mm: constify page_count and page_ref_count
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
9740ca4e 18#include <linux/mmap_lock.h>
08677214 19#include <linux/range.h>
c6f6b596 20#include <linux/pfn.h>
3565fce3 21#include <linux/percpu-refcount.h>
e9da73d6 22#include <linux/bit_spinlock.h>
b0d40c92 23#include <linux/shrinker.h>
9c599024 24#include <linux/resource.h>
e30825f1 25#include <linux/page_ext.h>
8025e5dd 26#include <linux/err.h>
41901567 27#include <linux/page-flags.h>
fe896d18 28#include <linux/page_ref.h>
7b2d55d2 29#include <linux/memremap.h>
3b3b1a29 30#include <linux/overflow.h>
b5420237 31#include <linux/sizes.h>
7969f226 32#include <linux/sched.h>
65fddcfc 33#include <linux/pgtable.h>
34303244 34#include <linux/kasan.h>
1da177e4
LT
35
36struct mempolicy;
37struct anon_vma;
bf181b9f 38struct anon_vma_chain;
4e950f6f 39struct file_ra_state;
e8edc6e0 40struct user_struct;
4e950f6f 41struct writeback_control;
682aa8e1 42struct bdi_writeback;
bce617ed 43struct pt_regs;
1da177e4 44
5ef64cc8
LT
45extern int sysctl_page_lock_unfairness;
46
597b7305
MH
47void init_mm_internals(void);
48
fccc9987 49#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 50extern unsigned long max_mapnr;
fccc9987
JL
51
52static inline void set_max_mapnr(unsigned long limit)
53{
54 max_mapnr = limit;
55}
56#else
57static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
58#endif
59
ca79b0c2
AK
60extern atomic_long_t _totalram_pages;
61static inline unsigned long totalram_pages(void)
62{
63 return (unsigned long)atomic_long_read(&_totalram_pages);
64}
65
66static inline void totalram_pages_inc(void)
67{
68 atomic_long_inc(&_totalram_pages);
69}
70
71static inline void totalram_pages_dec(void)
72{
73 atomic_long_dec(&_totalram_pages);
74}
75
76static inline void totalram_pages_add(long count)
77{
78 atomic_long_add(count, &_totalram_pages);
79}
80
1da177e4 81extern void * high_memory;
1da177e4
LT
82extern int page_cluster;
83
84#ifdef CONFIG_SYSCTL
85extern int sysctl_legacy_va_layout;
86#else
87#define sysctl_legacy_va_layout 0
88#endif
89
d07e2259
DC
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91extern const int mmap_rnd_bits_min;
92extern const int mmap_rnd_bits_max;
93extern int mmap_rnd_bits __read_mostly;
94#endif
95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96extern const int mmap_rnd_compat_bits_min;
97extern const int mmap_rnd_compat_bits_max;
98extern int mmap_rnd_compat_bits __read_mostly;
99#endif
100
1da177e4 101#include <asm/page.h>
1da177e4 102#include <asm/processor.h>
1da177e4 103
d9344522
AK
104/*
105 * Architectures that support memory tagging (assigning tags to memory regions,
106 * embedding these tags into addresses that point to these memory regions, and
107 * checking that the memory and the pointer tags match on memory accesses)
108 * redefine this macro to strip tags from pointers.
f0953a1b 109 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
110 */
111#ifndef untagged_addr
112#define untagged_addr(addr) (addr)
113#endif
114
79442ed1
TC
115#ifndef __pa_symbol
116#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
117#endif
118
1dff8083
AB
119#ifndef page_to_virt
120#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
121#endif
122
568c5fe5
LA
123#ifndef lm_alias
124#define lm_alias(x) __va(__pa_symbol(x))
125#endif
126
5caf9682
ST
127/*
128 * With CONFIG_CFI_CLANG, the compiler replaces function addresses in
129 * instrumented C code with jump table addresses. Architectures that
130 * support CFI can define this macro to return the actual function address
131 * when needed.
132 */
133#ifndef function_nocfi
134#define function_nocfi(x) (x)
135#endif
136
593befa6
DD
137/*
138 * To prevent common memory management code establishing
139 * a zero page mapping on a read fault.
140 * This macro should be defined within <asm/pgtable.h>.
141 * s390 does this to prevent multiplexing of hardware bits
142 * related to the physical page in case of virtualization.
143 */
144#ifndef mm_forbids_zeropage
145#define mm_forbids_zeropage(X) (0)
146#endif
147
a4a3ede2
PT
148/*
149 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
150 * If an architecture decides to implement their own version of
151 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
152 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 153 */
5470dea4
AD
154#if BITS_PER_LONG == 64
155/* This function must be updated when the size of struct page grows above 80
156 * or reduces below 56. The idea that compiler optimizes out switch()
157 * statement, and only leaves move/store instructions. Also the compiler can
158 * combine write statments if they are both assignments and can be reordered,
159 * this can result in several of the writes here being dropped.
160 */
161#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
162static inline void __mm_zero_struct_page(struct page *page)
163{
164 unsigned long *_pp = (void *)page;
165
166 /* Check that struct page is either 56, 64, 72, or 80 bytes */
167 BUILD_BUG_ON(sizeof(struct page) & 7);
168 BUILD_BUG_ON(sizeof(struct page) < 56);
169 BUILD_BUG_ON(sizeof(struct page) > 80);
170
171 switch (sizeof(struct page)) {
172 case 80:
df561f66
GS
173 _pp[9] = 0;
174 fallthrough;
5470dea4 175 case 72:
df561f66
GS
176 _pp[8] = 0;
177 fallthrough;
5470dea4 178 case 64:
df561f66
GS
179 _pp[7] = 0;
180 fallthrough;
5470dea4
AD
181 case 56:
182 _pp[6] = 0;
183 _pp[5] = 0;
184 _pp[4] = 0;
185 _pp[3] = 0;
186 _pp[2] = 0;
187 _pp[1] = 0;
188 _pp[0] = 0;
189 }
190}
191#else
a4a3ede2
PT
192#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
193#endif
194
ea606cf5
AR
195/*
196 * Default maximum number of active map areas, this limits the number of vmas
197 * per mm struct. Users can overwrite this number by sysctl but there is a
198 * problem.
199 *
200 * When a program's coredump is generated as ELF format, a section is created
201 * per a vma. In ELF, the number of sections is represented in unsigned short.
202 * This means the number of sections should be smaller than 65535 at coredump.
203 * Because the kernel adds some informative sections to a image of program at
204 * generating coredump, we need some margin. The number of extra sections is
205 * 1-3 now and depends on arch. We use "5" as safe margin, here.
206 *
207 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
208 * not a hard limit any more. Although some userspace tools can be surprised by
209 * that.
210 */
211#define MAPCOUNT_ELF_CORE_MARGIN (5)
212#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
213
214extern int sysctl_max_map_count;
215
c9b1d098 216extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 217extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 218
49f0ce5f
JM
219extern int sysctl_overcommit_memory;
220extern int sysctl_overcommit_ratio;
221extern unsigned long sysctl_overcommit_kbytes;
222
32927393
CH
223int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
224 loff_t *);
225int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
226 loff_t *);
56f3547b
FT
227int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
228 loff_t *);
6d87d0ec
SJ
229/*
230 * Any attempt to mark this function as static leads to build failure
231 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
232 * is referred to by BPF code. This must be visible for error injection.
233 */
234int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
235 pgoff_t index, gfp_t gfp, void **shadowp);
49f0ce5f 236
1da177e4
LT
237#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
238
27ac792c
AR
239/* to align the pointer to the (next) page boundary */
240#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
241
0fa73b86 242/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 243#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 244
f86196ea
NB
245#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
246
1da177e4
LT
247/*
248 * Linux kernel virtual memory manager primitives.
249 * The idea being to have a "virtual" mm in the same way
250 * we have a virtual fs - giving a cleaner interface to the
251 * mm details, and allowing different kinds of memory mappings
252 * (from shared memory to executable loading to arbitrary
253 * mmap() functions).
254 */
255
490fc053 256struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
257struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
258void vm_area_free(struct vm_area_struct *);
c43692e8 259
1da177e4 260#ifndef CONFIG_MMU
8feae131
DH
261extern struct rb_root nommu_region_tree;
262extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
263
264extern unsigned int kobjsize(const void *objp);
265#endif
266
267/*
605d9288 268 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 269 * When changing, update also include/trace/events/mmflags.h
1da177e4 270 */
cc2383ec
KK
271#define VM_NONE 0x00000000
272
1da177e4
LT
273#define VM_READ 0x00000001 /* currently active flags */
274#define VM_WRITE 0x00000002
275#define VM_EXEC 0x00000004
276#define VM_SHARED 0x00000008
277
7e2cff42 278/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
279#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
280#define VM_MAYWRITE 0x00000020
281#define VM_MAYEXEC 0x00000040
282#define VM_MAYSHARE 0x00000080
283
284#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 285#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 286#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 287#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 288#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 289
1da177e4
LT
290#define VM_LOCKED 0x00002000
291#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
292
293 /* Used by sys_madvise() */
294#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
295#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
296
297#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
298#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 299#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 300#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 301#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 302#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 303#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 304#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 305#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 306#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 307
d9104d1c
CG
308#ifdef CONFIG_MEM_SOFT_DIRTY
309# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
310#else
311# define VM_SOFTDIRTY 0
312#endif
313
b379d790 314#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
315#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
316#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 317#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 318
63c17fb8
DH
319#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
320#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
321#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
322#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
323#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 324#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
325#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
326#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
327#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
328#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 329#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
330#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
331
5212213a 332#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
333# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
334# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 335# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
336# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
337# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
338#ifdef CONFIG_PPC
339# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
340#else
341# define VM_PKEY_BIT4 0
8f62c883 342#endif
5212213a
RP
343#endif /* CONFIG_ARCH_HAS_PKEYS */
344
345#if defined(CONFIG_X86)
346# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
347#elif defined(CONFIG_PPC)
348# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
349#elif defined(CONFIG_PARISC)
350# define VM_GROWSUP VM_ARCH_1
351#elif defined(CONFIG_IA64)
352# define VM_GROWSUP VM_ARCH_1
74a04967
KA
353#elif defined(CONFIG_SPARC64)
354# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
355# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
356#elif defined(CONFIG_ARM64)
357# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
358# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
359#elif !defined(CONFIG_MMU)
360# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
361#endif
362
9f341931
CM
363#if defined(CONFIG_ARM64_MTE)
364# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
365# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
366#else
367# define VM_MTE VM_NONE
368# define VM_MTE_ALLOWED VM_NONE
369#endif
370
cc2383ec
KK
371#ifndef VM_GROWSUP
372# define VM_GROWSUP VM_NONE
373#endif
374
7677f7fd
AR
375#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
376# define VM_UFFD_MINOR_BIT 37
377# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
378#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
379# define VM_UFFD_MINOR VM_NONE
380#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
381
a8bef8ff
MG
382/* Bits set in the VMA until the stack is in its final location */
383#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
384
c62da0c3
AK
385#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
386
387/* Common data flag combinations */
388#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
389 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
390#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
391 VM_MAYWRITE | VM_MAYEXEC)
392#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
393 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
394
395#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
396#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
397#endif
398
1da177e4
LT
399#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
400#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
401#endif
402
403#ifdef CONFIG_STACK_GROWSUP
30bdbb78 404#define VM_STACK VM_GROWSUP
1da177e4 405#else
30bdbb78 406#define VM_STACK VM_GROWSDOWN
1da177e4
LT
407#endif
408
30bdbb78
KK
409#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
410
6cb4d9a2
AK
411/* VMA basic access permission flags */
412#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
413
414
b291f000 415/*
78f11a25 416 * Special vmas that are non-mergable, non-mlock()able.
b291f000 417 */
9050d7eb 418#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 419
b4443772
AK
420/* This mask prevents VMA from being scanned with khugepaged */
421#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
422
a0715cc2
AT
423/* This mask defines which mm->def_flags a process can inherit its parent */
424#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
425
de60f5f1
EM
426/* This mask is used to clear all the VMA flags used by mlock */
427#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
428
2c2d57b5
KA
429/* Arch-specific flags to clear when updating VM flags on protection change */
430#ifndef VM_ARCH_CLEAR
431# define VM_ARCH_CLEAR VM_NONE
432#endif
433#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
434
1da177e4
LT
435/*
436 * mapping from the currently active vm_flags protection bits (the
437 * low four bits) to a page protection mask..
