nommu: pass through vma iterator to shrink_vma()
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
1da177e4
LT
32
33struct mempolicy;
34struct anon_vma;
bf181b9f 35struct anon_vma_chain;
e8edc6e0 36struct user_struct;
bce617ed 37struct pt_regs;
1da177e4 38
5ef64cc8
LT
39extern int sysctl_page_lock_unfairness;
40
597b7305
MH
41void init_mm_internals(void);
42
a9ee6cf5 43#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 44extern unsigned long max_mapnr;
fccc9987
JL
45
46static inline void set_max_mapnr(unsigned long limit)
47{
48 max_mapnr = limit;
49}
50#else
51static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
52#endif
53
ca79b0c2
AK
54extern atomic_long_t _totalram_pages;
55static inline unsigned long totalram_pages(void)
56{
57 return (unsigned long)atomic_long_read(&_totalram_pages);
58}
59
60static inline void totalram_pages_inc(void)
61{
62 atomic_long_inc(&_totalram_pages);
63}
64
65static inline void totalram_pages_dec(void)
66{
67 atomic_long_dec(&_totalram_pages);
68}
69
70static inline void totalram_pages_add(long count)
71{
72 atomic_long_add(count, &_totalram_pages);
73}
74
1da177e4 75extern void * high_memory;
1da177e4 76extern int page_cluster;
ea0ffd0c 77extern const int page_cluster_max;
1da177e4
LT
78
79#ifdef CONFIG_SYSCTL
80extern int sysctl_legacy_va_layout;
81#else
82#define sysctl_legacy_va_layout 0
83#endif
84
d07e2259
DC
85#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
86extern const int mmap_rnd_bits_min;
87extern const int mmap_rnd_bits_max;
88extern int mmap_rnd_bits __read_mostly;
89#endif
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
91extern const int mmap_rnd_compat_bits_min;
92extern const int mmap_rnd_compat_bits_max;
93extern int mmap_rnd_compat_bits __read_mostly;
94#endif
95
1da177e4 96#include <asm/page.h>
1da177e4 97#include <asm/processor.h>
1da177e4 98
d9344522
AK
99/*
100 * Architectures that support memory tagging (assigning tags to memory regions,
101 * embedding these tags into addresses that point to these memory regions, and
102 * checking that the memory and the pointer tags match on memory accesses)
103 * redefine this macro to strip tags from pointers.
f0953a1b 104 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
105 */
106#ifndef untagged_addr
107#define untagged_addr(addr) (addr)
108#endif
109
79442ed1
TC
110#ifndef __pa_symbol
111#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
112#endif
113
1dff8083
AB
114#ifndef page_to_virt
115#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
116#endif
117
568c5fe5
LA
118#ifndef lm_alias
119#define lm_alias(x) __va(__pa_symbol(x))
120#endif
121
593befa6
DD
122/*
123 * To prevent common memory management code establishing
124 * a zero page mapping on a read fault.
125 * This macro should be defined within <asm/pgtable.h>.
126 * s390 does this to prevent multiplexing of hardware bits
127 * related to the physical page in case of virtualization.
128 */
129#ifndef mm_forbids_zeropage
130#define mm_forbids_zeropage(X) (0)
131#endif
132
a4a3ede2
PT
133/*
134 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
135 * If an architecture decides to implement their own version of
136 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
137 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 138 */
5470dea4
AD
139#if BITS_PER_LONG == 64
140/* This function must be updated when the size of struct page grows above 80
141 * or reduces below 56. The idea that compiler optimizes out switch()
142 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 143 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
144 * this can result in several of the writes here being dropped.
145 */
146#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
147static inline void __mm_zero_struct_page(struct page *page)
148{
149 unsigned long *_pp = (void *)page;
150
151 /* Check that struct page is either 56, 64, 72, or 80 bytes */
152 BUILD_BUG_ON(sizeof(struct page) & 7);
153 BUILD_BUG_ON(sizeof(struct page) < 56);
154 BUILD_BUG_ON(sizeof(struct page) > 80);
155
156 switch (sizeof(struct page)) {
157 case 80:
df561f66
GS
158 _pp[9] = 0;
159 fallthrough;
5470dea4 160 case 72:
df561f66
GS
161 _pp[8] = 0;
162 fallthrough;
5470dea4 163 case 64:
df561f66
GS
164 _pp[7] = 0;
165 fallthrough;
5470dea4
AD
166 case 56:
167 _pp[6] = 0;
168 _pp[5] = 0;
169 _pp[4] = 0;
170 _pp[3] = 0;
171 _pp[2] = 0;
172 _pp[1] = 0;
173 _pp[0] = 0;
174 }
175}
176#else
a4a3ede2
PT
177#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
178#endif
179
ea606cf5
AR
180/*
181 * Default maximum number of active map areas, this limits the number of vmas
182 * per mm struct. Users can overwrite this number by sysctl but there is a
183 * problem.
184 *
185 * When a program's coredump is generated as ELF format, a section is created
186 * per a vma. In ELF, the number of sections is represented in unsigned short.
187 * This means the number of sections should be smaller than 65535 at coredump.
188 * Because the kernel adds some informative sections to a image of program at
189 * generating coredump, we need some margin. The number of extra sections is
190 * 1-3 now and depends on arch. We use "5" as safe margin, here.
191 *
192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193 * not a hard limit any more. Although some userspace tools can be surprised by
194 * that.
195 */
196#define MAPCOUNT_ELF_CORE_MARGIN (5)
197#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198
199extern int sysctl_max_map_count;
200
c9b1d098 201extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 202extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 203
49f0ce5f
JM
204extern int sysctl_overcommit_memory;
205extern int sysctl_overcommit_ratio;
206extern unsigned long sysctl_overcommit_kbytes;
207
32927393
CH
208int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
209 loff_t *);
210int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
211 loff_t *);
56f3547b
FT
212int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
213 loff_t *);
49f0ce5f 214
1cfcee72 215#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 216#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 217#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
218#else
219#define nth_page(page,n) ((page) + (n))
659508f9 220#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 221#endif
1da177e4 222
27ac792c
AR
223/* to align the pointer to the (next) page boundary */
224#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
225
335e52c2
DG
226/* to align the pointer to the (prev) page boundary */
227#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
228
0fa73b86 229/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 230#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 231
f86196ea 232#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
233static inline struct folio *lru_to_folio(struct list_head *head)
234{
235 return list_entry((head)->prev, struct folio, lru);
236}
f86196ea 237
5748fbc5
KW
238void setup_initial_init_mm(void *start_code, void *end_code,
239 void *end_data, void *brk);
240
1da177e4
LT
241/*
242 * Linux kernel virtual memory manager primitives.
243 * The idea being to have a "virtual" mm in the same way
244 * we have a virtual fs - giving a cleaner interface to the
245 * mm details, and allowing different kinds of memory mappings
246 * (from shared memory to executable loading to arbitrary
247 * mmap() functions).
248 */
249
490fc053 250struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
251struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
252void vm_area_free(struct vm_area_struct *);
c43692e8 253
1da177e4 254#ifndef CONFIG_MMU
8feae131
DH
255extern struct rb_root nommu_region_tree;
256extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
257
258extern unsigned int kobjsize(const void *objp);
259#endif
260
261/*
605d9288 262 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 263 * When changing, update also include/trace/events/mmflags.h
1da177e4 264 */
cc2383ec
KK
265#define VM_NONE 0x00000000
266
1da177e4
LT
267#define VM_READ 0x00000001 /* currently active flags */
268#define VM_WRITE 0x00000002
269#define VM_EXEC 0x00000004
270#define VM_SHARED 0x00000008
271
7e2cff42 272/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
273#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
274#define VM_MAYWRITE 0x00000020
275#define VM_MAYEXEC 0x00000040
276#define VM_MAYSHARE 0x00000080
277
278#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
b6b7a8fa 279#ifdef CONFIG_MMU
16ba6f81 280#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
b6b7a8fa
DH
281#else /* CONFIG_MMU */
282#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
283#define VM_UFFD_MISSING 0
284#endif /* CONFIG_MMU */
6aab341e 285#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 286#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 287
1da177e4
LT
288#define VM_LOCKED 0x00002000
289#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
290
291 /* Used by sys_madvise() */
292#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
293#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
294
295#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
296#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 297#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 298#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 299#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 300#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 301#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 302#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 303#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 304#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 305
d9104d1c
CG
306#ifdef CONFIG_MEM_SOFT_DIRTY
307# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
308#else
309# define VM_SOFTDIRTY 0
310#endif
311
b379d790 312#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
313#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
314#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 315#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 316
63c17fb8
DH
317#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
318#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
320#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
321#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 322#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
323#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
324#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
325#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
326#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 327#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
328#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
329
5212213a 330#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
331# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
332# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 333# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
334# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
335# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
336#ifdef CONFIG_PPC
337# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
338#else
339# define VM_PKEY_BIT4 0
8f62c883 340#endif
5212213a
RP
341#endif /* CONFIG_ARCH_HAS_PKEYS */
342
343#if defined(CONFIG_X86)
344# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
345#elif defined(CONFIG_PPC)
346# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
347#elif defined(CONFIG_PARISC)
348# define VM_GROWSUP VM_ARCH_1
349#elif defined(CONFIG_IA64)
350# define VM_GROWSUP VM_ARCH_1
74a04967
KA
351#elif defined(CONFIG_SPARC64)
352# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
353# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
354#elif defined(CONFIG_ARM64)
355# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
356# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
357#elif !defined(CONFIG_MMU)
358# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
359#endif
360
9f341931
CM
361#if defined(CONFIG_ARM64_MTE)
362# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
363# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
364#else
365# define VM_MTE VM_NONE
366# define VM_MTE_ALLOWED VM_NONE
367#endif
368
cc2383ec
KK
369#ifndef VM_GROWSUP
370# define VM_GROWSUP VM_NONE
371#endif
372
7677f7fd
AR
373#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
374# define VM_UFFD_MINOR_BIT 37
375# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
376#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
377# define VM_UFFD_MINOR VM_NONE
378#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
379
a8bef8ff
MG
380/* Bits set in the VMA until the stack is in its final location */
381#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
382
c62da0c3
AK
383#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
384
385/* Common data flag combinations */
386#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
387 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
388#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
389 VM_MAYWRITE | VM_MAYEXEC)
390#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
391 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
392
393#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
394#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
395#endif
396
1da177e4
LT
397#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
398#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
399#endif
400
401#ifdef CONFIG_STACK_GROWSUP
30bdbb78 402#define VM_STACK VM_GROWSUP
1da177e4 403#else
30bdbb78 404#define VM_STACK VM_GROWSDOWN
1da177e4
LT
405#endif
406
30bdbb78
KK
407#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
408
6cb4d9a2
AK
409/* VMA basic access permission flags */
410#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
411
412
b291f000 413/*
78f11a25 414 * Special vmas that are non-mergable, non-mlock()able.
b291f000 415 */
9050d7eb 416#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 417
b4443772
AK
418/* This mask prevents VMA from being scanned with khugepaged */
419#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
420
a0715cc2
AT
421/* This mask defines which mm->def_flags a process can inherit its parent */
422#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
423
de60f5f1
EM
424/* This mask is used to clear all the VMA flags used by mlock */
425#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
426
2c2d57b5
KA
427/* Arch-specific flags to clear when updating VM flags on protection change */
428#ifndef VM_ARCH_CLEAR
429# define VM_ARCH_CLEAR VM_NONE
430#endif
431#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
432
1da177e4
LT
433/*
434 * mapping from the currently active vm_flags protection bits (the
435 * low four bits) to a page protection mask..
436 */
1da177e4 437
dde16072
PX
438/*
439 * The default fault flags that should be used by most of the
440 * arch-specific page fault handlers.
441 */
442#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
443 FAULT_FLAG_KILLABLE | \
444 FAULT_FLAG_INTERRUPTIBLE)
dde16072 445
4064b982
PX
446/**
447 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 448 * @flags: Fault flags.
4064b982
PX
449 *
450 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 451 * the mmap_lock for too long a time when waiting for another condition
4064b982 452 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
453 * mmap_lock in the first round to avoid potential starvation of other
454 * processes that would also want the mmap_lock.
4064b982
PX
455 *
456 * Return: true if the page fault allows retry and this is the first
457 * attempt of the fault handling; false otherwise.
458 */
da2f5eb3 459static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
460{
461 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
462 (!(flags & FAULT_FLAG_TRIED));
463}
464
282a8e03
RZ
465#define FAULT_FLAG_TRACE \
466 { FAULT_FLAG_WRITE, "WRITE" }, \
467 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
468 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
469 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
470 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
471 { FAULT_FLAG_TRIED, "TRIED" }, \
472 { FAULT_FLAG_USER, "USER" }, \
473 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
474 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
475 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 476
54cb8821 477/*
11192337 478 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
479 * ->fault function. The vma's ->fault is responsible for returning a bitmask
480 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 481 *
c20cd45e
MH
482 * MM layer fills up gfp_mask for page allocations but fault handler might
483 * alter it if its implementation requires a different allocation context.
484 *
9b4bdd2f 485 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 486 */
d0217ac0 487struct vm_fault {
5857c920 488 const struct {
742d3372
WD
489 struct vm_area_struct *vma; /* Target VMA */
490 gfp_t gfp_mask; /* gfp mask to be used for allocations */
491 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
492 unsigned long address; /* Faulting virtual address - masked */
493 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 494 };
da2f5eb3 495 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 496 * XXX: should really be 'const' */
82b0f8c3 497 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 498 * the 'address' */
a2d58167
DJ
499 pud_t *pud; /* Pointer to pud entry matching
500 * the 'address'
501 */
5db4f15c
YS
502 union {
503 pte_t orig_pte; /* Value of PTE at the time of fault */
504 pmd_t orig_pmd; /* Value of PMD at the time of fault,
505 * used by PMD fault only.
