sched/numa: implement access PID reset logic
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
ef6a22b7 32#include <linux/slab.h>
1da177e4
LT
33
34struct mempolicy;
35struct anon_vma;
bf181b9f 36struct anon_vma_chain;
e8edc6e0 37struct user_struct;
bce617ed 38struct pt_regs;
1da177e4 39
5ef64cc8
LT
40extern int sysctl_page_lock_unfairness;
41
b7ec1bf3 42void mm_core_init(void);
597b7305
MH
43void init_mm_internals(void);
44
a9ee6cf5 45#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 46extern unsigned long max_mapnr;
fccc9987
JL
47
48static inline void set_max_mapnr(unsigned long limit)
49{
50 max_mapnr = limit;
51}
52#else
53static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
54#endif
55
ca79b0c2
AK
56extern atomic_long_t _totalram_pages;
57static inline unsigned long totalram_pages(void)
58{
59 return (unsigned long)atomic_long_read(&_totalram_pages);
60}
61
62static inline void totalram_pages_inc(void)
63{
64 atomic_long_inc(&_totalram_pages);
65}
66
67static inline void totalram_pages_dec(void)
68{
69 atomic_long_dec(&_totalram_pages);
70}
71
72static inline void totalram_pages_add(long count)
73{
74 atomic_long_add(count, &_totalram_pages);
75}
76
1da177e4 77extern void * high_memory;
1da177e4 78extern int page_cluster;
ea0ffd0c 79extern const int page_cluster_max;
1da177e4
LT
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
d07e2259
DC
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
1da177e4 98#include <asm/page.h>
1da177e4 99#include <asm/processor.h>
1da177e4 100
d9344522
AK
101/*
102 * Architectures that support memory tagging (assigning tags to memory regions,
103 * embedding these tags into addresses that point to these memory regions, and
104 * checking that the memory and the pointer tags match on memory accesses)
105 * redefine this macro to strip tags from pointers.
f0953a1b 106 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
107 */
108#ifndef untagged_addr
109#define untagged_addr(addr) (addr)
110#endif
111
79442ed1
TC
112#ifndef __pa_symbol
113#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
114#endif
115
1dff8083
AB
116#ifndef page_to_virt
117#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
118#endif
119
568c5fe5
LA
120#ifndef lm_alias
121#define lm_alias(x) __va(__pa_symbol(x))
122#endif
123
593befa6
DD
124/*
125 * To prevent common memory management code establishing
126 * a zero page mapping on a read fault.
127 * This macro should be defined within <asm/pgtable.h>.
128 * s390 does this to prevent multiplexing of hardware bits
129 * related to the physical page in case of virtualization.
130 */
131#ifndef mm_forbids_zeropage
132#define mm_forbids_zeropage(X) (0)
133#endif
134
a4a3ede2
PT
135/*
136 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
137 * If an architecture decides to implement their own version of
138 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
139 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 140 */
5470dea4 141#if BITS_PER_LONG == 64
3770e52f 142/* This function must be updated when the size of struct page grows above 96
5470dea4
AD
143 * or reduces below 56. The idea that compiler optimizes out switch()
144 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 145 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
146 * this can result in several of the writes here being dropped.
147 */
148#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
149static inline void __mm_zero_struct_page(struct page *page)
150{
151 unsigned long *_pp = (void *)page;
152
3770e52f 153 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
5470dea4
AD
154 BUILD_BUG_ON(sizeof(struct page) & 7);
155 BUILD_BUG_ON(sizeof(struct page) < 56);
3770e52f 156 BUILD_BUG_ON(sizeof(struct page) > 96);
5470dea4
AD
157
158 switch (sizeof(struct page)) {
3770e52f
AB
159 case 96:
160 _pp[11] = 0;
161 fallthrough;
162 case 88:
163 _pp[10] = 0;
164 fallthrough;
5470dea4 165 case 80:
df561f66
GS
166 _pp[9] = 0;
167 fallthrough;
5470dea4 168 case 72:
df561f66
GS
169 _pp[8] = 0;
170 fallthrough;
5470dea4 171 case 64:
df561f66
GS
172 _pp[7] = 0;
173 fallthrough;
5470dea4
AD
174 case 56:
175 _pp[6] = 0;
176 _pp[5] = 0;
177 _pp[4] = 0;
178 _pp[3] = 0;
179 _pp[2] = 0;
180 _pp[1] = 0;
181 _pp[0] = 0;
182 }
183}
184#else
a4a3ede2
PT
185#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
186#endif
187
ea606cf5
AR
188/*
189 * Default maximum number of active map areas, this limits the number of vmas
190 * per mm struct. Users can overwrite this number by sysctl but there is a
191 * problem.
192 *
193 * When a program's coredump is generated as ELF format, a section is created
194 * per a vma. In ELF, the number of sections is represented in unsigned short.
195 * This means the number of sections should be smaller than 65535 at coredump.
196 * Because the kernel adds some informative sections to a image of program at
197 * generating coredump, we need some margin. The number of extra sections is
198 * 1-3 now and depends on arch. We use "5" as safe margin, here.
199 *
200 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
201 * not a hard limit any more. Although some userspace tools can be surprised by
202 * that.
203 */
204#define MAPCOUNT_ELF_CORE_MARGIN (5)
205#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
206
207extern int sysctl_max_map_count;
208
c9b1d098 209extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 210extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 211
49f0ce5f
JM
212extern int sysctl_overcommit_memory;
213extern int sysctl_overcommit_ratio;
214extern unsigned long sysctl_overcommit_kbytes;
215
32927393
CH
216int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
217 loff_t *);
218int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
219 loff_t *);
56f3547b
FT
220int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
221 loff_t *);
49f0ce5f 222
1cfcee72 223#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 224#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 225#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
226#else
227#define nth_page(page,n) ((page) + (n))
659508f9 228#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 229#endif
1da177e4 230
27ac792c
AR
231/* to align the pointer to the (next) page boundary */
232#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
233
335e52c2
DG
234/* to align the pointer to the (prev) page boundary */
235#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
236
0fa73b86 237/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 238#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 239
f86196ea 240#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
241static inline struct folio *lru_to_folio(struct list_head *head)
242{
243 return list_entry((head)->prev, struct folio, lru);
244}
f86196ea 245
5748fbc5
KW
246void setup_initial_init_mm(void *start_code, void *end_code,
247 void *end_data, void *brk);
248
1da177e4
LT
249/*
250 * Linux kernel virtual memory manager primitives.
251 * The idea being to have a "virtual" mm in the same way
252 * we have a virtual fs - giving a cleaner interface to the
253 * mm details, and allowing different kinds of memory mappings
254 * (from shared memory to executable loading to arbitrary
255 * mmap() functions).
256 */
257
490fc053 258struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
259struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
260void vm_area_free(struct vm_area_struct *);
0d2ebf9c
SB
261/* Use only if VMA has no other users */
262void __vm_area_free(struct vm_area_struct *vma);
c43692e8 263
1da177e4 264#ifndef CONFIG_MMU
8feae131
DH
265extern struct rb_root nommu_region_tree;
266extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
267
268extern unsigned int kobjsize(const void *objp);
269#endif
270
271/*
605d9288 272 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 273 * When changing, update also include/trace/events/mmflags.h
1da177e4 274 */
cc2383ec
KK
275#define VM_NONE 0x00000000
276
1da177e4
LT
277#define VM_READ 0x00000001 /* currently active flags */
278#define VM_WRITE 0x00000002
279#define VM_EXEC 0x00000004
280#define VM_SHARED 0x00000008
281
7e2cff42 282/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
283#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
284#define VM_MAYWRITE 0x00000020
285#define VM_MAYEXEC 0x00000040
286#define VM_MAYSHARE 0x00000080
287
288#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
b6b7a8fa 289#ifdef CONFIG_MMU
16ba6f81 290#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
b6b7a8fa
DH
291#else /* CONFIG_MMU */
292#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
293#define VM_UFFD_MISSING 0
294#endif /* CONFIG_MMU */
6aab341e 295#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 296#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 297
1da177e4
LT
298#define VM_LOCKED 0x00002000
299#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
300
301 /* Used by sys_madvise() */
302#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
303#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
304
305#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
306#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 307#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 308#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 309#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 310#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 311#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 312#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 313#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 314#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 315
d9104d1c
CG
316#ifdef CONFIG_MEM_SOFT_DIRTY
317# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
318#else
319# define VM_SOFTDIRTY 0
320#endif
321
b379d790 322#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
323#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
324#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 325#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 326
63c17fb8
DH
327#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
328#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
329#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
330#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
331#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 332#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
333#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
334#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
335#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
336#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 337#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
338#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
339
5212213a 340#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
341# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
342# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 343# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
344# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
345# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
346#ifdef CONFIG_PPC
347# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
348#else
349# define VM_PKEY_BIT4 0
8f62c883 350#endif
5212213a
RP
351#endif /* CONFIG_ARCH_HAS_PKEYS */
352
353#if defined(CONFIG_X86)
354# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
355#elif defined(CONFIG_PPC)
356# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
357#elif defined(CONFIG_PARISC)
358# define VM_GROWSUP VM_ARCH_1
359#elif defined(CONFIG_IA64)
360# define VM_GROWSUP VM_ARCH_1
74a04967
KA
361#elif defined(CONFIG_SPARC64)
362# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
363# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
364#elif defined(CONFIG_ARM64)
365# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
366# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
367#elif !defined(CONFIG_MMU)
368# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
369#endif
370
9f341931
CM
371#if defined(CONFIG_ARM64_MTE)
372# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
373# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
374#else
375# define VM_MTE VM_NONE
376# define VM_MTE_ALLOWED VM_NONE
377#endif
378
cc2383ec
KK
379#ifndef VM_GROWSUP
380# define VM_GROWSUP VM_NONE
381#endif
382
7677f7fd
AR
383#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
384# define VM_UFFD_MINOR_BIT 37
385# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
386#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
387# define VM_UFFD_MINOR VM_NONE
388#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
389
a8bef8ff
MG
390/* Bits set in the VMA until the stack is in its final location */
391#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
392
c62da0c3
AK
393#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
394
395/* Common data flag combinations */
396#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
397 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
398#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
399 VM_MAYWRITE | VM_MAYEXEC)
400#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
401 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
402
403#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
404#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
405#endif
406
1da177e4
LT
407#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
408#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
409#endif
410
411#ifdef CONFIG_STACK_GROWSUP
30bdbb78 412#define VM_STACK VM_GROWSUP
1da177e4 413#else
30bdbb78 414#define VM_STACK VM_GROWSDOWN
1da177e4
LT
415#endif
416
30bdbb78
KK
417#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
418
6cb4d9a2
AK
419/* VMA basic access permission flags */
420#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
421
422
b291f000 423/*
78f11a25 424 * Special vmas that are non-mergable, non-mlock()able.
b291f000 425 */
9050d7eb 426#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 427
b4443772
AK
428/* This mask prevents VMA from being scanned with khugepaged */
429#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
430
a0715cc2
AT
431/* This mask defines which mm->def_flags a process can inherit its parent */
432#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
433
e430a95a
SB
434/* This mask represents all the VMA flag bits used by mlock */
435#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
de60f5f1 436
2c2d57b5
KA
437/* Arch-specific flags to clear when updating VM flags on protection change */
438#ifndef VM_ARCH_CLEAR
439# define VM_ARCH_CLEAR VM_NONE
440#endif
441#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
442
1da177e4
LT
443/*
444 * mapping from the currently active vm_flags protection bits (the
445 * low four bits) to a page protection mask..
446 */
1da177e4 447
dde16072
PX
448/*
449 * The default fault flags that should be used by most of the
450 * arch-specific page fault handlers.
451 */
452#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
453 FAULT_FLAG_KILLABLE | \
454 FAULT_FLAG_INTERRUPTIBLE)
dde16072 455
4064b982
PX
456/**
457 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 458 * @flags: Fault flags.
4064b982
PX
459 *
460 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 461 * the mmap_lock for too long a time when waiting for another condition
4064b982 462 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
463 * mmap_lock in the first round to avoid potential starvation of other
464 * processes that would also want the mmap_lock.
4064b982
PX
465 *
466 * Return: true if the page fault allows retry and this is the first
467 * attempt of the fault handling; false otherwise.
468 */
da2f5eb3 469static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
470{
471 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
472 (!(flags & FAULT_FLAG_TRIED));
473}
474
282a8e03
RZ
475#define FAULT_FLAG_TRACE \
476 { FAULT_FLAG_WRITE, "WRITE" }, \
477 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
478 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
479 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
480 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
481 { FAULT_FLAG_TRIED, "TRIED" }, \
482 { FAULT_FLAG_USER, "USER" }, \
483 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee 484 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
55324e46
SB
485 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
486 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
282a8e03 487
54cb8821 488/*
11192337 489 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
490 * ->fault function. The vma's ->fault is responsible for returning a bitmask
491 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 492 *
c20cd45e
MH
493 * MM layer fills up gfp_mask for page allocations but fault handler might
494 * alter it if its implementation requires a different allocation context.
495 *
9b4bdd2f 496 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 497 */
d0217ac0 498struct vm_fault {
5857c920 499 const struct {
742d3372
WD
500 struct vm_area_struct *vma; /* Target VMA */
501 gfp_t gfp_mask; /* gfp mask to be used for allocations */
502 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
503 unsigned long address; /* Faulting virtual address - masked */
504 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 505 };
da2f5eb3 506 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 507 * XXX: should really be 'const' */
82b0f8c3 508 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 509 * the 'address' */
a2d58167
DJ
510 pud_t *pud; /* Pointer to pud entry matching
511 * the 'address'
512 */
5db4f15c
YS
513 union {
514 pte_t orig_pte; /* Value of PTE at the time of fault */
515 pmd_t orig_pmd; /* Value of PMD at the time of fault,
516 * used by PMD fault only.
517 */
518 };
d0217ac0 519
3917048d 520 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 521 struct page *page; /* ->fault handlers should return a
83c54070 522 * page here, unless VM_FAULT_NOPAGE
d0217ac0 523 * is set (which is also implied by
83c54070 524 * VM_FAULT_ERROR).
d0217ac0 525 */
82b0f8c3 526 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
527 pte_t *pte; /* Pointer to pte entry matching
528 * the 'address'. NULL if the page
529 * table hasn't been allocated.
530 */
531 spinlock_t *ptl; /* Page table lock.
532 * Protects pte page table if 'pte'
533 * is not NULL, otherwise pmd.
534 */
7267ec00 535 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
536 * vm_ops->map_pages() sets up a page
537 * table from atomic context.
7267ec00
KS
538 * do_fault_around() pre-allocates
539 * page table to avoid allocation from
540 * atomic context.