438 */
439extern pgprot_t protection_map[16];
440
c270a7ee 441/**
da2f5eb3 442 * enum fault_flag - Fault flag definitions.
c270a7ee
PX
443 * @FAULT_FLAG_WRITE: Fault was a write fault.
444 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
445 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
c1e8d7c6 446 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
c270a7ee
PX
447 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
448 * @FAULT_FLAG_TRIED: The fault has been tried once.
449 * @FAULT_FLAG_USER: The fault originated in userspace.
450 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
451 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
452 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
453 *
454 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
455 * whether we would allow page faults to retry by specifying these two
456 * fault flags correctly. Currently there can be three legal combinations:
457 *
458 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
459 * this is the first try
460 *
461 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
462 * we've already tried at least once
463 *
464 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
465 *
466 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
467 * be used. Note that page faults can be allowed to retry for multiple times,
468 * in which case we'll have an initial fault with flags (a) then later on
469 * continuous faults with flags (b). We should always try to detect pending
470 * signals before a retry to make sure the continuous page faults can still be
471 * interrupted if necessary.
c270a7ee 472 */
da2f5eb3
MWO
473enum fault_flag {
474 FAULT_FLAG_WRITE = 1 << 0,
475 FAULT_FLAG_MKWRITE = 1 << 1,
476 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
477 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
478 FAULT_FLAG_KILLABLE = 1 << 4,
479 FAULT_FLAG_TRIED = 1 << 5,
480 FAULT_FLAG_USER = 1 << 6,
481 FAULT_FLAG_REMOTE = 1 << 7,
482 FAULT_FLAG_INSTRUCTION = 1 << 8,
483 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
484};
d0217ac0 485
dde16072
PX
486/*
487 * The default fault flags that should be used by most of the
488 * arch-specific page fault handlers.
489 */
490#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
491 FAULT_FLAG_KILLABLE | \
492 FAULT_FLAG_INTERRUPTIBLE)
dde16072 493
4064b982
PX
494/**
495 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 496 * @flags: Fault flags.
4064b982
PX
497 *
498 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 499 * the mmap_lock for too long a time when waiting for another condition
4064b982 500 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
501 * mmap_lock in the first round to avoid potential starvation of other
502 * processes that would also want the mmap_lock.
4064b982
PX
503 *
504 * Return: true if the page fault allows retry and this is the first
505 * attempt of the fault handling; false otherwise.
506 */
da2f5eb3 507static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
508{
509 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
510 (!(flags & FAULT_FLAG_TRIED));
511}
512
282a8e03
RZ
513#define FAULT_FLAG_TRACE \
514 { FAULT_FLAG_WRITE, "WRITE" }, \
515 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
516 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
517 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
518 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
519 { FAULT_FLAG_TRIED, "TRIED" }, \
520 { FAULT_FLAG_USER, "USER" }, \
521 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
522 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
523 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 524
54cb8821 525/*
11192337 526 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
527 * ->fault function. The vma's ->fault is responsible for returning a bitmask
528 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 529 *
c20cd45e
MH
530 * MM layer fills up gfp_mask for page allocations but fault handler might
531 * alter it if its implementation requires a different allocation context.
532 *
9b4bdd2f 533 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 534 */
d0217ac0 535struct vm_fault {
5857c920 536 const struct {
742d3372
WD
537 struct vm_area_struct *vma; /* Target VMA */
538 gfp_t gfp_mask; /* gfp mask to be used for allocations */
539 pgoff_t pgoff; /* Logical page offset based on vma */
540 unsigned long address; /* Faulting virtual address */
541 };
da2f5eb3 542 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 543 * XXX: should really be 'const' */
82b0f8c3 544 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 545 * the 'address' */
a2d58167
DJ
546 pud_t *pud; /* Pointer to pud entry matching
547 * the 'address'
548 */
2994302b 549 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 550
3917048d 551 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 552 struct page *page; /* ->fault handlers should return a
83c54070 553 * page here, unless VM_FAULT_NOPAGE
d0217ac0 554 * is set (which is also implied by
83c54070 555 * VM_FAULT_ERROR).
d0217ac0 556 */
82b0f8c3 557 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
558 pte_t *pte; /* Pointer to pte entry matching
559 * the 'address'. NULL if the page
560 * table hasn't been allocated.
561 */
562 spinlock_t *ptl; /* Page table lock.
563 * Protects pte page table if 'pte'
564 * is not NULL, otherwise pmd.
565 */
7267ec00 566 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
567 * vm_ops->map_pages() sets up a page
568 * table from atomic context.
7267ec00
KS
569 * do_fault_around() pre-allocates
570 * page table to avoid allocation from
571 * atomic context.
572 */
54cb8821 573};
1da177e4 574
c791ace1
DJ
575/* page entry size for vm->huge_fault() */
576enum page_entry_size {
577 PE_SIZE_PTE = 0,
578 PE_SIZE_PMD,
579 PE_SIZE_PUD,
580};
581
1da177e4
LT
582/*
583 * These are the virtual MM functions - opening of an area, closing and
584 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 585 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
586 */
587struct vm_operations_struct {
588 void (*open)(struct vm_area_struct * area);
589 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
590 /* Called any time before splitting to check if it's allowed */
591 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 592 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
593 /*
594 * Called by mprotect() to make driver-specific permission
595 * checks before mprotect() is finalised. The VMA must not
596 * be modified. Returns 0 if eprotect() can proceed.
597 */
598 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
599 unsigned long end, unsigned long newflags);
1c8f4220
SJ
600 vm_fault_t (*fault)(struct vm_fault *vmf);
601 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
602 enum page_entry_size pe_size);
f9ce0be7 603 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 604 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 605 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
606
607 /* notification that a previously read-only page is about to become
608 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 609 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 610
dd906184 611 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 612 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 613
28b2ee20 614 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
615 * for use by special VMAs. See also generic_access_phys() for a generic
616 * implementation useful for any iomem mapping.
28b2ee20
RR
617 */
618 int (*access)(struct vm_area_struct *vma, unsigned long addr,
619 void *buf, int len, int write);
78d683e8
AL
620
621 /* Called by the /proc/PID/maps code to ask the vma whether it
622 * has a special name. Returning non-NULL will also cause this
623 * vma to be dumped unconditionally. */
624 const char *(*name)(struct vm_area_struct *vma);
625
1da177e4 626#ifdef CONFIG_NUMA
a6020ed7
LS
627 /*
628 * set_policy() op must add a reference to any non-NULL @new mempolicy
629 * to hold the policy upon return. Caller should pass NULL @new to
630 * remove a policy and fall back to surrounding context--i.e. do not
631 * install a MPOL_DEFAULT policy, nor the task or system default
632 * mempolicy.
633 */
1da177e4 634 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
635
636 /*
637 * get_policy() op must add reference [mpol_get()] to any policy at
638 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
639 * in mm/mempolicy.c will do this automatically.
640 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 641 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
642 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
643 * must return NULL--i.e., do not "fallback" to task or system default
644 * policy.
645 */
1da177e4
LT
646 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
647 unsigned long addr);
648#endif
667a0a06
DV
649 /*
650 * Called by vm_normal_page() for special PTEs to find the
651 * page for @addr. This is useful if the default behavior
652 * (using pte_page()) would not find the correct page.
653 */
654 struct page *(*find_special_page)(struct vm_area_struct *vma,
655 unsigned long addr);
1da177e4
LT
656};
657
027232da
KS
658static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
659{
bfd40eaf
KS
660 static const struct vm_operations_struct dummy_vm_ops = {};
661
a670468f 662 memset(vma, 0, sizeof(*vma));
027232da 663 vma->vm_mm = mm;
bfd40eaf 664 vma->vm_ops = &dummy_vm_ops;
027232da
KS
665 INIT_LIST_HEAD(&vma->anon_vma_chain);
666}
667
bfd40eaf
KS
668static inline void vma_set_anonymous(struct vm_area_struct *vma)
669{
670 vma->vm_ops = NULL;
671}
672
43675e6f
YS
673static inline bool vma_is_anonymous(struct vm_area_struct *vma)
674{
675 return !vma->vm_ops;
676}
677
222100ee
AK
678static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
679{
680 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
681
682 if (!maybe_stack)
683 return false;
684
685 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
686 VM_STACK_INCOMPLETE_SETUP)
687 return true;
688
689 return false;
690}
691
7969f226
AK
692static inline bool vma_is_foreign(struct vm_area_struct *vma)
693{
694 if (!current->mm)
695 return true;
696
697 if (current->mm != vma->vm_mm)
698 return true;
699
700 return false;
701}
3122e80e
AK
702
703static inline bool vma_is_accessible(struct vm_area_struct *vma)
704{
6cb4d9a2 705 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
706}
707
43675e6f
YS
708#ifdef CONFIG_SHMEM
709/*
710 * The vma_is_shmem is not inline because it is used only by slow
711 * paths in userfault.
712 */
713bool vma_is_shmem(struct vm_area_struct *vma);
714#else
715static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
716#endif
717
718int vma_is_stack_for_current(struct vm_area_struct *vma);
719
8b11ec1b
LT
720/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
721#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
722
1da177e4
LT
723struct mmu_gather;
724struct inode;
725
71e3aac0 726#include <linux/huge_mm.h>
1da177e4
LT
727
728/*
729 * Methods to modify the page usage count.
730 *
731 * What counts for a page usage:
732 * - cache mapping (page->mapping)
733 * - private data (page->private)
734 * - page mapped in a task's page tables, each mapping
735 * is counted separately
736 *
737 * Also, many kernel routines increase the page count before a critical
738 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
739 */
740
741/*
da6052f7 742 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 743 */
7c8ee9a8
NP
744static inline int put_page_testzero(struct page *page)
745{
fe896d18
JK
746 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
747 return page_ref_dec_and_test(page);
7c8ee9a8 748}
1da177e4
LT
749
750/*
7c8ee9a8
NP
751 * Try to grab a ref unless the page has a refcount of zero, return false if
752 * that is the case.
8e0861fa
AK
753 * This can be called when MMU is off so it must not access
754 * any of the virtual mappings.
1da177e4 755 */
7c8ee9a8
NP
756static inline int get_page_unless_zero(struct page *page)
757{
fe896d18 758 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 759}
1da177e4 760
53df8fdc 761extern int page_is_ram(unsigned long pfn);
124fe20d
DW
762
763enum {
764 REGION_INTERSECTS,
765 REGION_DISJOINT,
766 REGION_MIXED,
767};
768
1c29f25b
TK
769int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
770 unsigned long desc);
53df8fdc 771
48667e7a 772/* Support for virtually mapped pages */
b3bdda02
CL
773struct page *vmalloc_to_page(const void *addr);
774unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 775
0738c4bb
PM
776/*
777 * Determine if an address is within the vmalloc range
778 *
779 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
780 * is no special casing required.
781 */
9bd3bb67
AK
782
783#ifndef is_ioremap_addr
784#define is_ioremap_addr(x) is_vmalloc_addr(x)
785#endif
786
81ac3ad9 787#ifdef CONFIG_MMU
186525bd 788extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
789extern int is_vmalloc_or_module_addr(const void *x);
790#else
186525bd
IM
791static inline bool is_vmalloc_addr(const void *x)
792{
793 return false;
794}
934831d0 795static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
796{
797 return 0;
798}
799#endif
9e2779fa 800
a7c3e901
MH
801extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
802static inline void *kvmalloc(size_t size, gfp_t flags)
803{
804 return kvmalloc_node(size, flags, NUMA_NO_NODE);
805}
806static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
807{
808 return kvmalloc_node(size, flags | __GFP_ZERO, node);
809}
810static inline void *kvzalloc(size_t size, gfp_t flags)
811{
812 return kvmalloc(size, flags | __GFP_ZERO);
813}
814
752ade68
MH
815static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
816{
3b3b1a29
KC
817 size_t bytes;
818
819 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
820 return NULL;
821
3b3b1a29 822 return kvmalloc(bytes, flags);
752ade68
MH
823}
824
1c542f38
KC
825static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
826{
827 return kvmalloc_array(n, size, flags | __GFP_ZERO);
828}
829
39f1f78d 830extern void kvfree(const void *addr);
d4eaa283 831extern void kvfree_sensitive(const void *addr, size_t len);
39f1f78d 832
bac3cf4d 833static inline int head_compound_mapcount(struct page *head)
6dc5ea16
JH
834{
835 return atomic_read(compound_mapcount_ptr(head)) + 1;
836}
837
6988f31d
KK
838/*
839 * Mapcount of compound page as a whole, does not include mapped sub-pages.
