init: fold build_all_zonelists() and page_alloc_init_cpuhp() to mm_init()
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
1da177e4
LT
32
33struct mempolicy;
34struct anon_vma;
bf181b9f 35struct anon_vma_chain;
e8edc6e0 36struct user_struct;
bce617ed 37struct pt_regs;
1da177e4 38
5ef64cc8
LT
39extern int sysctl_page_lock_unfairness;
40
597b7305
MH
41void init_mm_internals(void);
42
a9ee6cf5 43#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 44extern unsigned long max_mapnr;
fccc9987
JL
45
46static inline void set_max_mapnr(unsigned long limit)
47{
48 max_mapnr = limit;
49}
50#else
51static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
52#endif
53
ca79b0c2
AK
54extern atomic_long_t _totalram_pages;
55static inline unsigned long totalram_pages(void)
56{
57 return (unsigned long)atomic_long_read(&_totalram_pages);
58}
59
60static inline void totalram_pages_inc(void)
61{
62 atomic_long_inc(&_totalram_pages);
63}
64
65static inline void totalram_pages_dec(void)
66{
67 atomic_long_dec(&_totalram_pages);
68}
69
70static inline void totalram_pages_add(long count)
71{
72 atomic_long_add(count, &_totalram_pages);
73}
74
1da177e4 75extern void * high_memory;
1da177e4 76extern int page_cluster;
ea0ffd0c 77extern const int page_cluster_max;
1da177e4
LT
78
79#ifdef CONFIG_SYSCTL
80extern int sysctl_legacy_va_layout;
81#else
82#define sysctl_legacy_va_layout 0
83#endif
84
d07e2259
DC
85#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
86extern const int mmap_rnd_bits_min;
87extern const int mmap_rnd_bits_max;
88extern int mmap_rnd_bits __read_mostly;
89#endif
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
91extern const int mmap_rnd_compat_bits_min;
92extern const int mmap_rnd_compat_bits_max;
93extern int mmap_rnd_compat_bits __read_mostly;
94#endif
95
1da177e4 96#include <asm/page.h>
1da177e4 97#include <asm/processor.h>
1da177e4 98
d9344522
AK
99/*
100 * Architectures that support memory tagging (assigning tags to memory regions,
101 * embedding these tags into addresses that point to these memory regions, and
102 * checking that the memory and the pointer tags match on memory accesses)
103 * redefine this macro to strip tags from pointers.
f0953a1b 104 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
105 */
106#ifndef untagged_addr
107#define untagged_addr(addr) (addr)
108#endif
109
79442ed1
TC
110#ifndef __pa_symbol
111#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
112#endif
113
1dff8083
AB
114#ifndef page_to_virt
115#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
116#endif
117
568c5fe5
LA
118#ifndef lm_alias
119#define lm_alias(x) __va(__pa_symbol(x))
120#endif
121
593befa6
DD
122/*
123 * To prevent common memory management code establishing
124 * a zero page mapping on a read fault.
125 * This macro should be defined within <asm/pgtable.h>.
126 * s390 does this to prevent multiplexing of hardware bits
127 * related to the physical page in case of virtualization.
128 */
129#ifndef mm_forbids_zeropage
130#define mm_forbids_zeropage(X) (0)
131#endif
132
a4a3ede2
PT
133/*
134 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
135 * If an architecture decides to implement their own version of
136 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
137 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 138 */
5470dea4 139#if BITS_PER_LONG == 64
3770e52f 140/* This function must be updated when the size of struct page grows above 96
5470dea4
AD
141 * or reduces below 56. The idea that compiler optimizes out switch()
142 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 143 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
144 * this can result in several of the writes here being dropped.
145 */
146#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
147static inline void __mm_zero_struct_page(struct page *page)
148{
149 unsigned long *_pp = (void *)page;
150
3770e52f 151 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
5470dea4
AD
152 BUILD_BUG_ON(sizeof(struct page) & 7);
153 BUILD_BUG_ON(sizeof(struct page) < 56);
3770e52f 154 BUILD_BUG_ON(sizeof(struct page) > 96);
5470dea4
AD
155
156 switch (sizeof(struct page)) {
3770e52f
AB
157 case 96:
158 _pp[11] = 0;
159 fallthrough;
160 case 88:
161 _pp[10] = 0;
162 fallthrough;
5470dea4 163 case 80:
df561f66
GS
164 _pp[9] = 0;
165 fallthrough;
5470dea4 166 case 72:
df561f66
GS
167 _pp[8] = 0;
168 fallthrough;
5470dea4 169 case 64:
df561f66
GS
170 _pp[7] = 0;
171 fallthrough;
5470dea4
AD
172 case 56:
173 _pp[6] = 0;
174 _pp[5] = 0;
175 _pp[4] = 0;
176 _pp[3] = 0;
177 _pp[2] = 0;
178 _pp[1] = 0;
179 _pp[0] = 0;
180 }
181}
182#else
a4a3ede2
PT
183#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
184#endif
185
ea606cf5
AR
186/*
187 * Default maximum number of active map areas, this limits the number of vmas
188 * per mm struct. Users can overwrite this number by sysctl but there is a
189 * problem.
190 *
191 * When a program's coredump is generated as ELF format, a section is created
192 * per a vma. In ELF, the number of sections is represented in unsigned short.
193 * This means the number of sections should be smaller than 65535 at coredump.
194 * Because the kernel adds some informative sections to a image of program at
195 * generating coredump, we need some margin. The number of extra sections is
196 * 1-3 now and depends on arch. We use "5" as safe margin, here.
197 *
198 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
199 * not a hard limit any more. Although some userspace tools can be surprised by
200 * that.
201 */
202#define MAPCOUNT_ELF_CORE_MARGIN (5)
203#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
204
205extern int sysctl_max_map_count;
206
c9b1d098 207extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 208extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 209
49f0ce5f
JM
210extern int sysctl_overcommit_memory;
211extern int sysctl_overcommit_ratio;
212extern unsigned long sysctl_overcommit_kbytes;
213
32927393
CH
214int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
215 loff_t *);
216int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
217 loff_t *);
56f3547b
FT
218int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
219 loff_t *);
49f0ce5f 220
1cfcee72 221#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 222#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 223#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
224#else
225#define nth_page(page,n) ((page) + (n))
659508f9 226#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 227#endif
1da177e4 228
27ac792c
AR
229/* to align the pointer to the (next) page boundary */
230#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
231
335e52c2
DG
232/* to align the pointer to the (prev) page boundary */
233#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
234
0fa73b86 235/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 236#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 237
f86196ea 238#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
239static inline struct folio *lru_to_folio(struct list_head *head)
240{
241 return list_entry((head)->prev, struct folio, lru);
242}
f86196ea 243
5748fbc5
KW
244void setup_initial_init_mm(void *start_code, void *end_code,
245 void *end_data, void *brk);
246
1da177e4
LT
247/*
248 * Linux kernel virtual memory manager primitives.
249 * The idea being to have a "virtual" mm in the same way
250 * we have a virtual fs - giving a cleaner interface to the
251 * mm details, and allowing different kinds of memory mappings
252 * (from shared memory to executable loading to arbitrary
253 * mmap() functions).
