mm: replace VM_LOCKED_CLEAR_MASK with VM_LOCKED_MASK
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
1da177e4
LT
32
33struct mempolicy;
34struct anon_vma;
bf181b9f 35struct anon_vma_chain;
e8edc6e0 36struct user_struct;
bce617ed 37struct pt_regs;
1da177e4 38
5ef64cc8
LT
39extern int sysctl_page_lock_unfairness;
40
597b7305
MH
41void init_mm_internals(void);
42
a9ee6cf5 43#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 44extern unsigned long max_mapnr;
fccc9987
JL
45
46static inline void set_max_mapnr(unsigned long limit)
47{
48 max_mapnr = limit;
49}
50#else
51static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
52#endif
53
ca79b0c2
AK
54extern atomic_long_t _totalram_pages;
55static inline unsigned long totalram_pages(void)
56{
57 return (unsigned long)atomic_long_read(&_totalram_pages);
58}
59
60static inline void totalram_pages_inc(void)
61{
62 atomic_long_inc(&_totalram_pages);
63}
64
65static inline void totalram_pages_dec(void)
66{
67 atomic_long_dec(&_totalram_pages);
68}
69
70static inline void totalram_pages_add(long count)
71{
72 atomic_long_add(count, &_totalram_pages);
73}
74
1da177e4 75extern void * high_memory;
1da177e4 76extern int page_cluster;
ea0ffd0c 77extern const int page_cluster_max;
1da177e4
LT
78
79#ifdef CONFIG_SYSCTL
80extern int sysctl_legacy_va_layout;
81#else
82#define sysctl_legacy_va_layout 0
83#endif
84
d07e2259
DC
85#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
86extern const int mmap_rnd_bits_min;
87extern const int mmap_rnd_bits_max;
88extern int mmap_rnd_bits __read_mostly;
89#endif
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
91extern const int mmap_rnd_compat_bits_min;
92extern const int mmap_rnd_compat_bits_max;
93extern int mmap_rnd_compat_bits __read_mostly;
94#endif
95
1da177e4 96#include <asm/page.h>
1da177e4 97#include <asm/processor.h>
1da177e4 98
d9344522
AK
99/*
100 * Architectures that support memory tagging (assigning tags to memory regions,
101 * embedding these tags into addresses that point to these memory regions, and
102 * checking that the memory and the pointer tags match on memory accesses)
103 * redefine this macro to strip tags from pointers.
f0953a1b 104 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
105 */
106#ifndef untagged_addr
107#define untagged_addr(addr) (addr)
108#endif
109
79442ed1
TC
110#ifndef __pa_symbol
111#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
112#endif
113
1dff8083
AB
114#ifndef page_to_virt
115#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
116#endif
117
568c5fe5
LA
118#ifndef lm_alias
119#define lm_alias(x) __va(__pa_symbol(x))
120#endif
121
593befa6
DD
122/*
123 * To prevent common memory management code establishing
124 * a zero page mapping on a read fault.
125 * This macro should be defined within <asm/pgtable.h>.
126 * s390 does this to prevent multiplexing of hardware bits
127 * related to the physical page in case of virtualization.
128 */
129#ifndef mm_forbids_zeropage
130#define mm_forbids_zeropage(X) (0)
131#endif
132
a4a3ede2
PT
133/*
134 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
135 * If an architecture decides to implement their own version of
136 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
137 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 138 */
5470dea4
AD
139#if BITS_PER_LONG == 64
140/* This function must be updated when the size of struct page grows above 80
141 * or reduces below 56. The idea that compiler optimizes out switch()
142 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 143 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
144 * this can result in several of the writes here being dropped.
145 */
146#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
147static inline void __mm_zero_struct_page(struct page *page)
148{
149 unsigned long *_pp = (void *)page;
150
151 /* Check that struct page is either 56, 64, 72, or 80 bytes */
152 BUILD_BUG_ON(sizeof(struct page) & 7);
153 BUILD_BUG_ON(sizeof(struct page) < 56);
154 BUILD_BUG_ON(sizeof(struct page) > 80);
155
156 switch (sizeof(struct page)) {
157 case 80:
df561f66
GS
158 _pp[9] = 0;
159 fallthrough;
5470dea4 160 case 72:
df561f66
GS
161 _pp[8] = 0;
162 fallthrough;
5470dea4 163 case 64:
df561f66
GS
164 _pp[7] = 0;
165 fallthrough;
5470dea4
AD
166 case 56:
167 _pp[6] = 0;
168 _pp[5] = 0;
169 _pp[4] = 0;
170 _pp[3] = 0;
171 _pp[2] = 0;
172 _pp[1] = 0;
173 _pp[0] = 0;
174 }
175}
176#else
a4a3ede2
PT
177#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
178#endif
179
ea606cf5
AR
180/*
181 * Default maximum number of active map areas, this limits the number of vmas
182 * per mm struct. Users can overwrite this number by sysctl but there is a
183 * problem.
184 *
185 * When a program's coredump is generated as ELF format, a section is created
186 * per a vma. In ELF, the number of sections is represented in unsigned short.
187 * This means the number of sections should be smaller than 65535 at coredump.
188 * Because the kernel adds some informative sections to a image of program at
189 * generating coredump, we need some margin. The number of extra sections is
190 * 1-3 now and depends on arch. We use "5" as safe margin, here.
191 *
192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193 * not a hard limit any more. Although some userspace tools can be surprised by
194 * that.
195 */
196#define MAPCOUNT_ELF_CORE_MARGIN (5)
197#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198
199extern int sysctl_max_map_count;
200
c9b1d098 201extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 202extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 203
49f0ce5f
JM
204extern int sysctl_overcommit_memory;
205extern int sysctl_overcommit_ratio;
206extern unsigned long sysctl_overcommit_kbytes;
207
32927393
CH
208int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
209 loff_t *);
210int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
211 loff_t *);
56f3547b
FT
212int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
213 loff_t *);
49f0ce5f 214
1cfcee72 215#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 216#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 217#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
218#else
219#define nth_page(page,n) ((page) + (n))
659508f9 220#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 221#endif
1da177e4 222
27ac792c
AR
223/* to align the pointer to the (next) page boundary */
224#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
225
335e52c2
DG
226/* to align the pointer to the (prev) page boundary */
227#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
228
0fa73b86 229/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 230#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 231
f86196ea 232#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
233static inline struct folio *lru_to_folio(struct list_head *head)
234{
235 return list_entry((head)->prev, struct folio, lru);
236}
f86196ea 237
5748fbc5
KW
238void setup_initial_init_mm(void *start_code, void *end_code,
239 void *end_data, void *brk);
240
1da177e4
LT
241/*
242 * Linux kernel virtual memory manager primitives.
243 * The idea being to have a "virtual" mm in the same way
244 * we have a virtual fs - giving a cleaner interface to the
245 * mm details, and allowing different kinds of memory mappings
246 * (from shared memory to executable loading to arbitrary
247 * mmap() functions).
248 */
249
490fc053 250struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
251struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
252void vm_area_free(struct vm_area_struct *);
c43692e8 253
1da177e4 254#ifndef CONFIG_MMU
8feae131
DH
255extern struct rb_root nommu_region_tree;
256extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
257
258extern unsigned int kobjsize(const void *objp);
259#endif
260
261/*
605d9288 262 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 263 * When changing, update also include/trace/events/mmflags.h
1da177e4 264 */
cc2383ec
KK
265#define VM_NONE 0x00000000
266
1da177e4
LT
267#define VM_READ 0x00000001 /* currently active flags */
268#define VM_WRITE 0x00000002
269#define VM_EXEC 0x00000004
270#define VM_SHARED 0x00000008
271
7e2cff42 272/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
273#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
274#define VM_MAYWRITE 0x00000020
275#define VM_MAYEXEC 0x00000040
276#define VM_MAYSHARE 0x00000080
277
278#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
b6b7a8fa 279#ifdef CONFIG_MMU
16ba6f81 280#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
b6b7a8fa
DH
281#else /* CONFIG_MMU */
282#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
283#define VM_UFFD_MISSING 0
284#endif /* CONFIG_MMU */
6aab341e 285#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 286#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 287
1da177e4
LT
288#define VM_LOCKED 0x00002000
289#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
290
291 /* Used by sys_madvise() */
292#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
293#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
294
295#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
296#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 297#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 298#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 299#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 300#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 301#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 302#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 303#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 304#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 305
d9104d1c
CG
306#ifdef CONFIG_MEM_SOFT_DIRTY
307# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
308#else
309# define VM_SOFTDIRTY 0
310#endif
311
b379d790 312#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
313#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
314#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 315#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 316
63c17fb8
DH
317#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
318#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
320#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
321#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 322#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
323#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
324#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
325#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
326#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 327#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
328#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
329
5212213a 330#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
331# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
332# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 333# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
334# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
335# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
336#ifdef CONFIG_PPC
337# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
338#else
339# define VM_PKEY_BIT4 0
8f62c883 340#endif
5212213a
RP
341#endif /* CONFIG_ARCH_HAS_PKEYS */
342
343#if defined(CONFIG_X86)
344# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
345#elif defined(CONFIG_PPC)
346# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
347#elif defined(CONFIG_PARISC)
348# define VM_GROWSUP VM_ARCH_1
349#elif defined(CONFIG_IA64)
350# define VM_GROWSUP VM_ARCH_1
74a04967
KA
351#elif defined(CONFIG_SPARC64)
352# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
353# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
354#elif defined(CONFIG_ARM64)
355# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
356# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
357#elif !defined(CONFIG_MMU)
358# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
359#endif
360
9f341931
CM
361#if defined(CONFIG_ARM64_MTE)
362# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
363# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
364#else
365# define VM_MTE VM_NONE
366# define VM_MTE_ALLOWED VM_NONE
367#endif
368
cc2383ec
KK
369#ifndef VM_GROWSUP
370# define VM_GROWSUP VM_NONE
371#endif
372
7677f7fd
AR
373#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
374# define VM_UFFD_MINOR_BIT 37
375# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
376#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
377# define VM_UFFD_MINOR VM_NONE
378#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
379
a8bef8ff
MG
380/* Bits set in the VMA until the stack is in its final location */
381#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
382
c62da0c3
AK
383#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
384
385/* Common data flag combinations */
386#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
387 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
388#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
389 VM_MAYWRITE | VM_MAYEXEC)
390#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
391 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
392
393#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
394#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
395#endif
396
1da177e4
LT
397#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
398#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
399#endif
400
401#ifdef CONFIG_STACK_GROWSUP
30bdbb78 402#define VM_STACK VM_GROWSUP
1da177e4 403#else
30bdbb78 404#define VM_STACK VM_GROWSDOWN
1da177e4
LT
405#endif
406
30bdbb78
KK
407#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
408
6cb4d9a2
AK
409/* VMA basic access permission flags */
410#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
411
412
b291f000 413/*
78f11a25 414 * Special vmas that are non-mergable, non-mlock()able.
b291f000 415 */
9050d7eb 416#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 417
b4443772
AK
418/* This mask prevents VMA from being scanned with khugepaged */
419#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
420
a0715cc2
AT
421/* This mask defines which mm->def_flags a process can inherit its parent */
422#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
423
e430a95a
SB
424/* This mask represents all the VMA flag bits used by mlock */
425#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
de60f5f1 426
2c2d57b5
KA
427/* Arch-specific flags to clear when updating VM flags on protection change */
428#ifndef VM_ARCH_CLEAR
429# define VM_ARCH_CLEAR VM_NONE
430#endif
431#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
432
1da177e4
LT
433/*
434 * mapping from the currently active vm_flags protection bits (the
435 * low four bits) to a page protection mask..
436 */
1da177e4 437
dde16072
PX
438/*
439 * The default fault flags that should be used by most of the
440 * arch-specific page fault handlers.
441 */
442#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
443 FAULT_FLAG_KILLABLE | \
444 FAULT_FLAG_INTERRUPTIBLE)
dde16072 445
4064b982
PX
446/**
447 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 448 * @flags: Fault flags.
4064b982
PX
449 *
450 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 451 * the mmap_lock for too long a time when waiting for another condition
4064b982 452 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
453 * mmap_lock in the first round to avoid potential starvation of other
454 * processes that would also want the mmap_lock.
4064b982
PX
455 *
456 * Return: true if the page fault allows retry and this is the first
457 * attempt of the fault handling; false otherwise.
458 */
da2f5eb3 459static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
460{
461 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
462 (!(flags & FAULT_FLAG_TRIED));
463}
464
282a8e03
RZ
465#define FAULT_FLAG_TRACE \
466 { FAULT_FLAG_WRITE, "WRITE" }, \
467 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
468 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
469 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
470 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
471 { FAULT_FLAG_TRIED, "TRIED" }, \
472 { FAULT_FLAG_USER, "USER" }, \
473 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
474 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
475 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 476
54cb8821 477/*
11192337 478 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
479 * ->fault function. The vma's ->fault is responsible for returning a bitmask
480 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 481 *
c20cd45e
MH
482 * MM layer fills up gfp_mask for page allocations but fault handler might
483 * alter it if its implementation requires a different allocation context.
484 *
9b4bdd2f 485 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 486 */
d0217ac0 487struct vm_fault {
5857c920 488 const struct {
742d3372
WD
489 struct vm_area_struct *vma; /* Target VMA */
490 gfp_t gfp_mask; /* gfp mask to be used for allocations */
491 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
492 unsigned long address; /* Faulting virtual address - masked */
493 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 494 };
da2f5eb3 495 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 496 * XXX: should really be 'const' */
82b0f8c3 497 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 498 * the 'address' */
a2d58167
DJ
499 pud_t *pud; /* Pointer to pud entry matching
500 * the 'address'
501 */
5db4f15c
YS
502 union {
503 pte_t orig_pte; /* Value of PTE at the time of fault */
504 pmd_t orig_pmd; /* Value of PMD at the time of fault,
505 * used by PMD fault only.