541 */
54cb8821 542};
1da177e4 543
c791ace1
DJ
544/* page entry size for vm->huge_fault() */
545enum page_entry_size {
546 PE_SIZE_PTE = 0,
547 PE_SIZE_PMD,
548 PE_SIZE_PUD,
549};
550
1da177e4
LT
551/*
552 * These are the virtual MM functions - opening of an area, closing and
553 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 554 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
555 */
556struct vm_operations_struct {
557 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
558 /**
559 * @close: Called when the VMA is being removed from the MM.
560 * Context: User context. May sleep. Caller holds mmap_lock.
561 */
1da177e4 562 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
563 /* Called any time before splitting to check if it's allowed */
564 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 565 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
566 /*
567 * Called by mprotect() to make driver-specific permission
568 * checks before mprotect() is finalised. The VMA must not
3e0ee843 569 * be modified. Returns 0 if mprotect() can proceed.
95bb7c42
SC
570 */
571 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
572 unsigned long end, unsigned long newflags);
1c8f4220
SJ
573 vm_fault_t (*fault)(struct vm_fault *vmf);
574 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
575 enum page_entry_size pe_size);
f9ce0be7 576 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 577 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 578 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
579
580 /* notification that a previously read-only page is about to become
581 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 582 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 583
dd906184 584 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 585 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 586
28b2ee20 587 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
588 * for use by special VMAs. See also generic_access_phys() for a generic
589 * implementation useful for any iomem mapping.
28b2ee20
RR
590 */
591 int (*access)(struct vm_area_struct *vma, unsigned long addr,
592 void *buf, int len, int write);
78d683e8
AL
593
594 /* Called by the /proc/PID/maps code to ask the vma whether it
595 * has a special name. Returning non-NULL will also cause this
596 * vma to be dumped unconditionally. */
597 const char *(*name)(struct vm_area_struct *vma);
598
1da177e4 599#ifdef CONFIG_NUMA
a6020ed7
LS
600 /*
601 * set_policy() op must add a reference to any non-NULL @new mempolicy
602 * to hold the policy upon return. Caller should pass NULL @new to
603 * remove a policy and fall back to surrounding context--i.e. do not
604 * install a MPOL_DEFAULT policy, nor the task or system default
605 * mempolicy.
606 */
1da177e4 607 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
608
609 /*
610 * get_policy() op must add reference [mpol_get()] to any policy at
611 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
612 * in mm/mempolicy.c will do this automatically.
613 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 614 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
615 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
616 * must return NULL--i.e., do not "fallback" to task or system default
617 * policy.
618 */
1da177e4
LT
619 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
620 unsigned long addr);
621#endif
667a0a06
DV
622 /*
623 * Called by vm_normal_page() for special PTEs to find the
624 * page for @addr. This is useful if the default behavior
625 * (using pte_page()) would not find the correct page.
626 */
627 struct page *(*find_special_page)(struct vm_area_struct *vma,
628 unsigned long addr);
1da177e4
LT
629};
630
ef6a22b7
MG
631#ifdef CONFIG_NUMA_BALANCING
632static inline void vma_numab_state_init(struct vm_area_struct *vma)
633{
634 vma->numab_state = NULL;
635}
636static inline void vma_numab_state_free(struct vm_area_struct *vma)
637{
638 kfree(vma->numab_state);
639}
640#else
641static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
642static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
643#endif /* CONFIG_NUMA_BALANCING */
644
5e31275c 645#ifdef CONFIG_PER_VMA_LOCK
5e31275c
SB
646/*
647 * Try to read-lock a vma. The function is allowed to occasionally yield false
648 * locked result to avoid performance overhead, in which case we fall back to
649 * using mmap_lock. The function should never yield false unlocked result.
650 */
651static inline bool vma_start_read(struct vm_area_struct *vma)
652{
653 /* Check before locking. A race might cause false locked result. */
654 if (vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))
655 return false;
656
c7f8f31c 657 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
5e31275c
SB
658 return false;
659
660 /*
661 * Overflow might produce false locked result.
662 * False unlocked result is impossible because we modify and check
c7f8f31c 663 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
5e31275c
SB
664 * modification invalidates all existing locks.
665 */
666 if (unlikely(vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))) {
c7f8f31c 667 up_read(&vma->vm_lock->lock);
5e31275c
SB
668 return false;
669 }
670 return true;
671}
672
673static inline void vma_end_read(struct vm_area_struct *vma)
674{
675 rcu_read_lock(); /* keeps vma alive till the end of up_read */
c7f8f31c 676 up_read(&vma->vm_lock->lock);
5e31275c
SB
677 rcu_read_unlock();
678}
679
55fd6fcc 680static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
5e31275c 681{
5e31275c
SB
682 mmap_assert_write_locked(vma->vm_mm);
683
684 /*
685 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
686 * mm->mm_lock_seq can't be concurrently modified.
687 */
55fd6fcc
SB
688 *mm_lock_seq = READ_ONCE(vma->vm_mm->mm_lock_seq);
689 return (vma->vm_lock_seq == *mm_lock_seq);
690}
691
692static inline void vma_start_write(struct vm_area_struct *vma)
693{
694 int mm_lock_seq;
695
696 if (__is_vma_write_locked(vma, &mm_lock_seq))
5e31275c
SB
697 return;
698
c7f8f31c 699 down_write(&vma->vm_lock->lock);
5e31275c 700 vma->vm_lock_seq = mm_lock_seq;
c7f8f31c 701 up_write(&vma->vm_lock->lock);
5e31275c
SB
702}
703
55fd6fcc
SB
704static inline bool vma_try_start_write(struct vm_area_struct *vma)
705{
706 int mm_lock_seq;
707
708 if (__is_vma_write_locked(vma, &mm_lock_seq))
709 return true;
710
711 if (!down_write_trylock(&vma->vm_lock->lock))
712 return false;
713
714 vma->vm_lock_seq = mm_lock_seq;
715 up_write(&vma->vm_lock->lock);
716 return true;
717}
718
5e31275c
SB
719static inline void vma_assert_write_locked(struct vm_area_struct *vma)
720{
55fd6fcc
SB
721 int mm_lock_seq;
722
723 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
5e31275c
SB
724}
725
457f67be
SB
726static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
727{
728 /* When detaching vma should be write-locked */
729 if (detached)
730 vma_assert_write_locked(vma);
731 vma->detached = detached;
732}
733
50ee3253
SB
734struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
735 unsigned long address);
736
5e31275c
SB
737#else /* CONFIG_PER_VMA_LOCK */
738
739static inline void vma_init_lock(struct vm_area_struct *vma) {}
740static inline bool vma_start_read(struct vm_area_struct *vma)
741 { return false; }
742static inline void vma_end_read(struct vm_area_struct *vma) {}
743static inline void vma_start_write(struct vm_area_struct *vma) {}
55fd6fcc
SB
744static inline bool vma_try_start_write(struct vm_area_struct *vma)
745 { return true; }
5e31275c 746static inline void vma_assert_write_locked(struct vm_area_struct *vma) {}
457f67be
SB
747static inline void vma_mark_detached(struct vm_area_struct *vma,
748 bool detached) {}
5e31275c
SB
749
750#endif /* CONFIG_PER_VMA_LOCK */
751
c7f8f31c
SB
752/*
753 * WARNING: vma_init does not initialize vma->vm_lock.
754 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
755 */
027232da
KS
756static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
757{
bfd40eaf
KS
758 static const struct vm_operations_struct dummy_vm_ops = {};
759
a670468f 760 memset(vma, 0, sizeof(*vma));
027232da 761 vma->vm_mm = mm;
bfd40eaf 762 vma->vm_ops = &dummy_vm_ops;
027232da 763 INIT_LIST_HEAD(&vma->anon_vma_chain);
457f67be 764 vma_mark_detached(vma, false);
ef6a22b7 765 vma_numab_state_init(vma);
027232da
KS
766}
767
bc292ab0
SB
768/* Use when VMA is not part of the VMA tree and needs no locking */
769static inline void vm_flags_init(struct vm_area_struct *vma,
770 vm_flags_t flags)
771{
772 ACCESS_PRIVATE(vma, __vm_flags) = flags;
773}
774
775/* Use when VMA is part of the VMA tree and modifications need coordination */
776static inline void vm_flags_reset(struct vm_area_struct *vma,
777 vm_flags_t flags)
778{
c7322933 779 vma_start_write(vma);
bc292ab0
SB
780 vm_flags_init(vma, flags);
781}
782
601c3c29
SB
783static inline void vm_flags_reset_once(struct vm_area_struct *vma,
784 vm_flags_t flags)
785{
c7322933 786 vma_start_write(vma);
601c3c29
SB
787 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
788}
789
bc292ab0
SB
790static inline void vm_flags_set(struct vm_area_struct *vma,
791 vm_flags_t flags)
792{
c7322933 793 vma_start_write(vma);
bc292ab0
SB
794 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
795}
796
797static inline void vm_flags_clear(struct vm_area_struct *vma,
798 vm_flags_t flags)
799{
c7322933 800 vma_start_write(vma);
bc292ab0
SB
801 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
802}
803
68f48381
SB
804/*
805 * Use only if VMA is not part of the VMA tree or has no other users and
806 * therefore needs no locking.
807 */
808static inline void __vm_flags_mod(struct vm_area_struct *vma,
809 vm_flags_t set, vm_flags_t clear)
810{
811 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
812}
813
bc292ab0
SB
814/*
815 * Use only when the order of set/clear operations is unimportant, otherwise
816 * use vm_flags_{set|clear} explicitly.
817 */
818static inline void vm_flags_mod(struct vm_area_struct *vma,
819 vm_flags_t set, vm_flags_t clear)
820{
c7322933 821 vma_start_write(vma);
68f48381 822 __vm_flags_mod(vma, set, clear);
bc292ab0
SB
823}
824
bfd40eaf
KS
825static inline void vma_set_anonymous(struct vm_area_struct *vma)
826{
827 vma->vm_ops = NULL;
828}
829
43675e6f
YS
830static inline bool vma_is_anonymous(struct vm_area_struct *vma)
831{
832 return !vma->vm_ops;
833}
834
222100ee
AK
835static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
836{
837 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
838
839 if (!maybe_stack)
840 return false;
841
842 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
843 VM_STACK_INCOMPLETE_SETUP)
844 return true;
845
846 return false;
847}
848
7969f226
AK
849static inline bool vma_is_foreign(struct vm_area_struct *vma)
850{
851 if (!current->mm)
852 return true;
853
854 if (current->mm != vma->vm_mm)
855 return true;
856
857 return false;
858}
3122e80e
AK
859
860static inline bool vma_is_accessible(struct vm_area_struct *vma)
861{
6cb4d9a2 862 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
863}
864
f39af059
MWO
865static inline
866struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
867{
b62b633e 868 return mas_find(&vmi->mas, max - 1);
f39af059
MWO
869}
870
871static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
872{
873 /*
b62b633e 874 * Uses mas_find() to get the first VMA when the iterator starts.
f39af059
MWO
875 * Calling mas_next() could skip the first entry.
876 */
b62b633e 877 return mas_find(&vmi->mas, ULONG_MAX);
f39af059
MWO
878}
879
880static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
881{
882 return mas_prev(&vmi->mas, 0);
883}
884
885static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
886{
887 return vmi->mas.index;
888}
889
b62b633e
LH
890static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
891{
892 return vmi->mas.last + 1;
893}
894static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
895 unsigned long count)
896{
897 return mas_expected_entries(&vmi->mas, count);
898}
899
900/* Free any unused preallocations */
901static inline void vma_iter_free(struct vma_iterator *vmi)
902{
903 mas_destroy(&vmi->mas);
904}
905
906static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
907 struct vm_area_struct *vma)
908{
909 vmi->mas.index = vma->vm_start;
910 vmi->mas.last = vma->vm_end - 1;
911 mas_store(&vmi->mas, vma);
912 if (unlikely(mas_is_err(&vmi->mas)))
913 return -ENOMEM;
914
915 return 0;
916}
917
918static inline void vma_iter_invalidate(struct vma_iterator *vmi)
919{
920 mas_pause(&vmi->mas);
921}
922
923static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
924{
925 mas_set(&vmi->mas, addr);
926}
927
f39af059
MWO
928#define for_each_vma(__vmi, __vma) \
929 while (((__vma) = vma_next(&(__vmi))) != NULL)
930
931/* The MM code likes to work with exclusive end addresses */
932#define for_each_vma_range(__vmi, __vma, __end) \
b62b633e 933 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
f39af059 934
43675e6f
YS
935#ifdef CONFIG_SHMEM
936/*
937 * The vma_is_shmem is not inline because it is used only by slow
938 * paths in userfault.
939 */
940bool vma_is_shmem(struct vm_area_struct *vma);
d09e8ca6 941bool vma_is_anon_shmem(struct vm_area_struct *vma);
43675e6f
YS
942#else
943static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
d09e8ca6 944static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
43675e6f
YS
945#endif
946
947int vma_is_stack_for_current(struct vm_area_struct *vma);
948
8b11ec1b
LT
949/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
950#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
951
1da177e4
LT
952struct mmu_gather;
953struct inode;
954
5eb5cea1
MWO
955/*
956 * compound_order() can be called without holding a reference, which means
957 * that niceties like page_folio() don't work. These callers should be
958 * prepared to handle wild return values. For example, PG_head may be
959 * set before _folio_order is initialised, or this may be a tail page.
960 * See compaction.c for some good examples.
961 */
5bf34d7c
MWO
962static inline unsigned int compound_order(struct page *page)
963{
5eb5cea1
MWO
964 struct folio *folio = (struct folio *)page;
965
966 if (!test_bit(PG_head, &folio->flags))
5bf34d7c 967 return 0;
5eb5cea1 968 return folio->_folio_order;
5bf34d7c
MWO
969}
970
971/**
972 * folio_order - The allocation order of a folio.
973 * @folio: The folio.
974 *
975 * A folio is composed of 2^order pages. See get_order() for the definition
976 * of order.
977 *
978 * Return: The order of the folio.
979 */
980static inline unsigned int folio_order(struct folio *folio)
981{
c3a15bff
MWO
982 if (!folio_test_large(folio))
983 return 0;
984 return folio->_folio_order;
5bf34d7c
MWO
985}
986
71e3aac0 987#include <linux/huge_mm.h>
1da177e4
LT
988
989/*
990 * Methods to modify the page usage count.