840 *
841 * Must be called only for compound pages or any their tail sub-pages.
842 */
53f9263b
KS
843static inline int compound_mapcount(struct page *page)
844{
5f527c2b 845 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 846 page = compound_head(page);
bac3cf4d 847 return head_compound_mapcount(page);
53f9263b
KS
848}
849
70b50f94
AA
850/*
851 * The atomic page->_mapcount, starts from -1: so that transitions
852 * both from it and to it can be tracked, using atomic_inc_and_test
853 * and atomic_add_negative(-1).
854 */
22b751c3 855static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
856{
857 atomic_set(&(page)->_mapcount, -1);
858}
859
b20ce5e0
KS
860int __page_mapcount(struct page *page);
861
6988f31d
KK
862/*
863 * Mapcount of 0-order page; when compound sub-page, includes
864 * compound_mapcount().
865 *
866 * Result is undefined for pages which cannot be mapped into userspace.
867 * For example SLAB or special types of pages. See function page_has_type().
868 * They use this place in struct page differently.
869 */
70b50f94
AA
870static inline int page_mapcount(struct page *page)
871{
b20ce5e0
KS
872 if (unlikely(PageCompound(page)))
873 return __page_mapcount(page);
874 return atomic_read(&page->_mapcount) + 1;
875}
876
877#ifdef CONFIG_TRANSPARENT_HUGEPAGE
878int total_mapcount(struct page *page);
6d0a07ed 879int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
880#else
881static inline int total_mapcount(struct page *page)
882{
883 return page_mapcount(page);
70b50f94 884}
6d0a07ed
AA
885static inline int page_trans_huge_mapcount(struct page *page,
886 int *total_mapcount)
887{
888 int mapcount = page_mapcount(page);
889 if (total_mapcount)
890 *total_mapcount = mapcount;
891 return mapcount;
892}
b20ce5e0 893#endif
70b50f94 894
b49af68f
CL
895static inline struct page *virt_to_head_page(const void *x)
896{
897 struct page *page = virt_to_page(x);
ccaafd7f 898
1d798ca3 899 return compound_head(page);
b49af68f
CL
900}
901
ddc58f27
KS
902void __put_page(struct page *page);
903
1d7ea732 904void put_pages_list(struct list_head *pages);
1da177e4 905
8dfcc9ba 906void split_page(struct page *page, unsigned int order);
8dfcc9ba 907
33f2ef89
AW
908/*
909 * Compound pages have a destructor function. Provide a
910 * prototype for that function and accessor functions.
f1e61557 911 * These are _only_ valid on the head of a compound page.
33f2ef89 912 */
f1e61557
KS
913typedef void compound_page_dtor(struct page *);
914
915/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
916enum compound_dtor_id {
917 NULL_COMPOUND_DTOR,
918 COMPOUND_PAGE_DTOR,
919#ifdef CONFIG_HUGETLB_PAGE
920 HUGETLB_PAGE_DTOR,
9a982250
KS
921#endif
922#ifdef CONFIG_TRANSPARENT_HUGEPAGE
923 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
924#endif
925 NR_COMPOUND_DTORS,
926};
ae70eddd 927extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
928
929static inline void set_compound_page_dtor(struct page *page,
f1e61557 930 enum compound_dtor_id compound_dtor)
33f2ef89 931{
f1e61557
KS
932 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
933 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
934}
935
ff45fc3c 936static inline void destroy_compound_page(struct page *page)
33f2ef89 937{
f1e61557 938 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 939 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
940}
941
d00181b9 942static inline unsigned int compound_order(struct page *page)
d85f3385 943{
6d777953 944 if (!PageHead(page))
d85f3385 945 return 0;
e4b294c2 946 return page[1].compound_order;
d85f3385
CL
947}
948
47e29d32
JH
949static inline bool hpage_pincount_available(struct page *page)
950{
951 /*
952 * Can the page->hpage_pinned_refcount field be used? That field is in
953 * the 3rd page of the compound page, so the smallest (2-page) compound
954 * pages cannot support it.
955 */
956 page = compound_head(page);
957 return PageCompound(page) && compound_order(page) > 1;
958}
959
bac3cf4d 960static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
961{
962 return atomic_read(compound_pincount_ptr(head));
963}
964
47e29d32
JH
965static inline int compound_pincount(struct page *page)
966{
967 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
968 page = compound_head(page);
bac3cf4d 969 return head_compound_pincount(page);
47e29d32
JH
970}
971
f1e61557 972static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 973{
e4b294c2 974 page[1].compound_order = order;
1378a5ee 975 page[1].compound_nr = 1U << order;
d85f3385
CL
976}
977
d8c6546b
MWO
978/* Returns the number of pages in this potentially compound page. */
979static inline unsigned long compound_nr(struct page *page)
980{
1378a5ee
MWO
981 if (!PageHead(page))
982 return 1;
983 return page[1].compound_nr;
d8c6546b
MWO
984}
985
a50b854e
MWO
986/* Returns the number of bytes in this potentially compound page. */
987static inline unsigned long page_size(struct page *page)
988{
989 return PAGE_SIZE << compound_order(page);
990}
991
94ad9338
MWO
992/* Returns the number of bits needed for the number of bytes in a page */
993static inline unsigned int page_shift(struct page *page)
994{
995 return PAGE_SHIFT + compound_order(page);
996}
997
9a982250
KS
998void free_compound_page(struct page *page);
999
3dece370 1000#ifdef CONFIG_MMU
14fd403f
AA
1001/*
1002 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1003 * servicing faults for write access. In the normal case, do always want
1004 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1005 * that do not have writing enabled, when used by access_process_vm.
1006 */
1007static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1008{
1009 if (likely(vma->vm_flags & VM_WRITE))
1010 pte = pte_mkwrite(pte);
1011 return pte;
1012}
8c6e50b0 1013
f9ce0be7 1014vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1015void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1016
2b740303
SJ
1017vm_fault_t finish_fault(struct vm_fault *vmf);
1018vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1019#endif
14fd403f 1020
1da177e4
LT
1021/*
1022 * Multiple processes may "see" the same page. E.g. for untouched
1023 * mappings of /dev/null, all processes see the same page full of
1024 * zeroes, and text pages of executables and shared libraries have
1025 * only one copy in memory, at most, normally.
1026 *
1027 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1028 * page_count() == 0 means the page is free. page->lru is then used for
1029 * freelist management in the buddy allocator.
da6052f7 1030 * page_count() > 0 means the page has been allocated.
1da177e4 1031 *
da6052f7
NP
1032 * Pages are allocated by the slab allocator in order to provide memory
1033 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1034 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1035 * unless a particular usage is carefully commented. (the responsibility of
1036 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1037 *
da6052f7
NP
1038 * A page may be used by anyone else who does a __get_free_page().
1039 * In this case, page_count still tracks the references, and should only
1040 * be used through the normal accessor functions. The top bits of page->flags
1041 * and page->virtual store page management information, but all other fields
1042 * are unused and could be used privately, carefully. The management of this
1043 * page is the responsibility of the one who allocated it, and those who have
1044 * subsequently been given references to it.
1045 *
1046 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1047 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1048 * The following discussion applies only to them.
1049 *
da6052f7
NP
1050 * A pagecache page contains an opaque `private' member, which belongs to the
1051 * page's address_space. Usually, this is the address of a circular list of
1052 * the page's disk buffers. PG_private must be set to tell the VM to call
1053 * into the filesystem to release these pages.
1da177e4 1054 *
da6052f7
NP
1055 * A page may belong to an inode's memory mapping. In this case, page->mapping
1056 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1057 * in units of PAGE_SIZE.
1da177e4 1058 *
da6052f7
NP
1059 * If pagecache pages are not associated with an inode, they are said to be
1060 * anonymous pages. These may become associated with the swapcache, and in that
1061 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1062 *
da6052f7
NP
1063 * In either case (swapcache or inode backed), the pagecache itself holds one
1064 * reference to the page. Setting PG_private should also increment the
1065 * refcount. The each user mapping also has a reference to the page.
1da177e4 1066 *
da6052f7 1067 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1068 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1069 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1070 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1071 *
da6052f7 1072 * All pagecache pages may be subject to I/O:
1da177e4
LT
1073 * - inode pages may need to be read from disk,
1074 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1075 * to be written back to the inode on disk,
1076 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1077 * modified may need to be swapped out to swap space and (later) to be read
1078 * back into memory.
1da177e4
LT
1079 */
1080
1081/*
1082 * The zone field is never updated after free_area_init_core()
1083 * sets it, so none of the operations on it need to be atomic.
1da177e4 1084 */
348f8b6c 1085
90572890 1086/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1087#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1088#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1089#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1090#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1091#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1092
348f8b6c 1093/*
25985edc 1094 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1095 * sections we define the shift as 0; that plus a 0 mask ensures
1096 * the compiler will optimise away reference to them.
1097 */
d41dee36
AW
1098#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1099#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1100#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1101#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1102#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1103
bce54bbf
WD
1104/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1105#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1106#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1107#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1108 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1109#else
89689ae7 1110#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1111#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1112 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1113#endif
1114
bd8029b6 1115#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1116
d41dee36
AW
1117#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1118#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1119#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1120#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1121#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1122#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1123
33dd4e0e 1124static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1125{
c403f6a3 1126 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1127 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1128}
1da177e4 1129
260ae3f7
DW
1130#ifdef CONFIG_ZONE_DEVICE
1131static inline bool is_zone_device_page(const struct page *page)
1132{
1133 return page_zonenum(page) == ZONE_DEVICE;
1134}
966cf44f
AD
1135extern void memmap_init_zone_device(struct zone *, unsigned long,
1136 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1137#else
1138static inline bool is_zone_device_page(const struct page *page)
1139{
1140 return false;
1141}
7b2d55d2 1142#endif
5042db43 1143
8e3560d9
PT
1144static inline bool is_zone_movable_page(const struct page *page)
1145{
1146 return page_zonenum(page) == ZONE_MOVABLE;
1147}
1148
e7638488 1149#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1150void free_devmap_managed_page(struct page *page);
e7638488 1151DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1152
1153static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1154{
1155 if (!static_branch_unlikely(&devmap_managed_key))
1156 return false;
1157 if (!is_zone_device_page(page))
1158 return false;
1159 switch (page->pgmap->type) {
1160 case MEMORY_DEVICE_PRIVATE:
e7638488 1161 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1162 return true;
1163 default:
1164 break;
1165 }
1166 return false;
1167}
1168
07d80269
JH
1169void put_devmap_managed_page(struct page *page);
1170
e7638488 1171#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1172static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1173{
1174 return false;
1175}
07d80269
JH
1176
1177static inline void put_devmap_managed_page(struct page *page)
1178{
1179}
7588adf8 1180#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1181
6b368cd4
JG
1182static inline bool is_device_private_page(const struct page *page)
1183{
7588adf8
RM
1184 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1185 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1186 is_zone_device_page(page) &&
1187 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1188}
e7638488 1189
52916982
LG
1190static inline bool is_pci_p2pdma_page(const struct page *page)
1191{
7588adf8
RM
1192 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1193 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1194 is_zone_device_page(page) &&
1195 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1196}
7b2d55d2 1197
f958d7b5
LT
1198/* 127: arbitrary random number, small enough to assemble well */
1199#define page_ref_zero_or_close_to_overflow(page) \
1200 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1201
3565fce3
DW
1202static inline void get_page(struct page *page)
1203{
1204 page = compound_head(page);
1205 /*
1206 * Getting a normal page or the head of a compound page
0139aa7b 1207 * requires to already have an elevated page->_refcount.
