mm: drop duplicated words in <linux/pgtable.h>
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
9740ca4e 18#include <linux/mmap_lock.h>
08677214 19#include <linux/range.h>
c6f6b596 20#include <linux/pfn.h>
3565fce3 21#include <linux/percpu-refcount.h>
e9da73d6 22#include <linux/bit_spinlock.h>
b0d40c92 23#include <linux/shrinker.h>
9c599024 24#include <linux/resource.h>
e30825f1 25#include <linux/page_ext.h>
8025e5dd 26#include <linux/err.h>
fe896d18 27#include <linux/page_ref.h>
7b2d55d2 28#include <linux/memremap.h>
3b3b1a29 29#include <linux/overflow.h>
b5420237 30#include <linux/sizes.h>
7969f226 31#include <linux/sched.h>
65fddcfc 32#include <linux/pgtable.h>
1da177e4
LT
33
34struct mempolicy;
35struct anon_vma;
bf181b9f 36struct anon_vma_chain;
4e950f6f 37struct file_ra_state;
e8edc6e0 38struct user_struct;
4e950f6f 39struct writeback_control;
682aa8e1 40struct bdi_writeback;
1da177e4 41
597b7305
MH
42void init_mm_internals(void);
43
fccc9987 44#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 45extern unsigned long max_mapnr;
fccc9987
JL
46
47static inline void set_max_mapnr(unsigned long limit)
48{
49 max_mapnr = limit;
50}
51#else
52static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
53#endif
54
ca79b0c2
AK
55extern atomic_long_t _totalram_pages;
56static inline unsigned long totalram_pages(void)
57{
58 return (unsigned long)atomic_long_read(&_totalram_pages);
59}
60
61static inline void totalram_pages_inc(void)
62{
63 atomic_long_inc(&_totalram_pages);
64}
65
66static inline void totalram_pages_dec(void)
67{
68 atomic_long_dec(&_totalram_pages);
69}
70
71static inline void totalram_pages_add(long count)
72{
73 atomic_long_add(count, &_totalram_pages);
74}
75
1da177e4 76extern void * high_memory;
1da177e4
LT
77extern int page_cluster;
78
79#ifdef CONFIG_SYSCTL
80extern int sysctl_legacy_va_layout;
81#else
82#define sysctl_legacy_va_layout 0
83#endif
84
d07e2259
DC
85#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
86extern const int mmap_rnd_bits_min;
87extern const int mmap_rnd_bits_max;
88extern int mmap_rnd_bits __read_mostly;
89#endif
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
91extern const int mmap_rnd_compat_bits_min;
92extern const int mmap_rnd_compat_bits_max;
93extern int mmap_rnd_compat_bits __read_mostly;
94#endif
95
1da177e4 96#include <asm/page.h>
1da177e4 97#include <asm/processor.h>
1da177e4 98
d9344522
AK
99/*
100 * Architectures that support memory tagging (assigning tags to memory regions,
101 * embedding these tags into addresses that point to these memory regions, and
102 * checking that the memory and the pointer tags match on memory accesses)
103 * redefine this macro to strip tags from pointers.
104 * It's defined as noop for arcitectures that don't support memory tagging.
105 */
106#ifndef untagged_addr
107#define untagged_addr(addr) (addr)
108#endif
109
79442ed1
TC
110#ifndef __pa_symbol
111#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
112#endif
113
1dff8083
AB
114#ifndef page_to_virt
115#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
116#endif
117
568c5fe5
LA
118#ifndef lm_alias
119#define lm_alias(x) __va(__pa_symbol(x))
120#endif
121
593befa6
DD
122/*
123 * To prevent common memory management code establishing
124 * a zero page mapping on a read fault.
125 * This macro should be defined within <asm/pgtable.h>.
126 * s390 does this to prevent multiplexing of hardware bits
127 * related to the physical page in case of virtualization.
128 */
129#ifndef mm_forbids_zeropage
130#define mm_forbids_zeropage(X) (0)
131#endif
132
a4a3ede2
PT
133/*
134 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
135 * If an architecture decides to implement their own version of
136 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
137 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 138 */
5470dea4
AD
139#if BITS_PER_LONG == 64
140/* This function must be updated when the size of struct page grows above 80
141 * or reduces below 56. The idea that compiler optimizes out switch()
142 * statement, and only leaves move/store instructions. Also the compiler can
143 * combine write statments if they are both assignments and can be reordered,
144 * this can result in several of the writes here being dropped.
145 */
146#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
147static inline void __mm_zero_struct_page(struct page *page)
148{
149 unsigned long *_pp = (void *)page;
150
151 /* Check that struct page is either 56, 64, 72, or 80 bytes */
152 BUILD_BUG_ON(sizeof(struct page) & 7);
153 BUILD_BUG_ON(sizeof(struct page) < 56);
154 BUILD_BUG_ON(sizeof(struct page) > 80);
155
156 switch (sizeof(struct page)) {
157 case 80:
158 _pp[9] = 0; /* fallthrough */
159 case 72:
160 _pp[8] = 0; /* fallthrough */
161 case 64:
162 _pp[7] = 0; /* fallthrough */
163 case 56:
164 _pp[6] = 0;
165 _pp[5] = 0;
166 _pp[4] = 0;
167 _pp[3] = 0;
168 _pp[2] = 0;
169 _pp[1] = 0;
170 _pp[0] = 0;
171 }
172}
173#else
a4a3ede2
PT
174#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
175#endif
176
ea606cf5
AR
177/*
178 * Default maximum number of active map areas, this limits the number of vmas
179 * per mm struct. Users can overwrite this number by sysctl but there is a
180 * problem.
181 *
182 * When a program's coredump is generated as ELF format, a section is created
183 * per a vma. In ELF, the number of sections is represented in unsigned short.
184 * This means the number of sections should be smaller than 65535 at coredump.
185 * Because the kernel adds some informative sections to a image of program at
186 * generating coredump, we need some margin. The number of extra sections is
187 * 1-3 now and depends on arch. We use "5" as safe margin, here.
188 *
189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190 * not a hard limit any more. Although some userspace tools can be surprised by
191 * that.
192 */
193#define MAPCOUNT_ELF_CORE_MARGIN (5)
194#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195
196extern int sysctl_max_map_count;
197
c9b1d098 198extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 199extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 200
49f0ce5f
JM
201extern int sysctl_overcommit_memory;
202extern int sysctl_overcommit_ratio;
203extern unsigned long sysctl_overcommit_kbytes;
204
32927393
CH
205int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 loff_t *);
207int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
56f3547b
FT
209int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
49f0ce5f 211
1da177e4
LT
212#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
213
27ac792c
AR
214/* to align the pointer to the (next) page boundary */
215#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
216
0fa73b86 217/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 218#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 219
f86196ea
NB
220#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
221
1da177e4
LT
222/*
223 * Linux kernel virtual memory manager primitives.
224 * The idea being to have a "virtual" mm in the same way
225 * we have a virtual fs - giving a cleaner interface to the
226 * mm details, and allowing different kinds of memory mappings
227 * (from shared memory to executable loading to arbitrary
228 * mmap() functions).
229 */
230
490fc053 231struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
232struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
233void vm_area_free(struct vm_area_struct *);
c43692e8 234
1da177e4 235#ifndef CONFIG_MMU
8feae131
DH
236extern struct rb_root nommu_region_tree;
237extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
238
239extern unsigned int kobjsize(const void *objp);
240#endif
241
242/*
605d9288 243 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 244 * When changing, update also include/trace/events/mmflags.h
1da177e4 245 */
cc2383ec
KK
246#define VM_NONE 0x00000000
247
1da177e4
LT
248#define VM_READ 0x00000001 /* currently active flags */
249#define VM_WRITE 0x00000002
250#define VM_EXEC 0x00000004
251#define VM_SHARED 0x00000008
252
7e2cff42 253/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
254#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
255#define VM_MAYWRITE 0x00000020
256#define VM_MAYEXEC 0x00000040
257#define VM_MAYSHARE 0x00000080
258
259#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 260#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 261#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 262#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 263#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 264
1da177e4
LT
265#define VM_LOCKED 0x00002000
266#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
267
268 /* Used by sys_madvise() */
269#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
270#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
271
272#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
273#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 274#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 275#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 276#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 277#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 278#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 279#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 280#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 281#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 282
d9104d1c
CG
283#ifdef CONFIG_MEM_SOFT_DIRTY
284# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
285#else
286# define VM_SOFTDIRTY 0
287#endif
288
b379d790 289#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
290#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
291#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 292#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 293
63c17fb8
DH
294#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
295#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
296#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
297#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
298#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 299#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
300#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
301#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
302#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
303#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 304#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
305#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
306
5212213a 307#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
308# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
309# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 310# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
311# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
312# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
313#ifdef CONFIG_PPC
314# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
315#else
316# define VM_PKEY_BIT4 0
8f62c883 317#endif
5212213a
RP
318#endif /* CONFIG_ARCH_HAS_PKEYS */
319
320#if defined(CONFIG_X86)
321# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
cc2383ec
KK
322#elif defined(CONFIG_PARISC)
323# define VM_GROWSUP VM_ARCH_1
324#elif defined(CONFIG_IA64)
325# define VM_GROWSUP VM_ARCH_1
74a04967
KA
326#elif defined(CONFIG_SPARC64)
327# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
328# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
329#elif defined(CONFIG_ARM64)
330# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
331# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
332#elif !defined(CONFIG_MMU)
333# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
334#endif
335
336#ifndef VM_GROWSUP
337# define VM_GROWSUP VM_NONE
338#endif
339
a8bef8ff
MG
340/* Bits set in the VMA until the stack is in its final location */
341#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
342
c62da0c3
AK
343#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
344
345/* Common data flag combinations */
346#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
347 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
348#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
349 VM_MAYWRITE | VM_MAYEXEC)
350#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
351 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
352
353#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
354#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
355#endif
356
1da177e4
LT
357#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
358#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
359#endif
360
361#ifdef CONFIG_STACK_GROWSUP
30bdbb78 362#define VM_STACK VM_GROWSUP
1da177e4 363#else
30bdbb78 364#define VM_STACK VM_GROWSDOWN
1da177e4
LT
365#endif
366
30bdbb78
KK
367#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
368
6cb4d9a2
AK
369/* VMA basic access permission flags */
370#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
371
372
b291f000 373/*
78f11a25 374 * Special vmas that are non-mergable, non-mlock()able.
b291f000 375 */
9050d7eb 376#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 377
b4443772
AK
378/* This mask prevents VMA from being scanned with khugepaged */
379#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
380
a0715cc2
AT
381/* This mask defines which mm->def_flags a process can inherit its parent */
382#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
383
de60f5f1
EM
384/* This mask is used to clear all the VMA flags used by mlock */
385#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
386
2c2d57b5
KA
387/* Arch-specific flags to clear when updating VM flags on protection change */
388#ifndef VM_ARCH_CLEAR
389# define VM_ARCH_CLEAR VM_NONE
390#endif
391#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
392
1da177e4
LT
393/*
394 * mapping from the currently active vm_flags protection bits (the
395 * low four bits) to a page protection mask..
396 */
397extern pgprot_t protection_map[16];
398
c270a7ee
PX
399/**
400 * Fault flag definitions.
401 *
402 * @FAULT_FLAG_WRITE: Fault was a write fault.
403 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
404 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
c1e8d7c6 405 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
c270a7ee
PX
406 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
407 * @FAULT_FLAG_TRIED: The fault has been tried once.
408 * @FAULT_FLAG_USER: The fault originated in userspace.