991 *
992 * What counts for a page usage:
993 * - cache mapping (page->mapping)
994 * - private data (page->private)
995 * - page mapped in a task's page tables, each mapping
996 * is counted separately
997 *
998 * Also, many kernel routines increase the page count before a critical
999 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
1000 */
1001
1002/*
da6052f7 1003 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 1004 */
7c8ee9a8
NP
1005static inline int put_page_testzero(struct page *page)
1006{
fe896d18
JK
1007 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1008 return page_ref_dec_and_test(page);
7c8ee9a8 1009}
1da177e4 1010
b620f633
MWO
1011static inline int folio_put_testzero(struct folio *folio)
1012{
1013 return put_page_testzero(&folio->page);
1014}
1015
1da177e4 1016/*
7c8ee9a8
NP
1017 * Try to grab a ref unless the page has a refcount of zero, return false if
1018 * that is the case.
8e0861fa
AK
1019 * This can be called when MMU is off so it must not access
1020 * any of the virtual mappings.
1da177e4 1021 */
c2530328 1022static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 1023{
fe896d18 1024 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 1025}
1da177e4 1026
3c1ea2c7
VMO
1027static inline struct folio *folio_get_nontail_page(struct page *page)
1028{
1029 if (unlikely(!get_page_unless_zero(page)))
1030 return NULL;
1031 return (struct folio *)page;
1032}
1033
53df8fdc 1034extern int page_is_ram(unsigned long pfn);
124fe20d
DW
1035
1036enum {
1037 REGION_INTERSECTS,
1038 REGION_DISJOINT,
1039 REGION_MIXED,
1040};
1041
1c29f25b
TK
1042int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1043 unsigned long desc);
53df8fdc 1044
48667e7a 1045/* Support for virtually mapped pages */
b3bdda02
CL
1046struct page *vmalloc_to_page(const void *addr);
1047unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 1048
0738c4bb
PM
1049/*
1050 * Determine if an address is within the vmalloc range
1051 *
1052 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1053 * is no special casing required.
1054 */
9bd3bb67
AK
1055
1056#ifndef is_ioremap_addr
1057#define is_ioremap_addr(x) is_vmalloc_addr(x)
1058#endif
1059
81ac3ad9 1060#ifdef CONFIG_MMU
186525bd 1061extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
1062extern int is_vmalloc_or_module_addr(const void *x);
1063#else
186525bd
IM
1064static inline bool is_vmalloc_addr(const void *x)
1065{
1066 return false;
1067}
934831d0 1068static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
1069{
1070 return 0;
1071}
1072#endif
9e2779fa 1073
74e8ee47
MWO
1074/*
1075 * How many times the entire folio is mapped as a single unit (eg by a
1076 * PMD or PUD entry). This is probably not what you want, except for
cb67f428
HD
1077 * debugging purposes - it does not include PTE-mapped sub-pages; look
1078 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
74e8ee47
MWO
1079 */
1080static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 1081{
74e8ee47 1082 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1aa4d03b 1083 return atomic_read(&folio->_entire_mapcount) + 1;
53f9263b
KS
1084}
1085
70b50f94
AA
1086/*
1087 * The atomic page->_mapcount, starts from -1: so that transitions
1088 * both from it and to it can be tracked, using atomic_inc_and_test
1089 * and atomic_add_negative(-1).
1090 */
22b751c3 1091static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
1092{
1093 atomic_set(&(page)->_mapcount, -1);
1094}
1095
c97eeb8f
MWO
1096/**
1097 * page_mapcount() - Number of times this precise page is mapped.
1098 * @page: The page.
1099 *
1100 * The number of times this page is mapped. If this page is part of
1101 * a large folio, it includes the number of times this page is mapped
1102 * as part of that folio.
6988f31d 1103 *
c97eeb8f 1104 * The result is undefined for pages which cannot be mapped into userspace.
6988f31d 1105 * For example SLAB or special types of pages. See function page_has_type().
c97eeb8f 1106 * They use this field in struct page differently.
6988f31d 1107 */
70b50f94
AA
1108static inline int page_mapcount(struct page *page)
1109{
cb67f428 1110 int mapcount = atomic_read(&page->_mapcount) + 1;
b20ce5e0 1111
c97eeb8f
MWO
1112 if (unlikely(PageCompound(page)))
1113 mapcount += folio_entire_mapcount(page_folio(page));
1114
1115 return mapcount;
b20ce5e0
KS
1116}
1117
b14224fb 1118int folio_total_mapcount(struct folio *folio);
4ba1119c 1119
cb67f428
HD
1120/**
1121 * folio_mapcount() - Calculate the number of mappings of this folio.
1122 * @folio: The folio.
1123 *
1124 * A large folio tracks both how many times the entire folio is mapped,
1125 * and how many times each individual page in the folio is mapped.
1126 * This function calculates the total number of times the folio is
1127 * mapped.
1128 *
1129 * Return: The number of times this folio is mapped.
1130 */
1131static inline int folio_mapcount(struct folio *folio)
4ba1119c 1132{
cb67f428
HD
1133 if (likely(!folio_test_large(folio)))
1134 return atomic_read(&folio->_mapcount) + 1;
b14224fb 1135 return folio_total_mapcount(folio);
4ba1119c
MWO
1136}
1137
b20ce5e0
KS
1138static inline int total_mapcount(struct page *page)
1139{
be5ef2d9
HD
1140 if (likely(!PageCompound(page)))
1141 return atomic_read(&page->_mapcount) + 1;
b14224fb 1142 return folio_total_mapcount(page_folio(page));
be5ef2d9
HD
1143}
1144
1145static inline bool folio_large_is_mapped(struct folio *folio)
1146{
4b51634c 1147 /*
1aa4d03b 1148 * Reading _entire_mapcount below could be omitted if hugetlb
eec20426 1149 * participated in incrementing nr_pages_mapped when compound mapped.
4b51634c 1150 */
eec20426 1151 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1aa4d03b 1152 atomic_read(&folio->_entire_mapcount) >= 0;
cb67f428
HD
1153}
1154
1155/**
1156 * folio_mapped - Is this folio mapped into userspace?
1157 * @folio: The folio.
1158 *
1159 * Return: True if any page in this folio is referenced by user page tables.
1160 */
1161static inline bool folio_mapped(struct folio *folio)
1162{
be5ef2d9
HD
1163 if (likely(!folio_test_large(folio)))
1164 return atomic_read(&folio->_mapcount) >= 0;
1165 return folio_large_is_mapped(folio);
1166}
1167
1168/*
1169 * Return true if this page is mapped into pagetables.
1170 * For compound page it returns true if any sub-page of compound page is mapped,
1171 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1172 */
1173static inline bool page_mapped(struct page *page)
1174{
1175 if (likely(!PageCompound(page)))
1176 return atomic_read(&page->_mapcount) >= 0;
1177 return folio_large_is_mapped(page_folio(page));
70b50f94
AA
1178}
1179
b49af68f
CL
1180static inline struct page *virt_to_head_page(const void *x)
1181{
1182 struct page *page = virt_to_page(x);
ccaafd7f 1183
1d798ca3 1184 return compound_head(page);
b49af68f
CL
1185}
1186
7d4203c1
VB
1187static inline struct folio *virt_to_folio(const void *x)
1188{
1189 struct page *page = virt_to_page(x);
1190
1191 return page_folio(page);
1192}
1193
8d29c703 1194void __folio_put(struct folio *folio);
ddc58f27 1195
1d7ea732 1196void put_pages_list(struct list_head *pages);
1da177e4 1197
8dfcc9ba 1198void split_page(struct page *page, unsigned int order);
715cbfd6 1199void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 1200
a1554c00
ML
1201unsigned long nr_free_buffer_pages(void);
1202
33f2ef89
AW
1203/*
1204 * Compound pages have a destructor function. Provide a
1205 * prototype for that function and accessor functions.
f1e61557 1206 * These are _only_ valid on the head of a compound page.
33f2ef89 1207 */
f1e61557
KS
1208typedef void compound_page_dtor(struct page *);
1209
1210/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1211enum compound_dtor_id {
1212 NULL_COMPOUND_DTOR,
1213 COMPOUND_PAGE_DTOR,
1214#ifdef CONFIG_HUGETLB_PAGE
1215 HUGETLB_PAGE_DTOR,
9a982250
KS
1216#endif
1217#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1218 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
1219#endif
1220 NR_COMPOUND_DTORS,
1221};
ae70eddd 1222extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
1223
1224static inline void set_compound_page_dtor(struct page *page,
f1e61557 1225 enum compound_dtor_id compound_dtor)
33f2ef89 1226{
bad6da64
MWO
1227 struct folio *folio = (struct folio *)page;
1228
f1e61557 1229 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
bad6da64
MWO
1230 VM_BUG_ON_PAGE(!PageHead(page), page);
1231 folio->_folio_dtor = compound_dtor;
33f2ef89
AW
1232}
1233
9fd33058
SK
1234static inline void folio_set_compound_dtor(struct folio *folio,
1235 enum compound_dtor_id compound_dtor)
1236{
1237 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1238 folio->_folio_dtor = compound_dtor;
1239}
1240
5375336c 1241void destroy_large_folio(struct folio *folio);
33f2ef89 1242
f1e61557 1243static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 1244{
bad6da64 1245 struct folio *folio = (struct folio *)page;
9fd33058
SK
1246
1247 folio->_folio_order = order;
1248#ifdef CONFIG_64BIT
bad6da64 1249 folio->_folio_nr_pages = 1U << order;
5232c63f 1250#endif
d8c6546b
MWO
1251}
1252
a50b854e
MWO
1253/* Returns the number of bytes in this potentially compound page. */
1254static inline unsigned long page_size(struct page *page)
1255{
1256 return PAGE_SIZE << compound_order(page);
1257}
1258
94ad9338
MWO
1259/* Returns the number of bits needed for the number of bytes in a page */
1260static inline unsigned int page_shift(struct page *page)
1261{
1262 return PAGE_SHIFT + compound_order(page);
1263}
1264
18788cfa
MWO
1265/**
1266 * thp_order - Order of a transparent huge page.
1267 * @page: Head page of a transparent huge page.
1268 */
1269static inline unsigned int thp_order(struct page *page)
1270{
1271 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1272 return compound_order(page);
1273}
1274
18788cfa
MWO
1275/**
1276 * thp_size - Size of a transparent huge page.
1277 * @page: Head page of a transparent huge page.
1278 *
1279 * Return: Number of bytes in this page.
1280 */
1281static inline unsigned long thp_size(struct page *page)
1282{
1283 return PAGE_SIZE << thp_order(page);
1284}
1285
9a982250
KS
1286void free_compound_page(struct page *page);
1287
3dece370 1288#ifdef CONFIG_MMU
14fd403f
AA
1289/*
1290 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1291 * servicing faults for write access. In the normal case, do always want
1292 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1293 * that do not have writing enabled, when used by access_process_vm.
1294 */
1295static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1296{
1297 if (likely(vma->vm_flags & VM_WRITE))
1298 pte = pte_mkwrite(pte);
1299 return pte;
1300}
8c6e50b0 1301
f9ce0be7 1302vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1303void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1304
2b740303
SJ
1305vm_fault_t finish_fault(struct vm_fault *vmf);
1306vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1307#endif
14fd403f 1308
1da177e4
LT
1309/*
1310 * Multiple processes may "see" the same page. E.g. for untouched
1311 * mappings of /dev/null, all processes see the same page full of
1312 * zeroes, and text pages of executables and shared libraries have
1313 * only one copy in memory, at most, normally.
1314 *
1315 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1316 * page_count() == 0 means the page is free. page->lru is then used for
1317 * freelist management in the buddy allocator.
da6052f7 1318 * page_count() > 0 means the page has been allocated.
1da177e4 1319 *
da6052f7
NP
1320 * Pages are allocated by the slab allocator in order to provide memory
1321 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1322 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1323 * unless a particular usage is carefully commented. (the responsibility of
1324 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1325 *
da6052f7
NP
1326 * A page may be used by anyone else who does a __get_free_page().
1327 * In this case, page_count still tracks the references, and should only
1328 * be used through the normal accessor functions. The top bits of page->flags
1329 * and page->virtual store page management information, but all other fields
1330 * are unused and could be used privately, carefully. The management of this
1331 * page is the responsibility of the one who allocated it, and those who have
1332 * subsequently been given references to it.
1333 *
1334 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1335 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1336 * The following discussion applies only to them.
1337 *
da6052f7
NP
1338 * A pagecache page contains an opaque `private' member, which belongs to the
1339 * page's address_space. Usually, this is the address of a circular list of
1340 * the page's disk buffers. PG_private must be set to tell the VM to call
1341 * into the filesystem to release these pages.
1da177e4 1342 *
da6052f7
NP
1343 * A page may belong to an inode's memory mapping. In this case, page->mapping
1344 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1345 * in units of PAGE_SIZE.
1da177e4 1346 *
da6052f7
NP
1347 * If pagecache pages are not associated with an inode, they are said to be
1348 * anonymous pages. These may become associated with the swapcache, and in that
1349 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1350 *
da6052f7
NP
1351 * In either case (swapcache or inode backed), the pagecache itself holds one
1352 * reference to the page. Setting PG_private should also increment the
1353 * refcount. The each user mapping also has a reference to the page.
1da177e4 1354 *
da6052f7 1355 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1356 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1357 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1358 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1359 *
da6052f7 1360 * All pagecache pages may be subject to I/O:
1da177e4
LT
1361 * - inode pages may need to be read from disk,
1362 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1363 * to be written back to the inode on disk,
1364 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1365 * modified may need to be swapped out to swap space and (later) to be read
1366 * back into memory.
1da177e4
LT
1367 */
1368
27674ef6 1369#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1370DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1371
f4f451a1
MS
1372bool __put_devmap_managed_page_refs(struct page *page, int refs);
1373static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1374{
1375 if (!static_branch_unlikely(&devmap_managed_key))
1376 return false;
1377 if (!is_zone_device_page(page))
1378 return false;
f4f451a1 1379 return __put_devmap_managed_page_refs(page, refs);
e7638488 1380}
27674ef6 1381#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1382static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1383{
1384 return false;
1385}
27674ef6 1386#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1387
f4f451a1
MS
1388static inline bool put_devmap_managed_page(struct page *page)
1389{
1390 return put_devmap_managed_page_refs(page, 1);
1391}
1392
f958d7b5 1393/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1394#define folio_ref_zero_or_close_to_overflow(folio) \
1395 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1396
1397/**
1398 * folio_get - Increment the reference count on a folio.
1399 * @folio: The folio.
1400 *
1401 * Context: May be called in any context, as long as you know that
1402 * you have a refcount on the folio. If you do not already have one,
1403 * folio_try_get() may be the right interface for you to use.
1404 */
1405static inline void folio_get(struct folio *folio)
1406{
1407 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1408 folio_ref_inc(folio);
1409}
f958d7b5 1410
3565fce3
DW
1411static inline void get_page(struct page *page)
1412{
86d234cb 1413 folio_get(page_folio(page));
3565fce3
DW
1414}
1415
cd1adf1b
LT
1416static inline __must_check bool try_get_page(struct page *page)
1417{
1418 page = compound_head(page);
1419 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1420 return false;
1421 page_ref_inc(page);
1422 return true;
1423}
3565fce3 1424
b620f633
MWO
1425/**
1426 * folio_put - Decrement the reference count on a folio.