3565fce3 1208 */
f958d7b5 1209 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1210 page_ref_inc(page);
3565fce3
DW
1211}
1212
3faa52c0 1213bool __must_check try_grab_page(struct page *page, unsigned int flags);
0fa5bc40
JM
1214__maybe_unused struct page *try_grab_compound_head(struct page *page, int refs,
1215 unsigned int flags);
1216
3faa52c0 1217
88b1a17d
LT
1218static inline __must_check bool try_get_page(struct page *page)
1219{
1220 page = compound_head(page);
1221 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1222 return false;
fe896d18 1223 page_ref_inc(page);
88b1a17d 1224 return true;
3565fce3
DW
1225}
1226
1227static inline void put_page(struct page *page)
1228{
1229 page = compound_head(page);
1230
7b2d55d2 1231 /*
e7638488
DW
1232 * For devmap managed pages we need to catch refcount transition from
1233 * 2 to 1, when refcount reach one it means the page is free and we
1234 * need to inform the device driver through callback. See
7b2d55d2
JG
1235 * include/linux/memremap.h and HMM for details.
1236 */
07d80269
JH
1237 if (page_is_devmap_managed(page)) {
1238 put_devmap_managed_page(page);
7b2d55d2 1239 return;
07d80269 1240 }
7b2d55d2 1241
3565fce3
DW
1242 if (put_page_testzero(page))
1243 __put_page(page);
3565fce3
DW
1244}
1245
3faa52c0
JH
1246/*
1247 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1248 * the page's refcount so that two separate items are tracked: the original page
1249 * reference count, and also a new count of how many pin_user_pages() calls were
1250 * made against the page. ("gup-pinned" is another term for the latter).
1251 *
1252 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1253 * distinct from normal pages. As such, the unpin_user_page() call (and its
1254 * variants) must be used in order to release gup-pinned pages.
1255 *
1256 * Choice of value:
1257 *
1258 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1259 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1260 * simpler, due to the fact that adding an even power of two to the page
1261 * refcount has the effect of using only the upper N bits, for the code that
1262 * counts up using the bias value. This means that the lower bits are left for
1263 * the exclusive use of the original code that increments and decrements by one
1264 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1265 *
3faa52c0
JH
1266 * Of course, once the lower bits overflow into the upper bits (and this is
1267 * OK, because subtraction recovers the original values), then visual inspection
1268 * no longer suffices to directly view the separate counts. However, for normal
1269 * applications that don't have huge page reference counts, this won't be an
1270 * issue.
fc1d8e7c 1271 *
3faa52c0
JH
1272 * Locking: the lockless algorithm described in page_cache_get_speculative()
1273 * and page_cache_gup_pin_speculative() provides safe operation for
1274 * get_user_pages and page_mkclean and other calls that race to set up page
1275 * table entries.
fc1d8e7c 1276 */
3faa52c0 1277#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1278
3faa52c0 1279void unpin_user_page(struct page *page);
f1f6a7dd
JH
1280void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1281 bool make_dirty);
458a4f78
JM
1282void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1283 bool make_dirty);
f1f6a7dd 1284void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1285
3faa52c0 1286/**
136dfc99
MWO
1287 * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1288 * @page: The page.
3faa52c0
JH
1289 *
1290 * This function checks if a page has been pinned via a call to
136dfc99 1291 * a function in the pin_user_pages() family.
3faa52c0
JH
1292 *
1293 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1294 * because it means "definitely not pinned for DMA", but true means "probably
1295 * pinned for DMA, but possibly a false positive due to having at least
1296 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1297 *
1298 * False positives are OK, because: a) it's unlikely for a page to get that many
1299 * refcounts, and b) all the callers of this routine are expected to be able to
1300 * deal gracefully with a false positive.
1301 *
47e29d32
JH
1302 * For huge pages, the result will be exactly correct. That's because we have
1303 * more tracking data available: the 3rd struct page in the compound page is
1304 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1305 * scheme).
1306 *
72ef5e52 1307 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0 1308 *
136dfc99
MWO
1309 * Return: True, if it is likely that the page has been "dma-pinned".
1310 * False, if the page is definitely not dma-pinned.
3faa52c0
JH
1311 */
1312static inline bool page_maybe_dma_pinned(struct page *page)
1313{
47e29d32
JH
1314 if (hpage_pincount_available(page))
1315 return compound_pincount(page) > 0;
1316
3faa52c0
JH
1317 /*
1318 * page_ref_count() is signed. If that refcount overflows, then
1319 * page_ref_count() returns a negative value, and callers will avoid
1320 * further incrementing the refcount.
1321 *
1322 * Here, for that overflow case, use the signed bit to count a little
1323 * bit higher via unsigned math, and thus still get an accurate result.
1324 */
1325 return ((unsigned int)page_ref_count(compound_head(page))) >=
1326 GUP_PIN_COUNTING_BIAS;
1327}
1328
97a7e473
PX
1329static inline bool is_cow_mapping(vm_flags_t flags)
1330{
1331 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1332}
1333
1334/*
1335 * This should most likely only be called during fork() to see whether we
1336 * should break the cow immediately for a page on the src mm.
1337 */
1338static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1339 struct page *page)
1340{
1341 if (!is_cow_mapping(vma->vm_flags))
1342 return false;
1343
a458b76a 1344 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
97a7e473
PX
1345 return false;
1346
1347 return page_maybe_dma_pinned(page);
1348}
1349
9127ab4f
CS
1350#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1351#define SECTION_IN_PAGE_FLAGS
1352#endif
1353
89689ae7 1354/*
7a8010cd
VB
1355 * The identification function is mainly used by the buddy allocator for
1356 * determining if two pages could be buddies. We are not really identifying
1357 * the zone since we could be using the section number id if we do not have
1358 * node id available in page flags.
1359 * We only guarantee that it will return the same value for two combinable
1360 * pages in a zone.
89689ae7 1361 */
cb2b95e1
AW
1362static inline int page_zone_id(struct page *page)
1363{
89689ae7 1364 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1365}
1366
89689ae7 1367#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1368extern int page_to_nid(const struct page *page);
89689ae7 1369#else
33dd4e0e 1370static inline int page_to_nid(const struct page *page)
d41dee36 1371{
f165b378
PT
1372 struct page *p = (struct page *)page;
1373
1374 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1375}
89689ae7
CL
1376#endif
1377
57e0a030 1378#ifdef CONFIG_NUMA_BALANCING
90572890 1379static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1380{
90572890 1381 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1382}
1383
90572890 1384static inline int cpupid_to_pid(int cpupid)
57e0a030 1385{
90572890 1386 return cpupid & LAST__PID_MASK;
57e0a030 1387}
b795854b 1388
90572890 1389static inline int cpupid_to_cpu(int cpupid)
b795854b 1390{
90572890 1391 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1392}
1393
90572890 1394static inline int cpupid_to_nid(int cpupid)
b795854b 1395{
90572890 1396 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1397}
1398
90572890 1399static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1400{
90572890 1401 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1402}
1403
90572890 1404static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1405{
90572890 1406 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1407}
1408
8c8a743c
PZ
1409static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1410{
1411 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1412}
1413
1414#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1415#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1416static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1417{
1ae71d03 1418 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1419}
90572890
PZ
1420
1421static inline int page_cpupid_last(struct page *page)
1422{
1423 return page->_last_cpupid;
1424}
1425static inline void page_cpupid_reset_last(struct page *page)
b795854b 1426{
1ae71d03 1427 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1428}
1429#else
90572890 1430static inline int page_cpupid_last(struct page *page)
75980e97 1431{
90572890 1432 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1433}
1434
90572890 1435extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1436
90572890 1437static inline void page_cpupid_reset_last(struct page *page)
75980e97 1438{
09940a4f 1439 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1440}
90572890
PZ
1441#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1442#else /* !CONFIG_NUMA_BALANCING */
1443static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1444{
90572890 1445 return page_to_nid(page); /* XXX */
57e0a030
MG
1446}
1447
90572890 1448static inline int page_cpupid_last(struct page *page)
57e0a030 1449{
90572890 1450 return page_to_nid(page); /* XXX */
57e0a030
MG
1451}
1452
90572890 1453static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1454{
1455 return -1;
1456}
1457
90572890 1458static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1459{
1460 return -1;
1461}
1462
90572890 1463static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1464{
1465 return -1;
1466}
1467
90572890
PZ
1468static inline int cpu_pid_to_cpupid(int nid, int pid)
1469{
1470 return -1;
1471}
1472
1473static inline bool cpupid_pid_unset(int cpupid)
b795854b 1474{
2b787449 1475 return true;
b795854b
MG
1476}
1477
90572890 1478static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1479{
1480}
8c8a743c
PZ
1481
1482static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1483{
1484 return false;
1485}
90572890 1486#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1487
2e903b91 1488#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1489
cf10bd4c
AK
1490/*
1491 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1492 * setting tags for all pages to native kernel tag value 0xff, as the default
1493 * value 0x00 maps to 0xff.
1494 */
1495
2813b9c0
AK
1496static inline u8 page_kasan_tag(const struct page *page)
1497{
cf10bd4c
AK
1498 u8 tag = 0xff;
1499
1500 if (kasan_enabled()) {
1501 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1502 tag ^= 0xff;
1503 }
1504
1505 return tag;
2813b9c0
AK
1506}
1507
1508static inline void page_kasan_tag_set(struct page *page, u8 tag)
1509{
34303244 1510 if (kasan_enabled()) {
cf10bd4c 1511 tag ^= 0xff;
34303244
AK
1512 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1513 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1514 }
2813b9c0
AK
1515}
1516
1517static inline void page_kasan_tag_reset(struct page *page)
1518{
34303244
AK
1519 if (kasan_enabled())
1520 page_kasan_tag_set(page, 0xff);
2813b9c0 1521}
34303244
AK
1522
1523#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1524
2813b9c0
AK
1525static inline u8 page_kasan_tag(const struct page *page)
1526{
1527 return 0xff;
1528}
1529
1530static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1531static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1532
1533#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1534
33dd4e0e 1535static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1536{
1537 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1538}
1539
75ef7184
MG
1540static inline pg_data_t *page_pgdat(const struct page *page)
1541{
1542 return NODE_DATA(page_to_nid(page));
1543}
1544
9127ab4f 1545#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1546static inline void set_page_section(struct page *page, unsigned long section)
1547{
1548 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1549 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1550}
1551
aa462abe 1552static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1553{
1554 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1555}
308c05e3 1556#endif
d41dee36 1557
8e3560d9
PT
1558/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1559#ifdef CONFIG_MIGRATION
1560static inline bool is_pinnable_page(struct page *page)
1561{
9afaf30f
PT
1562 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1563 is_zero_pfn(page_to_pfn(page));
8e3560d9
PT
1564}
1565#else
1566static inline bool is_pinnable_page(struct page *page)
1567{
1568 return true;
1569}
1570#endif
1571
2f1b6248 1572static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1573{
1574 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1575 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1576}
2f1b6248 1577
348f8b6c
DH
1578static inline void set_page_node(struct page *page, unsigned long node)
1579{
1580 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1581 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1582}
89689ae7 1583
2f1b6248 1584static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1585 unsigned long node, unsigned long pfn)
1da177e4 1586{
348f8b6c
DH
1587 set_page_zone(page, zone);
1588 set_page_node(page, node);
9127ab4f 1589#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1590 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1591#endif
1da177e4
LT
1592}
1593
f6ac2354
CL
1594/*
1595 * Some inline functions in vmstat.h depend on page_zone()
1596 */
1597#include <linux/vmstat.h>
1598
33dd4e0e 1599static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1600{
1dff8083 1601 return page_to_virt(page);
1da177e4
LT
1602}
1603
1604#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1605#define HASHED_PAGE_VIRTUAL
1606#endif
1607
1608#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1609static inline void *page_address(const struct page *page)
1610{
1611 return page->virtual;
1612}
1613static inline void set_page_address(struct page *page, void *address)
1614{
1615 page->virtual = address;
1616}
1da177e4
LT
1617#define page_address_init() do { } while(0)
1618#endif
1619
1620#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1621void *page_address(const struct page *page);
1da177e4
LT
1622void set_page_address(struct page *page, void *virtual);
1623void page_address_init(void);
1624#endif
1625
1626#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1627#define page_address(page) lowmem_page_address(page)
1628#define set_page_address(page, address) do { } while(0)
1629#define page_address_init() do { } while(0)
1630#endif
1631
e39155ea
KS
1632extern void *page_rmapping(struct page *page);
1633extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1634extern struct address_space *page_mapping(struct page *page);
1da177e4 1635
f981c595
MG
1636extern struct address_space *__page_file_mapping(struct page *);
1637
1638static inline
1639struct address_space *page_file_mapping(struct page *page)
1640{
1641 if (unlikely(PageSwapCache(page)))
1642 return __page_file_mapping(page);
1643
1644 return page->mapping;
1645}
1646
f6ab1f7f
HY
1647extern pgoff_t __page_file_index(struct page *page);
1648
1da177e4
LT
1649/*
1650 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1651 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1652 */
1653static inline pgoff_t page_index(struct page *page)
1654{
1655 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1656 return __page_file_index(page);
1da177e4
LT
1657 return page->index;
1658}
1659
1aa8aea5 1660bool page_mapped(struct page *page);
bda807d4 1661struct address_space *page_mapping(struct page *page);
1da177e4 1662
2f064f34
MH
1663/*
1664 * Return true only if the page has been allocated with
1665 * ALLOC_NO_WATERMARKS and the low watermark was not
1666 * met implying that the system is under some pressure.