254 */
255
490fc053 256struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
257struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
258void vm_area_free(struct vm_area_struct *);
c43692e8 259
1da177e4 260#ifndef CONFIG_MMU
8feae131
DH
261extern struct rb_root nommu_region_tree;
262extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
263
264extern unsigned int kobjsize(const void *objp);
265#endif
266
267/*
605d9288 268 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 269 * When changing, update also include/trace/events/mmflags.h
1da177e4 270 */
cc2383ec
KK
271#define VM_NONE 0x00000000
272
1da177e4
LT
273#define VM_READ 0x00000001 /* currently active flags */
274#define VM_WRITE 0x00000002
275#define VM_EXEC 0x00000004
276#define VM_SHARED 0x00000008
277
7e2cff42 278/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
279#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
280#define VM_MAYWRITE 0x00000020
281#define VM_MAYEXEC 0x00000040
282#define VM_MAYSHARE 0x00000080
283
284#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
b6b7a8fa 285#ifdef CONFIG_MMU
16ba6f81 286#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
b6b7a8fa
DH
287#else /* CONFIG_MMU */
288#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
289#define VM_UFFD_MISSING 0
290#endif /* CONFIG_MMU */
6aab341e 291#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 292#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 293
1da177e4
LT
294#define VM_LOCKED 0x00002000
295#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
296
297 /* Used by sys_madvise() */
298#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
299#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
300
301#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
302#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 303#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 304#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 305#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 306#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 307#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 308#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 309#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 310#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 311
d9104d1c
CG
312#ifdef CONFIG_MEM_SOFT_DIRTY
313# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
314#else
315# define VM_SOFTDIRTY 0
316#endif
317
b379d790 318#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
319#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
320#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 321#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 322
63c17fb8
DH
323#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
324#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
325#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
326#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
327#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 328#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
329#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
330#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
331#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
332#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 333#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
334#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
335
5212213a 336#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
337# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
338# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 339# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
340# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
341# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
342#ifdef CONFIG_PPC
343# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
344#else
345# define VM_PKEY_BIT4 0
8f62c883 346#endif
5212213a
RP
347#endif /* CONFIG_ARCH_HAS_PKEYS */
348
349#if defined(CONFIG_X86)
350# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
351#elif defined(CONFIG_PPC)
352# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
353#elif defined(CONFIG_PARISC)
354# define VM_GROWSUP VM_ARCH_1
355#elif defined(CONFIG_IA64)
356# define VM_GROWSUP VM_ARCH_1
74a04967
KA
357#elif defined(CONFIG_SPARC64)
358# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
359# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
360#elif defined(CONFIG_ARM64)
361# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
362# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
363#elif !defined(CONFIG_MMU)
364# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
365#endif
366
9f341931
CM
367#if defined(CONFIG_ARM64_MTE)
368# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
369# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
370#else
371# define VM_MTE VM_NONE
372# define VM_MTE_ALLOWED VM_NONE
373#endif
374
cc2383ec
KK
375#ifndef VM_GROWSUP
376# define VM_GROWSUP VM_NONE
377#endif
378
7677f7fd
AR
379#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
380# define VM_UFFD_MINOR_BIT 37
381# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
382#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
383# define VM_UFFD_MINOR VM_NONE
384#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
385
a8bef8ff
MG
386/* Bits set in the VMA until the stack is in its final location */
387#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
388
c62da0c3
AK
389#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
390
391/* Common data flag combinations */
392#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
393 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
394#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
395 VM_MAYWRITE | VM_MAYEXEC)
396#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
397 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
398
399#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
400#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
401#endif
402
1da177e4
LT
403#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
404#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
405#endif
406
407#ifdef CONFIG_STACK_GROWSUP
30bdbb78 408#define VM_STACK VM_GROWSUP
1da177e4 409#else
30bdbb78 410#define VM_STACK VM_GROWSDOWN
1da177e4
LT
411#endif
412
30bdbb78
KK
413#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
414
6cb4d9a2
AK
415/* VMA basic access permission flags */
416#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
417
418
b291f000 419/*
78f11a25 420 * Special vmas that are non-mergable, non-mlock()able.
b291f000 421 */
9050d7eb 422#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 423
b4443772
AK
424/* This mask prevents VMA from being scanned with khugepaged */
425#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
426
a0715cc2
AT
427/* This mask defines which mm->def_flags a process can inherit its parent */
428#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
429
e430a95a
SB
430/* This mask represents all the VMA flag bits used by mlock */
431#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
de60f5f1 432
2c2d57b5
KA
433/* Arch-specific flags to clear when updating VM flags on protection change */
434#ifndef VM_ARCH_CLEAR
435# define VM_ARCH_CLEAR VM_NONE
436#endif
437#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
438
1da177e4
LT
439/*
440 * mapping from the currently active vm_flags protection bits (the
441 * low four bits) to a page protection mask..
442 */
1da177e4 443
dde16072
PX
444/*
445 * The default fault flags that should be used by most of the
446 * arch-specific page fault handlers.
447 */
448#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
449 FAULT_FLAG_KILLABLE | \
450 FAULT_FLAG_INTERRUPTIBLE)
dde16072 451
4064b982
PX
452/**
453 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 454 * @flags: Fault flags.
4064b982
PX
455 *
456 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 457 * the mmap_lock for too long a time when waiting for another condition
4064b982 458 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
459 * mmap_lock in the first round to avoid potential starvation of other
460 * processes that would also want the mmap_lock.
4064b982
PX
461 *
462 * Return: true if the page fault allows retry and this is the first
463 * attempt of the fault handling; false otherwise.
464 */
da2f5eb3 465static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
466{
467 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
468 (!(flags & FAULT_FLAG_TRIED));
469}
470
282a8e03
RZ
471#define FAULT_FLAG_TRACE \
472 { FAULT_FLAG_WRITE, "WRITE" }, \
473 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
474 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
475 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
476 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
477 { FAULT_FLAG_TRIED, "TRIED" }, \
478 { FAULT_FLAG_USER, "USER" }, \
479 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
480 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
481 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 482
54cb8821 483/*
11192337 484 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
485 * ->fault function. The vma's ->fault is responsible for returning a bitmask
486 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 487 *
c20cd45e
MH
488 * MM layer fills up gfp_mask for page allocations but fault handler might
489 * alter it if its implementation requires a different allocation context.
490 *
9b4bdd2f 491 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 492 */
d0217ac0 493struct vm_fault {
5857c920 494 const struct {
742d3372
WD
495 struct vm_area_struct *vma; /* Target VMA */
496 gfp_t gfp_mask; /* gfp mask to be used for allocations */
497 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
498 unsigned long address; /* Faulting virtual address - masked */
499 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 500 };
da2f5eb3 501 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 502 * XXX: should really be 'const' */
82b0f8c3 503 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 504 * the 'address' */
a2d58167
DJ
505 pud_t *pud; /* Pointer to pud entry matching
506 * the 'address'
507 */
5db4f15c
YS
508 union {
509 pte_t orig_pte; /* Value of PTE at the time of fault */
510 pmd_t orig_pmd; /* Value of PMD at the time of fault,
511 * used by PMD fault only.
512 */
513 };
d0217ac0 514
3917048d 515 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 516 struct page *page; /* ->fault handlers should return a
83c54070 517 * page here, unless VM_FAULT_NOPAGE
d0217ac0 518 * is set (which is also implied by
83c54070 519 * VM_FAULT_ERROR).
d0217ac0 520 */
82b0f8c3 521 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
522 pte_t *pte; /* Pointer to pte entry matching
523 * the 'address'. NULL if the page
524 * table hasn't been allocated.
525 */
526 spinlock_t *ptl; /* Page table lock.
527 * Protects pte page table if 'pte'
528 * is not NULL, otherwise pmd.
