zram: use try_cmpxchg in update_used_max
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
1da177e4
LT
32
33struct mempolicy;
34struct anon_vma;
bf181b9f 35struct anon_vma_chain;
e8edc6e0 36struct user_struct;
bce617ed 37struct pt_regs;
1da177e4 38
5ef64cc8
LT
39extern int sysctl_page_lock_unfairness;
40
597b7305
MH
41void init_mm_internals(void);
42
a9ee6cf5 43#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 44extern unsigned long max_mapnr;
fccc9987
JL
45
46static inline void set_max_mapnr(unsigned long limit)
47{
48 max_mapnr = limit;
49}
50#else
51static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
52#endif
53
ca79b0c2
AK
54extern atomic_long_t _totalram_pages;
55static inline unsigned long totalram_pages(void)
56{
57 return (unsigned long)atomic_long_read(&_totalram_pages);
58}
59
60static inline void totalram_pages_inc(void)
61{
62 atomic_long_inc(&_totalram_pages);
63}
64
65static inline void totalram_pages_dec(void)
66{
67 atomic_long_dec(&_totalram_pages);
68}
69
70static inline void totalram_pages_add(long count)
71{
72 atomic_long_add(count, &_totalram_pages);
73}
74
1da177e4 75extern void * high_memory;
1da177e4
LT
76extern int page_cluster;
77
78#ifdef CONFIG_SYSCTL
79extern int sysctl_legacy_va_layout;
80#else
81#define sysctl_legacy_va_layout 0
82#endif
83
d07e2259
DC
84#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
85extern const int mmap_rnd_bits_min;
86extern const int mmap_rnd_bits_max;
87extern int mmap_rnd_bits __read_mostly;
88#endif
89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
90extern const int mmap_rnd_compat_bits_min;
91extern const int mmap_rnd_compat_bits_max;
92extern int mmap_rnd_compat_bits __read_mostly;
93#endif
94
1da177e4 95#include <asm/page.h>
1da177e4 96#include <asm/processor.h>
1da177e4 97
d9344522
AK
98/*
99 * Architectures that support memory tagging (assigning tags to memory regions,
100 * embedding these tags into addresses that point to these memory regions, and
101 * checking that the memory and the pointer tags match on memory accesses)
102 * redefine this macro to strip tags from pointers.
f0953a1b 103 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
104 */
105#ifndef untagged_addr
106#define untagged_addr(addr) (addr)
107#endif
108
79442ed1
TC
109#ifndef __pa_symbol
110#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
111#endif
112
1dff8083
AB
113#ifndef page_to_virt
114#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
115#endif
116
568c5fe5
LA
117#ifndef lm_alias
118#define lm_alias(x) __va(__pa_symbol(x))
119#endif
120
593befa6
DD
121/*
122 * To prevent common memory management code establishing
123 * a zero page mapping on a read fault.
124 * This macro should be defined within <asm/pgtable.h>.
125 * s390 does this to prevent multiplexing of hardware bits
126 * related to the physical page in case of virtualization.
127 */
128#ifndef mm_forbids_zeropage
129#define mm_forbids_zeropage(X) (0)
130#endif
131
a4a3ede2
PT
132/*
133 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
134 * If an architecture decides to implement their own version of
135 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
136 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 137 */
5470dea4
AD
138#if BITS_PER_LONG == 64
139/* This function must be updated when the size of struct page grows above 80
140 * or reduces below 56. The idea that compiler optimizes out switch()
141 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 142 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
143 * this can result in several of the writes here being dropped.
144 */
145#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
146static inline void __mm_zero_struct_page(struct page *page)
147{
148 unsigned long *_pp = (void *)page;
149
150 /* Check that struct page is either 56, 64, 72, or 80 bytes */
151 BUILD_BUG_ON(sizeof(struct page) & 7);
152 BUILD_BUG_ON(sizeof(struct page) < 56);
153 BUILD_BUG_ON(sizeof(struct page) > 80);
154
155 switch (sizeof(struct page)) {
156 case 80:
df561f66
GS
157 _pp[9] = 0;
158 fallthrough;
5470dea4 159 case 72:
df561f66
GS
160 _pp[8] = 0;
161 fallthrough;
5470dea4 162 case 64:
df561f66
GS
163 _pp[7] = 0;
164 fallthrough;
5470dea4
AD
165 case 56:
166 _pp[6] = 0;
167 _pp[5] = 0;
168 _pp[4] = 0;
169 _pp[3] = 0;
170 _pp[2] = 0;
171 _pp[1] = 0;
172 _pp[0] = 0;
173 }
174}
175#else
a4a3ede2
PT
176#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
177#endif
178
ea606cf5
AR
179/*
180 * Default maximum number of active map areas, this limits the number of vmas
181 * per mm struct. Users can overwrite this number by sysctl but there is a
182 * problem.
183 *
184 * When a program's coredump is generated as ELF format, a section is created
185 * per a vma. In ELF, the number of sections is represented in unsigned short.
186 * This means the number of sections should be smaller than 65535 at coredump.
187 * Because the kernel adds some informative sections to a image of program at
188 * generating coredump, we need some margin. The number of extra sections is
189 * 1-3 now and depends on arch. We use "5" as safe margin, here.
190 *
191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192 * not a hard limit any more. Although some userspace tools can be surprised by
193 * that.
194 */
195#define MAPCOUNT_ELF_CORE_MARGIN (5)
196#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
197
198extern int sysctl_max_map_count;
199
c9b1d098 200extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 201extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 202
49f0ce5f
JM
203extern int sysctl_overcommit_memory;
204extern int sysctl_overcommit_ratio;
205extern unsigned long sysctl_overcommit_kbytes;
206
32927393
CH
207int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
209int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
56f3547b
FT
211int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
212 loff_t *);
49f0ce5f 213
1cfcee72 214#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 215#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 216#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
217#else
218#define nth_page(page,n) ((page) + (n))
659508f9 219#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 220#endif
1da177e4 221
27ac792c
AR
222/* to align the pointer to the (next) page boundary */
223#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224
335e52c2
DG
225/* to align the pointer to the (prev) page boundary */
226#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
227
0fa73b86 228/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 229#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 230
f86196ea 231#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
232static inline struct folio *lru_to_folio(struct list_head *head)
233{
234 return list_entry((head)->prev, struct folio, lru);
235}
f86196ea 236
5748fbc5
KW
237void setup_initial_init_mm(void *start_code, void *end_code,
238 void *end_data, void *brk);
239
1da177e4
LT
240/*
241 * Linux kernel virtual memory manager primitives.
242 * The idea being to have a "virtual" mm in the same way
243 * we have a virtual fs - giving a cleaner interface to the
244 * mm details, and allowing different kinds of memory mappings
245 * (from shared memory to executable loading to arbitrary
246 * mmap() functions).
247 */
248
490fc053 249struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
250struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
251void vm_area_free(struct vm_area_struct *);
c43692e8 252
1da177e4 253#ifndef CONFIG_MMU
8feae131
DH
254extern struct rb_root nommu_region_tree;
255extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
256
257extern unsigned int kobjsize(const void *objp);
258#endif
259
260/*
605d9288 261 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 262 * When changing, update also include/trace/events/mmflags.h
1da177e4 263 */
cc2383ec
KK
264#define VM_NONE 0x00000000
265
1da177e4
LT
266#define VM_READ 0x00000001 /* currently active flags */
267#define VM_WRITE 0x00000002
268#define VM_EXEC 0x00000004
269#define VM_SHARED 0x00000008
270
7e2cff42 271/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
272#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
273#define VM_MAYWRITE 0x00000020
274#define VM_MAYEXEC 0x00000040
275#define VM_MAYSHARE 0x00000080
276
277#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 278#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 279#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 280#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 281
1da177e4
LT
282#define VM_LOCKED 0x00002000
283#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
284
285 /* Used by sys_madvise() */
286#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
287#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
288
289#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
290#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 291#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 292#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 293#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 294#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 295#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 296#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 297#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 298#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 299
d9104d1c
CG
300#ifdef CONFIG_MEM_SOFT_DIRTY
301# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
302#else
303# define VM_SOFTDIRTY 0
304#endif
305
b379d790 306#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
307#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
308#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 309#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 310
63c17fb8
DH
311#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
312#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
313#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
314#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
315#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 316#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
317#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
318#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
319#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
320#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 321#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
322#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
323
5212213a 324#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
325# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
326# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 327# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
328# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
329# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
330#ifdef CONFIG_PPC
331# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
332#else
333# define VM_PKEY_BIT4 0
8f62c883 334#endif
5212213a
RP
335#endif /* CONFIG_ARCH_HAS_PKEYS */
336
337#if defined(CONFIG_X86)
338# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
339#elif defined(CONFIG_PPC)
340# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
341#elif defined(CONFIG_PARISC)
342# define VM_GROWSUP VM_ARCH_1
343#elif defined(CONFIG_IA64)
344# define VM_GROWSUP VM_ARCH_1
74a04967
KA
345#elif defined(CONFIG_SPARC64)
346# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
347# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
348#elif defined(CONFIG_ARM64)
349# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
350# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
351#elif !defined(CONFIG_MMU)
352# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
353#endif
354
9f341931
CM
355#if defined(CONFIG_ARM64_MTE)
356# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
357# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
358#else
359# define VM_MTE VM_NONE
360# define VM_MTE_ALLOWED VM_NONE
361#endif
362
cc2383ec
KK
363#ifndef VM_GROWSUP
364# define VM_GROWSUP VM_NONE
365#endif
366
7677f7fd
AR
367#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
368# define VM_UFFD_MINOR_BIT 37
369# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
370#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
371# define VM_UFFD_MINOR VM_NONE
372#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
373
a8bef8ff
MG
374/* Bits set in the VMA until the stack is in its final location */
375#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
376
c62da0c3
AK
377#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
378
379/* Common data flag combinations */
380#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
381 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
382#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
383 VM_MAYWRITE | VM_MAYEXEC)
384#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
385 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
386
387#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
388#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
389#endif
390
1da177e4
LT
391#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
392#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
393#endif
394
395#ifdef CONFIG_STACK_GROWSUP
30bdbb78 396#define VM_STACK VM_GROWSUP
1da177e4 397#else
30bdbb78 398#define VM_STACK VM_GROWSDOWN
1da177e4
LT
399#endif
400
30bdbb78
KK
401#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
402
6cb4d9a2
AK
403/* VMA basic access permission flags */
404#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
405
406
b291f000 407/*
78f11a25 408 * Special vmas that are non-mergable, non-mlock()able.
b291f000 409 */
9050d7eb 410#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 411
b4443772
AK
412/* This mask prevents VMA from being scanned with khugepaged */
413#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
414
a0715cc2
AT
415/* This mask defines which mm->def_flags a process can inherit its parent */
416#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
417
de60f5f1
EM
418/* This mask is used to clear all the VMA flags used by mlock */
419#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
420
2c2d57b5
KA
421/* Arch-specific flags to clear when updating VM flags on protection change */
422#ifndef VM_ARCH_CLEAR
423# define VM_ARCH_CLEAR VM_NONE
424#endif
425#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
426
1da177e4
LT
427/*
428 * mapping from the currently active vm_flags protection bits (the
429 * low four bits) to a page protection mask..
430 */
1da177e4 431
dde16072
PX
432/*
433 * The default fault flags that should be used by most of the
434 * arch-specific page fault handlers.
435 */
436#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
437 FAULT_FLAG_KILLABLE | \
438 FAULT_FLAG_INTERRUPTIBLE)
dde16072 439
4064b982
PX
440/**
441 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 442 * @flags: Fault flags.
4064b982
PX
443 *
444 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 445 * the mmap_lock for too long a time when waiting for another condition
4064b982 446 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
447 * mmap_lock in the first round to avoid potential starvation of other
448 * processes that would also want the mmap_lock.
4064b982
PX
449 *
450 * Return: true if the page fault allows retry and this is the first
451 * attempt of the fault handling; false otherwise.
452 */
da2f5eb3 453static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
454{
455 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
456 (!(flags & FAULT_FLAG_TRIED));
457}
458
282a8e03
RZ
459#define FAULT_FLAG_TRACE \
460 { FAULT_FLAG_WRITE, "WRITE" }, \
461 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
462 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
463 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
464 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
465 { FAULT_FLAG_TRIED, "TRIED" }, \
466 { FAULT_FLAG_USER, "USER" }, \
467 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
468 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
469 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 470
54cb8821 471/*
11192337 472 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
473 * ->fault function. The vma's ->fault is responsible for returning a bitmask
474 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 475 *
c20cd45e
MH
476 * MM layer fills up gfp_mask for page allocations but fault handler might
477 * alter it if its implementation requires a different allocation context.