506 */
507 };
d0217ac0 508
3917048d 509 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 510 struct page *page; /* ->fault handlers should return a
83c54070 511 * page here, unless VM_FAULT_NOPAGE
d0217ac0 512 * is set (which is also implied by
83c54070 513 * VM_FAULT_ERROR).
d0217ac0 514 */
82b0f8c3 515 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
516 pte_t *pte; /* Pointer to pte entry matching
517 * the 'address'. NULL if the page
518 * table hasn't been allocated.
519 */
520 spinlock_t *ptl; /* Page table lock.
521 * Protects pte page table if 'pte'
522 * is not NULL, otherwise pmd.
523 */
7267ec00 524 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
525 * vm_ops->map_pages() sets up a page
526 * table from atomic context.
7267ec00
KS
527 * do_fault_around() pre-allocates
528 * page table to avoid allocation from
529 * atomic context.
530 */
54cb8821 531};
1da177e4 532
c791ace1
DJ
533/* page entry size for vm->huge_fault() */
534enum page_entry_size {
535 PE_SIZE_PTE = 0,
536 PE_SIZE_PMD,
537 PE_SIZE_PUD,
538};
539
1da177e4
LT
540/*
541 * These are the virtual MM functions - opening of an area, closing and
542 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 543 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
544 */
545struct vm_operations_struct {
546 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
547 /**
548 * @close: Called when the VMA is being removed from the MM.
549 * Context: User context. May sleep. Caller holds mmap_lock.
550 */
1da177e4 551 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
552 /* Called any time before splitting to check if it's allowed */
553 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 554 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
555 /*
556 * Called by mprotect() to make driver-specific permission
557 * checks before mprotect() is finalised. The VMA must not
3e0ee843 558 * be modified. Returns 0 if mprotect() can proceed.
95bb7c42
SC
559 */
560 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
561 unsigned long end, unsigned long newflags);
1c8f4220
SJ
562 vm_fault_t (*fault)(struct vm_fault *vmf);
563 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
564 enum page_entry_size pe_size);
f9ce0be7 565 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 566 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 567 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
568
569 /* notification that a previously read-only page is about to become
570 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 571 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 572
dd906184 573 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 574 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 575
28b2ee20 576 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
577 * for use by special VMAs. See also generic_access_phys() for a generic
578 * implementation useful for any iomem mapping.
28b2ee20
RR
579 */
580 int (*access)(struct vm_area_struct *vma, unsigned long addr,
581 void *buf, int len, int write);
78d683e8
AL
582
583 /* Called by the /proc/PID/maps code to ask the vma whether it
584 * has a special name. Returning non-NULL will also cause this
585 * vma to be dumped unconditionally. */
586 const char *(*name)(struct vm_area_struct *vma);
587
1da177e4 588#ifdef CONFIG_NUMA
a6020ed7
LS
589 /*
590 * set_policy() op must add a reference to any non-NULL @new mempolicy
591 * to hold the policy upon return. Caller should pass NULL @new to
592 * remove a policy and fall back to surrounding context--i.e. do not
593 * install a MPOL_DEFAULT policy, nor the task or system default
594 * mempolicy.
595 */
1da177e4 596 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
597
598 /*
599 * get_policy() op must add reference [mpol_get()] to any policy at
600 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
601 * in mm/mempolicy.c will do this automatically.
602 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 603 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
604 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
605 * must return NULL--i.e., do not "fallback" to task or system default
606 * policy.
607 */
1da177e4
LT
608 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
609 unsigned long addr);
610#endif
667a0a06
DV
611 /*
612 * Called by vm_normal_page() for special PTEs to find the
613 * page for @addr. This is useful if the default behavior
614 * (using pte_page()) would not find the correct page.
615 */
616 struct page *(*find_special_page)(struct vm_area_struct *vma,
617 unsigned long addr);
1da177e4
LT
618};
619
027232da
KS
620static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
621{
bfd40eaf
KS
622 static const struct vm_operations_struct dummy_vm_ops = {};
623
a670468f 624 memset(vma, 0, sizeof(*vma));
027232da 625 vma->vm_mm = mm;
bfd40eaf 626 vma->vm_ops = &dummy_vm_ops;
027232da
KS
627 INIT_LIST_HEAD(&vma->anon_vma_chain);
628}
629
bc292ab0
SB
630/* Use when VMA is not part of the VMA tree and needs no locking */
631static inline void vm_flags_init(struct vm_area_struct *vma,
632 vm_flags_t flags)
633{
634 ACCESS_PRIVATE(vma, __vm_flags) = flags;
635}
636
637/* Use when VMA is part of the VMA tree and modifications need coordination */
638static inline void vm_flags_reset(struct vm_area_struct *vma,
639 vm_flags_t flags)
640{
641 mmap_assert_write_locked(vma->vm_mm);
642 vm_flags_init(vma, flags);
643}
644
645static inline void vm_flags_set(struct vm_area_struct *vma,
646 vm_flags_t flags)
647{
648 mmap_assert_write_locked(vma->vm_mm);
649 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
650}
651
652static inline void vm_flags_clear(struct vm_area_struct *vma,
653 vm_flags_t flags)
654{
655 mmap_assert_write_locked(vma->vm_mm);
656 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
657}
658
659/*
660 * Use only when the order of set/clear operations is unimportant, otherwise
661 * use vm_flags_{set|clear} explicitly.
662 */
663static inline void vm_flags_mod(struct vm_area_struct *vma,
664 vm_flags_t set, vm_flags_t clear)
665{
666 mmap_assert_write_locked(vma->vm_mm);
667 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
668}
669
bfd40eaf
KS
670static inline void vma_set_anonymous(struct vm_area_struct *vma)
671{
672 vma->vm_ops = NULL;
673}
674
43675e6f
YS
675static inline bool vma_is_anonymous(struct vm_area_struct *vma)
676{
677 return !vma->vm_ops;
678}
679
222100ee
AK
680static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
681{
682 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
683
684 if (!maybe_stack)
685 return false;
686
687 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
688 VM_STACK_INCOMPLETE_SETUP)
689 return true;
690
691 return false;
692}
693
7969f226
AK
694static inline bool vma_is_foreign(struct vm_area_struct *vma)
695{
696 if (!current->mm)
697 return true;
698
699 if (current->mm != vma->vm_mm)
700 return true;
701
702 return false;
703}
3122e80e
AK
704
705static inline bool vma_is_accessible(struct vm_area_struct *vma)
706{
6cb4d9a2 707 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
708}
709
f39af059
MWO
710static inline
711struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
712{
b62b633e 713 return mas_find(&vmi->mas, max - 1);
f39af059
MWO
714}
715
716static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
717{
718 /*
b62b633e 719 * Uses mas_find() to get the first VMA when the iterator starts.
f39af059
MWO
720 * Calling mas_next() could skip the first entry.
721 */
b62b633e 722 return mas_find(&vmi->mas, ULONG_MAX);
f39af059
MWO
723}
724
725static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
726{
727 return mas_prev(&vmi->mas, 0);
728}
729
730static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
731{
732 return vmi->mas.index;
733}
734
b62b633e
LH
735static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
736{
737 return vmi->mas.last + 1;
738}
739static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
740 unsigned long count)
741{
742 return mas_expected_entries(&vmi->mas, count);
743}
744
745/* Free any unused preallocations */
746static inline void vma_iter_free(struct vma_iterator *vmi)
747{
748 mas_destroy(&vmi->mas);
749}
750
751static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
752 struct vm_area_struct *vma)
753{
754 vmi->mas.index = vma->vm_start;
755 vmi->mas.last = vma->vm_end - 1;
756 mas_store(&vmi->mas, vma);
757 if (unlikely(mas_is_err(&vmi->mas)))
758 return -ENOMEM;
759
760 return 0;
761}
762
763static inline void vma_iter_invalidate(struct vma_iterator *vmi)
764{
765 mas_pause(&vmi->mas);
766}
767
768static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
769{
770 mas_set(&vmi->mas, addr);
771}
772
f39af059
MWO
773#define for_each_vma(__vmi, __vma) \
774 while (((__vma) = vma_next(&(__vmi))) != NULL)
775
776/* The MM code likes to work with exclusive end addresses */
777#define for_each_vma_range(__vmi, __vma, __end) \
b62b633e 778 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
f39af059 779
43675e6f
YS
780#ifdef CONFIG_SHMEM
781/*
782 * The vma_is_shmem is not inline because it is used only by slow
783 * paths in userfault.
784 */
785bool vma_is_shmem(struct vm_area_struct *vma);
d09e8ca6 786bool vma_is_anon_shmem(struct vm_area_struct *vma);
43675e6f
YS
787#else
788static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
d09e8ca6 789static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
43675e6f
YS
790#endif
791
792int vma_is_stack_for_current(struct vm_area_struct *vma);
793
8b11ec1b
LT
794/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
795#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
796
1da177e4
LT
797struct mmu_gather;
798struct inode;
799
5eb5cea1
MWO
800/*
801 * compound_order() can be called without holding a reference, which means
802 * that niceties like page_folio() don't work. These callers should be
803 * prepared to handle wild return values. For example, PG_head may be
804 * set before _folio_order is initialised, or this may be a tail page.
805 * See compaction.c for some good examples.
806 */
5bf34d7c
MWO
807static inline unsigned int compound_order(struct page *page)
808{
5eb5cea1
MWO
809 struct folio *folio = (struct folio *)page;
810
811 if (!test_bit(PG_head, &folio->flags))
5bf34d7c 812 return 0;
5eb5cea1 813 return folio->_folio_order;
5bf34d7c
MWO
814}
815
816/**
817 * folio_order - The allocation order of a folio.
818 * @folio: The folio.
819 *
820 * A folio is composed of 2^order pages. See get_order() for the definition
821 * of order.
822 *
823 * Return: The order of the folio.
824 */
825static inline unsigned int folio_order(struct folio *folio)
826{
c3a15bff
MWO
827 if (!folio_test_large(folio))
828 return 0;
829 return folio->_folio_order;
5bf34d7c
MWO
830}
831
71e3aac0 832#include <linux/huge_mm.h>
1da177e4
LT
833
834/*
835 * Methods to modify the page usage count.
836 *
837 * What counts for a page usage:
838 * - cache mapping (page->mapping)
839 * - private data (page->private)
840 * - page mapped in a task's page tables, each mapping
841 * is counted separately
842 *
843 * Also, many kernel routines increase the page count before a critical
844 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
845 */
846
847/*
da6052f7 848 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 849 */
7c8ee9a8
NP
850static inline int put_page_testzero(struct page *page)
851{
fe896d18
JK
852 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
853 return page_ref_dec_and_test(page);
7c8ee9a8 854}
1da177e4 855
b620f633
MWO
856static inline int folio_put_testzero(struct folio *folio)
857{
858 return put_page_testzero(&folio->page);
859}
860
1da177e4 861/*
7c8ee9a8
NP
862 * Try to grab a ref unless the page has a refcount of zero, return false if
863 * that is the case.
8e0861fa
AK
864 * This can be called when MMU is off so it must not access
865 * any of the virtual mappings.
1da177e4 866 */
c2530328 867static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 868{
fe896d18 869 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 870}
1da177e4 871
53df8fdc 872extern int page_is_ram(unsigned long pfn);
124fe20d
DW
873
874enum {
875 REGION_INTERSECTS,
876 REGION_DISJOINT,
877 REGION_MIXED,
878};
879
1c29f25b
TK
880int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
881 unsigned long desc);
53df8fdc 882
48667e7a 883/* Support for virtually mapped pages */
b3bdda02
CL
884struct page *vmalloc_to_page(const void *addr);
885unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 886
0738c4bb
PM
887/*
888 * Determine if an address is within the vmalloc range
889 *
890 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
891 * is no special casing required.
892 */
9bd3bb67
AK
893
894#ifndef is_ioremap_addr
895#define is_ioremap_addr(x) is_vmalloc_addr(x)
896#endif
897
81ac3ad9 898#ifdef CONFIG_MMU
186525bd 899extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
900extern int is_vmalloc_or_module_addr(const void *x);
901#else
186525bd
IM
902static inline bool is_vmalloc_addr(const void *x)
903{
904 return false;
905}
934831d0 906static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
907{
908 return 0;
909}
910#endif
9e2779fa 911
74e8ee47
MWO
912/*
913 * How many times the entire folio is mapped as a single unit (eg by a
914 * PMD or PUD entry). This is probably not what you want, except for
cb67f428
HD
915 * debugging purposes - it does not include PTE-mapped sub-pages; look
916 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
74e8ee47
MWO
917 */
918static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 919{
74e8ee47 920 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1aa4d03b 921 return atomic_read(&folio->_entire_mapcount) + 1;
cb67f428
HD
922}
923
70b50f94
AA
924/*
925 * The atomic page->_mapcount, starts from -1: so that transitions
926 * both from it and to it can be tracked, using atomic_inc_and_test
927 * and atomic_add_negative(-1).
928 */
22b751c3 929static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
930{
931 atomic_set(&(page)->_mapcount, -1);
932}
933
c97eeb8f
MWO
934/**
935 * page_mapcount() - Number of times this precise page is mapped.
936 * @page: The page.
937 *
938 * The number of times this page is mapped. If this page is part of
939 * a large folio, it includes the number of times this page is mapped
940 * as part of that folio.
6988f31d 941 *
c97eeb8f 942 * The result is undefined for pages which cannot be mapped into userspace.
6988f31d 943 * For example SLAB or special types of pages. See function page_has_type().
c97eeb8f 944 * They use this field in struct page differently.
6988f31d 945 */
70b50f94
AA
946static inline int page_mapcount(struct page *page)
947{
cb67f428 948 int mapcount = atomic_read(&page->_mapcount) + 1;
b20ce5e0 949
c97eeb8f
MWO
950 if (unlikely(PageCompound(page)))
951 mapcount += folio_entire_mapcount(page_folio(page));
952
953 return mapcount;
b20ce5e0
KS
954}
955
b14224fb 956int folio_total_mapcount(struct folio *folio);
4ba1119c 957
cb67f428
HD
958/**
959 * folio_mapcount() - Calculate the number of mappings of this folio.
960 * @folio: The folio.
961 *
962 * A large folio tracks both how many times the entire folio is mapped,
963 * and how many times each individual page in the folio is mapped.