409 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
410 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
411 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
412 *
413 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
414 * whether we would allow page faults to retry by specifying these two
415 * fault flags correctly. Currently there can be three legal combinations:
416 *
417 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
418 * this is the first try
419 *
420 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
421 * we've already tried at least once
422 *
423 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
424 *
425 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
426 * be used. Note that page faults can be allowed to retry for multiple times,
427 * in which case we'll have an initial fault with flags (a) then later on
428 * continuous faults with flags (b). We should always try to detect pending
429 * signals before a retry to make sure the continuous page faults can still be
430 * interrupted if necessary.
c270a7ee
PX
431 */
432#define FAULT_FLAG_WRITE 0x01
433#define FAULT_FLAG_MKWRITE 0x02
434#define FAULT_FLAG_ALLOW_RETRY 0x04
435#define FAULT_FLAG_RETRY_NOWAIT 0x08
436#define FAULT_FLAG_KILLABLE 0x10
437#define FAULT_FLAG_TRIED 0x20
438#define FAULT_FLAG_USER 0x40
439#define FAULT_FLAG_REMOTE 0x80
440#define FAULT_FLAG_INSTRUCTION 0x100
441#define FAULT_FLAG_INTERRUPTIBLE 0x200
d0217ac0 442
dde16072
PX
443/*
444 * The default fault flags that should be used by most of the
445 * arch-specific page fault handlers.
446 */
447#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
448 FAULT_FLAG_KILLABLE | \
449 FAULT_FLAG_INTERRUPTIBLE)
dde16072 450
4064b982
PX
451/**
452 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
453 *
454 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 455 * the mmap_lock for too long a time when waiting for another condition
4064b982 456 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
457 * mmap_lock in the first round to avoid potential starvation of other
458 * processes that would also want the mmap_lock.
4064b982
PX
459 *
460 * Return: true if the page fault allows retry and this is the first
461 * attempt of the fault handling; false otherwise.
462 */
463static inline bool fault_flag_allow_retry_first(unsigned int flags)
464{
465 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
466 (!(flags & FAULT_FLAG_TRIED));
467}
468
282a8e03
RZ
469#define FAULT_FLAG_TRACE \
470 { FAULT_FLAG_WRITE, "WRITE" }, \
471 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
472 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
473 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
474 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
475 { FAULT_FLAG_TRIED, "TRIED" }, \
476 { FAULT_FLAG_USER, "USER" }, \
477 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
478 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
479 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 480
54cb8821 481/*
d0217ac0 482 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
483 * ->fault function. The vma's ->fault is responsible for returning a bitmask
484 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 485 *
c20cd45e
MH
486 * MM layer fills up gfp_mask for page allocations but fault handler might
487 * alter it if its implementation requires a different allocation context.
488 *
9b4bdd2f 489 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 490 */
d0217ac0 491struct vm_fault {
82b0f8c3 492 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 493 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 494 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 495 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 496 unsigned long address; /* Faulting virtual address */
82b0f8c3 497 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 498 * the 'address' */
a2d58167
DJ
499 pud_t *pud; /* Pointer to pud entry matching
500 * the 'address'
501 */
2994302b 502 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 503
3917048d 504 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 505 struct page *page; /* ->fault handlers should return a
83c54070 506 * page here, unless VM_FAULT_NOPAGE
d0217ac0 507 * is set (which is also implied by
83c54070 508 * VM_FAULT_ERROR).
d0217ac0 509 */
82b0f8c3 510 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
511 pte_t *pte; /* Pointer to pte entry matching
512 * the 'address'. NULL if the page
513 * table hasn't been allocated.
514 */
515 spinlock_t *ptl; /* Page table lock.
516 * Protects pte page table if 'pte'
517 * is not NULL, otherwise pmd.
518 */
7267ec00
KS
519 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
520 * vm_ops->map_pages() calls
521 * alloc_set_pte() from atomic context.
522 * do_fault_around() pre-allocates
523 * page table to avoid allocation from
524 * atomic context.
525 */
54cb8821 526};
1da177e4 527
c791ace1
DJ
528/* page entry size for vm->huge_fault() */
529enum page_entry_size {
530 PE_SIZE_PTE = 0,
531 PE_SIZE_PMD,
532 PE_SIZE_PUD,
533};
534
1da177e4
LT
535/*
536 * These are the virtual MM functions - opening of an area, closing and
537 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 538 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
539 */
540struct vm_operations_struct {
541 void (*open)(struct vm_area_struct * area);
542 void (*close)(struct vm_area_struct * area);
31383c68 543 int (*split)(struct vm_area_struct * area, unsigned long addr);
5477e70a 544 int (*mremap)(struct vm_area_struct * area);
1c8f4220
SJ
545 vm_fault_t (*fault)(struct vm_fault *vmf);
546 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
547 enum page_entry_size pe_size);
82b0f8c3 548 void (*map_pages)(struct vm_fault *vmf,
bae473a4 549 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 550 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
551
552 /* notification that a previously read-only page is about to become
553 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 554 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 555
dd906184 556 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 557 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 558
28b2ee20
RR
559 /* called by access_process_vm when get_user_pages() fails, typically
560 * for use by special VMAs that can switch between memory and hardware
561 */
562 int (*access)(struct vm_area_struct *vma, unsigned long addr,
563 void *buf, int len, int write);
78d683e8
AL
564
565 /* Called by the /proc/PID/maps code to ask the vma whether it
566 * has a special name. Returning non-NULL will also cause this
567 * vma to be dumped unconditionally. */
568 const char *(*name)(struct vm_area_struct *vma);
569
1da177e4 570#ifdef CONFIG_NUMA
a6020ed7
LS
571 /*
572 * set_policy() op must add a reference to any non-NULL @new mempolicy
573 * to hold the policy upon return. Caller should pass NULL @new to
574 * remove a policy and fall back to surrounding context--i.e. do not
575 * install a MPOL_DEFAULT policy, nor the task or system default
576 * mempolicy.
577 */
1da177e4 578 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
579
580 /*
581 * get_policy() op must add reference [mpol_get()] to any policy at
582 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
583 * in mm/mempolicy.c will do this automatically.
584 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 585 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
586 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
587 * must return NULL--i.e., do not "fallback" to task or system default
588 * policy.
589 */
1da177e4
LT
590 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
591 unsigned long addr);
592#endif
667a0a06
DV
593 /*
594 * Called by vm_normal_page() for special PTEs to find the
595 * page for @addr. This is useful if the default behavior
596 * (using pte_page()) would not find the correct page.
597 */
598 struct page *(*find_special_page)(struct vm_area_struct *vma,
599 unsigned long addr);
1da177e4
LT
600};
601
027232da
KS
602static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
603{
bfd40eaf
KS
604 static const struct vm_operations_struct dummy_vm_ops = {};
605
a670468f 606 memset(vma, 0, sizeof(*vma));
027232da 607 vma->vm_mm = mm;
bfd40eaf 608 vma->vm_ops = &dummy_vm_ops;
027232da
KS
609 INIT_LIST_HEAD(&vma->anon_vma_chain);
610}
611
bfd40eaf
KS
612static inline void vma_set_anonymous(struct vm_area_struct *vma)
613{
614 vma->vm_ops = NULL;
615}
616
43675e6f
YS
617static inline bool vma_is_anonymous(struct vm_area_struct *vma)
618{
619 return !vma->vm_ops;
620}
621
222100ee
AK
622static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
623{
624 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
625
626 if (!maybe_stack)
627 return false;
628
629 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
630 VM_STACK_INCOMPLETE_SETUP)
631 return true;
632
633 return false;
634}
635
7969f226
AK
636static inline bool vma_is_foreign(struct vm_area_struct *vma)
637{
638 if (!current->mm)
639 return true;
640
641 if (current->mm != vma->vm_mm)
642 return true;
643
644 return false;
645}
3122e80e
AK
646
647static inline bool vma_is_accessible(struct vm_area_struct *vma)
648{
6cb4d9a2 649 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
650}
651
43675e6f
YS
652#ifdef CONFIG_SHMEM
653/*
654 * The vma_is_shmem is not inline because it is used only by slow
655 * paths in userfault.
656 */
657bool vma_is_shmem(struct vm_area_struct *vma);
658#else
659static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
660#endif
661
662int vma_is_stack_for_current(struct vm_area_struct *vma);
663
8b11ec1b
LT
664/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
665#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
666
1da177e4
LT
667struct mmu_gather;
668struct inode;
669
1da177e4
LT
670/*
671 * FIXME: take this include out, include page-flags.h in
672 * files which need it (119 of them)
673 */
674#include <linux/page-flags.h>
71e3aac0 675#include <linux/huge_mm.h>
1da177e4
LT
676
677/*
678 * Methods to modify the page usage count.
679 *
680 * What counts for a page usage:
681 * - cache mapping (page->mapping)
682 * - private data (page->private)
683 * - page mapped in a task's page tables, each mapping
684 * is counted separately
685 *
686 * Also, many kernel routines increase the page count before a critical
687 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
688 */
689
690/*
da6052f7 691 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 692 */
7c8ee9a8
NP
693static inline int put_page_testzero(struct page *page)
694{
fe896d18
JK
695 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
696 return page_ref_dec_and_test(page);
7c8ee9a8 697}
1da177e4
LT
698
699/*
7c8ee9a8
NP
700 * Try to grab a ref unless the page has a refcount of zero, return false if
701 * that is the case.
8e0861fa
AK
702 * This can be called when MMU is off so it must not access
703 * any of the virtual mappings.
1da177e4 704 */
7c8ee9a8
NP
705static inline int get_page_unless_zero(struct page *page)
706{
fe896d18 707 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 708}
1da177e4 709
53df8fdc 710extern int page_is_ram(unsigned long pfn);
124fe20d
DW
711
712enum {
713 REGION_INTERSECTS,
714 REGION_DISJOINT,
715 REGION_MIXED,
716};
717
1c29f25b
TK
718int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
719 unsigned long desc);
53df8fdc 720
48667e7a 721/* Support for virtually mapped pages */
b3bdda02
CL
722struct page *vmalloc_to_page(const void *addr);
723unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 724
0738c4bb
PM
725/*
726 * Determine if an address is within the vmalloc range
727 *
728 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
729 * is no special casing required.
730 */
9bd3bb67
AK
731
732#ifndef is_ioremap_addr
733#define is_ioremap_addr(x) is_vmalloc_addr(x)
734#endif
735
81ac3ad9 736#ifdef CONFIG_MMU
186525bd 737extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
738extern int is_vmalloc_or_module_addr(const void *x);
739#else
186525bd
IM
740static inline bool is_vmalloc_addr(const void *x)
741{
742 return false;
743}
934831d0 744static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
745{
746 return 0;
747}
748#endif
9e2779fa 749
a7c3e901
MH
750extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
751static inline void *kvmalloc(size_t size, gfp_t flags)
752{
753 return kvmalloc_node(size, flags, NUMA_NO_NODE);
754}
755static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
756{
757 return kvmalloc_node(size, flags | __GFP_ZERO, node);
758}
759static inline void *kvzalloc(size_t size, gfp_t flags)
760{
761 return kvmalloc(size, flags | __GFP_ZERO);
762}
763
752ade68
MH
764static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
765{
3b3b1a29
KC
766 size_t bytes;
767
768 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
769 return NULL;
770
3b3b1a29 771 return kvmalloc(bytes, flags);
752ade68
MH
772}
773
1c542f38
KC
774static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
775{
776 return kvmalloc_array(n, size, flags | __GFP_ZERO);
777}
778
39f1f78d 779extern void kvfree(const void *addr);
d4eaa283 780extern void kvfree_sensitive(const void *addr, size_t len);
39f1f78d 781
6dc5ea16
JH
782static inline int head_mapcount(struct page *head)
783{
784 return atomic_read(compound_mapcount_ptr(head)) + 1;
785}
786
6988f31d
KK
787/*
788 * Mapcount of compound page as a whole, does not include mapped sub-pages.
789 *
790 * Must be called only for compound pages or any their tail sub-pages.