1427 * @folio: The folio.
1428 *
1429 * If the folio's reference count reaches zero, the memory will be
1430 * released back to the page allocator and may be used by another
1431 * allocation immediately. Do not access the memory or the struct folio
1432 * after calling folio_put() unless you can be sure that it wasn't the
1433 * last reference.
1434 *
1435 * Context: May be called in process or interrupt context, but not in NMI
1436 * context. May be called while holding a spinlock.
1437 */
1438static inline void folio_put(struct folio *folio)
1439{
1440 if (folio_put_testzero(folio))
8d29c703 1441 __folio_put(folio);
b620f633
MWO
1442}
1443
3fe7fa58
MWO
1444/**
1445 * folio_put_refs - Reduce the reference count on a folio.
1446 * @folio: The folio.
1447 * @refs: The amount to subtract from the folio's reference count.
1448 *
1449 * If the folio's reference count reaches zero, the memory will be
1450 * released back to the page allocator and may be used by another
1451 * allocation immediately. Do not access the memory or the struct folio
1452 * after calling folio_put_refs() unless you can be sure that these weren't
1453 * the last references.
1454 *
1455 * Context: May be called in process or interrupt context, but not in NMI
1456 * context. May be called while holding a spinlock.
1457 */
1458static inline void folio_put_refs(struct folio *folio, int refs)
1459{
1460 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1461 __folio_put(folio);
3fe7fa58
MWO
1462}
1463
0411d6ee
SP
1464/*
1465 * union release_pages_arg - an array of pages or folios
449c7967 1466 *
0411d6ee 1467 * release_pages() releases a simple array of multiple pages, and
449c7967
LT
1468 * accepts various different forms of said page array: either
1469 * a regular old boring array of pages, an array of folios, or
1470 * an array of encoded page pointers.
1471 *
1472 * The transparent union syntax for this kind of "any of these
1473 * argument types" is all kinds of ugly, so look away.
1474 */
1475typedef union {
1476 struct page **pages;
1477 struct folio **folios;
1478 struct encoded_page **encoded_pages;
1479} release_pages_arg __attribute__ ((__transparent_union__));
1480
1481void release_pages(release_pages_arg, int nr);
e3c4cebf
MWO
1482
1483/**
1484 * folios_put - Decrement the reference count on an array of folios.
1485 * @folios: The folios.
1486 * @nr: How many folios there are.
1487 *
1488 * Like folio_put(), but for an array of folios. This is more efficient
1489 * than writing the loop yourself as it will optimise the locks which
1490 * need to be taken if the folios are freed.
1491 *
1492 * Context: May be called in process or interrupt context, but not in NMI
1493 * context. May be called while holding a spinlock.
1494 */
1495static inline void folios_put(struct folio **folios, unsigned int nr)
1496{
449c7967 1497 release_pages(folios, nr);
3fe7fa58
MWO
1498}
1499
3565fce3
DW
1500static inline void put_page(struct page *page)
1501{
b620f633 1502 struct folio *folio = page_folio(page);
3565fce3 1503
7b2d55d2 1504 /*
89574945
CH
1505 * For some devmap managed pages we need to catch refcount transition
1506 * from 2 to 1:
7b2d55d2 1507 */
89574945 1508 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1509 return;
b620f633 1510 folio_put(folio);
3565fce3
DW
1511}
1512
3faa52c0
JH
1513/*
1514 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1515 * the page's refcount so that two separate items are tracked: the original page
1516 * reference count, and also a new count of how many pin_user_pages() calls were
1517 * made against the page. ("gup-pinned" is another term for the latter).
1518 *
1519 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1520 * distinct from normal pages. As such, the unpin_user_page() call (and its
1521 * variants) must be used in order to release gup-pinned pages.
1522 *
1523 * Choice of value:
1524 *
1525 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1526 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1527 * simpler, due to the fact that adding an even power of two to the page
1528 * refcount has the effect of using only the upper N bits, for the code that
1529 * counts up using the bias value. This means that the lower bits are left for
1530 * the exclusive use of the original code that increments and decrements by one
1531 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1532 *
3faa52c0
JH
1533 * Of course, once the lower bits overflow into the upper bits (and this is
1534 * OK, because subtraction recovers the original values), then visual inspection
1535 * no longer suffices to directly view the separate counts. However, for normal
1536 * applications that don't have huge page reference counts, this won't be an
1537 * issue.
fc1d8e7c 1538 *
40fcc7fc
MWO
1539 * Locking: the lockless algorithm described in folio_try_get_rcu()
1540 * provides safe operation for get_user_pages(), page_mkclean() and
1541 * other calls that race to set up page table entries.
fc1d8e7c 1542 */
3faa52c0 1543#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1544
3faa52c0 1545void unpin_user_page(struct page *page);
f1f6a7dd
JH
1546void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1547 bool make_dirty);
458a4f78
JM
1548void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1549 bool make_dirty);
f1f6a7dd 1550void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1551
97a7e473
PX
1552static inline bool is_cow_mapping(vm_flags_t flags)
1553{
1554 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1555}
1556
fc4f4be9
DH
1557#ifndef CONFIG_MMU
1558static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1559{
1560 /*
1561 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1562 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1563 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1564 * underlying memory if ptrace is active, so this is only possible if
1565 * ptrace does not apply. Note that there is no mprotect() to upgrade
1566 * write permissions later.
1567 */
b6b7a8fa 1568 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
fc4f4be9
DH
1569}
1570#endif
1571
9127ab4f
CS
1572#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1573#define SECTION_IN_PAGE_FLAGS
1574#endif
1575
89689ae7 1576/*
7a8010cd
VB
1577 * The identification function is mainly used by the buddy allocator for
1578 * determining if two pages could be buddies. We are not really identifying
1579 * the zone since we could be using the section number id if we do not have
1580 * node id available in page flags.
1581 * We only guarantee that it will return the same value for two combinable
1582 * pages in a zone.
89689ae7 1583 */
cb2b95e1
AW
1584static inline int page_zone_id(struct page *page)
1585{
89689ae7 1586 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1587}
1588
89689ae7 1589#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1590extern int page_to_nid(const struct page *page);
89689ae7 1591#else
33dd4e0e 1592static inline int page_to_nid(const struct page *page)
d41dee36 1593{
f165b378
PT
1594 struct page *p = (struct page *)page;
1595
1596 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1597}
89689ae7
CL
1598#endif
1599
874fd90c
MWO
1600static inline int folio_nid(const struct folio *folio)
1601{
1602 return page_to_nid(&folio->page);
1603}
1604
57e0a030 1605#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1606/* page access time bits needs to hold at least 4 seconds */
1607#define PAGE_ACCESS_TIME_MIN_BITS 12
1608#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1609#define PAGE_ACCESS_TIME_BUCKETS \
1610 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1611#else
1612#define PAGE_ACCESS_TIME_BUCKETS 0
1613#endif
1614
1615#define PAGE_ACCESS_TIME_MASK \
1616 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1617
90572890 1618static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1619{
90572890 1620 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1621}
1622
90572890 1623static inline int cpupid_to_pid(int cpupid)
57e0a030 1624{
90572890 1625 return cpupid & LAST__PID_MASK;
57e0a030 1626}
b795854b 1627
90572890 1628static inline int cpupid_to_cpu(int cpupid)
b795854b 1629{
90572890 1630 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1631}
1632
90572890 1633static inline int cpupid_to_nid(int cpupid)
b795854b 1634{
90572890 1635 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1636}
1637
90572890 1638static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1639{
90572890 1640 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1641}
1642
90572890 1643static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1644{
90572890 1645 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1646}
1647
8c8a743c
PZ
1648static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1649{
1650 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1651}
1652
1653#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1654#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1655static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1656{
1ae71d03 1657 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1658}
90572890
PZ
1659
1660static inline int page_cpupid_last(struct page *page)
1661{
1662 return page->_last_cpupid;
1663}
1664static inline void page_cpupid_reset_last(struct page *page)
b795854b 1665{
1ae71d03 1666 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1667}
1668#else
90572890 1669static inline int page_cpupid_last(struct page *page)
75980e97 1670{
90572890 1671 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1672}
1673
90572890 1674extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1675
90572890 1676static inline void page_cpupid_reset_last(struct page *page)
75980e97 1677{
09940a4f 1678 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1679}
90572890 1680#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536
HY
1681
1682static inline int xchg_page_access_time(struct page *page, int time)
1683{
1684 int last_time;
1685
1686 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1687 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1688}
fc137c0d
R
1689
1690static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1691{
1692 unsigned int pid_bit;
1693
1694 pid_bit = current->pid % BITS_PER_LONG;
20f58648
R
1695 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) {
1696 __set_bit(pid_bit, &vma->numab_state->access_pids[1]);
fc137c0d
R
1697 }
1698}
90572890
PZ
1699#else /* !CONFIG_NUMA_BALANCING */
1700static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1701{
90572890 1702 return page_to_nid(page); /* XXX */
57e0a030
MG
1703}
1704
33024536
HY
1705static inline int xchg_page_access_time(struct page *page, int time)
1706{
1707 return 0;
1708}
1709
90572890 1710static inline int page_cpupid_last(struct page *page)
57e0a030 1711{
90572890 1712 return page_to_nid(page); /* XXX */
57e0a030
MG
1713}
1714
90572890 1715static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1716{
1717 return -1;
1718}
1719
90572890 1720static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1721{
1722 return -1;
1723}
1724
90572890 1725static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1726{
1727 return -1;
1728}
1729
90572890
PZ
1730static inline int cpu_pid_to_cpupid(int nid, int pid)
1731{
1732 return -1;
1733}
1734
1735static inline bool cpupid_pid_unset(int cpupid)
b795854b 1736{
2b787449 1737 return true;
b795854b
MG
1738}
1739
90572890 1740static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1741{
1742}
8c8a743c
PZ
1743
1744static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1745{
1746 return false;
1747}
fc137c0d
R
1748
1749static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1750{
1751}
90572890 1752#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1753
2e903b91 1754#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1755
cf10bd4c
AK
1756/*
1757 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1758 * setting tags for all pages to native kernel tag value 0xff, as the default
1759 * value 0x00 maps to 0xff.
1760 */
1761
2813b9c0
AK
1762static inline u8 page_kasan_tag(const struct page *page)
1763{
cf10bd4c
AK
1764 u8 tag = 0xff;
1765
1766 if (kasan_enabled()) {
1767 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1768 tag ^= 0xff;
1769 }
1770
1771 return tag;
2813b9c0
AK
1772}
1773
1774static inline void page_kasan_tag_set(struct page *page, u8 tag)
1775{
27fe7339
PC
1776 unsigned long old_flags, flags;
1777
1778 if (!kasan_enabled())
1779 return;
1780
1781 tag ^= 0xff;
1782 old_flags = READ_ONCE(page->flags);
1783 do {
1784 flags = old_flags;
1785 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1786 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1787 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1788}
1789
1790static inline void page_kasan_tag_reset(struct page *page)
1791{
34303244
AK
1792 if (kasan_enabled())
1793 page_kasan_tag_set(page, 0xff);
2813b9c0 1794}
34303244
AK
1795
1796#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1797
2813b9c0
AK
1798static inline u8 page_kasan_tag(const struct page *page)
1799{
1800 return 0xff;
1801}
1802
1803static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1804static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1805
1806#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1807
33dd4e0e 1808static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1809{
1810 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1811}
1812
75ef7184
MG
1813static inline pg_data_t *page_pgdat(const struct page *page)
1814{
1815 return NODE_DATA(page_to_nid(page));
1816}
1817
32b8fc48
MWO
1818static inline struct zone *folio_zone(const struct folio *folio)
1819{
1820 return page_zone(&folio->page);
1821}
1822
1823static inline pg_data_t *folio_pgdat(const struct folio *folio)
1824{
1825 return page_pgdat(&folio->page);
1826}
1827
9127ab4f 1828#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1829static inline void set_page_section(struct page *page, unsigned long section)
1830{
1831 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1832 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1833}
1834
aa462abe 1835static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1836{
1837 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1838}
308c05e3 1839#endif
d41dee36 1840
bf6bd276
MWO
1841/**
1842 * folio_pfn - Return the Page Frame Number of a folio.
1843 * @folio: The folio.
1844 *
1845 * A folio may contain multiple pages. The pages have consecutive
1846 * Page Frame Numbers.
1847 *
1848 * Return: The Page Frame Number of the first page in the folio.
1849 */
1850static inline unsigned long folio_pfn(struct folio *folio)
1851{
1852 return page_to_pfn(&folio->page);
1853}
1854
018ee47f
YZ
1855static inline struct folio *pfn_folio(unsigned long pfn)
1856{
1857 return page_folio(pfn_to_page(pfn));
1858}
1859
0b90ddae
MWO
1860/**
1861 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1862 * @folio: The folio.
1863 *
1864 * This function checks if a folio has been pinned via a call to
1865 * a function in the pin_user_pages() family.
1866 *
1867 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1868 * because it means "definitely not pinned for DMA", but true means "probably
1869 * pinned for DMA, but possibly a false positive due to having at least
1870 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1871 *
1872 * False positives are OK, because: a) it's unlikely for a folio to
1873 * get that many refcounts, and b) all the callers of this routine are
1874 * expected to be able to deal gracefully with a false positive.
1875 *
1876 * For large folios, the result will be exactly correct. That's because
94688e8e 1877 * we have more tracking data available: the _pincount field is used
0b90ddae
MWO
1878 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1879 *
1880 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1881 *
1882 * Return: True, if it is likely that the page has been "dma-pinned".
1883 * False, if the page is definitely not dma-pinned.
1884 */
1885static inline bool folio_maybe_dma_pinned(struct folio *folio)
1886{
1887 if (folio_test_large(folio))
94688e8e 1888 return atomic_read(&folio->_pincount) > 0;
0b90ddae
MWO
1889
1890 /*
1891 * folio_ref_count() is signed. If that refcount overflows, then
1892 * folio_ref_count() returns a negative value, and callers will avoid
1893 * further incrementing the refcount.
1894 *
1895 * Here, for that overflow case, use the sign bit to count a little
1896 * bit higher via unsigned math, and thus still get an accurate result.