964 * This function calculates the total number of times the folio is
965 * mapped.
966 *
967 * Return: The number of times this folio is mapped.
968 */
969static inline int folio_mapcount(struct folio *folio)
4ba1119c 970{
cb67f428
HD
971 if (likely(!folio_test_large(folio)))
972 return atomic_read(&folio->_mapcount) + 1;
b14224fb 973 return folio_total_mapcount(folio);
4ba1119c
MWO
974}
975
b20ce5e0
KS
976static inline int total_mapcount(struct page *page)
977{
be5ef2d9
HD
978 if (likely(!PageCompound(page)))
979 return atomic_read(&page->_mapcount) + 1;
b14224fb 980 return folio_total_mapcount(page_folio(page));
be5ef2d9
HD
981}
982
983static inline bool folio_large_is_mapped(struct folio *folio)
984{
4b51634c 985 /*
1aa4d03b 986 * Reading _entire_mapcount below could be omitted if hugetlb
eec20426 987 * participated in incrementing nr_pages_mapped when compound mapped.
4b51634c 988 */
eec20426 989 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1aa4d03b 990 atomic_read(&folio->_entire_mapcount) >= 0;
cb67f428
HD
991}
992
993/**
994 * folio_mapped - Is this folio mapped into userspace?
995 * @folio: The folio.
996 *
997 * Return: True if any page in this folio is referenced by user page tables.
998 */
999static inline bool folio_mapped(struct folio *folio)
1000{
be5ef2d9
HD
1001 if (likely(!folio_test_large(folio)))
1002 return atomic_read(&folio->_mapcount) >= 0;
1003 return folio_large_is_mapped(folio);
1004}
1005
1006/*
1007 * Return true if this page is mapped into pagetables.
1008 * For compound page it returns true if any sub-page of compound page is mapped,
1009 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1010 */
1011static inline bool page_mapped(struct page *page)
1012{
1013 if (likely(!PageCompound(page)))
1014 return atomic_read(&page->_mapcount) >= 0;
1015 return folio_large_is_mapped(page_folio(page));
70b50f94
AA
1016}
1017
b49af68f
CL
1018static inline struct page *virt_to_head_page(const void *x)
1019{
1020 struct page *page = virt_to_page(x);
ccaafd7f 1021
1d798ca3 1022 return compound_head(page);
b49af68f
CL
1023}
1024
7d4203c1
VB
1025static inline struct folio *virt_to_folio(const void *x)
1026{
1027 struct page *page = virt_to_page(x);
1028
1029 return page_folio(page);
1030}
1031
8d29c703 1032void __folio_put(struct folio *folio);
ddc58f27 1033
1d7ea732 1034void put_pages_list(struct list_head *pages);
1da177e4 1035
8dfcc9ba 1036void split_page(struct page *page, unsigned int order);
715cbfd6 1037void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 1038
a1554c00
ML
1039unsigned long nr_free_buffer_pages(void);
1040
33f2ef89
AW
1041/*
1042 * Compound pages have a destructor function. Provide a
1043 * prototype for that function and accessor functions.
f1e61557 1044 * These are _only_ valid on the head of a compound page.
33f2ef89 1045 */
f1e61557
KS
1046typedef void compound_page_dtor(struct page *);
1047
1048/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1049enum compound_dtor_id {
1050 NULL_COMPOUND_DTOR,
1051 COMPOUND_PAGE_DTOR,
1052#ifdef CONFIG_HUGETLB_PAGE
1053 HUGETLB_PAGE_DTOR,
9a982250
KS
1054#endif
1055#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1056 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
1057#endif
1058 NR_COMPOUND_DTORS,
1059};
ae70eddd 1060extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
1061
1062static inline void set_compound_page_dtor(struct page *page,
f1e61557 1063 enum compound_dtor_id compound_dtor)
33f2ef89 1064{
bad6da64
MWO
1065 struct folio *folio = (struct folio *)page;
1066
f1e61557 1067 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
bad6da64
MWO
1068 VM_BUG_ON_PAGE(!PageHead(page), page);
1069 folio->_folio_dtor = compound_dtor;
33f2ef89
AW
1070}
1071
9fd33058
SK
1072static inline void folio_set_compound_dtor(struct folio *folio,
1073 enum compound_dtor_id compound_dtor)
1074{
1075 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1076 folio->_folio_dtor = compound_dtor;
1077}
1078
5375336c 1079void destroy_large_folio(struct folio *folio);
33f2ef89 1080
f1e61557 1081static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 1082{
bad6da64
MWO
1083 struct folio *folio = (struct folio *)page;
1084
1085 folio->_folio_order = order;
5232c63f 1086#ifdef CONFIG_64BIT
bad6da64 1087 folio->_folio_nr_pages = 1U << order;
5232c63f 1088#endif
d85f3385
CL
1089}
1090
a50b854e
MWO
1091/* Returns the number of bytes in this potentially compound page. */
1092static inline unsigned long page_size(struct page *page)
1093{
1094 return PAGE_SIZE << compound_order(page);
1095}
1096
94ad9338
MWO
1097/* Returns the number of bits needed for the number of bytes in a page */
1098static inline unsigned int page_shift(struct page *page)
1099{
1100 return PAGE_SHIFT + compound_order(page);
1101}
1102
18788cfa
MWO
1103/**
1104 * thp_order - Order of a transparent huge page.
1105 * @page: Head page of a transparent huge page.
1106 */
1107static inline unsigned int thp_order(struct page *page)
1108{
1109 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1110 return compound_order(page);
1111}
1112
18788cfa
MWO
1113/**
1114 * thp_size - Size of a transparent huge page.
1115 * @page: Head page of a transparent huge page.
1116 *
1117 * Return: Number of bytes in this page.
1118 */
1119static inline unsigned long thp_size(struct page *page)
1120{
1121 return PAGE_SIZE << thp_order(page);
1122}
1123
9a982250
KS
1124void free_compound_page(struct page *page);
1125
3dece370 1126#ifdef CONFIG_MMU
14fd403f
AA
1127/*
1128 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1129 * servicing faults for write access. In the normal case, do always want
1130 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1131 * that do not have writing enabled, when used by access_process_vm.
1132 */
1133static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1134{
1135 if (likely(vma->vm_flags & VM_WRITE))
1136 pte = pte_mkwrite(pte);
1137 return pte;
1138}
8c6e50b0 1139
f9ce0be7 1140vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1141void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1142
2b740303
SJ
1143vm_fault_t finish_fault(struct vm_fault *vmf);
1144vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1145#endif
14fd403f 1146
1da177e4
LT
1147/*
1148 * Multiple processes may "see" the same page. E.g. for untouched
1149 * mappings of /dev/null, all processes see the same page full of
1150 * zeroes, and text pages of executables and shared libraries have
1151 * only one copy in memory, at most, normally.
1152 *
1153 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1154 * page_count() == 0 means the page is free. page->lru is then used for
1155 * freelist management in the buddy allocator.
da6052f7 1156 * page_count() > 0 means the page has been allocated.
1da177e4 1157 *
da6052f7
NP
1158 * Pages are allocated by the slab allocator in order to provide memory
1159 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1160 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1161 * unless a particular usage is carefully commented. (the responsibility of
1162 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1163 *
da6052f7
NP
1164 * A page may be used by anyone else who does a __get_free_page().
1165 * In this case, page_count still tracks the references, and should only
1166 * be used through the normal accessor functions. The top bits of page->flags
1167 * and page->virtual store page management information, but all other fields
1168 * are unused and could be used privately, carefully. The management of this
1169 * page is the responsibility of the one who allocated it, and those who have
1170 * subsequently been given references to it.
1171 *
1172 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1173 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1174 * The following discussion applies only to them.
1175 *
da6052f7
NP
1176 * A pagecache page contains an opaque `private' member, which belongs to the
1177 * page's address_space. Usually, this is the address of a circular list of
1178 * the page's disk buffers. PG_private must be set to tell the VM to call
1179 * into the filesystem to release these pages.
1da177e4 1180 *
da6052f7
NP
1181 * A page may belong to an inode's memory mapping. In this case, page->mapping
1182 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1183 * in units of PAGE_SIZE.
1da177e4 1184 *
da6052f7
NP
1185 * If pagecache pages are not associated with an inode, they are said to be
1186 * anonymous pages. These may become associated with the swapcache, and in that
1187 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1188 *
da6052f7
NP
1189 * In either case (swapcache or inode backed), the pagecache itself holds one
1190 * reference to the page. Setting PG_private should also increment the
1191 * refcount. The each user mapping also has a reference to the page.
1da177e4 1192 *
da6052f7 1193 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1194 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1195 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1196 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1197 *
da6052f7 1198 * All pagecache pages may be subject to I/O:
1da177e4
LT
1199 * - inode pages may need to be read from disk,
1200 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1201 * to be written back to the inode on disk,
1202 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1203 * modified may need to be swapped out to swap space and (later) to be read
1204 * back into memory.
1da177e4
LT
1205 */
1206
27674ef6 1207#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1208DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1209
f4f451a1
MS
1210bool __put_devmap_managed_page_refs(struct page *page, int refs);
1211static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1212{
1213 if (!static_branch_unlikely(&devmap_managed_key))
1214 return false;
1215 if (!is_zone_device_page(page))
1216 return false;
f4f451a1 1217 return __put_devmap_managed_page_refs(page, refs);
e7638488 1218}
27674ef6 1219#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1220static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1221{
1222 return false;
1223}
27674ef6 1224#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1225
f4f451a1
MS
1226static inline bool put_devmap_managed_page(struct page *page)
1227{
1228 return put_devmap_managed_page_refs(page, 1);
1229}
1230
f958d7b5 1231/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1232#define folio_ref_zero_or_close_to_overflow(folio) \
1233 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1234
1235/**
1236 * folio_get - Increment the reference count on a folio.
1237 * @folio: The folio.
1238 *
1239 * Context: May be called in any context, as long as you know that
1240 * you have a refcount on the folio. If you do not already have one,
1241 * folio_try_get() may be the right interface for you to use.
1242 */
1243static inline void folio_get(struct folio *folio)
1244{
1245 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1246 folio_ref_inc(folio);
1247}
f958d7b5 1248
3565fce3
DW
1249static inline void get_page(struct page *page)
1250{
86d234cb 1251 folio_get(page_folio(page));
3565fce3
DW
1252}
1253
0f089235 1254int __must_check try_grab_page(struct page *page, unsigned int flags);
cd1adf1b
LT
1255
1256static inline __must_check bool try_get_page(struct page *page)
1257{
1258 page = compound_head(page);
1259 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1260 return false;
1261 page_ref_inc(page);
1262 return true;
1263}
3565fce3 1264
b620f633
MWO
1265/**
1266 * folio_put - Decrement the reference count on a folio.
1267 * @folio: The folio.
1268 *
1269 * If the folio's reference count reaches zero, the memory will be
1270 * released back to the page allocator and may be used by another
1271 * allocation immediately. Do not access the memory or the struct folio
1272 * after calling folio_put() unless you can be sure that it wasn't the
1273 * last reference.
1274 *
1275 * Context: May be called in process or interrupt context, but not in NMI
1276 * context. May be called while holding a spinlock.
1277 */
1278static inline void folio_put(struct folio *folio)
1279{
1280 if (folio_put_testzero(folio))
8d29c703 1281 __folio_put(folio);
b620f633
MWO
1282}
1283
3fe7fa58
MWO
1284/**
1285 * folio_put_refs - Reduce the reference count on a folio.
1286 * @folio: The folio.
1287 * @refs: The amount to subtract from the folio's reference count.
1288 *
1289 * If the folio's reference count reaches zero, the memory will be
1290 * released back to the page allocator and may be used by another
1291 * allocation immediately. Do not access the memory or the struct folio
1292 * after calling folio_put_refs() unless you can be sure that these weren't
1293 * the last references.
1294 *
1295 * Context: May be called in process or interrupt context, but not in NMI
1296 * context. May be called while holding a spinlock.
1297 */
1298static inline void folio_put_refs(struct folio *folio, int refs)
1299{
1300 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1301 __folio_put(folio);
3fe7fa58
MWO
1302}
1303
0411d6ee
SP
1304/*
1305 * union release_pages_arg - an array of pages or folios
449c7967 1306 *
0411d6ee 1307 * release_pages() releases a simple array of multiple pages, and
449c7967
LT
1308 * accepts various different forms of said page array: either
1309 * a regular old boring array of pages, an array of folios, or
1310 * an array of encoded page pointers.
1311 *
1312 * The transparent union syntax for this kind of "any of these
1313 * argument types" is all kinds of ugly, so look away.
1314 */
1315typedef union {
1316 struct page **pages;
1317 struct folio **folios;
1318 struct encoded_page **encoded_pages;
1319} release_pages_arg __attribute__ ((__transparent_union__));
1320
1321void release_pages(release_pages_arg, int nr);
e3c4cebf
MWO
1322
1323/**
1324 * folios_put - Decrement the reference count on an array of folios.
1325 * @folios: The folios.
1326 * @nr: How many folios there are.
1327 *
1328 * Like folio_put(), but for an array of folios. This is more efficient
1329 * than writing the loop yourself as it will optimise the locks which
1330 * need to be taken if the folios are freed.
1331 *
1332 * Context: May be called in process or interrupt context, but not in NMI
1333 * context. May be called while holding a spinlock.
1334 */
1335static inline void folios_put(struct folio **folios, unsigned int nr)
1336{
449c7967 1337 release_pages(folios, nr);
3fe7fa58
MWO
1338}
1339
3565fce3
DW
1340static inline void put_page(struct page *page)
1341{
b620f633 1342 struct folio *folio = page_folio(page);
3565fce3 1343
7b2d55d2 1344 /*
89574945
CH
1345 * For some devmap managed pages we need to catch refcount transition
1346 * from 2 to 1:
7b2d55d2 1347 */
89574945 1348 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1349 return;
b620f633 1350 folio_put(folio);
3565fce3
DW
1351}
1352
3faa52c0
JH
1353/*
1354 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1355 * the page's refcount so that two separate items are tracked: the original page
1356 * reference count, and also a new count of how many pin_user_pages() calls were
1357 * made against the page. ("gup-pinned" is another term for the latter).