529 */
7267ec00 530 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
531 * vm_ops->map_pages() sets up a page
532 * table from atomic context.
7267ec00
KS
533 * do_fault_around() pre-allocates
534 * page table to avoid allocation from
535 * atomic context.
536 */
54cb8821 537};
1da177e4 538
c791ace1
DJ
539/* page entry size for vm->huge_fault() */
540enum page_entry_size {
541 PE_SIZE_PTE = 0,
542 PE_SIZE_PMD,
543 PE_SIZE_PUD,
544};
545
1da177e4
LT
546/*
547 * These are the virtual MM functions - opening of an area, closing and
548 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 549 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
550 */
551struct vm_operations_struct {
552 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
553 /**
554 * @close: Called when the VMA is being removed from the MM.
555 * Context: User context. May sleep. Caller holds mmap_lock.
556 */
1da177e4 557 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
558 /* Called any time before splitting to check if it's allowed */
559 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 560 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
561 /*
562 * Called by mprotect() to make driver-specific permission
563 * checks before mprotect() is finalised. The VMA must not
3e0ee843 564 * be modified. Returns 0 if mprotect() can proceed.
95bb7c42
SC
565 */
566 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
567 unsigned long end, unsigned long newflags);
1c8f4220
SJ
568 vm_fault_t (*fault)(struct vm_fault *vmf);
569 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
570 enum page_entry_size pe_size);
f9ce0be7 571 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 572 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 573 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
574
575 /* notification that a previously read-only page is about to become
576 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 577 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 578
dd906184 579 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 580 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 581
28b2ee20 582 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
583 * for use by special VMAs. See also generic_access_phys() for a generic
584 * implementation useful for any iomem mapping.
28b2ee20
RR
585 */
586 int (*access)(struct vm_area_struct *vma, unsigned long addr,
587 void *buf, int len, int write);
78d683e8
AL
588
589 /* Called by the /proc/PID/maps code to ask the vma whether it
590 * has a special name. Returning non-NULL will also cause this
591 * vma to be dumped unconditionally. */
592 const char *(*name)(struct vm_area_struct *vma);
593
1da177e4 594#ifdef CONFIG_NUMA
a6020ed7
LS
595 /*
596 * set_policy() op must add a reference to any non-NULL @new mempolicy
597 * to hold the policy upon return. Caller should pass NULL @new to
598 * remove a policy and fall back to surrounding context--i.e. do not
599 * install a MPOL_DEFAULT policy, nor the task or system default
600 * mempolicy.
601 */
1da177e4 602 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
603
604 /*
605 * get_policy() op must add reference [mpol_get()] to any policy at
606 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
607 * in mm/mempolicy.c will do this automatically.
608 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 609 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
610 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
611 * must return NULL--i.e., do not "fallback" to task or system default
612 * policy.
613 */
1da177e4
LT
614 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
615 unsigned long addr);
616#endif
667a0a06
DV
617 /*
618 * Called by vm_normal_page() for special PTEs to find the
619 * page for @addr. This is useful if the default behavior
620 * (using pte_page()) would not find the correct page.
621 */
622 struct page *(*find_special_page)(struct vm_area_struct *vma,
623 unsigned long addr);
1da177e4
LT
624};
625
027232da
KS
626static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
627{
bfd40eaf
KS
628 static const struct vm_operations_struct dummy_vm_ops = {};
629
a670468f 630 memset(vma, 0, sizeof(*vma));
027232da 631 vma->vm_mm = mm;
bfd40eaf 632 vma->vm_ops = &dummy_vm_ops;
027232da
KS
633 INIT_LIST_HEAD(&vma->anon_vma_chain);
634}
635
bc292ab0
SB
636/* Use when VMA is not part of the VMA tree and needs no locking */
637static inline void vm_flags_init(struct vm_area_struct *vma,
638 vm_flags_t flags)
639{
640 ACCESS_PRIVATE(vma, __vm_flags) = flags;
641}
642
643/* Use when VMA is part of the VMA tree and modifications need coordination */
644static inline void vm_flags_reset(struct vm_area_struct *vma,
645 vm_flags_t flags)
646{
647 mmap_assert_write_locked(vma->vm_mm);
648 vm_flags_init(vma, flags);
649}
650
601c3c29
SB
651static inline void vm_flags_reset_once(struct vm_area_struct *vma,
652 vm_flags_t flags)
653{
654 mmap_assert_write_locked(vma->vm_mm);
655 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
656}
657
bc292ab0
SB
658static inline void vm_flags_set(struct vm_area_struct *vma,
659 vm_flags_t flags)
660{
661 mmap_assert_write_locked(vma->vm_mm);
662 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
663}
664
665static inline void vm_flags_clear(struct vm_area_struct *vma,
666 vm_flags_t flags)
667{
668 mmap_assert_write_locked(vma->vm_mm);
669 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
670}
671
68f48381
SB
672/*
673 * Use only if VMA is not part of the VMA tree or has no other users and
674 * therefore needs no locking.
675 */
676static inline void __vm_flags_mod(struct vm_area_struct *vma,
677 vm_flags_t set, vm_flags_t clear)
678{
679 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
680}
681
bc292ab0
SB
682/*
683 * Use only when the order of set/clear operations is unimportant, otherwise
684 * use vm_flags_{set|clear} explicitly.
685 */
686static inline void vm_flags_mod(struct vm_area_struct *vma,
687 vm_flags_t set, vm_flags_t clear)
688{
689 mmap_assert_write_locked(vma->vm_mm);
68f48381 690 __vm_flags_mod(vma, set, clear);
bc292ab0
SB
691}
692
bfd40eaf
KS
693static inline void vma_set_anonymous(struct vm_area_struct *vma)
694{
695 vma->vm_ops = NULL;
696}
697
43675e6f
YS
698static inline bool vma_is_anonymous(struct vm_area_struct *vma)
699{
700 return !vma->vm_ops;
701}
702
222100ee
AK
703static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
704{
705 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
706
707 if (!maybe_stack)
708 return false;
709
710 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
711 VM_STACK_INCOMPLETE_SETUP)
712 return true;
713
714 return false;
715}
716
7969f226
AK
717static inline bool vma_is_foreign(struct vm_area_struct *vma)
718{
719 if (!current->mm)
720 return true;
721
722 if (current->mm != vma->vm_mm)
723 return true;
724
725 return false;
726}
3122e80e
AK
727
728static inline bool vma_is_accessible(struct vm_area_struct *vma)
729{
6cb4d9a2 730 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
731}
732
f39af059
MWO
733static inline
734struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
735{
b62b633e 736 return mas_find(&vmi->mas, max - 1);
f39af059
MWO
737}
738
739static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
740{
741 /*
b62b633e 742 * Uses mas_find() to get the first VMA when the iterator starts.
f39af059
MWO
743 * Calling mas_next() could skip the first entry.