1667 */
1d7bab6a 1668static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1669{
1670 /*
1671 * Page index cannot be this large so this must be
1672 * a pfmemalloc page.
1673 */
1674 return page->index == -1UL;
1675}
1676
1677/*
1678 * Only to be called by the page allocator on a freshly allocated
1679 * page.
1680 */
1681static inline void set_page_pfmemalloc(struct page *page)
1682{
1683 page->index = -1UL;
1684}
1685
1686static inline void clear_page_pfmemalloc(struct page *page)
1687{
1688 page->index = 0;
1689}
1690
1c0fe6e3
NP
1691/*
1692 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1693 */
1694extern void pagefault_out_of_memory(void);
1695
1da177e4 1696#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1697#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1da177e4 1698
ddd588b5 1699/*
7bf02ea2 1700 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1701 * various contexts.
1702 */
4b59e6c4 1703#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1704
9af744d7 1705extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1706
710ec38b 1707#ifdef CONFIG_MMU
7f43add4 1708extern bool can_do_mlock(void);
710ec38b
AB
1709#else
1710static inline bool can_do_mlock(void) { return false; }
1711#endif
1da177e4
LT
1712extern int user_shm_lock(size_t, struct user_struct *);
1713extern void user_shm_unlock(size_t, struct user_struct *);
1714
1715/*
1716 * Parameter block passed down to zap_pte_range in exceptional cases.
1717 */
1718struct zap_details {
1da177e4
LT
1719 struct address_space *check_mapping; /* Check page->mapping if set */
1720 pgoff_t first_index; /* Lowest page->index to unmap */
1721 pgoff_t last_index; /* Highest page->index to unmap */
22061a1f 1722 struct page *single_page; /* Locked page to be unmapped */
1da177e4
LT
1723};
1724
25b2995a
CH
1725struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1726 pte_t pte);
28093f9f
GS
1727struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1728 pmd_t pmd);
7e675137 1729
27d036e3
LR
1730void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1731 unsigned long size);
14f5ff5d 1732void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1733 unsigned long size);
4f74d2c8
LT
1734void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1735 unsigned long start, unsigned long end);
e6473092 1736
ac46d4f3
JG
1737struct mmu_notifier_range;
1738
42b77728 1739void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1740 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1741int
1742copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
9fd6dad1
PB
1743int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1744 struct mmu_notifier_range *range, pte_t **ptepp,
1745 pmd_t **pmdpp, spinlock_t **ptlp);
ff5c19ed 1746int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 1747 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
1748int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1749 unsigned long *pfn);
d87fe660 1750int follow_phys(struct vm_area_struct *vma, unsigned long address,
1751 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1752int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1753 void *buf, int len, int write);
1da177e4 1754
7caef267 1755extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1756extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1757void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1758void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1759int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1760int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1761int invalidate_inode_page(struct page *page);
1762
7ee1dd3f 1763#ifdef CONFIG_MMU
2b740303 1764extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1765 unsigned long address, unsigned int flags,
1766 struct pt_regs *regs);
64019a2e 1767extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1768 unsigned long address, unsigned int fault_flags,
1769 bool *unlocked);
22061a1f 1770void unmap_mapping_page(struct page *page);
977fbdcd
MW
1771void unmap_mapping_pages(struct address_space *mapping,
1772 pgoff_t start, pgoff_t nr, bool even_cows);
1773void unmap_mapping_range(struct address_space *mapping,
1774 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1775#else
2b740303 1776static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1777 unsigned long address, unsigned int flags,
1778 struct pt_regs *regs)
7ee1dd3f
DH
1779{
1780 /* should never happen if there's no MMU */
1781 BUG();
1782 return VM_FAULT_SIGBUS;
1783}
64019a2e 1784static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1785 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1786{
1787 /* should never happen if there's no MMU */
1788 BUG();
1789 return -EFAULT;
1790}
22061a1f 1791static inline void unmap_mapping_page(struct page *page) { }
977fbdcd
MW
1792static inline void unmap_mapping_pages(struct address_space *mapping,
1793 pgoff_t start, pgoff_t nr, bool even_cows) { }
1794static inline void unmap_mapping_range(struct address_space *mapping,
1795 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1796#endif
f33ea7f4 1797
977fbdcd
MW
1798static inline void unmap_shared_mapping_range(struct address_space *mapping,
1799 loff_t const holebegin, loff_t const holelen)
1800{
1801 unmap_mapping_range(mapping, holebegin, holelen, 0);
1802}
1803
1804extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1805 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1806extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1807 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1808extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1809 void *buf, int len, unsigned int gup_flags);
1da177e4 1810
64019a2e 1811long get_user_pages_remote(struct mm_struct *mm,
1e987790 1812 unsigned long start, unsigned long nr_pages,
9beae1ea 1813 unsigned int gup_flags, struct page **pages,
5b56d49f 1814 struct vm_area_struct **vmas, int *locked);
64019a2e 1815long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1816 unsigned long start, unsigned long nr_pages,
1817 unsigned int gup_flags, struct page **pages,
1818 struct vm_area_struct **vmas, int *locked);
c12d2da5 1819long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1820 unsigned int gup_flags, struct page **pages,
cde70140 1821 struct vm_area_struct **vmas);
eddb1c22
JH
1822long pin_user_pages(unsigned long start, unsigned long nr_pages,
1823 unsigned int gup_flags, struct page **pages,
1824 struct vm_area_struct **vmas);
c12d2da5 1825long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1826 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1827long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1828 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1829long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1830 struct page **pages, unsigned int gup_flags);
91429023
JH
1831long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1832 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1833
73b0140b
IW
1834int get_user_pages_fast(unsigned long start, int nr_pages,
1835 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1836int pin_user_pages_fast(unsigned long start, int nr_pages,
1837 unsigned int gup_flags, struct page **pages);
8025e5dd 1838
79eb597c
DJ
1839int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1840int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1841 struct task_struct *task, bool bypass_rlim);
1842
18022c5d
MG
1843struct kvec;
1844int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1845 struct page **pages);
1846int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1847struct page *get_dump_page(unsigned long addr);
1da177e4 1848
cf9a2ae8 1849extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1850extern void do_invalidatepage(struct page *page, unsigned int offset,
1851 unsigned int length);
cf9a2ae8 1852
1da177e4
LT
1853int redirty_page_for_writepage(struct writeback_control *wbc,
1854 struct page *page);
c4843a75 1855void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1856 struct bdi_writeback *wb);
b3c97528 1857int set_page_dirty(struct page *page);
1da177e4 1858int set_page_dirty_lock(struct page *page);
736304f3
JK
1859void __cancel_dirty_page(struct page *page);
1860static inline void cancel_dirty_page(struct page *page)
1861{
1862 /* Avoid atomic ops, locking, etc. when not actually needed. */
1863 if (PageDirty(page))
1864 __cancel_dirty_page(page);
1865}
1da177e4 1866int clear_page_dirty_for_io(struct page *page);
b9ea2515 1867
a9090253 1868int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1869
b6a2fea3
OW
1870extern unsigned long move_page_tables(struct vm_area_struct *vma,
1871 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1872 unsigned long new_addr, unsigned long len,
1873 bool need_rmap_locks);
58705444
PX
1874
1875/*
1876 * Flags used by change_protection(). For now we make it a bitmap so
1877 * that we can pass in multiple flags just like parameters. However
1878 * for now all the callers are only use one of the flags at the same
1879 * time.
1880 */
1881/* Whether we should allow dirty bit accounting */
1882#define MM_CP_DIRTY_ACCT (1UL << 0)
1883/* Whether this protection change is for NUMA hints */
1884#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1885/* Whether this change is for write protecting */
1886#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1887#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1888#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1889 MM_CP_UFFD_WP_RESOLVE)
58705444 1890
7da4d641
PZ
1891extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1892 unsigned long end, pgprot_t newprot,
58705444 1893 unsigned long cp_flags);
b6a2fea3
OW
1894extern int mprotect_fixup(struct vm_area_struct *vma,
1895 struct vm_area_struct **pprev, unsigned long start,
1896 unsigned long end, unsigned long newflags);
1da177e4 1897
465a454f
PZ
1898/*
1899 * doesn't attempt to fault and will return short.
1900 */
dadbb612
SJ
1901int get_user_pages_fast_only(unsigned long start, int nr_pages,
1902 unsigned int gup_flags, struct page **pages);
104acc32
JH
1903int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1904 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1905
1906static inline bool get_user_page_fast_only(unsigned long addr,
1907 unsigned int gup_flags, struct page **pagep)
1908{
1909 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1910}
d559db08
KH
1911/*
1912 * per-process(per-mm_struct) statistics.
1913 */
d559db08
KH
1914static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1915{
69c97823
KK
1916 long val = atomic_long_read(&mm->rss_stat.count[member]);
1917
1918#ifdef SPLIT_RSS_COUNTING
1919 /*
1920 * counter is updated in asynchronous manner and may go to minus.
1921 * But it's never be expected number for users.