506 */
507 };
d0217ac0 508
3917048d 509 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 510 struct page *page; /* ->fault handlers should return a
83c54070 511 * page here, unless VM_FAULT_NOPAGE
d0217ac0 512 * is set (which is also implied by
83c54070 513 * VM_FAULT_ERROR).
d0217ac0 514 */
82b0f8c3 515 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
516 pte_t *pte; /* Pointer to pte entry matching
517 * the 'address'. NULL if the page
518 * table hasn't been allocated.
519 */
520 spinlock_t *ptl; /* Page table lock.
521 * Protects pte page table if 'pte'
522 * is not NULL, otherwise pmd.
523 */
7267ec00 524 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
525 * vm_ops->map_pages() sets up a page
526 * table from atomic context.
7267ec00
KS
527 * do_fault_around() pre-allocates
528 * page table to avoid allocation from
529 * atomic context.
530 */
54cb8821 531};
1da177e4 532
c791ace1
DJ
533/* page entry size for vm->huge_fault() */
534enum page_entry_size {
535 PE_SIZE_PTE = 0,
536 PE_SIZE_PMD,
537 PE_SIZE_PUD,
538};
539
1da177e4
LT
540/*
541 * These are the virtual MM functions - opening of an area, closing and
542 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 543 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
544 */
545struct vm_operations_struct {
546 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
547 /**
548 * @close: Called when the VMA is being removed from the MM.
549 * Context: User context. May sleep. Caller holds mmap_lock.
550 */
1da177e4 551 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
552 /* Called any time before splitting to check if it's allowed */
553 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 554 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
555 /*
556 * Called by mprotect() to make driver-specific permission
557 * checks before mprotect() is finalised. The VMA must not
3e0ee843 558 * be modified. Returns 0 if mprotect() can proceed.
95bb7c42
SC
559 */
560 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
561 unsigned long end, unsigned long newflags);
1c8f4220
SJ
562 vm_fault_t (*fault)(struct vm_fault *vmf);
563 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
564 enum page_entry_size pe_size);
f9ce0be7 565 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 566 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 567 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
568
569 /* notification that a previously read-only page is about to become
570 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 571 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 572
dd906184 573 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 574 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 575
28b2ee20 576 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
577 * for use by special VMAs. See also generic_access_phys() for a generic
578 * implementation useful for any iomem mapping.
28b2ee20
RR
579 */
580 int (*access)(struct vm_area_struct *vma, unsigned long addr,
581 void *buf, int len, int write);
78d683e8
AL
582
583 /* Called by the /proc/PID/maps code to ask the vma whether it
584 * has a special name. Returning non-NULL will also cause this
585 * vma to be dumped unconditionally. */
586 const char *(*name)(struct vm_area_struct *vma);
587
1da177e4 588#ifdef CONFIG_NUMA
a6020ed7
LS
589 /*
590 * set_policy() op must add a reference to any non-NULL @new mempolicy
591 * to hold the policy upon return. Caller should pass NULL @new to
592 * remove a policy and fall back to surrounding context--i.e. do not
593 * install a MPOL_DEFAULT policy, nor the task or system default
594 * mempolicy.
595 */
1da177e4 596 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
597
598 /*
599 * get_policy() op must add reference [mpol_get()] to any policy at
600 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
601 * in mm/mempolicy.c will do this automatically.
602 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 603 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
604 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
605 * must return NULL--i.e., do not "fallback" to task or system default
606 * policy.
607 */
1da177e4
LT
608 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
609 unsigned long addr);
610#endif
667a0a06
DV
611 /*
612 * Called by vm_normal_page() for special PTEs to find the
613 * page for @addr. This is useful if the default behavior
614 * (using pte_page()) would not find the correct page.
615 */
616 struct page *(*find_special_page)(struct vm_area_struct *vma,
617 unsigned long addr);
1da177e4
LT
618};
619
027232da
KS
620static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
621{
bfd40eaf
KS
622 static const struct vm_operations_struct dummy_vm_ops = {};
623
a670468f 624 memset(vma, 0, sizeof(*vma));
027232da 625 vma->vm_mm = mm;
bfd40eaf 626 vma->vm_ops = &dummy_vm_ops;
027232da
KS
627 INIT_LIST_HEAD(&vma->anon_vma_chain);
628}
629
bfd40eaf
KS
630static inline void vma_set_anonymous(struct vm_area_struct *vma)
631{
632 vma->vm_ops = NULL;
633}
634
43675e6f
YS
635static inline bool vma_is_anonymous(struct vm_area_struct *vma)
636{
637 return !vma->vm_ops;
638}
639
222100ee
AK
640static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
641{
642 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
643
644 if (!maybe_stack)
645 return false;
646
647 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
648 VM_STACK_INCOMPLETE_SETUP)
649 return true;
650
651 return false;
652}
653
7969f226
AK
654static inline bool vma_is_foreign(struct vm_area_struct *vma)
655{
656 if (!current->mm)
657 return true;
658
659 if (current->mm != vma->vm_mm)
660 return true;
661
662 return false;
663}
3122e80e
AK
664
665static inline bool vma_is_accessible(struct vm_area_struct *vma)
666{
6cb4d9a2 667 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
668}
669
f39af059
MWO
670static inline
671struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
672{
b62b633e 673 return mas_find(&vmi->mas, max - 1);
f39af059
MWO
674}
675
676static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
677{
678 /*
b62b633e 679 * Uses mas_find() to get the first VMA when the iterator starts.
f39af059
MWO
680 * Calling mas_next() could skip the first entry.
681 */
b62b633e 682 return mas_find(&vmi->mas, ULONG_MAX);
f39af059
MWO
683}
684
685static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
686{
687 return mas_prev(&vmi->mas, 0);
688}
689
690static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
691{
692 return vmi->mas.index;
693}
694
b62b633e
LH
695static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
696{
697 return vmi->mas.last + 1;
698}
699static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
700 unsigned long count)
701{
702 return mas_expected_entries(&vmi->mas, count);
703}
704
705/* Free any unused preallocations */
706static inline void vma_iter_free(struct vma_iterator *vmi)
707{
708 mas_destroy(&vmi->mas);
709}
710
711static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
712 struct vm_area_struct *vma)
713{
714 vmi->mas.index = vma->vm_start;
715 vmi->mas.last = vma->vm_end - 1;
716 mas_store(&vmi->mas, vma);
717 if (unlikely(mas_is_err(&vmi->mas)))
718 return -ENOMEM;
719
720 return 0;
721}
722
723static inline void vma_iter_invalidate(struct vma_iterator *vmi)
724{
725 mas_pause(&vmi->mas);
726}
727
728static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
729{
730 mas_set(&vmi->mas, addr);
731}
732
f39af059
MWO
733#define for_each_vma(__vmi, __vma) \
734 while (((__vma) = vma_next(&(__vmi))) != NULL)
735
736/* The MM code likes to work with exclusive end addresses */
737#define for_each_vma_range(__vmi, __vma, __end) \
b62b633e 738 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
f39af059 739
43675e6f
YS
740#ifdef CONFIG_SHMEM
741/*
742 * The vma_is_shmem is not inline because it is used only by slow
743 * paths in userfault.
744 */
745bool vma_is_shmem(struct vm_area_struct *vma);
d09e8ca6 746bool vma_is_anon_shmem(struct vm_area_struct *vma);
43675e6f
YS
747#else
748static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
d09e8ca6 749static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
43675e6f
YS
750#endif
751
752int vma_is_stack_for_current(struct vm_area_struct *vma);
753
8b11ec1b
LT
754/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
755#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
756
1da177e4
LT
757struct mmu_gather;
758struct inode;
759
5eb5cea1
MWO
760/*
761 * compound_order() can be called without holding a reference, which means
762 * that niceties like page_folio() don't work. These callers should be
763 * prepared to handle wild return values. For example, PG_head may be
764 * set before _folio_order is initialised, or this may be a tail page.
765 * See compaction.c for some good examples.
766 */
5bf34d7c
MWO
767static inline unsigned int compound_order(struct page *page)
768{
5eb5cea1
MWO
769 struct folio *folio = (struct folio *)page;
770
771 if (!test_bit(PG_head, &folio->flags))
5bf34d7c 772 return 0;
5eb5cea1 773 return folio->_folio_order;
5bf34d7c
MWO
774}
775
776/**
777 * folio_order - The allocation order of a folio.
778 * @folio: The folio.
779 *
780 * A folio is composed of 2^order pages. See get_order() for the definition
781 * of order.
782 *
783 * Return: The order of the folio.
784 */
785static inline unsigned int folio_order(struct folio *folio)
786{
c3a15bff
MWO
787 if (!folio_test_large(folio))
788 return 0;
789 return folio->_folio_order;
5bf34d7c
MWO
790}
791
71e3aac0 792#include <linux/huge_mm.h>
1da177e4
LT
793
794/*
795 * Methods to modify the page usage count.
796 *
797 * What counts for a page usage:
798 * - cache mapping (page->mapping)
799 * - private data (page->private)
800 * - page mapped in a task's page tables, each mapping
801 * is counted separately
802 *
803 * Also, many kernel routines increase the page count before a critical
804 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
805 */
806
807/*
da6052f7 808 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 809 */
7c8ee9a8
NP
810static inline int put_page_testzero(struct page *page)
811{
fe896d18
JK
812 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
813 return page_ref_dec_and_test(page);
7c8ee9a8 814}
1da177e4 815
b620f633
MWO
816static inline int folio_put_testzero(struct folio *folio)
817{
818 return put_page_testzero(&folio->page);
819}
820
1da177e4 821/*
7c8ee9a8
NP
822 * Try to grab a ref unless the page has a refcount of zero, return false if
823 * that is the case.
8e0861fa
AK
824 * This can be called when MMU is off so it must not access
825 * any of the virtual mappings.
1da177e4 826 */
c2530328 827static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 828{
fe896d18 829 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 830}
1da177e4 831
53df8fdc 832extern int page_is_ram(unsigned long pfn);
124fe20d
DW
833
834enum {
835 REGION_INTERSECTS,
836 REGION_DISJOINT,
837 REGION_MIXED,
838};
839
1c29f25b
TK
840int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
841 unsigned long desc);
53df8fdc 842
48667e7a 843/* Support for virtually mapped pages */
b3bdda02
CL
844struct page *vmalloc_to_page(const void *addr);
845unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 846
0738c4bb
PM
847/*
848 * Determine if an address is within the vmalloc range
849 *
850 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
851 * is no special casing required.
852 */
9bd3bb67
AK
853
854#ifndef is_ioremap_addr
855#define is_ioremap_addr(x) is_vmalloc_addr(x)
856#endif
857
81ac3ad9 858#ifdef CONFIG_MMU
186525bd 859extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
860extern int is_vmalloc_or_module_addr(const void *x);
861#else
186525bd
IM
862static inline bool is_vmalloc_addr(const void *x)
863{
864 return false;
865}
934831d0 866static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
867{
868 return 0;
869}
870#endif
9e2779fa 871
74e8ee47
MWO
872/*
873 * How many times the entire folio is mapped as a single unit (eg by a
874 * PMD or PUD entry). This is probably not what you want, except for
cb67f428
HD
875 * debugging purposes - it does not include PTE-mapped sub-pages; look
876 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
74e8ee47
MWO
877 */
878static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 879{
74e8ee47 880 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1aa4d03b 881 return atomic_read(&folio->_entire_mapcount) + 1;
cb67f428
HD
882}
883
70b50f94
AA
884/*
885 * The atomic page->_mapcount, starts from -1: so that transitions
886 * both from it and to it can be tracked, using atomic_inc_and_test
887 * and atomic_add_negative(-1).
888 */
22b751c3 889static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
890{
891 atomic_set(&(page)->_mapcount, -1);
892}
893
c97eeb8f
MWO
894/**
895 * page_mapcount() - Number of times this precise page is mapped.
896 * @page: The page.
897 *
898 * The number of times this page is mapped. If this page is part of
899 * a large folio, it includes the number of times this page is mapped
900 * as part of that folio.
6988f31d 901 *
c97eeb8f 902 * The result is undefined for pages which cannot be mapped into userspace.
6988f31d 903 * For example SLAB or special types of pages. See function page_has_type().
c97eeb8f 904 * They use this field in struct page differently.
6988f31d 905 */
70b50f94
AA
906static inline int page_mapcount(struct page *page)
907{
cb67f428 908 int mapcount = atomic_read(&page->_mapcount) + 1;
b20ce5e0 909
c97eeb8f
MWO
910 if (unlikely(PageCompound(page)))
911 mapcount += folio_entire_mapcount(page_folio(page));
912
913 return mapcount;
b20ce5e0
KS
914}
915
b14224fb 916int folio_total_mapcount(struct folio *folio);
4ba1119c 917
cb67f428
HD
918/**
919 * folio_mapcount() - Calculate the number of mappings of this folio.
920 * @folio: The folio.
921 *
922 * A large folio tracks both how many times the entire folio is mapped,
923 * and how many times each individual page in the folio is mapped.
924 * This function calculates the total number of times the folio is
925 * mapped.
926 *
927 * Return: The number of times this folio is mapped.
928 */
929static inline int folio_mapcount(struct folio *folio)
4ba1119c 930{
cb67f428
HD
931 if (likely(!folio_test_large(folio)))
932 return atomic_read(&folio->_mapcount) + 1;
b14224fb 933 return folio_total_mapcount(folio);
4ba1119c
MWO
934}
935
b20ce5e0
KS
936static inline int total_mapcount(struct page *page)
937{
be5ef2d9
HD
938 if (likely(!PageCompound(page)))
939 return atomic_read(&page->_mapcount) + 1;
b14224fb 940 return folio_total_mapcount(page_folio(page));
be5ef2d9
HD
941}
942
943static inline bool folio_large_is_mapped(struct folio *folio)
944{
4b51634c 945 /*
1aa4d03b 946 * Reading _entire_mapcount below could be omitted if hugetlb
eec20426 947 * participated in incrementing nr_pages_mapped when compound mapped.
4b51634c 948 */
eec20426 949 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1aa4d03b 950 atomic_read(&folio->_entire_mapcount) >= 0;
cb67f428
HD
951}
952
953/**
954 * folio_mapped - Is this folio mapped into userspace?