744 */
b62b633e 745 return mas_find(&vmi->mas, ULONG_MAX);
f39af059
MWO
746}
747
748static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
749{
750 return mas_prev(&vmi->mas, 0);
751}
752
753static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
754{
755 return vmi->mas.index;
756}
757
b62b633e
LH
758static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
759{
760 return vmi->mas.last + 1;
761}
762static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
763 unsigned long count)
764{
765 return mas_expected_entries(&vmi->mas, count);
766}
767
768/* Free any unused preallocations */
769static inline void vma_iter_free(struct vma_iterator *vmi)
770{
771 mas_destroy(&vmi->mas);
772}
773
774static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
775 struct vm_area_struct *vma)
776{
777 vmi->mas.index = vma->vm_start;
778 vmi->mas.last = vma->vm_end - 1;
779 mas_store(&vmi->mas, vma);
780 if (unlikely(mas_is_err(&vmi->mas)))
781 return -ENOMEM;
782
783 return 0;
784}
785
786static inline void vma_iter_invalidate(struct vma_iterator *vmi)
787{
788 mas_pause(&vmi->mas);
789}
790
791static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
792{
793 mas_set(&vmi->mas, addr);
794}
795
f39af059
MWO
796#define for_each_vma(__vmi, __vma) \
797 while (((__vma) = vma_next(&(__vmi))) != NULL)
798
799/* The MM code likes to work with exclusive end addresses */
800#define for_each_vma_range(__vmi, __vma, __end) \
b62b633e 801 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
f39af059 802
43675e6f
YS
803#ifdef CONFIG_SHMEM
804/*
805 * The vma_is_shmem is not inline because it is used only by slow
806 * paths in userfault.
807 */
808bool vma_is_shmem(struct vm_area_struct *vma);
d09e8ca6 809bool vma_is_anon_shmem(struct vm_area_struct *vma);
43675e6f
YS
810#else
811static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
d09e8ca6 812static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
43675e6f
YS
813#endif
814
815int vma_is_stack_for_current(struct vm_area_struct *vma);
816
8b11ec1b
LT
817/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
818#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
819
1da177e4
LT
820struct mmu_gather;
821struct inode;
822
5eb5cea1
MWO
823/*
824 * compound_order() can be called without holding a reference, which means
825 * that niceties like page_folio() don't work. These callers should be
826 * prepared to handle wild return values. For example, PG_head may be
827 * set before _folio_order is initialised, or this may be a tail page.
828 * See compaction.c for some good examples.
829 */
5bf34d7c
MWO
830static inline unsigned int compound_order(struct page *page)
831{
5eb5cea1
MWO
832 struct folio *folio = (struct folio *)page;
833
834 if (!test_bit(PG_head, &folio->flags))
5bf34d7c 835 return 0;
5eb5cea1 836 return folio->_folio_order;
5bf34d7c
MWO
837}
838
839/**
840 * folio_order - The allocation order of a folio.
841 * @folio: The folio.
842 *
843 * A folio is composed of 2^order pages. See get_order() for the definition
844 * of order.
845 *
846 * Return: The order of the folio.
847 */
848static inline unsigned int folio_order(struct folio *folio)
849{
c3a15bff
MWO
850 if (!folio_test_large(folio))
851 return 0;
852 return folio->_folio_order;
5bf34d7c
MWO
853}
854
71e3aac0 855#include <linux/huge_mm.h>
1da177e4
LT
856
857/*
858 * Methods to modify the page usage count.
859 *
860 * What counts for a page usage:
861 * - cache mapping (page->mapping)
862 * - private data (page->private)
863 * - page mapped in a task's page tables, each mapping
864 * is counted separately
865 *
866 * Also, many kernel routines increase the page count before a critical
867 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
868 */
869
870/*
da6052f7 871 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 872 */
7c8ee9a8
NP
873static inline int put_page_testzero(struct page *page)
874{
fe896d18
JK
875 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
876 return page_ref_dec_and_test(page);
7c8ee9a8 877}
1da177e4 878
b620f633
MWO
879static inline int folio_put_testzero(struct folio *folio)
880{
881 return put_page_testzero(&folio->page);
882}
883
1da177e4 884/*
7c8ee9a8
NP
885 * Try to grab a ref unless the page has a refcount of zero, return false if
886 * that is the case.
8e0861fa
AK
887 * This can be called when MMU is off so it must not access
888 * any of the virtual mappings.
1da177e4 889 */
c2530328 890static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 891{
fe896d18 892 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 893}
1da177e4 894
3c1ea2c7
VMO
895static inline struct folio *folio_get_nontail_page(struct page *page)
896{
897 if (unlikely(!get_page_unless_zero(page)))
898 return NULL;
899 return (struct folio *)page;
900}
901
53df8fdc 902extern int page_is_ram(unsigned long pfn);
124fe20d
DW
903
904enum {
905 REGION_INTERSECTS,
906 REGION_DISJOINT,
907 REGION_MIXED,
908};
909
1c29f25b
TK
910int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
911 unsigned long desc);
53df8fdc 912
48667e7a 913/* Support for virtually mapped pages */
b3bdda02
CL
914struct page *vmalloc_to_page(const void *addr);
915unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 916
0738c4bb
PM
917/*
918 * Determine if an address is within the vmalloc range
919 *
920 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
921 * is no special casing required.
922 */
9bd3bb67
AK
923
924#ifndef is_ioremap_addr
925#define is_ioremap_addr(x) is_vmalloc_addr(x)
926#endif
927
81ac3ad9 928#ifdef CONFIG_MMU
186525bd 929extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
930extern int is_vmalloc_or_module_addr(const void *x);
931#else
186525bd
IM
932static inline bool is_vmalloc_addr(const void *x)
933{
934 return false;
935}
934831d0 936static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
937{
938 return 0;
939}
940#endif
9e2779fa 941
74e8ee47
MWO
942/*
943 * How many times the entire folio is mapped as a single unit (eg by a
944 * PMD or PUD entry). This is probably not what you want, except for
cb67f428
HD
945 * debugging purposes - it does not include PTE-mapped sub-pages; look
946 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
74e8ee47
MWO
947 */
948static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 949{
74e8ee47 950 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1aa4d03b 951 return atomic_read(&folio->_entire_mapcount) + 1;
53f9263b
KS
952}
953
70b50f94
AA
954/*
955 * The atomic page->_mapcount, starts from -1: so that transitions
956 * both from it and to it can be tracked, using atomic_inc_and_test
957 * and atomic_add_negative(-1).
958 */
22b751c3 959static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
960{
961 atomic_set(&(page)->_mapcount, -1);
962}
963
c97eeb8f
MWO
964/**
965 * page_mapcount() - Number of times this precise page is mapped.
966 * @page: The page.
967 *
968 * The number of times this page is mapped. If this page is part of
969 * a large folio, it includes the number of times this page is mapped
970 * as part of that folio.
6988f31d 971 *
c97eeb8f 972 * The result is undefined for pages which cannot be mapped into userspace.
6988f31d 973 * For example SLAB or special types of pages. See function page_has_type().
c97eeb8f 974 * They use this field in struct page differently.
6988f31d 975 */
70b50f94
AA
976static inline int page_mapcount(struct page *page)
977{
cb67f428 978 int mapcount = atomic_read(&page->_mapcount) + 1;
b20ce5e0 979
c97eeb8f
MWO
980 if (unlikely(PageCompound(page)))
981 mapcount += folio_entire_mapcount(page_folio(page));
982
983 return mapcount;
b20ce5e0
KS
984}
985
b14224fb 986int folio_total_mapcount(struct folio *folio);
4ba1119c 987
cb67f428
HD
988/**
989 * folio_mapcount() - Calculate the number of mappings of this folio.
990 * @folio: The folio.
991 *
992 * A large folio tracks both how many times the entire folio is mapped,
993 * and how many times each individual page in the folio is mapped.
994 * This function calculates the total number of times the folio is
995 * mapped.
996 *
997 * Return: The number of times this folio is mapped.