1358 *
1359 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1360 * distinct from normal pages. As such, the unpin_user_page() call (and its
1361 * variants) must be used in order to release gup-pinned pages.
1362 *
1363 * Choice of value:
1364 *
1365 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1366 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1367 * simpler, due to the fact that adding an even power of two to the page
1368 * refcount has the effect of using only the upper N bits, for the code that
1369 * counts up using the bias value. This means that the lower bits are left for
1370 * the exclusive use of the original code that increments and decrements by one
1371 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1372 *
3faa52c0
JH
1373 * Of course, once the lower bits overflow into the upper bits (and this is
1374 * OK, because subtraction recovers the original values), then visual inspection
1375 * no longer suffices to directly view the separate counts. However, for normal
1376 * applications that don't have huge page reference counts, this won't be an
1377 * issue.
fc1d8e7c 1378 *
40fcc7fc
MWO
1379 * Locking: the lockless algorithm described in folio_try_get_rcu()
1380 * provides safe operation for get_user_pages(), page_mkclean() and
1381 * other calls that race to set up page table entries.
fc1d8e7c 1382 */
3faa52c0 1383#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1384
3faa52c0 1385void unpin_user_page(struct page *page);
f1f6a7dd
JH
1386void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1387 bool make_dirty);
458a4f78
JM
1388void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1389 bool make_dirty);
f1f6a7dd 1390void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1391
97a7e473
PX
1392static inline bool is_cow_mapping(vm_flags_t flags)
1393{
1394 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1395}
1396
fc4f4be9
DH
1397#ifndef CONFIG_MMU
1398static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1399{
1400 /*
1401 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1402 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1403 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1404 * underlying memory if ptrace is active, so this is only possible if
1405 * ptrace does not apply. Note that there is no mprotect() to upgrade
1406 * write permissions later.
1407 */
b6b7a8fa 1408 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
fc4f4be9
DH
1409}
1410#endif
1411
9127ab4f
CS
1412#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1413#define SECTION_IN_PAGE_FLAGS
1414#endif
1415
89689ae7 1416/*
7a8010cd
VB
1417 * The identification function is mainly used by the buddy allocator for
1418 * determining if two pages could be buddies. We are not really identifying
1419 * the zone since we could be using the section number id if we do not have
1420 * node id available in page flags.
1421 * We only guarantee that it will return the same value for two combinable
1422 * pages in a zone.
89689ae7 1423 */
cb2b95e1
AW
1424static inline int page_zone_id(struct page *page)
1425{
89689ae7 1426 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1427}
1428
89689ae7 1429#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1430extern int page_to_nid(const struct page *page);
89689ae7 1431#else
33dd4e0e 1432static inline int page_to_nid(const struct page *page)
d41dee36 1433{
f165b378
PT
1434 struct page *p = (struct page *)page;
1435
1436 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1437}
89689ae7
CL
1438#endif
1439
874fd90c
MWO
1440static inline int folio_nid(const struct folio *folio)
1441{
1442 return page_to_nid(&folio->page);
1443}
1444
57e0a030 1445#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1446/* page access time bits needs to hold at least 4 seconds */
1447#define PAGE_ACCESS_TIME_MIN_BITS 12
1448#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1449#define PAGE_ACCESS_TIME_BUCKETS \
1450 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1451#else
1452#define PAGE_ACCESS_TIME_BUCKETS 0
1453#endif
1454
1455#define PAGE_ACCESS_TIME_MASK \
1456 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1457
90572890 1458static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1459{
90572890 1460 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1461}
1462
90572890 1463static inline int cpupid_to_pid(int cpupid)
57e0a030 1464{
90572890 1465 return cpupid & LAST__PID_MASK;
57e0a030 1466}
b795854b 1467
90572890 1468static inline int cpupid_to_cpu(int cpupid)
b795854b 1469{
90572890 1470 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1471}
1472
90572890 1473static inline int cpupid_to_nid(int cpupid)
b795854b 1474{
90572890 1475 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1476}
1477
90572890 1478static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1479{
90572890 1480 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1481}
1482
90572890 1483static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1484{
90572890 1485 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1486}
1487
8c8a743c
PZ
1488static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1489{
1490 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1491}
1492
1493#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1494#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1495static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1496{
1ae71d03 1497 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1498}
90572890
PZ
1499
1500static inline int page_cpupid_last(struct page *page)
1501{
1502 return page->_last_cpupid;
1503}
1504static inline void page_cpupid_reset_last(struct page *page)
b795854b 1505{
1ae71d03 1506 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1507}
1508#else
90572890 1509static inline int page_cpupid_last(struct page *page)
75980e97 1510{
90572890 1511 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1512}
1513
90572890 1514extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1515
90572890 1516static inline void page_cpupid_reset_last(struct page *page)
75980e97 1517{
09940a4f 1518 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1519}
90572890 1520#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536
HY
1521
1522static inline int xchg_page_access_time(struct page *page, int time)
1523{
1524 int last_time;
1525
1526 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1527 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1528}
90572890
PZ
1529#else /* !CONFIG_NUMA_BALANCING */
1530static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1531{
90572890 1532 return page_to_nid(page); /* XXX */
57e0a030
MG
1533}
1534
33024536
HY
1535static inline int xchg_page_access_time(struct page *page, int time)
1536{
1537 return 0;
1538}
1539
90572890 1540static inline int page_cpupid_last(struct page *page)
57e0a030 1541{
90572890 1542 return page_to_nid(page); /* XXX */
57e0a030
MG
1543}
1544
90572890 1545static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1546{
1547 return -1;
1548}
1549
90572890 1550static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1551{
1552 return -1;
1553}
1554
90572890 1555static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1556{
1557 return -1;
1558}
1559
90572890
PZ
1560static inline int cpu_pid_to_cpupid(int nid, int pid)
1561{
1562 return -1;
1563}
1564
1565static inline bool cpupid_pid_unset(int cpupid)
b795854b 1566{
2b787449 1567 return true;
b795854b
MG
1568}
1569
90572890 1570static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1571{
1572}
8c8a743c
PZ
1573
1574static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1575{
1576 return false;
1577}
90572890 1578#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1579
2e903b91 1580#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1581
cf10bd4c
AK
1582/*
1583 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1584 * setting tags for all pages to native kernel tag value 0xff, as the default
1585 * value 0x00 maps to 0xff.
1586 */
1587
2813b9c0
AK
1588static inline u8 page_kasan_tag(const struct page *page)
1589{
cf10bd4c
AK
1590 u8 tag = 0xff;
1591
1592 if (kasan_enabled()) {
1593 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1594 tag ^= 0xff;
1595 }
1596
1597 return tag;
2813b9c0
AK
1598}
1599
1600static inline void page_kasan_tag_set(struct page *page, u8 tag)
1601{
27fe7339
PC
1602 unsigned long old_flags, flags;
1603
1604 if (!kasan_enabled())
1605 return;
1606
1607 tag ^= 0xff;
1608 old_flags = READ_ONCE(page->flags);
1609 do {
1610 flags = old_flags;
1611 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1612 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1613 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1614}
1615
1616static inline void page_kasan_tag_reset(struct page *page)
1617{
34303244
AK
1618 if (kasan_enabled())
1619 page_kasan_tag_set(page, 0xff);
2813b9c0 1620}
34303244
AK
1621
1622#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1623
2813b9c0
AK
1624static inline u8 page_kasan_tag(const struct page *page)
1625{
1626 return 0xff;
1627}
1628
1629static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1630static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1631
1632#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1633
33dd4e0e 1634static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1635{
1636 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1637}
1638
75ef7184
MG
1639static inline pg_data_t *page_pgdat(const struct page *page)
1640{
1641 return NODE_DATA(page_to_nid(page));
1642}
1643
32b8fc48
MWO
1644static inline struct zone *folio_zone(const struct folio *folio)
1645{
1646 return page_zone(&folio->page);
1647}
1648
1649static inline pg_data_t *folio_pgdat(const struct folio *folio)
1650{
1651 return page_pgdat(&folio->page);
1652}
1653
9127ab4f 1654#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1655static inline void set_page_section(struct page *page, unsigned long section)
1656{
1657 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1658 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1659}
1660
aa462abe 1661static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1662{
1663 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1664}
308c05e3 1665#endif
d41dee36 1666
bf6bd276
MWO
1667/**
1668 * folio_pfn - Return the Page Frame Number of a folio.
1669 * @folio: The folio.
1670 *
1671 * A folio may contain multiple pages. The pages have consecutive
1672 * Page Frame Numbers.
1673 *
1674 * Return: The Page Frame Number of the first page in the folio.
1675 */
1676static inline unsigned long folio_pfn(struct folio *folio)
1677{
1678 return page_to_pfn(&folio->page);
1679}
1680
018ee47f
YZ
1681static inline struct folio *pfn_folio(unsigned long pfn)
1682{
1683 return page_folio(pfn_to_page(pfn));
1684}
1685
0b90ddae
MWO
1686/**
1687 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1688 * @folio: The folio.
1689 *
1690 * This function checks if a folio has been pinned via a call to
1691 * a function in the pin_user_pages() family.
1692 *
1693 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1694 * because it means "definitely not pinned for DMA", but true means "probably
1695 * pinned for DMA, but possibly a false positive due to having at least
1696 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1697 *
1698 * False positives are OK, because: a) it's unlikely for a folio to
1699 * get that many refcounts, and b) all the callers of this routine are
1700 * expected to be able to deal gracefully with a false positive.
1701 *
1702 * For large folios, the result will be exactly correct. That's because
94688e8e 1703 * we have more tracking data available: the _pincount field is used
0b90ddae
MWO
1704 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1705 *
1706 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1707 *
1708 * Return: True, if it is likely that the page has been "dma-pinned".
1709 * False, if the page is definitely not dma-pinned.
1710 */
1711static inline bool folio_maybe_dma_pinned(struct folio *folio)
1712{
1713 if (folio_test_large(folio))
94688e8e 1714 return atomic_read(&folio->_pincount) > 0;
0b90ddae
MWO
1715
1716 /*
1717 * folio_ref_count() is signed. If that refcount overflows, then
1718 * folio_ref_count() returns a negative value, and callers will avoid
1719 * further incrementing the refcount.
1720 *
1721 * Here, for that overflow case, use the sign bit to count a little
1722 * bit higher via unsigned math, and thus still get an accurate result.
1723 */
1724 return ((unsigned int)folio_ref_count(folio)) >=
1725 GUP_PIN_COUNTING_BIAS;
1726}
1727
1728static inline bool page_maybe_dma_pinned(struct page *page)
1729{
1730 return folio_maybe_dma_pinned(page_folio(page));
1731}
1732
1733/*
1734 * This should most likely only be called during fork() to see whether we
fb3d824d 1735 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1736 *
1737 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1738 */
1739static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1740 struct page *page)
1741{
623a1ddf 1742 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1743
1744 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1745 return false;
1746
1747 return page_maybe_dma_pinned(page);
1748}
1749
8e3560d9
PT
1750/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1751#ifdef CONFIG_MIGRATION
6077c943 1752static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9 1753{
1c563432
MK
1754#ifdef CONFIG_CMA
1755 int mt = get_pageblock_migratetype(page);
1756
1757 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1758 return false;
1759#endif
fcab34b4
AW
1760 /* The zero page may always be pinned */
1761 if (is_zero_pfn(page_to_pfn(page)))
1762 return true;
1763
1764 /* Coherent device memory must always allow eviction. */
1765 if (is_device_coherent_page(page))
1766 return false;
1767
1768 /* Otherwise, non-movable zone pages can be pinned. */
1769 return !is_zone_movable_page(page);
8e3560d9
PT
1770}
1771#else
6077c943 1772static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9
PT
1773{
1774 return true;
1775}
1776#endif
1777
6077c943 1778static inline bool folio_is_longterm_pinnable(struct folio *folio)
536939ff 1779{
6077c943 1780 return is_longterm_pinnable_page(&folio->page);
536939ff
MWO
1781}
1782
2f1b6248 1783static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1784{
1785 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1786 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1787}
2f1b6248 1788
348f8b6c
DH
1789static inline void set_page_node(struct page *page, unsigned long node)
1790{
1791 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1792 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1793}
89689ae7 1794
2f1b6248 1795static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1796 unsigned long node, unsigned long pfn)
1da177e4 1797{
348f8b6c
DH
1798 set_page_zone(page, zone);
1799 set_page_node(page, node);
9127ab4f 1800#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1801 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1802#endif
1da177e4
LT
1803}
1804
7b230db3
MWO
1805/**
1806 * folio_nr_pages - The number of pages in the folio.
1807 * @folio: The folio.
1808 *
1809 * Return: A positive power of two.
1810 */
1811static inline long folio_nr_pages(struct folio *folio)
1812{
c3a15bff
MWO
1813 if (!folio_test_large(folio))
1814 return 1;
1815#ifdef CONFIG_64BIT
1816 return folio->_folio_nr_pages;
1817#else
1818 return 1L << folio->_folio_order;
1819#endif
7b230db3
MWO
1820}
1821
21a000fe
MWO
1822/*
1823 * compound_nr() returns the number of pages in this potentially compound
1824 * page. compound_nr() can be called on a tail page, and is defined to
1825 * return 1 in that case.
1826 */
1827static inline unsigned long compound_nr(struct page *page)
1828{
1829 struct folio *folio = (struct folio *)page;
1830
1831 if (!test_bit(PG_head, &folio->flags))
1832 return 1;
1833#ifdef CONFIG_64BIT
1834 return folio->_folio_nr_pages;
1835#else
1836 return 1L << folio->_folio_order;
1837#endif
1838}
1839
1840/**
1841 * thp_nr_pages - The number of regular pages in this huge page.
1842 * @page: The head page of a huge page.
1843 */
1844static inline int thp_nr_pages(struct page *page)
1845{
1846 return folio_nr_pages((struct folio *)page);
1847}
1848
7b230db3
MWO
1849/**
1850 * folio_next - Move to the next physical folio.