791 */
53f9263b
KS
792static inline int compound_mapcount(struct page *page)
793{
5f527c2b 794 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 795 page = compound_head(page);
6dc5ea16 796 return head_mapcount(page);
53f9263b
KS
797}
798
70b50f94
AA
799/*
800 * The atomic page->_mapcount, starts from -1: so that transitions
801 * both from it and to it can be tracked, using atomic_inc_and_test
802 * and atomic_add_negative(-1).
803 */
22b751c3 804static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
805{
806 atomic_set(&(page)->_mapcount, -1);
807}
808
b20ce5e0
KS
809int __page_mapcount(struct page *page);
810
6988f31d
KK
811/*
812 * Mapcount of 0-order page; when compound sub-page, includes
813 * compound_mapcount().
814 *
815 * Result is undefined for pages which cannot be mapped into userspace.
816 * For example SLAB or special types of pages. See function page_has_type().
817 * They use this place in struct page differently.
818 */
70b50f94
AA
819static inline int page_mapcount(struct page *page)
820{
b20ce5e0
KS
821 if (unlikely(PageCompound(page)))
822 return __page_mapcount(page);
823 return atomic_read(&page->_mapcount) + 1;
824}
825
826#ifdef CONFIG_TRANSPARENT_HUGEPAGE
827int total_mapcount(struct page *page);
6d0a07ed 828int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
829#else
830static inline int total_mapcount(struct page *page)
831{
832 return page_mapcount(page);
70b50f94 833}
6d0a07ed
AA
834static inline int page_trans_huge_mapcount(struct page *page,
835 int *total_mapcount)
836{
837 int mapcount = page_mapcount(page);
838 if (total_mapcount)
839 *total_mapcount = mapcount;
840 return mapcount;
841}
b20ce5e0 842#endif
70b50f94 843
b49af68f
CL
844static inline struct page *virt_to_head_page(const void *x)
845{
846 struct page *page = virt_to_page(x);
ccaafd7f 847
1d798ca3 848 return compound_head(page);
b49af68f
CL
849}
850
ddc58f27
KS
851void __put_page(struct page *page);
852
1d7ea732 853void put_pages_list(struct list_head *pages);
1da177e4 854
8dfcc9ba 855void split_page(struct page *page, unsigned int order);
8dfcc9ba 856
33f2ef89
AW
857/*
858 * Compound pages have a destructor function. Provide a
859 * prototype for that function and accessor functions.
f1e61557 860 * These are _only_ valid on the head of a compound page.
33f2ef89 861 */
f1e61557
KS
862typedef void compound_page_dtor(struct page *);
863
864/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
865enum compound_dtor_id {
866 NULL_COMPOUND_DTOR,
867 COMPOUND_PAGE_DTOR,
868#ifdef CONFIG_HUGETLB_PAGE
869 HUGETLB_PAGE_DTOR,
9a982250
KS
870#endif
871#ifdef CONFIG_TRANSPARENT_HUGEPAGE
872 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
873#endif
874 NR_COMPOUND_DTORS,
875};
ae70eddd 876extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
877
878static inline void set_compound_page_dtor(struct page *page,
f1e61557 879 enum compound_dtor_id compound_dtor)
33f2ef89 880{
f1e61557
KS
881 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
882 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
883}
884
ff45fc3c 885static inline void destroy_compound_page(struct page *page)
33f2ef89 886{
f1e61557 887 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 888 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
889}
890
d00181b9 891static inline unsigned int compound_order(struct page *page)
d85f3385 892{
6d777953 893 if (!PageHead(page))
d85f3385 894 return 0;
e4b294c2 895 return page[1].compound_order;
d85f3385
CL
896}
897
47e29d32
JH
898static inline bool hpage_pincount_available(struct page *page)
899{
900 /*
901 * Can the page->hpage_pinned_refcount field be used? That field is in
902 * the 3rd page of the compound page, so the smallest (2-page) compound
903 * pages cannot support it.
904 */
905 page = compound_head(page);
906 return PageCompound(page) && compound_order(page) > 1;
907}
908
6dc5ea16
JH
909static inline int head_pincount(struct page *head)
910{
911 return atomic_read(compound_pincount_ptr(head));
912}
913
47e29d32
JH
914static inline int compound_pincount(struct page *page)
915{
916 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
917 page = compound_head(page);
6dc5ea16 918 return head_pincount(page);
47e29d32
JH
919}
920
f1e61557 921static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 922{
e4b294c2 923 page[1].compound_order = order;
d85f3385
CL
924}
925
d8c6546b
MWO
926/* Returns the number of pages in this potentially compound page. */
927static inline unsigned long compound_nr(struct page *page)
928{
929 return 1UL << compound_order(page);
930}
931
a50b854e
MWO
932/* Returns the number of bytes in this potentially compound page. */
933static inline unsigned long page_size(struct page *page)
934{
935 return PAGE_SIZE << compound_order(page);
936}
937
94ad9338
MWO
938/* Returns the number of bits needed for the number of bytes in a page */
939static inline unsigned int page_shift(struct page *page)
940{
941 return PAGE_SHIFT + compound_order(page);
942}
943
9a982250
KS
944void free_compound_page(struct page *page);
945
3dece370 946#ifdef CONFIG_MMU
14fd403f
AA
947/*
948 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
949 * servicing faults for write access. In the normal case, do always want
950 * pte_mkwrite. But get_user_pages can cause write faults for mappings
951 * that do not have writing enabled, when used by access_process_vm.
952 */
953static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
954{
955 if (likely(vma->vm_flags & VM_WRITE))
956 pte = pte_mkwrite(pte);
957 return pte;
958}
8c6e50b0 959
9d82c694 960vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
2b740303
SJ
961vm_fault_t finish_fault(struct vm_fault *vmf);
962vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 963#endif
14fd403f 964
1da177e4
LT
965/*
966 * Multiple processes may "see" the same page. E.g. for untouched
967 * mappings of /dev/null, all processes see the same page full of
968 * zeroes, and text pages of executables and shared libraries have
969 * only one copy in memory, at most, normally.
970 *
971 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
972 * page_count() == 0 means the page is free. page->lru is then used for
973 * freelist management in the buddy allocator.
da6052f7 974 * page_count() > 0 means the page has been allocated.
1da177e4 975 *
da6052f7
NP
976 * Pages are allocated by the slab allocator in order to provide memory
977 * to kmalloc and kmem_cache_alloc. In this case, the management of the
978 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
979 * unless a particular usage is carefully commented. (the responsibility of
980 * freeing the kmalloc memory is the caller's, of course).
1da177e4 981 *
da6052f7
NP
982 * A page may be used by anyone else who does a __get_free_page().
983 * In this case, page_count still tracks the references, and should only
984 * be used through the normal accessor functions. The top bits of page->flags
985 * and page->virtual store page management information, but all other fields
986 * are unused and could be used privately, carefully. The management of this
987 * page is the responsibility of the one who allocated it, and those who have
988 * subsequently been given references to it.
989 *
990 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
991 * managed by the Linux memory manager: I/O, buffers, swapping etc.
992 * The following discussion applies only to them.
993 *
da6052f7
NP
994 * A pagecache page contains an opaque `private' member, which belongs to the
995 * page's address_space. Usually, this is the address of a circular list of
996 * the page's disk buffers. PG_private must be set to tell the VM to call
997 * into the filesystem to release these pages.
1da177e4 998 *
da6052f7
NP
999 * A page may belong to an inode's memory mapping. In this case, page->mapping
1000 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1001 * in units of PAGE_SIZE.
1da177e4 1002 *
da6052f7
NP
1003 * If pagecache pages are not associated with an inode, they are said to be
1004 * anonymous pages. These may become associated with the swapcache, and in that
1005 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1006 *
da6052f7
NP
1007 * In either case (swapcache or inode backed), the pagecache itself holds one
1008 * reference to the page. Setting PG_private should also increment the
1009 * refcount. The each user mapping also has a reference to the page.
1da177e4 1010 *
da6052f7 1011 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1012 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1013 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1014 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1015 *
da6052f7 1016 * All pagecache pages may be subject to I/O:
1da177e4
LT
1017 * - inode pages may need to be read from disk,
1018 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1019 * to be written back to the inode on disk,
1020 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1021 * modified may need to be swapped out to swap space and (later) to be read
1022 * back into memory.
1da177e4
LT
1023 */
1024
1025/*
1026 * The zone field is never updated after free_area_init_core()
1027 * sets it, so none of the operations on it need to be atomic.
1da177e4 1028 */
348f8b6c 1029
90572890 1030/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1031#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1032#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1033#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1034#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1035#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1036
348f8b6c 1037/*
25985edc 1038 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1039 * sections we define the shift as 0; that plus a 0 mask ensures
1040 * the compiler will optimise away reference to them.
1041 */
d41dee36
AW
1042#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1043#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1044#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1045#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1046#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1047
bce54bbf
WD
1048/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1049#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1050#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1051#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1052 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1053#else
89689ae7 1054#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1055#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1056 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1057#endif
1058
bd8029b6 1059#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1060
d41dee36
AW
1061#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1062#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1063#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1064#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1065#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1066#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1067
33dd4e0e 1068static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1069{
348f8b6c 1070 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1071}
1da177e4 1072
260ae3f7
DW
1073#ifdef CONFIG_ZONE_DEVICE
1074static inline bool is_zone_device_page(const struct page *page)
1075{
1076 return page_zonenum(page) == ZONE_DEVICE;
1077}
966cf44f
AD
1078extern void memmap_init_zone_device(struct zone *, unsigned long,
1079 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1080#else
1081static inline bool is_zone_device_page(const struct page *page)
1082{
1083 return false;
1084}
7b2d55d2 1085#endif
5042db43 1086
e7638488 1087#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1088void free_devmap_managed_page(struct page *page);
e7638488 1089DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1090
1091static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1092{
1093 if (!static_branch_unlikely(&devmap_managed_key))
1094 return false;
1095 if (!is_zone_device_page(page))
1096 return false;
1097 switch (page->pgmap->type) {
1098 case MEMORY_DEVICE_PRIVATE:
e7638488 1099 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1100 return true;
1101 default:
1102 break;
1103 }
1104 return false;
1105}
1106
07d80269
JH
1107void put_devmap_managed_page(struct page *page);
1108
e7638488 1109#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1110static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1111{
1112 return false;
1113}
07d80269
JH
1114
1115static inline void put_devmap_managed_page(struct page *page)
1116{
1117}
7588adf8 1118#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1119
6b368cd4
JG
1120static inline bool is_device_private_page(const struct page *page)
1121{
7588adf8
RM
1122 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1123 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1124 is_zone_device_page(page) &&
1125 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1126}
e7638488 1127
52916982
LG
1128static inline bool is_pci_p2pdma_page(const struct page *page)
1129{
7588adf8
RM
1130 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1131 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1132 is_zone_device_page(page) &&
1133 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1134}
7b2d55d2 1135
f958d7b5
LT
1136/* 127: arbitrary random number, small enough to assemble well */
1137#define page_ref_zero_or_close_to_overflow(page) \
1138 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1139
3565fce3
DW
1140static inline void get_page(struct page *page)
1141{
1142 page = compound_head(page);
1143 /*
1144 * Getting a normal page or the head of a compound page
0139aa7b 1145 * requires to already have an elevated page->_refcount.
3565fce3 1146 */
f958d7b5 1147 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1148 page_ref_inc(page);
3565fce3
DW
1149}
1150
3faa52c0
JH
1151bool __must_check try_grab_page(struct page *page, unsigned int flags);
1152
88b1a17d
LT
1153static inline __must_check bool try_get_page(struct page *page)
1154{
1155 page = compound_head(page);
1156 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1157 return false;
fe896d18 1158 page_ref_inc(page);
88b1a17d 1159 return true;
3565fce3
DW
1160}
1161
1162static inline void put_page(struct page *page)
1163{
1164 page = compound_head(page);
1165
7b2d55d2 1166 /*
e7638488
DW
1167 * For devmap managed pages we need to catch refcount transition from
1168 * 2 to 1, when refcount reach one it means the page is free and we
1169 * need to inform the device driver through callback. See
7b2d55d2
JG
1170 * include/linux/memremap.h and HMM for details.