998 */
999static inline int folio_mapcount(struct folio *folio)
4ba1119c 1000{
cb67f428
HD
1001 if (likely(!folio_test_large(folio)))
1002 return atomic_read(&folio->_mapcount) + 1;
b14224fb 1003 return folio_total_mapcount(folio);
4ba1119c
MWO
1004}
1005
b20ce5e0
KS
1006static inline int total_mapcount(struct page *page)
1007{
be5ef2d9
HD
1008 if (likely(!PageCompound(page)))
1009 return atomic_read(&page->_mapcount) + 1;
b14224fb 1010 return folio_total_mapcount(page_folio(page));
be5ef2d9
HD
1011}
1012
1013static inline bool folio_large_is_mapped(struct folio *folio)
1014{
4b51634c 1015 /*
1aa4d03b 1016 * Reading _entire_mapcount below could be omitted if hugetlb
eec20426 1017 * participated in incrementing nr_pages_mapped when compound mapped.
4b51634c 1018 */
eec20426 1019 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1aa4d03b 1020 atomic_read(&folio->_entire_mapcount) >= 0;
cb67f428
HD
1021}
1022
1023/**
1024 * folio_mapped - Is this folio mapped into userspace?
1025 * @folio: The folio.
1026 *
1027 * Return: True if any page in this folio is referenced by user page tables.
1028 */
1029static inline bool folio_mapped(struct folio *folio)
1030{
be5ef2d9
HD
1031 if (likely(!folio_test_large(folio)))
1032 return atomic_read(&folio->_mapcount) >= 0;
1033 return folio_large_is_mapped(folio);
1034}
1035
1036/*
1037 * Return true if this page is mapped into pagetables.
1038 * For compound page it returns true if any sub-page of compound page is mapped,
1039 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1040 */
1041static inline bool page_mapped(struct page *page)
1042{
1043 if (likely(!PageCompound(page)))
1044 return atomic_read(&page->_mapcount) >= 0;
1045 return folio_large_is_mapped(page_folio(page));
70b50f94
AA
1046}
1047
b49af68f
CL
1048static inline struct page *virt_to_head_page(const void *x)
1049{
1050 struct page *page = virt_to_page(x);
ccaafd7f 1051
1d798ca3 1052 return compound_head(page);
b49af68f
CL
1053}
1054
7d4203c1
VB
1055static inline struct folio *virt_to_folio(const void *x)
1056{
1057 struct page *page = virt_to_page(x);
1058
1059 return page_folio(page);
1060}
1061
8d29c703 1062void __folio_put(struct folio *folio);
ddc58f27 1063
1d7ea732 1064void put_pages_list(struct list_head *pages);
1da177e4 1065
8dfcc9ba 1066void split_page(struct page *page, unsigned int order);
715cbfd6 1067void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 1068
a1554c00
ML
1069unsigned long nr_free_buffer_pages(void);
1070
33f2ef89
AW
1071/*
1072 * Compound pages have a destructor function. Provide a
1073 * prototype for that function and accessor functions.
f1e61557 1074 * These are _only_ valid on the head of a compound page.
33f2ef89 1075 */
f1e61557
KS
1076typedef void compound_page_dtor(struct page *);
1077
1078/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1079enum compound_dtor_id {
1080 NULL_COMPOUND_DTOR,
1081 COMPOUND_PAGE_DTOR,
1082#ifdef CONFIG_HUGETLB_PAGE
1083 HUGETLB_PAGE_DTOR,
9a982250
KS
1084#endif
1085#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1086 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
1087#endif
1088 NR_COMPOUND_DTORS,
1089};
ae70eddd 1090extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
1091
1092static inline void set_compound_page_dtor(struct page *page,
f1e61557 1093 enum compound_dtor_id compound_dtor)
33f2ef89 1094{
bad6da64
MWO
1095 struct folio *folio = (struct folio *)page;
1096
f1e61557 1097 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
bad6da64
MWO
1098 VM_BUG_ON_PAGE(!PageHead(page), page);
1099 folio->_folio_dtor = compound_dtor;
33f2ef89
AW
1100}
1101
9fd33058
SK
1102static inline void folio_set_compound_dtor(struct folio *folio,
1103 enum compound_dtor_id compound_dtor)
1104{
1105 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1106 folio->_folio_dtor = compound_dtor;
1107}
1108
5375336c 1109void destroy_large_folio(struct folio *folio);
33f2ef89 1110
f1e61557 1111static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 1112{
bad6da64 1113 struct folio *folio = (struct folio *)page;
9fd33058
SK
1114
1115 folio->_folio_order = order;
1116#ifdef CONFIG_64BIT
bad6da64 1117 folio->_folio_nr_pages = 1U << order;
5232c63f 1118#endif
d8c6546b
MWO
1119}
1120
a50b854e
MWO
1121/* Returns the number of bytes in this potentially compound page. */
1122static inline unsigned long page_size(struct page *page)
1123{
1124 return PAGE_SIZE << compound_order(page);
1125}
1126
94ad9338
MWO
1127/* Returns the number of bits needed for the number of bytes in a page */
1128static inline unsigned int page_shift(struct page *page)
1129{
1130 return PAGE_SHIFT + compound_order(page);
1131}
1132
18788cfa
MWO
1133/**
1134 * thp_order - Order of a transparent huge page.
1135 * @page: Head page of a transparent huge page.
1136 */
1137static inline unsigned int thp_order(struct page *page)
1138{
1139 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1140 return compound_order(page);
1141}
1142
18788cfa
MWO
1143/**
1144 * thp_size - Size of a transparent huge page.
1145 * @page: Head page of a transparent huge page.
1146 *
1147 * Return: Number of bytes in this page.
1148 */
1149static inline unsigned long thp_size(struct page *page)
1150{
1151 return PAGE_SIZE << thp_order(page);
1152}
1153
9a982250
KS
1154void free_compound_page(struct page *page);
1155
3dece370 1156#ifdef CONFIG_MMU
14fd403f
AA
1157/*
1158 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1159 * servicing faults for write access. In the normal case, do always want
1160 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1161 * that do not have writing enabled, when used by access_process_vm.
1162 */
1163static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1164{
1165 if (likely(vma->vm_flags & VM_WRITE))
1166 pte = pte_mkwrite(pte);
1167 return pte;
1168}
8c6e50b0 1169
f9ce0be7 1170vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1171void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1172
2b740303
SJ
1173vm_fault_t finish_fault(struct vm_fault *vmf);
1174vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1175#endif
14fd403f 1176
1da177e4
LT
1177/*
1178 * Multiple processes may "see" the same page. E.g. for untouched
1179 * mappings of /dev/null, all processes see the same page full of
1180 * zeroes, and text pages of executables and shared libraries have
1181 * only one copy in memory, at most, normally.
1182 *
1183 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1184 * page_count() == 0 means the page is free. page->lru is then used for
1185 * freelist management in the buddy allocator.
da6052f7 1186 * page_count() > 0 means the page has been allocated.
1da177e4 1187 *
da6052f7
NP
1188 * Pages are allocated by the slab allocator in order to provide memory
1189 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1190 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1191 * unless a particular usage is carefully commented. (the responsibility of
1192 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1193 *
da6052f7
NP
1194 * A page may be used by anyone else who does a __get_free_page().
1195 * In this case, page_count still tracks the references, and should only
1196 * be used through the normal accessor functions. The top bits of page->flags
1197 * and page->virtual store page management information, but all other fields
1198 * are unused and could be used privately, carefully. The management of this
1199 * page is the responsibility of the one who allocated it, and those who have
1200 * subsequently been given references to it.