1922 */
1923 if (val < 0)
1924 val = 0;
172703b0 1925#endif
69c97823
KK
1926 return (unsigned long)val;
1927}
d559db08 1928
e4dcad20 1929void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1930
d559db08
KH
1931static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1932{
b3d1411b
JFG
1933 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1934
e4dcad20 1935 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1936}
1937
1938static inline void inc_mm_counter(struct mm_struct *mm, int member)
1939{
b3d1411b
JFG
1940 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1941
e4dcad20 1942 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1943}
1944
1945static inline void dec_mm_counter(struct mm_struct *mm, int member)
1946{
b3d1411b
JFG
1947 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1948
e4dcad20 1949 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1950}
1951
eca56ff9
JM
1952/* Optimized variant when page is already known not to be PageAnon */
1953static inline int mm_counter_file(struct page *page)
1954{
1955 if (PageSwapBacked(page))
1956 return MM_SHMEMPAGES;
1957 return MM_FILEPAGES;
1958}
1959
1960static inline int mm_counter(struct page *page)
1961{
1962 if (PageAnon(page))
1963 return MM_ANONPAGES;
1964 return mm_counter_file(page);
1965}
1966
d559db08
KH
1967static inline unsigned long get_mm_rss(struct mm_struct *mm)
1968{
1969 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1970 get_mm_counter(mm, MM_ANONPAGES) +
1971 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1972}
1973
1974static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1975{
1976 return max(mm->hiwater_rss, get_mm_rss(mm));
1977}
1978
1979static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1980{
1981 return max(mm->hiwater_vm, mm->total_vm);
1982}
1983
1984static inline void update_hiwater_rss(struct mm_struct *mm)
1985{
1986 unsigned long _rss = get_mm_rss(mm);
1987
1988 if ((mm)->hiwater_rss < _rss)
1989 (mm)->hiwater_rss = _rss;
1990}
1991
1992static inline void update_hiwater_vm(struct mm_struct *mm)
1993{
1994 if (mm->hiwater_vm < mm->total_vm)
1995 mm->hiwater_vm = mm->total_vm;
1996}
1997
695f0559
PC
1998static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1999{
2000 mm->hiwater_rss = get_mm_rss(mm);
2001}
2002
d559db08
KH
2003static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2004 struct mm_struct *mm)
2005{
2006 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2007
2008 if (*maxrss < hiwater_rss)
2009 *maxrss = hiwater_rss;
2010}
2011
53bddb4e 2012#if defined(SPLIT_RSS_COUNTING)
05af2e10 2013void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2014#else
05af2e10 2015static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2016{
2017}
2018#endif
465a454f 2019
78e7c5af
AK
2020#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2021static inline int pte_special(pte_t pte)
2022{
2023 return 0;
2024}
2025
2026static inline pte_t pte_mkspecial(pte_t pte)
2027{
2028 return pte;
2029}
2030#endif
2031
17596731 2032#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2033static inline int pte_devmap(pte_t pte)
2034{
2035 return 0;
2036}
2037#endif
2038
6d2329f8 2039int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 2040
25ca1d6c
NK
2041extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2042 spinlock_t **ptl);
2043static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2044 spinlock_t **ptl)
2045{
2046 pte_t *ptep;
2047 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2048 return ptep;
2049}
c9cfcddf 2050
c2febafc
KS
2051#ifdef __PAGETABLE_P4D_FOLDED
2052static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2053 unsigned long address)
2054{
2055 return 0;
2056}
2057#else
2058int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2059#endif
2060
b4e98d9a 2061#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2062static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2063 unsigned long address)
2064{
2065 return 0;
2066}
b4e98d9a
KS
2067static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2068static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2069
5f22df00 2070#else
c2febafc 2071int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2072
b4e98d9a
KS
2073static inline void mm_inc_nr_puds(struct mm_struct *mm)
2074{
6d212db1
MS
2075 if (mm_pud_folded(mm))
2076 return;
af5b0f6a 2077 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2078}
2079
2080static inline void mm_dec_nr_puds(struct mm_struct *mm)
2081{
6d212db1
MS
2082 if (mm_pud_folded(mm))
2083 return;
af5b0f6a 2084 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2085}
5f22df00
NP
2086#endif
2087
2d2f5119 2088#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2089static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2090 unsigned long address)
2091{
2092 return 0;
2093}
dc6c9a35 2094
dc6c9a35
KS
2095static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2096static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2097
5f22df00 2098#else
1bb3630e 2099int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2100
dc6c9a35
KS
2101static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2102{
6d212db1
MS
2103 if (mm_pmd_folded(mm))
2104 return;
af5b0f6a 2105 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2106}
2107
2108static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2109{
6d212db1
MS
2110 if (mm_pmd_folded(mm))
2111 return;
af5b0f6a 2112 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2113}
5f22df00
NP
2114#endif
2115
c4812909 2116#ifdef CONFIG_MMU
af5b0f6a 2117static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2118{
af5b0f6a 2119 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2120}
2121
af5b0f6a 2122static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2123{
af5b0f6a 2124 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2125}
2126
2127static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2128{
af5b0f6a 2129 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2130}
2131
2132static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2133{
af5b0f6a 2134 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2135}
2136#else
c4812909 2137
af5b0f6a
KS
2138static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2139static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2140{
2141 return 0;
2142}
2143
2144static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2145static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2146#endif
2147
4cf58924
JFG
2148int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2149int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2150
f949286c
MR
2151#if defined(CONFIG_MMU)
2152
c2febafc
KS
2153static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2154 unsigned long address)
2155{
2156 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2157 NULL : p4d_offset(pgd, address);
2158}
2159
2160static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2161 unsigned long address)
1da177e4 2162{
c2febafc
KS
2163 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2164 NULL : pud_offset(p4d, address);
1da177e4 2165}
d8626138 2166
1da177e4
LT
2167static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2168{
1bb3630e
HD
2169 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2170 NULL: pmd_offset(pud, address);
1da177e4 2171}
f949286c 2172#endif /* CONFIG_MMU */
1bb3630e 2173
57c1ffce 2174#if USE_SPLIT_PTE_PTLOCKS
597d795a 2175#if ALLOC_SPLIT_PTLOCKS
b35f1819 2176void __init ptlock_cache_init(void);
539edb58
PZ
2177extern bool ptlock_alloc(struct page *page);
2178extern void ptlock_free(struct page *page);
2179
2180static inline spinlock_t *ptlock_ptr(struct page *page)
2181{
2182 return page->ptl;
2183}
597d795a 2184#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2185static inline void ptlock_cache_init(void)
2186{
2187}
2188
49076ec2
KS
2189static inline bool ptlock_alloc(struct page *page)
2190{
49076ec2
KS
2191 return true;
2192}
539edb58 2193
49076ec2
KS
2194static inline void ptlock_free(struct page *page)
2195{
49076ec2
KS
2196}
2197
2198static inline spinlock_t *ptlock_ptr(struct page *page)
2199{
539edb58 2200 return &page->ptl;
49076ec2 2201}
597d795a 2202#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2203
2204static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2205{
2206 return ptlock_ptr(pmd_page(*pmd));
2207}
2208
2209static inline bool ptlock_init(struct page *page)
2210{
2211 /*
2212 * prep_new_page() initialize page->private (and therefore page->ptl)
2213 * with 0. Make sure nobody took it in use in between.
2214 *
2215 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2216 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2217 */
309381fe 2218 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2219 if (!ptlock_alloc(page))
2220 return false;
2221 spin_lock_init(ptlock_ptr(page));
2222 return true;
2223}
2224
57c1ffce 2225#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2226/*
2227 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2228 */
49076ec2
KS
2229static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2230{
2231 return &mm->page_table_lock;
2232}
b35f1819 2233static inline void ptlock_cache_init(void) {}
49076ec2 2234static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2235static inline void ptlock_free(struct page *page) {}
57c1ffce 2236#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2237
b35f1819
KS
2238static inline void pgtable_init(void)
2239{
2240 ptlock_cache_init();
2241 pgtable_cache_init();
2242}
2243
b4ed71f5 2244static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2245{
706874e9
VD
2246 if (!ptlock_init(page))
2247 return false;
1d40a5ea 2248 __SetPageTable(page);
f0c0c115 2249 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2250 return true;
2f569afd
MS
2251}
2252
b4ed71f5 2253static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2254{
9e247bab 2255 ptlock_free(page);
1d40a5ea 2256 __ClearPageTable(page);
f0c0c115 2257 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2258}
2259
c74df32c
HD
2260#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2261({ \
4c21e2f2 2262 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2263 pte_t *__pte = pte_offset_map(pmd, address); \
2264 *(ptlp) = __ptl; \
2265 spin_lock(__ptl); \
2266 __pte; \
2267})
2268
2269#define pte_unmap_unlock(pte, ptl) do { \
2270 spin_unlock(ptl); \
2271 pte_unmap(pte); \
2272} while (0)
2273
4cf58924 2274#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2275
2276#define pte_alloc_map(mm, pmd, address) \
4cf58924 2277 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2278
c74df32c 2279#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2280 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2281 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2282
1bb3630e 2283#define pte_alloc_kernel(pmd, address) \
4cf58924 2284 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2285 NULL: pte_offset_kernel(pmd, address))
1da177e4 2286
e009bb30
KS
2287#if USE_SPLIT_PMD_PTLOCKS
2288
634391ac
MS
2289static struct page *pmd_to_page(pmd_t *pmd)
2290{
2291 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2292 return virt_to_page((void *)((unsigned long) pmd & mask));
2293}
2294
e009bb30
KS
2295static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2296{
634391ac 2297 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2298}
2299
b2b29d6d 2300static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2301{
e009bb30
KS
2302#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2303 page->pmd_huge_pte = NULL;
2304#endif
49076ec2 2305 return ptlock_init(page);
e009bb30
KS
2306}
2307
b2b29d6d 2308static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2309{
2310#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2311 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2312#endif
49076ec2 2313 ptlock_free(page);
e009bb30
KS
2314}
2315
634391ac 2316#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2317
2318#else
2319
9a86cb7b
KS
2320static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2321{
2322 return &mm->page_table_lock;
2323}
2324
b2b29d6d
MW
2325static inline bool pmd_ptlock_init(struct page *page) { return true; }
2326static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2327
c389a250 2328#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2329
e009bb30
KS
2330#endif
2331
9a86cb7b
KS
2332static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2333{
2334 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2335 spin_lock(ptl);
2336 return ptl;
2337}
2338
b2b29d6d
MW
2339static inline bool pgtable_pmd_page_ctor(struct page *page)
2340{
2341 if (!pmd_ptlock_init(page))
2342 return false;
2343 __SetPageTable(page);
f0c0c115 2344 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2345 return true;
2346}
2347
2348static inline void pgtable_pmd_page_dtor(struct page *page)
2349{
2350 pmd_ptlock_free(page);
2351 __ClearPageTable(page);
f0c0c115 2352 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2353}
2354
a00cc7d9
MW
2355/*
2356 * No scalability reason to split PUD locks yet, but follow the same pattern
2357 * as the PMD locks to make it easier if we decide to. The VM should not be
2358 * considered ready to switch to split PUD locks yet; there may be places
2359 * which need to be converted from page_table_lock.
2360 */
2361static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2362{
2363 return &mm->page_table_lock;
2364}
2365
2366static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2367{
2368 spinlock_t *ptl = pud_lockptr(mm, pud);
2369
2370 spin_lock(ptl);
2371 return ptl;
2372}
62906027 2373
a00cc7d9 2374extern void __init pagecache_init(void);
bc9331a1 2375extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2376extern void free_initmem(void);
2377
69afade7
JL
2378/*
2379 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2380 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2381 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2382 * Return pages freed into the buddy system.
2383 */
11199692 2384extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2385 int poison, const char *s);
c3d5f5f0 2386
c3d5f5f0 2387extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2388extern void mem_init_print_info(void);
69afade7 2389
4b50bcc7 2390extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2391
69afade7 2392/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2393static inline void free_reserved_page(struct page *page)
69afade7
JL
2394{
2395 ClearPageReserved(page);
2396 init_page_count(page);
2397 __free_page(page);
69afade7
JL
2398 adjust_managed_page_count(page, 1);
2399}
a0cd7a7c 2400#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2401
2402static inline void mark_page_reserved(struct page *page)
2403{
2404 SetPageReserved(page);
2405 adjust_managed_page_count(page, -1);
2406}
2407
2408/*
2409 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2410 * The freed pages will be poisoned with pattern "poison" if it's within
2411 * range [0, UCHAR_MAX].
2412 * Return pages freed into the buddy system.
69afade7
JL
2413 */
2414static inline unsigned long free_initmem_default(int poison)
2415{
2416 extern char __init_begin[], __init_end[];
2417
11199692 2418 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2419 poison, "unused kernel image (initmem)");
69afade7
JL
2420}
2421
7ee3d4e8
JL
2422static inline unsigned long get_num_physpages(void)
2423{
2424 int nid;
2425 unsigned long phys_pages = 0;
2426
2427 for_each_online_node(nid)
2428 phys_pages += node_present_pages(nid);
2429
2430 return phys_pages;
2431}
2432
c713216d 2433/*
3f08a302 2434 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2435 * zones, allocate the backing mem_map and account for memory holes in an
2436 * architecture independent manner.