1171 */
07d80269
JH
1172 if (page_is_devmap_managed(page)) {
1173 put_devmap_managed_page(page);
7b2d55d2 1174 return;
07d80269 1175 }
7b2d55d2 1176
3565fce3
DW
1177 if (put_page_testzero(page))
1178 __put_page(page);
3565fce3
DW
1179}
1180
3faa52c0
JH
1181/*
1182 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1183 * the page's refcount so that two separate items are tracked: the original page
1184 * reference count, and also a new count of how many pin_user_pages() calls were
1185 * made against the page. ("gup-pinned" is another term for the latter).
1186 *
1187 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1188 * distinct from normal pages. As such, the unpin_user_page() call (and its
1189 * variants) must be used in order to release gup-pinned pages.
1190 *
1191 * Choice of value:
1192 *
1193 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1194 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1195 * simpler, due to the fact that adding an even power of two to the page
1196 * refcount has the effect of using only the upper N bits, for the code that
1197 * counts up using the bias value. This means that the lower bits are left for
1198 * the exclusive use of the original code that increments and decrements by one
1199 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1200 *
3faa52c0
JH
1201 * Of course, once the lower bits overflow into the upper bits (and this is
1202 * OK, because subtraction recovers the original values), then visual inspection
1203 * no longer suffices to directly view the separate counts. However, for normal
1204 * applications that don't have huge page reference counts, this won't be an
1205 * issue.
fc1d8e7c 1206 *
3faa52c0
JH
1207 * Locking: the lockless algorithm described in page_cache_get_speculative()
1208 * and page_cache_gup_pin_speculative() provides safe operation for
1209 * get_user_pages and page_mkclean and other calls that race to set up page
1210 * table entries.
fc1d8e7c 1211 */
3faa52c0 1212#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1213
3faa52c0 1214void unpin_user_page(struct page *page);
f1f6a7dd
JH
1215void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1216 bool make_dirty);
f1f6a7dd 1217void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1218
3faa52c0
JH
1219/**
1220 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1221 *
1222 * This function checks if a page has been pinned via a call to
1223 * pin_user_pages*().
1224 *
1225 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1226 * because it means "definitely not pinned for DMA", but true means "probably
1227 * pinned for DMA, but possibly a false positive due to having at least
1228 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1229 *
1230 * False positives are OK, because: a) it's unlikely for a page to get that many
1231 * refcounts, and b) all the callers of this routine are expected to be able to
1232 * deal gracefully with a false positive.
1233 *
47e29d32
JH
1234 * For huge pages, the result will be exactly correct. That's because we have
1235 * more tracking data available: the 3rd struct page in the compound page is
1236 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1237 * scheme).
1238 *
72ef5e52 1239 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0
JH
1240 *
1241 * @page: pointer to page to be queried.
1242 * @Return: True, if it is likely that the page has been "dma-pinned".
1243 * False, if the page is definitely not dma-pinned.
1244 */
1245static inline bool page_maybe_dma_pinned(struct page *page)
1246{
47e29d32
JH
1247 if (hpage_pincount_available(page))
1248 return compound_pincount(page) > 0;
1249
3faa52c0
JH
1250 /*
1251 * page_ref_count() is signed. If that refcount overflows, then
1252 * page_ref_count() returns a negative value, and callers will avoid
1253 * further incrementing the refcount.
1254 *
1255 * Here, for that overflow case, use the signed bit to count a little
1256 * bit higher via unsigned math, and thus still get an accurate result.
1257 */
1258 return ((unsigned int)page_ref_count(compound_head(page))) >=
1259 GUP_PIN_COUNTING_BIAS;
1260}
1261
9127ab4f
CS
1262#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1263#define SECTION_IN_PAGE_FLAGS
1264#endif
1265
89689ae7 1266/*
7a8010cd
VB
1267 * The identification function is mainly used by the buddy allocator for
1268 * determining if two pages could be buddies. We are not really identifying
1269 * the zone since we could be using the section number id if we do not have
1270 * node id available in page flags.
1271 * We only guarantee that it will return the same value for two combinable
1272 * pages in a zone.
89689ae7 1273 */
cb2b95e1
AW
1274static inline int page_zone_id(struct page *page)
1275{
89689ae7 1276 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1277}
1278
89689ae7 1279#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1280extern int page_to_nid(const struct page *page);
89689ae7 1281#else
33dd4e0e 1282static inline int page_to_nid(const struct page *page)
d41dee36 1283{
f165b378
PT
1284 struct page *p = (struct page *)page;
1285
1286 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1287}
89689ae7
CL
1288#endif
1289
57e0a030 1290#ifdef CONFIG_NUMA_BALANCING
90572890 1291static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1292{
90572890 1293 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1294}
1295
90572890 1296static inline int cpupid_to_pid(int cpupid)
57e0a030 1297{
90572890 1298 return cpupid & LAST__PID_MASK;
57e0a030 1299}
b795854b 1300
90572890 1301static inline int cpupid_to_cpu(int cpupid)
b795854b 1302{
90572890 1303 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1304}
1305
90572890 1306static inline int cpupid_to_nid(int cpupid)
b795854b 1307{
90572890 1308 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1309}
1310
90572890 1311static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1312{
90572890 1313 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1314}
1315
90572890 1316static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1317{
90572890 1318 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1319}
1320
8c8a743c
PZ
1321static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1322{
1323 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1324}
1325
1326#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1327#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1328static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1329{
1ae71d03 1330 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1331}
90572890
PZ
1332
1333static inline int page_cpupid_last(struct page *page)
1334{
1335 return page->_last_cpupid;
1336}
1337static inline void page_cpupid_reset_last(struct page *page)
b795854b 1338{
1ae71d03 1339 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1340}
1341#else
90572890 1342static inline int page_cpupid_last(struct page *page)
75980e97 1343{
90572890 1344 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1345}
1346
90572890 1347extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1348
90572890 1349static inline void page_cpupid_reset_last(struct page *page)
75980e97 1350{
09940a4f 1351 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1352}
90572890
PZ
1353#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1354#else /* !CONFIG_NUMA_BALANCING */
1355static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1356{
90572890 1357 return page_to_nid(page); /* XXX */
57e0a030
MG
1358}
1359
90572890 1360static inline int page_cpupid_last(struct page *page)
57e0a030 1361{
90572890 1362 return page_to_nid(page); /* XXX */
57e0a030
MG
1363}
1364
90572890 1365static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1366{
1367 return -1;
1368}
1369
90572890 1370static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1371{
1372 return -1;
1373}
1374
90572890 1375static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1376{
1377 return -1;
1378}
1379
90572890
PZ
1380static inline int cpu_pid_to_cpupid(int nid, int pid)
1381{
1382 return -1;
1383}
1384
1385static inline bool cpupid_pid_unset(int cpupid)
b795854b 1386{
2b787449 1387 return true;
b795854b
MG
1388}
1389
90572890 1390static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1391{
1392}
8c8a743c
PZ
1393
1394static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1395{
1396 return false;
1397}
90572890 1398#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1399
2813b9c0
AK
1400#ifdef CONFIG_KASAN_SW_TAGS
1401static inline u8 page_kasan_tag(const struct page *page)
1402{
1403 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1404}
1405
1406static inline void page_kasan_tag_set(struct page *page, u8 tag)
1407{
1408 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1409 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1410}
1411
1412static inline void page_kasan_tag_reset(struct page *page)
1413{
1414 page_kasan_tag_set(page, 0xff);
1415}
1416#else
1417static inline u8 page_kasan_tag(const struct page *page)
1418{
1419 return 0xff;
1420}
1421
1422static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1423static inline void page_kasan_tag_reset(struct page *page) { }
1424#endif
1425
33dd4e0e 1426static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1427{
1428 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1429}
1430
75ef7184
MG
1431static inline pg_data_t *page_pgdat(const struct page *page)
1432{
1433 return NODE_DATA(page_to_nid(page));
1434}
1435
9127ab4f 1436#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1437static inline void set_page_section(struct page *page, unsigned long section)
1438{
1439 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1440 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1441}
1442
aa462abe 1443static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1444{
1445 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1446}
308c05e3 1447#endif
d41dee36 1448
2f1b6248 1449static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1450{
1451 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1452 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1453}
2f1b6248 1454
348f8b6c
DH
1455static inline void set_page_node(struct page *page, unsigned long node)
1456{
1457 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1458 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1459}
89689ae7 1460
2f1b6248 1461static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1462 unsigned long node, unsigned long pfn)
1da177e4 1463{
348f8b6c
DH
1464 set_page_zone(page, zone);
1465 set_page_node(page, node);
9127ab4f 1466#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1467 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1468#endif
1da177e4
LT
1469}
1470
0610c25d
GT
1471#ifdef CONFIG_MEMCG
1472static inline struct mem_cgroup *page_memcg(struct page *page)
1473{
1474 return page->mem_cgroup;
1475}
55779ec7
JW
1476static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1477{
1478 WARN_ON_ONCE(!rcu_read_lock_held());
1479 return READ_ONCE(page->mem_cgroup);
1480}
0610c25d
GT
1481#else
1482static inline struct mem_cgroup *page_memcg(struct page *page)
1483{
1484 return NULL;
1485}
55779ec7
JW
1486static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1487{
1488 WARN_ON_ONCE(!rcu_read_lock_held());
1489 return NULL;
1490}
0610c25d
GT
1491#endif
1492
f6ac2354
CL
1493/*
1494 * Some inline functions in vmstat.h depend on page_zone()
1495 */
1496#include <linux/vmstat.h>
1497
33dd4e0e 1498static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1499{
1dff8083 1500 return page_to_virt(page);
1da177e4
LT
1501}
1502
1503#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1504#define HASHED_PAGE_VIRTUAL
1505#endif
1506
1507#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1508static inline void *page_address(const struct page *page)
1509{
1510 return page->virtual;
1511}
1512static inline void set_page_address(struct page *page, void *address)
1513{
1514 page->virtual = address;
1515}
1da177e4
LT
1516#define page_address_init() do { } while(0)
1517#endif
1518
1519#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1520void *page_address(const struct page *page);
1da177e4
LT
1521void set_page_address(struct page *page, void *virtual);
1522void page_address_init(void);
1523#endif
1524
1525#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1526#define page_address(page) lowmem_page_address(page)
1527#define set_page_address(page, address) do { } while(0)
1528#define page_address_init() do { } while(0)
1529#endif
1530
e39155ea
KS
1531extern void *page_rmapping(struct page *page);
1532extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1533extern struct address_space *page_mapping(struct page *page);
1da177e4 1534
f981c595
MG
1535extern struct address_space *__page_file_mapping(struct page *);
1536
1537static inline
1538struct address_space *page_file_mapping(struct page *page)
1539{
1540 if (unlikely(PageSwapCache(page)))
1541 return __page_file_mapping(page);
1542
1543 return page->mapping;
1544}
1545
f6ab1f7f
HY
1546extern pgoff_t __page_file_index(struct page *page);
1547
1da177e4
LT
1548/*
1549 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1550 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1551 */
1552static inline pgoff_t page_index(struct page *page)
1553{
1554 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1555 return __page_file_index(page);
1da177e4
LT
1556 return page->index;
1557}
1558
1aa8aea5 1559bool page_mapped(struct page *page);
bda807d4 1560struct address_space *page_mapping(struct page *page);
cb9f753a 1561struct address_space *page_mapping_file(struct page *page);
1da177e4 1562
2f064f34
MH
1563/*
1564 * Return true only if the page has been allocated with
1565 * ALLOC_NO_WATERMARKS and the low watermark was not
1566 * met implying that the system is under some pressure.
