vma)
2717{
2718 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2719}
bad849b3
DH
2720#endif
2721
5877231f 2722#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2723unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2724 unsigned long start, unsigned long end);
2725#endif
2726
deceb6cd 2727struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2728int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2729 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2730int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2731int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2732 struct page **pages, unsigned long *num);
a667d745
SJ
2733int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2734 unsigned long num);
2735int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2736 unsigned long num);
ae2b01f3 2737vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2738 unsigned long pfn);
f5e6d1d5
MW
2739vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2740 unsigned long pfn, pgprot_t pgprot);
5d747637 2741vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2742 pfn_t pfn);
574c5b3d
TH
2743vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2744 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2745vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2746 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2747int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2748
1c8f4220
SJ
2749static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2750 unsigned long addr, struct page *page)
2751{
2752 int err = vm_insert_page(vma, addr, page);
2753
2754 if (err == -ENOMEM)
2755 return VM_FAULT_OOM;
2756 if (err < 0 && err != -EBUSY)
2757 return VM_FAULT_SIGBUS;
2758
2759 return VM_FAULT_NOPAGE;
2760}
2761
f8f6ae5d
JG
2762#ifndef io_remap_pfn_range
2763static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2764 unsigned long addr, unsigned long pfn,
2765 unsigned long size, pgprot_t prot)
2766{
2767 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2768}
2769#endif
2770
d97baf94
SJ
2771static inline vm_fault_t vmf_error(int err)
2772{
2773 if (err == -ENOMEM)
2774 return VM_FAULT_OOM;
2775 return VM_FAULT_SIGBUS;
2776}
2777
df06b37f
KB
2778struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2779 unsigned int foll_flags);
240aadee 2780
deceb6cd
HD
2781#define FOLL_WRITE 0x01 /* check pte is writable */
2782#define FOLL_TOUCH 0x02 /* mark page accessed */
2783#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2784#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2785#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2786#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2787 * and return without waiting upon it */
84d33df2 2788#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2789#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2790#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2791#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2792#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2793#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2794#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2795#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2796#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2797#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2798#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2799#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2800#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2801#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2802
2803/*
eddb1c22
JH
2804 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2805 * other. Here is what they mean, and how to use them:
932f4a63
IW
2806 *
2807 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2808 * period _often_ under userspace control. This is in contrast to
2809 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2810 *
2811 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2812 * lifetime enforced by the filesystem and we need guarantees that longterm
2813 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2814 * the filesystem. Ideas for this coordination include revoking the longterm
2815 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2816 * added after the problem with filesystems was found FS DAX VMAs are
2817 * specifically failed. Filesystem pages are still subject to bugs and use of
2818 * FOLL_LONGTERM should be avoided on those pages.
2819 *
2820 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2821 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2822 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2823 * is due to an incompatibility with the FS DAX check and
eddb1c22 2824 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2825 *
eddb1c22
JH
2826 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2827 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2828 * FOLL_LONGTERM is specified.
eddb1c22
JH
2829 *
2830 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2831 * but an additional pin counting system) will be invoked. This is intended for
2832 * anything that gets a page reference and then touches page data (for example,
2833 * Direct IO). This lets the filesystem know that some non-file-system entity is
2834 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2835 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2836 * a call to unpin_user_page().
eddb1c22
JH
2837 *
2838 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2839 * and separate refcounting mechanisms, however, and that means that each has
2840 * its own acquire and release mechanisms:
2841 *
2842 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2843 *
f1f6a7dd 2844 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2845 *
2846 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2847 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2848 * calls applied to them, and that's perfectly OK. This is a constraint on the
2849 * callers, not on the pages.)
2850 *
2851 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2852 * directly by the caller. That's in order to help avoid mismatches when
2853 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2854 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2855 *
72ef5e52 2856 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2857 */
1da177e4 2858
2b740303 2859static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2860{
2861 if (vm_fault & VM_FAULT_OOM)
2862 return -ENOMEM;
2863 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2864 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2865 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2866 return -EFAULT;
2867 return 0;
2868}
2869
8b1e0f81 2870typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2871extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2872 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2873extern int apply_to_existing_page_range(struct mm_struct *mm,
2874 unsigned long address, unsigned long size,
2875 pte_fn_t fn, void *data);
aee16b3c 2876
8823b1db
LA
2877#ifdef CONFIG_PAGE_POISONING
2878extern bool page_poisoning_enabled(void);
2879extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2880#else
2881static inline bool page_poisoning_enabled(void) { return false; }
2882static inline void kernel_poison_pages(struct page *page, int numpages,
2883 int enable) { }
2884#endif
2885
6471384a
AP
2886#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2887DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2888#else
2889DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2890#endif
2891static inline bool want_init_on_alloc(gfp_t flags)
2892{
2893 if (static_branch_unlikely(&init_on_alloc) &&
2894 !page_poisoning_enabled())
2895 return true;
2896 return flags & __GFP_ZERO;
2897}
2898
2899#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2900DECLARE_STATIC_KEY_TRUE(init_on_free);
2901#else
2902DECLARE_STATIC_KEY_FALSE(init_on_free);
2903#endif
2904static inline bool want_init_on_free(void)
2905{
2906 return static_branch_unlikely(&init_on_free) &&
2907 !page_poisoning_enabled();
2908}
2909
8e57f8ac
VB
2910#ifdef CONFIG_DEBUG_PAGEALLOC
2911extern void init_debug_pagealloc(void);
96a2b03f 2912#else
8e57f8ac 2913static inline void init_debug_pagealloc(void) {}
96a2b03f 2914#endif
8e57f8ac
VB
2915extern bool _debug_pagealloc_enabled_early;
2916DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2917
2918static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2919{
2920 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2921 _debug_pagealloc_enabled_early;
2922}
2923
2924/*
2925 * For use in fast paths after init_debug_pagealloc() has run, or when a
2926 * false negative result is not harmful when called too early.