c713216d
MG
2437 *
2438 * An architecture is expected to register range of page frames backed by
0ee332c1 2439 * physical memory with memblock_add[_node]() before calling
9691a071 2440 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2441 * usage, an architecture is expected to do something like
2442 *
2443 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2444 * max_highmem_pfn};
2445 * for_each_valid_physical_page_range()
0ee332c1 2446 * memblock_add_node(base, size, nid)
9691a071 2447 * free_area_init(max_zone_pfns);
c713216d 2448 */
9691a071 2449void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2450unsigned long node_map_pfn_alignment(void);
32996250
YL
2451unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2452 unsigned long end_pfn);
c713216d
MG
2453extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2454 unsigned long end_pfn);
2455extern void get_pfn_range_for_nid(unsigned int nid,
2456 unsigned long *start_pfn, unsigned long *end_pfn);
2457extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2458
3f08a302 2459#ifndef CONFIG_NEED_MULTIPLE_NODES
6f24fbd3 2460static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2461{
2462 return 0;
2463}
2464#else
2465/* please see mm/page_alloc.c */
2466extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2467#endif
2468
0e0b864e 2469extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2470extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2471 unsigned long, unsigned long, enum meminit_context,
2472 struct vmem_altmap *, int migratetype);
bc75d33f 2473extern void setup_per_zone_wmarks(void);
1b79acc9 2474extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2475extern void mem_init(void);
8feae131 2476extern void __init mmap_init(void);
9af744d7 2477extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2478extern long si_mem_available(void);
1da177e4
LT
2479extern void si_meminfo(struct sysinfo * val);
2480extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2481#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2482extern unsigned long arch_reserved_kernel_pages(void);
2483#endif
1da177e4 2484
a8e99259
MH
2485extern __printf(3, 4)
2486void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2487
e7c8d5c9 2488extern void setup_per_cpu_pageset(void);
e7c8d5c9 2489
75f7ad8e
PS
2490/* page_alloc.c */
2491extern int min_free_kbytes;
1c30844d 2492extern int watermark_boost_factor;
795ae7a0 2493extern int watermark_scale_factor;
51930df5 2494extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2495
8feae131 2496/* nommu.c */
33e5d769 2497extern atomic_long_t mmap_pages_allocated;
7e660872 2498extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2499
6b2dbba8 2500/* interval_tree.c */
6b2dbba8 2501void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2502 struct rb_root_cached *root);
9826a516
ML
2503void vma_interval_tree_insert_after(struct vm_area_struct *node,
2504 struct vm_area_struct *prev,
f808c13f 2505 struct rb_root_cached *root);
6b2dbba8 2506void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2507 struct rb_root_cached *root);
2508struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2509 unsigned long start, unsigned long last);
2510struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2511 unsigned long start, unsigned long last);
2512
2513#define vma_interval_tree_foreach(vma, root, start, last) \
2514 for (vma = vma_interval_tree_iter_first(root, start, last); \
2515 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2516
bf181b9f 2517void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2518 struct rb_root_cached *root);
bf181b9f 2519void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2520 struct rb_root_cached *root);
2521struct anon_vma_chain *
2522anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2523 unsigned long start, unsigned long last);
bf181b9f
ML
2524struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2525 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2526#ifdef CONFIG_DEBUG_VM_RB
2527void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2528#endif
bf181b9f
ML
2529
2530#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2531 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2532 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2533
1da177e4 2534/* mmap.c */
34b4e4aa 2535extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2536extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2537 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2538 struct vm_area_struct *expand);
2539static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2540 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2541{
2542 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2543}
1da177e4
LT
2544extern struct vm_area_struct *vma_merge(struct mm_struct *,
2545 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2546 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2547 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2548extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2549extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2550 unsigned long addr, int new_below);
2551extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2552 unsigned long addr, int new_below);
1da177e4
LT
2553extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2554extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2555 struct rb_node **, struct rb_node *);
a8fb5618 2556extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2557extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2558 unsigned long addr, unsigned long len, pgoff_t pgoff,
2559 bool *need_rmap_locks);
1da177e4 2560extern void exit_mmap(struct mm_struct *);
925d1c40 2561
9c599024
CG
2562static inline int check_data_rlimit(unsigned long rlim,
2563 unsigned long new,
2564 unsigned long start,
2565 unsigned long end_data,
2566 unsigned long start_data)
2567{
2568 if (rlim < RLIM_INFINITY) {
2569 if (((new - start) + (end_data - start_data)) > rlim)
2570 return -ENOSPC;
2571 }
2572
2573 return 0;
2574}
2575
7906d00c
AA
2576extern int mm_take_all_locks(struct mm_struct *mm);
2577extern void mm_drop_all_locks(struct mm_struct *mm);
2578
38646013
JS
2579extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2580extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2581extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2582
84638335
KK
2583extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2584extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2585
2eefd878
DS
2586extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2587 const struct vm_special_mapping *sm);
3935ed6a
SS
2588extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2589 unsigned long addr, unsigned long len,
a62c34bd
AL
2590 unsigned long flags,
2591 const struct vm_special_mapping *spec);
2592/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2593extern int install_special_mapping(struct mm_struct *mm,
2594 unsigned long addr, unsigned long len,
2595 unsigned long flags, struct page **pages);
1da177e4 2596
649775be
AG
2597unsigned long randomize_stack_top(unsigned long stack_top);
2598
1da177e4
LT
2599extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2600
0165ab44 2601extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2602 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2603 struct list_head *uf);
1fcfd8db 2604extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2605 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2606 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2607extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2608 struct list_head *uf, bool downgrade);
897ab3e0
MR
2609extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2610 struct list_head *uf);
0726b01e 2611extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2612
bebeb3d6
ML
2613#ifdef CONFIG_MMU
2614extern int __mm_populate(unsigned long addr, unsigned long len,
2615 int ignore_errors);
2616static inline void mm_populate(unsigned long addr, unsigned long len)
2617{
2618 /* Ignore errors */
2619 (void) __mm_populate(addr, len, 1);
2620}
2621#else
2622static inline void mm_populate(unsigned long addr, unsigned long len) {}
2623#endif
2624
e4eb1ff6 2625/* These take the mm semaphore themselves */
5d22fc25 2626extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2627extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2628extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2629extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2630 unsigned long, unsigned long,
2631 unsigned long, unsigned long);
1da177e4 2632
db4fbfb9
ML
2633struct vm_unmapped_area_info {
2634#define VM_UNMAPPED_AREA_TOPDOWN 1
2635 unsigned long flags;
2636 unsigned long length;
2637 unsigned long low_limit;
2638 unsigned long high_limit;
2639 unsigned long align_mask;
2640 unsigned long align_offset;
2641};
2642
baceaf1c 2643extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2644
85821aab 2645/* truncate.c */
1da177e4 2646extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2647extern void truncate_inode_pages_range(struct address_space *,
2648 loff_t lstart, loff_t lend);
91b0abe3 2649extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2650
2651/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2652extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2653extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2654 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2655extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2656
2657/* mm/page-writeback.c */
2b69c828 2658int __must_check write_one_page(struct page *page);
1cf6e7d8 2659void task_dirty_inc(struct task_struct *tsk);
1da177e4 2660
1be7107f 2661extern unsigned long stack_guard_gap;
d05f3169 2662/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2663extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2664
11192337 2665/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2666extern int expand_downwards(struct vm_area_struct *vma,
2667 unsigned long address);
8ca3eb08 2668#if VM_GROWSUP
46dea3d0 2669extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2670#else
fee7e49d 2671 #define expand_upwards(vma, address) (0)
9ab88515 2672#endif
1da177e4
LT
2673
2674/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2675extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2676extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2677 struct vm_area_struct **pprev);
2678
ce6d42f2
LH
2679/**
2680 * find_vma_intersection() - Look up the first VMA which intersects the interval
2681 * @mm: The process address space.
2682 * @start_addr: The inclusive start user address.
2683 * @end_addr: The exclusive end user address.
2684 *
2685 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2686 * start_addr < end_addr.
2687 */
2688static inline
2689struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2690 unsigned long start_addr,
2691 unsigned long end_addr)
1da177e4 2692{
ce6d42f2 2693 struct vm_area_struct *vma = find_vma(mm, start_addr);
1da177e4
LT
2694
2695 if (vma && end_addr <= vma->vm_start)
2696 vma = NULL;
2697 return vma;
2698}
2699
ce6d42f2
LH
2700/**
2701 * vma_lookup() - Find a VMA at a specific address
2702 * @mm: The process address space.
2703 * @addr: The user address.
2704 *
2705 * Return: The vm_area_struct at the given address, %NULL otherwise.
2706 */
2707static inline
2708struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2709{
2710 struct vm_area_struct *vma = find_vma(mm, addr);
2711
2712 if (vma && addr < vma->vm_start)
2713 vma = NULL;
2714
2715 return vma;
2716}
2717
1be7107f
HD
2718static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2719{
2720 unsigned long vm_start = vma->vm_start;
2721
2722 if (vma->vm_flags & VM_GROWSDOWN) {
2723 vm_start -= stack_guard_gap;
2724 if (vm_start > vma->vm_start)
2725 vm_start = 0;
2726 }
2727 return vm_start;
2728}
2729
2730static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2731{
2732 unsigned long vm_end = vma->vm_end;
2733
2734 if (vma->vm_flags & VM_GROWSUP) {
2735 vm_end += stack_guard_gap;
2736 if (vm_end < vma->vm_end)
2737 vm_end = -PAGE_SIZE;
2738 }
2739 return vm_end;
2740}
2741
1da177e4
LT
2742static inline unsigned long vma_pages(struct vm_area_struct *vma)
2743{
2744 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2745}
2746
640708a2
PE
2747/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2748static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2749 unsigned long vm_start, unsigned long vm_end)
2750{
2751 struct vm_area_struct *vma = find_vma(mm, vm_start);
2752
2753 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2754 vma = NULL;
2755
2756 return vma;
2757}
2758
017b1660
MK
2759static inline bool range_in_vma(struct vm_area_struct *vma,
2760 unsigned long start, unsigned long end)
2761{
2762 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2763}
2764
bad849b3 2765#ifdef CONFIG_MMU
804af2cf 2766pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2767void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2768#else
2769static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2770{
2771 return __pgprot(0);
2772}
64e45507
PF
2773static inline void vma_set_page_prot(struct vm_area_struct *vma)
2774{
2775 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2776}
bad849b3
DH
2777#endif
2778
295992fb
CK
2779void vma_set_file(struct vm_area_struct *vma, struct file *file);
2780
5877231f 2781#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2782unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2783 unsigned long start, unsigned long end);
2784#endif
2785
deceb6cd 2786struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2787int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2788 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
2789int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2790 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 2791int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2792int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2793 struct page **pages, unsigned long *num);
a667d745
SJ
2794int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2795 unsigned long num);
2796int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2797 unsigned long num);
ae2b01f3 2798vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2799 unsigned long pfn);
f5e6d1d5
MW
2800vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2801 unsigned long pfn, pgprot_t pgprot);
5d747637 2802vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2803 pfn_t pfn);
574c5b3d
TH
2804vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2805 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2806vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2807 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2808int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2809
1c8f4220
SJ
2810static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2811 unsigned long addr, struct page *page)
2812{
2813 int err = vm_insert_page(vma, addr, page);
2814
2815 if (err == -ENOMEM)
2816 return VM_FAULT_OOM;
2817 if (err < 0 && err != -EBUSY)
2818 return VM_FAULT_SIGBUS;
2819
2820 return VM_FAULT_NOPAGE;
2821}
2822
f8f6ae5d
JG
2823#ifndef io_remap_pfn_range
2824static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2825 unsigned long addr, unsigned long pfn,
2826 unsigned long size, pgprot_t prot)
2827{
2828 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2829}
2830#endif
2831
d97baf94
SJ
2832static inline vm_fault_t vmf_error(int err)
2833{
2834 if (err == -ENOMEM)
2835 return VM_FAULT_OOM;
2836 return VM_FAULT_SIGBUS;
2837}
2838
df06b37f
KB
2839struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2840 unsigned int foll_flags);
240aadee 2841
deceb6cd
HD
2842#define FOLL_WRITE 0x01 /* check pte is writable */
2843#define FOLL_TOUCH 0x02 /* mark page accessed */
2844#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2845#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2846#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2847#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2848 * and return without waiting upon it */
84d33df2 2849#define FOLL_POPULATE 0x40 /* fault in page */
69ebb83e 2850#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2851#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2852#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2853#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2854#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2855#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2856#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2857#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2858#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2859#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2860#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2861#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2862
2863/*
eddb1c22
JH
2864 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2865 * other. Here is what they mean, and how to use them:
932f4a63
IW
2866 *
2867 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2868 * period _often_ under userspace control. This is in contrast to
2869 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2870 *
2871 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2872 * lifetime enforced by the filesystem and we need guarantees that longterm
2873 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2874 * the filesystem. Ideas for this coordination include revoking the longterm
2875 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2876 * added after the problem with filesystems was found FS DAX VMAs are
2877 * specifically failed. Filesystem pages are still subject to bugs and use of
2878 * FOLL_LONGTERM should be avoided on those pages.
2879 *
2880 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2881 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2882 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2883 * is due to an incompatibility with the FS DAX check and
eddb1c22 2884 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2885 *
eddb1c22
JH
2886 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2887 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2888 * FOLL_LONGTERM is specified.
eddb1c22
JH
2889 *
2890 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2891 * but an additional pin counting system) will be invoked. This is intended for
2892 * anything that gets a page reference and then touches page data (for example,
2893 * Direct IO). This lets the filesystem know that some non-file-system entity is
2894 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2895 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2896 * a call to unpin_user_page().
eddb1c22
JH
2897 *
2898 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2899 * and separate refcounting mechanisms, however, and that means that each has
2900 * its own acquire and release mechanisms:
2901 *
2902 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2903 *
f1f6a7dd 2904 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2905 *
2906 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2907 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2908 * calls applied to them, and that's perfectly OK. This is a constraint on the
2909 * callers, not on the pages.)