1567 */
1568static inline bool page_is_pfmemalloc(struct page *page)
1569{
1570 /*
1571 * Page index cannot be this large so this must be
1572 * a pfmemalloc page.
1573 */
1574 return page->index == -1UL;
1575}
1576
1577/*
1578 * Only to be called by the page allocator on a freshly allocated
1579 * page.
1580 */
1581static inline void set_page_pfmemalloc(struct page *page)
1582{
1583 page->index = -1UL;
1584}
1585
1586static inline void clear_page_pfmemalloc(struct page *page)
1587{
1588 page->index = 0;
1589}
1590
1c0fe6e3
NP
1591/*
1592 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1593 */
1594extern void pagefault_out_of_memory(void);
1595
1da177e4
LT
1596#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1597
ddd588b5 1598/*
7bf02ea2 1599 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1600 * various contexts.
1601 */
4b59e6c4 1602#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1603
9af744d7 1604extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1605
710ec38b 1606#ifdef CONFIG_MMU
7f43add4 1607extern bool can_do_mlock(void);
710ec38b
AB
1608#else
1609static inline bool can_do_mlock(void) { return false; }
1610#endif
1da177e4
LT
1611extern int user_shm_lock(size_t, struct user_struct *);
1612extern void user_shm_unlock(size_t, struct user_struct *);
1613
1614/*
1615 * Parameter block passed down to zap_pte_range in exceptional cases.
1616 */
1617struct zap_details {
1da177e4
LT
1618 struct address_space *check_mapping; /* Check page->mapping if set */
1619 pgoff_t first_index; /* Lowest page->index to unmap */
1620 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1621};
1622
25b2995a
CH
1623struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1624 pte_t pte);
28093f9f
GS
1625struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1626 pmd_t pmd);
7e675137 1627
27d036e3
LR
1628void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1629 unsigned long size);
14f5ff5d 1630void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1631 unsigned long size);
4f74d2c8
LT
1632void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1633 unsigned long start, unsigned long end);
e6473092 1634
ac46d4f3
JG
1635struct mmu_notifier_range;
1636
42b77728 1637void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1638 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1639int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1640 struct vm_area_struct *vma);
09796395 1641int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
1642 struct mmu_notifier_range *range,
1643 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1644int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1645 unsigned long *pfn);
d87fe660 1646int follow_phys(struct vm_area_struct *vma, unsigned long address,
1647 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1648int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1649 void *buf, int len, int write);
1da177e4 1650
7caef267 1651extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1652extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1653void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1654void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1655int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1656int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1657int invalidate_inode_page(struct page *page);
1658
7ee1dd3f 1659#ifdef CONFIG_MMU
2b740303
SJ
1660extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1661 unsigned long address, unsigned int flags);
5c723ba5 1662extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1663 unsigned long address, unsigned int fault_flags,
1664 bool *unlocked);
977fbdcd
MW
1665void unmap_mapping_pages(struct address_space *mapping,
1666 pgoff_t start, pgoff_t nr, bool even_cows);
1667void unmap_mapping_range(struct address_space *mapping,
1668 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1669#else
2b740303 1670static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
dcddffd4 1671 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1672{
1673 /* should never happen if there's no MMU */
1674 BUG();
1675 return VM_FAULT_SIGBUS;
1676}
5c723ba5
PZ
1677static inline int fixup_user_fault(struct task_struct *tsk,
1678 struct mm_struct *mm, unsigned long address,
4a9e1cda 1679 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1680{
1681 /* should never happen if there's no MMU */
1682 BUG();
1683 return -EFAULT;
1684}
977fbdcd
MW
1685static inline void unmap_mapping_pages(struct address_space *mapping,
1686 pgoff_t start, pgoff_t nr, bool even_cows) { }
1687static inline void unmap_mapping_range(struct address_space *mapping,
1688 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1689#endif
f33ea7f4 1690
977fbdcd
MW
1691static inline void unmap_shared_mapping_range(struct address_space *mapping,
1692 loff_t const holebegin, loff_t const holelen)
1693{
1694 unmap_mapping_range(mapping, holebegin, holelen, 0);
1695}
1696
1697extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1698 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1699extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1700 void *buf, int len, unsigned int gup_flags);
84d77d3f
EB
1701extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1702 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1da177e4 1703
1e987790
DH
1704long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1705 unsigned long start, unsigned long nr_pages,
9beae1ea 1706 unsigned int gup_flags, struct page **pages,
5b56d49f 1707 struct vm_area_struct **vmas, int *locked);
eddb1c22
JH
1708long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1709 unsigned long start, unsigned long nr_pages,
1710 unsigned int gup_flags, struct page **pages,
1711 struct vm_area_struct **vmas, int *locked);
c12d2da5 1712long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1713 unsigned int gup_flags, struct page **pages,
cde70140 1714 struct vm_area_struct **vmas);
eddb1c22
JH
1715long pin_user_pages(unsigned long start, unsigned long nr_pages,
1716 unsigned int gup_flags, struct page **pages,
1717 struct vm_area_struct **vmas);
c12d2da5 1718long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1719 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1720long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1721 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1722long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1723 struct page **pages, unsigned int gup_flags);
91429023
JH
1724long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1725 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1726
73b0140b
IW
1727int get_user_pages_fast(unsigned long start, int nr_pages,
1728 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1729int pin_user_pages_fast(unsigned long start, int nr_pages,
1730 unsigned int gup_flags, struct page **pages);
8025e5dd 1731
79eb597c
DJ
1732int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1733int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1734 struct task_struct *task, bool bypass_rlim);
1735
8025e5dd
JK
1736/* Container for pinned pfns / pages */
1737struct frame_vector {
1738 unsigned int nr_allocated; /* Number of frames we have space for */
1739 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1740 bool got_ref; /* Did we pin pages by getting page ref? */
1741 bool is_pfns; /* Does array contain pages or pfns? */
57e86fa1 1742 void *ptrs[]; /* Array of pinned pfns / pages. Use
8025e5dd
JK
1743 * pfns_vector_pages() or pfns_vector_pfns()
1744 * for access */
1745};
1746
1747struct frame_vector *frame_vector_create(unsigned int nr_frames);
1748void frame_vector_destroy(struct frame_vector *vec);
1749int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1750 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1751void put_vaddr_frames(struct frame_vector *vec);
1752int frame_vector_to_pages(struct frame_vector *vec);
1753void frame_vector_to_pfns(struct frame_vector *vec);
1754
1755static inline unsigned int frame_vector_count(struct frame_vector *vec)
1756{
1757 return vec->nr_frames;
1758}
1759
1760static inline struct page **frame_vector_pages(struct frame_vector *vec)
1761{
1762 if (vec->is_pfns) {
1763 int err = frame_vector_to_pages(vec);
1764
1765 if (err)
1766 return ERR_PTR(err);
1767 }
1768 return (struct page **)(vec->ptrs);
1769}
1770
1771static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1772{
1773 if (!vec->is_pfns)
1774 frame_vector_to_pfns(vec);
1775 return (unsigned long *)(vec->ptrs);
1776}
1777
18022c5d
MG
1778struct kvec;
1779int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1780 struct page **pages);
1781int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1782struct page *get_dump_page(unsigned long addr);
1da177e4 1783
cf9a2ae8 1784extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1785extern void do_invalidatepage(struct page *page, unsigned int offset,
1786 unsigned int length);
cf9a2ae8 1787
f82b3764 1788void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1789int __set_page_dirty_nobuffers(struct page *page);
76719325 1790int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1791int redirty_page_for_writepage(struct writeback_control *wbc,
1792 struct page *page);
62cccb8c 1793void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1794void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1795 struct bdi_writeback *wb);
b3c97528 1796int set_page_dirty(struct page *page);
1da177e4 1797int set_page_dirty_lock(struct page *page);
736304f3
JK
1798void __cancel_dirty_page(struct page *page);
1799static inline void cancel_dirty_page(struct page *page)
1800{
1801 /* Avoid atomic ops, locking, etc. when not actually needed. */
1802 if (PageDirty(page))
1803 __cancel_dirty_page(page);
1804}
1da177e4 1805int clear_page_dirty_for_io(struct page *page);
b9ea2515 1806
a9090253 1807int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1808
b6a2fea3
OW
1809extern unsigned long move_page_tables(struct vm_area_struct *vma,
1810 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1811 unsigned long new_addr, unsigned long len,
1812 bool need_rmap_locks);
58705444
PX
1813
1814/*
1815 * Flags used by change_protection(). For now we make it a bitmap so
1816 * that we can pass in multiple flags just like parameters. However
1817 * for now all the callers are only use one of the flags at the same
1818 * time.
1819 */
1820/* Whether we should allow dirty bit accounting */
1821#define MM_CP_DIRTY_ACCT (1UL << 0)
1822/* Whether this protection change is for NUMA hints */
1823#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1824/* Whether this change is for write protecting */
1825#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1826#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1827#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1828 MM_CP_UFFD_WP_RESOLVE)
58705444 1829
7da4d641
PZ
1830extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1831 unsigned long end, pgprot_t newprot,
58705444 1832 unsigned long cp_flags);
b6a2fea3
OW
1833extern int mprotect_fixup(struct vm_area_struct *vma,
1834 struct vm_area_struct **pprev, unsigned long start,
1835 unsigned long end, unsigned long newflags);
1da177e4 1836
465a454f
PZ
1837/*
1838 * doesn't attempt to fault and will return short.
1839 */
dadbb612
SJ
1840int get_user_pages_fast_only(unsigned long start, int nr_pages,
1841 unsigned int gup_flags, struct page **pages);
104acc32
JH
1842int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1843 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1844
1845static inline bool get_user_page_fast_only(unsigned long addr,
1846 unsigned int gup_flags, struct page **pagep)
1847{
1848 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1849}
d559db08
KH
1850/*
1851 * per-process(per-mm_struct) statistics.
1852 */
d559db08
KH
1853static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1854{
69c97823
KK
1855 long val = atomic_long_read(&mm->rss_stat.count[member]);
1856
1857#ifdef SPLIT_RSS_COUNTING
1858 /*
1859 * counter is updated in asynchronous manner and may go to minus.
1860 * But it's never be expected number for users.