478 *
9b4bdd2f 479 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 480 */
d0217ac0 481struct vm_fault {
5857c920 482 const struct {
742d3372
WD
483 struct vm_area_struct *vma; /* Target VMA */
484 gfp_t gfp_mask; /* gfp mask to be used for allocations */
485 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
486 unsigned long address; /* Faulting virtual address - masked */
487 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 488 };
da2f5eb3 489 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 490 * XXX: should really be 'const' */
82b0f8c3 491 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 492 * the 'address' */
a2d58167
DJ
493 pud_t *pud; /* Pointer to pud entry matching
494 * the 'address'
495 */
5db4f15c
YS
496 union {
497 pte_t orig_pte; /* Value of PTE at the time of fault */
498 pmd_t orig_pmd; /* Value of PMD at the time of fault,
499 * used by PMD fault only.
500 */
501 };
d0217ac0 502
3917048d 503 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 504 struct page *page; /* ->fault handlers should return a
83c54070 505 * page here, unless VM_FAULT_NOPAGE
d0217ac0 506 * is set (which is also implied by
83c54070 507 * VM_FAULT_ERROR).
d0217ac0 508 */
82b0f8c3 509 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
510 pte_t *pte; /* Pointer to pte entry matching
511 * the 'address'. NULL if the page
512 * table hasn't been allocated.
513 */
514 spinlock_t *ptl; /* Page table lock.
515 * Protects pte page table if 'pte'
516 * is not NULL, otherwise pmd.
517 */
7267ec00 518 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
519 * vm_ops->map_pages() sets up a page
520 * table from atomic context.
7267ec00
KS
521 * do_fault_around() pre-allocates
522 * page table to avoid allocation from
523 * atomic context.
524 */
54cb8821 525};
1da177e4 526
c791ace1
DJ
527/* page entry size for vm->huge_fault() */
528enum page_entry_size {
529 PE_SIZE_PTE = 0,
530 PE_SIZE_PMD,
531 PE_SIZE_PUD,
532};
533
1da177e4
LT
534/*
535 * These are the virtual MM functions - opening of an area, closing and
536 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 537 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
538 */
539struct vm_operations_struct {
540 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
541 /**
542 * @close: Called when the VMA is being removed from the MM.
543 * Context: User context. May sleep. Caller holds mmap_lock.
544 */
1da177e4 545 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
546 /* Called any time before splitting to check if it's allowed */
547 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 548 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
549 /*
550 * Called by mprotect() to make driver-specific permission
551 * checks before mprotect() is finalised. The VMA must not
552 * be modified. Returns 0 if eprotect() can proceed.
553 */
554 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
555 unsigned long end, unsigned long newflags);
1c8f4220
SJ
556 vm_fault_t (*fault)(struct vm_fault *vmf);
557 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
558 enum page_entry_size pe_size);
f9ce0be7 559 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 560 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 561 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
562
563 /* notification that a previously read-only page is about to become
564 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 565 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 566
dd906184 567 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 568 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 569
28b2ee20 570 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
571 * for use by special VMAs. See also generic_access_phys() for a generic
572 * implementation useful for any iomem mapping.
28b2ee20
RR
573 */
574 int (*access)(struct vm_area_struct *vma, unsigned long addr,
575 void *buf, int len, int write);
78d683e8
AL
576
577 /* Called by the /proc/PID/maps code to ask the vma whether it
578 * has a special name. Returning non-NULL will also cause this
579 * vma to be dumped unconditionally. */
580 const char *(*name)(struct vm_area_struct *vma);
581
1da177e4 582#ifdef CONFIG_NUMA
a6020ed7
LS
583 /*
584 * set_policy() op must add a reference to any non-NULL @new mempolicy
585 * to hold the policy upon return. Caller should pass NULL @new to
586 * remove a policy and fall back to surrounding context--i.e. do not
587 * install a MPOL_DEFAULT policy, nor the task or system default
588 * mempolicy.
589 */
1da177e4 590 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
591
592 /*
593 * get_policy() op must add reference [mpol_get()] to any policy at
594 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
595 * in mm/mempolicy.c will do this automatically.
596 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 597 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
598 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
599 * must return NULL--i.e., do not "fallback" to task or system default
600 * policy.
601 */
1da177e4
LT
602 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
603 unsigned long addr);
604#endif
667a0a06
DV
605 /*
606 * Called by vm_normal_page() for special PTEs to find the
607 * page for @addr. This is useful if the default behavior
608 * (using pte_page()) would not find the correct page.
609 */
610 struct page *(*find_special_page)(struct vm_area_struct *vma,
611 unsigned long addr);
1da177e4
LT
612};
613
027232da
KS
614static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
615{
bfd40eaf
KS
616 static const struct vm_operations_struct dummy_vm_ops = {};
617
a670468f 618 memset(vma, 0, sizeof(*vma));
027232da 619 vma->vm_mm = mm;
bfd40eaf 620 vma->vm_ops = &dummy_vm_ops;
027232da
KS
621 INIT_LIST_HEAD(&vma->anon_vma_chain);
622}
623
bfd40eaf
KS
624static inline void vma_set_anonymous(struct vm_area_struct *vma)
625{
626 vma->vm_ops = NULL;
627}
628
43675e6f
YS
629static inline bool vma_is_anonymous(struct vm_area_struct *vma)
630{
631 return !vma->vm_ops;
632}
633
222100ee
AK
634static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
635{
636 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
637
638 if (!maybe_stack)
639 return false;
640
641 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
642 VM_STACK_INCOMPLETE_SETUP)
643 return true;
644
645 return false;
646}
647
7969f226
AK
648static inline bool vma_is_foreign(struct vm_area_struct *vma)
649{
650 if (!current->mm)
651 return true;
652
653 if (current->mm != vma->vm_mm)
654 return true;
655
656 return false;
657}
3122e80e
AK
658
659static inline bool vma_is_accessible(struct vm_area_struct *vma)
660{
6cb4d9a2 661 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
662}
663
f39af059
MWO
664static inline
665struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
666{
667 return mas_find(&vmi->mas, max);
668}
669
670static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
671{
672 /*
673 * Uses vma_find() to get the first VMA when the iterator starts.
674 * Calling mas_next() could skip the first entry.
675 */
676 return vma_find(vmi, ULONG_MAX);
677}
678
679static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
680{
681 return mas_prev(&vmi->mas, 0);
682}
683
684static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
685{
686 return vmi->mas.index;
687}
688
689#define for_each_vma(__vmi, __vma) \
690 while (((__vma) = vma_next(&(__vmi))) != NULL)
691
692/* The MM code likes to work with exclusive end addresses */
693#define for_each_vma_range(__vmi, __vma, __end) \
694 while (((__vma) = vma_find(&(__vmi), (__end) - 1)) != NULL)
695
43675e6f
YS
696#ifdef CONFIG_SHMEM
697/*
698 * The vma_is_shmem is not inline because it is used only by slow
699 * paths in userfault.
700 */
701bool vma_is_shmem(struct vm_area_struct *vma);
702#else
703static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
704#endif
705
706int vma_is_stack_for_current(struct vm_area_struct *vma);
707
8b11ec1b
LT
708/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
709#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
710
1da177e4
LT
711struct mmu_gather;
712struct inode;
713
5bf34d7c
MWO
714static inline unsigned int compound_order(struct page *page)
715{
716 if (!PageHead(page))
717 return 0;
718 return page[1].compound_order;
719}
720
721/**
722 * folio_order - The allocation order of a folio.
723 * @folio: The folio.
724 *
725 * A folio is composed of 2^order pages. See get_order() for the definition
726 * of order.
727 *
728 * Return: The order of the folio.
729 */
730static inline unsigned int folio_order(struct folio *folio)
731{
c3a15bff
MWO
732 if (!folio_test_large(folio))
733 return 0;
734 return folio->_folio_order;
5bf34d7c
MWO
735}
736
71e3aac0 737#include <linux/huge_mm.h>
1da177e4
LT
738
739/*
740 * Methods to modify the page usage count.
741 *
742 * What counts for a page usage:
743 * - cache mapping (page->mapping)
744 * - private data (page->private)
745 * - page mapped in a task's page tables, each mapping
746 * is counted separately
747 *
748 * Also, many kernel routines increase the page count before a critical
749 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
750 */
751
752/*
da6052f7 753 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 754 */
7c8ee9a8
NP
755static inline int put_page_testzero(struct page *page)
756{
fe896d18
JK
757 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
758 return page_ref_dec_and_test(page);
7c8ee9a8 759}
1da177e4 760
b620f633
MWO
761static inline int folio_put_testzero(struct folio *folio)
762{
763 return put_page_testzero(&folio->page);
764}
765
1da177e4 766/*
7c8ee9a8
NP
767 * Try to grab a ref unless the page has a refcount of zero, return false if
768 * that is the case.
8e0861fa
AK
769 * This can be called when MMU is off so it must not access
770 * any of the virtual mappings.
1da177e4 771 */
c2530328 772static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 773{
fe896d18 774 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 775}
1da177e4 776
53df8fdc 777extern int page_is_ram(unsigned long pfn);
124fe20d
DW
778
779enum {
780 REGION_INTERSECTS,
781 REGION_DISJOINT,
782 REGION_MIXED,
783};
784
1c29f25b
TK
785int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
786 unsigned long desc);
53df8fdc 787
48667e7a 788/* Support for virtually mapped pages */
b3bdda02
CL
789struct page *vmalloc_to_page(const void *addr);
790unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 791
0738c4bb
PM
792/*
793 * Determine if an address is within the vmalloc range
794 *
795 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
796 * is no special casing required.
797 */
9bd3bb67
AK
798
799#ifndef is_ioremap_addr
800#define is_ioremap_addr(x) is_vmalloc_addr(x)
801#endif
802
81ac3ad9 803#ifdef CONFIG_MMU
186525bd 804extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
805extern int is_vmalloc_or_module_addr(const void *x);
806#else
186525bd
IM
807static inline bool is_vmalloc_addr(const void *x)
808{
809 return false;
810}
934831d0 811static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
812{
813 return 0;
814}
815#endif
9e2779fa 816
74e8ee47
MWO
817/*
818 * How many times the entire folio is mapped as a single unit (eg by a
819 * PMD or PUD entry). This is probably not what you want, except for
820 * debugging purposes; look at folio_mapcount() or page_mapcount()
821 * instead.
822 */
823static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 824{
74e8ee47
MWO
825 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
826 return atomic_read(folio_mapcount_ptr(folio)) + 1;
6dc5ea16
JH
827}
828
6988f31d
KK
829/*
830 * Mapcount of compound page as a whole, does not include mapped sub-pages.
831 *
74e8ee47 832 * Must be called only for compound pages.
6988f31d 833 */
53f9263b
KS
834static inline int compound_mapcount(struct page *page)
835{
74e8ee47 836 return folio_entire_mapcount(page_folio(page));
53f9263b
KS
837}
838
70b50f94
AA
839/*
840 * The atomic page->_mapcount, starts from -1: so that transitions
841 * both from it and to it can be tracked, using atomic_inc_and_test
842 * and atomic_add_negative(-1).
843 */
22b751c3 844static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
845{
846 atomic_set(&(page)->_mapcount, -1);
847}
848
b20ce5e0
KS
849int __page_mapcount(struct page *page);
850
6988f31d
KK
851/*
852 * Mapcount of 0-order page; when compound sub-page, includes
853 * compound_mapcount().
854 *
855 * Result is undefined for pages which cannot be mapped into userspace.
856 * For example SLAB or special types of pages. See function page_has_type().
857 * They use this place in struct page differently.
858 */
70b50f94
AA
859static inline int page_mapcount(struct page *page)
860{
b20ce5e0
KS
861 if (unlikely(PageCompound(page)))
862 return __page_mapcount(page);
863 return atomic_read(&page->_mapcount) + 1;
864}
865
4ba1119c
MWO
866int folio_mapcount(struct folio *folio);
867
b20ce5e0 868#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4ba1119c
MWO
869static inline int total_mapcount(struct page *page)
870{
871 return folio_mapcount(page_folio(page));
872}
873
b20ce5e0
KS
874#else
875static inline int total_mapcount(struct page *page)
876{
877 return page_mapcount(page);
70b50f94 878}
b20ce5e0 879#endif
70b50f94 880
b49af68f
CL
881static inline struct page *virt_to_head_page(const void *x)
882{
883 struct page *page = virt_to_page(x);
ccaafd7f 884
1d798ca3 885 return compound_head(page);
b49af68f
CL
886}
887
7d4203c1
VB
888static inline struct folio *virt_to_folio(const void *x)
889{
890 struct page *page = virt_to_page(x);
891
892 return page_folio(page);
893}
894
8d29c703 895void __folio_put(struct folio *folio);
ddc58f27 896
1d7ea732 897void put_pages_list(struct list_head *pages);
1da177e4 898
8dfcc9ba 899void split_page(struct page *page, unsigned int order);
715cbfd6 900void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 901
a1554c00
ML
902unsigned long nr_free_buffer_pages(void);
903
33f2ef89
AW
904/*
905 * Compound pages have a destructor function. Provide a
906 * prototype for that function and accessor functions.
f1e61557 907 * These are _only_ valid on the head of a compound page.