955 * @folio: The folio.
956 *
957 * Return: True if any page in this folio is referenced by user page tables.
958 */
959static inline bool folio_mapped(struct folio *folio)
960{
be5ef2d9
HD
961 if (likely(!folio_test_large(folio)))
962 return atomic_read(&folio->_mapcount) >= 0;
963 return folio_large_is_mapped(folio);
964}
965
966/*
967 * Return true if this page is mapped into pagetables.
968 * For compound page it returns true if any sub-page of compound page is mapped,
969 * even if this particular sub-page is not itself mapped by any PTE or PMD.
970 */
971static inline bool page_mapped(struct page *page)
972{
973 if (likely(!PageCompound(page)))
974 return atomic_read(&page->_mapcount) >= 0;
975 return folio_large_is_mapped(page_folio(page));
70b50f94
AA
976}
977
b49af68f
CL
978static inline struct page *virt_to_head_page(const void *x)
979{
980 struct page *page = virt_to_page(x);
ccaafd7f 981
1d798ca3 982 return compound_head(page);
b49af68f
CL
983}
984
7d4203c1
VB
985static inline struct folio *virt_to_folio(const void *x)
986{
987 struct page *page = virt_to_page(x);
988
989 return page_folio(page);
990}
991
8d29c703 992void __folio_put(struct folio *folio);
ddc58f27 993
1d7ea732 994void put_pages_list(struct list_head *pages);
1da177e4 995
8dfcc9ba 996void split_page(struct page *page, unsigned int order);
715cbfd6 997void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 998
a1554c00
ML
999unsigned long nr_free_buffer_pages(void);
1000
33f2ef89
AW
1001/*
1002 * Compound pages have a destructor function. Provide a
1003 * prototype for that function and accessor functions.
f1e61557 1004 * These are _only_ valid on the head of a compound page.
33f2ef89 1005 */
f1e61557
KS
1006typedef void compound_page_dtor(struct page *);
1007
1008/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1009enum compound_dtor_id {
1010 NULL_COMPOUND_DTOR,
1011 COMPOUND_PAGE_DTOR,
1012#ifdef CONFIG_HUGETLB_PAGE
1013 HUGETLB_PAGE_DTOR,
9a982250
KS
1014#endif
1015#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1016 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
1017#endif
1018 NR_COMPOUND_DTORS,
1019};
ae70eddd 1020extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
1021
1022static inline void set_compound_page_dtor(struct page *page,
f1e61557 1023 enum compound_dtor_id compound_dtor)
33f2ef89 1024{
bad6da64
MWO
1025 struct folio *folio = (struct folio *)page;
1026
f1e61557 1027 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
bad6da64
MWO
1028 VM_BUG_ON_PAGE(!PageHead(page), page);
1029 folio->_folio_dtor = compound_dtor;
33f2ef89
AW
1030}
1031
9fd33058
SK
1032static inline void folio_set_compound_dtor(struct folio *folio,
1033 enum compound_dtor_id compound_dtor)
1034{
1035 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1036 folio->_folio_dtor = compound_dtor;
1037}
1038
5375336c 1039void destroy_large_folio(struct folio *folio);
33f2ef89 1040
f1e61557 1041static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 1042{
bad6da64
MWO
1043 struct folio *folio = (struct folio *)page;
1044
1045 folio->_folio_order = order;
5232c63f 1046#ifdef CONFIG_64BIT
bad6da64 1047 folio->_folio_nr_pages = 1U << order;
5232c63f 1048#endif
d85f3385
CL
1049}
1050
a50b854e
MWO
1051/* Returns the number of bytes in this potentially compound page. */
1052static inline unsigned long page_size(struct page *page)
1053{
1054 return PAGE_SIZE << compound_order(page);
1055}
1056
94ad9338
MWO
1057/* Returns the number of bits needed for the number of bytes in a page */
1058static inline unsigned int page_shift(struct page *page)
1059{
1060 return PAGE_SHIFT + compound_order(page);
1061}
1062
18788cfa
MWO
1063/**
1064 * thp_order - Order of a transparent huge page.
1065 * @page: Head page of a transparent huge page.
1066 */
1067static inline unsigned int thp_order(struct page *page)
1068{
1069 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1070 return compound_order(page);
1071}
1072
18788cfa
MWO
1073/**
1074 * thp_size - Size of a transparent huge page.
1075 * @page: Head page of a transparent huge page.
1076 *
1077 * Return: Number of bytes in this page.
1078 */
1079static inline unsigned long thp_size(struct page *page)
1080{
1081 return PAGE_SIZE << thp_order(page);
1082}
1083
9a982250
KS
1084void free_compound_page(struct page *page);
1085
3dece370 1086#ifdef CONFIG_MMU
14fd403f
AA
1087/*
1088 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1089 * servicing faults for write access. In the normal case, do always want
1090 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1091 * that do not have writing enabled, when used by access_process_vm.
1092 */
1093static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1094{
1095 if (likely(vma->vm_flags & VM_WRITE))
1096 pte = pte_mkwrite(pte);
1097 return pte;
1098}
8c6e50b0 1099
f9ce0be7 1100vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1101void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1102
2b740303
SJ
1103vm_fault_t finish_fault(struct vm_fault *vmf);
1104vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1105#endif
14fd403f 1106
1da177e4
LT
1107/*
1108 * Multiple processes may "see" the same page. E.g. for untouched
1109 * mappings of /dev/null, all processes see the same page full of
1110 * zeroes, and text pages of executables and shared libraries have
1111 * only one copy in memory, at most, normally.
1112 *
1113 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1114 * page_count() == 0 means the page is free. page->lru is then used for
1115 * freelist management in the buddy allocator.
da6052f7 1116 * page_count() > 0 means the page has been allocated.
1da177e4 1117 *
da6052f7
NP
1118 * Pages are allocated by the slab allocator in order to provide memory
1119 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1120 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1121 * unless a particular usage is carefully commented. (the responsibility of
1122 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1123 *
da6052f7
NP
1124 * A page may be used by anyone else who does a __get_free_page().
1125 * In this case, page_count still tracks the references, and should only
1126 * be used through the normal accessor functions. The top bits of page->flags
1127 * and page->virtual store page management information, but all other fields
1128 * are unused and could be used privately, carefully. The management of this
1129 * page is the responsibility of the one who allocated it, and those who have
1130 * subsequently been given references to it.
1131 *
1132 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1133 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1134 * The following discussion applies only to them.
1135 *
da6052f7
NP
1136 * A pagecache page contains an opaque `private' member, which belongs to the
1137 * page's address_space. Usually, this is the address of a circular list of
1138 * the page's disk buffers. PG_private must be set to tell the VM to call
1139 * into the filesystem to release these pages.
1da177e4 1140 *
da6052f7
NP
1141 * A page may belong to an inode's memory mapping. In this case, page->mapping
1142 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1143 * in units of PAGE_SIZE.
1da177e4 1144 *
da6052f7
NP
1145 * If pagecache pages are not associated with an inode, they are said to be
1146 * anonymous pages. These may become associated with the swapcache, and in that
1147 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1148 *
da6052f7
NP
1149 * In either case (swapcache or inode backed), the pagecache itself holds one
1150 * reference to the page. Setting PG_private should also increment the
1151 * refcount. The each user mapping also has a reference to the page.
1da177e4 1152 *
da6052f7 1153 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1154 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1155 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1156 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1157 *
da6052f7 1158 * All pagecache pages may be subject to I/O:
1da177e4
LT
1159 * - inode pages may need to be read from disk,
1160 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1161 * to be written back to the inode on disk,
1162 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1163 * modified may need to be swapped out to swap space and (later) to be read
1164 * back into memory.
1da177e4
LT
1165 */
1166
27674ef6 1167#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1168DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1169
f4f451a1
MS
1170bool __put_devmap_managed_page_refs(struct page *page, int refs);
1171static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1172{
1173 if (!static_branch_unlikely(&devmap_managed_key))
1174 return false;
1175 if (!is_zone_device_page(page))
1176 return false;
f4f451a1 1177 return __put_devmap_managed_page_refs(page, refs);
e7638488 1178}
27674ef6 1179#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1180static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1181{
1182 return false;
1183}
27674ef6 1184#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1185
f4f451a1
MS
1186static inline bool put_devmap_managed_page(struct page *page)
1187{
1188 return put_devmap_managed_page_refs(page, 1);
1189}
1190
f958d7b5 1191/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1192#define folio_ref_zero_or_close_to_overflow(folio) \
1193 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1194
1195/**
1196 * folio_get - Increment the reference count on a folio.
1197 * @folio: The folio.
1198 *
1199 * Context: May be called in any context, as long as you know that
1200 * you have a refcount on the folio. If you do not already have one,
1201 * folio_try_get() may be the right interface for you to use.
1202 */
1203static inline void folio_get(struct folio *folio)
1204{
1205 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1206 folio_ref_inc(folio);
1207}
f958d7b5 1208
3565fce3
DW
1209static inline void get_page(struct page *page)
1210{
86d234cb 1211 folio_get(page_folio(page));
3565fce3
DW
1212}
1213
0f089235 1214int __must_check try_grab_page(struct page *page, unsigned int flags);
cd1adf1b
LT
1215
1216static inline __must_check bool try_get_page(struct page *page)
1217{
1218 page = compound_head(page);
1219 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1220 return false;
1221 page_ref_inc(page);
1222 return true;
1223}
3565fce3 1224
b620f633
MWO
1225/**
1226 * folio_put - Decrement the reference count on a folio.
1227 * @folio: The folio.
1228 *
1229 * If the folio's reference count reaches zero, the memory will be
1230 * released back to the page allocator and may be used by another
1231 * allocation immediately. Do not access the memory or the struct folio
1232 * after calling folio_put() unless you can be sure that it wasn't the
1233 * last reference.
1234 *
1235 * Context: May be called in process or interrupt context, but not in NMI
1236 * context. May be called while holding a spinlock.
1237 */
1238static inline void folio_put(struct folio *folio)
1239{
1240 if (folio_put_testzero(folio))
8d29c703 1241 __folio_put(folio);
b620f633
MWO
1242}
1243
3fe7fa58
MWO
1244/**
1245 * folio_put_refs - Reduce the reference count on a folio.
1246 * @folio: The folio.
1247 * @refs: The amount to subtract from the folio's reference count.
1248 *
1249 * If the folio's reference count reaches zero, the memory will be
1250 * released back to the page allocator and may be used by another
1251 * allocation immediately. Do not access the memory or the struct folio
1252 * after calling folio_put_refs() unless you can be sure that these weren't
1253 * the last references.
1254 *
1255 * Context: May be called in process or interrupt context, but not in NMI
1256 * context. May be called while holding a spinlock.
1257 */
1258static inline void folio_put_refs(struct folio *folio, int refs)
1259{
1260 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1261 __folio_put(folio);
3fe7fa58
MWO
1262}
1263
0411d6ee
SP
1264/*
1265 * union release_pages_arg - an array of pages or folios
449c7967 1266 *
0411d6ee 1267 * release_pages() releases a simple array of multiple pages, and
449c7967
LT
1268 * accepts various different forms of said page array: either
1269 * a regular old boring array of pages, an array of folios, or
1270 * an array of encoded page pointers.
1271 *
1272 * The transparent union syntax for this kind of "any of these
1273 * argument types" is all kinds of ugly, so look away.
1274 */
1275typedef union {
1276 struct page **pages;
1277 struct folio **folios;
1278 struct encoded_page **encoded_pages;
1279} release_pages_arg __attribute__ ((__transparent_union__));
1280
1281void release_pages(release_pages_arg, int nr);
e3c4cebf
MWO
1282
1283/**
1284 * folios_put - Decrement the reference count on an array of folios.
1285 * @folios: The folios.
1286 * @nr: How many folios there are.
1287 *
1288 * Like folio_put(), but for an array of folios. This is more efficient
1289 * than writing the loop yourself as it will optimise the locks which
1290 * need to be taken if the folios are freed.
1291 *
1292 * Context: May be called in process or interrupt context, but not in NMI
1293 * context. May be called while holding a spinlock.
1294 */
1295static inline void folios_put(struct folio **folios, unsigned int nr)
1296{
449c7967 1297 release_pages(folios, nr);
3fe7fa58
MWO
1298}
1299
3565fce3
DW
1300static inline void put_page(struct page *page)
1301{
b620f633 1302 struct folio *folio = page_folio(page);
3565fce3 1303
7b2d55d2 1304 /*
89574945
CH
1305 * For some devmap managed pages we need to catch refcount transition
1306 * from 2 to 1:
7b2d55d2 1307 */
89574945 1308 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1309 return;
b620f633 1310 folio_put(folio);
3565fce3
DW
1311}
1312
3faa52c0
JH
1313/*
1314 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1315 * the page's refcount so that two separate items are tracked: the original page
1316 * reference count, and also a new count of how many pin_user_pages() calls were
1317 * made against the page. ("gup-pinned" is another term for the latter).
1318 *
1319 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1320 * distinct from normal pages. As such, the unpin_user_page() call (and its
1321 * variants) must be used in order to release gup-pinned pages.