1861 */
1862 if (val < 0)
1863 val = 0;
172703b0 1864#endif
69c97823
KK
1865 return (unsigned long)val;
1866}
d559db08 1867
e4dcad20 1868void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1869
d559db08
KH
1870static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1871{
b3d1411b
JFG
1872 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1873
e4dcad20 1874 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1875}
1876
1877static inline void inc_mm_counter(struct mm_struct *mm, int member)
1878{
b3d1411b
JFG
1879 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1880
e4dcad20 1881 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1882}
1883
1884static inline void dec_mm_counter(struct mm_struct *mm, int member)
1885{
b3d1411b
JFG
1886 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1887
e4dcad20 1888 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1889}
1890
eca56ff9
JM
1891/* Optimized variant when page is already known not to be PageAnon */
1892static inline int mm_counter_file(struct page *page)
1893{
1894 if (PageSwapBacked(page))
1895 return MM_SHMEMPAGES;
1896 return MM_FILEPAGES;
1897}
1898
1899static inline int mm_counter(struct page *page)
1900{
1901 if (PageAnon(page))
1902 return MM_ANONPAGES;
1903 return mm_counter_file(page);
1904}
1905
d559db08
KH
1906static inline unsigned long get_mm_rss(struct mm_struct *mm)
1907{
1908 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1909 get_mm_counter(mm, MM_ANONPAGES) +
1910 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1911}
1912
1913static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1914{
1915 return max(mm->hiwater_rss, get_mm_rss(mm));
1916}
1917
1918static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1919{
1920 return max(mm->hiwater_vm, mm->total_vm);
1921}
1922
1923static inline void update_hiwater_rss(struct mm_struct *mm)
1924{
1925 unsigned long _rss = get_mm_rss(mm);
1926
1927 if ((mm)->hiwater_rss < _rss)
1928 (mm)->hiwater_rss = _rss;
1929}
1930
1931static inline void update_hiwater_vm(struct mm_struct *mm)
1932{
1933 if (mm->hiwater_vm < mm->total_vm)
1934 mm->hiwater_vm = mm->total_vm;
1935}
1936
695f0559
PC
1937static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1938{
1939 mm->hiwater_rss = get_mm_rss(mm);
1940}
1941
d559db08
KH
1942static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1943 struct mm_struct *mm)
1944{
1945 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1946
1947 if (*maxrss < hiwater_rss)
1948 *maxrss = hiwater_rss;
1949}
1950
53bddb4e 1951#if defined(SPLIT_RSS_COUNTING)
05af2e10 1952void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1953#else
05af2e10 1954static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1955{
1956}
1957#endif
465a454f 1958
78e7c5af
AK
1959#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1960static inline int pte_special(pte_t pte)
1961{
1962 return 0;
1963}
1964
1965static inline pte_t pte_mkspecial(pte_t pte)
1966{
1967 return pte;
1968}
1969#endif
1970
17596731 1971#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
1972static inline int pte_devmap(pte_t pte)
1973{
1974 return 0;
1975}
1976#endif
1977
6d2329f8 1978int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1979
25ca1d6c
NK
1980extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1981 spinlock_t **ptl);
1982static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1983 spinlock_t **ptl)
1984{
1985 pte_t *ptep;
1986 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1987 return ptep;
1988}
c9cfcddf 1989
c2febafc
KS
1990#ifdef __PAGETABLE_P4D_FOLDED
1991static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1992 unsigned long address)
1993{
1994 return 0;
1995}
1996#else
1997int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1998#endif
1999
b4e98d9a 2000#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2001static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2002 unsigned long address)
2003{
2004 return 0;
2005}
b4e98d9a
KS
2006static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2007static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2008
5f22df00 2009#else
c2febafc 2010int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2011
b4e98d9a
KS
2012static inline void mm_inc_nr_puds(struct mm_struct *mm)
2013{
6d212db1
MS
2014 if (mm_pud_folded(mm))
2015 return;
af5b0f6a 2016 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2017}
2018
2019static inline void mm_dec_nr_puds(struct mm_struct *mm)
2020{
6d212db1
MS
2021 if (mm_pud_folded(mm))
2022 return;
af5b0f6a 2023 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2024}
5f22df00
NP
2025#endif
2026
2d2f5119 2027#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2028static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2029 unsigned long address)
2030{
2031 return 0;
2032}
dc6c9a35 2033
dc6c9a35
KS
2034static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2035static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2036
5f22df00 2037#else
1bb3630e 2038int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2039
dc6c9a35
KS
2040static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2041{
6d212db1
MS
2042 if (mm_pmd_folded(mm))
2043 return;
af5b0f6a 2044 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2045}
2046
2047static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2048{
6d212db1
MS
2049 if (mm_pmd_folded(mm))
2050 return;
af5b0f6a 2051 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2052}
5f22df00
NP
2053#endif
2054
c4812909 2055#ifdef CONFIG_MMU
af5b0f6a 2056static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2057{
af5b0f6a 2058 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2059}
2060
af5b0f6a 2061static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2062{
af5b0f6a 2063 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2064}
2065
2066static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2067{
af5b0f6a 2068 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2069}
2070
2071static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2072{
af5b0f6a 2073 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2074}
2075#else
c4812909 2076
af5b0f6a
KS
2077static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2078static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2079{
2080 return 0;
2081}
2082
2083static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2084static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2085#endif
2086
4cf58924
JFG
2087int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2088int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2089
f949286c
MR
2090#if defined(CONFIG_MMU)
2091
c2febafc
KS
2092static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2093 unsigned long address)
2094{
2095 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2096 NULL : p4d_offset(pgd, address);
2097}
2098
2099static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2100 unsigned long address)
1da177e4 2101{
c2febafc
KS
2102 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2103 NULL : pud_offset(p4d, address);
1da177e4 2104}
d8626138 2105
1da177e4
LT
2106static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2107{
1bb3630e
HD
2108 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2109 NULL: pmd_offset(pud, address);
1da177e4 2110}
f949286c 2111#endif /* CONFIG_MMU */
1bb3630e 2112
57c1ffce 2113#if USE_SPLIT_PTE_PTLOCKS
597d795a 2114#if ALLOC_SPLIT_PTLOCKS
b35f1819 2115void __init ptlock_cache_init(void);
539edb58
PZ
2116extern bool ptlock_alloc(struct page *page);
2117extern void ptlock_free(struct page *page);
2118
2119static inline spinlock_t *ptlock_ptr(struct page *page)
2120{
2121 return page->ptl;
2122}
597d795a 2123#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2124static inline void ptlock_cache_init(void)
2125{
2126}
2127
49076ec2
KS
2128static inline bool ptlock_alloc(struct page *page)
2129{
49076ec2
KS
2130 return true;
2131}
539edb58 2132
49076ec2
KS
2133static inline void ptlock_free(struct page *page)
2134{
49076ec2
KS
2135}
2136
2137static inline spinlock_t *ptlock_ptr(struct page *page)
2138{
539edb58 2139 return &page->ptl;
49076ec2 2140}
597d795a 2141#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2142
2143static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2144{
2145 return ptlock_ptr(pmd_page(*pmd));
2146}
2147
2148static inline bool ptlock_init(struct page *page)
2149{
2150 /*
2151 * prep_new_page() initialize page->private (and therefore page->ptl)
2152 * with 0. Make sure nobody took it in use in between.
2153 *
2154 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2155 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2156 */
309381fe 2157 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2158 if (!ptlock_alloc(page))
2159 return false;
2160 spin_lock_init(ptlock_ptr(page));
2161 return true;
2162}
2163
57c1ffce 2164#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2165/*
2166 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2167 */
49076ec2
KS
2168static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2169{
2170 return &mm->page_table_lock;
2171}
b35f1819 2172static inline void ptlock_cache_init(void) {}
49076ec2 2173static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2174static inline void ptlock_free(struct page *page) {}
57c1ffce 2175#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2176
b35f1819
KS
2177static inline void pgtable_init(void)
2178{
2179 ptlock_cache_init();
2180 pgtable_cache_init();
2181}
2182
b4ed71f5 2183static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2184{
706874e9
VD
2185 if (!ptlock_init(page))
2186 return false;
1d40a5ea 2187 __SetPageTable(page);
2f569afd 2188 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 2189 return true;
2f569afd
MS
2190}
2191
b4ed71f5 2192static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2193{
9e247bab 2194 ptlock_free(page);
1d40a5ea 2195 __ClearPageTable(page);
2f569afd
MS
2196 dec_zone_page_state(page, NR_PAGETABLE);
2197}
2198
c74df32c
HD
2199#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2200({ \
4c21e2f2 2201 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2202 pte_t *__pte = pte_offset_map(pmd, address); \
2203 *(ptlp) = __ptl; \
2204 spin_lock(__ptl); \
2205 __pte; \
2206})
2207
2208#define pte_unmap_unlock(pte, ptl) do { \
2209 spin_unlock(ptl); \
2210 pte_unmap(pte); \
2211} while (0)
2212
4cf58924 2213#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2214
2215#define pte_alloc_map(mm, pmd, address) \
4cf58924 2216 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2217
c74df32c 2218#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2219 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2220 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2221
1bb3630e 2222#define pte_alloc_kernel(pmd, address) \
4cf58924 2223 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2224 NULL: pte_offset_kernel(pmd, address))
1da177e4 2225
e009bb30
KS
2226#if USE_SPLIT_PMD_PTLOCKS
2227
634391ac
MS
2228static struct page *pmd_to_page(pmd_t *pmd)
2229{
2230 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2231 return virt_to_page((void *)((unsigned long) pmd & mask));
2232}
2233
e009bb30
KS
2234static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2235{
634391ac 2236 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2237}
2238
2239static inline bool pgtable_pmd_page_ctor(struct page *page)
2240{
e009bb30
KS
2241#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2242 page->pmd_huge_pte = NULL;
2243#endif
49076ec2 2244 return ptlock_init(page);
e009bb30
KS
2245}
2246
2247static inline void pgtable_pmd_page_dtor(struct page *page)
2248{
2249#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2250 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2251#endif
49076ec2 2252 ptlock_free(page);
e009bb30
KS
2253}
2254
634391ac 2255#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2256
2257#else
2258
9a86cb7b
KS
2259static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2260{
2261 return &mm->page_table_lock;
2262}
2263
e009bb30
KS
2264static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2265static inline void pgtable_pmd_page_dtor(struct page *page) {}
2266
c389a250 2267#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2268
e009bb30
KS
2269#endif
2270
9a86cb7b
KS
2271static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2272{
2273 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2274 spin_lock(ptl);
2275 return ptl;
2276}
2277
a00cc7d9
MW
2278/*
2279 * No scalability reason to split PUD locks yet, but follow the same pattern
2280 * as the PMD locks to make it easier if we decide to. The VM should not be
2281 * considered ready to switch to split PUD locks yet; there may be places
2282 * which need to be converted from page_table_lock.
2283 */
2284static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2285{
2286 return &mm->page_table_lock;
2287}
2288
2289static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2290{
2291 spinlock_t *ptl = pud_lockptr(mm, pud);
2292
2293 spin_lock(ptl);
2294 return ptl;
2295}
62906027 2296
a00cc7d9 2297extern void __init pagecache_init(void);
bc9331a1 2298extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2299extern void free_initmem(void);
2300
69afade7
JL
2301/*
2302 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2303 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2304 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2305 * Return pages freed into the buddy system.
2306 */
11199692 2307extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2308 int poison, const char *s);
c3d5f5f0 2309
cfa11e08
JL
2310#ifdef CONFIG_HIGHMEM
2311/*
2312 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2313 * and totalram_pages.
2314 */
2315extern void free_highmem_page(struct page *page);
2316#endif
69afade7 2317
c3d5f5f0 2318extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2319extern void mem_init_print_info(const char *str);
69afade7 2320
4b50bcc7 2321extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2322
69afade7
JL
2323/* Free the reserved page into the buddy system, so it gets managed. */
2324static inline void __free_reserved_page(struct page *page)
2325{
2326 ClearPageReserved(page);
2327 init_page_count(page);
2328 __free_page(page);
2329}
2330
2331static inline void free_reserved_page(struct page *page)
2332{
2333 __free_reserved_page(page);
2334 adjust_managed_page_count(page, 1);
2335}
2336
2337static inline void mark_page_reserved(struct page *page)
2338{
2339 SetPageReserved(page);
2340 adjust_managed_page_count(page, -1);
2341}
2342
2343/*
2344 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2345 * The freed pages will be poisoned with pattern "poison" if it's within
2346 * range [0, UCHAR_MAX].
2347 * Return pages freed into the buddy system.