33f2ef89 908 */
f1e61557
KS
909typedef void compound_page_dtor(struct page *);
910
911/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
912enum compound_dtor_id {
913 NULL_COMPOUND_DTOR,
914 COMPOUND_PAGE_DTOR,
915#ifdef CONFIG_HUGETLB_PAGE
916 HUGETLB_PAGE_DTOR,
9a982250
KS
917#endif
918#ifdef CONFIG_TRANSPARENT_HUGEPAGE
919 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
920#endif
921 NR_COMPOUND_DTORS,
922};
ae70eddd 923extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
924
925static inline void set_compound_page_dtor(struct page *page,
f1e61557 926 enum compound_dtor_id compound_dtor)
33f2ef89 927{
f1e61557
KS
928 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
929 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
930}
931
5375336c 932void destroy_large_folio(struct folio *folio);
33f2ef89 933
bac3cf4d 934static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
935{
936 return atomic_read(compound_pincount_ptr(head));
937}
938
f1e61557 939static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 940{
e4b294c2 941 page[1].compound_order = order;
5232c63f 942#ifdef CONFIG_64BIT
1378a5ee 943 page[1].compound_nr = 1U << order;
5232c63f 944#endif
d85f3385
CL
945}
946
d8c6546b
MWO
947/* Returns the number of pages in this potentially compound page. */
948static inline unsigned long compound_nr(struct page *page)
949{
1378a5ee
MWO
950 if (!PageHead(page))
951 return 1;
5232c63f 952#ifdef CONFIG_64BIT
1378a5ee 953 return page[1].compound_nr;
5232c63f
MWO
954#else
955 return 1UL << compound_order(page);
956#endif
d8c6546b
MWO
957}
958
a50b854e
MWO
959/* Returns the number of bytes in this potentially compound page. */
960static inline unsigned long page_size(struct page *page)
961{
962 return PAGE_SIZE << compound_order(page);
963}
964
94ad9338
MWO
965/* Returns the number of bits needed for the number of bytes in a page */
966static inline unsigned int page_shift(struct page *page)
967{
968 return PAGE_SHIFT + compound_order(page);
969}
970
18788cfa
MWO
971/**
972 * thp_order - Order of a transparent huge page.
973 * @page: Head page of a transparent huge page.
974 */
975static inline unsigned int thp_order(struct page *page)
976{
977 VM_BUG_ON_PGFLAGS(PageTail(page), page);
978 return compound_order(page);
979}
980
981/**
982 * thp_nr_pages - The number of regular pages in this huge page.
983 * @page: The head page of a huge page.
984 */
985static inline int thp_nr_pages(struct page *page)
986{
987 VM_BUG_ON_PGFLAGS(PageTail(page), page);
988 return compound_nr(page);
989}
990
991/**
992 * thp_size - Size of a transparent huge page.
993 * @page: Head page of a transparent huge page.
994 *
995 * Return: Number of bytes in this page.
996 */
997static inline unsigned long thp_size(struct page *page)
998{
999 return PAGE_SIZE << thp_order(page);
1000}
1001
9a982250
KS
1002void free_compound_page(struct page *page);
1003
3dece370 1004#ifdef CONFIG_MMU
14fd403f
AA
1005/*
1006 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1007 * servicing faults for write access. In the normal case, do always want
1008 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1009 * that do not have writing enabled, when used by access_process_vm.
1010 */
1011static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1012{
1013 if (likely(vma->vm_flags & VM_WRITE))
1014 pte = pte_mkwrite(pte);
1015 return pte;
1016}
8c6e50b0 1017
f9ce0be7 1018vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1019void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1020
2b740303
SJ
1021vm_fault_t finish_fault(struct vm_fault *vmf);
1022vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1023#endif
14fd403f 1024
1da177e4
LT
1025/*
1026 * Multiple processes may "see" the same page. E.g. for untouched
1027 * mappings of /dev/null, all processes see the same page full of
1028 * zeroes, and text pages of executables and shared libraries have
1029 * only one copy in memory, at most, normally.
1030 *
1031 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1032 * page_count() == 0 means the page is free. page->lru is then used for
1033 * freelist management in the buddy allocator.
da6052f7 1034 * page_count() > 0 means the page has been allocated.
1da177e4 1035 *
da6052f7
NP
1036 * Pages are allocated by the slab allocator in order to provide memory
1037 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1038 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1039 * unless a particular usage is carefully commented. (the responsibility of
1040 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1041 *
da6052f7
NP
1042 * A page may be used by anyone else who does a __get_free_page().
1043 * In this case, page_count still tracks the references, and should only
1044 * be used through the normal accessor functions. The top bits of page->flags
1045 * and page->virtual store page management information, but all other fields
1046 * are unused and could be used privately, carefully. The management of this
1047 * page is the responsibility of the one who allocated it, and those who have
1048 * subsequently been given references to it.
1049 *
1050 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1051 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1052 * The following discussion applies only to them.
1053 *
da6052f7
NP
1054 * A pagecache page contains an opaque `private' member, which belongs to the
1055 * page's address_space. Usually, this is the address of a circular list of
1056 * the page's disk buffers. PG_private must be set to tell the VM to call
1057 * into the filesystem to release these pages.
1da177e4 1058 *
da6052f7
NP
1059 * A page may belong to an inode's memory mapping. In this case, page->mapping
1060 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1061 * in units of PAGE_SIZE.
1da177e4 1062 *
da6052f7
NP
1063 * If pagecache pages are not associated with an inode, they are said to be
1064 * anonymous pages. These may become associated with the swapcache, and in that
1065 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1066 *
da6052f7
NP
1067 * In either case (swapcache or inode backed), the pagecache itself holds one
1068 * reference to the page. Setting PG_private should also increment the
1069 * refcount. The each user mapping also has a reference to the page.
1da177e4 1070 *
da6052f7 1071 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1072 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1073 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1074 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1075 *
da6052f7 1076 * All pagecache pages may be subject to I/O:
1da177e4
LT
1077 * - inode pages may need to be read from disk,
1078 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1079 * to be written back to the inode on disk,
1080 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1081 * modified may need to be swapped out to swap space and (later) to be read
1082 * back into memory.
1da177e4
LT
1083 */
1084
27674ef6 1085#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1086DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1087
f4f451a1
MS
1088bool __put_devmap_managed_page_refs(struct page *page, int refs);
1089static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1090{
1091 if (!static_branch_unlikely(&devmap_managed_key))
1092 return false;
1093 if (!is_zone_device_page(page))
1094 return false;
f4f451a1 1095 return __put_devmap_managed_page_refs(page, refs);
e7638488 1096}
27674ef6 1097#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1098static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1099{
1100 return false;
1101}
27674ef6 1102#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1103
f4f451a1
MS
1104static inline bool put_devmap_managed_page(struct page *page)
1105{
1106 return put_devmap_managed_page_refs(page, 1);
1107}
1108
f958d7b5 1109/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1110#define folio_ref_zero_or_close_to_overflow(folio) \
1111 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1112
1113/**
1114 * folio_get - Increment the reference count on a folio.
1115 * @folio: The folio.
1116 *
1117 * Context: May be called in any context, as long as you know that
1118 * you have a refcount on the folio. If you do not already have one,
1119 * folio_try_get() may be the right interface for you to use.
1120 */
1121static inline void folio_get(struct folio *folio)
1122{
1123 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1124 folio_ref_inc(folio);
1125}
f958d7b5 1126
3565fce3
DW
1127static inline void get_page(struct page *page)
1128{
86d234cb 1129 folio_get(page_folio(page));
3565fce3
DW
1130}
1131
3faa52c0 1132bool __must_check try_grab_page(struct page *page, unsigned int flags);
cd1adf1b
LT
1133
1134static inline __must_check bool try_get_page(struct page *page)
1135{
1136 page = compound_head(page);
1137 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1138 return false;
1139 page_ref_inc(page);
1140 return true;
1141}
3565fce3 1142
b620f633
MWO
1143/**
1144 * folio_put - Decrement the reference count on a folio.
1145 * @folio: The folio.
1146 *
1147 * If the folio's reference count reaches zero, the memory will be
1148 * released back to the page allocator and may be used by another
1149 * allocation immediately. Do not access the memory or the struct folio
1150 * after calling folio_put() unless you can be sure that it wasn't the
1151 * last reference.
1152 *
1153 * Context: May be called in process or interrupt context, but not in NMI
1154 * context. May be called while holding a spinlock.
1155 */
1156static inline void folio_put(struct folio *folio)
1157{
1158 if (folio_put_testzero(folio))
8d29c703 1159 __folio_put(folio);
b620f633
MWO
1160}
1161
3fe7fa58
MWO
1162/**
1163 * folio_put_refs - Reduce the reference count on a folio.
1164 * @folio: The folio.
1165 * @refs: The amount to subtract from the folio's reference count.
1166 *
1167 * If the folio's reference count reaches zero, the memory will be
1168 * released back to the page allocator and may be used by another
1169 * allocation immediately. Do not access the memory or the struct folio
1170 * after calling folio_put_refs() unless you can be sure that these weren't
1171 * the last references.
1172 *
1173 * Context: May be called in process or interrupt context, but not in NMI
1174 * context. May be called while holding a spinlock.
1175 */
1176static inline void folio_put_refs(struct folio *folio, int refs)
1177{
1178 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1179 __folio_put(folio);
3fe7fa58
MWO
1180}
1181
e3c4cebf
MWO
1182void release_pages(struct page **pages, int nr);
1183
1184/**
1185 * folios_put - Decrement the reference count on an array of folios.
1186 * @folios: The folios.
1187 * @nr: How many folios there are.
1188 *
1189 * Like folio_put(), but for an array of folios. This is more efficient
1190 * than writing the loop yourself as it will optimise the locks which
1191 * need to be taken if the folios are freed.
1192 *
1193 * Context: May be called in process or interrupt context, but not in NMI
1194 * context. May be called while holding a spinlock.
1195 */
1196static inline void folios_put(struct folio **folios, unsigned int nr)
1197{
1198 release_pages((struct page **)folios, nr);
3fe7fa58
MWO
1199}
1200
3565fce3
DW
1201static inline void put_page(struct page *page)
1202{
b620f633 1203 struct folio *folio = page_folio(page);
3565fce3 1204
7b2d55d2 1205 /*
89574945
CH
1206 * For some devmap managed pages we need to catch refcount transition
1207 * from 2 to 1:
7b2d55d2 1208 */
89574945 1209 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1210 return;
b620f633 1211 folio_put(folio);
3565fce3
DW
1212}
1213
3faa52c0
JH
1214/*
1215 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1216 * the page's refcount so that two separate items are tracked: the original page
1217 * reference count, and also a new count of how many pin_user_pages() calls were
1218 * made against the page. ("gup-pinned" is another term for the latter).
1219 *
1220 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1221 * distinct from normal pages. As such, the unpin_user_page() call (and its
1222 * variants) must be used in order to release gup-pinned pages.
1223 *
1224 * Choice of value:
1225 *
1226 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1227 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1228 * simpler, due to the fact that adding an even power of two to the page
1229 * refcount has the effect of using only the upper N bits, for the code that
1230 * counts up using the bias value. This means that the lower bits are left for
1231 * the exclusive use of the original code that increments and decrements by one
1232 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1233 *
3faa52c0
JH
1234 * Of course, once the lower bits overflow into the upper bits (and this is
1235 * OK, because subtraction recovers the original values), then visual inspection
1236 * no longer suffices to directly view the separate counts. However, for normal
1237 * applications that don't have huge page reference counts, this won't be an
1238 * issue.
fc1d8e7c 1239 *
40fcc7fc
MWO
1240 * Locking: the lockless algorithm described in folio_try_get_rcu()
1241 * provides safe operation for get_user_pages(), page_mkclean() and
1242 * other calls that race to set up page table entries.
fc1d8e7c 1243 */
3faa52c0 1244#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1245
3faa52c0 1246void unpin_user_page(struct page *page);
f1f6a7dd
JH
1247void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1248 bool make_dirty);
458a4f78
JM
1249void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1250 bool make_dirty);
f1f6a7dd 1251void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1252
97a7e473
PX
1253static inline bool is_cow_mapping(vm_flags_t flags)
1254{
1255 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1256}
1257
9127ab4f
CS
1258#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1259#define SECTION_IN_PAGE_FLAGS
1260#endif
1261
89689ae7 1262/*
7a8010cd
VB
1263 * The identification function is mainly used by the buddy allocator for
1264 * determining if two pages could be buddies. We are not really identifying
1265 * the zone since we could be using the section number id if we do not have
1266 * node id available in page flags.
1267 * We only guarantee that it will return the same value for two combinable
1268 * pages in a zone.