1897 */
1898 return ((unsigned int)folio_ref_count(folio)) >=
1899 GUP_PIN_COUNTING_BIAS;
1900}
1901
1902static inline bool page_maybe_dma_pinned(struct page *page)
1903{
1904 return folio_maybe_dma_pinned(page_folio(page));
1905}
1906
1907/*
1908 * This should most likely only be called during fork() to see whether we
fb3d824d 1909 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1910 *
1911 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1912 */
1913static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1914 struct page *page)
1915{
623a1ddf 1916 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1917
1918 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1919 return false;
1920
1921 return page_maybe_dma_pinned(page);
1922}
1923
8e3560d9
PT
1924/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1925#ifdef CONFIG_MIGRATION
6077c943 1926static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9 1927{
1c563432
MK
1928#ifdef CONFIG_CMA
1929 int mt = get_pageblock_migratetype(page);
1930
1931 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1932 return false;
1933#endif
fcab34b4
AW
1934 /* The zero page may always be pinned */
1935 if (is_zero_pfn(page_to_pfn(page)))
1936 return true;
1937
1938 /* Coherent device memory must always allow eviction. */
1939 if (is_device_coherent_page(page))
1940 return false;
1941
1942 /* Otherwise, non-movable zone pages can be pinned. */
1943 return !is_zone_movable_page(page);
8e3560d9
PT
1944}
1945#else
6077c943 1946static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9
PT
1947{
1948 return true;
1949}
1950#endif
1951
6077c943 1952static inline bool folio_is_longterm_pinnable(struct folio *folio)
536939ff 1953{
6077c943 1954 return is_longterm_pinnable_page(&folio->page);
536939ff
MWO
1955}
1956
2f1b6248 1957static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1958{
1959 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1960 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1961}
2f1b6248 1962
348f8b6c
DH
1963static inline void set_page_node(struct page *page, unsigned long node)
1964{
1965 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1966 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1967}
89689ae7 1968
2f1b6248 1969static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1970 unsigned long node, unsigned long pfn)
1da177e4 1971{
348f8b6c
DH
1972 set_page_zone(page, zone);
1973 set_page_node(page, node);
9127ab4f 1974#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1975 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1976#endif
1da177e4
LT
1977}
1978
7b230db3
MWO
1979/**
1980 * folio_nr_pages - The number of pages in the folio.
1981 * @folio: The folio.
1982 *
1983 * Return: A positive power of two.
1984 */
1985static inline long folio_nr_pages(struct folio *folio)
1986{
c3a15bff
MWO
1987 if (!folio_test_large(folio))
1988 return 1;
1989#ifdef CONFIG_64BIT
1990 return folio->_folio_nr_pages;
1991#else
1992 return 1L << folio->_folio_order;
1993#endif
7b230db3
MWO
1994}
1995
21a000fe
MWO
1996/*
1997 * compound_nr() returns the number of pages in this potentially compound
1998 * page. compound_nr() can be called on a tail page, and is defined to
1999 * return 1 in that case.
2000 */
2001static inline unsigned long compound_nr(struct page *page)
2002{
2003 struct folio *folio = (struct folio *)page;
2004
2005 if (!test_bit(PG_head, &folio->flags))
2006 return 1;
2007#ifdef CONFIG_64BIT
2008 return folio->_folio_nr_pages;
2009#else
2010 return 1L << folio->_folio_order;
2011#endif
2012}
2013
2014/**
2015 * thp_nr_pages - The number of regular pages in this huge page.
2016 * @page: The head page of a huge page.
2017 */
2018static inline int thp_nr_pages(struct page *page)
2019{
2020 return folio_nr_pages((struct folio *)page);
2021}
2022
7b230db3
MWO
2023/**
2024 * folio_next - Move to the next physical folio.
2025 * @folio: The folio we're currently operating on.
2026 *
2027 * If you have physically contiguous memory which may span more than
2028 * one folio (eg a &struct bio_vec), use this function to move from one
2029 * folio to the next. Do not use it if the memory is only virtually
2030 * contiguous as the folios are almost certainly not adjacent to each
2031 * other. This is the folio equivalent to writing ``page++``.
2032 *
2033 * Context: We assume that the folios are refcounted and/or locked at a
2034 * higher level and do not adjust the reference counts.
2035 * Return: The next struct folio.
2036 */
2037static inline struct folio *folio_next(struct folio *folio)
2038{
2039 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2040}
2041
2042/**
2043 * folio_shift - The size of the memory described by this folio.
2044 * @folio: The folio.
2045 *
2046 * A folio represents a number of bytes which is a power-of-two in size.
2047 * This function tells you which power-of-two the folio is. See also
2048 * folio_size() and folio_order().
2049 *
2050 * Context: The caller should have a reference on the folio to prevent
2051 * it from being split. It is not necessary for the folio to be locked.
2052 * Return: The base-2 logarithm of the size of this folio.
2053 */
2054static inline unsigned int folio_shift(struct folio *folio)
2055{
2056 return PAGE_SHIFT + folio_order(folio);
2057}
2058
2059/**
2060 * folio_size - The number of bytes in a folio.
2061 * @folio: The folio.
2062 *
2063 * Context: The caller should have a reference on the folio to prevent
2064 * it from being split. It is not necessary for the folio to be locked.
2065 * Return: The number of bytes in this folio.
2066 */
2067static inline size_t folio_size(struct folio *folio)
2068{
2069 return PAGE_SIZE << folio_order(folio);
2070}
2071
fa4e3f5f
VMO
2072/**
2073 * folio_estimated_sharers - Estimate the number of sharers of a folio.
2074 * @folio: The folio.
2075 *
2076 * folio_estimated_sharers() aims to serve as a function to efficiently
2077 * estimate the number of processes sharing a folio. This is done by
2078 * looking at the precise mapcount of the first subpage in the folio, and
2079 * assuming the other subpages are the same. This may not be true for large
2080 * folios. If you want exact mapcounts for exact calculations, look at
2081 * page_mapcount() or folio_total_mapcount().
2082 *
2083 * Return: The estimated number of processes sharing a folio.
2084 */
2085static inline int folio_estimated_sharers(struct folio *folio)
2086{
2087 return page_mapcount(folio_page(folio, 0));
2088}
2089
b424de33
MWO
2090#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2091static inline int arch_make_page_accessible(struct page *page)
2092{
2093 return 0;
2094}
2095#endif
2096
2097#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2098static inline int arch_make_folio_accessible(struct folio *folio)
2099{
2100 int ret;
2101 long i, nr = folio_nr_pages(folio);
2102
2103 for (i = 0; i < nr; i++) {
2104 ret = arch_make_page_accessible(folio_page(folio, i));
2105 if (ret)
2106 break;
2107 }
2108
2109 return ret;
2110}
2111#endif
2112
f6ac2354
CL
2113/*
2114 * Some inline functions in vmstat.h depend on page_zone()
2115 */
2116#include <linux/vmstat.h>
2117
33dd4e0e 2118static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 2119{
1dff8083 2120 return page_to_virt(page);
1da177e4
LT
2121}
2122
2123#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2124#define HASHED_PAGE_VIRTUAL
2125#endif
2126
2127#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
2128static inline void *page_address(const struct page *page)
2129{
2130 return page->virtual;
2131}
2132static inline void set_page_address(struct page *page, void *address)
2133{
2134 page->virtual = address;
2135}
1da177e4
LT
2136#define page_address_init() do { } while(0)
2137#endif
2138
2139#if defined(HASHED_PAGE_VIRTUAL)
f9918794 2140void *page_address(const struct page *page);
1da177e4
LT
2141void set_page_address(struct page *page, void *virtual);
2142void page_address_init(void);
2143#endif
2144
2145#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2146#define page_address(page) lowmem_page_address(page)
2147#define set_page_address(page, address) do { } while(0)
2148#define page_address_init() do { } while(0)
2149#endif
2150
7d4203c1
VB
2151static inline void *folio_address(const struct folio *folio)
2152{
2153 return page_address(&folio->page);
2154}
2155
e39155ea 2156extern void *page_rmapping(struct page *page);
f6ab1f7f
HY
2157extern pgoff_t __page_file_index(struct page *page);
2158
1da177e4
LT
2159/*
2160 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 2161 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
2162 */
2163static inline pgoff_t page_index(struct page *page)
2164{
2165 if (unlikely(PageSwapCache(page)))
f6ab1f7f 2166 return __page_file_index(page);
1da177e4
LT
2167 return page->index;
2168}
2169
2f064f34
MH
2170/*
2171 * Return true only if the page has been allocated with
2172 * ALLOC_NO_WATERMARKS and the low watermark was not
2173 * met implying that the system is under some pressure.
2174 */
1d7bab6a 2175static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
2176{
2177 /*
c07aea3e
MC
2178 * lru.next has bit 1 set if the page is allocated from the
2179 * pfmemalloc reserves. Callers may simply overwrite it if
2180 * they do not need to preserve that information.
2f064f34 2181 */
c07aea3e 2182 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
2183}
2184
02d65d6f
SK
2185/*
2186 * Return true only if the folio has been allocated with
2187 * ALLOC_NO_WATERMARKS and the low watermark was not
2188 * met implying that the system is under some pressure.
2189 */
2190static inline bool folio_is_pfmemalloc(const struct folio *folio)
2191{
2192 /*
2193 * lru.next has bit 1 set if the page is allocated from the
2194 * pfmemalloc reserves. Callers may simply overwrite it if
2195 * they do not need to preserve that information.
2196 */
2197 return (uintptr_t)folio->lru.next & BIT(1);
2198}
2199
2f064f34
MH
2200/*
2201 * Only to be called by the page allocator on a freshly allocated
2202 * page.
2203 */
2204static inline void set_page_pfmemalloc(struct page *page)
2205{
c07aea3e 2206 page->lru.next = (void *)BIT(1);
2f064f34
MH
2207}
2208
2209static inline void clear_page_pfmemalloc(struct page *page)
2210{
c07aea3e 2211 page->lru.next = NULL;
2f064f34
MH
2212}
2213
1c0fe6e3
NP
2214/*
2215 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2216 */
2217extern void pagefault_out_of_memory(void);
2218
1da177e4 2219#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 2220#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 2221#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 2222
ddd588b5 2223/*
7bf02ea2 2224 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
2225 * various contexts.
2226 */
4b59e6c4 2227#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 2228
974f4367
MH
2229extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2230static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2231{
2232 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2233}
1da177e4 2234
21b85b09
MK
2235/*
2236 * Parameter block passed down to zap_pte_range in exceptional cases.
2237 */
2238struct zap_details {
2239 struct folio *single_folio; /* Locked folio to be unmapped */
2240 bool even_cows; /* Zap COWed private pages too? */
2241 zap_flags_t zap_flags; /* Extra flags for zapping */
2242};
2243
2244/*
2245 * Whether to drop the pte markers, for example, the uffd-wp information for
2246 * file-backed memory. This should only be specified when we will completely
2247 * drop the page in the mm, either by truncation or unmapping of the vma. By
2248 * default, the flag is not set.
2249 */
2250#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
04ada095
MK
2251/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2252#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
21b85b09 2253
af7f588d
MD
2254#ifdef CONFIG_SCHED_MM_CID
2255void sched_mm_cid_before_execve(struct task_struct *t);
2256void sched_mm_cid_after_execve(struct task_struct *t);
2257void sched_mm_cid_fork(struct task_struct *t);
2258void sched_mm_cid_exit_signals(struct task_struct *t);
2259static inline int task_mm_cid(struct task_struct *t)
2260{
2261 return t->mm_cid;
2262}
2263#else
2264static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2265static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2266static inline void sched_mm_cid_fork(struct task_struct *t) { }
2267static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2268static inline int task_mm_cid(struct task_struct *t)
2269{
2270 /*
2271 * Use the processor id as a fall-back when the mm cid feature is
2272 * disabled. This provides functional per-cpu data structure accesses
2273 * in user-space, althrough it won't provide the memory usage benefits.
2274 */
2275 return raw_smp_processor_id();
2276}
2277#endif
2278
710ec38b 2279#ifdef CONFIG_MMU
7f43add4 2280extern bool can_do_mlock(void);
710ec38b
AB
2281#else
2282static inline bool can_do_mlock(void) { return false; }
2283#endif
d7c9e99a
AG
2284extern int user_shm_lock(size_t, struct ucounts *);
2285extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 2286
318e9342
VMO
2287struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2288 pte_t pte);
25b2995a
CH
2289struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2290 pte_t pte);
28093f9f
GS
2291struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2292 pmd_t pmd);
7e675137 2293
27d036e3
LR
2294void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2295 unsigned long size);
21b85b09
MK
2296void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2297 unsigned long size, struct zap_details *details);
e9adcfec
MK
2298static inline void zap_vma_pages(struct vm_area_struct *vma)
2299{
2300 zap_page_range_single(vma, vma->vm_start,
2301 vma->vm_end - vma->vm_start, NULL);
2302}
763ecb03
LH
2303void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2304 struct vm_area_struct *start_vma, unsigned long start,
68f48381 2305 unsigned long end, bool mm_wr_locked);
e6473092 2306
ac46d4f3
JG
2307struct mmu_notifier_range;
2308
42b77728 2309void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 2310 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
2311int
2312copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 2313int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 2314 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
2315int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2316 unsigned long *pfn);
d87fe660 2317int follow_phys(struct vm_area_struct *vma, unsigned long address,
2318 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
2319int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2320 void *buf, int len, int write);
1da177e4 2321
7caef267 2322extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 2323extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 2324void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 2325void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 2326int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 2327
7ee1dd3f 2328#ifdef CONFIG_MMU
2b740303 2329extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2330 unsigned long address, unsigned int flags,
2331 struct pt_regs *regs);
64019a2e 2332extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
2333 unsigned long address, unsigned int fault_flags,
2334 bool *unlocked);
977fbdcd
MW
2335void unmap_mapping_pages(struct address_space *mapping,
2336 pgoff_t start, pgoff_t nr, bool even_cows);
2337void unmap_mapping_range(struct address_space *mapping,
2338 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 2339#else
2b740303 2340static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2341 unsigned long address, unsigned int flags,
2342 struct pt_regs *regs)
7ee1dd3f
DH
2343{
2344 /* should never happen if there's no MMU */
2345 BUG();
2346 return VM_FAULT_SIGBUS;
2347}
64019a2e 2348static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 2349 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
2350{
2351 /* should never happen if there's no MMU */
2352 BUG();
2353 return -EFAULT;
2354}
977fbdcd
MW
2355static inline void unmap_mapping_pages(struct address_space *mapping,
2356 pgoff_t start, pgoff_t nr, bool even_cows) { }
2357static inline void unmap_mapping_range(struct address_space *mapping,
2358 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 2359#endif
f33ea7f4 2360
977fbdcd
MW
2361static inline void unmap_shared_mapping_range(struct address_space *mapping,
2362 loff_t const holebegin, loff_t const holelen)
2363{
2364 unmap_mapping_range(mapping, holebegin, holelen, 0);
2365}
2366
2367extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2368 void *buf, int len, unsigned int gup_flags);
5ddd36b9 2369extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 2370 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
2371extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2372 void *buf, int len, unsigned int gup_flags);
1da177e4 2373
64019a2e 2374long get_user_pages_remote(struct mm_struct *mm,
1e987790 2375 unsigned long start, unsigned long nr_pages,
9beae1ea 2376 unsigned int gup_flags, struct page **pages,
5b56d49f 2377 struct vm_area_struct **vmas, int *locked);
64019a2e 2378long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2379 unsigned long start, unsigned long nr_pages,
2380 unsigned int gup_flags, struct page **pages,
2381 struct vm_area_struct **vmas, int *locked);
c12d2da5 2382long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 2383 unsigned int gup_flags, struct page **pages,
cde70140 2384 struct vm_area_struct **vmas);
eddb1c22
JH
2385long pin_user_pages(unsigned long start, unsigned long nr_pages,
2386 unsigned int gup_flags, struct page **pages,
2387 struct vm_area_struct **vmas);
c12d2da5 2388long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 2389 struct page **pages, unsigned int gup_flags);
91429023
JH
2390long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2391 struct page **pages, unsigned int gup_flags);
9a4e9f3b 2392
73b0140b
IW
2393int get_user_pages_fast(unsigned long start, int nr_pages,
2394 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
2395int pin_user_pages_fast(unsigned long start, int nr_pages,
2396 unsigned int gup_flags, struct page **pages);
8025e5dd 2397
79eb597c
DJ
2398int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2399int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2400 struct task_struct *task, bool bypass_rlim);
2401
18022c5d 2402struct kvec;
f3e8fccd 2403struct page *get_dump_page(unsigned long addr);
1da177e4 2404
b5e84594
MWO
2405bool folio_mark_dirty(struct folio *folio);
2406bool set_page_dirty(struct page *page);
1da177e4 2407int set_page_dirty_lock(struct page *page);
b9ea2515 2408
a9090253 2409int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 2410
b6a2fea3
OW
2411extern unsigned long move_page_tables(struct vm_area_struct *vma,
2412 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
2413 unsigned long new_addr, unsigned long len,
2414 bool need_rmap_locks);
58705444
PX
2415
2416/*
2417 * Flags used by change_protection(). For now we make it a bitmap so
2418 * that we can pass in multiple flags just like parameters. However
2419 * for now all the callers are only use one of the flags at the same
2420 * time.