2910 *
2911 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2912 * directly by the caller. That's in order to help avoid mismatches when
2913 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2914 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2915 *
72ef5e52 2916 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2917 */
1da177e4 2918
2b740303 2919static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2920{
2921 if (vm_fault & VM_FAULT_OOM)
2922 return -ENOMEM;
2923 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2924 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2925 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2926 return -EFAULT;
2927 return 0;
2928}
2929
8b1e0f81 2930typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2931extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2932 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2933extern int apply_to_existing_page_range(struct mm_struct *mm,
2934 unsigned long address, unsigned long size,
2935 pte_fn_t fn, void *data);
aee16b3c 2936
04013513 2937extern void init_mem_debugging_and_hardening(void);
8823b1db 2938#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
2939extern void __kernel_poison_pages(struct page *page, int numpages);
2940extern void __kernel_unpoison_pages(struct page *page, int numpages);
2941extern bool _page_poisoning_enabled_early;
2942DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2943static inline bool page_poisoning_enabled(void)
2944{
2945 return _page_poisoning_enabled_early;
2946}
2947/*
2948 * For use in fast paths after init_mem_debugging() has run, or when a
2949 * false negative result is not harmful when called too early.
2950 */
2951static inline bool page_poisoning_enabled_static(void)
2952{
2953 return static_branch_unlikely(&_page_poisoning_enabled);
2954}
2955static inline void kernel_poison_pages(struct page *page, int numpages)
2956{
2957 if (page_poisoning_enabled_static())
2958 __kernel_poison_pages(page, numpages);
2959}
2960static inline void kernel_unpoison_pages(struct page *page, int numpages)
2961{
2962 if (page_poisoning_enabled_static())
2963 __kernel_unpoison_pages(page, numpages);
2964}
8823b1db
LA
2965#else
2966static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 2967static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 2968static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
2969static inline void kernel_poison_pages(struct page *page, int numpages) { }
2970static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
2971#endif
2972
51cba1eb 2973DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
2974static inline bool want_init_on_alloc(gfp_t flags)
2975{
51cba1eb
KC
2976 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
2977 &init_on_alloc))
6471384a
AP
2978 return true;
2979 return flags & __GFP_ZERO;
2980}
2981
51cba1eb 2982DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
2983static inline bool want_init_on_free(void)
2984{
51cba1eb
KC
2985 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
2986 &init_on_free);
6471384a
AP
2987}
2988
8e57f8ac
VB
2989extern bool _debug_pagealloc_enabled_early;
2990DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2991
2992static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2993{
2994 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2995 _debug_pagealloc_enabled_early;
2996}
2997
2998/*
2999 * For use in fast paths after init_debug_pagealloc() has run, or when a
3000 * false negative result is not harmful when called too early.
3001 */
3002static inline bool debug_pagealloc_enabled_static(void)
031bc574 3003{
96a2b03f
VB
3004 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3005 return false;
3006
3007 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3008}
3009
5d6ad668 3010#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3011/*
5d6ad668
MR
3012 * To support DEBUG_PAGEALLOC architecture must ensure that
3013 * __kernel_map_pages() never fails
c87cbc1f 3014 */
d6332692
RE
3015extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3016
77bc7fd6
MR
3017static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3018{
3019 if (debug_pagealloc_enabled_static())
3020 __kernel_map_pages(page, numpages, 1);
3021}
3022
3023static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3024{
3025 if (debug_pagealloc_enabled_static())
3026 __kernel_map_pages(page, numpages, 0);
3027}
5d6ad668 3028#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3029static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3030static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3031#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3032
a6c19dfe 3033#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3034extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3035extern int in_gate_area_no_mm(unsigned long addr);
3036extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3037#else
a6c19dfe
AL
3038static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3039{
3040 return NULL;
3041}
3042static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3043static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3044{
3045 return 0;
3046}
1da177e4
LT
3047#endif /* __HAVE_ARCH_GATE_AREA */
3048
44a70ade
MH
3049extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3050
146732ce
JT
3051#ifdef CONFIG_SYSCTL
3052extern int sysctl_drop_caches;
32927393
CH
3053int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3054 loff_t *);
146732ce
JT
3055#endif
3056
cb731d6c
VD
3057void drop_slab(void);
3058void drop_slab_node(int nid);
9d0243bc 3059
7a9166e3
LY
3060#ifndef CONFIG_MMU
3061#define randomize_va_space 0
3062#else
a62eaf15 3063extern int randomize_va_space;
7a9166e3 3064#endif
a62eaf15 3065
045e72ac 3066const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3067#ifdef CONFIG_MMU
03252919 3068void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3069#else
3070static inline void print_vma_addr(char *prefix, unsigned long rip)
3071{
3072}
3073#endif
e6e5494c 3074
35fd1eb1 3075void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
3076struct page * __populate_section_memmap(unsigned long pfn,
3077 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3078pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3079p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3080pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3081pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
3082pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3083 struct vmem_altmap *altmap);
8f6aac41 3084void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3085struct vmem_altmap;
56993b4e
AK
3086void *vmemmap_alloc_block_buf(unsigned long size, int node,
3087 struct vmem_altmap *altmap);
8f6aac41 3088void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3089int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3090 int node, struct vmem_altmap *altmap);
7b73d978
CH
3091int vmemmap_populate(unsigned long start, unsigned long end, int node,
3092 struct vmem_altmap *altmap);
c2b91e2e 3093void vmemmap_populate_print_last(void);
0197518c 3094#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3095void vmemmap_free(unsigned long start, unsigned long end,
3096 struct vmem_altmap *altmap);
0197518c 3097#endif
46723bfa 3098void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3099 unsigned long nr_pages);
6a46079c 3100
82ba011b
AK
3101enum mf_flags {
3102 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3103 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3104 MF_MUST_KILL = 1 << 2,
cf870c70 3105 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3106};
83b57531
EB
3107extern int memory_failure(unsigned long pfn, int flags);
3108extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3109extern void memory_failure_queue_kick(int cpu);
847ce401 3110extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3111extern int sysctl_memory_failure_early_kill;
3112extern int sysctl_memory_failure_recovery;
facb6011 3113extern void shake_page(struct page *p, int access);
5844a486 3114extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3115extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3116
cc637b17
XX
3117
3118/*
3119 * Error handlers for various types of pages.
3120 */
cc3e2af4 3121enum mf_result {
cc637b17
XX
3122 MF_IGNORED, /* Error: cannot be handled */
3123 MF_FAILED, /* Error: handling failed */
3124 MF_DELAYED, /* Will be handled later */
3125 MF_RECOVERED, /* Successfully recovered */
3126};
3127
3128enum mf_action_page_type {
3129 MF_MSG_KERNEL,
3130 MF_MSG_KERNEL_HIGH_ORDER,
3131 MF_MSG_SLAB,
3132 MF_MSG_DIFFERENT_COMPOUND,
3133 MF_MSG_POISONED_HUGE,
3134 MF_MSG_HUGE,
3135 MF_MSG_FREE_HUGE,
31286a84 3136 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3137 MF_MSG_UNMAP_FAILED,
3138 MF_MSG_DIRTY_SWAPCACHE,
3139 MF_MSG_CLEAN_SWAPCACHE,
3140 MF_MSG_DIRTY_MLOCKED_LRU,
3141 MF_MSG_CLEAN_MLOCKED_LRU,
3142 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3143 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3144 MF_MSG_DIRTY_LRU,
3145 MF_MSG_CLEAN_LRU,
3146 MF_MSG_TRUNCATED_LRU,
3147 MF_MSG_BUDDY,
3148 MF_MSG_BUDDY_2ND,
6100e34b 3149 MF_MSG_DAX,
5d1fd5dc 3150 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3151 MF_MSG_UNKNOWN,
3152};
3153
47ad8475
AA
3154#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3155extern void clear_huge_page(struct page *page,
c79b57e4 3156 unsigned long addr_hint,
47ad8475
AA
3157 unsigned int pages_per_huge_page);
3158extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3159 unsigned long addr_hint,
3160 struct vm_area_struct *vma,
47ad8475 3161 unsigned int pages_per_huge_page);
fa4d75c1
MK
3162extern long copy_huge_page_from_user(struct page *dst_page,
3163 const void __user *usr_src,
810a56b9
MK
3164 unsigned int pages_per_huge_page,
3165 bool allow_pagefault);
2484ca9b
THV
3166
3167/**
3168 * vma_is_special_huge - Are transhuge page-table entries considered special?
3169 * @vma: Pointer to the struct vm_area_struct to consider
3170 *
3171 * Whether transhuge page-table entries are considered "special" following
3172 * the definition in vm_normal_page().
3173 *
3174 * Return: true if transhuge page-table entries should be considered special,
3175 * false otherwise.
3176 */
3177static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3178{
3179 return vma_is_dax(vma) || (vma->vm_file &&
3180 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3181}
3182
47ad8475
AA
3183#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3184
c0a32fc5
SG
3185#ifdef CONFIG_DEBUG_PAGEALLOC
3186extern unsigned int _debug_guardpage_minorder;
96a2b03f 3187DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3188
3189static inline unsigned int debug_guardpage_minorder(void)
3190{
3191 return _debug_guardpage_minorder;
3192}
3193
e30825f1
JK
3194static inline bool debug_guardpage_enabled(void)
3195{
96a2b03f 3196 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3197}
3198
c0a32fc5
SG
3199static inline bool page_is_guard(struct page *page)
3200{
e30825f1
JK
3201 if (!debug_guardpage_enabled())
3202 return false;
3203
3972f6bb 3204 return PageGuard(page);
c0a32fc5
SG
3205}
3206#else
3207static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3208static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3209static inline bool page_is_guard(struct page *page) { return false; }
3210#endif /* CONFIG_DEBUG_PAGEALLOC */
3211
f9872caf
CS
3212#if MAX_NUMNODES > 1
3213void __init setup_nr_node_ids(void);
3214#else
3215static inline void setup_nr_node_ids(void) {}
3216#endif
3217
010c164a
SL
3218extern int memcmp_pages(struct page *page1, struct page *page2);
3219
3220static inline int pages_identical(struct page *page1, struct page *page2)
3221{
3222 return !memcmp_pages(page1, page2);
3223}
3224
c5acad84
TH
3225#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3226unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3227 pgoff_t first_index, pgoff_t nr,
3228 pgoff_t bitmap_pgoff,
3229 unsigned long *bitmap,
3230 pgoff_t *start,
3231 pgoff_t *end);
3232
3233unsigned long wp_shared_mapping_range(struct address_space *mapping,
3234 pgoff_t first_index, pgoff_t nr);
3235#endif
3236
2374c09b
CH
3237extern int sysctl_nr_trim_pages;
3238
5bb1bb35 3239#ifdef CONFIG_PRINTK
8e7f37f2 3240void mem_dump_obj(void *object);
5bb1bb35
PM
3241#else
3242static inline void mem_dump_obj(void *object) {}
3243#endif
8e7f37f2 3244
22247efd
PX
3245/**
3246 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3247 * @seals: the seals to check
3248 * @vma: the vma to operate on
3249 *
3250 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3251 * the vma flags. Return 0 if check pass, or <0 for errors.
3252 */
3253static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3254{
3255 if (seals & F_SEAL_FUTURE_WRITE) {
3256 /*
3257 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3258 * "future write" seal active.
3259 */
3260 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3261 return -EPERM;
3262
3263 /*
3264 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3265 * MAP_SHARED and read-only, take care to not allow mprotect to
3266 * revert protections on such mappings. Do this only for shared
3267 * mappings. For private mappings, don't need to mask
3268 * VM_MAYWRITE as we still want them to be COW-writable.
3269 */
3270 if (vma->vm_flags & VM_SHARED)
3271 vma->vm_flags &= ~(VM_MAYWRITE);
3272 }
3273
3274 return 0;
3275}
3276
1da177e4
LT
3277#endif /* __KERNEL__ */
3278#endif /* _LINUX_MM_H */