89689ae7 1269 */
cb2b95e1
AW
1270static inline int page_zone_id(struct page *page)
1271{
89689ae7 1272 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1273}
1274
89689ae7 1275#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1276extern int page_to_nid(const struct page *page);
89689ae7 1277#else
33dd4e0e 1278static inline int page_to_nid(const struct page *page)
d41dee36 1279{
f165b378
PT
1280 struct page *p = (struct page *)page;
1281
1282 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1283}
89689ae7
CL
1284#endif
1285
874fd90c
MWO
1286static inline int folio_nid(const struct folio *folio)
1287{
1288 return page_to_nid(&folio->page);
1289}
1290
57e0a030 1291#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1292/* page access time bits needs to hold at least 4 seconds */
1293#define PAGE_ACCESS_TIME_MIN_BITS 12
1294#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1295#define PAGE_ACCESS_TIME_BUCKETS \
1296 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1297#else
1298#define PAGE_ACCESS_TIME_BUCKETS 0
1299#endif
1300
1301#define PAGE_ACCESS_TIME_MASK \
1302 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1303
90572890 1304static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1305{
90572890 1306 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1307}
1308
90572890 1309static inline int cpupid_to_pid(int cpupid)
57e0a030 1310{
90572890 1311 return cpupid & LAST__PID_MASK;
57e0a030 1312}
b795854b 1313
90572890 1314static inline int cpupid_to_cpu(int cpupid)
b795854b 1315{
90572890 1316 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1317}
1318
90572890 1319static inline int cpupid_to_nid(int cpupid)
b795854b 1320{
90572890 1321 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1322}
1323
90572890 1324static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1325{
90572890 1326 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1327}
1328
90572890 1329static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1330{
90572890 1331 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1332}
1333
8c8a743c
PZ
1334static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1335{
1336 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1337}
1338
1339#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1340#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1341static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1342{
1ae71d03 1343 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1344}
90572890
PZ
1345
1346static inline int page_cpupid_last(struct page *page)
1347{
1348 return page->_last_cpupid;
1349}
1350static inline void page_cpupid_reset_last(struct page *page)
b795854b 1351{
1ae71d03 1352 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1353}
1354#else
90572890 1355static inline int page_cpupid_last(struct page *page)
75980e97 1356{
90572890 1357 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1358}
1359
90572890 1360extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1361
90572890 1362static inline void page_cpupid_reset_last(struct page *page)
75980e97 1363{
09940a4f 1364 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1365}
90572890 1366#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536
HY
1367
1368static inline int xchg_page_access_time(struct page *page, int time)
1369{
1370 int last_time;
1371
1372 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1373 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1374}
90572890
PZ
1375#else /* !CONFIG_NUMA_BALANCING */
1376static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1377{
90572890 1378 return page_to_nid(page); /* XXX */
57e0a030
MG
1379}
1380
33024536
HY
1381static inline int xchg_page_access_time(struct page *page, int time)
1382{
1383 return 0;
1384}
1385
90572890 1386static inline int page_cpupid_last(struct page *page)
57e0a030 1387{
90572890 1388 return page_to_nid(page); /* XXX */
57e0a030
MG
1389}
1390
90572890 1391static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1392{
1393 return -1;
1394}
1395
90572890 1396static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1397{
1398 return -1;
1399}
1400
90572890 1401static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1402{
1403 return -1;
1404}
1405
90572890
PZ
1406static inline int cpu_pid_to_cpupid(int nid, int pid)
1407{
1408 return -1;
1409}
1410
1411static inline bool cpupid_pid_unset(int cpupid)
b795854b 1412{
2b787449 1413 return true;
b795854b
MG
1414}
1415
90572890 1416static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1417{
1418}
8c8a743c
PZ
1419
1420static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1421{
1422 return false;
1423}
90572890 1424#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1425
2e903b91 1426#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1427
cf10bd4c
AK
1428/*
1429 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1430 * setting tags for all pages to native kernel tag value 0xff, as the default
1431 * value 0x00 maps to 0xff.
1432 */
1433
2813b9c0
AK
1434static inline u8 page_kasan_tag(const struct page *page)
1435{
cf10bd4c
AK
1436 u8 tag = 0xff;
1437
1438 if (kasan_enabled()) {
1439 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1440 tag ^= 0xff;
1441 }
1442
1443 return tag;
2813b9c0
AK
1444}
1445
1446static inline void page_kasan_tag_set(struct page *page, u8 tag)
1447{
27fe7339
PC
1448 unsigned long old_flags, flags;
1449
1450 if (!kasan_enabled())
1451 return;
1452
1453 tag ^= 0xff;
1454 old_flags = READ_ONCE(page->flags);
1455 do {
1456 flags = old_flags;
1457 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1458 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1459 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1460}
1461
1462static inline void page_kasan_tag_reset(struct page *page)
1463{
34303244
AK
1464 if (kasan_enabled())
1465 page_kasan_tag_set(page, 0xff);
2813b9c0 1466}
34303244
AK
1467
1468#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1469
2813b9c0
AK
1470static inline u8 page_kasan_tag(const struct page *page)
1471{
1472 return 0xff;
1473}
1474
1475static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1476static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1477
1478#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1479
33dd4e0e 1480static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1481{
1482 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1483}
1484
75ef7184
MG
1485static inline pg_data_t *page_pgdat(const struct page *page)
1486{
1487 return NODE_DATA(page_to_nid(page));
1488}
1489
32b8fc48
MWO
1490static inline struct zone *folio_zone(const struct folio *folio)
1491{
1492 return page_zone(&folio->page);
1493}
1494
1495static inline pg_data_t *folio_pgdat(const struct folio *folio)
1496{
1497 return page_pgdat(&folio->page);
1498}
1499
9127ab4f 1500#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1501static inline void set_page_section(struct page *page, unsigned long section)
1502{
1503 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1504 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1505}
1506
aa462abe 1507static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1508{
1509 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1510}
308c05e3 1511#endif
d41dee36 1512
bf6bd276
MWO
1513/**
1514 * folio_pfn - Return the Page Frame Number of a folio.
1515 * @folio: The folio.
1516 *
1517 * A folio may contain multiple pages. The pages have consecutive
1518 * Page Frame Numbers.
1519 *
1520 * Return: The Page Frame Number of the first page in the folio.
1521 */
1522static inline unsigned long folio_pfn(struct folio *folio)
1523{
1524 return page_to_pfn(&folio->page);
1525}
1526
018ee47f
YZ
1527static inline struct folio *pfn_folio(unsigned long pfn)
1528{
1529 return page_folio(pfn_to_page(pfn));
1530}
1531
3d11b225
MWO
1532static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1533{
1534 return &folio_page(folio, 1)->compound_pincount;
1535}
1536
0b90ddae
MWO
1537/**
1538 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1539 * @folio: The folio.
1540 *
1541 * This function checks if a folio has been pinned via a call to
1542 * a function in the pin_user_pages() family.
1543 *
1544 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1545 * because it means "definitely not pinned for DMA", but true means "probably
1546 * pinned for DMA, but possibly a false positive due to having at least
1547 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1548 *
1549 * False positives are OK, because: a) it's unlikely for a folio to
1550 * get that many refcounts, and b) all the callers of this routine are
1551 * expected to be able to deal gracefully with a false positive.
1552 *
1553 * For large folios, the result will be exactly correct. That's because
1554 * we have more tracking data available: the compound_pincount is used
1555 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1556 *
1557 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1558 *
1559 * Return: True, if it is likely that the page has been "dma-pinned".
1560 * False, if the page is definitely not dma-pinned.
1561 */
1562static inline bool folio_maybe_dma_pinned(struct folio *folio)
1563{
1564 if (folio_test_large(folio))
1565 return atomic_read(folio_pincount_ptr(folio)) > 0;
1566
1567 /*
1568 * folio_ref_count() is signed. If that refcount overflows, then
1569 * folio_ref_count() returns a negative value, and callers will avoid
1570 * further incrementing the refcount.
1571 *
1572 * Here, for that overflow case, use the sign bit to count a little
1573 * bit higher via unsigned math, and thus still get an accurate result.
1574 */
1575 return ((unsigned int)folio_ref_count(folio)) >=
1576 GUP_PIN_COUNTING_BIAS;
1577}
1578
1579static inline bool page_maybe_dma_pinned(struct page *page)
1580{
1581 return folio_maybe_dma_pinned(page_folio(page));
1582}
1583
1584/*
1585 * This should most likely only be called during fork() to see whether we
fb3d824d 1586 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1587 *
1588 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1589 */
1590static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1591 struct page *page)
1592{
623a1ddf 1593 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1594
1595 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1596 return false;
1597
1598 return page_maybe_dma_pinned(page);
1599}
1600
8e3560d9
PT
1601/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1602#ifdef CONFIG_MIGRATION
6077c943 1603static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9 1604{
1c563432
MK
1605#ifdef CONFIG_CMA
1606 int mt = get_pageblock_migratetype(page);
1607
1608 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1609 return false;
1610#endif
fcab34b4
AW
1611 /* The zero page may always be pinned */
1612 if (is_zero_pfn(page_to_pfn(page)))
1613 return true;
1614
1615 /* Coherent device memory must always allow eviction. */
1616 if (is_device_coherent_page(page))
1617 return false;
1618
1619 /* Otherwise, non-movable zone pages can be pinned. */
1620 return !is_zone_movable_page(page);
8e3560d9
PT
1621}
1622#else
6077c943 1623static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9
PT
1624{
1625 return true;
1626}
1627#endif
1628
6077c943 1629static inline bool folio_is_longterm_pinnable(struct folio *folio)
536939ff 1630{
6077c943 1631 return is_longterm_pinnable_page(&folio->page);
536939ff
MWO
1632}
1633
2f1b6248 1634static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1635{
1636 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1637 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1638}
2f1b6248 1639
348f8b6c
DH
1640static inline void set_page_node(struct page *page, unsigned long node)
1641{
1642 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1643 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1644}
89689ae7 1645
2f1b6248 1646static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1647 unsigned long node, unsigned long pfn)
1da177e4 1648{
348f8b6c
DH
1649 set_page_zone(page, zone);
1650 set_page_node(page, node);
9127ab4f 1651#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1652 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1653#endif
1da177e4
LT
1654}
1655
7b230db3
MWO
1656/**
1657 * folio_nr_pages - The number of pages in the folio.
1658 * @folio: The folio.
1659 *
1660 * Return: A positive power of two.
1661 */
1662static inline long folio_nr_pages(struct folio *folio)
1663{
c3a15bff
MWO
1664 if (!folio_test_large(folio))
1665 return 1;
1666#ifdef CONFIG_64BIT
1667 return folio->_folio_nr_pages;
1668#else
1669 return 1L << folio->_folio_order;
1670#endif
7b230db3
MWO
1671}
1672
1673/**
1674 * folio_next - Move to the next physical folio.
1675 * @folio: The folio we're currently operating on.
1676 *
1677 * If you have physically contiguous memory which may span more than
1678 * one folio (eg a &struct bio_vec), use this function to move from one
1679 * folio to the next. Do not use it if the memory is only virtually
1680 * contiguous as the folios are almost certainly not adjacent to each
1681 * other. This is the folio equivalent to writing ``page++``.
1682 *
1683 * Context: We assume that the folios are refcounted and/or locked at a
1684 * higher level and do not adjust the reference counts.
1685 * Return: The next struct folio.
1686 */
1687static inline struct folio *folio_next(struct folio *folio)
1688{
1689 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1690}
1691
1692/**
1693 * folio_shift - The size of the memory described by this folio.
1694 * @folio: The folio.
1695 *
1696 * A folio represents a number of bytes which is a power-of-two in size.
1697 * This function tells you which power-of-two the folio is. See also
1698 * folio_size() and folio_order().
1699 *
1700 * Context: The caller should have a reference on the folio to prevent
1701 * it from being split. It is not necessary for the folio to be locked.
1702 * Return: The base-2 logarithm of the size of this folio.
1703 */
1704static inline unsigned int folio_shift(struct folio *folio)
1705{
1706 return PAGE_SHIFT + folio_order(folio);
1707}
1708
1709/**
1710 * folio_size - The number of bytes in a folio.
1711 * @folio: The folio.
1712 *
1713 * Context: The caller should have a reference on the folio to prevent
1714 * it from being split. It is not necessary for the folio to be locked.
1715 * Return: The number of bytes in this folio.