1201 *
1202 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1203 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1204 * The following discussion applies only to them.
1205 *
da6052f7
NP
1206 * A pagecache page contains an opaque `private' member, which belongs to the
1207 * page's address_space. Usually, this is the address of a circular list of
1208 * the page's disk buffers. PG_private must be set to tell the VM to call
1209 * into the filesystem to release these pages.
1da177e4 1210 *
da6052f7
NP
1211 * A page may belong to an inode's memory mapping. In this case, page->mapping
1212 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1213 * in units of PAGE_SIZE.
1da177e4 1214 *
da6052f7
NP
1215 * If pagecache pages are not associated with an inode, they are said to be
1216 * anonymous pages. These may become associated with the swapcache, and in that
1217 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1218 *
da6052f7
NP
1219 * In either case (swapcache or inode backed), the pagecache itself holds one
1220 * reference to the page. Setting PG_private should also increment the
1221 * refcount. The each user mapping also has a reference to the page.
1da177e4 1222 *
da6052f7 1223 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1224 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1225 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1226 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1227 *
da6052f7 1228 * All pagecache pages may be subject to I/O:
1da177e4
LT
1229 * - inode pages may need to be read from disk,
1230 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1231 * to be written back to the inode on disk,
1232 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1233 * modified may need to be swapped out to swap space and (later) to be read
1234 * back into memory.
1da177e4
LT
1235 */
1236
27674ef6 1237#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1238DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1239
f4f451a1
MS
1240bool __put_devmap_managed_page_refs(struct page *page, int refs);
1241static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1242{
1243 if (!static_branch_unlikely(&devmap_managed_key))
1244 return false;
1245 if (!is_zone_device_page(page))
1246 return false;
f4f451a1 1247 return __put_devmap_managed_page_refs(page, refs);
e7638488 1248}
27674ef6 1249#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1250static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1251{
1252 return false;
1253}
27674ef6 1254#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1255
f4f451a1
MS
1256static inline bool put_devmap_managed_page(struct page *page)
1257{
1258 return put_devmap_managed_page_refs(page, 1);
1259}
1260
f958d7b5 1261/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1262#define folio_ref_zero_or_close_to_overflow(folio) \
1263 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1264
1265/**
1266 * folio_get - Increment the reference count on a folio.
1267 * @folio: The folio.
1268 *
1269 * Context: May be called in any context, as long as you know that
1270 * you have a refcount on the folio. If you do not already have one,
1271 * folio_try_get() may be the right interface for you to use.
1272 */
1273static inline void folio_get(struct folio *folio)
1274{
1275 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1276 folio_ref_inc(folio);
1277}
f958d7b5 1278
3565fce3
DW
1279static inline void get_page(struct page *page)
1280{
86d234cb 1281 folio_get(page_folio(page));
3565fce3
DW
1282}
1283
cd1adf1b
LT
1284static inline __must_check bool try_get_page(struct page *page)
1285{
1286 page = compound_head(page);
1287 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1288 return false;
1289 page_ref_inc(page);
1290 return true;
1291}
3565fce3 1292
b620f633
MWO
1293/**
1294 * folio_put - Decrement the reference count on a folio.
1295 * @folio: The folio.
1296 *
1297 * If the folio's reference count reaches zero, the memory will be
1298 * released back to the page allocator and may be used by another
1299 * allocation immediately. Do not access the memory or the struct folio
1300 * after calling folio_put() unless you can be sure that it wasn't the
1301 * last reference.
1302 *
1303 * Context: May be called in process or interrupt context, but not in NMI
1304 * context. May be called while holding a spinlock.
1305 */
1306static inline void folio_put(struct folio *folio)
1307{
1308 if (folio_put_testzero(folio))
8d29c703 1309 __folio_put(folio);
b620f633
MWO
1310}
1311
3fe7fa58
MWO
1312/**
1313 * folio_put_refs - Reduce the reference count on a folio.
1314 * @folio: The folio.
1315 * @refs: The amount to subtract from the folio's reference count.
1316 *
1317 * If the folio's reference count reaches zero, the memory will be
1318 * released back to the page allocator and may be used by another
1319 * allocation immediately. Do not access the memory or the struct folio
1320 * after calling folio_put_refs() unless you can be sure that these weren't
1321 * the last references.
1322 *
1323 * Context: May be called in process or interrupt context, but not in NMI
1324 * context. May be called while holding a spinlock.
1325 */
1326static inline void folio_put_refs(struct folio *folio, int refs)
1327{
1328 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1329 __folio_put(folio);
3fe7fa58
MWO
1330}
1331
0411d6ee
SP
1332/*
1333 * union release_pages_arg - an array of pages or folios
449c7967 1334 *
0411d6ee 1335 * release_pages() releases a simple array of multiple pages, and
449c7967
LT
1336 * accepts various different forms of said page array: either
1337 * a regular old boring array of pages, an array of folios, or
1338 * an array of encoded page pointers.
1339 *
1340 * The transparent union syntax for this kind of "any of these
1341 * argument types" is all kinds of ugly, so look away.
1342 */
1343typedef union {
1344 struct page **pages;
1345 struct folio **folios;
1346 struct encoded_page **encoded_pages;
1347} release_pages_arg __attribute__ ((__transparent_union__));
1348
1349void release_pages(release_pages_arg, int nr);
e3c4cebf
MWO
1350
1351/**
1352 * folios_put - Decrement the reference count on an array of folios.
1353 * @folios: The folios.
1354 * @nr: How many folios there are.
1355 *
1356 * Like folio_put(), but for an array of folios. This is more efficient
1357 * than writing the loop yourself as it will optimise the locks which
1358 * need to be taken if the folios are freed.
1359 *
1360 * Context: May be called in process or interrupt context, but not in NMI
1361 * context. May be called while holding a spinlock.
1362 */
1363static inline void folios_put(struct folio **folios, unsigned int nr)
1364{
449c7967 1365 release_pages(folios, nr);
3fe7fa58
MWO
1366}
1367
3565fce3
DW
1368static inline void put_page(struct page *page)
1369{
b620f633 1370 struct folio *folio = page_folio(page);
3565fce3 1371
7b2d55d2 1372 /*
89574945
CH
1373 * For some devmap managed pages we need to catch refcount transition
1374 * from 2 to 1:
7b2d55d2 1375 */
89574945 1376 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1377 return;
b620f633 1378 folio_put(folio);
3565fce3
DW
1379}
1380
3faa52c0
JH
1381/*
1382 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1383 * the page's refcount so that two separate items are tracked: the original page
1384 * reference count, and also a new count of how many pin_user_pages() calls were
1385 * made against the page. ("gup-pinned" is another term for the latter).
1386 *
1387 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1388 * distinct from normal pages. As such, the unpin_user_page() call (and its
1389 * variants) must be used in order to release gup-pinned pages.