1322 *
1323 * Choice of value:
1324 *
1325 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1326 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1327 * simpler, due to the fact that adding an even power of two to the page
1328 * refcount has the effect of using only the upper N bits, for the code that
1329 * counts up using the bias value. This means that the lower bits are left for
1330 * the exclusive use of the original code that increments and decrements by one
1331 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1332 *
3faa52c0
JH
1333 * Of course, once the lower bits overflow into the upper bits (and this is
1334 * OK, because subtraction recovers the original values), then visual inspection
1335 * no longer suffices to directly view the separate counts. However, for normal
1336 * applications that don't have huge page reference counts, this won't be an
1337 * issue.
fc1d8e7c 1338 *
40fcc7fc
MWO
1339 * Locking: the lockless algorithm described in folio_try_get_rcu()
1340 * provides safe operation for get_user_pages(), page_mkclean() and
1341 * other calls that race to set up page table entries.
fc1d8e7c 1342 */
3faa52c0 1343#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1344
3faa52c0 1345void unpin_user_page(struct page *page);
f1f6a7dd
JH
1346void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1347 bool make_dirty);
458a4f78
JM
1348void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1349 bool make_dirty);
f1f6a7dd 1350void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1351
97a7e473
PX
1352static inline bool is_cow_mapping(vm_flags_t flags)
1353{
1354 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1355}
1356
fc4f4be9
DH
1357#ifndef CONFIG_MMU
1358static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1359{
1360 /*
1361 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1362 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1363 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1364 * underlying memory if ptrace is active, so this is only possible if
1365 * ptrace does not apply. Note that there is no mprotect() to upgrade
1366 * write permissions later.
1367 */
b6b7a8fa 1368 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
fc4f4be9
DH
1369}
1370#endif
1371
9127ab4f
CS
1372#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1373#define SECTION_IN_PAGE_FLAGS
1374#endif
1375
89689ae7 1376/*
7a8010cd
VB
1377 * The identification function is mainly used by the buddy allocator for
1378 * determining if two pages could be buddies. We are not really identifying
1379 * the zone since we could be using the section number id if we do not have
1380 * node id available in page flags.
1381 * We only guarantee that it will return the same value for two combinable
1382 * pages in a zone.
89689ae7 1383 */
cb2b95e1
AW
1384static inline int page_zone_id(struct page *page)
1385{
89689ae7 1386 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1387}
1388
89689ae7 1389#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1390extern int page_to_nid(const struct page *page);
89689ae7 1391#else
33dd4e0e 1392static inline int page_to_nid(const struct page *page)
d41dee36 1393{
f165b378
PT
1394 struct page *p = (struct page *)page;
1395
1396 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1397}
89689ae7
CL
1398#endif
1399
874fd90c
MWO
1400static inline int folio_nid(const struct folio *folio)
1401{
1402 return page_to_nid(&folio->page);
1403}
1404
57e0a030 1405#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1406/* page access time bits needs to hold at least 4 seconds */
1407#define PAGE_ACCESS_TIME_MIN_BITS 12
1408#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1409#define PAGE_ACCESS_TIME_BUCKETS \
1410 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1411#else
1412#define PAGE_ACCESS_TIME_BUCKETS 0
1413#endif
1414
1415#define PAGE_ACCESS_TIME_MASK \
1416 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1417
90572890 1418static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1419{
90572890 1420 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1421}
1422
90572890 1423static inline int cpupid_to_pid(int cpupid)
57e0a030 1424{
90572890 1425 return cpupid & LAST__PID_MASK;
57e0a030 1426}
b795854b 1427
90572890 1428static inline int cpupid_to_cpu(int cpupid)
b795854b 1429{
90572890 1430 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1431}
1432
90572890 1433static inline int cpupid_to_nid(int cpupid)
b795854b 1434{
90572890 1435 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1436}
1437
90572890 1438static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1439{
90572890 1440 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1441}
1442
90572890 1443static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1444{
90572890 1445 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1446}
1447
8c8a743c
PZ
1448static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1449{
1450 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1451}
1452
1453#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1454#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1455static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1456{
1ae71d03 1457 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1458}
90572890
PZ
1459
1460static inline int page_cpupid_last(struct page *page)
1461{
1462 return page->_last_cpupid;
1463}
1464static inline void page_cpupid_reset_last(struct page *page)
b795854b 1465{
1ae71d03 1466 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1467}
1468#else
90572890 1469static inline int page_cpupid_last(struct page *page)
75980e97 1470{
90572890 1471 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1472}
1473
90572890 1474extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1475
90572890 1476static inline void page_cpupid_reset_last(struct page *page)
75980e97 1477{
09940a4f 1478 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1479}
90572890 1480#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536
HY
1481
1482static inline int xchg_page_access_time(struct page *page, int time)
1483{
1484 int last_time;
1485
1486 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1487 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1488}
90572890
PZ
1489#else /* !CONFIG_NUMA_BALANCING */
1490static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1491{
90572890 1492 return page_to_nid(page); /* XXX */
57e0a030
MG
1493}
1494
33024536
HY
1495static inline int xchg_page_access_time(struct page *page, int time)
1496{
1497 return 0;
1498}
1499
90572890 1500static inline int page_cpupid_last(struct page *page)
57e0a030 1501{
90572890 1502 return page_to_nid(page); /* XXX */
57e0a030
MG
1503}
1504
90572890 1505static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1506{
1507 return -1;
1508}
1509
90572890 1510static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1511{
1512 return -1;
1513}
1514
90572890 1515static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1516{
1517 return -1;
1518}
1519
90572890
PZ
1520static inline int cpu_pid_to_cpupid(int nid, int pid)
1521{
1522 return -1;
1523}
1524
1525static inline bool cpupid_pid_unset(int cpupid)
b795854b 1526{
2b787449 1527 return true;
b795854b
MG
1528}
1529
90572890 1530static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1531{
1532}
8c8a743c
PZ
1533
1534static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1535{
1536 return false;
1537}
90572890 1538#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1539
2e903b91 1540#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1541
cf10bd4c
AK
1542/*
1543 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1544 * setting tags for all pages to native kernel tag value 0xff, as the default
1545 * value 0x00 maps to 0xff.
1546 */
1547
2813b9c0
AK
1548static inline u8 page_kasan_tag(const struct page *page)
1549{
cf10bd4c
AK
1550 u8 tag = 0xff;
1551
1552 if (kasan_enabled()) {
1553 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1554 tag ^= 0xff;
1555 }
1556
1557 return tag;
2813b9c0
AK
1558}
1559
1560static inline void page_kasan_tag_set(struct page *page, u8 tag)
1561{
27fe7339
PC
1562 unsigned long old_flags, flags;
1563
1564 if (!kasan_enabled())
1565 return;
1566
1567 tag ^= 0xff;
1568 old_flags = READ_ONCE(page->flags);
1569 do {
1570 flags = old_flags;
1571 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1572 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1573 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1574}
1575
1576static inline void page_kasan_tag_reset(struct page *page)
1577{
34303244
AK
1578 if (kasan_enabled())
1579 page_kasan_tag_set(page, 0xff);
2813b9c0 1580}
34303244
AK
1581
1582#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1583
2813b9c0
AK
1584static inline u8 page_kasan_tag(const struct page *page)
1585{
1586 return 0xff;
1587}
1588
1589static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1590static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1591
1592#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1593
33dd4e0e 1594static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1595{
1596 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1597}
1598
75ef7184
MG
1599static inline pg_data_t *page_pgdat(const struct page *page)
1600{
1601 return NODE_DATA(page_to_nid(page));
1602}
1603
32b8fc48
MWO
1604static inline struct zone *folio_zone(const struct folio *folio)
1605{
1606 return page_zone(&folio->page);
1607}
1608
1609static inline pg_data_t *folio_pgdat(const struct folio *folio)
1610{
1611 return page_pgdat(&folio->page);
1612}
1613
9127ab4f 1614#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1615static inline void set_page_section(struct page *page, unsigned long section)
1616{
1617 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1618 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1619}
1620
aa462abe 1621static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1622{
1623 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1624}
308c05e3 1625#endif
d41dee36 1626
bf6bd276
MWO
1627/**
1628 * folio_pfn - Return the Page Frame Number of a folio.
1629 * @folio: The folio.
1630 *
1631 * A folio may contain multiple pages. The pages have consecutive
1632 * Page Frame Numbers.
1633 *
1634 * Return: The Page Frame Number of the first page in the folio.
1635 */
1636static inline unsigned long folio_pfn(struct folio *folio)
1637{
1638 return page_to_pfn(&folio->page);
1639}
1640
018ee47f
YZ
1641static inline struct folio *pfn_folio(unsigned long pfn)
1642{
1643 return page_folio(pfn_to_page(pfn));
1644}
1645
0b90ddae
MWO
1646/**
1647 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1648 * @folio: The folio.
1649 *
1650 * This function checks if a folio has been pinned via a call to
1651 * a function in the pin_user_pages() family.
1652 *
1653 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1654 * because it means "definitely not pinned for DMA", but true means "probably
1655 * pinned for DMA, but possibly a false positive due to having at least
1656 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1657 *
1658 * False positives are OK, because: a) it's unlikely for a folio to
1659 * get that many refcounts, and b) all the callers of this routine are
1660 * expected to be able to deal gracefully with a false positive.
1661 *
1662 * For large folios, the result will be exactly correct. That's because
94688e8e 1663 * we have more tracking data available: the _pincount field is used
0b90ddae
MWO
1664 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1665 *
1666 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1667 *
1668 * Return: True, if it is likely that the page has been "dma-pinned".
1669 * False, if the page is definitely not dma-pinned.
1670 */
1671static inline bool folio_maybe_dma_pinned(struct folio *folio)
1672{
1673 if (folio_test_large(folio))
94688e8e 1674 return atomic_read(&folio->_pincount) > 0;
0b90ddae
MWO
1675
1676 /*
1677 * folio_ref_count() is signed. If that refcount overflows, then
1678 * folio_ref_count() returns a negative value, and callers will avoid
1679 * further incrementing the refcount.
1680 *
1681 * Here, for that overflow case, use the sign bit to count a little
1682 * bit higher via unsigned math, and thus still get an accurate result.
1683 */
1684 return ((unsigned int)folio_ref_count(folio)) >=
1685 GUP_PIN_COUNTING_BIAS;
1686}
1687
1688static inline bool page_maybe_dma_pinned(struct page *page)
1689{
1690 return folio_maybe_dma_pinned(page_folio(page));
1691}
1692
1693/*
1694 * This should most likely only be called during fork() to see whether we
fb3d824d 1695 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1696 *
1697 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1698 */
1699static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1700 struct page *page)
1701{
623a1ddf 1702 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1703
1704 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1705 return false;
1706
1707 return page_maybe_dma_pinned(page);
1708}
1709
8e3560d9
PT
1710/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1711#ifdef CONFIG_MIGRATION
6077c943 1712static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9 1713{
1c563432
MK
1714#ifdef CONFIG_CMA
1715 int mt = get_pageblock_migratetype(page);
1716
1717 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1718 return false;
1719#endif
fcab34b4
AW
1720 /* The zero page may always be pinned */
1721 if (is_zero_pfn(page_to_pfn(page)))
1722 return true;
1723
1724 /* Coherent device memory must always allow eviction. */
1725 if (is_device_coherent_page(page))
1726 return false;
1727
1728 /* Otherwise, non-movable zone pages can be pinned. */
1729 return !is_zone_movable_page(page);
8e3560d9
PT
1730}
1731#else
6077c943 1732static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9
PT
1733{
1734 return true;
1735}
1736#endif
1737
6077c943 1738static inline bool folio_is_longterm_pinnable(struct folio *folio)
536939ff 1739{
6077c943 1740 return is_longterm_pinnable_page(&folio->page);
536939ff
MWO
1741}
1742
2f1b6248 1743static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1744{
1745 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1746 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1747}
2f1b6248 1748
348f8b6c
DH
1749static inline void set_page_node(struct page *page, unsigned long node)
1750{
1751 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1752 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1753}
89689ae7 1754
2f1b6248 1755static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1756 unsigned long node, unsigned long pfn)
1da177e4 1757{
348f8b6c
DH
1758 set_page_zone(page, zone);
1759 set_page_node(page, node);
9127ab4f 1760#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1761 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1762#endif
1da177e4
LT
1763}
1764
7b230db3
MWO
1765/**
1766 * folio_nr_pages - The number of pages in the folio.
1767 * @folio: The folio.
1768 *
1769 * Return: A positive power of two.
1770 */
1771static inline long folio_nr_pages(struct folio *folio)
1772{
c3a15bff
MWO
1773 if (!folio_test_large(folio))
1774 return 1;
1775#ifdef CONFIG_64BIT
1776 return folio->_folio_nr_pages;
1777#else
1778 return 1L << folio->_folio_order;
1779#endif
7b230db3
MWO
1780}
1781
21a000fe
MWO
1782/*
1783 * compound_nr() returns the number of pages in this potentially compound
1784 * page. compound_nr() can be called on a tail page, and is defined to
1785 * return 1 in that case.
1786 */
1787static inline unsigned long compound_nr(struct page *page)
1788{
1789 struct folio *folio = (struct folio *)page;
1790
1791 if (!test_bit(PG_head, &folio->flags))
1792 return 1;
1793#ifdef CONFIG_64BIT
1794 return folio->_folio_nr_pages;
1795#else
1796 return 1L << folio->_folio_order;
1797#endif
1798}
1799
1800/**
1801 * thp_nr_pages - The number of regular pages in this huge page.
1802 * @page: The head page of a huge page.
1803 */
1804static inline int thp_nr_pages(struct page *page)
1805{
1806 return folio_nr_pages((struct folio *)page);
1807}
1808
7b230db3
MWO
1809/**
1810 * folio_next - Move to the next physical folio.
1811 * @folio: The folio we're currently operating on.
1812 *
1813 * If you have physically contiguous memory which may span more than
1814 * one folio (eg a &struct bio_vec), use this function to move from one
1815 * folio to the next. Do not use it if the memory is only virtually
1816 * contiguous as the folios are almost certainly not adjacent to each
1817 * other. This is the folio equivalent to writing ``page++``.
1818 *
1819 * Context: We assume that the folios are refcounted and/or locked at a
1820 * higher level and do not adjust the reference counts.
1821 * Return: The next struct folio.
1822 */
1823static inline struct folio *folio_next(struct folio *folio)
1824{
1825 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1826}
1827
1828/**
1829 * folio_shift - The size of the memory described by this folio.
1830 * @folio: The folio.
1831 *
1832 * A folio represents a number of bytes which is a power-of-two in size.
1833 * This function tells you which power-of-two the folio is. See also
1834 * folio_size() and folio_order().