2421 */
64fe24a3
DH
2422/*
2423 * Whether we should manually check if we can map individual PTEs writable,
2424 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2425 * PTEs automatically in a writable mapping.
2426 */
2427#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
2428/* Whether this protection change is for NUMA hints */
2429#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2430/* Whether this change is for write protecting */
2431#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2432#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2433#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2434 MM_CP_UFFD_WP_RESOLVE)
58705444 2435
eb309ec8
DH
2436int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2437static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2438{
2439 /*
2440 * We want to check manually if we can change individual PTEs writable
2441 * if we can't do that automatically for all PTEs in a mapping. For
2442 * private mappings, that's always the case when we have write
2443 * permissions as we properly have to handle COW.
2444 */
2445 if (vma->vm_flags & VM_SHARED)
2446 return vma_wants_writenotify(vma, vma->vm_page_prot);
2447 return !!(vma->vm_flags & VM_WRITE);
2448
2449}
6a56ccbc
DH
2450bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2451 pte_t pte);
a79390f5 2452extern long change_protection(struct mmu_gather *tlb,
4a18419f 2453 struct vm_area_struct *vma, unsigned long start,
1ef488ed 2454 unsigned long end, unsigned long cp_flags);
2286a691
LH
2455extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2456 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2457 unsigned long start, unsigned long end, unsigned long newflags);
1da177e4 2458
465a454f
PZ
2459/*
2460 * doesn't attempt to fault and will return short.
2461 */
dadbb612
SJ
2462int get_user_pages_fast_only(unsigned long start, int nr_pages,
2463 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2464
2465static inline bool get_user_page_fast_only(unsigned long addr,
2466 unsigned int gup_flags, struct page **pagep)
2467{
2468 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2469}
d559db08
KH
2470/*
2471 * per-process(per-mm_struct) statistics.
2472 */
d559db08
KH
2473static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2474{
f1a79412 2475 return percpu_counter_read_positive(&mm->rss_stat[member]);
69c97823 2476}
d559db08 2477
f1a79412 2478void mm_trace_rss_stat(struct mm_struct *mm, int member);
b3d1411b 2479
d559db08
KH
2480static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2481{
f1a79412 2482 percpu_counter_add(&mm->rss_stat[member], value);
b3d1411b 2483
f1a79412 2484 mm_trace_rss_stat(mm, member);
d559db08
KH
2485}
2486
2487static inline void inc_mm_counter(struct mm_struct *mm, int member)
2488{
f1a79412 2489 percpu_counter_inc(&mm->rss_stat[member]);
b3d1411b 2490
f1a79412 2491 mm_trace_rss_stat(mm, member);
d559db08
KH
2492}
2493
2494static inline void dec_mm_counter(struct mm_struct *mm, int member)
2495{
f1a79412 2496 percpu_counter_dec(&mm->rss_stat[member]);
b3d1411b 2497
f1a79412 2498 mm_trace_rss_stat(mm, member);
d559db08
KH
2499}
2500
eca56ff9
JM
2501/* Optimized variant when page is already known not to be PageAnon */
2502static inline int mm_counter_file(struct page *page)
2503{
2504 if (PageSwapBacked(page))
2505 return MM_SHMEMPAGES;
2506 return MM_FILEPAGES;
2507}
2508
2509static inline int mm_counter(struct page *page)
2510{
2511 if (PageAnon(page))
2512 return MM_ANONPAGES;
2513 return mm_counter_file(page);
2514}
2515
d559db08
KH
2516static inline unsigned long get_mm_rss(struct mm_struct *mm)
2517{
2518 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2519 get_mm_counter(mm, MM_ANONPAGES) +
2520 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2521}
2522
2523static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2524{
2525 return max(mm->hiwater_rss, get_mm_rss(mm));
2526}
2527
2528static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2529{
2530 return max(mm->hiwater_vm, mm->total_vm);
2531}
2532
2533static inline void update_hiwater_rss(struct mm_struct *mm)
2534{
2535 unsigned long _rss = get_mm_rss(mm);
2536
2537 if ((mm)->hiwater_rss < _rss)
2538 (mm)->hiwater_rss = _rss;
2539}
2540
2541static inline void update_hiwater_vm(struct mm_struct *mm)
2542{
2543 if (mm->hiwater_vm < mm->total_vm)
2544 mm->hiwater_vm = mm->total_vm;
2545}
2546
695f0559
PC
2547static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2548{
2549 mm->hiwater_rss = get_mm_rss(mm);
2550}
2551
d559db08
KH
2552static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2553 struct mm_struct *mm)
2554{
2555 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2556
2557 if (*maxrss < hiwater_rss)
2558 *maxrss = hiwater_rss;
2559}
2560
53bddb4e 2561#if defined(SPLIT_RSS_COUNTING)
05af2e10 2562void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2563#else
05af2e10 2564static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2565{
2566}
2567#endif
465a454f 2568
78e7c5af
AK
2569#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2570static inline int pte_special(pte_t pte)
2571{
2572 return 0;
2573}
2574
2575static inline pte_t pte_mkspecial(pte_t pte)
2576{
2577 return pte;
2578}
2579#endif
2580
17596731 2581#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2582static inline int pte_devmap(pte_t pte)
2583{
2584 return 0;
2585}
2586#endif
2587
25ca1d6c
NK
2588extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2589 spinlock_t **ptl);
2590static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2591 spinlock_t **ptl)
2592{
2593 pte_t *ptep;
2594 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2595 return ptep;
2596}
c9cfcddf 2597
c2febafc
KS
2598#ifdef __PAGETABLE_P4D_FOLDED
2599static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2600 unsigned long address)
2601{
2602 return 0;
2603}
2604#else
2605int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2606#endif
2607
b4e98d9a 2608#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2609static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2610 unsigned long address)
2611{
2612 return 0;
2613}
b4e98d9a
KS
2614static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2615static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2616
5f22df00 2617#else
c2febafc 2618int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2619
b4e98d9a
KS
2620static inline void mm_inc_nr_puds(struct mm_struct *mm)
2621{
6d212db1
MS
2622 if (mm_pud_folded(mm))
2623 return;
af5b0f6a 2624 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2625}
2626
2627static inline void mm_dec_nr_puds(struct mm_struct *mm)
2628{
6d212db1
MS
2629 if (mm_pud_folded(mm))
2630 return;
af5b0f6a 2631 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2632}
5f22df00
NP
2633#endif
2634
2d2f5119 2635#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2636static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2637 unsigned long address)
2638{
2639 return 0;
2640}
dc6c9a35 2641
dc6c9a35
KS
2642static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2643static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2644
5f22df00 2645#else
1bb3630e 2646int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2647
dc6c9a35
KS
2648static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2649{
6d212db1
MS
2650 if (mm_pmd_folded(mm))
2651 return;
af5b0f6a 2652 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2653}
2654
2655static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2656{
6d212db1
MS
2657 if (mm_pmd_folded(mm))
2658 return;
af5b0f6a 2659 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2660}
5f22df00
NP
2661#endif
2662
c4812909 2663#ifdef CONFIG_MMU
af5b0f6a 2664static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2665{
af5b0f6a 2666 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2667}
2668
af5b0f6a 2669static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2670{
af5b0f6a 2671 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2672}
2673
2674static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2675{
af5b0f6a 2676 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2677}
2678
2679static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2680{
af5b0f6a 2681 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2682}
2683#else
c4812909 2684
af5b0f6a
KS
2685static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2686static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2687{
2688 return 0;
2689}
2690
2691static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2692static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2693#endif
2694
4cf58924
JFG
2695int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2696int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2697
f949286c
MR
2698#if defined(CONFIG_MMU)
2699
c2febafc
KS
2700static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2701 unsigned long address)
2702{
2703 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2704 NULL : p4d_offset(pgd, address);
2705}
2706
2707static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2708 unsigned long address)
1da177e4 2709{
c2febafc
KS
2710 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2711 NULL : pud_offset(p4d, address);
1da177e4 2712}
d8626138 2713
1da177e4
LT
2714static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2715{
1bb3630e
HD
2716 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2717 NULL: pmd_offset(pud, address);
1da177e4 2718}
f949286c 2719#endif /* CONFIG_MMU */
1bb3630e 2720
57c1ffce 2721#if USE_SPLIT_PTE_PTLOCKS
597d795a 2722#if ALLOC_SPLIT_PTLOCKS
b35f1819 2723void __init ptlock_cache_init(void);
539edb58
PZ
2724extern bool ptlock_alloc(struct page *page);
2725extern void ptlock_free(struct page *page);
2726
2727static inline spinlock_t *ptlock_ptr(struct page *page)
2728{
2729 return page->ptl;
2730}
597d795a 2731#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2732static inline void ptlock_cache_init(void)
2733{
2734}
2735
49076ec2
KS
2736static inline bool ptlock_alloc(struct page *page)
2737{
49076ec2
KS
2738 return true;
2739}
539edb58 2740
49076ec2
KS
2741static inline void ptlock_free(struct page *page)
2742{
49076ec2
KS
2743}
2744
2745static inline spinlock_t *ptlock_ptr(struct page *page)
2746{
539edb58 2747 return &page->ptl;
49076ec2 2748}
597d795a 2749#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2750
2751static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2752{
2753 return ptlock_ptr(pmd_page(*pmd));
2754}
2755
2756static inline bool ptlock_init(struct page *page)
2757{
2758 /*
2759 * prep_new_page() initialize page->private (and therefore page->ptl)
2760 * with 0. Make sure nobody took it in use in between.
2761 *
2762 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2763 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2764 */
309381fe 2765 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2766 if (!ptlock_alloc(page))
2767 return false;
2768 spin_lock_init(ptlock_ptr(page));
2769 return true;
2770}
2771
57c1ffce 2772#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2773/*
2774 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2775 */
49076ec2
KS
2776static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2777{
2778 return &mm->page_table_lock;
2779}
b35f1819 2780static inline void ptlock_cache_init(void) {}
49076ec2 2781static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2782static inline void ptlock_free(struct page *page) {}
57c1ffce 2783#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2784
b4ed71f5 2785static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2786{
706874e9
VD
2787 if (!ptlock_init(page))
2788 return false;
1d40a5ea 2789 __SetPageTable(page);
f0c0c115 2790 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2791 return true;
2f569afd
MS
2792}
2793
b4ed71f5 2794static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2795{
9e247bab 2796 ptlock_free(page);
1d40a5ea 2797 __ClearPageTable(page);
f0c0c115 2798 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2799}
2800
c74df32c
HD
2801#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2802({ \
4c21e2f2 2803 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2804 pte_t *__pte = pte_offset_map(pmd, address); \
2805 *(ptlp) = __ptl; \
2806 spin_lock(__ptl); \
2807 __pte; \
2808})
2809
2810#define pte_unmap_unlock(pte, ptl) do { \
2811 spin_unlock(ptl); \
2812 pte_unmap(pte); \
2813} while (0)
2814
4cf58924 2815#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2816
2817#define pte_alloc_map(mm, pmd, address) \
4cf58924 2818 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2819
c74df32c 2820#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2821 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2822 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2823
1bb3630e 2824#define pte_alloc_kernel(pmd, address) \
4cf58924 2825 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2826 NULL: pte_offset_kernel(pmd, address))
1da177e4 2827
e009bb30
KS
2828#if USE_SPLIT_PMD_PTLOCKS
2829
7e25de77 2830static inline struct page *pmd_pgtable_page(pmd_t *pmd)
634391ac
MS
2831{
2832 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2833 return virt_to_page((void *)((unsigned long) pmd & mask));
2834}
2835
e009bb30
KS
2836static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2837{
373dfda2 2838 return ptlock_ptr(pmd_pgtable_page(pmd));
e009bb30
KS
2839}
2840
b2b29d6d 2841static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2842{
e009bb30
KS
2843#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2844 page->pmd_huge_pte = NULL;
2845#endif
49076ec2 2846 return ptlock_init(page);
e009bb30
KS
2847}
2848
b2b29d6d 2849static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2850{
2851#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2852 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2853#endif
49076ec2 2854 ptlock_free(page);
e009bb30
KS
2855}
2856
373dfda2 2857#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
e009bb30
KS
2858
2859#else
2860
9a86cb7b
KS
2861static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2862{
2863 return &mm->page_table_lock;
2864}
2865
b2b29d6d
MW
2866static inline bool pmd_ptlock_init(struct page *page) { return true; }
2867static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2868
c389a250 2869#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2870
e009bb30
KS
2871#endif
2872
9a86cb7b
KS
2873static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2874{
2875 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2876 spin_lock(ptl);
2877 return ptl;
2878}
2879
b2b29d6d
MW
2880static inline bool pgtable_pmd_page_ctor(struct page *page)
2881{
2882 if (!pmd_ptlock_init(page))
2883 return false;
2884 __SetPageTable(page);
f0c0c115 2885 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2886 return true;
2887}
2888
2889static inline void pgtable_pmd_page_dtor(struct page *page)
2890{
2891 pmd_ptlock_free(page);
2892 __ClearPageTable(page);
f0c0c115 2893 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2894}
2895
a00cc7d9
MW
2896/*
2897 * No scalability reason to split PUD locks yet, but follow the same pattern
2898 * as the PMD locks to make it easier if we decide to. The VM should not be
2899 * considered ready to switch to split PUD locks yet; there may be places
2900 * which need to be converted from page_table_lock.