1390 *
1391 * Choice of value:
1392 *
1393 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1394 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1395 * simpler, due to the fact that adding an even power of two to the page
1396 * refcount has the effect of using only the upper N bits, for the code that
1397 * counts up using the bias value. This means that the lower bits are left for
1398 * the exclusive use of the original code that increments and decrements by one
1399 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1400 *
3faa52c0
JH
1401 * Of course, once the lower bits overflow into the upper bits (and this is
1402 * OK, because subtraction recovers the original values), then visual inspection
1403 * no longer suffices to directly view the separate counts. However, for normal
1404 * applications that don't have huge page reference counts, this won't be an
1405 * issue.
fc1d8e7c 1406 *
40fcc7fc
MWO
1407 * Locking: the lockless algorithm described in folio_try_get_rcu()
1408 * provides safe operation for get_user_pages(), page_mkclean() and
1409 * other calls that race to set up page table entries.
fc1d8e7c 1410 */
3faa52c0 1411#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1412
3faa52c0 1413void unpin_user_page(struct page *page);
f1f6a7dd
JH
1414void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1415 bool make_dirty);
458a4f78
JM
1416void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1417 bool make_dirty);
f1f6a7dd 1418void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1419
97a7e473
PX
1420static inline bool is_cow_mapping(vm_flags_t flags)
1421{
1422 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1423}
1424
fc4f4be9
DH
1425#ifndef CONFIG_MMU
1426static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1427{
1428 /*
1429 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1430 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1431 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1432 * underlying memory if ptrace is active, so this is only possible if
1433 * ptrace does not apply. Note that there is no mprotect() to upgrade
1434 * write permissions later.
1435 */
b6b7a8fa 1436 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
fc4f4be9
DH
1437}
1438#endif
1439
9127ab4f
CS
1440#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1441#define SECTION_IN_PAGE_FLAGS
1442#endif
1443
89689ae7 1444/*
7a8010cd
VB
1445 * The identification function is mainly used by the buddy allocator for
1446 * determining if two pages could be buddies. We are not really identifying
1447 * the zone since we could be using the section number id if we do not have
1448 * node id available in page flags.
1449 * We only guarantee that it will return the same value for two combinable
1450 * pages in a zone.
89689ae7 1451 */
cb2b95e1
AW
1452static inline int page_zone_id(struct page *page)
1453{
89689ae7 1454 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1455}
1456
89689ae7 1457#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1458extern int page_to_nid(const struct page *page);
89689ae7 1459#else
33dd4e0e 1460static inline int page_to_nid(const struct page *page)
d41dee36 1461{
f165b378
PT
1462 struct page *p = (struct page *)page;
1463
1464 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1465}
89689ae7
CL
1466#endif
1467
874fd90c
MWO
1468static inline int folio_nid(const struct folio *folio)
1469{
1470 return page_to_nid(&folio->page);
1471}
1472
57e0a030 1473#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1474/* page access time bits needs to hold at least 4 seconds */
1475#define PAGE_ACCESS_TIME_MIN_BITS 12
1476#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1477#define PAGE_ACCESS_TIME_BUCKETS \
1478 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1479#else
1480#define PAGE_ACCESS_TIME_BUCKETS 0
1481#endif
1482
1483#define PAGE_ACCESS_TIME_MASK \
1484 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1485
90572890 1486static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1487{
90572890 1488 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1489}
1490
90572890 1491static inline int cpupid_to_pid(int cpupid)
57e0a030 1492{
90572890 1493 return cpupid & LAST__PID_MASK;
57e0a030 1494}
b795854b 1495
90572890 1496static inline int cpupid_to_cpu(int cpupid)
b795854b 1497{
90572890 1498 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1499}
1500
90572890 1501static inline int cpupid_to_nid(int cpupid)
b795854b 1502{
90572890 1503 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1504}
1505
90572890 1506static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1507{
90572890 1508 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1509}
1510
90572890 1511static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1512{
90572890 1513 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1514}
1515
8c8a743c
PZ
1516static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1517{
1518 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1519}
1520
1521#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1522#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1523static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1524{
1ae71d03 1525 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1526}
90572890
PZ
1527
1528static inline int page_cpupid_last(struct page *page)
1529{
1530 return page->_last_cpupid;
1531}
1532static inline void page_cpupid_reset_last(struct page *page)
b795854b 1533{
1ae71d03 1534 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1535}
1536#else
90572890 1537static inline int page_cpupid_last(struct page *page)
75980e97 1538{
90572890 1539 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1540}
1541
90572890 1542extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1543
90572890 1544static inline void page_cpupid_reset_last(struct page *page)
75980e97 1545{
09940a4f 1546 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1547}
90572890 1548#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536
HY
1549
1550static inline int xchg_page_access_time(struct page *page, int time)
1551{
1552 int last_time;
1553
1554 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1555 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1556}
90572890
PZ
1557#else /* !CONFIG_NUMA_BALANCING */
1558static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1559{
90572890 1560 return page_to_nid(page); /* XXX */
57e0a030
MG
1561}
1562
33024536
HY
1563static inline int xchg_page_access_time(struct page *page, int time)
1564{
1565 return 0;
1566}
1567
90572890 1568static inline int page_cpupid_last(struct page *page)
57e0a030 1569{
90572890 1570 return page_to_nid(page); /* XXX */
57e0a030
MG
1571}
1572
90572890 1573static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1574{
1575 return -1;
1576}
1577
90572890 1578static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1579{
1580 return -1;
1581}
1582
90572890 1583static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1584{
1585 return -1;
1586}
1587
90572890
PZ
1588static inline int cpu_pid_to_cpupid(int nid, int pid)
1589{
1590 return -1;
1591}
1592
1593static inline bool cpupid_pid_unset(int cpupid)
b795854b 1594{
2b787449 1595 return true;
b795854b
MG
1596}
1597
90572890 1598static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1599{
1600}
8c8a743c
PZ
1601
1602static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1603{
1604 return false;
1605}
90572890 1606#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1607
2e903b91 1608#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1609
cf10bd4c
AK
1610/*
1611 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1612 * setting tags for all pages to native kernel tag value 0xff, as the default
1613 * value 0x00 maps to 0xff.
1614 */
1615
2813b9c0
AK
1616static inline u8 page_kasan_tag(const struct page *page)
1617{
cf10bd4c
AK
1618 u8 tag = 0xff;
1619
1620 if (kasan_enabled()) {
1621 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1622 tag ^= 0xff;
1623 }
1624
1625 return tag;
2813b9c0
AK
1626}
1627
1628static inline void page_kasan_tag_set(struct page *page, u8 tag)
1629{
27fe7339
PC
1630 unsigned long old_flags, flags;
1631
1632 if (!kasan_enabled())
1633 return;
1634
1635 tag ^= 0xff;
1636 old_flags = READ_ONCE(page->flags);
1637 do {
1638 flags = old_flags;
1639 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1640 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1641 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1642}
1643
1644static inline void page_kasan_tag_reset(struct page *page)
1645{
34303244
AK
1646 if (kasan_enabled())
1647 page_kasan_tag_set(page, 0xff);
2813b9c0 1648}
34303244
AK
1649
1650#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1651
2813b9c0
AK
1652static inline u8 page_kasan_tag(const struct page *page)
1653{
1654 return 0xff;
1655}
1656
1657static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1658static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1659
1660#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1661
33dd4e0e 1662static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1663{
1664 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1665}
1666
75ef7184
MG
1667static inline pg_data_t *page_pgdat(const struct page *page)
1668{
1669 return NODE_DATA(page_to_nid(page));
1670}
1671
32b8fc48
MWO
1672static inline struct zone *folio_zone(const struct folio *folio)
1673{
1674 return page_zone(&folio->page);
1675}
1676
1677static inline pg_data_t *folio_pgdat(const struct folio *folio)
1678{
1679 return page_pgdat(&folio->page);
1680}
1681
9127ab4f 1682#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1683static inline void set_page_section(struct page *page, unsigned long section)
1684{
1685 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1686 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1687}
1688
aa462abe 1689static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1690{
1691 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1692}
308c05e3 1693#endif
d41dee36 1694
bf6bd276
MWO
1695/**
1696 * folio_pfn - Return the Page Frame Number of a folio.