2927 */
2928static inline bool debug_pagealloc_enabled_static(void)
031bc574 2929{
96a2b03f
VB
2930 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2931 return false;
2932
2933 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2934}
2935
d6332692
RE
2936#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2937extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2938
c87cbc1f
VB
2939/*
2940 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2941 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2942 */
031bc574
JK
2943static inline void
2944kernel_map_pages(struct page *page, int numpages, int enable)
2945{
031bc574
JK
2946 __kernel_map_pages(page, numpages, enable);
2947}
8a235efa
RW
2948#ifdef CONFIG_HIBERNATION
2949extern bool kernel_page_present(struct page *page);
40b44137 2950#endif /* CONFIG_HIBERNATION */
d6332692 2951#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2952static inline void
9858db50 2953kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2954#ifdef CONFIG_HIBERNATION
2955static inline bool kernel_page_present(struct page *page) { return true; }
40b44137 2956#endif /* CONFIG_HIBERNATION */
d6332692 2957#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2958
a6c19dfe 2959#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2960extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2961extern int in_gate_area_no_mm(unsigned long addr);
2962extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2963#else
a6c19dfe
AL
2964static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2965{
2966 return NULL;
2967}
2968static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2969static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2970{
2971 return 0;
2972}
1da177e4
LT
2973#endif /* __HAVE_ARCH_GATE_AREA */
2974
44a70ade
MH
2975extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2976
146732ce
JT
2977#ifdef CONFIG_SYSCTL
2978extern int sysctl_drop_caches;
32927393
CH
2979int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2980 loff_t *);
146732ce
JT
2981#endif
2982
cb731d6c
VD
2983void drop_slab(void);
2984void drop_slab_node(int nid);
9d0243bc 2985
7a9166e3
LY
2986#ifndef CONFIG_MMU
2987#define randomize_va_space 0
2988#else
a62eaf15 2989extern int randomize_va_space;
7a9166e3 2990#endif
a62eaf15 2991
045e72ac 2992const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 2993#ifdef CONFIG_MMU
03252919 2994void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
2995#else
2996static inline void print_vma_addr(char *prefix, unsigned long rip)
2997{
2998}
2999#endif
e6e5494c 3000
35fd1eb1 3001void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
3002struct page * __populate_section_memmap(unsigned long pfn,
3003 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3004pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3005p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3006pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3007pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
3008pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3009 struct vmem_altmap *altmap);
8f6aac41 3010void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3011struct vmem_altmap;
56993b4e
AK
3012void *vmemmap_alloc_block_buf(unsigned long size, int node,
3013 struct vmem_altmap *altmap);
8f6aac41 3014void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3015int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3016 int node, struct vmem_altmap *altmap);
7b73d978
CH
3017int vmemmap_populate(unsigned long start, unsigned long end, int node,
3018 struct vmem_altmap *altmap);
c2b91e2e 3019void vmemmap_populate_print_last(void);
0197518c 3020#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3021void vmemmap_free(unsigned long start, unsigned long end,
3022 struct vmem_altmap *altmap);
0197518c 3023#endif
46723bfa 3024void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3025 unsigned long nr_pages);
6a46079c 3026
82ba011b
AK
3027enum mf_flags {
3028 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3029 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3030 MF_MUST_KILL = 1 << 2,
cf870c70 3031 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3032};
83b57531
EB
3033extern int memory_failure(unsigned long pfn, int flags);
3034extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3035extern void memory_failure_queue_kick(int cpu);
847ce401 3036extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3037extern int sysctl_memory_failure_early_kill;
3038extern int sysctl_memory_failure_recovery;
facb6011 3039extern void shake_page(struct page *p, int access);
5844a486 3040extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3041extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3042
cc637b17
XX
3043
3044/*
3045 * Error handlers for various types of pages.