1835 *
1836 * Context: The caller should have a reference on the folio to prevent
1837 * it from being split. It is not necessary for the folio to be locked.
1838 * Return: The base-2 logarithm of the size of this folio.
1839 */
1840static inline unsigned int folio_shift(struct folio *folio)
1841{
1842 return PAGE_SHIFT + folio_order(folio);
1843}
1844
1845/**
1846 * folio_size - The number of bytes in a folio.
1847 * @folio: The folio.
1848 *
1849 * Context: The caller should have a reference on the folio to prevent
1850 * it from being split. It is not necessary for the folio to be locked.
1851 * Return: The number of bytes in this folio.
1852 */
1853static inline size_t folio_size(struct folio *folio)
1854{
1855 return PAGE_SIZE << folio_order(folio);
1856}
1857
b424de33
MWO
1858#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1859static inline int arch_make_page_accessible(struct page *page)
1860{
1861 return 0;
1862}
1863#endif
1864
1865#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1866static inline int arch_make_folio_accessible(struct folio *folio)
1867{
1868 int ret;
1869 long i, nr = folio_nr_pages(folio);
1870
1871 for (i = 0; i < nr; i++) {
1872 ret = arch_make_page_accessible(folio_page(folio, i));
1873 if (ret)
1874 break;
1875 }
1876
1877 return ret;
1878}
1879#endif
1880
f6ac2354
CL
1881/*
1882 * Some inline functions in vmstat.h depend on page_zone()
1883 */
1884#include <linux/vmstat.h>
1885
33dd4e0e 1886static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1887{
1dff8083 1888 return page_to_virt(page);
1da177e4
LT
1889}
1890
1891#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1892#define HASHED_PAGE_VIRTUAL
1893#endif
1894
1895#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1896static inline void *page_address(const struct page *page)
1897{
1898 return page->virtual;
1899}
1900static inline void set_page_address(struct page *page, void *address)
1901{
1902 page->virtual = address;
1903}
1da177e4
LT
1904#define page_address_init() do { } while(0)
1905#endif
1906
1907#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1908void *page_address(const struct page *page);
1da177e4
LT
1909void set_page_address(struct page *page, void *virtual);
1910void page_address_init(void);
1911#endif
1912
1913#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1914#define page_address(page) lowmem_page_address(page)
1915#define set_page_address(page, address) do { } while(0)
1916#define page_address_init() do { } while(0)
1917#endif
1918
7d4203c1
VB
1919static inline void *folio_address(const struct folio *folio)
1920{
1921 return page_address(&folio->page);
1922}
1923
e39155ea 1924extern void *page_rmapping(struct page *page);
f6ab1f7f
HY
1925extern pgoff_t __page_file_index(struct page *page);
1926
1da177e4
LT
1927/*
1928 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1929 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1930 */
1931static inline pgoff_t page_index(struct page *page)
1932{
1933 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1934 return __page_file_index(page);
1da177e4
LT
1935 return page->index;
1936}
1937
2f064f34
MH
1938/*
1939 * Return true only if the page has been allocated with
1940 * ALLOC_NO_WATERMARKS and the low watermark was not
1941 * met implying that the system is under some pressure.
1942 */
1d7bab6a 1943static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1944{
1945 /*
c07aea3e
MC
1946 * lru.next has bit 1 set if the page is allocated from the
1947 * pfmemalloc reserves. Callers may simply overwrite it if
1948 * they do not need to preserve that information.
2f064f34 1949 */
c07aea3e 1950 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
1951}
1952
02d65d6f
SK
1953/*
1954 * Return true only if the folio has been allocated with
1955 * ALLOC_NO_WATERMARKS and the low watermark was not
1956 * met implying that the system is under some pressure.
1957 */
1958static inline bool folio_is_pfmemalloc(const struct folio *folio)
1959{
1960 /*
1961 * lru.next has bit 1 set if the page is allocated from the
1962 * pfmemalloc reserves. Callers may simply overwrite it if
1963 * they do not need to preserve that information.
1964 */
1965 return (uintptr_t)folio->lru.next & BIT(1);
1966}
1967
2f064f34
MH
1968/*
1969 * Only to be called by the page allocator on a freshly allocated
1970 * page.
1971 */
1972static inline void set_page_pfmemalloc(struct page *page)
1973{
c07aea3e 1974 page->lru.next = (void *)BIT(1);
2f064f34
MH
1975}
1976
1977static inline void clear_page_pfmemalloc(struct page *page)
1978{
c07aea3e 1979 page->lru.next = NULL;
2f064f34
MH
1980}
1981
1c0fe6e3
NP
1982/*
1983 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1984 */
1985extern void pagefault_out_of_memory(void);
1986
1da177e4 1987#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1988#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 1989#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 1990
ddd588b5 1991/*
7bf02ea2 1992 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1993 * various contexts.
1994 */
4b59e6c4 1995#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1996
974f4367
MH
1997extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
1998static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
1999{
2000 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2001}
1da177e4 2002
21b85b09
MK
2003/*
2004 * Parameter block passed down to zap_pte_range in exceptional cases.
2005 */
2006struct zap_details {
2007 struct folio *single_folio; /* Locked folio to be unmapped */
2008 bool even_cows; /* Zap COWed private pages too? */
2009 zap_flags_t zap_flags; /* Extra flags for zapping */
2010};
2011
2012/*
2013 * Whether to drop the pte markers, for example, the uffd-wp information for
2014 * file-backed memory. This should only be specified when we will completely
2015 * drop the page in the mm, either by truncation or unmapping of the vma. By
2016 * default, the flag is not set.
2017 */
2018#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
04ada095
MK
2019/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2020#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
21b85b09 2021
710ec38b 2022#ifdef CONFIG_MMU
7f43add4 2023extern bool can_do_mlock(void);
710ec38b
AB
2024#else
2025static inline bool can_do_mlock(void) { return false; }
2026#endif
d7c9e99a
AG
2027extern int user_shm_lock(size_t, struct ucounts *);
2028extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 2029
318e9342
VMO
2030struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2031 pte_t pte);
25b2995a
CH
2032struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2033 pte_t pte);
28093f9f
GS
2034struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2035 pmd_t pmd);
7e675137 2036
27d036e3
LR
2037void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2038 unsigned long size);
21b85b09
MK
2039void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2040 unsigned long size, struct zap_details *details);
e9adcfec
MK
2041static inline void zap_vma_pages(struct vm_area_struct *vma)
2042{
2043 zap_page_range_single(vma, vma->vm_start,
2044 vma->vm_end - vma->vm_start, NULL);
2045}
763ecb03
LH
2046void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2047 struct vm_area_struct *start_vma, unsigned long start,
2048 unsigned long end);
e6473092 2049
ac46d4f3
JG
2050struct mmu_notifier_range;
2051
42b77728 2052void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 2053 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
2054int
2055copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 2056int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 2057 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
2058int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2059 unsigned long *pfn);
d87fe660 2060int follow_phys(struct vm_area_struct *vma, unsigned long address,
2061 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
2062int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2063 void *buf, int len, int write);
1da177e4 2064
7caef267 2065extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 2066extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 2067void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 2068void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 2069int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 2070
7ee1dd3f 2071#ifdef CONFIG_MMU
2b740303 2072extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2073 unsigned long address, unsigned int flags,
2074 struct pt_regs *regs);
64019a2e 2075extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
2076 unsigned long address, unsigned int fault_flags,
2077 bool *unlocked);
977fbdcd
MW
2078void unmap_mapping_pages(struct address_space *mapping,
2079 pgoff_t start, pgoff_t nr, bool even_cows);
2080void unmap_mapping_range(struct address_space *mapping,
2081 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 2082#else
2b740303 2083static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2084 unsigned long address, unsigned int flags,
2085 struct pt_regs *regs)
7ee1dd3f
DH
2086{
2087 /* should never happen if there's no MMU */
2088 BUG();
2089 return VM_FAULT_SIGBUS;
2090}
64019a2e 2091static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 2092 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
2093{
2094 /* should never happen if there's no MMU */
2095 BUG();
2096 return -EFAULT;
2097}
977fbdcd
MW
2098static inline void unmap_mapping_pages(struct address_space *mapping,
2099 pgoff_t start, pgoff_t nr, bool even_cows) { }
2100static inline void unmap_mapping_range(struct address_space *mapping,
2101 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 2102#endif
f33ea7f4 2103
977fbdcd
MW
2104static inline void unmap_shared_mapping_range(struct address_space *mapping,
2105 loff_t const holebegin, loff_t const holelen)
2106{
2107 unmap_mapping_range(mapping, holebegin, holelen, 0);
2108}
2109
2110extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2111 void *buf, int len, unsigned int gup_flags);
5ddd36b9 2112extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 2113 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
2114extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2115 void *buf, int len, unsigned int gup_flags);
1da177e4 2116
64019a2e 2117long get_user_pages_remote(struct mm_struct *mm,
1e987790 2118 unsigned long start, unsigned long nr_pages,
9beae1ea 2119 unsigned int gup_flags, struct page **pages,
5b56d49f 2120 struct vm_area_struct **vmas, int *locked);
64019a2e 2121long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2122 unsigned long start, unsigned long nr_pages,
2123 unsigned int gup_flags, struct page **pages,
2124 struct vm_area_struct **vmas, int *locked);
c12d2da5 2125long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 2126 unsigned int gup_flags, struct page **pages,
cde70140 2127 struct vm_area_struct **vmas);
eddb1c22
JH
2128long pin_user_pages(unsigned long start, unsigned long nr_pages,
2129 unsigned int gup_flags, struct page **pages,
2130 struct vm_area_struct **vmas);
c12d2da5 2131long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 2132 struct page **pages, unsigned int gup_flags);
91429023
JH
2133long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2134 struct page **pages, unsigned int gup_flags);
9a4e9f3b 2135
73b0140b
IW
2136int get_user_pages_fast(unsigned long start, int nr_pages,
2137 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
2138int pin_user_pages_fast(unsigned long start, int nr_pages,
2139 unsigned int gup_flags, struct page **pages);
8025e5dd 2140
79eb597c
DJ
2141int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2142int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2143 struct task_struct *task, bool bypass_rlim);
2144
18022c5d
MG
2145struct kvec;
2146int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
2147 struct page **pages);
f3e8fccd 2148struct page *get_dump_page(unsigned long addr);
1da177e4 2149
b5e84594
MWO
2150bool folio_mark_dirty(struct folio *folio);
2151bool set_page_dirty(struct page *page);
1da177e4 2152int set_page_dirty_lock(struct page *page);
b9ea2515 2153
a9090253 2154int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 2155
b6a2fea3
OW
2156extern unsigned long move_page_tables(struct vm_area_struct *vma,
2157 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
2158 unsigned long new_addr, unsigned long len,
2159 bool need_rmap_locks);
58705444
PX
2160
2161/*
2162 * Flags used by change_protection(). For now we make it a bitmap so
2163 * that we can pass in multiple flags just like parameters. However
2164 * for now all the callers are only use one of the flags at the same
2165 * time.
2166 */
64fe24a3
DH
2167/*
2168 * Whether we should manually check if we can map individual PTEs writable,
2169 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2170 * PTEs automatically in a writable mapping.
2171 */
2172#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
2173/* Whether this protection change is for NUMA hints */
2174#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2175/* Whether this change is for write protecting */
2176#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2177#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2178#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2179 MM_CP_UFFD_WP_RESOLVE)
58705444 2180
eb309ec8
DH
2181int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2182static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2183{
2184 /*
2185 * We want to check manually if we can change individual PTEs writable
2186 * if we can't do that automatically for all PTEs in a mapping. For
2187 * private mappings, that's always the case when we have write
2188 * permissions as we properly have to handle COW.
2189 */
2190 if (vma->vm_flags & VM_SHARED)
2191 return vma_wants_writenotify(vma, vma->vm_page_prot);
2192 return !!(vma->vm_flags & VM_WRITE);
2193
2194}
6a56ccbc
DH
2195bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2196 pte_t pte);
a79390f5 2197extern long change_protection(struct mmu_gather *tlb,
4a18419f 2198 struct vm_area_struct *vma, unsigned long start,
1ef488ed 2199 unsigned long end, unsigned long cp_flags);
2286a691
LH
2200extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2201 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2202 unsigned long start, unsigned long end, unsigned long newflags);
1da177e4 2203
465a454f
PZ
2204/*
2205 * doesn't attempt to fault and will return short.
2206 */
dadbb612
SJ
2207int get_user_pages_fast_only(unsigned long start, int nr_pages,
2208 unsigned int gup_flags, struct page **pages);
104acc32
JH
2209int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2210 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2211
2212static inline bool get_user_page_fast_only(unsigned long addr,
2213 unsigned int gup_flags, struct page **pagep)
2214{
2215 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2216}
d559db08
KH
2217/*
2218 * per-process(per-mm_struct) statistics.