69afade7
JL
2348 */
2349static inline unsigned long free_initmem_default(int poison)
2350{
2351 extern char __init_begin[], __init_end[];
2352
11199692 2353 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2354 poison, "unused kernel");
2355}
2356
7ee3d4e8
JL
2357static inline unsigned long get_num_physpages(void)
2358{
2359 int nid;
2360 unsigned long phys_pages = 0;
2361
2362 for_each_online_node(nid)
2363 phys_pages += node_present_pages(nid);
2364
2365 return phys_pages;
2366}
2367
c713216d 2368/*
3f08a302 2369 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2370 * zones, allocate the backing mem_map and account for memory holes in an
2371 * architecture independent manner.
c713216d
MG
2372 *
2373 * An architecture is expected to register range of page frames backed by
0ee332c1 2374 * physical memory with memblock_add[_node]() before calling
9691a071 2375 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2376 * usage, an architecture is expected to do something like
2377 *
2378 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2379 * max_highmem_pfn};
2380 * for_each_valid_physical_page_range()
0ee332c1 2381 * memblock_add_node(base, size, nid)
9691a071 2382 * free_area_init(max_zone_pfns);
c713216d 2383 */
9691a071 2384void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2385unsigned long node_map_pfn_alignment(void);
32996250
YL
2386unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2387 unsigned long end_pfn);
c713216d
MG
2388extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2389 unsigned long end_pfn);
2390extern void get_pfn_range_for_nid(unsigned int nid,
2391 unsigned long *start_pfn, unsigned long *end_pfn);
2392extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2393
3f08a302 2394#ifndef CONFIG_NEED_MULTIPLE_NODES
6f24fbd3 2395static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2396{
2397 return 0;
2398}
2399#else
2400/* please see mm/page_alloc.c */
2401extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 2402/* there is a per-arch backend function. */
8a942fde
MG
2403extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2404 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
2405#endif
2406
0e0b864e 2407extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7
CH
2408extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2409 enum memmap_context, struct vmem_altmap *);
bc75d33f 2410extern void setup_per_zone_wmarks(void);
1b79acc9 2411extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2412extern void mem_init(void);
8feae131 2413extern void __init mmap_init(void);
9af744d7 2414extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2415extern long si_mem_available(void);
1da177e4
LT
2416extern void si_meminfo(struct sysinfo * val);
2417extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2418#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2419extern unsigned long arch_reserved_kernel_pages(void);
2420#endif
1da177e4 2421
a8e99259
MH
2422extern __printf(3, 4)
2423void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2424
e7c8d5c9 2425extern void setup_per_cpu_pageset(void);
e7c8d5c9 2426
75f7ad8e
PS
2427/* page_alloc.c */
2428extern int min_free_kbytes;
1c30844d 2429extern int watermark_boost_factor;
795ae7a0 2430extern int watermark_scale_factor;
51930df5 2431extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2432
8feae131 2433/* nommu.c */
33e5d769 2434extern atomic_long_t mmap_pages_allocated;
7e660872 2435extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2436
6b2dbba8 2437/* interval_tree.c */
6b2dbba8 2438void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2439 struct rb_root_cached *root);
9826a516
ML
2440void vma_interval_tree_insert_after(struct vm_area_struct *node,
2441 struct vm_area_struct *prev,
f808c13f 2442 struct rb_root_cached *root);
6b2dbba8 2443void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2444 struct rb_root_cached *root);
2445struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2446 unsigned long start, unsigned long last);
2447struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2448 unsigned long start, unsigned long last);
2449
2450#define vma_interval_tree_foreach(vma, root, start, last) \
2451 for (vma = vma_interval_tree_iter_first(root, start, last); \
2452 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2453
bf181b9f 2454void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2455 struct rb_root_cached *root);
bf181b9f 2456void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2457 struct rb_root_cached *root);
2458struct anon_vma_chain *
2459anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2460 unsigned long start, unsigned long last);
bf181b9f
ML
2461struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2462 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2463#ifdef CONFIG_DEBUG_VM_RB
2464void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2465#endif
bf181b9f
ML
2466
2467#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2468 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2469 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2470
1da177e4 2471/* mmap.c */
34b4e4aa 2472extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2473extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2474 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2475 struct vm_area_struct *expand);
2476static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2477 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2478{
2479 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2480}
1da177e4
LT
2481extern struct vm_area_struct *vma_merge(struct mm_struct *,
2482 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2483 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2484 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2485extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2486extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2487 unsigned long addr, int new_below);
2488extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2489 unsigned long addr, int new_below);
1da177e4
LT
2490extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2491extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2492 struct rb_node **, struct rb_node *);
a8fb5618 2493extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2494extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2495 unsigned long addr, unsigned long len, pgoff_t pgoff,
2496 bool *need_rmap_locks);
1da177e4 2497extern void exit_mmap(struct mm_struct *);
925d1c40 2498
9c599024
CG
2499static inline int check_data_rlimit(unsigned long rlim,
2500 unsigned long new,
2501 unsigned long start,
2502 unsigned long end_data,
2503 unsigned long start_data)
2504{
2505 if (rlim < RLIM_INFINITY) {
2506 if (((new - start) + (end_data - start_data)) > rlim)
2507 return -ENOSPC;
2508 }
2509
2510 return 0;
2511}
2512
7906d00c
AA
2513extern int mm_take_all_locks(struct mm_struct *mm);
2514extern void mm_drop_all_locks(struct mm_struct *mm);
2515
38646013
JS
2516extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2517extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2518extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2519
84638335
KK
2520extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2521extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2522
2eefd878
DS
2523extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2524 const struct vm_special_mapping *sm);
3935ed6a
SS
2525extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2526 unsigned long addr, unsigned long len,
a62c34bd
AL
2527 unsigned long flags,
2528 const struct vm_special_mapping *spec);
2529/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2530extern int install_special_mapping(struct mm_struct *mm,
2531 unsigned long addr, unsigned long len,
2532 unsigned long flags, struct page **pages);
1da177e4 2533
649775be
AG
2534unsigned long randomize_stack_top(unsigned long stack_top);
2535
1da177e4
LT
2536extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2537
0165ab44 2538extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2539 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2540 struct list_head *uf);
1fcfd8db 2541extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2542 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2543 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2544extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2545 struct list_head *uf, bool downgrade);
897ab3e0
MR
2546extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2547 struct list_head *uf);
db08ca25 2548extern int do_madvise(unsigned long start, size_t len_in, int behavior);
1da177e4 2549
bebeb3d6
ML
2550#ifdef CONFIG_MMU
2551extern int __mm_populate(unsigned long addr, unsigned long len,
2552 int ignore_errors);
2553static inline void mm_populate(unsigned long addr, unsigned long len)
2554{
2555 /* Ignore errors */
2556 (void) __mm_populate(addr, len, 1);
2557}
2558#else
2559static inline void mm_populate(unsigned long addr, unsigned long len) {}
2560#endif
2561
e4eb1ff6 2562/* These take the mm semaphore themselves */
5d22fc25 2563extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2564extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2565extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2566extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2567 unsigned long, unsigned long,
2568 unsigned long, unsigned long);
1da177e4 2569
db4fbfb9
ML
2570struct vm_unmapped_area_info {
2571#define VM_UNMAPPED_AREA_TOPDOWN 1
2572 unsigned long flags;
2573 unsigned long length;
2574 unsigned long low_limit;
2575 unsigned long high_limit;
2576 unsigned long align_mask;
2577 unsigned long align_offset;
2578};
2579
baceaf1c 2580extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2581
85821aab 2582/* truncate.c */
1da177e4 2583extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2584extern void truncate_inode_pages_range(struct address_space *,
2585 loff_t lstart, loff_t lend);
91b0abe3 2586extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2587
2588/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2589extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2590extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2591 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2592extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2593
2594/* mm/page-writeback.c */
2b69c828 2595int __must_check write_one_page(struct page *page);
1cf6e7d8 2596void task_dirty_inc(struct task_struct *tsk);
1da177e4 2597
1be7107f 2598extern unsigned long stack_guard_gap;
d05f3169 2599/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2600extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2601
2602/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2603extern int expand_downwards(struct vm_area_struct *vma,
2604 unsigned long address);
8ca3eb08 2605#if VM_GROWSUP
46dea3d0 2606extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2607#else
fee7e49d 2608 #define expand_upwards(vma, address) (0)
9ab88515 2609#endif
1da177e4
LT
2610
2611/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2612extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2613extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2614 struct vm_area_struct **pprev);
2615
2616/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2617 NULL if none. Assume start_addr < end_addr. */
2618static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2619{
2620 struct vm_area_struct * vma = find_vma(mm,start_addr);
2621
2622 if (vma && end_addr <= vma->vm_start)
2623 vma = NULL;
2624 return vma;
2625}
2626
1be7107f
HD
2627static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2628{
2629 unsigned long vm_start = vma->vm_start;
2630
2631 if (vma->vm_flags & VM_GROWSDOWN) {
2632 vm_start -= stack_guard_gap;
2633 if (vm_start > vma->vm_start)
2634 vm_start = 0;
2635 }
2636 return vm_start;
2637}
2638
2639static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2640{
2641 unsigned long vm_end = vma->vm_end;
2642
2643 if (vma->vm_flags & VM_GROWSUP) {
2644 vm_end += stack_guard_gap;
2645 if (vm_end < vma->vm_end)
2646 vm_end = -PAGE_SIZE;
2647 }
2648 return vm_end;
2649}
2650
1da177e4
LT
2651static inline unsigned long vma_pages(struct vm_area_struct *vma)
2652{
2653 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2654}
2655
640708a2
PE
2656/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2657static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2658 unsigned long vm_start, unsigned long vm_end)
2659{
2660 struct vm_area_struct *vma = find_vma(mm, vm_start);
2661
2662 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2663 vma = NULL;
2664
2665 return vma;
2666}
2667
017b1660
MK
2668static inline bool range_in_vma(struct vm_area_struct *vma,
2669 unsigned long start, unsigned long end)
2670{
2671 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2672}
2673
bad849b3 2674#ifdef CONFIG_MMU
804af2cf 2675pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2676void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2677#else
2678static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2679{
2680 return __pgprot(0);
2681}
64e45507
PF
2682static inline void vma_set_page_prot(struct vm_area_struct *vma)
2683{
2684 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2685}
bad849b3
DH
2686#endif
2687
5877231f 2688#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2689unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2690 unsigned long start, unsigned long end);
2691#endif
2692
deceb6cd 2693struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2694int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2695 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2696int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2697int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2698 struct page **pages, unsigned long *num);
a667d745
SJ
2699int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2700 unsigned long num);
2701int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2702 unsigned long num);
ae2b01f3 2703vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2704 unsigned long pfn);
f5e6d1d5
MW
2705vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2706 unsigned long pfn, pgprot_t pgprot);
5d747637 2707vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2708 pfn_t pfn);
574c5b3d
TH
2709vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2710 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2711vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2712 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2713int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2714
1c8f4220
SJ
2715static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2716 unsigned long addr, struct page *page)
2717{
2718 int err = vm_insert_page(vma, addr, page);
2719
2720 if (err == -ENOMEM)
2721 return VM_FAULT_OOM;
2722 if (err < 0 && err != -EBUSY)
2723 return VM_FAULT_SIGBUS;
2724
2725 return VM_FAULT_NOPAGE;
2726}
2727
d97baf94
SJ
2728static inline vm_fault_t vmf_error(int err)
2729{
2730 if (err == -ENOMEM)
2731 return VM_FAULT_OOM;
2732 return VM_FAULT_SIGBUS;
2733}
2734
df06b37f
KB
2735struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2736 unsigned int foll_flags);
240aadee 2737
deceb6cd
HD
2738#define FOLL_WRITE 0x01 /* check pte is writable */
2739#define FOLL_TOUCH 0x02 /* mark page accessed */
2740#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2741#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2742#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2743#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2744 * and return without waiting upon it */
84d33df2 2745#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2746#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2747#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2748#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2749#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2750#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2751#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2752#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2753#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2754#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2755#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2756#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2757#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2758#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2759
2760/*
eddb1c22
JH
2761 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2762 * other. Here is what they mean, and how to use them:
932f4a63
IW
2763 *
2764 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2765 * period _often_ under userspace control. This is in contrast to
2766 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2767 *
2768 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2769 * lifetime enforced by the filesystem and we need guarantees that longterm
2770 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2771 * the filesystem. Ideas for this coordination include revoking the longterm
2772 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2773 * added after the problem with filesystems was found FS DAX VMAs are
2774 * specifically failed. Filesystem pages are still subject to bugs and use of
2775 * FOLL_LONGTERM should be avoided on those pages.