1716 */
1717static inline size_t folio_size(struct folio *folio)
1718{
1719 return PAGE_SIZE << folio_order(folio);
1720}
1721
b424de33
MWO
1722#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1723static inline int arch_make_page_accessible(struct page *page)
1724{
1725 return 0;
1726}
1727#endif
1728
1729#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1730static inline int arch_make_folio_accessible(struct folio *folio)
1731{
1732 int ret;
1733 long i, nr = folio_nr_pages(folio);
1734
1735 for (i = 0; i < nr; i++) {
1736 ret = arch_make_page_accessible(folio_page(folio, i));
1737 if (ret)
1738 break;
1739 }
1740
1741 return ret;
1742}
1743#endif
1744
f6ac2354
CL
1745/*
1746 * Some inline functions in vmstat.h depend on page_zone()
1747 */
1748#include <linux/vmstat.h>
1749
33dd4e0e 1750static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1751{
1dff8083 1752 return page_to_virt(page);
1da177e4
LT
1753}
1754
1755#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1756#define HASHED_PAGE_VIRTUAL
1757#endif
1758
1759#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1760static inline void *page_address(const struct page *page)
1761{
1762 return page->virtual;
1763}
1764static inline void set_page_address(struct page *page, void *address)
1765{
1766 page->virtual = address;
1767}
1da177e4
LT
1768#define page_address_init() do { } while(0)
1769#endif
1770
1771#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1772void *page_address(const struct page *page);
1da177e4
LT
1773void set_page_address(struct page *page, void *virtual);
1774void page_address_init(void);
1775#endif
1776
1777#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1778#define page_address(page) lowmem_page_address(page)
1779#define set_page_address(page, address) do { } while(0)
1780#define page_address_init() do { } while(0)
1781#endif
1782
7d4203c1
VB
1783static inline void *folio_address(const struct folio *folio)
1784{
1785 return page_address(&folio->page);
1786}
1787
e39155ea 1788extern void *page_rmapping(struct page *page);
f6ab1f7f
HY
1789extern pgoff_t __page_file_index(struct page *page);
1790
1da177e4
LT
1791/*
1792 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1793 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1794 */
1795static inline pgoff_t page_index(struct page *page)
1796{
1797 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1798 return __page_file_index(page);
1da177e4
LT
1799 return page->index;
1800}
1801
1aa8aea5 1802bool page_mapped(struct page *page);
dd10ab04 1803bool folio_mapped(struct folio *folio);
1da177e4 1804
2f064f34
MH
1805/*
1806 * Return true only if the page has been allocated with
1807 * ALLOC_NO_WATERMARKS and the low watermark was not
1808 * met implying that the system is under some pressure.
1809 */
1d7bab6a 1810static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1811{
1812 /*
c07aea3e
MC
1813 * lru.next has bit 1 set if the page is allocated from the
1814 * pfmemalloc reserves. Callers may simply overwrite it if
1815 * they do not need to preserve that information.
2f064f34 1816 */
c07aea3e 1817 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
1818}
1819
1820/*
1821 * Only to be called by the page allocator on a freshly allocated
1822 * page.
1823 */
1824static inline void set_page_pfmemalloc(struct page *page)
1825{
c07aea3e 1826 page->lru.next = (void *)BIT(1);
2f064f34
MH
1827}
1828
1829static inline void clear_page_pfmemalloc(struct page *page)
1830{
c07aea3e 1831 page->lru.next = NULL;
2f064f34
MH
1832}
1833
1c0fe6e3
NP
1834/*
1835 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1836 */
1837extern void pagefault_out_of_memory(void);
1838
1da177e4 1839#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1840#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 1841#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 1842
ddd588b5 1843/*
7bf02ea2 1844 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1845 * various contexts.
1846 */
4b59e6c4 1847#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1848
974f4367
MH
1849extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
1850static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
1851{
1852 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
1853}
1da177e4 1854
710ec38b 1855#ifdef CONFIG_MMU
7f43add4 1856extern bool can_do_mlock(void);
710ec38b
AB
1857#else
1858static inline bool can_do_mlock(void) { return false; }
1859#endif
d7c9e99a
AG
1860extern int user_shm_lock(size_t, struct ucounts *);
1861extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 1862
25b2995a
CH
1863struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1864 pte_t pte);
28093f9f
GS
1865struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1866 pmd_t pmd);
7e675137 1867
27d036e3
LR
1868void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1869 unsigned long size);
14f5ff5d 1870void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1871 unsigned long size);
763ecb03
LH
1872void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1873 struct vm_area_struct *start_vma, unsigned long start,
1874 unsigned long end);
e6473092 1875
ac46d4f3
JG
1876struct mmu_notifier_range;
1877
42b77728 1878void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1879 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1880int
1881copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 1882int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 1883 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
1884int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1885 unsigned long *pfn);
d87fe660 1886int follow_phys(struct vm_area_struct *vma, unsigned long address,
1887 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1888int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1889 void *buf, int len, int write);
1da177e4 1890
7caef267 1891extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1892extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1893void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1894void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 1895int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 1896
7ee1dd3f 1897#ifdef CONFIG_MMU
2b740303 1898extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1899 unsigned long address, unsigned int flags,
1900 struct pt_regs *regs);
64019a2e 1901extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1902 unsigned long address, unsigned int fault_flags,
1903 bool *unlocked);
977fbdcd
MW
1904void unmap_mapping_pages(struct address_space *mapping,
1905 pgoff_t start, pgoff_t nr, bool even_cows);
1906void unmap_mapping_range(struct address_space *mapping,
1907 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1908#else
2b740303 1909static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1910 unsigned long address, unsigned int flags,
1911 struct pt_regs *regs)
7ee1dd3f
DH
1912{
1913 /* should never happen if there's no MMU */
1914 BUG();
1915 return VM_FAULT_SIGBUS;
1916}
64019a2e 1917static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1918 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1919{
1920 /* should never happen if there's no MMU */
1921 BUG();
1922 return -EFAULT;
1923}
977fbdcd
MW
1924static inline void unmap_mapping_pages(struct address_space *mapping,
1925 pgoff_t start, pgoff_t nr, bool even_cows) { }
1926static inline void unmap_mapping_range(struct address_space *mapping,
1927 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1928#endif
f33ea7f4 1929
977fbdcd
MW
1930static inline void unmap_shared_mapping_range(struct address_space *mapping,
1931 loff_t const holebegin, loff_t const holelen)
1932{
1933 unmap_mapping_range(mapping, holebegin, holelen, 0);
1934}
1935
1936extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1937 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1938extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1939 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1940extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1941 void *buf, int len, unsigned int gup_flags);
1da177e4 1942
64019a2e 1943long get_user_pages_remote(struct mm_struct *mm,
1e987790 1944 unsigned long start, unsigned long nr_pages,
9beae1ea 1945 unsigned int gup_flags, struct page **pages,
5b56d49f 1946 struct vm_area_struct **vmas, int *locked);
64019a2e 1947long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1948 unsigned long start, unsigned long nr_pages,
1949 unsigned int gup_flags, struct page **pages,
1950 struct vm_area_struct **vmas, int *locked);
c12d2da5 1951long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1952 unsigned int gup_flags, struct page **pages,
cde70140 1953 struct vm_area_struct **vmas);
eddb1c22
JH
1954long pin_user_pages(unsigned long start, unsigned long nr_pages,
1955 unsigned int gup_flags, struct page **pages,
1956 struct vm_area_struct **vmas);
c12d2da5 1957long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1958 struct page **pages, unsigned int gup_flags);
91429023
JH
1959long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1960 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1961
73b0140b
IW
1962int get_user_pages_fast(unsigned long start, int nr_pages,
1963 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1964int pin_user_pages_fast(unsigned long start, int nr_pages,
1965 unsigned int gup_flags, struct page **pages);
8025e5dd 1966
79eb597c
DJ
1967int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1968int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1969 struct task_struct *task, bool bypass_rlim);
1970
18022c5d
MG
1971struct kvec;
1972int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1973 struct page **pages);
f3e8fccd 1974struct page *get_dump_page(unsigned long addr);
1da177e4 1975
b5e84594
MWO
1976bool folio_mark_dirty(struct folio *folio);
1977bool set_page_dirty(struct page *page);
1da177e4 1978int set_page_dirty_lock(struct page *page);
b9ea2515 1979
a9090253 1980int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1981
b6a2fea3
OW
1982extern unsigned long move_page_tables(struct vm_area_struct *vma,
1983 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1984 unsigned long new_addr, unsigned long len,
1985 bool need_rmap_locks);
58705444
PX
1986
1987/*
1988 * Flags used by change_protection(). For now we make it a bitmap so
1989 * that we can pass in multiple flags just like parameters. However
1990 * for now all the callers are only use one of the flags at the same
1991 * time.
1992 */
64fe24a3
DH
1993/*
1994 * Whether we should manually check if we can map individual PTEs writable,
1995 * because something (e.g., COW, uffd-wp) blocks that from happening for all
1996 * PTEs automatically in a writable mapping.
1997 */
1998#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
1999/* Whether this protection change is for NUMA hints */
2000#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2001/* Whether this change is for write protecting */
2002#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2003#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2004#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2005 MM_CP_UFFD_WP_RESOLVE)
58705444 2006
4a18419f
NA
2007extern unsigned long change_protection(struct mmu_gather *tlb,
2008 struct vm_area_struct *vma, unsigned long start,
7da4d641 2009 unsigned long end, pgprot_t newprot,
58705444 2010 unsigned long cp_flags);
4a18419f 2011extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
b6a2fea3
OW
2012 struct vm_area_struct **pprev, unsigned long start,
2013 unsigned long end, unsigned long newflags);
1da177e4 2014
465a454f
PZ
2015/*
2016 * doesn't attempt to fault and will return short.
2017 */
dadbb612
SJ
2018int get_user_pages_fast_only(unsigned long start, int nr_pages,
2019 unsigned int gup_flags, struct page **pages);
104acc32
JH
2020int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2021 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2022
2023static inline bool get_user_page_fast_only(unsigned long addr,
2024 unsigned int gup_flags, struct page **pagep)
2025{
2026 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2027}
d559db08
KH
2028/*
2029 * per-process(per-mm_struct) statistics.
2030 */
d559db08
KH
2031static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2032{
69c97823
KK
2033 long val = atomic_long_read(&mm->rss_stat.count[member]);
2034
2035#ifdef SPLIT_RSS_COUNTING
2036 /*
2037 * counter is updated in asynchronous manner and may go to minus.
2038 * But it's never be expected number for users.