2219 */
d559db08
KH
2220static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2221{
f1a79412 2222 return percpu_counter_read_positive(&mm->rss_stat[member]);
69c97823 2223}
d559db08 2224
f1a79412 2225void mm_trace_rss_stat(struct mm_struct *mm, int member);
b3d1411b 2226
d559db08
KH
2227static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2228{
f1a79412 2229 percpu_counter_add(&mm->rss_stat[member], value);
b3d1411b 2230
f1a79412 2231 mm_trace_rss_stat(mm, member);
d559db08
KH
2232}
2233
2234static inline void inc_mm_counter(struct mm_struct *mm, int member)
2235{
f1a79412 2236 percpu_counter_inc(&mm->rss_stat[member]);
b3d1411b 2237
f1a79412 2238 mm_trace_rss_stat(mm, member);
d559db08
KH
2239}
2240
2241static inline void dec_mm_counter(struct mm_struct *mm, int member)
2242{
f1a79412 2243 percpu_counter_dec(&mm->rss_stat[member]);
b3d1411b 2244
f1a79412 2245 mm_trace_rss_stat(mm, member);
d559db08
KH
2246}
2247
eca56ff9
JM
2248/* Optimized variant when page is already known not to be PageAnon */
2249static inline int mm_counter_file(struct page *page)
2250{
2251 if (PageSwapBacked(page))
2252 return MM_SHMEMPAGES;
2253 return MM_FILEPAGES;
2254}
2255
2256static inline int mm_counter(struct page *page)
2257{
2258 if (PageAnon(page))
2259 return MM_ANONPAGES;
2260 return mm_counter_file(page);
2261}
2262
d559db08
KH
2263static inline unsigned long get_mm_rss(struct mm_struct *mm)
2264{
2265 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2266 get_mm_counter(mm, MM_ANONPAGES) +
2267 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2268}
2269
2270static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2271{
2272 return max(mm->hiwater_rss, get_mm_rss(mm));
2273}
2274
2275static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2276{
2277 return max(mm->hiwater_vm, mm->total_vm);
2278}
2279
2280static inline void update_hiwater_rss(struct mm_struct *mm)
2281{
2282 unsigned long _rss = get_mm_rss(mm);
2283
2284 if ((mm)->hiwater_rss < _rss)
2285 (mm)->hiwater_rss = _rss;
2286}
2287
2288static inline void update_hiwater_vm(struct mm_struct *mm)
2289{
2290 if (mm->hiwater_vm < mm->total_vm)
2291 mm->hiwater_vm = mm->total_vm;
2292}
2293
695f0559
PC
2294static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2295{
2296 mm->hiwater_rss = get_mm_rss(mm);
2297}
2298
d559db08
KH
2299static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2300 struct mm_struct *mm)
2301{
2302 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2303
2304 if (*maxrss < hiwater_rss)
2305 *maxrss = hiwater_rss;
2306}
2307
53bddb4e 2308#if defined(SPLIT_RSS_COUNTING)
05af2e10 2309void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2310#else
05af2e10 2311static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2312{
2313}
2314#endif
465a454f 2315
78e7c5af
AK
2316#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2317static inline int pte_special(pte_t pte)
2318{
2319 return 0;
2320}
2321
2322static inline pte_t pte_mkspecial(pte_t pte)
2323{
2324 return pte;
2325}
2326#endif
2327
17596731 2328#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2329static inline int pte_devmap(pte_t pte)
2330{
2331 return 0;
2332}
2333#endif
2334
25ca1d6c
NK
2335extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2336 spinlock_t **ptl);
2337static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2338 spinlock_t **ptl)
2339{
2340 pte_t *ptep;
2341 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2342 return ptep;
2343}
c9cfcddf 2344
c2febafc
KS
2345#ifdef __PAGETABLE_P4D_FOLDED
2346static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2347 unsigned long address)
2348{
2349 return 0;
2350}
2351#else
2352int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2353#endif
2354
b4e98d9a 2355#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2356static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2357 unsigned long address)
2358{
2359 return 0;
2360}
b4e98d9a
KS
2361static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2362static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2363
5f22df00 2364#else
c2febafc 2365int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2366
b4e98d9a
KS
2367static inline void mm_inc_nr_puds(struct mm_struct *mm)
2368{
6d212db1
MS
2369 if (mm_pud_folded(mm))
2370 return;
af5b0f6a 2371 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2372}
2373
2374static inline void mm_dec_nr_puds(struct mm_struct *mm)
2375{
6d212db1
MS
2376 if (mm_pud_folded(mm))
2377 return;
af5b0f6a 2378 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2379}
5f22df00
NP
2380#endif
2381
2d2f5119 2382#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2383static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2384 unsigned long address)
2385{
2386 return 0;
2387}
dc6c9a35 2388
dc6c9a35
KS
2389static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2390static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2391
5f22df00 2392#else
1bb3630e 2393int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2394
dc6c9a35
KS
2395static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2396{
6d212db1
MS
2397 if (mm_pmd_folded(mm))
2398 return;
af5b0f6a 2399 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2400}
2401
2402static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2403{
6d212db1
MS
2404 if (mm_pmd_folded(mm))
2405 return;
af5b0f6a 2406 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2407}
5f22df00
NP
2408#endif
2409
c4812909 2410#ifdef CONFIG_MMU
af5b0f6a 2411static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2412{
af5b0f6a 2413 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2414}
2415
af5b0f6a 2416static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2417{
af5b0f6a 2418 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2419}
2420
2421static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2422{
af5b0f6a 2423 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2424}
2425
2426static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2427{
af5b0f6a 2428 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2429}
2430#else
c4812909 2431
af5b0f6a
KS
2432static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2433static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2434{
2435 return 0;
2436}
2437
2438static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2439static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2440#endif
2441
4cf58924
JFG
2442int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2443int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2444
f949286c
MR
2445#if defined(CONFIG_MMU)
2446
c2febafc
KS
2447static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2448 unsigned long address)
2449{
2450 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2451 NULL : p4d_offset(pgd, address);
2452}
2453
2454static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2455 unsigned long address)
1da177e4 2456{
c2febafc
KS
2457 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2458 NULL : pud_offset(p4d, address);
1da177e4 2459}
d8626138 2460
1da177e4
LT
2461static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2462{
1bb3630e
HD
2463 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2464 NULL: pmd_offset(pud, address);
1da177e4 2465}
f949286c 2466#endif /* CONFIG_MMU */
1bb3630e 2467
57c1ffce 2468#if USE_SPLIT_PTE_PTLOCKS
597d795a 2469#if ALLOC_SPLIT_PTLOCKS
b35f1819 2470void __init ptlock_cache_init(void);
539edb58
PZ
2471extern bool ptlock_alloc(struct page *page);
2472extern void ptlock_free(struct page *page);
2473
2474static inline spinlock_t *ptlock_ptr(struct page *page)
2475{
2476 return page->ptl;
2477}
597d795a 2478#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2479static inline void ptlock_cache_init(void)
2480{
2481}
2482
49076ec2
KS
2483static inline bool ptlock_alloc(struct page *page)
2484{
49076ec2
KS
2485 return true;
2486}
539edb58 2487
49076ec2
KS
2488static inline void ptlock_free(struct page *page)
2489{
49076ec2
KS
2490}
2491
2492static inline spinlock_t *ptlock_ptr(struct page *page)
2493{
539edb58 2494 return &page->ptl;
49076ec2 2495}
597d795a 2496#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2497
2498static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2499{
2500 return ptlock_ptr(pmd_page(*pmd));
2501}
2502
2503static inline bool ptlock_init(struct page *page)
2504{
2505 /*
2506 * prep_new_page() initialize page->private (and therefore page->ptl)
2507 * with 0. Make sure nobody took it in use in between.
2508 *
2509 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2510 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2511 */
309381fe 2512 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2513 if (!ptlock_alloc(page))
2514 return false;
2515 spin_lock_init(ptlock_ptr(page));
2516 return true;
2517}
2518
57c1ffce 2519#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2520/*
2521 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2522 */
49076ec2
KS
2523static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2524{
2525 return &mm->page_table_lock;
2526}
b35f1819 2527static inline void ptlock_cache_init(void) {}
49076ec2 2528static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2529static inline void ptlock_free(struct page *page) {}
57c1ffce 2530#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2531
b35f1819
KS
2532static inline void pgtable_init(void)
2533{
2534 ptlock_cache_init();
2535 pgtable_cache_init();
2536}
2537
b4ed71f5 2538static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2539{
706874e9
VD
2540 if (!ptlock_init(page))
2541 return false;
1d40a5ea 2542 __SetPageTable(page);
f0c0c115 2543 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2544 return true;
2f569afd
MS
2545}
2546
b4ed71f5 2547static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2548{
9e247bab 2549 ptlock_free(page);
1d40a5ea 2550 __ClearPageTable(page);
f0c0c115 2551 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2552}
2553
c74df32c
HD
2554#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2555({ \
4c21e2f2 2556 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2557 pte_t *__pte = pte_offset_map(pmd, address); \
2558 *(ptlp) = __ptl; \
2559 spin_lock(__ptl); \
2560 __pte; \
2561})
2562
2563#define pte_unmap_unlock(pte, ptl) do { \
2564 spin_unlock(ptl); \
2565 pte_unmap(pte); \
2566} while (0)
2567
4cf58924 2568#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2569
2570#define pte_alloc_map(mm, pmd, address) \
4cf58924 2571 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2572
c74df32c 2573#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2574 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2575 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2576
1bb3630e 2577#define pte_alloc_kernel(pmd, address) \
4cf58924 2578 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2579 NULL: pte_offset_kernel(pmd, address))
1da177e4 2580
e009bb30
KS
2581#if USE_SPLIT_PMD_PTLOCKS
2582
7e25de77 2583static inline struct page *pmd_pgtable_page(pmd_t *pmd)
634391ac
MS
2584{
2585 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2586 return virt_to_page((void *)((unsigned long) pmd & mask));
2587}
2588
e009bb30
KS
2589static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2590{
373dfda2 2591 return ptlock_ptr(pmd_pgtable_page(pmd));
e009bb30
KS
2592}
2593
b2b29d6d 2594static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2595{
e009bb30
KS
2596#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2597 page->pmd_huge_pte = NULL;
2598#endif
49076ec2 2599 return ptlock_init(page);
e009bb30
KS
2600}
2601
b2b29d6d 2602static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2603{
2604#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2605 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2606#endif
49076ec2 2607 ptlock_free(page);
e009bb30
KS
2608}
2609
373dfda2 2610#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
e009bb30
KS
2611
2612#else
2613
9a86cb7b
KS
2614static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2615{
2616 return &mm->page_table_lock;
2617}
2618
b2b29d6d
MW
2619static inline bool pmd_ptlock_init(struct page *page) { return true; }
2620static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2621
c389a250 2622#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2623
e009bb30
KS
2624#endif
2625
9a86cb7b
KS
2626static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2627{
2628 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2629 spin_lock(ptl);
2630 return ptl;
2631}
2632
b2b29d6d
MW
2633static inline bool pgtable_pmd_page_ctor(struct page *page)
2634{
2635 if (!pmd_ptlock_init(page))
2636 return false;
2637 __SetPageTable(page);
f0c0c115 2638 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2639 return true;
2640}
2641
2642static inline void pgtable_pmd_page_dtor(struct page *page)
2643{
2644 pmd_ptlock_free(page);
2645 __ClearPageTable(page);
f0c0c115 2646 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2647}
2648
a00cc7d9
MW
2649/*
2650 * No scalability reason to split PUD locks yet, but follow the same pattern
2651 * as the PMD locks to make it easier if we decide to. The VM should not be
2652 * considered ready to switch to split PUD locks yet; there may be places
2653 * which need to be converted from page_table_lock.
2654 */
2655static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2656{
2657 return &mm->page_table_lock;
2658}
2659
2660static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2661{
2662 spinlock_t *ptl = pud_lockptr(mm, pud);
2663
2664 spin_lock(ptl);
2665 return ptl;
2666}
62906027 2667
a00cc7d9 2668extern void __init pagecache_init(void);
49a7f04a
DH
2669extern void free_initmem(void);
2670
69afade7
JL
2671/*
2672 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2673 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2674 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2675 * Return pages freed into the buddy system.
2676 */
11199692 2677extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2678 int poison, const char *s);
c3d5f5f0 2679
c3d5f5f0 2680extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2681extern void mem_init_print_info(void);
69afade7 2682
4b50bcc7 2683extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2684
69afade7 2685/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2686static inline void free_reserved_page(struct page *page)
69afade7
JL
2687{
2688 ClearPageReserved(page);
2689 init_page_count(page);
2690 __free_page(page);
69afade7
JL
2691 adjust_managed_page_count(page, 1);
2692}
a0cd7a7c 2693#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2694
2695static inline void mark_page_reserved(struct page *page)
2696{
2697 SetPageReserved(page);
2698 adjust_managed_page_count(page, -1);
2699}
2700
2701/*
2702 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2703 * The freed pages will be poisoned with pattern "poison" if it's within
2704 * range [0, UCHAR_MAX].
2705 * Return pages freed into the buddy system.