2776 *
2777 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2778 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2779 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2780 * is due to an incompatibility with the FS DAX check and
eddb1c22 2781 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2782 *
eddb1c22
JH
2783 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2784 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2785 * FOLL_LONGTERM is specified.
eddb1c22
JH
2786 *
2787 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2788 * but an additional pin counting system) will be invoked. This is intended for
2789 * anything that gets a page reference and then touches page data (for example,
2790 * Direct IO). This lets the filesystem know that some non-file-system entity is
2791 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2792 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2793 * a call to unpin_user_page().
eddb1c22
JH
2794 *
2795 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2796 * and separate refcounting mechanisms, however, and that means that each has
2797 * its own acquire and release mechanisms:
2798 *
2799 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2800 *
f1f6a7dd 2801 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2802 *
2803 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2804 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2805 * calls applied to them, and that's perfectly OK. This is a constraint on the
2806 * callers, not on the pages.)
2807 *
2808 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2809 * directly by the caller. That's in order to help avoid mismatches when
2810 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2811 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2812 *
72ef5e52 2813 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2814 */
1da177e4 2815
2b740303 2816static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2817{
2818 if (vm_fault & VM_FAULT_OOM)
2819 return -ENOMEM;
2820 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2821 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2822 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2823 return -EFAULT;
2824 return 0;
2825}
2826
8b1e0f81 2827typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2828extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2829 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2830extern int apply_to_existing_page_range(struct mm_struct *mm,
2831 unsigned long address, unsigned long size,
2832 pte_fn_t fn, void *data);
aee16b3c 2833
8823b1db
LA
2834#ifdef CONFIG_PAGE_POISONING
2835extern bool page_poisoning_enabled(void);
2836extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2837#else
2838static inline bool page_poisoning_enabled(void) { return false; }
2839static inline void kernel_poison_pages(struct page *page, int numpages,
2840 int enable) { }
2841#endif
2842
6471384a
AP
2843#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2844DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2845#else
2846DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2847#endif
2848static inline bool want_init_on_alloc(gfp_t flags)
2849{
2850 if (static_branch_unlikely(&init_on_alloc) &&
2851 !page_poisoning_enabled())
2852 return true;
2853 return flags & __GFP_ZERO;
2854}
2855
2856#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2857DECLARE_STATIC_KEY_TRUE(init_on_free);
2858#else
2859DECLARE_STATIC_KEY_FALSE(init_on_free);
2860#endif
2861static inline bool want_init_on_free(void)
2862{
2863 return static_branch_unlikely(&init_on_free) &&
2864 !page_poisoning_enabled();
2865}
2866
8e57f8ac
VB
2867#ifdef CONFIG_DEBUG_PAGEALLOC
2868extern void init_debug_pagealloc(void);
96a2b03f 2869#else
8e57f8ac 2870static inline void init_debug_pagealloc(void) {}
96a2b03f 2871#endif
8e57f8ac
VB
2872extern bool _debug_pagealloc_enabled_early;
2873DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2874
2875static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2876{
2877 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2878 _debug_pagealloc_enabled_early;
2879}
2880
2881/*
2882 * For use in fast paths after init_debug_pagealloc() has run, or when a
2883 * false negative result is not harmful when called too early.
2884 */
2885static inline bool debug_pagealloc_enabled_static(void)
031bc574 2886{
96a2b03f
VB
2887 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2888 return false;
2889
2890 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2891}
2892
d6332692
RE
2893#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2894extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2895
c87cbc1f
VB
2896/*
2897 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2898 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2899 */
031bc574
JK
2900static inline void
2901kernel_map_pages(struct page *page, int numpages, int enable)
2902{
031bc574
JK
2903 __kernel_map_pages(page, numpages, enable);
2904}
8a235efa
RW
2905#ifdef CONFIG_HIBERNATION
2906extern bool kernel_page_present(struct page *page);
40b44137 2907#endif /* CONFIG_HIBERNATION */
d6332692 2908#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2909static inline void
9858db50 2910kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2911#ifdef CONFIG_HIBERNATION
2912static inline bool kernel_page_present(struct page *page) { return true; }
40b44137 2913#endif /* CONFIG_HIBERNATION */
d6332692 2914#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
1da177e4 2915
a6c19dfe 2916#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2917extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2918extern int in_gate_area_no_mm(unsigned long addr);
2919extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2920#else
a6c19dfe
AL
2921static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2922{
2923 return NULL;
2924}
2925static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2926static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2927{
2928 return 0;
2929}
1da177e4
LT
2930#endif /* __HAVE_ARCH_GATE_AREA */
2931
44a70ade
MH
2932extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2933
146732ce
JT
2934#ifdef CONFIG_SYSCTL
2935extern int sysctl_drop_caches;
32927393
CH
2936int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2937 loff_t *);
146732ce
JT
2938#endif
2939
cb731d6c
VD
2940void drop_slab(void);
2941void drop_slab_node(int nid);
9d0243bc 2942
7a9166e3
LY
2943#ifndef CONFIG_MMU
2944#define randomize_va_space 0
2945#else
a62eaf15 2946extern int randomize_va_space;
7a9166e3 2947#endif
a62eaf15 2948
045e72ac 2949const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 2950#ifdef CONFIG_MMU
03252919 2951void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
2952#else
2953static inline void print_vma_addr(char *prefix, unsigned long rip)
2954{
2955}
2956#endif
e6e5494c 2957
35fd1eb1 2958void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
2959struct page * __populate_section_memmap(unsigned long pfn,
2960 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 2961pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2962p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2963pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 2964pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
2965pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
2966 struct vmem_altmap *altmap);
8f6aac41 2967void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2968struct vmem_altmap;
56993b4e
AK
2969void *vmemmap_alloc_block_buf(unsigned long size, int node,
2970 struct vmem_altmap *altmap);
8f6aac41 2971void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 2972int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 2973 int node, struct vmem_altmap *altmap);
7b73d978
CH
2974int vmemmap_populate(unsigned long start, unsigned long end, int node,
2975 struct vmem_altmap *altmap);
c2b91e2e 2976void vmemmap_populate_print_last(void);
0197518c 2977#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2978void vmemmap_free(unsigned long start, unsigned long end,
2979 struct vmem_altmap *altmap);
0197518c 2980#endif
46723bfa 2981void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2982 unsigned long nr_pages);
6a46079c 2983
82ba011b
AK
2984enum mf_flags {
2985 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2986 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2987 MF_MUST_KILL = 1 << 2,
cf870c70 2988 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2989};
83b57531
EB
2990extern int memory_failure(unsigned long pfn, int flags);
2991extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 2992extern void memory_failure_queue_kick(int cpu);
847ce401 2993extern int unpoison_memory(unsigned long pfn);
ead07f6a 2994extern int get_hwpoison_page(struct page *page);
4e41a30c 2995#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2996extern int sysctl_memory_failure_early_kill;
2997extern int sysctl_memory_failure_recovery;
facb6011 2998extern void shake_page(struct page *p, int access);
5844a486 2999extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3000extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3001
cc637b17
XX
3002
3003/*
3004 * Error handlers for various types of pages.
3005 */
cc3e2af4 3006enum mf_result {
cc637b17
XX
3007 MF_IGNORED, /* Error: cannot be handled */
3008 MF_FAILED, /* Error: handling failed */
3009 MF_DELAYED, /* Will be handled later */
3010 MF_RECOVERED, /* Successfully recovered */
3011};
3012
3013enum mf_action_page_type {
3014 MF_MSG_KERNEL,
3015 MF_MSG_KERNEL_HIGH_ORDER,
3016 MF_MSG_SLAB,
3017 MF_MSG_DIFFERENT_COMPOUND,
3018 MF_MSG_POISONED_HUGE,
3019 MF_MSG_HUGE,
3020 MF_MSG_FREE_HUGE,
31286a84 3021 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3022 MF_MSG_UNMAP_FAILED,
3023 MF_MSG_DIRTY_SWAPCACHE,
3024 MF_MSG_CLEAN_SWAPCACHE,
3025 MF_MSG_DIRTY_MLOCKED_LRU,
3026 MF_MSG_CLEAN_MLOCKED_LRU,
3027 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3028 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3029 MF_MSG_DIRTY_LRU,
3030 MF_MSG_CLEAN_LRU,
3031 MF_MSG_TRUNCATED_LRU,
3032 MF_MSG_BUDDY,
3033 MF_MSG_BUDDY_2ND,
6100e34b 3034 MF_MSG_DAX,
cc637b17
XX
3035 MF_MSG_UNKNOWN,
3036};
3037
47ad8475
AA
3038#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3039extern void clear_huge_page(struct page *page,
c79b57e4 3040 unsigned long addr_hint,
47ad8475
AA
3041 unsigned int pages_per_huge_page);
3042extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3043 unsigned long addr_hint,
3044 struct vm_area_struct *vma,
47ad8475 3045 unsigned int pages_per_huge_page);
fa4d75c1
MK
3046extern long copy_huge_page_from_user(struct page *dst_page,
3047 const void __user *usr_src,
810a56b9
MK
3048 unsigned int pages_per_huge_page,
3049 bool allow_pagefault);
2484ca9b
THV
3050
3051/**
3052 * vma_is_special_huge - Are transhuge page-table entries considered special?
3053 * @vma: Pointer to the struct vm_area_struct to consider
3054 *
3055 * Whether transhuge page-table entries are considered "special" following
3056 * the definition in vm_normal_page().
3057 *
3058 * Return: true if transhuge page-table entries should be considered special,
3059 * false otherwise.
3060 */
3061static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3062{
3063 return vma_is_dax(vma) || (vma->vm_file &&
3064 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3065}
3066
47ad8475
AA
3067#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3068
c0a32fc5
SG
3069#ifdef CONFIG_DEBUG_PAGEALLOC
3070extern unsigned int _debug_guardpage_minorder;
96a2b03f 3071DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3072
3073static inline unsigned int debug_guardpage_minorder(void)
3074{
3075 return _debug_guardpage_minorder;
3076}
3077
e30825f1
JK
3078static inline bool debug_guardpage_enabled(void)
3079{
96a2b03f 3080 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3081}
3082
c0a32fc5
SG
3083static inline bool page_is_guard(struct page *page)
3084{
e30825f1
JK
3085 if (!debug_guardpage_enabled())
3086 return false;
3087
3972f6bb 3088 return PageGuard(page);
c0a32fc5
SG
3089}
3090#else
3091static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3092static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3093static inline bool page_is_guard(struct page *page) { return false; }
3094#endif /* CONFIG_DEBUG_PAGEALLOC */
3095
f9872caf
CS
3096#if MAX_NUMNODES > 1
3097void __init setup_nr_node_ids(void);
3098#else
3099static inline void setup_nr_node_ids(void) {}
3100#endif
3101
010c164a
SL
3102extern int memcmp_pages(struct page *page1, struct page *page2);
3103
3104static inline int pages_identical(struct page *page1, struct page *page2)
3105{
3106 return !memcmp_pages(page1, page2);
3107}
3108
c5acad84
TH
3109#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3110unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3111 pgoff_t first_index, pgoff_t nr,
3112 pgoff_t bitmap_pgoff,
3113 unsigned long *bitmap,
3114 pgoff_t *start,
3115 pgoff_t *end);
3116
3117unsigned long wp_shared_mapping_range(struct address_space *mapping,
3118 pgoff_t first_index, pgoff_t nr);
3119#endif
3120
2374c09b
CH
3121extern int sysctl_nr_trim_pages;
3122
1da177e4
LT
3123#endif /* __KERNEL__ */
3124#endif /* _LINUX_MM_H */