1851 * @folio: The folio we're currently operating on.
1852 *
1853 * If you have physically contiguous memory which may span more than
1854 * one folio (eg a &struct bio_vec), use this function to move from one
1855 * folio to the next. Do not use it if the memory is only virtually
1856 * contiguous as the folios are almost certainly not adjacent to each
1857 * other. This is the folio equivalent to writing ``page++``.
1858 *
1859 * Context: We assume that the folios are refcounted and/or locked at a
1860 * higher level and do not adjust the reference counts.
1861 * Return: The next struct folio.
1862 */
1863static inline struct folio *folio_next(struct folio *folio)
1864{
1865 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1866}
1867
1868/**
1869 * folio_shift - The size of the memory described by this folio.
1870 * @folio: The folio.
1871 *
1872 * A folio represents a number of bytes which is a power-of-two in size.
1873 * This function tells you which power-of-two the folio is. See also
1874 * folio_size() and folio_order().
1875 *
1876 * Context: The caller should have a reference on the folio to prevent
1877 * it from being split. It is not necessary for the folio to be locked.
1878 * Return: The base-2 logarithm of the size of this folio.
1879 */
1880static inline unsigned int folio_shift(struct folio *folio)
1881{
1882 return PAGE_SHIFT + folio_order(folio);
1883}
1884
1885/**
1886 * folio_size - The number of bytes in a folio.
1887 * @folio: The folio.
1888 *
1889 * Context: The caller should have a reference on the folio to prevent
1890 * it from being split. It is not necessary for the folio to be locked.
1891 * Return: The number of bytes in this folio.
1892 */
1893static inline size_t folio_size(struct folio *folio)
1894{
1895 return PAGE_SIZE << folio_order(folio);
1896}
1897
b424de33
MWO
1898#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1899static inline int arch_make_page_accessible(struct page *page)
1900{
1901 return 0;
1902}
1903#endif
1904
1905#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1906static inline int arch_make_folio_accessible(struct folio *folio)
1907{
1908 int ret;
1909 long i, nr = folio_nr_pages(folio);
1910
1911 for (i = 0; i < nr; i++) {
1912 ret = arch_make_page_accessible(folio_page(folio, i));
1913 if (ret)
1914 break;
1915 }
1916
1917 return ret;
1918}
1919#endif
1920
f6ac2354
CL
1921/*
1922 * Some inline functions in vmstat.h depend on page_zone()
1923 */
1924#include <linux/vmstat.h>
1925
33dd4e0e 1926static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1927{
1dff8083 1928 return page_to_virt(page);
1da177e4
LT
1929}
1930
1931#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1932#define HASHED_PAGE_VIRTUAL
1933#endif
1934
1935#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1936static inline void *page_address(const struct page *page)
1937{
1938 return page->virtual;
1939}
1940static inline void set_page_address(struct page *page, void *address)
1941{
1942 page->virtual = address;
1943}
1da177e4
LT
1944#define page_address_init() do { } while(0)
1945#endif
1946
1947#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1948void *page_address(const struct page *page);
1da177e4
LT
1949void set_page_address(struct page *page, void *virtual);
1950void page_address_init(void);
1951#endif
1952
1953#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1954#define page_address(page) lowmem_page_address(page)
1955#define set_page_address(page, address) do { } while(0)
1956#define page_address_init() do { } while(0)
1957#endif
1958
7d4203c1
VB
1959static inline void *folio_address(const struct folio *folio)
1960{
1961 return page_address(&folio->page);
1962}
1963
e39155ea 1964extern void *page_rmapping(struct page *page);
f6ab1f7f
HY
1965extern pgoff_t __page_file_index(struct page *page);
1966
1da177e4
LT
1967/*
1968 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1969 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1970 */
1971static inline pgoff_t page_index(struct page *page)
1972{
1973 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1974 return __page_file_index(page);
1da177e4
LT
1975 return page->index;
1976}
1977
2f064f34
MH
1978/*
1979 * Return true only if the page has been allocated with
1980 * ALLOC_NO_WATERMARKS and the low watermark was not
1981 * met implying that the system is under some pressure.
1982 */
1d7bab6a 1983static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1984{
1985 /*
c07aea3e
MC
1986 * lru.next has bit 1 set if the page is allocated from the
1987 * pfmemalloc reserves. Callers may simply overwrite it if
1988 * they do not need to preserve that information.
2f064f34 1989 */
c07aea3e 1990 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
1991}
1992
02d65d6f
SK
1993/*
1994 * Return true only if the folio has been allocated with
1995 * ALLOC_NO_WATERMARKS and the low watermark was not
1996 * met implying that the system is under some pressure.
1997 */
1998static inline bool folio_is_pfmemalloc(const struct folio *folio)
1999{
2000 /*
2001 * lru.next has bit 1 set if the page is allocated from the
2002 * pfmemalloc reserves. Callers may simply overwrite it if
2003 * they do not need to preserve that information.
2004 */
2005 return (uintptr_t)folio->lru.next & BIT(1);
2006}
2007
2f064f34
MH
2008/*
2009 * Only to be called by the page allocator on a freshly allocated
2010 * page.
2011 */
2012static inline void set_page_pfmemalloc(struct page *page)
2013{
c07aea3e 2014 page->lru.next = (void *)BIT(1);
2f064f34
MH
2015}
2016
2017static inline void clear_page_pfmemalloc(struct page *page)
2018{
c07aea3e 2019 page->lru.next = NULL;
2f064f34
MH
2020}
2021
1c0fe6e3
NP
2022/*
2023 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2024 */
2025extern void pagefault_out_of_memory(void);
2026
1da177e4 2027#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 2028#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 2029#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 2030
ddd588b5 2031/*
7bf02ea2 2032 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
2033 * various contexts.
2034 */
4b59e6c4 2035#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 2036
974f4367
MH
2037extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2038static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2039{
2040 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2041}
1da177e4 2042
21b85b09
MK
2043/*
2044 * Parameter block passed down to zap_pte_range in exceptional cases.
2045 */
2046struct zap_details {
2047 struct folio *single_folio; /* Locked folio to be unmapped */
2048 bool even_cows; /* Zap COWed private pages too? */
2049 zap_flags_t zap_flags; /* Extra flags for zapping */
2050};
2051
2052/*
2053 * Whether to drop the pte markers, for example, the uffd-wp information for
2054 * file-backed memory. This should only be specified when we will completely
2055 * drop the page in the mm, either by truncation or unmapping of the vma. By
2056 * default, the flag is not set.
2057 */
2058#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
04ada095
MK
2059/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2060#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
21b85b09 2061
710ec38b 2062#ifdef CONFIG_MMU
7f43add4 2063extern bool can_do_mlock(void);
710ec38b
AB
2064#else
2065static inline bool can_do_mlock(void) { return false; }
2066#endif
d7c9e99a
AG
2067extern int user_shm_lock(size_t, struct ucounts *);
2068extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 2069
318e9342
VMO
2070struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2071 pte_t pte);
25b2995a
CH
2072struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2073 pte_t pte);
28093f9f
GS
2074struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2075 pmd_t pmd);
7e675137 2076
27d036e3
LR
2077void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2078 unsigned long size);
21b85b09
MK
2079void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2080 unsigned long size, struct zap_details *details);
e9adcfec
MK
2081static inline void zap_vma_pages(struct vm_area_struct *vma)
2082{
2083 zap_page_range_single(vma, vma->vm_start,
2084 vma->vm_end - vma->vm_start, NULL);
2085}
763ecb03
LH
2086void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2087 struct vm_area_struct *start_vma, unsigned long start,
2088 unsigned long end);
e6473092 2089
ac46d4f3
JG
2090struct mmu_notifier_range;
2091
42b77728 2092void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 2093 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
2094int
2095copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 2096int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 2097 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
2098int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2099 unsigned long *pfn);
d87fe660 2100int follow_phys(struct vm_area_struct *vma, unsigned long address,
2101 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
2102int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2103 void *buf, int len, int write);
1da177e4 2104
7caef267 2105extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 2106extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 2107void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 2108void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 2109int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 2110
7ee1dd3f 2111#ifdef CONFIG_MMU
2b740303 2112extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2113 unsigned long address, unsigned int flags,
2114 struct pt_regs *regs);
64019a2e 2115extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
2116 unsigned long address, unsigned int fault_flags,
2117 bool *unlocked);
977fbdcd
MW
2118void unmap_mapping_pages(struct address_space *mapping,
2119 pgoff_t start, pgoff_t nr, bool even_cows);
2120void unmap_mapping_range(struct address_space *mapping,
2121 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 2122#else
2b740303 2123static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2124 unsigned long address, unsigned int flags,
2125 struct pt_regs *regs)
7ee1dd3f
DH
2126{
2127 /* should never happen if there's no MMU */
2128 BUG();
2129 return VM_FAULT_SIGBUS;
2130}
64019a2e 2131static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 2132 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
2133{
2134 /* should never happen if there's no MMU */
2135 BUG();
2136 return -EFAULT;
2137}
977fbdcd
MW
2138static inline void unmap_mapping_pages(struct address_space *mapping,
2139 pgoff_t start, pgoff_t nr, bool even_cows) { }
2140static inline void unmap_mapping_range(struct address_space *mapping,
2141 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 2142#endif
f33ea7f4 2143
977fbdcd
MW
2144static inline void unmap_shared_mapping_range(struct address_space *mapping,
2145 loff_t const holebegin, loff_t const holelen)
2146{
2147 unmap_mapping_range(mapping, holebegin, holelen, 0);
2148}
2149
2150extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2151 void *buf, int len, unsigned int gup_flags);
5ddd36b9 2152extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 2153 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
2154extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2155 void *buf, int len, unsigned int gup_flags);
1da177e4 2156
64019a2e 2157long get_user_pages_remote(struct mm_struct *mm,
1e987790 2158 unsigned long start, unsigned long nr_pages,
9beae1ea 2159 unsigned int gup_flags, struct page **pages,
5b56d49f 2160 struct vm_area_struct **vmas, int *locked);
64019a2e 2161long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2162 unsigned long start, unsigned long nr_pages,
2163 unsigned int gup_flags, struct page **pages,
2164 struct vm_area_struct **vmas, int *locked);
c12d2da5 2165long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 2166 unsigned int gup_flags, struct page **pages,
cde70140 2167 struct vm_area_struct **vmas);
eddb1c22
JH
2168long pin_user_pages(unsigned long start, unsigned long nr_pages,
2169 unsigned int gup_flags, struct page **pages,
2170 struct vm_area_struct **vmas);
c12d2da5 2171long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 2172 struct page **pages, unsigned int gup_flags);
91429023
JH
2173long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2174 struct page **pages, unsigned int gup_flags);
9a4e9f3b 2175
73b0140b
IW
2176int get_user_pages_fast(unsigned long start, int nr_pages,
2177 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
2178int pin_user_pages_fast(unsigned long start, int nr_pages,
2179 unsigned int gup_flags, struct page **pages);
8025e5dd 2180
79eb597c
DJ
2181int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2182int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2183 struct task_struct *task, bool bypass_rlim);
2184
18022c5d
MG
2185struct kvec;
2186int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
2187 struct page **pages);
f3e8fccd 2188struct page *get_dump_page(unsigned long addr);
1da177e4 2189
b5e84594
MWO
2190bool folio_mark_dirty(struct folio *folio);
2191bool set_page_dirty(struct page *page);
1da177e4 2192int set_page_dirty_lock(struct page *page);
b9ea2515 2193
a9090253 2194int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 2195
b6a2fea3
OW
2196extern unsigned long move_page_tables(struct vm_area_struct *vma,
2197 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
2198 unsigned long new_addr, unsigned long len,
2199 bool need_rmap_locks);
58705444
PX
2200
2201/*
2202 * Flags used by change_protection(). For now we make it a bitmap so
2203 * that we can pass in multiple flags just like parameters. However
2204 * for now all the callers are only use one of the flags at the same
2205 * time.
2206 */
64fe24a3
DH
2207/*
2208 * Whether we should manually check if we can map individual PTEs writable,
2209 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2210 * PTEs automatically in a writable mapping.
2211 */
2212#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
2213/* Whether this protection change is for NUMA hints */
2214#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2215/* Whether this change is for write protecting */
2216#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2217#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2218#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2219 MM_CP_UFFD_WP_RESOLVE)
58705444 2220
eb309ec8
DH
2221int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2222static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2223{
2224 /*
2225 * We want to check manually if we can change individual PTEs writable
2226 * if we can't do that automatically for all PTEs in a mapping. For
2227 * private mappings, that's always the case when we have write
2228 * permissions as we properly have to handle COW.
2229 */
2230 if (vma->vm_flags & VM_SHARED)
2231 return vma_wants_writenotify(vma, vma->vm_page_prot);
2232 return !!(vma->vm_flags & VM_WRITE);
2233
2234}
6a56ccbc
DH
2235bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2236 pte_t pte);
a79390f5 2237extern long change_protection(struct mmu_gather *tlb,
4a18419f 2238 struct vm_area_struct *vma, unsigned long start,
1ef488ed 2239 unsigned long end, unsigned long cp_flags);
2286a691
LH
2240extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2241 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2242 unsigned long start, unsigned long end, unsigned long newflags);
1da177e4 2243
465a454f
PZ
2244/*
2245 * doesn't attempt to fault and will return short.
2246 */
dadbb612
SJ
2247int get_user_pages_fast_only(unsigned long start, int nr_pages,
2248 unsigned int gup_flags, struct page **pages);
104acc32
JH
2249int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2250 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2251
2252static inline bool get_user_page_fast_only(unsigned long addr,
2253 unsigned int gup_flags, struct page **pagep)
2254{
2255 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2256}
d559db08
KH
2257/*
2258 * per-process(per-mm_struct) statistics.