69afade7
JL
2706 */
2707static inline unsigned long free_initmem_default(int poison)
2708{
2709 extern char __init_begin[], __init_end[];
2710
11199692 2711 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2712 poison, "unused kernel image (initmem)");
69afade7
JL
2713}
2714
7ee3d4e8
JL
2715static inline unsigned long get_num_physpages(void)
2716{
2717 int nid;
2718 unsigned long phys_pages = 0;
2719
2720 for_each_online_node(nid)
2721 phys_pages += node_present_pages(nid);
2722
2723 return phys_pages;
2724}
2725
c713216d 2726/*
3f08a302 2727 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2728 * zones, allocate the backing mem_map and account for memory holes in an
2729 * architecture independent manner.
c713216d
MG
2730 *
2731 * An architecture is expected to register range of page frames backed by
0ee332c1 2732 * physical memory with memblock_add[_node]() before calling
9691a071 2733 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2734 * usage, an architecture is expected to do something like
2735 *
2736 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2737 * max_highmem_pfn};
2738 * for_each_valid_physical_page_range()
952eea9b 2739 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2740 * free_area_init(max_zone_pfns);
c713216d 2741 */
9691a071 2742void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2743unsigned long node_map_pfn_alignment(void);
32996250
YL
2744unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2745 unsigned long end_pfn);
c713216d
MG
2746extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2747 unsigned long end_pfn);
2748extern void get_pfn_range_for_nid(unsigned int nid,
2749 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 2750
a9ee6cf5 2751#ifndef CONFIG_NUMA
6f24fbd3 2752static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2753{
2754 return 0;
2755}
2756#else
2757/* please see mm/page_alloc.c */
2758extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2759#endif
2760
0e0b864e 2761extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2762extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2763 unsigned long, unsigned long, enum meminit_context,
2764 struct vmem_altmap *, int migratetype);
bc75d33f 2765extern void setup_per_zone_wmarks(void);
bd3400ea 2766extern void calculate_min_free_kbytes(void);
1b79acc9 2767extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2768extern void mem_init(void);
8feae131 2769extern void __init mmap_init(void);
974f4367
MH
2770
2771extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2772static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
2773{
2774 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
2775}
d02bd27b 2776extern long si_mem_available(void);
1da177e4
LT
2777extern void si_meminfo(struct sysinfo * val);
2778extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2779#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2780extern unsigned long arch_reserved_kernel_pages(void);
2781#endif
1da177e4 2782
a8e99259
MH
2783extern __printf(3, 4)
2784void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2785
e7c8d5c9 2786extern void setup_per_cpu_pageset(void);
e7c8d5c9 2787
75f7ad8e
PS
2788/* page_alloc.c */
2789extern int min_free_kbytes;
1c30844d 2790extern int watermark_boost_factor;
795ae7a0 2791extern int watermark_scale_factor;
51930df5 2792extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2793
8feae131 2794/* nommu.c */
33e5d769 2795extern atomic_long_t mmap_pages_allocated;
7e660872 2796extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2797
6b2dbba8 2798/* interval_tree.c */
6b2dbba8 2799void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2800 struct rb_root_cached *root);
9826a516
ML
2801void vma_interval_tree_insert_after(struct vm_area_struct *node,
2802 struct vm_area_struct *prev,
f808c13f 2803 struct rb_root_cached *root);
6b2dbba8 2804void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2805 struct rb_root_cached *root);
2806struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2807 unsigned long start, unsigned long last);
2808struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2809 unsigned long start, unsigned long last);
2810
2811#define vma_interval_tree_foreach(vma, root, start, last) \
2812 for (vma = vma_interval_tree_iter_first(root, start, last); \
2813 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2814
bf181b9f 2815void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2816 struct rb_root_cached *root);
bf181b9f 2817void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2818 struct rb_root_cached *root);
2819struct anon_vma_chain *
2820anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2821 unsigned long start, unsigned long last);
bf181b9f
ML
2822struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2823 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2824#ifdef CONFIG_DEBUG_VM_RB
2825void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2826#endif
bf181b9f
ML
2827
2828#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2829 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2830 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2831
1da177e4 2832/* mmap.c */
34b4e4aa 2833extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2834extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2835 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2836 struct vm_area_struct *expand);
2837static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2838 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2839{
2840 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2841}
1da177e4
LT
2842extern struct vm_area_struct *vma_merge(struct mm_struct *,
2843 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2844 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
5c26f6ac 2845 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
f2ebfe43
LH
2846extern struct vm_area_struct *vmi_vma_merge(struct vma_iterator *vmi,
2847 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
2848 unsigned long end, unsigned long vm_flags, struct anon_vma *,
2849 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
2850 struct anon_vma_name *);
1da177e4 2851extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0 2852extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
f2ebfe43
LH
2853 unsigned long addr, int new_below);
2854extern int vmi__split_vma(struct vma_iterator *vmi, struct mm_struct *,
2855 struct vm_area_struct *, unsigned long addr, int new_below);
def5efe0
DR
2856extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2857 unsigned long addr, int new_below);
f2ebfe43
LH
2858extern int vmi_split_vma(struct vma_iterator *vmi, struct mm_struct *,
2859 struct vm_area_struct *, unsigned long addr, int new_below);
1da177e4 2860extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 2861extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2862extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2863 unsigned long addr, unsigned long len, pgoff_t pgoff,
2864 bool *need_rmap_locks);
1da177e4 2865extern void exit_mmap(struct mm_struct *);
925d1c40 2866
d4af56c5
LH
2867void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas);
2868void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas);
2869
9c599024
CG
2870static inline int check_data_rlimit(unsigned long rlim,
2871 unsigned long new,
2872 unsigned long start,
2873 unsigned long end_data,
2874 unsigned long start_data)
2875{
2876 if (rlim < RLIM_INFINITY) {
2877 if (((new - start) + (end_data - start_data)) > rlim)
2878 return -ENOSPC;
2879 }
2880
2881 return 0;
2882}
2883
7906d00c
AA
2884extern int mm_take_all_locks(struct mm_struct *mm);
2885extern void mm_drop_all_locks(struct mm_struct *mm);
2886
fe69d560 2887extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 2888extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 2889extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2890extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2891
84638335
KK
2892extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2893extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2894
2eefd878
DS
2895extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2896 const struct vm_special_mapping *sm);
3935ed6a
SS
2897extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2898 unsigned long addr, unsigned long len,
a62c34bd
AL
2899 unsigned long flags,
2900 const struct vm_special_mapping *spec);
2901/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2902extern int install_special_mapping(struct mm_struct *mm,
2903 unsigned long addr, unsigned long len,
2904 unsigned long flags, struct page **pages);
1da177e4 2905
649775be 2906unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 2907unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 2908
1da177e4
LT
2909extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2910
0165ab44 2911extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2912 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2913 struct list_head *uf);
1fcfd8db 2914extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2915 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2916 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
183654ce 2917extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
11f9a21a
LH
2918 unsigned long start, size_t len, struct list_head *uf,
2919 bool downgrade);
897ab3e0
MR
2920extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2921 struct list_head *uf);
0726b01e 2922extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2923
bebeb3d6 2924#ifdef CONFIG_MMU
27b26701
LH
2925extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2926 unsigned long start, unsigned long end,
2927 struct list_head *uf, bool downgrade);
bebeb3d6
ML
2928extern int __mm_populate(unsigned long addr, unsigned long len,
2929 int ignore_errors);
2930static inline void mm_populate(unsigned long addr, unsigned long len)
2931{
2932 /* Ignore errors */
2933 (void) __mm_populate(addr, len, 1);
2934}
2935#else
2936static inline void mm_populate(unsigned long addr, unsigned long len) {}
2937#endif
2938
e4eb1ff6 2939/* These take the mm semaphore themselves */
5d22fc25 2940extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2941extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2942extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2943extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2944 unsigned long, unsigned long,
2945 unsigned long, unsigned long);
1da177e4 2946
db4fbfb9
ML
2947struct vm_unmapped_area_info {
2948#define VM_UNMAPPED_AREA_TOPDOWN 1
2949 unsigned long flags;
2950 unsigned long length;
2951 unsigned long low_limit;
2952 unsigned long high_limit;
2953 unsigned long align_mask;
2954 unsigned long align_offset;
2955};
2956
baceaf1c 2957extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2958
85821aab 2959/* truncate.c */
1da177e4 2960extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2961extern void truncate_inode_pages_range(struct address_space *,
2962 loff_t lstart, loff_t lend);
91b0abe3 2963extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2964
2965/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2966extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2967extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2968 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2969extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 2970
1be7107f 2971extern unsigned long stack_guard_gap;
d05f3169 2972/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2973extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2974
11192337 2975/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2976extern int expand_downwards(struct vm_area_struct *vma,
2977 unsigned long address);
8ca3eb08 2978#if VM_GROWSUP
46dea3d0 2979extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2980#else
fee7e49d 2981 #define expand_upwards(vma, address) (0)
9ab88515 2982#endif
1da177e4
LT
2983
2984/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2985extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2986extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2987 struct vm_area_struct **pprev);
2988
abdba2dd
LH
2989/*
2990 * Look up the first VMA which intersects the interval [start_addr, end_addr)
2991 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 2992 */
ce6d42f2 2993struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 2994 unsigned long start_addr, unsigned long end_addr);
1da177e4 2995
ce6d42f2
LH
2996/**
2997 * vma_lookup() - Find a VMA at a specific address
2998 * @mm: The process address space.
2999 * @addr: The user address.
3000 *
3001 * Return: The vm_area_struct at the given address, %NULL otherwise.
3002 */
3003static inline
3004struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3005{
d7c62295 3006 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
3007}
3008
1be7107f
HD
3009static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3010{
3011 unsigned long vm_start = vma->vm_start;
3012
3013 if (vma->vm_flags & VM_GROWSDOWN) {
3014 vm_start -= stack_guard_gap;
3015 if (vm_start > vma->vm_start)
3016 vm_start = 0;
3017 }
3018 return vm_start;
3019}
3020
3021static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3022{
3023 unsigned long vm_end = vma->vm_end;
3024
3025 if (vma->vm_flags & VM_GROWSUP) {
3026 vm_end += stack_guard_gap;
3027 if (vm_end < vma->vm_end)
3028 vm_end = -PAGE_SIZE;
3029 }
3030 return vm_end;
3031}
3032
1da177e4
LT
3033static inline unsigned long vma_pages(struct vm_area_struct *vma)
3034{
3035 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3036}
3037
640708a2
PE
3038/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3039static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3040 unsigned long vm_start, unsigned long vm_end)
3041{
dc8635b2 3042 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
3043
3044 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3045 vma = NULL;
3046
3047 return vma;
3048}
3049
017b1660
MK
3050static inline bool range_in_vma(struct vm_area_struct *vma,
3051 unsigned long start, unsigned long end)
3052{
3053 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3054}
3055
bad849b3 3056#ifdef CONFIG_MMU
804af2cf 3057pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 3058void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
3059#else
3060static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3061{
3062 return __pgprot(0);
3063}
64e45507
PF
3064static inline void vma_set_page_prot(struct vm_area_struct *vma)
3065{
3066 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3067}
bad849b3
DH
3068#endif
3069
295992fb
CK
3070void vma_set_file(struct vm_area_struct *vma, struct file *file);
3071
5877231f 3072#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 3073unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
3074 unsigned long start, unsigned long end);
3075#endif
3076
deceb6cd 3077struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
3078int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3079 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
3080int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3081 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 3082int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
3083int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3084 struct page **pages, unsigned long *num);
a667d745
SJ
3085int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3086 unsigned long num);
3087int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3088 unsigned long num);
ae2b01f3 3089vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 3090 unsigned long pfn);
f5e6d1d5
MW
3091vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3092 unsigned long pfn, pgprot_t pgprot);
5d747637 3093vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 3094 pfn_t pfn);
574c5b3d
TH
3095vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
3096 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
3097vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3098 unsigned long addr, pfn_t pfn);
b4cbb197
LT
3099int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3100
1c8f4220
SJ
3101static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3102 unsigned long addr, struct page *page)
3103{
3104 int err = vm_insert_page(vma, addr, page);
3105
3106 if (err == -ENOMEM)
3107 return VM_FAULT_OOM;
3108 if (err < 0 && err != -EBUSY)
3109 return VM_FAULT_SIGBUS;
3110
3111 return VM_FAULT_NOPAGE;
3112}
3113
f8f6ae5d
JG
3114#ifndef io_remap_pfn_range
3115static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3116 unsigned long addr, unsigned long pfn,
3117 unsigned long size, pgprot_t prot)
3118{
3119 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3120}
3121#endif
3122
d97baf94
SJ
3123static inline vm_fault_t vmf_error(int err)
3124{
3125 if (err == -ENOMEM)
3126 return VM_FAULT_OOM;
3127 return VM_FAULT_SIGBUS;
3128}
3129
df06b37f
KB
3130struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3131 unsigned int foll_flags);
240aadee 3132
2b740303 3133static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3134{
3135 if (vm_fault & VM_FAULT_OOM)
3136 return -ENOMEM;
3137 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3138 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3139 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3140 return -EFAULT;
3141 return 0;
3142}
3143
a7f22660
DH
3144/*
3145 * Indicates for which pages that are write-protected in the page table,
3146 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
3147 * GUP pin will remain consistent with the pages mapped into the page tables
3148 * of the MM.
3149 *
3150 * Temporary unmapping of PageAnonExclusive() pages or clearing of
3151 * PageAnonExclusive() has to protect against concurrent GUP:
3152 * * Ordinary GUP: Using the PT lock
3153 * * GUP-fast and fork(): mm->write_protect_seq
088b8aa5
DH
3154 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
3155 * page_try_share_anon_rmap()
a7f22660
DH
3156 *
3157 * Must be called with the (sub)page that's actually referenced via the
3158 * page table entry, which might not necessarily be the head page for a
3159 * PTE-mapped THP.
84209e87
DH
3160 *
3161 * If the vma is NULL, we're coming from the GUP-fast path and might have
3162 * to fallback to the slow path just to lookup the vma.
a7f22660 3163 */
84209e87
DH
3164static inline bool gup_must_unshare(struct vm_area_struct *vma,
3165 unsigned int flags, struct page *page)
a7f22660
DH
3166{
3167 /*
3168 * FOLL_WRITE is implicitly handled correctly as the page table entry
3169 * has to be writable -- and if it references (part of) an anonymous
3170 * folio, that part is required to be marked exclusive.
3171 */
3172 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
3173 return false;
3174 /*
3175 * Note: PageAnon(page) is stable until the page is actually getting
3176 * freed.
3177 */
84209e87
DH
3178 if (!PageAnon(page)) {
3179 /*
3180 * We only care about R/O long-term pining: R/O short-term
3181 * pinning does not have the semantics to observe successive
3182 * changes through the process page tables.
3183 */
3184 if (!(flags & FOLL_LONGTERM))
3185 return false;
3186
3187 /* We really need the vma ... */
3188 if (!vma)
3189 return true;
3190
3191 /*
3192 * ... because we only care about writable private ("COW")
3193 * mappings where we have to break COW early.
3194 */
3195 return is_cow_mapping(vma->vm_flags);
3196 }
088b8aa5
DH
3197
3198 /* Paired with a memory barrier in page_try_share_anon_rmap(). */
3199 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
3200 smp_rmb();
3201
a7f22660
DH
3202 /*
3203 * Note that PageKsm() pages cannot be exclusive, and consequently,
3204 * cannot get pinned.
3205 */
3206 return !PageAnonExclusive(page);
3207}
3208
474098ed
DH
3209/*
3210 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3211 * a (NUMA hinting) fault is required.
3212 */
3213static inline bool gup_can_follow_protnone(unsigned int flags)
3214{
3215 /*
3216 * FOLL_FORCE has to be able to make progress even if the VMA is
3217 * inaccessible. Further, FOLL_FORCE access usually does not represent
3218 * application behaviour and we should avoid triggering NUMA hinting
3219 * faults.