2039 */
2040 if (val < 0)
2041 val = 0;
172703b0 2042#endif
69c97823
KK
2043 return (unsigned long)val;
2044}
d559db08 2045
e4dcad20 2046void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 2047
d559db08
KH
2048static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2049{
b3d1411b
JFG
2050 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
2051
e4dcad20 2052 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2053}
2054
2055static inline void inc_mm_counter(struct mm_struct *mm, int member)
2056{
b3d1411b
JFG
2057 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
2058
e4dcad20 2059 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2060}
2061
2062static inline void dec_mm_counter(struct mm_struct *mm, int member)
2063{
b3d1411b
JFG
2064 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2065
e4dcad20 2066 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2067}
2068
eca56ff9
JM
2069/* Optimized variant when page is already known not to be PageAnon */
2070static inline int mm_counter_file(struct page *page)
2071{
2072 if (PageSwapBacked(page))
2073 return MM_SHMEMPAGES;
2074 return MM_FILEPAGES;
2075}
2076
2077static inline int mm_counter(struct page *page)
2078{
2079 if (PageAnon(page))
2080 return MM_ANONPAGES;
2081 return mm_counter_file(page);
2082}
2083
d559db08
KH
2084static inline unsigned long get_mm_rss(struct mm_struct *mm)
2085{
2086 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2087 get_mm_counter(mm, MM_ANONPAGES) +
2088 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2089}
2090
2091static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2092{
2093 return max(mm->hiwater_rss, get_mm_rss(mm));
2094}
2095
2096static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2097{
2098 return max(mm->hiwater_vm, mm->total_vm);
2099}
2100
2101static inline void update_hiwater_rss(struct mm_struct *mm)
2102{
2103 unsigned long _rss = get_mm_rss(mm);
2104
2105 if ((mm)->hiwater_rss < _rss)
2106 (mm)->hiwater_rss = _rss;
2107}
2108
2109static inline void update_hiwater_vm(struct mm_struct *mm)
2110{
2111 if (mm->hiwater_vm < mm->total_vm)
2112 mm->hiwater_vm = mm->total_vm;
2113}
2114
695f0559
PC
2115static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2116{
2117 mm->hiwater_rss = get_mm_rss(mm);
2118}
2119
d559db08
KH
2120static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2121 struct mm_struct *mm)
2122{
2123 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2124
2125 if (*maxrss < hiwater_rss)
2126 *maxrss = hiwater_rss;
2127}
2128
53bddb4e 2129#if defined(SPLIT_RSS_COUNTING)
05af2e10 2130void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2131#else
05af2e10 2132static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2133{
2134}
2135#endif
465a454f 2136
78e7c5af
AK
2137#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2138static inline int pte_special(pte_t pte)
2139{
2140 return 0;
2141}
2142
2143static inline pte_t pte_mkspecial(pte_t pte)
2144{
2145 return pte;
2146}
2147#endif
2148
17596731 2149#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2150static inline int pte_devmap(pte_t pte)
2151{
2152 return 0;
2153}
2154#endif
2155
6d2329f8 2156int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 2157
25ca1d6c
NK
2158extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2159 spinlock_t **ptl);
2160static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2161 spinlock_t **ptl)
2162{
2163 pte_t *ptep;
2164 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2165 return ptep;
2166}
c9cfcddf 2167
c2febafc
KS
2168#ifdef __PAGETABLE_P4D_FOLDED
2169static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2170 unsigned long address)
2171{
2172 return 0;
2173}
2174#else
2175int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2176#endif
2177
b4e98d9a 2178#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2179static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2180 unsigned long address)
2181{
2182 return 0;
2183}
b4e98d9a
KS
2184static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2185static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2186
5f22df00 2187#else
c2febafc 2188int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2189
b4e98d9a
KS
2190static inline void mm_inc_nr_puds(struct mm_struct *mm)
2191{
6d212db1
MS
2192 if (mm_pud_folded(mm))
2193 return;
af5b0f6a 2194 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2195}
2196
2197static inline void mm_dec_nr_puds(struct mm_struct *mm)
2198{
6d212db1
MS
2199 if (mm_pud_folded(mm))
2200 return;
af5b0f6a 2201 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2202}
5f22df00
NP
2203#endif
2204
2d2f5119 2205#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2206static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2207 unsigned long address)
2208{
2209 return 0;
2210}
dc6c9a35 2211
dc6c9a35
KS
2212static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2213static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2214
5f22df00 2215#else
1bb3630e 2216int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2217
dc6c9a35
KS
2218static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2219{
6d212db1
MS
2220 if (mm_pmd_folded(mm))
2221 return;
af5b0f6a 2222 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2223}
2224
2225static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2226{
6d212db1
MS
2227 if (mm_pmd_folded(mm))
2228 return;
af5b0f6a 2229 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2230}
5f22df00
NP
2231#endif
2232
c4812909 2233#ifdef CONFIG_MMU
af5b0f6a 2234static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2235{
af5b0f6a 2236 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2237}
2238
af5b0f6a 2239static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2240{
af5b0f6a 2241 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2242}
2243
2244static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2245{
af5b0f6a 2246 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2247}
2248
2249static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2250{
af5b0f6a 2251 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2252}
2253#else
c4812909 2254
af5b0f6a
KS
2255static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2256static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2257{
2258 return 0;
2259}
2260
2261static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2262static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2263#endif
2264
4cf58924
JFG
2265int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2266int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2267
f949286c
MR
2268#if defined(CONFIG_MMU)
2269
c2febafc
KS
2270static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2271 unsigned long address)
2272{
2273 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2274 NULL : p4d_offset(pgd, address);
2275}
2276
2277static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2278 unsigned long address)
1da177e4 2279{
c2febafc
KS
2280 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2281 NULL : pud_offset(p4d, address);
1da177e4 2282}
d8626138 2283
1da177e4
LT
2284static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2285{
1bb3630e
HD
2286 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2287 NULL: pmd_offset(pud, address);
1da177e4 2288}
f949286c 2289#endif /* CONFIG_MMU */
1bb3630e 2290
57c1ffce 2291#if USE_SPLIT_PTE_PTLOCKS
597d795a 2292#if ALLOC_SPLIT_PTLOCKS
b35f1819 2293void __init ptlock_cache_init(void);
539edb58
PZ
2294extern bool ptlock_alloc(struct page *page);
2295extern void ptlock_free(struct page *page);
2296
2297static inline spinlock_t *ptlock_ptr(struct page *page)
2298{
2299 return page->ptl;
2300}
597d795a 2301#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2302static inline void ptlock_cache_init(void)
2303{
2304}
2305
49076ec2
KS
2306static inline bool ptlock_alloc(struct page *page)
2307{
49076ec2
KS
2308 return true;
2309}
539edb58 2310
49076ec2
KS
2311static inline void ptlock_free(struct page *page)
2312{
49076ec2
KS
2313}
2314
2315static inline spinlock_t *ptlock_ptr(struct page *page)
2316{
539edb58 2317 return &page->ptl;
49076ec2 2318}
597d795a 2319#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2320
2321static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2322{
2323 return ptlock_ptr(pmd_page(*pmd));
2324}
2325
2326static inline bool ptlock_init(struct page *page)
2327{
2328 /*
2329 * prep_new_page() initialize page->private (and therefore page->ptl)
2330 * with 0. Make sure nobody took it in use in between.
2331 *
2332 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2333 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2334 */
309381fe 2335 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2336 if (!ptlock_alloc(page))
2337 return false;
2338 spin_lock_init(ptlock_ptr(page));
2339 return true;
2340}
2341
57c1ffce 2342#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2343/*
2344 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2345 */
49076ec2
KS
2346static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2347{
2348 return &mm->page_table_lock;
2349}
b35f1819 2350static inline void ptlock_cache_init(void) {}
49076ec2 2351static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2352static inline void ptlock_free(struct page *page) {}
57c1ffce 2353#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2354
b35f1819
KS
2355static inline void pgtable_init(void)
2356{
2357 ptlock_cache_init();
2358 pgtable_cache_init();
2359}
2360
b4ed71f5 2361static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2362{
706874e9
VD
2363 if (!ptlock_init(page))
2364 return false;
1d40a5ea 2365 __SetPageTable(page);
f0c0c115 2366 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2367 return true;
2f569afd
MS
2368}
2369
b4ed71f5 2370static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2371{
9e247bab 2372 ptlock_free(page);
1d40a5ea 2373 __ClearPageTable(page);
f0c0c115 2374 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2375}
2376
c74df32c
HD
2377#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2378({ \
4c21e2f2 2379 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2380 pte_t *__pte = pte_offset_map(pmd, address); \
2381 *(ptlp) = __ptl; \
2382 spin_lock(__ptl); \
2383 __pte; \
2384})
2385
2386#define pte_unmap_unlock(pte, ptl) do { \
2387 spin_unlock(ptl); \
2388 pte_unmap(pte); \
2389} while (0)
2390
4cf58924 2391#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2392
2393#define pte_alloc_map(mm, pmd, address) \
4cf58924 2394 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2395
c74df32c 2396#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2397 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2398 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2399
1bb3630e 2400#define pte_alloc_kernel(pmd, address) \
4cf58924 2401 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2402 NULL: pte_offset_kernel(pmd, address))
1da177e4 2403
e009bb30
KS
2404#if USE_SPLIT_PMD_PTLOCKS
2405
634391ac
MS
2406static struct page *pmd_to_page(pmd_t *pmd)
2407{
2408 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2409 return virt_to_page((void *)((unsigned long) pmd & mask));
2410}
2411
e009bb30
KS
2412static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2413{
634391ac 2414 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2415}
2416
b2b29d6d 2417static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2418{
e009bb30
KS
2419#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2420 page->pmd_huge_pte = NULL;
2421#endif
49076ec2 2422 return ptlock_init(page);
e009bb30
KS
2423}
2424
b2b29d6d 2425static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2426{
2427#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2428 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2429#endif
49076ec2 2430 ptlock_free(page);
e009bb30
KS
2431}
2432
634391ac 2433#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2434
2435#else
2436
9a86cb7b
KS
2437static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2438{
2439 return &mm->page_table_lock;
2440}
2441
b2b29d6d
MW
2442static inline bool pmd_ptlock_init(struct page *page) { return true; }
2443static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2444
c389a250 2445#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2446
e009bb30
KS
2447#endif
2448
9a86cb7b
KS
2449static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2450{
2451 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2452 spin_lock(ptl);
2453 return ptl;
2454}
2455
b2b29d6d
MW
2456static inline bool pgtable_pmd_page_ctor(struct page *page)
2457{
2458 if (!pmd_ptlock_init(page))
2459 return false;
2460 __SetPageTable(page);
f0c0c115 2461 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2462 return true;
2463}
2464
2465static inline void pgtable_pmd_page_dtor(struct page *page)
2466{
2467 pmd_ptlock_free(page);
2468 __ClearPageTable(page);
f0c0c115 2469 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2470}
2471
a00cc7d9
MW
2472/*
2473 * No scalability reason to split PUD locks yet, but follow the same pattern
2474 * as the PMD locks to make it easier if we decide to. The VM should not be
2475 * considered ready to switch to split PUD locks yet; there may be places
2476 * which need to be converted from page_table_lock.
2477 */
2478static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2479{
2480 return &mm->page_table_lock;
2481}
2482
2483static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2484{
2485 spinlock_t *ptl = pud_lockptr(mm, pud);
2486
2487 spin_lock(ptl);
2488 return ptl;
2489}
62906027 2490
a00cc7d9 2491extern void __init pagecache_init(void);
49a7f04a
DH
2492extern void free_initmem(void);
2493
69afade7
JL
2494/*
2495 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2496 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2497 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2498 * Return pages freed into the buddy system.
2499 */
11199692 2500extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2501 int poison, const char *s);
c3d5f5f0 2502
c3d5f5f0 2503extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2504extern void mem_init_print_info(void);
69afade7 2505
4b50bcc7 2506extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2507
69afade7 2508/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2509static inline void free_reserved_page(struct page *page)
69afade7
JL
2510{
2511 ClearPageReserved(page);
2512 init_page_count(page);
2513 __free_page(page);
69afade7
JL
2514 adjust_managed_page_count(page, 1);
2515}
a0cd7a7c 2516#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2517
2518static inline void mark_page_reserved(struct page *page)
2519{
2520 SetPageReserved(page);
2521 adjust_managed_page_count(page, -1);
2522}
2523
2524/*
2525 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2526 * The freed pages will be poisoned with pattern "poison" if it's within
2527 * range [0, UCHAR_MAX].
2528 * Return pages freed into the buddy system.
69afade7
JL
2529 */
2530static inline unsigned long free_initmem_default(int poison)
2531{
2532 extern char __init_begin[], __init_end[];
2533
11199692 2534 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2535 poison, "unused kernel image (initmem)");
69afade7
JL
2536}
2537
7ee3d4e8
JL
2538static inline unsigned long get_num_physpages(void)
2539{
2540 int nid;
2541 unsigned long phys_pages = 0;
2542
2543 for_each_online_node(nid)
2544 phys_pages += node_present_pages(nid);
2545
2546 return phys_pages;
2547}
2548
c713216d 2549/*
3f08a302 2550 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2551 * zones, allocate the backing mem_map and account for memory holes in an
2552 * architecture independent manner.