2259 */
d559db08
KH
2260static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2261{
f1a79412 2262 return percpu_counter_read_positive(&mm->rss_stat[member]);
69c97823 2263}
d559db08 2264
f1a79412 2265void mm_trace_rss_stat(struct mm_struct *mm, int member);
b3d1411b 2266
d559db08
KH
2267static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2268{
f1a79412 2269 percpu_counter_add(&mm->rss_stat[member], value);
b3d1411b 2270
f1a79412 2271 mm_trace_rss_stat(mm, member);
d559db08
KH
2272}
2273
2274static inline void inc_mm_counter(struct mm_struct *mm, int member)
2275{
f1a79412 2276 percpu_counter_inc(&mm->rss_stat[member]);
b3d1411b 2277
f1a79412 2278 mm_trace_rss_stat(mm, member);
d559db08
KH
2279}
2280
2281static inline void dec_mm_counter(struct mm_struct *mm, int member)
2282{
f1a79412 2283 percpu_counter_dec(&mm->rss_stat[member]);
b3d1411b 2284
f1a79412 2285 mm_trace_rss_stat(mm, member);
d559db08
KH
2286}
2287
eca56ff9
JM
2288/* Optimized variant when page is already known not to be PageAnon */
2289static inline int mm_counter_file(struct page *page)
2290{
2291 if (PageSwapBacked(page))
2292 return MM_SHMEMPAGES;
2293 return MM_FILEPAGES;
2294}
2295
2296static inline int mm_counter(struct page *page)
2297{
2298 if (PageAnon(page))
2299 return MM_ANONPAGES;
2300 return mm_counter_file(page);
2301}
2302
d559db08
KH
2303static inline unsigned long get_mm_rss(struct mm_struct *mm)
2304{
2305 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2306 get_mm_counter(mm, MM_ANONPAGES) +
2307 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2308}
2309
2310static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2311{
2312 return max(mm->hiwater_rss, get_mm_rss(mm));
2313}
2314
2315static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2316{
2317 return max(mm->hiwater_vm, mm->total_vm);
2318}
2319
2320static inline void update_hiwater_rss(struct mm_struct *mm)
2321{
2322 unsigned long _rss = get_mm_rss(mm);
2323
2324 if ((mm)->hiwater_rss < _rss)
2325 (mm)->hiwater_rss = _rss;
2326}
2327
2328static inline void update_hiwater_vm(struct mm_struct *mm)
2329{
2330 if (mm->hiwater_vm < mm->total_vm)
2331 mm->hiwater_vm = mm->total_vm;
2332}
2333
695f0559
PC
2334static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2335{
2336 mm->hiwater_rss = get_mm_rss(mm);
2337}
2338
d559db08
KH
2339static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2340 struct mm_struct *mm)
2341{
2342 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2343
2344 if (*maxrss < hiwater_rss)
2345 *maxrss = hiwater_rss;
2346}
2347
53bddb4e 2348#if defined(SPLIT_RSS_COUNTING)
05af2e10 2349void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2350#else
05af2e10 2351static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2352{
2353}
2354#endif
465a454f 2355
78e7c5af
AK
2356#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2357static inline int pte_special(pte_t pte)
2358{
2359 return 0;
2360}
2361
2362static inline pte_t pte_mkspecial(pte_t pte)
2363{
2364 return pte;
2365}
2366#endif
2367
17596731 2368#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2369static inline int pte_devmap(pte_t pte)
2370{
2371 return 0;
2372}
2373#endif
2374
25ca1d6c
NK
2375extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2376 spinlock_t **ptl);
2377static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2378 spinlock_t **ptl)
2379{
2380 pte_t *ptep;
2381 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2382 return ptep;
2383}
c9cfcddf 2384
c2febafc
KS
2385#ifdef __PAGETABLE_P4D_FOLDED
2386static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2387 unsigned long address)
2388{
2389 return 0;
2390}
2391#else
2392int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2393#endif
2394
b4e98d9a 2395#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2396static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2397 unsigned long address)
2398{
2399 return 0;
2400}
b4e98d9a
KS
2401static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2402static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2403
5f22df00 2404#else
c2febafc 2405int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2406
b4e98d9a
KS
2407static inline void mm_inc_nr_puds(struct mm_struct *mm)
2408{
6d212db1
MS
2409 if (mm_pud_folded(mm))
2410 return;
af5b0f6a 2411 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2412}
2413
2414static inline void mm_dec_nr_puds(struct mm_struct *mm)
2415{
6d212db1
MS
2416 if (mm_pud_folded(mm))
2417 return;
af5b0f6a 2418 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2419}
5f22df00
NP
2420#endif
2421
2d2f5119 2422#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2423static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2424 unsigned long address)
2425{
2426 return 0;
2427}
dc6c9a35 2428
dc6c9a35
KS
2429static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2430static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2431
5f22df00 2432#else
1bb3630e 2433int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2434
dc6c9a35
KS
2435static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2436{
6d212db1
MS
2437 if (mm_pmd_folded(mm))
2438 return;
af5b0f6a 2439 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2440}
2441
2442static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2443{
6d212db1
MS
2444 if (mm_pmd_folded(mm))
2445 return;
af5b0f6a 2446 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2447}
5f22df00
NP
2448#endif
2449
c4812909 2450#ifdef CONFIG_MMU
af5b0f6a 2451static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2452{
af5b0f6a 2453 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2454}
2455
af5b0f6a 2456static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2457{
af5b0f6a 2458 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2459}
2460
2461static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2462{
af5b0f6a 2463 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2464}
2465
2466static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2467{
af5b0f6a 2468 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2469}
2470#else
c4812909 2471
af5b0f6a
KS
2472static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2473static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2474{
2475 return 0;
2476}
2477
2478static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2479static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2480#endif
2481
4cf58924
JFG
2482int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2483int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2484
f949286c
MR
2485#if defined(CONFIG_MMU)
2486
c2febafc
KS
2487static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2488 unsigned long address)
2489{
2490 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2491 NULL : p4d_offset(pgd, address);
2492}
2493
2494static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2495 unsigned long address)
1da177e4 2496{
c2febafc
KS
2497 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2498 NULL : pud_offset(p4d, address);
1da177e4 2499}
d8626138 2500
1da177e4
LT
2501static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2502{
1bb3630e
HD
2503 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2504 NULL: pmd_offset(pud, address);
1da177e4 2505}
f949286c 2506#endif /* CONFIG_MMU */
1bb3630e 2507
57c1ffce 2508#if USE_SPLIT_PTE_PTLOCKS
597d795a 2509#if ALLOC_SPLIT_PTLOCKS
b35f1819 2510void __init ptlock_cache_init(void);
539edb58
PZ
2511extern bool ptlock_alloc(struct page *page);
2512extern void ptlock_free(struct page *page);
2513
2514static inline spinlock_t *ptlock_ptr(struct page *page)
2515{
2516 return page->ptl;
2517}
597d795a 2518#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2519static inline void ptlock_cache_init(void)
2520{
2521}
2522
49076ec2
KS
2523static inline bool ptlock_alloc(struct page *page)
2524{
49076ec2
KS
2525 return true;
2526}
539edb58 2527
49076ec2
KS
2528static inline void ptlock_free(struct page *page)
2529{
49076ec2
KS
2530}
2531
2532static inline spinlock_t *ptlock_ptr(struct page *page)
2533{
539edb58 2534 return &page->ptl;
49076ec2 2535}
597d795a 2536#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2537
2538static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2539{
2540 return ptlock_ptr(pmd_page(*pmd));
2541}
2542
2543static inline bool ptlock_init(struct page *page)
2544{
2545 /*
2546 * prep_new_page() initialize page->private (and therefore page->ptl)
2547 * with 0. Make sure nobody took it in use in between.
2548 *
2549 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2550 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2551 */
309381fe 2552 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2553 if (!ptlock_alloc(page))
2554 return false;
2555 spin_lock_init(ptlock_ptr(page));
2556 return true;
2557}
2558
57c1ffce 2559#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2560/*
2561 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2562 */
49076ec2
KS
2563static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2564{
2565 return &mm->page_table_lock;
2566}
b35f1819 2567static inline void ptlock_cache_init(void) {}
49076ec2 2568static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2569static inline void ptlock_free(struct page *page) {}
57c1ffce 2570#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2571
b35f1819
KS
2572static inline void pgtable_init(void)
2573{
2574 ptlock_cache_init();
2575 pgtable_cache_init();
2576}
2577
b4ed71f5 2578static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2579{
706874e9
VD
2580 if (!ptlock_init(page))
2581 return false;
1d40a5ea 2582 __SetPageTable(page);
f0c0c115 2583 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2584 return true;
2f569afd
MS
2585}
2586
b4ed71f5 2587static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2588{
9e247bab 2589 ptlock_free(page);
1d40a5ea 2590 __ClearPageTable(page);
f0c0c115 2591 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2592}
2593
c74df32c
HD
2594#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2595({ \
4c21e2f2 2596 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2597 pte_t *__pte = pte_offset_map(pmd, address); \
2598 *(ptlp) = __ptl; \
2599 spin_lock(__ptl); \
2600 __pte; \
2601})
2602
2603#define pte_unmap_unlock(pte, ptl) do { \
2604 spin_unlock(ptl); \
2605 pte_unmap(pte); \
2606} while (0)
2607
4cf58924 2608#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2609
2610#define pte_alloc_map(mm, pmd, address) \
4cf58924 2611 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2612
c74df32c 2613#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2614 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2615 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2616
1bb3630e 2617#define pte_alloc_kernel(pmd, address) \
4cf58924 2618 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2619 NULL: pte_offset_kernel(pmd, address))
1da177e4 2620
e009bb30
KS
2621#if USE_SPLIT_PMD_PTLOCKS
2622
7e25de77 2623static inline struct page *pmd_pgtable_page(pmd_t *pmd)
634391ac
MS
2624{
2625 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2626 return virt_to_page((void *)((unsigned long) pmd & mask));
2627}
2628
e009bb30
KS
2629static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2630{
373dfda2 2631 return ptlock_ptr(pmd_pgtable_page(pmd));
e009bb30
KS
2632}
2633
b2b29d6d 2634static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2635{
e009bb30
KS
2636#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2637 page->pmd_huge_pte = NULL;
2638#endif
49076ec2 2639 return ptlock_init(page);
e009bb30
KS
2640}
2641
b2b29d6d 2642static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2643{
2644#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2645 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2646#endif
49076ec2 2647 ptlock_free(page);
e009bb30
KS
2648}
2649
373dfda2 2650#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
e009bb30
KS
2651
2652#else
2653
9a86cb7b
KS
2654static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2655{
2656 return &mm->page_table_lock;
2657}
2658
b2b29d6d
MW
2659static inline bool pmd_ptlock_init(struct page *page) { return true; }
2660static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2661
c389a250 2662#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2663
e009bb30
KS
2664#endif
2665
9a86cb7b
KS
2666static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2667{
2668 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2669 spin_lock(ptl);
2670 return ptl;
2671}
2672
b2b29d6d
MW
2673static inline bool pgtable_pmd_page_ctor(struct page *page)
2674{
2675 if (!pmd_ptlock_init(page))
2676 return false;
2677 __SetPageTable(page);
f0c0c115 2678 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2679 return true;
2680}
2681
2682static inline void pgtable_pmd_page_dtor(struct page *page)
2683{
2684 pmd_ptlock_free(page);
2685 __ClearPageTable(page);
f0c0c115 2686 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2687}
2688
a00cc7d9
MW
2689/*
2690 * No scalability reason to split PUD locks yet, but follow the same pattern
2691 * as the PMD locks to make it easier if we decide to. The VM should not be
2692 * considered ready to switch to split PUD locks yet; there may be places
2693 * which need to be converted from page_table_lock.
2694 */
2695static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2696{
2697 return &mm->page_table_lock;
2698}
2699
2700static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2701{
2702 spinlock_t *ptl = pud_lockptr(mm, pud);
2703
2704 spin_lock(ptl);
2705 return ptl;
2706}
62906027 2707
a00cc7d9 2708extern void __init pagecache_init(void);
49a7f04a
DH
2709extern void free_initmem(void);
2710
69afade7
JL
2711/*
2712 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2713 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2714 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2715 * Return pages freed into the buddy system.
2716 */
11199692 2717extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2718 int poison, const char *s);
c3d5f5f0 2719
c3d5f5f0 2720extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2721extern void mem_init_print_info(void);
69afade7 2722
4b50bcc7 2723extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2724
69afade7 2725/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2726static inline void free_reserved_page(struct page *page)
69afade7
JL
2727{
2728 ClearPageReserved(page);
2729 init_page_count(page);
2730 __free_page(page);
69afade7
JL
2731 adjust_managed_page_count(page, 1);
2732}
a0cd7a7c 2733#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2734
2735static inline void mark_page_reserved(struct page *page)
2736{
2737 SetPageReserved(page);
2738 adjust_managed_page_count(page, -1);
2739}
2740
2741/*
2742 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2743 * The freed pages will be poisoned with pattern "poison" if it's within
2744 * range [0, UCHAR_MAX].
2745 * Return pages freed into the buddy system.