3220 */
3221 return flags & FOLL_FORCE;
3222}
3223
8b1e0f81 3224typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3225extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3226 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3227extern int apply_to_existing_page_range(struct mm_struct *mm,
3228 unsigned long address, unsigned long size,
3229 pte_fn_t fn, void *data);
aee16b3c 3230
5749fcc5 3231extern void __init init_mem_debugging_and_hardening(void);
8823b1db 3232#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3233extern void __kernel_poison_pages(struct page *page, int numpages);
3234extern void __kernel_unpoison_pages(struct page *page, int numpages);
3235extern bool _page_poisoning_enabled_early;
3236DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3237static inline bool page_poisoning_enabled(void)
3238{
3239 return _page_poisoning_enabled_early;
3240}
3241/*
3242 * For use in fast paths after init_mem_debugging() has run, or when a
3243 * false negative result is not harmful when called too early.
3244 */
3245static inline bool page_poisoning_enabled_static(void)
3246{
3247 return static_branch_unlikely(&_page_poisoning_enabled);
3248}
3249static inline void kernel_poison_pages(struct page *page, int numpages)
3250{
3251 if (page_poisoning_enabled_static())
3252 __kernel_poison_pages(page, numpages);
3253}
3254static inline void kernel_unpoison_pages(struct page *page, int numpages)
3255{
3256 if (page_poisoning_enabled_static())
3257 __kernel_unpoison_pages(page, numpages);
3258}
8823b1db
LA
3259#else
3260static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3261static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3262static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3263static inline void kernel_poison_pages(struct page *page, int numpages) { }
3264static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3265#endif
3266
51cba1eb 3267DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3268static inline bool want_init_on_alloc(gfp_t flags)
3269{
51cba1eb
KC
3270 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3271 &init_on_alloc))
6471384a
AP
3272 return true;
3273 return flags & __GFP_ZERO;
3274}
3275
51cba1eb 3276DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3277static inline bool want_init_on_free(void)
3278{
51cba1eb
KC
3279 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3280 &init_on_free);
6471384a
AP
3281}
3282
8e57f8ac
VB
3283extern bool _debug_pagealloc_enabled_early;
3284DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3285
3286static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3287{
3288 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3289 _debug_pagealloc_enabled_early;
3290}
3291
3292/*
3293 * For use in fast paths after init_debug_pagealloc() has run, or when a
3294 * false negative result is not harmful when called too early.
3295 */
3296static inline bool debug_pagealloc_enabled_static(void)
031bc574 3297{
96a2b03f
VB
3298 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3299 return false;
3300
3301 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3302}
3303
5d6ad668 3304#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3305/*
5d6ad668
MR
3306 * To support DEBUG_PAGEALLOC architecture must ensure that
3307 * __kernel_map_pages() never fails
c87cbc1f 3308 */
d6332692
RE
3309extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3310
77bc7fd6
MR
3311static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3312{
3313 if (debug_pagealloc_enabled_static())
3314 __kernel_map_pages(page, numpages, 1);
3315}
3316
3317static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3318{
3319 if (debug_pagealloc_enabled_static())
3320 __kernel_map_pages(page, numpages, 0);
3321}
5d6ad668 3322#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3323static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3324static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3325#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3326
a6c19dfe 3327#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3328extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3329extern int in_gate_area_no_mm(unsigned long addr);
3330extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3331#else
a6c19dfe
AL
3332static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3333{
3334 return NULL;
3335}
3336static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3337static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3338{
3339 return 0;
3340}
1da177e4
LT
3341#endif /* __HAVE_ARCH_GATE_AREA */
3342
44a70ade
MH
3343extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3344
146732ce
JT
3345#ifdef CONFIG_SYSCTL
3346extern int sysctl_drop_caches;
32927393
CH
3347int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3348 loff_t *);
146732ce
JT
3349#endif
3350
cb731d6c 3351void drop_slab(void);
9d0243bc 3352
7a9166e3
LY
3353#ifndef CONFIG_MMU
3354#define randomize_va_space 0
3355#else
a62eaf15 3356extern int randomize_va_space;
7a9166e3 3357#endif
a62eaf15 3358
045e72ac 3359const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3360#ifdef CONFIG_MMU
03252919 3361void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3362#else
3363static inline void print_vma_addr(char *prefix, unsigned long rip)
3364{
3365}
3366#endif
e6e5494c 3367
35fd1eb1 3368void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3369struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3370 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3371 struct dev_pagemap *pgmap);
7b09f5af
FC
3372void pmd_init(void *addr);
3373void pud_init(void *addr);
29c71111 3374pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3375p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3376pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3377pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3378pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3379 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3380void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3381struct vmem_altmap;
56993b4e
AK
3382void *vmemmap_alloc_block_buf(unsigned long size, int node,
3383 struct vmem_altmap *altmap);
8f6aac41 3384void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2045a3b8
FC
3385void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3386 unsigned long addr, unsigned long next);
3387int vmemmap_check_pmd(pmd_t *pmd, int node,
3388 unsigned long addr, unsigned long next);
0aad818b 3389int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3390 int node, struct vmem_altmap *altmap);
2045a3b8
FC
3391int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3392 int node, struct vmem_altmap *altmap);
7b73d978
CH
3393int vmemmap_populate(unsigned long start, unsigned long end, int node,
3394 struct vmem_altmap *altmap);
c2b91e2e 3395void vmemmap_populate_print_last(void);
0197518c 3396#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3397void vmemmap_free(unsigned long start, unsigned long end,
3398 struct vmem_altmap *altmap);
0197518c 3399#endif
46723bfa 3400void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3401 unsigned long nr_pages);
6a46079c 3402
82ba011b
AK
3403enum mf_flags {
3404 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3405 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3406 MF_MUST_KILL = 1 << 2,
cf870c70 3407 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3408 MF_UNPOISON = 1 << 4,
67f22ba7 3409 MF_SW_SIMULATED = 1 << 5,
38f6d293 3410 MF_NO_RETRY = 1 << 6,
82ba011b 3411};
c36e2024
SR
3412int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3413 unsigned long count, int mf_flags);
83b57531 3414extern int memory_failure(unsigned long pfn, int flags);
06202231 3415extern void memory_failure_queue_kick(int cpu);
847ce401 3416extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3417extern int sysctl_memory_failure_early_kill;
3418extern int sysctl_memory_failure_recovery;
d0505e9f 3419extern void shake_page(struct page *p);
5844a486 3420extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3421extern int soft_offline_page(unsigned long pfn, int flags);
405ce051 3422#ifdef CONFIG_MEMORY_FAILURE
d302c239 3423extern void memory_failure_queue(unsigned long pfn, int flags);
e591ef7d
NH
3424extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3425 bool *migratable_cleared);
5033091d
NH
3426void num_poisoned_pages_inc(unsigned long pfn);
3427void num_poisoned_pages_sub(unsigned long pfn, long i);
405ce051 3428#else
d302c239
TL
3429static inline void memory_failure_queue(unsigned long pfn, int flags)
3430{
3431}
3432
e591ef7d
NH
3433static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3434 bool *migratable_cleared)
405ce051
NH
3435{
3436 return 0;
3437}
d027122d 3438
a46c9304 3439static inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
3440{
3441}
5033091d
NH
3442
3443static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3444{
3445}
3446#endif
3447
3448#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3449extern void memblk_nr_poison_inc(unsigned long pfn);
3450extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3451#else
3452static inline void memblk_nr_poison_inc(unsigned long pfn)
3453{
3454}
3455
3456static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3457{
3458}
405ce051 3459#endif
6a46079c 3460
03b122da
TL
3461#ifndef arch_memory_failure
3462static inline int arch_memory_failure(unsigned long pfn, int flags)
3463{
3464 return -ENXIO;
3465}
3466#endif
3467
3468#ifndef arch_is_platform_page
3469static inline bool arch_is_platform_page(u64 paddr)
3470{
3471 return false;
3472}
3473#endif
cc637b17
XX
3474
3475/*
3476 * Error handlers for various types of pages.
3477 */
cc3e2af4 3478enum mf_result {
cc637b17
XX
3479 MF_IGNORED, /* Error: cannot be handled */
3480 MF_FAILED, /* Error: handling failed */
3481 MF_DELAYED, /* Will be handled later */
3482 MF_RECOVERED, /* Successfully recovered */
3483};
3484
3485enum mf_action_page_type {
3486 MF_MSG_KERNEL,
3487 MF_MSG_KERNEL_HIGH_ORDER,
3488 MF_MSG_SLAB,
3489 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3490 MF_MSG_HUGE,
3491 MF_MSG_FREE_HUGE,
3492 MF_MSG_UNMAP_FAILED,
3493 MF_MSG_DIRTY_SWAPCACHE,
3494 MF_MSG_CLEAN_SWAPCACHE,
3495 MF_MSG_DIRTY_MLOCKED_LRU,
3496 MF_MSG_CLEAN_MLOCKED_LRU,
3497 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3498 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3499 MF_MSG_DIRTY_LRU,
3500 MF_MSG_CLEAN_LRU,
3501 MF_MSG_TRUNCATED_LRU,
3502 MF_MSG_BUDDY,
6100e34b 3503 MF_MSG_DAX,
5d1fd5dc 3504 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3505 MF_MSG_UNKNOWN,
3506};
3507
44b8f8bf
JY
3508/*
3509 * Sysfs entries for memory failure handling statistics.
3510 */
3511extern const struct attribute_group memory_failure_attr_group;
3512
47ad8475
AA
3513#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3514extern void clear_huge_page(struct page *page,
c79b57e4 3515 unsigned long addr_hint,
47ad8475
AA
3516 unsigned int pages_per_huge_page);
3517extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3518 unsigned long addr_hint,
3519 struct vm_area_struct *vma,
47ad8475 3520 unsigned int pages_per_huge_page);
fa4d75c1
MK
3521extern long copy_huge_page_from_user(struct page *dst_page,
3522 const void __user *usr_src,
810a56b9
MK
3523 unsigned int pages_per_huge_page,
3524 bool allow_pagefault);
2484ca9b
THV
3525
3526/**
3527 * vma_is_special_huge - Are transhuge page-table entries considered special?
3528 * @vma: Pointer to the struct vm_area_struct to consider
3529 *
3530 * Whether transhuge page-table entries are considered "special" following
3531 * the definition in vm_normal_page().
3532 *
3533 * Return: true if transhuge page-table entries should be considered special,
3534 * false otherwise.
3535 */
3536static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3537{
3538 return vma_is_dax(vma) || (vma->vm_file &&
3539 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3540}
3541
47ad8475
AA
3542#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3543
c0a32fc5
SG
3544#ifdef CONFIG_DEBUG_PAGEALLOC
3545extern unsigned int _debug_guardpage_minorder;
96a2b03f 3546DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3547
3548static inline unsigned int debug_guardpage_minorder(void)
3549{
3550 return _debug_guardpage_minorder;
3551}
3552
e30825f1
JK
3553static inline bool debug_guardpage_enabled(void)
3554{
96a2b03f 3555 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3556}
3557
c0a32fc5
SG
3558static inline bool page_is_guard(struct page *page)
3559{
e30825f1
JK
3560 if (!debug_guardpage_enabled())
3561 return false;
3562
3972f6bb 3563 return PageGuard(page);
c0a32fc5
SG
3564}
3565#else
3566static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3567static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3568static inline bool page_is_guard(struct page *page) { return false; }
3569#endif /* CONFIG_DEBUG_PAGEALLOC */
3570
f9872caf
CS
3571#if MAX_NUMNODES > 1
3572void __init setup_nr_node_ids(void);
3573#else
3574static inline void setup_nr_node_ids(void) {}
3575#endif
3576
010c164a
SL
3577extern int memcmp_pages(struct page *page1, struct page *page2);
3578
3579static inline int pages_identical(struct page *page1, struct page *page2)
3580{
3581 return !memcmp_pages(page1, page2);
3582}
3583
c5acad84
TH
3584#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3585unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3586 pgoff_t first_index, pgoff_t nr,
3587 pgoff_t bitmap_pgoff,
3588 unsigned long *bitmap,
3589 pgoff_t *start,
3590 pgoff_t *end);
3591
3592unsigned long wp_shared_mapping_range(struct address_space *mapping,
3593 pgoff_t first_index, pgoff_t nr);
3594#endif
3595
2374c09b
CH
3596extern int sysctl_nr_trim_pages;
3597
5bb1bb35 3598#ifdef CONFIG_PRINTK
8e7f37f2 3599void mem_dump_obj(void *object);
5bb1bb35
PM
3600#else
3601static inline void mem_dump_obj(void *object) {}
3602#endif
8e7f37f2 3603
22247efd
PX
3604/**
3605 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3606 * @seals: the seals to check
3607 * @vma: the vma to operate on
3608 *
3609 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3610 * the vma flags. Return 0 if check pass, or <0 for errors.
3611 */
3612static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3613{
3614 if (seals & F_SEAL_FUTURE_WRITE) {
3615 /*
3616 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3617 * "future write" seal active.
3618 */
3619 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3620 return -EPERM;
3621
3622 /*
3623 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3624 * MAP_SHARED and read-only, take care to not allow mprotect to
3625 * revert protections on such mappings. Do this only for shared
3626 * mappings. For private mappings, don't need to mask
3627 * VM_MAYWRITE as we still want them to be COW-writable.
3628 */
3629 if (vma->vm_flags & VM_SHARED)
3630 vma->vm_flags &= ~(VM_MAYWRITE);
3631 }
3632
3633 return 0;
3634}
3635
9a10064f
CC
3636#ifdef CONFIG_ANON_VMA_NAME
3637int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
3638 unsigned long len_in,
3639 struct anon_vma_name *anon_name);
9a10064f
CC
3640#else
3641static inline int
3642madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 3643 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
3644 return 0;
3645}
3646#endif
3647
1da177e4 3648#endif /* _LINUX_MM_H */