c713216d
MG
2553 *
2554 * An architecture is expected to register range of page frames backed by
0ee332c1 2555 * physical memory with memblock_add[_node]() before calling
9691a071 2556 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2557 * usage, an architecture is expected to do something like
2558 *
2559 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2560 * max_highmem_pfn};
2561 * for_each_valid_physical_page_range()
952eea9b 2562 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2563 * free_area_init(max_zone_pfns);
c713216d 2564 */
9691a071 2565void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2566unsigned long node_map_pfn_alignment(void);
32996250
YL
2567unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2568 unsigned long end_pfn);
c713216d
MG
2569extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2570 unsigned long end_pfn);
2571extern void get_pfn_range_for_nid(unsigned int nid,
2572 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 2573
a9ee6cf5 2574#ifndef CONFIG_NUMA
6f24fbd3 2575static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2576{
2577 return 0;
2578}
2579#else
2580/* please see mm/page_alloc.c */
2581extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2582#endif
2583
0e0b864e 2584extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2585extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2586 unsigned long, unsigned long, enum meminit_context,
2587 struct vmem_altmap *, int migratetype);
bc75d33f 2588extern void setup_per_zone_wmarks(void);
bd3400ea 2589extern void calculate_min_free_kbytes(void);
1b79acc9 2590extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2591extern void mem_init(void);
8feae131 2592extern void __init mmap_init(void);
974f4367
MH
2593
2594extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2595static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
2596{
2597 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
2598}
d02bd27b 2599extern long si_mem_available(void);
1da177e4
LT
2600extern void si_meminfo(struct sysinfo * val);
2601extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2602#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2603extern unsigned long arch_reserved_kernel_pages(void);
2604#endif
1da177e4 2605
a8e99259
MH
2606extern __printf(3, 4)
2607void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2608
e7c8d5c9 2609extern void setup_per_cpu_pageset(void);
e7c8d5c9 2610
75f7ad8e
PS
2611/* page_alloc.c */
2612extern int min_free_kbytes;
1c30844d 2613extern int watermark_boost_factor;
795ae7a0 2614extern int watermark_scale_factor;
51930df5 2615extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2616
8feae131 2617/* nommu.c */
33e5d769 2618extern atomic_long_t mmap_pages_allocated;
7e660872 2619extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2620
6b2dbba8 2621/* interval_tree.c */
6b2dbba8 2622void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2623 struct rb_root_cached *root);
9826a516
ML
2624void vma_interval_tree_insert_after(struct vm_area_struct *node,
2625 struct vm_area_struct *prev,
f808c13f 2626 struct rb_root_cached *root);
6b2dbba8 2627void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2628 struct rb_root_cached *root);
2629struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2630 unsigned long start, unsigned long last);
2631struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2632 unsigned long start, unsigned long last);
2633
2634#define vma_interval_tree_foreach(vma, root, start, last) \
2635 for (vma = vma_interval_tree_iter_first(root, start, last); \
2636 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2637
bf181b9f 2638void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2639 struct rb_root_cached *root);
bf181b9f 2640void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2641 struct rb_root_cached *root);
2642struct anon_vma_chain *
2643anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2644 unsigned long start, unsigned long last);
bf181b9f
ML
2645struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2646 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2647#ifdef CONFIG_DEBUG_VM_RB
2648void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2649#endif
bf181b9f
ML
2650
2651#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2652 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2653 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2654
1da177e4 2655/* mmap.c */
34b4e4aa 2656extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2657extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2658 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2659 struct vm_area_struct *expand);
2660static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2661 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2662{
2663 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2664}
1da177e4
LT
2665extern struct vm_area_struct *vma_merge(struct mm_struct *,
2666 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2667 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
5c26f6ac 2668 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
1da177e4 2669extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2670extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2671 unsigned long addr, int new_below);
2672extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2673 unsigned long addr, int new_below);
1da177e4 2674extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 2675extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2676extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2677 unsigned long addr, unsigned long len, pgoff_t pgoff,
2678 bool *need_rmap_locks);
1da177e4 2679extern void exit_mmap(struct mm_struct *);
925d1c40 2680
d4af56c5
LH
2681void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas);
2682void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas);
2683
9c599024
CG
2684static inline int check_data_rlimit(unsigned long rlim,
2685 unsigned long new,
2686 unsigned long start,
2687 unsigned long end_data,
2688 unsigned long start_data)
2689{
2690 if (rlim < RLIM_INFINITY) {
2691 if (((new - start) + (end_data - start_data)) > rlim)
2692 return -ENOSPC;
2693 }
2694
2695 return 0;
2696}
2697
7906d00c
AA
2698extern int mm_take_all_locks(struct mm_struct *mm);
2699extern void mm_drop_all_locks(struct mm_struct *mm);
2700
fe69d560 2701extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 2702extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 2703extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2704extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2705
84638335
KK
2706extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2707extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2708
2eefd878
DS
2709extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2710 const struct vm_special_mapping *sm);
3935ed6a
SS
2711extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2712 unsigned long addr, unsigned long len,
a62c34bd
AL
2713 unsigned long flags,
2714 const struct vm_special_mapping *spec);
2715/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2716extern int install_special_mapping(struct mm_struct *mm,
2717 unsigned long addr, unsigned long len,
2718 unsigned long flags, struct page **pages);
1da177e4 2719
649775be 2720unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 2721unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 2722
1da177e4
LT
2723extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2724
0165ab44 2725extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2726 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2727 struct list_head *uf);
1fcfd8db 2728extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2729 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2730 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
11f9a21a
LH
2731extern int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm,
2732 unsigned long start, size_t len, struct list_head *uf,
2733 bool downgrade);
897ab3e0
MR
2734extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2735 struct list_head *uf);
0726b01e 2736extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2737
bebeb3d6
ML
2738#ifdef CONFIG_MMU
2739extern int __mm_populate(unsigned long addr, unsigned long len,
2740 int ignore_errors);
2741static inline void mm_populate(unsigned long addr, unsigned long len)
2742{
2743 /* Ignore errors */
2744 (void) __mm_populate(addr, len, 1);
2745}
2746#else
2747static inline void mm_populate(unsigned long addr, unsigned long len) {}
2748#endif
2749
e4eb1ff6 2750/* These take the mm semaphore themselves */
5d22fc25 2751extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2752extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2753extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2754extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2755 unsigned long, unsigned long,
2756 unsigned long, unsigned long);
1da177e4 2757
db4fbfb9
ML
2758struct vm_unmapped_area_info {
2759#define VM_UNMAPPED_AREA_TOPDOWN 1
2760 unsigned long flags;
2761 unsigned long length;
2762 unsigned long low_limit;
2763 unsigned long high_limit;
2764 unsigned long align_mask;
2765 unsigned long align_offset;
2766};
2767
baceaf1c 2768extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2769
85821aab 2770/* truncate.c */
1da177e4 2771extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2772extern void truncate_inode_pages_range(struct address_space *,
2773 loff_t lstart, loff_t lend);
91b0abe3 2774extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2775
2776/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2777extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2778extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2779 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2780extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 2781
1be7107f 2782extern unsigned long stack_guard_gap;
d05f3169 2783/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2784extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2785
11192337 2786/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2787extern int expand_downwards(struct vm_area_struct *vma,
2788 unsigned long address);
8ca3eb08 2789#if VM_GROWSUP
46dea3d0 2790extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2791#else
fee7e49d 2792 #define expand_upwards(vma, address) (0)
9ab88515 2793#endif
1da177e4
LT
2794
2795/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2796extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2797extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2798 struct vm_area_struct **pprev);
2799
abdba2dd
LH
2800/*
2801 * Look up the first VMA which intersects the interval [start_addr, end_addr)
2802 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 2803 */
ce6d42f2 2804struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 2805 unsigned long start_addr, unsigned long end_addr);
1da177e4 2806
ce6d42f2
LH
2807/**
2808 * vma_lookup() - Find a VMA at a specific address
2809 * @mm: The process address space.
2810 * @addr: The user address.
2811 *
2812 * Return: The vm_area_struct at the given address, %NULL otherwise.
2813 */
2814static inline
2815struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2816{
d7c62295 2817 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
2818}
2819
1be7107f
HD
2820static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2821{
2822 unsigned long vm_start = vma->vm_start;
2823
2824 if (vma->vm_flags & VM_GROWSDOWN) {
2825 vm_start -= stack_guard_gap;
2826 if (vm_start > vma->vm_start)
2827 vm_start = 0;
2828 }
2829 return vm_start;
2830}
2831
2832static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2833{
2834 unsigned long vm_end = vma->vm_end;
2835
2836 if (vma->vm_flags & VM_GROWSUP) {
2837 vm_end += stack_guard_gap;
2838 if (vm_end < vma->vm_end)
2839 vm_end = -PAGE_SIZE;
2840 }
2841 return vm_end;
2842}
2843
1da177e4
LT
2844static inline unsigned long vma_pages(struct vm_area_struct *vma)
2845{
2846 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2847}
2848
640708a2
PE
2849/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2850static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2851 unsigned long vm_start, unsigned long vm_end)
2852{
dc8635b2 2853 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
2854
2855 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2856 vma = NULL;
2857
2858 return vma;
2859}
2860
017b1660
MK
2861static inline bool range_in_vma(struct vm_area_struct *vma,
2862 unsigned long start, unsigned long end)
2863{
2864 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2865}
2866
bad849b3 2867#ifdef CONFIG_MMU
804af2cf 2868pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2869void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2870#else
2871static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2872{
2873 return __pgprot(0);
2874}
64e45507
PF
2875static inline void vma_set_page_prot(struct vm_area_struct *vma)
2876{
2877 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2878}
bad849b3
DH
2879#endif
2880
295992fb
CK
2881void vma_set_file(struct vm_area_struct *vma, struct file *file);
2882
5877231f 2883#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2884unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2885 unsigned long start, unsigned long end);
2886#endif
2887
deceb6cd 2888struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2889int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2890 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
2891int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2892 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 2893int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2894int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2895 struct page **pages, unsigned long *num);
a667d745
SJ
2896int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2897 unsigned long num);
2898int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2899 unsigned long num);
ae2b01f3 2900vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2901 unsigned long pfn);
f5e6d1d5
MW
2902vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2903 unsigned long pfn, pgprot_t pgprot);
5d747637 2904vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2905 pfn_t pfn);
574c5b3d
TH
2906vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2907 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2908vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2909 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2910int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2911
1c8f4220
SJ
2912static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2913 unsigned long addr, struct page *page)
2914{
2915 int err = vm_insert_page(vma, addr, page);
2916
2917 if (err == -ENOMEM)
2918 return VM_FAULT_OOM;
2919 if (err < 0 && err != -EBUSY)
2920 return VM_FAULT_SIGBUS;
2921
2922 return VM_FAULT_NOPAGE;
2923}
2924
f8f6ae5d
JG
2925#ifndef io_remap_pfn_range
2926static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2927 unsigned long addr, unsigned long pfn,
2928 unsigned long size, pgprot_t prot)
2929{
2930 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2931}
2932#endif
2933
d97baf94
SJ
2934static inline vm_fault_t vmf_error(int err)
2935{
2936 if (err == -ENOMEM)
2937 return VM_FAULT_OOM;
2938 return VM_FAULT_SIGBUS;
2939}
2940
df06b37f
KB
2941struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2942 unsigned int foll_flags);
240aadee 2943
deceb6cd
HD
2944#define FOLL_WRITE 0x01 /* check pte is writable */
2945#define FOLL_TOUCH 0x02 /* mark page accessed */
2946#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2947#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2948#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2949#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2950 * and return without waiting upon it */
55b8fe70 2951#define FOLL_NOFAULT 0x80 /* do not fault in pages */
69ebb83e 2952#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
5117b3b8 2953#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2954#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1e987790 2955#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
7f7ccc2c 2956#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2957#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2958#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2959#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2960#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2961
2962/*
eddb1c22
JH
2963 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2964 * other. Here is what they mean, and how to use them:
932f4a63
IW
2965 *
2966 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2967 * period _often_ under userspace control. This is in contrast to
2968 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2969 *
2970 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2971 * lifetime enforced by the filesystem and we need guarantees that longterm
2972 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2973 * the filesystem. Ideas for this coordination include revoking the longterm
2974 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2975 * added after the problem with filesystems was found FS DAX VMAs are
2976 * specifically failed. Filesystem pages are still subject to bugs and use of
2977 * FOLL_LONGTERM should be avoided on those pages.
2978 *
2979 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2980 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2981 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2982 * is due to an incompatibility with the FS DAX check and
eddb1c22 2983 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2984 *
eddb1c22
JH
2985 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2986 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2987 * FOLL_LONGTERM is specified.
eddb1c22
JH
2988 *
2989 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2990 * but an additional pin counting system) will be invoked. This is intended for
2991 * anything that gets a page reference and then touches page data (for example,
2992 * Direct IO). This lets the filesystem know that some non-file-system entity is
2993 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2994 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2995 * a call to unpin_user_page().
eddb1c22
JH
2996 *
2997 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2998 * and separate refcounting mechanisms, however, and that means that each has
2999 * its own acquire and release mechanisms:
3000 *
3001 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
3002 *
f1f6a7dd 3003 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
3004 *
3005 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
3006 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
3007 * calls applied to them, and that's perfectly OK. This is a constraint on the
3008 * callers, not on the pages.)
3009 *
3010 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
3011 * directly by the caller. That's in order to help avoid mismatches when
3012 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 3013 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 3014 *
72ef5e52 3015 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 3016 */
1da177e4 3017
2b740303 3018static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3019{
3020 if (vm_fault & VM_FAULT_OOM)
3021 return -ENOMEM;
3022 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3023 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3024 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3025 return -EFAULT;
3026 return 0;
3027}
3028
a7f22660
DH
3029/*
3030 * Indicates for which pages that are write-protected in the page table,
3031 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
3032 * GUP pin will remain consistent with the pages mapped into the page tables
3033 * of the MM.
3034 *
3035 * Temporary unmapping of PageAnonExclusive() pages or clearing of
3036 * PageAnonExclusive() has to protect against concurrent GUP:
3037 * * Ordinary GUP: Using the PT lock
3038 * * GUP-fast and fork(): mm->write_protect_seq
088b8aa5
DH
3039 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
3040 * page_try_share_anon_rmap()
a7f22660
DH
3041 *
3042 * Must be called with the (sub)page that's actually referenced via the
3043 * page table entry, which might not necessarily be the head page for a
3044 * PTE-mapped THP.
3045 */
3046static inline bool gup_must_unshare(unsigned int flags, struct page *page)
3047{
3048 /*
3049 * FOLL_WRITE is implicitly handled correctly as the page table entry
3050 * has to be writable -- and if it references (part of) an anonymous
3051 * folio, that part is required to be marked exclusive.
3052 */
3053 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
3054 return false;
3055 /*
3056 * Note: PageAnon(page) is stable until the page is actually getting
3057 * freed.
3058 */
3059 if (!PageAnon(page))
3060 return false;
088b8aa5
DH
3061
3062 /* Paired with a memory barrier in page_try_share_anon_rmap(). */
3063 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
3064 smp_rmb();
3065
a7f22660
DH
3066 /*
3067 * Note that PageKsm() pages cannot be exclusive, and consequently,
3068 * cannot get pinned.
3069 */
3070 return !PageAnonExclusive(page);
3071}
3072
474098ed
DH
3073/*
3074 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3075 * a (NUMA hinting) fault is required.
3076 */
3077static inline bool gup_can_follow_protnone(unsigned int flags)
3078{
3079 /*
3080 * FOLL_FORCE has to be able to make progress even if the VMA is
3081 * inaccessible. Further, FOLL_FORCE access usually does not represent
3082 * application behaviour and we should avoid triggering NUMA hinting
3083 * faults.