69afade7
JL
2746 */
2747static inline unsigned long free_initmem_default(int poison)
2748{
2749 extern char __init_begin[], __init_end[];
2750
11199692 2751 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2752 poison, "unused kernel image (initmem)");
69afade7
JL
2753}
2754
7ee3d4e8
JL
2755static inline unsigned long get_num_physpages(void)
2756{
2757 int nid;
2758 unsigned long phys_pages = 0;
2759
2760 for_each_online_node(nid)
2761 phys_pages += node_present_pages(nid);
2762
2763 return phys_pages;
2764}
2765
c713216d 2766/*
3f08a302 2767 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2768 * zones, allocate the backing mem_map and account for memory holes in an
2769 * architecture independent manner.
c713216d
MG
2770 *
2771 * An architecture is expected to register range of page frames backed by
0ee332c1 2772 * physical memory with memblock_add[_node]() before calling
9691a071 2773 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2774 * usage, an architecture is expected to do something like
2775 *
2776 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2777 * max_highmem_pfn};
2778 * for_each_valid_physical_page_range()
952eea9b 2779 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2780 * free_area_init(max_zone_pfns);
c713216d 2781 */
9691a071 2782void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2783unsigned long node_map_pfn_alignment(void);
32996250
YL
2784unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2785 unsigned long end_pfn);
c713216d
MG
2786extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2787 unsigned long end_pfn);
2788extern void get_pfn_range_for_nid(unsigned int nid,
2789 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 2790
a9ee6cf5 2791#ifndef CONFIG_NUMA
6f24fbd3 2792static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2793{
2794 return 0;
2795}
2796#else
2797/* please see mm/page_alloc.c */
2798extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2799#endif
2800
0e0b864e 2801extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2802extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2803 unsigned long, unsigned long, enum meminit_context,
2804 struct vmem_altmap *, int migratetype);
bc75d33f 2805extern void setup_per_zone_wmarks(void);
bd3400ea 2806extern void calculate_min_free_kbytes(void);
1b79acc9 2807extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2808extern void mem_init(void);
8feae131 2809extern void __init mmap_init(void);
974f4367
MH
2810
2811extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2812static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
2813{
2814 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
2815}
d02bd27b 2816extern long si_mem_available(void);
1da177e4
LT
2817extern void si_meminfo(struct sysinfo * val);
2818extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2819#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2820extern unsigned long arch_reserved_kernel_pages(void);
2821#endif
1da177e4 2822
a8e99259
MH
2823extern __printf(3, 4)
2824void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2825
e7c8d5c9 2826extern void setup_per_cpu_pageset(void);
e7c8d5c9 2827
75f7ad8e
PS
2828/* page_alloc.c */
2829extern int min_free_kbytes;
1c30844d 2830extern int watermark_boost_factor;
795ae7a0 2831extern int watermark_scale_factor;
51930df5 2832extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2833
8feae131 2834/* nommu.c */
33e5d769 2835extern atomic_long_t mmap_pages_allocated;
7e660872 2836extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2837
6b2dbba8 2838/* interval_tree.c */
6b2dbba8 2839void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2840 struct rb_root_cached *root);
9826a516
ML
2841void vma_interval_tree_insert_after(struct vm_area_struct *node,
2842 struct vm_area_struct *prev,
f808c13f 2843 struct rb_root_cached *root);
6b2dbba8 2844void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2845 struct rb_root_cached *root);
2846struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2847 unsigned long start, unsigned long last);
2848struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2849 unsigned long start, unsigned long last);
2850
2851#define vma_interval_tree_foreach(vma, root, start, last) \
2852 for (vma = vma_interval_tree_iter_first(root, start, last); \
2853 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2854
bf181b9f 2855void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2856 struct rb_root_cached *root);
bf181b9f 2857void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2858 struct rb_root_cached *root);
2859struct anon_vma_chain *
2860anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2861 unsigned long start, unsigned long last);
bf181b9f
ML
2862struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2863 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2864#ifdef CONFIG_DEBUG_VM_RB
2865void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2866#endif
bf181b9f
ML
2867
2868#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2869 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2870 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2871
1da177e4 2872/* mmap.c */
34b4e4aa 2873extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
7c9813e8
LH
2874extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
2875 unsigned long start, unsigned long end, pgoff_t pgoff,
2876 struct vm_area_struct *next);
cf51e86d
LH
2877extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
2878 unsigned long start, unsigned long end, pgoff_t pgoff);
9760ebff 2879extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
f2ebfe43
LH
2880 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
2881 unsigned long end, unsigned long vm_flags, struct anon_vma *,
2882 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
2883 struct anon_vma_name *);
1da177e4 2884extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
9760ebff
LH
2885extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
2886 unsigned long addr, int new_below);
2887extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
2888 unsigned long addr, int new_below);
1da177e4 2889extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 2890extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2891extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2892 unsigned long addr, unsigned long len, pgoff_t pgoff,
2893 bool *need_rmap_locks);
1da177e4 2894extern void exit_mmap(struct mm_struct *);
925d1c40 2895
9c599024
CG
2896static inline int check_data_rlimit(unsigned long rlim,
2897 unsigned long new,
2898 unsigned long start,
2899 unsigned long end_data,
2900 unsigned long start_data)
2901{
2902 if (rlim < RLIM_INFINITY) {
2903 if (((new - start) + (end_data - start_data)) > rlim)
2904 return -ENOSPC;
2905 }
2906
2907 return 0;
2908}
2909
7906d00c
AA
2910extern int mm_take_all_locks(struct mm_struct *mm);
2911extern void mm_drop_all_locks(struct mm_struct *mm);
2912
fe69d560 2913extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 2914extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 2915extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2916extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2917
84638335
KK
2918extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2919extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2920
2eefd878
DS
2921extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2922 const struct vm_special_mapping *sm);
3935ed6a
SS
2923extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2924 unsigned long addr, unsigned long len,
a62c34bd
AL
2925 unsigned long flags,
2926 const struct vm_special_mapping *spec);
2927/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2928extern int install_special_mapping(struct mm_struct *mm,
2929 unsigned long addr, unsigned long len,
2930 unsigned long flags, struct page **pages);
1da177e4 2931
649775be 2932unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 2933unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 2934
1da177e4
LT
2935extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2936
0165ab44 2937extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2938 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2939 struct list_head *uf);
1fcfd8db 2940extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2941 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2942 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
183654ce 2943extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
11f9a21a
LH
2944 unsigned long start, size_t len, struct list_head *uf,
2945 bool downgrade);
897ab3e0
MR
2946extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2947 struct list_head *uf);
0726b01e 2948extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2949
bebeb3d6 2950#ifdef CONFIG_MMU
27b26701
LH
2951extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2952 unsigned long start, unsigned long end,
2953 struct list_head *uf, bool downgrade);
bebeb3d6
ML
2954extern int __mm_populate(unsigned long addr, unsigned long len,
2955 int ignore_errors);
2956static inline void mm_populate(unsigned long addr, unsigned long len)
2957{
2958 /* Ignore errors */
2959 (void) __mm_populate(addr, len, 1);
2960}
2961#else
2962static inline void mm_populate(unsigned long addr, unsigned long len) {}
2963#endif
2964
e4eb1ff6 2965/* These take the mm semaphore themselves */
5d22fc25 2966extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2967extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2968extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2969extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2970 unsigned long, unsigned long,
2971 unsigned long, unsigned long);
1da177e4 2972
db4fbfb9
ML
2973struct vm_unmapped_area_info {
2974#define VM_UNMAPPED_AREA_TOPDOWN 1
2975 unsigned long flags;
2976 unsigned long length;
2977 unsigned long low_limit;
2978 unsigned long high_limit;
2979 unsigned long align_mask;
2980 unsigned long align_offset;
2981};
2982
baceaf1c 2983extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2984
85821aab 2985/* truncate.c */
1da177e4 2986extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2987extern void truncate_inode_pages_range(struct address_space *,
2988 loff_t lstart, loff_t lend);
91b0abe3 2989extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2990
2991/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2992extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2993extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2994 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2995extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 2996
1be7107f 2997extern unsigned long stack_guard_gap;
d05f3169 2998/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2999extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 3000
11192337 3001/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
3002extern int expand_downwards(struct vm_area_struct *vma,
3003 unsigned long address);
8ca3eb08 3004#if VM_GROWSUP
46dea3d0 3005extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 3006#else
fee7e49d 3007 #define expand_upwards(vma, address) (0)
9ab88515 3008#endif
1da177e4
LT
3009
3010/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3011extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3012extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3013 struct vm_area_struct **pprev);
3014
abdba2dd
LH
3015/*
3016 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3017 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 3018 */
ce6d42f2 3019struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 3020 unsigned long start_addr, unsigned long end_addr);
1da177e4 3021
ce6d42f2
LH
3022/**
3023 * vma_lookup() - Find a VMA at a specific address
3024 * @mm: The process address space.
3025 * @addr: The user address.
3026 *
3027 * Return: The vm_area_struct at the given address, %NULL otherwise.
3028 */
3029static inline
3030struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3031{
d7c62295 3032 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
3033}
3034
1be7107f
HD
3035static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3036{
3037 unsigned long vm_start = vma->vm_start;
3038
3039 if (vma->vm_flags & VM_GROWSDOWN) {
3040 vm_start -= stack_guard_gap;
3041 if (vm_start > vma->vm_start)
3042 vm_start = 0;
3043 }
3044 return vm_start;
3045}
3046
3047static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3048{
3049 unsigned long vm_end = vma->vm_end;
3050
3051 if (vma->vm_flags & VM_GROWSUP) {
3052 vm_end += stack_guard_gap;
3053 if (vm_end < vma->vm_end)
3054 vm_end = -PAGE_SIZE;
3055 }
3056 return vm_end;
3057}
3058
1da177e4
LT
3059static inline unsigned long vma_pages(struct vm_area_struct *vma)
3060{
3061 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3062}
3063
640708a2
PE
3064/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3065static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3066 unsigned long vm_start, unsigned long vm_end)
3067{
dc8635b2 3068 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
3069
3070 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3071 vma = NULL;
3072
3073 return vma;
3074}
3075
017b1660
MK
3076static inline bool range_in_vma(struct vm_area_struct *vma,
3077 unsigned long start, unsigned long end)
3078{
3079 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3080}
3081
bad849b3 3082#ifdef CONFIG_MMU
804af2cf 3083pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 3084void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
3085#else
3086static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3087{
3088 return __pgprot(0);
3089}
64e45507
PF
3090static inline void vma_set_page_prot(struct vm_area_struct *vma)
3091{
3092 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3093}
bad849b3
DH
3094#endif
3095
295992fb
CK
3096void vma_set_file(struct vm_area_struct *vma, struct file *file);
3097
5877231f 3098#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 3099unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
3100 unsigned long start, unsigned long end);
3101#endif
3102
deceb6cd 3103struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
3104int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3105 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
3106int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3107 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 3108int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
3109int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3110 struct page **pages, unsigned long *num);
a667d745
SJ
3111int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3112 unsigned long num);
3113int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3114 unsigned long num);
ae2b01f3 3115vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 3116 unsigned long pfn);
f5e6d1d5
MW
3117vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3118 unsigned long pfn, pgprot_t pgprot);
5d747637 3119vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 3120 pfn_t pfn);
574c5b3d
TH
3121vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
3122 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
3123vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3124 unsigned long addr, pfn_t pfn);
b4cbb197
LT
3125int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3126
1c8f4220
SJ
3127static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3128 unsigned long addr, struct page *page)
3129{
3130 int err = vm_insert_page(vma, addr, page);
3131
3132 if (err == -ENOMEM)
3133 return VM_FAULT_OOM;
3134 if (err < 0 && err != -EBUSY)
3135 return VM_FAULT_SIGBUS;
3136
3137 return VM_FAULT_NOPAGE;
3138}
3139
f8f6ae5d
JG
3140#ifndef io_remap_pfn_range
3141static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3142 unsigned long addr, unsigned long pfn,
3143 unsigned long size, pgprot_t prot)
3144{
3145 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3146}
3147#endif
3148
d97baf94
SJ
3149static inline vm_fault_t vmf_error(int err)
3150{
3151 if (err == -ENOMEM)
3152 return VM_FAULT_OOM;
3153 return VM_FAULT_SIGBUS;
3154}
3155
df06b37f
KB
3156struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3157 unsigned int foll_flags);
240aadee 3158
2b740303 3159static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3160{
3161 if (vm_fault & VM_FAULT_OOM)
3162 return -ENOMEM;
3163 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3164 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3165 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3166 return -EFAULT;
3167 return 0;
3168}
3169
a7f22660
DH
3170/*
3171 * Indicates for which pages that are write-protected in the page table,
3172 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
3173 * GUP pin will remain consistent with the pages mapped into the page tables
3174 * of the MM.
3175 *
3176 * Temporary unmapping of PageAnonExclusive() pages or clearing of
3177 * PageAnonExclusive() has to protect against concurrent GUP:
3178 * * Ordinary GUP: Using the PT lock
3179 * * GUP-fast and fork(): mm->write_protect_seq
088b8aa5
DH
3180 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
3181 * page_try_share_anon_rmap()
a7f22660
DH
3182 *
3183 * Must be called with the (sub)page that's actually referenced via the
3184 * page table entry, which might not necessarily be the head page for a
3185 * PTE-mapped THP.
84209e87
DH
3186 *
3187 * If the vma is NULL, we're coming from the GUP-fast path and might have
3188 * to fallback to the slow path just to lookup the vma.
a7f22660 3189 */
84209e87
DH
3190static inline bool gup_must_unshare(struct vm_area_struct *vma,
3191 unsigned int flags, struct page *page)
a7f22660
DH
3192{
3193 /*
3194 * FOLL_WRITE is implicitly handled correctly as the page table entry
3195 * has to be writable -- and if it references (part of) an anonymous
3196 * folio, that part is required to be marked exclusive.
3197 */
3198 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
3199 return false;
3200 /*
3201 * Note: PageAnon(page) is stable until the page is actually getting
3202 * freed.
3203 */
84209e87
DH
3204 if (!PageAnon(page)) {
3205 /*
3206 * We only care about R/O long-term pining: R/O short-term
3207 * pinning does not have the semantics to observe successive
3208 * changes through the process page tables.
3209 */
3210 if (!(flags & FOLL_LONGTERM))
3211 return false;
3212
3213 /* We really need the vma ... */
3214 if (!vma)
3215 return true;
3216
3217 /*
3218 * ... because we only care about writable private ("COW")
3219 * mappings where we have to break COW early.
3220 */
3221 return is_cow_mapping(vma->vm_flags);
3222 }
088b8aa5
DH
3223
3224 /* Paired with a memory barrier in page_try_share_anon_rmap(). */
3225 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
3226 smp_rmb();
3227
a7f22660
DH
3228 /*
3229 * Note that PageKsm() pages cannot be exclusive, and consequently,
3230 * cannot get pinned.
3231 */
3232 return !PageAnonExclusive(page);
3233}
3234
474098ed
DH
3235/*
3236 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3237 * a (NUMA hinting) fault is required.