2901 */
2902static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2903{
2904 return &mm->page_table_lock;
2905}
2906
2907static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2908{
2909 spinlock_t *ptl = pud_lockptr(mm, pud);
2910
2911 spin_lock(ptl);
2912 return ptl;
2913}
62906027 2914
a00cc7d9 2915extern void __init pagecache_init(void);
49a7f04a
DH
2916extern void free_initmem(void);
2917
69afade7
JL
2918/*
2919 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2920 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2921 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2922 * Return pages freed into the buddy system.
2923 */
11199692 2924extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2925 int poison, const char *s);
c3d5f5f0 2926
c3d5f5f0 2927extern void adjust_managed_page_count(struct page *page, long count);
69afade7 2928
4b50bcc7 2929extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2930
69afade7 2931/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2932static inline void free_reserved_page(struct page *page)
69afade7
JL
2933{
2934 ClearPageReserved(page);
2935 init_page_count(page);
2936 __free_page(page);
69afade7
JL
2937 adjust_managed_page_count(page, 1);
2938}
a0cd7a7c 2939#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2940
2941static inline void mark_page_reserved(struct page *page)
2942{
2943 SetPageReserved(page);
2944 adjust_managed_page_count(page, -1);
2945}
2946
2947/*
2948 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2949 * The freed pages will be poisoned with pattern "poison" if it's within
2950 * range [0, UCHAR_MAX].
2951 * Return pages freed into the buddy system.
69afade7
JL
2952 */
2953static inline unsigned long free_initmem_default(int poison)
2954{
2955 extern char __init_begin[], __init_end[];
2956
11199692 2957 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2958 poison, "unused kernel image (initmem)");
69afade7
JL
2959}
2960
7ee3d4e8
JL
2961static inline unsigned long get_num_physpages(void)
2962{
2963 int nid;
2964 unsigned long phys_pages = 0;
2965
2966 for_each_online_node(nid)
2967 phys_pages += node_present_pages(nid);
2968
2969 return phys_pages;
2970}
2971
c713216d 2972/*
3f08a302 2973 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2974 * zones, allocate the backing mem_map and account for memory holes in an
2975 * architecture independent manner.
c713216d
MG
2976 *
2977 * An architecture is expected to register range of page frames backed by
0ee332c1 2978 * physical memory with memblock_add[_node]() before calling
9691a071 2979 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2980 * usage, an architecture is expected to do something like
2981 *
2982 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2983 * max_highmem_pfn};
2984 * for_each_valid_physical_page_range()
952eea9b 2985 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2986 * free_area_init(max_zone_pfns);
c713216d 2987 */
9691a071 2988void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2989unsigned long node_map_pfn_alignment(void);
32996250
YL
2990unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2991 unsigned long end_pfn);
c713216d
MG
2992extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2993 unsigned long end_pfn);
2994extern void get_pfn_range_for_nid(unsigned int nid,
2995 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 2996
a9ee6cf5 2997#ifndef CONFIG_NUMA
6f24fbd3 2998static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2999{
3000 return 0;
3001}
3002#else
3003/* please see mm/page_alloc.c */
3004extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
3005#endif
3006
0e0b864e 3007extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 3008extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
3009 unsigned long, unsigned long, enum meminit_context,
3010 struct vmem_altmap *, int migratetype);
bc75d33f 3011extern void setup_per_zone_wmarks(void);
bd3400ea 3012extern void calculate_min_free_kbytes(void);
1b79acc9 3013extern int __meminit init_per_zone_wmark_min(void);
1da177e4 3014extern void mem_init(void);
8feae131 3015extern void __init mmap_init(void);
974f4367
MH
3016
3017extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3018static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
3019{
3020 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
3021}
d02bd27b 3022extern long si_mem_available(void);
1da177e4
LT
3023extern void si_meminfo(struct sysinfo * val);
3024extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
3025#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3026extern unsigned long arch_reserved_kernel_pages(void);
3027#endif
1da177e4 3028
a8e99259
MH
3029extern __printf(3, 4)
3030void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 3031
e7c8d5c9 3032extern void setup_per_cpu_pageset(void);
e7c8d5c9 3033
75f7ad8e
PS
3034/* page_alloc.c */
3035extern int min_free_kbytes;
1c30844d 3036extern int watermark_boost_factor;
795ae7a0 3037extern int watermark_scale_factor;
51930df5 3038extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 3039
8feae131 3040/* nommu.c */
33e5d769 3041extern atomic_long_t mmap_pages_allocated;
7e660872 3042extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 3043
6b2dbba8 3044/* interval_tree.c */
6b2dbba8 3045void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 3046 struct rb_root_cached *root);
9826a516
ML
3047void vma_interval_tree_insert_after(struct vm_area_struct *node,
3048 struct vm_area_struct *prev,
f808c13f 3049 struct rb_root_cached *root);
6b2dbba8 3050void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
3051 struct rb_root_cached *root);
3052struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
3053 unsigned long start, unsigned long last);
3054struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3055 unsigned long start, unsigned long last);
3056
3057#define vma_interval_tree_foreach(vma, root, start, last) \
3058 for (vma = vma_interval_tree_iter_first(root, start, last); \
3059 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 3060
bf181b9f 3061void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 3062 struct rb_root_cached *root);
bf181b9f 3063void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
3064 struct rb_root_cached *root);
3065struct anon_vma_chain *
3066anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3067 unsigned long start, unsigned long last);
bf181b9f
ML
3068struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3069 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
3070#ifdef CONFIG_DEBUG_VM_RB
3071void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3072#endif
bf181b9f
ML
3073
3074#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3075 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3076 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3077
1da177e4 3078/* mmap.c */
34b4e4aa 3079extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
7c9813e8
LH
3080extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3081 unsigned long start, unsigned long end, pgoff_t pgoff,
3082 struct vm_area_struct *next);
cf51e86d
LH
3083extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3084 unsigned long start, unsigned long end, pgoff_t pgoff);
9760ebff 3085extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
f2ebfe43
LH
3086 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3087 unsigned long end, unsigned long vm_flags, struct anon_vma *,
3088 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3089 struct anon_vma_name *);
1da177e4 3090extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
9760ebff
LH
3091extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3092 unsigned long addr, int new_below);
3093extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3094 unsigned long addr, int new_below);
1da177e4 3095extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 3096extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 3097extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
3098 unsigned long addr, unsigned long len, pgoff_t pgoff,
3099 bool *need_rmap_locks);
1da177e4 3100extern void exit_mmap(struct mm_struct *);
925d1c40 3101
9c599024
CG
3102static inline int check_data_rlimit(unsigned long rlim,
3103 unsigned long new,
3104 unsigned long start,
3105 unsigned long end_data,
3106 unsigned long start_data)
3107{
3108 if (rlim < RLIM_INFINITY) {
3109 if (((new - start) + (end_data - start_data)) > rlim)
3110 return -ENOSPC;
3111 }
3112
3113 return 0;
3114}
3115
7906d00c
AA
3116extern int mm_take_all_locks(struct mm_struct *mm);
3117extern void mm_drop_all_locks(struct mm_struct *mm);
3118
fe69d560 3119extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 3120extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 3121extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 3122extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 3123
84638335
KK
3124extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3125extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3126
2eefd878
DS
3127extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3128 const struct vm_special_mapping *sm);
3935ed6a
SS
3129extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3130 unsigned long addr, unsigned long len,
a62c34bd
AL
3131 unsigned long flags,
3132 const struct vm_special_mapping *spec);
3133/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
3134extern int install_special_mapping(struct mm_struct *mm,
3135 unsigned long addr, unsigned long len,
3136 unsigned long flags, struct page **pages);
1da177e4 3137
649775be 3138unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 3139unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 3140
1da177e4
LT
3141extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3142
0165ab44 3143extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
3144 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3145 struct list_head *uf);
1fcfd8db 3146extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 3147 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 3148 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
183654ce 3149extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
11f9a21a
LH
3150 unsigned long start, size_t len, struct list_head *uf,
3151 bool downgrade);
897ab3e0
MR
3152extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3153 struct list_head *uf);
0726b01e 3154extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 3155
bebeb3d6 3156#ifdef CONFIG_MMU
27b26701
LH
3157extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3158 unsigned long start, unsigned long end,
3159 struct list_head *uf, bool downgrade);
bebeb3d6
ML
3160extern int __mm_populate(unsigned long addr, unsigned long len,
3161 int ignore_errors);
3162static inline void mm_populate(unsigned long addr, unsigned long len)
3163{
3164 /* Ignore errors */
3165 (void) __mm_populate(addr, len, 1);
3166}
3167#else
3168static inline void mm_populate(unsigned long addr, unsigned long len) {}
3169#endif
3170
e4eb1ff6 3171/* These take the mm semaphore themselves */
5d22fc25 3172extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 3173extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 3174extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 3175extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
3176 unsigned long, unsigned long,
3177 unsigned long, unsigned long);
1da177e4 3178
db4fbfb9
ML
3179struct vm_unmapped_area_info {
3180#define VM_UNMAPPED_AREA_TOPDOWN 1
3181 unsigned long flags;
3182 unsigned long length;
3183 unsigned long low_limit;
3184 unsigned long high_limit;
3185 unsigned long align_mask;
3186 unsigned long align_offset;
3187};
3188
baceaf1c 3189extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 3190
85821aab 3191/* truncate.c */
1da177e4 3192extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
3193extern void truncate_inode_pages_range(struct address_space *,
3194 loff_t lstart, loff_t lend);
91b0abe3 3195extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
3196
3197/* generic vm_area_ops exported for stackable file systems */
2bcd6454 3198extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 3199extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 3200 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 3201extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 3202
1be7107f 3203extern unsigned long stack_guard_gap;
d05f3169 3204/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 3205extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 3206
11192337 3207/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
3208extern int expand_downwards(struct vm_area_struct *vma,
3209 unsigned long address);
8ca3eb08 3210#if VM_GROWSUP
46dea3d0 3211extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 3212#else
fee7e49d 3213 #define expand_upwards(vma, address) (0)
9ab88515 3214#endif
1da177e4
LT
3215
3216/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3217extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3218extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3219 struct vm_area_struct **pprev);
3220
abdba2dd
LH
3221/*
3222 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3223 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 3224 */
ce6d42f2 3225struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 3226 unsigned long start_addr, unsigned long end_addr);
1da177e4 3227
ce6d42f2
LH
3228/**
3229 * vma_lookup() - Find a VMA at a specific address
3230 * @mm: The process address space.
3231 * @addr: The user address.
3232 *
3233 * Return: The vm_area_struct at the given address, %NULL otherwise.
3234 */
3235static inline
3236struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3237{
d7c62295 3238 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
3239}
3240
1be7107f
HD
3241static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3242{
3243 unsigned long vm_start = vma->vm_start;
3244
3245 if (vma->vm_flags & VM_GROWSDOWN) {
3246 vm_start -= stack_guard_gap;
3247 if (vm_start > vma->vm_start)
3248 vm_start = 0;
3249 }
3250 return vm_start;
3251}
3252
3253static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3254{
3255 unsigned long vm_end = vma->vm_end;
3256
3257 if (vma->vm_flags & VM_GROWSUP) {
3258 vm_end += stack_guard_gap;
3259 if (vm_end < vma->vm_end)
3260 vm_end = -PAGE_SIZE;
3261 }
3262 return vm_end;
3263}
3264
1da177e4
LT
3265static inline unsigned long vma_pages(struct vm_area_struct *vma)
3266{
3267 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3268}
3269
640708a2
PE
3270/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3271static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3272 unsigned long vm_start, unsigned long vm_end)
3273{
dc8635b2 3274 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
3275
3276 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3277 vma = NULL;
3278
3279 return vma;
3280}
3281
017b1660
MK
3282static inline bool range_in_vma(struct vm_area_struct *vma,
3283 unsigned long start, unsigned long end)
3284{
3285 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3286}
3287
bad849b3 3288#ifdef CONFIG_MMU
804af2cf 3289pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 3290void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
3291#else
3292static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3293{
3294 return __pgprot(0);
3295}
64e45507
PF
3296static inline void vma_set_page_prot(struct vm_area_struct *vma)
3297{
3298 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3299}
bad849b3
DH
3300#endif
3301
295992fb
CK
3302void vma_set_file(struct vm_area_struct *vma, struct file *file);
3303
5877231f 3304#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 3305unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
3306 unsigned long start, unsigned long end);
3307#endif
3308
deceb6cd 3309struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
3310int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3311 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
3312int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3313 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 3314int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
3315int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3316 struct page **pages, unsigned long *num);
a667d745
SJ
3317int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3318 unsigned long num);
3319int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3320 unsigned long num);
ae2b01f3 3321vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 3322 unsigned long pfn);
f5e6d1d5
MW
3323vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3324 unsigned long pfn, pgprot_t pgprot);
5d747637 3325vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 3326 pfn_t pfn);
ab77dab4
SJ
3327vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3328 unsigned long addr, pfn_t pfn);
b4cbb197
LT
3329int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3330
1c8f4220
SJ
3331static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3332 unsigned long addr, struct page *page)
3333{
3334 int err = vm_insert_page(vma, addr, page);
3335
3336 if (err == -ENOMEM)
3337 return VM_FAULT_OOM;
3338 if (err < 0 && err != -EBUSY)
3339 return VM_FAULT_SIGBUS;
3340
3341 return VM_FAULT_NOPAGE;
3342}
3343
f8f6ae5d
JG
3344#ifndef io_remap_pfn_range
3345static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3346 unsigned long addr, unsigned long pfn,
3347 unsigned long size, pgprot_t prot)
3348{
3349 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3350}
3351#endif
3352
d97baf94
SJ
3353static inline vm_fault_t vmf_error(int err)
3354{
3355 if (err == -ENOMEM)
3356 return VM_FAULT_OOM;
3357 return VM_FAULT_SIGBUS;
3358}
3359
df06b37f
KB
3360struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3361 unsigned int foll_flags);
240aadee 3362
2b740303 3363static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3364{
3365 if (vm_fault & VM_FAULT_OOM)
3366 return -ENOMEM;
3367 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3368 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3369 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3370 return -EFAULT;
3371 return 0;
3372}
3373
474098ed
DH
3374/*
3375 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3376 * a (NUMA hinting) fault is required.