3046 */
cc3e2af4 3047enum mf_result {
cc637b17
XX
3048 MF_IGNORED, /* Error: cannot be handled */
3049 MF_FAILED, /* Error: handling failed */
3050 MF_DELAYED, /* Will be handled later */
3051 MF_RECOVERED, /* Successfully recovered */
3052};
3053
3054enum mf_action_page_type {
3055 MF_MSG_KERNEL,
3056 MF_MSG_KERNEL_HIGH_ORDER,
3057 MF_MSG_SLAB,
3058 MF_MSG_DIFFERENT_COMPOUND,
3059 MF_MSG_POISONED_HUGE,
3060 MF_MSG_HUGE,
3061 MF_MSG_FREE_HUGE,
31286a84 3062 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3063 MF_MSG_UNMAP_FAILED,
3064 MF_MSG_DIRTY_SWAPCACHE,
3065 MF_MSG_CLEAN_SWAPCACHE,
3066 MF_MSG_DIRTY_MLOCKED_LRU,
3067 MF_MSG_CLEAN_MLOCKED_LRU,
3068 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3069 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3070 MF_MSG_DIRTY_LRU,
3071 MF_MSG_CLEAN_LRU,
3072 MF_MSG_TRUNCATED_LRU,
3073 MF_MSG_BUDDY,
3074 MF_MSG_BUDDY_2ND,
6100e34b 3075 MF_MSG_DAX,
5d1fd5dc 3076 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3077 MF_MSG_UNKNOWN,
3078};
3079
47ad8475
AA
3080#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3081extern void clear_huge_page(struct page *page,
c79b57e4 3082 unsigned long addr_hint,
47ad8475
AA
3083 unsigned int pages_per_huge_page);
3084extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3085 unsigned long addr_hint,
3086 struct vm_area_struct *vma,
47ad8475 3087 unsigned int pages_per_huge_page);
fa4d75c1
MK
3088extern long copy_huge_page_from_user(struct page *dst_page,
3089 const void __user *usr_src,
810a56b9
MK
3090 unsigned int pages_per_huge_page,
3091 bool allow_pagefault);
2484ca9b
THV
3092
3093/**
3094 * vma_is_special_huge - Are transhuge page-table entries considered special?
3095 * @vma: Pointer to the struct vm_area_struct to consider
3096 *
3097 * Whether transhuge page-table entries are considered "special" following
3098 * the definition in vm_normal_page().
3099 *
3100 * Return: true if transhuge page-table entries should be considered special,
3101 * false otherwise.
3102 */
3103static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3104{
3105 return vma_is_dax(vma) || (vma->vm_file &&
3106 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3107}
3108
47ad8475
AA
3109#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3110
c0a32fc5
SG
3111#ifdef CONFIG_DEBUG_PAGEALLOC
3112extern unsigned int _debug_guardpage_minorder;
96a2b03f 3113DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3114
3115static inline unsigned int debug_guardpage_minorder(void)
3116{
3117 return _debug_guardpage_minorder;
3118}
3119
e30825f1
JK
3120static inline bool debug_guardpage_enabled(void)
3121{
96a2b03f 3122 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3123}
3124
c0a32fc5
SG
3125static inline bool page_is_guard(struct page *page)
3126{
e30825f1
JK
3127 if (!debug_guardpage_enabled())
3128 return false;
3129
3972f6bb 3130 return PageGuard(page);
c0a32fc5
SG
3131}
3132#else
3133static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3134static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3135static inline bool page_is_guard(struct page *page) { return false; }
3136#endif /* CONFIG_DEBUG_PAGEALLOC */
3137
f9872caf
CS
3138#if MAX_NUMNODES > 1
3139void __init setup_nr_node_ids(void);
3140#else
3141static inline void setup_nr_node_ids(void) {}
3142#endif
3143
010c164a
SL
3144extern int memcmp_pages(struct page *page1, struct page *page2);
3145
3146static inline int pages_identical(struct page *page1, struct page *page2)
3147{
3148 return !memcmp_pages(page1, page2);
3149}
3150
c5acad84
TH
3151#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3152unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3153 pgoff_t first_index, pgoff_t nr,
3154 pgoff_t bitmap_pgoff,
3155 unsigned long *bitmap,
3156 pgoff_t *start,
3157 pgoff_t *end);
3158
3159unsigned long wp_shared_mapping_range(struct address_space *mapping,
3160 pgoff_t first_index, pgoff_t nr);
3161#endif
3162
2374c09b
CH
3163extern int sysctl_nr_trim_pages;
3164
1da177e4
LT
3165#endif /* __KERNEL__ */
3166#endif /* _LINUX_MM_H */