3238 */
3239static inline bool gup_can_follow_protnone(unsigned int flags)
3240{
3241 /*
3242 * FOLL_FORCE has to be able to make progress even if the VMA is
3243 * inaccessible. Further, FOLL_FORCE access usually does not represent
3244 * application behaviour and we should avoid triggering NUMA hinting
3245 * faults.
3246 */
3247 return flags & FOLL_FORCE;
3248}
3249
8b1e0f81 3250typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3251extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3252 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3253extern int apply_to_existing_page_range(struct mm_struct *mm,
3254 unsigned long address, unsigned long size,
3255 pte_fn_t fn, void *data);
aee16b3c 3256
5749fcc5 3257extern void __init init_mem_debugging_and_hardening(void);
8823b1db 3258#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3259extern void __kernel_poison_pages(struct page *page, int numpages);
3260extern void __kernel_unpoison_pages(struct page *page, int numpages);
3261extern bool _page_poisoning_enabled_early;
3262DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3263static inline bool page_poisoning_enabled(void)
3264{
3265 return _page_poisoning_enabled_early;
3266}
3267/*
3268 * For use in fast paths after init_mem_debugging() has run, or when a
3269 * false negative result is not harmful when called too early.
3270 */
3271static inline bool page_poisoning_enabled_static(void)
3272{
3273 return static_branch_unlikely(&_page_poisoning_enabled);
3274}
3275static inline void kernel_poison_pages(struct page *page, int numpages)
3276{
3277 if (page_poisoning_enabled_static())
3278 __kernel_poison_pages(page, numpages);
3279}
3280static inline void kernel_unpoison_pages(struct page *page, int numpages)
3281{
3282 if (page_poisoning_enabled_static())
3283 __kernel_unpoison_pages(page, numpages);
3284}
8823b1db
LA
3285#else
3286static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3287static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3288static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3289static inline void kernel_poison_pages(struct page *page, int numpages) { }
3290static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3291#endif
3292
51cba1eb 3293DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3294static inline bool want_init_on_alloc(gfp_t flags)
3295{
51cba1eb
KC
3296 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3297 &init_on_alloc))
6471384a
AP
3298 return true;
3299 return flags & __GFP_ZERO;
3300}
3301
51cba1eb 3302DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3303static inline bool want_init_on_free(void)
3304{
51cba1eb
KC
3305 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3306 &init_on_free);
6471384a
AP
3307}
3308
8e57f8ac
VB
3309extern bool _debug_pagealloc_enabled_early;
3310DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3311
3312static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3313{
3314 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3315 _debug_pagealloc_enabled_early;
3316}
3317
3318/*
3319 * For use in fast paths after init_debug_pagealloc() has run, or when a
3320 * false negative result is not harmful when called too early.
3321 */
3322static inline bool debug_pagealloc_enabled_static(void)
031bc574 3323{
96a2b03f
VB
3324 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3325 return false;
3326
3327 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3328}
3329
5d6ad668 3330#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3331/*
5d6ad668
MR
3332 * To support DEBUG_PAGEALLOC architecture must ensure that
3333 * __kernel_map_pages() never fails
c87cbc1f 3334 */
d6332692
RE
3335extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3336
77bc7fd6
MR
3337static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3338{
3339 if (debug_pagealloc_enabled_static())
3340 __kernel_map_pages(page, numpages, 1);
3341}
3342
3343static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3344{
3345 if (debug_pagealloc_enabled_static())
3346 __kernel_map_pages(page, numpages, 0);
3347}
5d6ad668 3348#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3349static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3350static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3351#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3352
a6c19dfe 3353#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3354extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3355extern int in_gate_area_no_mm(unsigned long addr);
3356extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3357#else
a6c19dfe
AL
3358static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3359{
3360 return NULL;
3361}
3362static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3363static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3364{
3365 return 0;
3366}
1da177e4
LT
3367#endif /* __HAVE_ARCH_GATE_AREA */
3368
44a70ade
MH
3369extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3370
146732ce
JT
3371#ifdef CONFIG_SYSCTL
3372extern int sysctl_drop_caches;
32927393
CH
3373int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3374 loff_t *);
146732ce
JT
3375#endif
3376
cb731d6c 3377void drop_slab(void);
9d0243bc 3378
7a9166e3
LY
3379#ifndef CONFIG_MMU
3380#define randomize_va_space 0
3381#else
a62eaf15 3382extern int randomize_va_space;
7a9166e3 3383#endif
a62eaf15 3384
045e72ac 3385const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3386#ifdef CONFIG_MMU
03252919 3387void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3388#else
3389static inline void print_vma_addr(char *prefix, unsigned long rip)
3390{
3391}
3392#endif
e6e5494c 3393
35fd1eb1 3394void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3395struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3396 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3397 struct dev_pagemap *pgmap);
7b09f5af
FC
3398void pmd_init(void *addr);
3399void pud_init(void *addr);
29c71111 3400pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3401p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3402pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3403pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3404pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3405 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3406void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3407struct vmem_altmap;
56993b4e
AK
3408void *vmemmap_alloc_block_buf(unsigned long size, int node,
3409 struct vmem_altmap *altmap);
8f6aac41 3410void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2045a3b8
FC
3411void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3412 unsigned long addr, unsigned long next);
3413int vmemmap_check_pmd(pmd_t *pmd, int node,
3414 unsigned long addr, unsigned long next);
0aad818b 3415int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3416 int node, struct vmem_altmap *altmap);
2045a3b8
FC
3417int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3418 int node, struct vmem_altmap *altmap);
7b73d978
CH
3419int vmemmap_populate(unsigned long start, unsigned long end, int node,
3420 struct vmem_altmap *altmap);
c2b91e2e 3421void vmemmap_populate_print_last(void);
0197518c 3422#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3423void vmemmap_free(unsigned long start, unsigned long end,
3424 struct vmem_altmap *altmap);
0197518c 3425#endif
46723bfa 3426void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3427 unsigned long nr_pages);
6a46079c 3428
82ba011b
AK
3429enum mf_flags {
3430 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3431 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3432 MF_MUST_KILL = 1 << 2,
cf870c70 3433 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3434 MF_UNPOISON = 1 << 4,
67f22ba7 3435 MF_SW_SIMULATED = 1 << 5,
38f6d293 3436 MF_NO_RETRY = 1 << 6,
82ba011b 3437};
c36e2024
SR
3438int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3439 unsigned long count, int mf_flags);
83b57531 3440extern int memory_failure(unsigned long pfn, int flags);
06202231 3441extern void memory_failure_queue_kick(int cpu);
847ce401 3442extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3443extern int sysctl_memory_failure_early_kill;
3444extern int sysctl_memory_failure_recovery;
d0505e9f 3445extern void shake_page(struct page *p);
5844a486 3446extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3447extern int soft_offline_page(unsigned long pfn, int flags);
405ce051 3448#ifdef CONFIG_MEMORY_FAILURE
d302c239 3449extern void memory_failure_queue(unsigned long pfn, int flags);
e591ef7d
NH
3450extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3451 bool *migratable_cleared);
5033091d
NH
3452void num_poisoned_pages_inc(unsigned long pfn);
3453void num_poisoned_pages_sub(unsigned long pfn, long i);
405ce051 3454#else
d302c239
TL
3455static inline void memory_failure_queue(unsigned long pfn, int flags)
3456{
3457}
3458
e591ef7d
NH
3459static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3460 bool *migratable_cleared)
405ce051
NH
3461{
3462 return 0;
3463}
d027122d 3464
a46c9304 3465static inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
3466{
3467}
5033091d
NH
3468
3469static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3470{
3471}
3472#endif
3473
3474#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3475extern void memblk_nr_poison_inc(unsigned long pfn);
3476extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3477#else
3478static inline void memblk_nr_poison_inc(unsigned long pfn)
3479{
3480}
3481
3482static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3483{
3484}
405ce051 3485#endif
6a46079c 3486
03b122da
TL
3487#ifndef arch_memory_failure
3488static inline int arch_memory_failure(unsigned long pfn, int flags)
3489{
3490 return -ENXIO;
3491}
3492#endif
3493
3494#ifndef arch_is_platform_page
3495static inline bool arch_is_platform_page(u64 paddr)
3496{
3497 return false;
3498}
3499#endif
cc637b17
XX
3500
3501/*
3502 * Error handlers for various types of pages.
3503 */
cc3e2af4 3504enum mf_result {
cc637b17
XX
3505 MF_IGNORED, /* Error: cannot be handled */
3506 MF_FAILED, /* Error: handling failed */
3507 MF_DELAYED, /* Will be handled later */
3508 MF_RECOVERED, /* Successfully recovered */
3509};
3510
3511enum mf_action_page_type {
3512 MF_MSG_KERNEL,
3513 MF_MSG_KERNEL_HIGH_ORDER,
3514 MF_MSG_SLAB,
3515 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3516 MF_MSG_HUGE,
3517 MF_MSG_FREE_HUGE,
3518 MF_MSG_UNMAP_FAILED,
3519 MF_MSG_DIRTY_SWAPCACHE,
3520 MF_MSG_CLEAN_SWAPCACHE,
3521 MF_MSG_DIRTY_MLOCKED_LRU,
3522 MF_MSG_CLEAN_MLOCKED_LRU,
3523 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3524 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3525 MF_MSG_DIRTY_LRU,
3526 MF_MSG_CLEAN_LRU,
3527 MF_MSG_TRUNCATED_LRU,
3528 MF_MSG_BUDDY,
6100e34b 3529 MF_MSG_DAX,
5d1fd5dc 3530 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3531 MF_MSG_UNKNOWN,
3532};
3533
44b8f8bf
JY
3534/*
3535 * Sysfs entries for memory failure handling statistics.
3536 */
3537extern const struct attribute_group memory_failure_attr_group;
3538
47ad8475
AA
3539#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3540extern void clear_huge_page(struct page *page,
c79b57e4 3541 unsigned long addr_hint,
47ad8475
AA
3542 unsigned int pages_per_huge_page);
3543extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3544 unsigned long addr_hint,
3545 struct vm_area_struct *vma,
47ad8475 3546 unsigned int pages_per_huge_page);
fa4d75c1
MK
3547extern long copy_huge_page_from_user(struct page *dst_page,
3548 const void __user *usr_src,
810a56b9
MK
3549 unsigned int pages_per_huge_page,
3550 bool allow_pagefault);
2484ca9b
THV
3551
3552/**
3553 * vma_is_special_huge - Are transhuge page-table entries considered special?
3554 * @vma: Pointer to the struct vm_area_struct to consider
3555 *
3556 * Whether transhuge page-table entries are considered "special" following
3557 * the definition in vm_normal_page().
3558 *
3559 * Return: true if transhuge page-table entries should be considered special,
3560 * false otherwise.
3561 */
3562static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3563{
3564 return vma_is_dax(vma) || (vma->vm_file &&
3565 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3566}
3567
47ad8475
AA
3568#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3569
c0a32fc5
SG
3570#ifdef CONFIG_DEBUG_PAGEALLOC
3571extern unsigned int _debug_guardpage_minorder;
96a2b03f 3572DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3573
3574static inline unsigned int debug_guardpage_minorder(void)
3575{
3576 return _debug_guardpage_minorder;
3577}
3578
e30825f1
JK
3579static inline bool debug_guardpage_enabled(void)
3580{
96a2b03f 3581 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3582}
3583
c0a32fc5
SG
3584static inline bool page_is_guard(struct page *page)
3585{
e30825f1
JK
3586 if (!debug_guardpage_enabled())
3587 return false;
3588
3972f6bb 3589 return PageGuard(page);
c0a32fc5
SG
3590}
3591#else
3592static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3593static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3594static inline bool page_is_guard(struct page *page) { return false; }
3595#endif /* CONFIG_DEBUG_PAGEALLOC */
3596
f9872caf
CS
3597#if MAX_NUMNODES > 1
3598void __init setup_nr_node_ids(void);
3599#else
3600static inline void setup_nr_node_ids(void) {}
3601#endif
3602
010c164a
SL
3603extern int memcmp_pages(struct page *page1, struct page *page2);
3604
3605static inline int pages_identical(struct page *page1, struct page *page2)
3606{
3607 return !memcmp_pages(page1, page2);
3608}
3609
c5acad84
TH
3610#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3611unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3612 pgoff_t first_index, pgoff_t nr,
3613 pgoff_t bitmap_pgoff,
3614 unsigned long *bitmap,
3615 pgoff_t *start,
3616 pgoff_t *end);
3617
3618unsigned long wp_shared_mapping_range(struct address_space *mapping,
3619 pgoff_t first_index, pgoff_t nr);
3620#endif
3621
2374c09b
CH
3622extern int sysctl_nr_trim_pages;
3623
5bb1bb35 3624#ifdef CONFIG_PRINTK
8e7f37f2 3625void mem_dump_obj(void *object);
5bb1bb35
PM
3626#else
3627static inline void mem_dump_obj(void *object) {}
3628#endif
8e7f37f2 3629
22247efd
PX
3630/**
3631 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3632 * @seals: the seals to check
3633 * @vma: the vma to operate on
3634 *
3635 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3636 * the vma flags. Return 0 if check pass, or <0 for errors.
3637 */
3638static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3639{
3640 if (seals & F_SEAL_FUTURE_WRITE) {
3641 /*
3642 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3643 * "future write" seal active.
3644 */
3645 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3646 return -EPERM;
3647
3648 /*
3649 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3650 * MAP_SHARED and read-only, take care to not allow mprotect to
3651 * revert protections on such mappings. Do this only for shared
3652 * mappings. For private mappings, don't need to mask
3653 * VM_MAYWRITE as we still want them to be COW-writable.
3654 */
3655 if (vma->vm_flags & VM_SHARED)
3656 vma->vm_flags &= ~(VM_MAYWRITE);
3657 }
3658
3659 return 0;
3660}
3661
9a10064f
CC
3662#ifdef CONFIG_ANON_VMA_NAME
3663int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
3664 unsigned long len_in,
3665 struct anon_vma_name *anon_name);
9a10064f
CC
3666#else
3667static inline int
3668madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 3669 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
3670 return 0;
3671}
3672#endif
3673
1da177e4 3674#endif /* _LINUX_MM_H */