3377 */
3378static inline bool gup_can_follow_protnone(unsigned int flags)
3379{
3380 /*
3381 * FOLL_FORCE has to be able to make progress even if the VMA is
3382 * inaccessible. Further, FOLL_FORCE access usually does not represent
3383 * application behaviour and we should avoid triggering NUMA hinting
3384 * faults.
3385 */
3386 return flags & FOLL_FORCE;
3387}
3388
8b1e0f81 3389typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3390extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3391 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3392extern int apply_to_existing_page_range(struct mm_struct *mm,
3393 unsigned long address, unsigned long size,
3394 pte_fn_t fn, void *data);
aee16b3c 3395
8823b1db 3396#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3397extern void __kernel_poison_pages(struct page *page, int numpages);
3398extern void __kernel_unpoison_pages(struct page *page, int numpages);
3399extern bool _page_poisoning_enabled_early;
3400DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3401static inline bool page_poisoning_enabled(void)
3402{
3403 return _page_poisoning_enabled_early;
3404}
3405/*
3406 * For use in fast paths after init_mem_debugging() has run, or when a
3407 * false negative result is not harmful when called too early.
3408 */
3409static inline bool page_poisoning_enabled_static(void)
3410{
3411 return static_branch_unlikely(&_page_poisoning_enabled);
3412}
3413static inline void kernel_poison_pages(struct page *page, int numpages)
3414{
3415 if (page_poisoning_enabled_static())
3416 __kernel_poison_pages(page, numpages);
3417}
3418static inline void kernel_unpoison_pages(struct page *page, int numpages)
3419{
3420 if (page_poisoning_enabled_static())
3421 __kernel_unpoison_pages(page, numpages);
3422}
8823b1db
LA
3423#else
3424static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3425static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3426static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3427static inline void kernel_poison_pages(struct page *page, int numpages) { }
3428static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3429#endif
3430
51cba1eb 3431DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3432static inline bool want_init_on_alloc(gfp_t flags)
3433{
51cba1eb
KC
3434 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3435 &init_on_alloc))
6471384a
AP
3436 return true;
3437 return flags & __GFP_ZERO;
3438}
3439
51cba1eb 3440DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3441static inline bool want_init_on_free(void)
3442{
51cba1eb
KC
3443 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3444 &init_on_free);
6471384a
AP
3445}
3446
8e57f8ac
VB
3447extern bool _debug_pagealloc_enabled_early;
3448DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3449
3450static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3451{
3452 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3453 _debug_pagealloc_enabled_early;
3454}
3455
3456/*
3457 * For use in fast paths after init_debug_pagealloc() has run, or when a
3458 * false negative result is not harmful when called too early.
3459 */
3460static inline bool debug_pagealloc_enabled_static(void)
031bc574 3461{
96a2b03f
VB
3462 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3463 return false;
3464
3465 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3466}
3467
5d6ad668 3468#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3469/*
5d6ad668
MR
3470 * To support DEBUG_PAGEALLOC architecture must ensure that
3471 * __kernel_map_pages() never fails
c87cbc1f 3472 */
d6332692
RE
3473extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3474
77bc7fd6
MR
3475static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3476{
3477 if (debug_pagealloc_enabled_static())
3478 __kernel_map_pages(page, numpages, 1);
3479}
3480
3481static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3482{
3483 if (debug_pagealloc_enabled_static())
3484 __kernel_map_pages(page, numpages, 0);
3485}
5d6ad668 3486#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3487static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3488static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3489#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3490
a6c19dfe 3491#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3492extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3493extern int in_gate_area_no_mm(unsigned long addr);
3494extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3495#else
a6c19dfe
AL
3496static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3497{
3498 return NULL;
3499}
3500static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3501static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3502{
3503 return 0;
3504}
1da177e4
LT
3505#endif /* __HAVE_ARCH_GATE_AREA */
3506
44a70ade
MH
3507extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3508
146732ce
JT
3509#ifdef CONFIG_SYSCTL
3510extern int sysctl_drop_caches;
32927393
CH
3511int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3512 loff_t *);
146732ce
JT
3513#endif
3514
cb731d6c 3515void drop_slab(void);
9d0243bc 3516
7a9166e3
LY
3517#ifndef CONFIG_MMU
3518#define randomize_va_space 0
3519#else
a62eaf15 3520extern int randomize_va_space;
7a9166e3 3521#endif
a62eaf15 3522
045e72ac 3523const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3524#ifdef CONFIG_MMU
03252919 3525void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3526#else
3527static inline void print_vma_addr(char *prefix, unsigned long rip)
3528{
3529}
3530#endif
e6e5494c 3531
35fd1eb1 3532void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3533struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3534 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3535 struct dev_pagemap *pgmap);
7b09f5af
FC
3536void pmd_init(void *addr);
3537void pud_init(void *addr);
29c71111 3538pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3539p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3540pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3541pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3542pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3543 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3544void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3545struct vmem_altmap;
56993b4e
AK
3546void *vmemmap_alloc_block_buf(unsigned long size, int node,
3547 struct vmem_altmap *altmap);
8f6aac41 3548void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2045a3b8
FC
3549void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3550 unsigned long addr, unsigned long next);
3551int vmemmap_check_pmd(pmd_t *pmd, int node,
3552 unsigned long addr, unsigned long next);
0aad818b 3553int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3554 int node, struct vmem_altmap *altmap);
2045a3b8
FC
3555int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3556 int node, struct vmem_altmap *altmap);
7b73d978
CH
3557int vmemmap_populate(unsigned long start, unsigned long end, int node,
3558 struct vmem_altmap *altmap);
c2b91e2e 3559void vmemmap_populate_print_last(void);
0197518c 3560#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3561void vmemmap_free(unsigned long start, unsigned long end,
3562 struct vmem_altmap *altmap);
0197518c 3563#endif
46723bfa 3564void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3565 unsigned long nr_pages);
6a46079c 3566
82ba011b
AK
3567enum mf_flags {
3568 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3569 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3570 MF_MUST_KILL = 1 << 2,
cf870c70 3571 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3572 MF_UNPOISON = 1 << 4,
67f22ba7 3573 MF_SW_SIMULATED = 1 << 5,
38f6d293 3574 MF_NO_RETRY = 1 << 6,
82ba011b 3575};
c36e2024
SR
3576int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3577 unsigned long count, int mf_flags);
83b57531 3578extern int memory_failure(unsigned long pfn, int flags);
06202231 3579extern void memory_failure_queue_kick(int cpu);
847ce401 3580extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3581extern int sysctl_memory_failure_early_kill;
3582extern int sysctl_memory_failure_recovery;
d0505e9f 3583extern void shake_page(struct page *p);
5844a486 3584extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3585extern int soft_offline_page(unsigned long pfn, int flags);
405ce051 3586#ifdef CONFIG_MEMORY_FAILURE
d302c239 3587extern void memory_failure_queue(unsigned long pfn, int flags);
e591ef7d
NH
3588extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3589 bool *migratable_cleared);
5033091d
NH
3590void num_poisoned_pages_inc(unsigned long pfn);
3591void num_poisoned_pages_sub(unsigned long pfn, long i);
405ce051 3592#else
d302c239
TL
3593static inline void memory_failure_queue(unsigned long pfn, int flags)
3594{
3595}
3596
e591ef7d
NH
3597static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3598 bool *migratable_cleared)
405ce051
NH
3599{
3600 return 0;
3601}
d027122d 3602
a46c9304 3603static inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
3604{
3605}
5033091d
NH
3606
3607static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3608{
3609}
3610#endif
3611
3612#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3613extern void memblk_nr_poison_inc(unsigned long pfn);
3614extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3615#else
3616static inline void memblk_nr_poison_inc(unsigned long pfn)
3617{
3618}
3619
3620static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3621{
3622}
405ce051 3623#endif
6a46079c 3624
03b122da
TL
3625#ifndef arch_memory_failure
3626static inline int arch_memory_failure(unsigned long pfn, int flags)
3627{
3628 return -ENXIO;
3629}
3630#endif
3631
3632#ifndef arch_is_platform_page
3633static inline bool arch_is_platform_page(u64 paddr)
3634{
3635 return false;
3636}
3637#endif
cc637b17
XX
3638
3639/*
3640 * Error handlers for various types of pages.
3641 */
cc3e2af4 3642enum mf_result {
cc637b17
XX
3643 MF_IGNORED, /* Error: cannot be handled */
3644 MF_FAILED, /* Error: handling failed */
3645 MF_DELAYED, /* Will be handled later */
3646 MF_RECOVERED, /* Successfully recovered */
3647};
3648
3649enum mf_action_page_type {
3650 MF_MSG_KERNEL,
3651 MF_MSG_KERNEL_HIGH_ORDER,
3652 MF_MSG_SLAB,
3653 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3654 MF_MSG_HUGE,
3655 MF_MSG_FREE_HUGE,
3656 MF_MSG_UNMAP_FAILED,
3657 MF_MSG_DIRTY_SWAPCACHE,
3658 MF_MSG_CLEAN_SWAPCACHE,
3659 MF_MSG_DIRTY_MLOCKED_LRU,
3660 MF_MSG_CLEAN_MLOCKED_LRU,
3661 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3662 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3663 MF_MSG_DIRTY_LRU,
3664 MF_MSG_CLEAN_LRU,
3665 MF_MSG_TRUNCATED_LRU,
3666 MF_MSG_BUDDY,
6100e34b 3667 MF_MSG_DAX,
5d1fd5dc 3668 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3669 MF_MSG_UNKNOWN,
3670};
3671
44b8f8bf
JY
3672/*
3673 * Sysfs entries for memory failure handling statistics.
3674 */
3675extern const struct attribute_group memory_failure_attr_group;
3676
47ad8475
AA
3677#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3678extern void clear_huge_page(struct page *page,
c79b57e4 3679 unsigned long addr_hint,
47ad8475
AA
3680 unsigned int pages_per_huge_page);
3681extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3682 unsigned long addr_hint,
3683 struct vm_area_struct *vma,
47ad8475 3684 unsigned int pages_per_huge_page);
fa4d75c1
MK
3685extern long copy_huge_page_from_user(struct page *dst_page,
3686 const void __user *usr_src,
810a56b9
MK
3687 unsigned int pages_per_huge_page,
3688 bool allow_pagefault);
2484ca9b
THV
3689
3690/**
3691 * vma_is_special_huge - Are transhuge page-table entries considered special?
3692 * @vma: Pointer to the struct vm_area_struct to consider
3693 *
3694 * Whether transhuge page-table entries are considered "special" following
3695 * the definition in vm_normal_page().
3696 *
3697 * Return: true if transhuge page-table entries should be considered special,
3698 * false otherwise.
3699 */
3700static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3701{
3702 return vma_is_dax(vma) || (vma->vm_file &&
3703 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3704}
3705
47ad8475
AA
3706#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3707
c0a32fc5
SG
3708#ifdef CONFIG_DEBUG_PAGEALLOC
3709extern unsigned int _debug_guardpage_minorder;
96a2b03f 3710DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3711
3712static inline unsigned int debug_guardpage_minorder(void)
3713{
3714 return _debug_guardpage_minorder;
3715}
3716
e30825f1
JK
3717static inline bool debug_guardpage_enabled(void)
3718{
96a2b03f 3719 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3720}
3721
c0a32fc5
SG
3722static inline bool page_is_guard(struct page *page)
3723{
e30825f1
JK
3724 if (!debug_guardpage_enabled())
3725 return false;
3726
3972f6bb 3727 return PageGuard(page);
c0a32fc5
SG
3728}
3729#else
3730static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3731static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3732static inline bool page_is_guard(struct page *page) { return false; }
3733#endif /* CONFIG_DEBUG_PAGEALLOC */
3734
f9872caf
CS
3735#if MAX_NUMNODES > 1
3736void __init setup_nr_node_ids(void);
3737#else
3738static inline void setup_nr_node_ids(void) {}
3739#endif
3740
010c164a
SL
3741extern int memcmp_pages(struct page *page1, struct page *page2);
3742
3743static inline int pages_identical(struct page *page1, struct page *page2)
3744{
3745 return !memcmp_pages(page1, page2);
3746}
3747
c5acad84
TH
3748#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3749unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3750 pgoff_t first_index, pgoff_t nr,
3751 pgoff_t bitmap_pgoff,
3752 unsigned long *bitmap,
3753 pgoff_t *start,
3754 pgoff_t *end);
3755
3756unsigned long wp_shared_mapping_range(struct address_space *mapping,
3757 pgoff_t first_index, pgoff_t nr);
3758#endif
3759
2374c09b
CH
3760extern int sysctl_nr_trim_pages;
3761
5bb1bb35 3762#ifdef CONFIG_PRINTK
8e7f37f2 3763void mem_dump_obj(void *object);
5bb1bb35
PM
3764#else
3765static inline void mem_dump_obj(void *object) {}
3766#endif
8e7f37f2 3767
22247efd
PX
3768/**
3769 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3770 * @seals: the seals to check
3771 * @vma: the vma to operate on
3772 *
3773 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3774 * the vma flags. Return 0 if check pass, or <0 for errors.
3775 */
3776static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3777{
3778 if (seals & F_SEAL_FUTURE_WRITE) {
3779 /*
3780 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3781 * "future write" seal active.
3782 */
3783 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3784 return -EPERM;
3785
3786 /*
3787 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3788 * MAP_SHARED and read-only, take care to not allow mprotect to
3789 * revert protections on such mappings. Do this only for shared
3790 * mappings. For private mappings, don't need to mask
3791 * VM_MAYWRITE as we still want them to be COW-writable.
3792 */
3793 if (vma->vm_flags & VM_SHARED)
1c71222e 3794 vm_flags_clear(vma, VM_MAYWRITE);
22247efd
PX
3795 }
3796
3797 return 0;
3798}
3799
9a10064f
CC
3800#ifdef CONFIG_ANON_VMA_NAME
3801int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
3802 unsigned long len_in,
3803 struct anon_vma_name *anon_name);
9a10064f
CC
3804#else
3805static inline int
3806madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 3807 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
3808 return 0;
3809}
3810#endif
3811
1da177e4 3812#endif /* _LINUX_MM_H */