3084 */
3085 return flags & FOLL_FORCE;
3086}
3087
8b1e0f81 3088typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3089extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3090 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3091extern int apply_to_existing_page_range(struct mm_struct *mm,
3092 unsigned long address, unsigned long size,
3093 pte_fn_t fn, void *data);
aee16b3c 3094
5749fcc5 3095extern void __init init_mem_debugging_and_hardening(void);
8823b1db 3096#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3097extern void __kernel_poison_pages(struct page *page, int numpages);
3098extern void __kernel_unpoison_pages(struct page *page, int numpages);
3099extern bool _page_poisoning_enabled_early;
3100DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3101static inline bool page_poisoning_enabled(void)
3102{
3103 return _page_poisoning_enabled_early;
3104}
3105/*
3106 * For use in fast paths after init_mem_debugging() has run, or when a
3107 * false negative result is not harmful when called too early.
3108 */
3109static inline bool page_poisoning_enabled_static(void)
3110{
3111 return static_branch_unlikely(&_page_poisoning_enabled);
3112}
3113static inline void kernel_poison_pages(struct page *page, int numpages)
3114{
3115 if (page_poisoning_enabled_static())
3116 __kernel_poison_pages(page, numpages);
3117}
3118static inline void kernel_unpoison_pages(struct page *page, int numpages)
3119{
3120 if (page_poisoning_enabled_static())
3121 __kernel_unpoison_pages(page, numpages);
3122}
8823b1db
LA
3123#else
3124static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3125static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3126static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3127static inline void kernel_poison_pages(struct page *page, int numpages) { }
3128static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3129#endif
3130
51cba1eb 3131DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3132static inline bool want_init_on_alloc(gfp_t flags)
3133{
51cba1eb
KC
3134 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3135 &init_on_alloc))
6471384a
AP
3136 return true;
3137 return flags & __GFP_ZERO;
3138}
3139
51cba1eb 3140DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3141static inline bool want_init_on_free(void)
3142{
51cba1eb
KC
3143 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3144 &init_on_free);
6471384a
AP
3145}
3146
8e57f8ac
VB
3147extern bool _debug_pagealloc_enabled_early;
3148DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3149
3150static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3151{
3152 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3153 _debug_pagealloc_enabled_early;
3154}
3155
3156/*
3157 * For use in fast paths after init_debug_pagealloc() has run, or when a
3158 * false negative result is not harmful when called too early.
3159 */
3160static inline bool debug_pagealloc_enabled_static(void)
031bc574 3161{
96a2b03f
VB
3162 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3163 return false;
3164
3165 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3166}
3167
5d6ad668 3168#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3169/*
5d6ad668
MR
3170 * To support DEBUG_PAGEALLOC architecture must ensure that
3171 * __kernel_map_pages() never fails
c87cbc1f 3172 */
d6332692
RE
3173extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3174
77bc7fd6
MR
3175static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3176{
3177 if (debug_pagealloc_enabled_static())
3178 __kernel_map_pages(page, numpages, 1);
3179}
3180
3181static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3182{
3183 if (debug_pagealloc_enabled_static())
3184 __kernel_map_pages(page, numpages, 0);
3185}
5d6ad668 3186#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3187static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3188static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3189#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3190
a6c19dfe 3191#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3192extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3193extern int in_gate_area_no_mm(unsigned long addr);
3194extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3195#else
a6c19dfe
AL
3196static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3197{
3198 return NULL;
3199}
3200static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3201static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3202{
3203 return 0;
3204}
1da177e4
LT
3205#endif /* __HAVE_ARCH_GATE_AREA */
3206
44a70ade
MH
3207extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3208
146732ce
JT
3209#ifdef CONFIG_SYSCTL
3210extern int sysctl_drop_caches;
32927393
CH
3211int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3212 loff_t *);
146732ce
JT
3213#endif
3214
cb731d6c 3215void drop_slab(void);
9d0243bc 3216
7a9166e3
LY
3217#ifndef CONFIG_MMU
3218#define randomize_va_space 0
3219#else
a62eaf15 3220extern int randomize_va_space;
7a9166e3 3221#endif
a62eaf15 3222
045e72ac 3223const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3224#ifdef CONFIG_MMU
03252919 3225void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3226#else
3227static inline void print_vma_addr(char *prefix, unsigned long rip)
3228{
3229}
3230#endif
e6e5494c 3231
35fd1eb1 3232void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3233struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3234 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3235 struct dev_pagemap *pgmap);
29c71111 3236pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3237p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3238pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3239pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3240pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3241 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3242void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3243struct vmem_altmap;
56993b4e
AK
3244void *vmemmap_alloc_block_buf(unsigned long size, int node,
3245 struct vmem_altmap *altmap);
8f6aac41 3246void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3247int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3248 int node, struct vmem_altmap *altmap);
7b73d978
CH
3249int vmemmap_populate(unsigned long start, unsigned long end, int node,
3250 struct vmem_altmap *altmap);
c2b91e2e 3251void vmemmap_populate_print_last(void);
0197518c 3252#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3253void vmemmap_free(unsigned long start, unsigned long end,
3254 struct vmem_altmap *altmap);
0197518c 3255#endif
46723bfa 3256void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3257 unsigned long nr_pages);
6a46079c 3258
82ba011b
AK
3259enum mf_flags {
3260 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3261 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3262 MF_MUST_KILL = 1 << 2,
cf870c70 3263 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3264 MF_UNPOISON = 1 << 4,
67f22ba7 3265 MF_SW_SIMULATED = 1 << 5,
38f6d293 3266 MF_NO_RETRY = 1 << 6,
82ba011b 3267};
c36e2024
SR
3268int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3269 unsigned long count, int mf_flags);
83b57531
EB
3270extern int memory_failure(unsigned long pfn, int flags);
3271extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3272extern void memory_failure_queue_kick(int cpu);
847ce401 3273extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3274extern int sysctl_memory_failure_early_kill;
3275extern int sysctl_memory_failure_recovery;
d0505e9f 3276extern void shake_page(struct page *p);
5844a486 3277extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3278extern int soft_offline_page(unsigned long pfn, int flags);
405ce051
NH
3279#ifdef CONFIG_MEMORY_FAILURE
3280extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags);
3281#else
3282static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
3283{
3284 return 0;
3285}
3286#endif
6a46079c 3287
03b122da
TL
3288#ifndef arch_memory_failure
3289static inline int arch_memory_failure(unsigned long pfn, int flags)
3290{
3291 return -ENXIO;
3292}
3293#endif
3294
3295#ifndef arch_is_platform_page
3296static inline bool arch_is_platform_page(u64 paddr)
3297{
3298 return false;
3299}
3300#endif
cc637b17
XX
3301
3302/*
3303 * Error handlers for various types of pages.
3304 */
cc3e2af4 3305enum mf_result {
cc637b17
XX
3306 MF_IGNORED, /* Error: cannot be handled */
3307 MF_FAILED, /* Error: handling failed */
3308 MF_DELAYED, /* Will be handled later */
3309 MF_RECOVERED, /* Successfully recovered */
3310};
3311
3312enum mf_action_page_type {
3313 MF_MSG_KERNEL,
3314 MF_MSG_KERNEL_HIGH_ORDER,
3315 MF_MSG_SLAB,
3316 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3317 MF_MSG_HUGE,
3318 MF_MSG_FREE_HUGE,
3319 MF_MSG_UNMAP_FAILED,
3320 MF_MSG_DIRTY_SWAPCACHE,
3321 MF_MSG_CLEAN_SWAPCACHE,
3322 MF_MSG_DIRTY_MLOCKED_LRU,
3323 MF_MSG_CLEAN_MLOCKED_LRU,
3324 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3325 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3326 MF_MSG_DIRTY_LRU,
3327 MF_MSG_CLEAN_LRU,
3328 MF_MSG_TRUNCATED_LRU,
3329 MF_MSG_BUDDY,
6100e34b 3330 MF_MSG_DAX,
5d1fd5dc 3331 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3332 MF_MSG_UNKNOWN,
3333};
3334
47ad8475
AA
3335#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3336extern void clear_huge_page(struct page *page,
c79b57e4 3337 unsigned long addr_hint,
47ad8475
AA
3338 unsigned int pages_per_huge_page);
3339extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3340 unsigned long addr_hint,
3341 struct vm_area_struct *vma,
47ad8475 3342 unsigned int pages_per_huge_page);
fa4d75c1
MK
3343extern long copy_huge_page_from_user(struct page *dst_page,
3344 const void __user *usr_src,
810a56b9
MK
3345 unsigned int pages_per_huge_page,
3346 bool allow_pagefault);
2484ca9b
THV
3347
3348/**
3349 * vma_is_special_huge - Are transhuge page-table entries considered special?
3350 * @vma: Pointer to the struct vm_area_struct to consider
3351 *
3352 * Whether transhuge page-table entries are considered "special" following
3353 * the definition in vm_normal_page().
3354 *
3355 * Return: true if transhuge page-table entries should be considered special,
3356 * false otherwise.
3357 */
3358static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3359{
3360 return vma_is_dax(vma) || (vma->vm_file &&
3361 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3362}
3363
47ad8475
AA
3364#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3365
c0a32fc5
SG
3366#ifdef CONFIG_DEBUG_PAGEALLOC
3367extern unsigned int _debug_guardpage_minorder;
96a2b03f 3368DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3369
3370static inline unsigned int debug_guardpage_minorder(void)
3371{
3372 return _debug_guardpage_minorder;
3373}
3374
e30825f1
JK
3375static inline bool debug_guardpage_enabled(void)
3376{
96a2b03f 3377 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3378}
3379
c0a32fc5
SG
3380static inline bool page_is_guard(struct page *page)
3381{
e30825f1
JK
3382 if (!debug_guardpage_enabled())
3383 return false;
3384
3972f6bb 3385 return PageGuard(page);
c0a32fc5
SG
3386}
3387#else
3388static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3389static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3390static inline bool page_is_guard(struct page *page) { return false; }
3391#endif /* CONFIG_DEBUG_PAGEALLOC */
3392
f9872caf
CS
3393#if MAX_NUMNODES > 1
3394void __init setup_nr_node_ids(void);
3395#else
3396static inline void setup_nr_node_ids(void) {}
3397#endif
3398
010c164a
SL
3399extern int memcmp_pages(struct page *page1, struct page *page2);
3400
3401static inline int pages_identical(struct page *page1, struct page *page2)
3402{
3403 return !memcmp_pages(page1, page2);
3404}
3405
c5acad84
TH
3406#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3407unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3408 pgoff_t first_index, pgoff_t nr,
3409 pgoff_t bitmap_pgoff,
3410 unsigned long *bitmap,
3411 pgoff_t *start,
3412 pgoff_t *end);
3413
3414unsigned long wp_shared_mapping_range(struct address_space *mapping,
3415 pgoff_t first_index, pgoff_t nr);
3416#endif
3417
2374c09b
CH
3418extern int sysctl_nr_trim_pages;
3419
5bb1bb35 3420#ifdef CONFIG_PRINTK
8e7f37f2 3421void mem_dump_obj(void *object);
5bb1bb35
PM
3422#else
3423static inline void mem_dump_obj(void *object) {}
3424#endif
8e7f37f2 3425
22247efd
PX
3426/**
3427 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3428 * @seals: the seals to check
3429 * @vma: the vma to operate on
3430 *
3431 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3432 * the vma flags. Return 0 if check pass, or <0 for errors.
3433 */
3434static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3435{
3436 if (seals & F_SEAL_FUTURE_WRITE) {
3437 /*
3438 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3439 * "future write" seal active.
3440 */
3441 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3442 return -EPERM;
3443
3444 /*
3445 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3446 * MAP_SHARED and read-only, take care to not allow mprotect to
3447 * revert protections on such mappings. Do this only for shared
3448 * mappings. For private mappings, don't need to mask
3449 * VM_MAYWRITE as we still want them to be COW-writable.
3450 */
3451 if (vma->vm_flags & VM_SHARED)
3452 vma->vm_flags &= ~(VM_MAYWRITE);
3453 }
3454
3455 return 0;
3456}
3457
9a10064f
CC
3458#ifdef CONFIG_ANON_VMA_NAME
3459int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
3460 unsigned long len_in,
3461 struct anon_vma_name *anon_name);
9a10064f
CC
3462#else
3463static inline int
3464madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 3465 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
3466 return 0;
3467}
3468#endif
3469
999dad82
PX
3470/*
3471 * Whether to drop the pte markers, for example, the uffd-wp information for
3472 * file-backed memory. This should only be specified when we will completely
3473 * drop the page in the mm, either by truncation or unmapping of the vma. By
3474 * default, the flag is not set.
3475 */
3476#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
3477
1da177e4 3478#endif /* _LINUX_MM_H */