1697 * @folio: The folio.
1698 *
1699 * A folio may contain multiple pages. The pages have consecutive
1700 * Page Frame Numbers.
1701 *
1702 * Return: The Page Frame Number of the first page in the folio.
1703 */
1704static inline unsigned long folio_pfn(struct folio *folio)
1705{
1706 return page_to_pfn(&folio->page);
1707}
1708
018ee47f
YZ
1709static inline struct folio *pfn_folio(unsigned long pfn)
1710{
1711 return page_folio(pfn_to_page(pfn));
1712}
1713
0b90ddae
MWO
1714/**
1715 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1716 * @folio: The folio.
1717 *
1718 * This function checks if a folio has been pinned via a call to
1719 * a function in the pin_user_pages() family.
1720 *
1721 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1722 * because it means "definitely not pinned for DMA", but true means "probably
1723 * pinned for DMA, but possibly a false positive due to having at least
1724 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1725 *
1726 * False positives are OK, because: a) it's unlikely for a folio to
1727 * get that many refcounts, and b) all the callers of this routine are
1728 * expected to be able to deal gracefully with a false positive.
1729 *
1730 * For large folios, the result will be exactly correct. That's because
94688e8e 1731 * we have more tracking data available: the _pincount field is used
0b90ddae
MWO
1732 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1733 *
1734 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1735 *
1736 * Return: True, if it is likely that the page has been "dma-pinned".
1737 * False, if the page is definitely not dma-pinned.
1738 */
1739static inline bool folio_maybe_dma_pinned(struct folio *folio)
1740{
1741 if (folio_test_large(folio))
94688e8e 1742 return atomic_read(&folio->_pincount) > 0;
0b90ddae
MWO
1743
1744 /*
1745 * folio_ref_count() is signed. If that refcount overflows, then
1746 * folio_ref_count() returns a negative value, and callers will avoid
1747 * further incrementing the refcount.
1748 *
1749 * Here, for that overflow case, use the sign bit to count a little
1750 * bit higher via unsigned math, and thus still get an accurate result.
1751 */
1752 return ((unsigned int)folio_ref_count(folio)) >=
1753 GUP_PIN_COUNTING_BIAS;
1754}
1755
1756static inline bool page_maybe_dma_pinned(struct page *page)
1757{
1758 return folio_maybe_dma_pinned(page_folio(page));
1759}
1760
1761/*
1762 * This should most likely only be called during fork() to see whether we
fb3d824d 1763 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1764 *
1765 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1766 */
1767static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1768 struct page *page)
1769{
623a1ddf 1770 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1771
1772 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1773 return false;
1774
1775 return page_maybe_dma_pinned(page);
1776}
1777
8e3560d9
PT
1778/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1779#ifdef CONFIG_MIGRATION
6077c943 1780static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9 1781{
1c563432
MK
1782#ifdef CONFIG_CMA
1783 int mt = get_pageblock_migratetype(page);
1784
1785 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1786 return false;
1787#endif
fcab34b4
AW
1788 /* The zero page may always be pinned */
1789 if (is_zero_pfn(page_to_pfn(page)))
1790 return true;
1791
1792 /* Coherent device memory must always allow eviction. */
1793 if (is_device_coherent_page(page))
1794 return false;
1795
1796 /* Otherwise, non-movable zone pages can be pinned. */
1797 return !is_zone_movable_page(page);
8e3560d9
PT
1798}
1799#else
6077c943 1800static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9
PT
1801{
1802 return true;
1803}
1804#endif
1805
6077c943 1806static inline bool folio_is_longterm_pinnable(struct folio *folio)
536939ff 1807{
6077c943 1808 return is_longterm_pinnable_page(&folio->page);
536939ff
MWO
1809}
1810
2f1b6248 1811static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1812{
1813 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1814 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1815}
2f1b6248 1816
348f8b6c
DH
1817static inline void set_page_node(struct page *page, unsigned long node)
1818{
1819 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1820 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1821}
89689ae7 1822
2f1b6248 1823static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1824 unsigned long node, unsigned long pfn)
1da177e4 1825{
348f8b6c
DH
1826 set_page_zone(page, zone);
1827 set_page_node(page, node);
9127ab4f 1828#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1829 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1830#endif
1da177e4
LT
1831}
1832
7b230db3
MWO
1833/**
1834 * folio_nr_pages - The number of pages in the folio.
1835 * @folio: The folio.
1836 *
1837 * Return: A positive power of two.
1838 */
1839static inline long folio_nr_pages(struct folio *folio)
1840{
c3a15bff
MWO
1841 if (!folio_test_large(folio))
1842 return 1;
1843#ifdef CONFIG_64BIT
1844 return folio->_folio_nr_pages;
1845#else
1846 return 1L << folio->_folio_order;
1847#endif
7b230db3
MWO
1848}
1849
21a000fe
MWO
1850/*
1851 * compound_nr() returns the number of pages in this potentially compound
1852 * page. compound_nr() can be called on a tail page, and is defined to
1853 * return 1 in that case.
1854 */
1855static inline unsigned long compound_nr(struct page *page)
1856{
1857 struct folio *folio = (struct folio *)page;
1858
1859 if (!test_bit(PG_head, &folio->flags))
1860 return 1;
1861#ifdef CONFIG_64BIT
1862 return folio->_folio_nr_pages;
1863#else
1864 return 1L << folio->_folio_order;
1865#endif
1866}
1867
1868/**
1869 * thp_nr_pages - The number of regular pages in this huge page.
1870 * @page: The head page of a huge page.
1871 */
1872static inline int thp_nr_pages(struct page *page)
1873{
1874 return folio_nr_pages((struct folio *)page);
1875}
1876
7b230db3
MWO
1877/**
1878 * folio_next - Move to the next physical folio.
1879 * @folio: The folio we're currently operating on.
1880 *
1881 * If you have physically contiguous memory which may span more than
1882 * one folio (eg a &struct bio_vec), use this function to move from one
1883 * folio to the next. Do not use it if the memory is only virtually
1884 * contiguous as the folios are almost certainly not adjacent to each
1885 * other. This is the folio equivalent to writing ``page++``.
1886 *
1887 * Context: We assume that the folios are refcounted and/or locked at a
1888 * higher level and do not adjust the reference counts.
1889 * Return: The next struct folio.
1890 */
1891static inline struct folio *folio_next(struct folio *folio)
1892{
1893 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1894}
1895
1896/**
1897 * folio_shift - The size of the memory described by this folio.
1898 * @folio: The folio.
1899 *
1900 * A folio represents a number of bytes which is a power-of-two in size.
1901 * This function tells you which power-of-two the folio is. See also
1902 * folio_size() and folio_order().
1903 *
1904 * Context: The caller should have a reference on the folio to prevent
1905 * it from being split. It is not necessary for the folio to be locked.
1906 * Return: The base-2 logarithm of the size of this folio.
1907 */
1908static inline unsigned int folio_shift(struct folio *folio)
1909{
1910 return PAGE_SHIFT + folio_order(folio);
1911}
1912
1913/**
1914 * folio_size - The number of bytes in a folio.
1915 * @folio: The folio.
1916 *
1917 * Context: The caller should have a reference on the folio to prevent
1918 * it from being split. It is not necessary for the folio to be locked.
1919 * Return: The number of bytes in this folio.
1920 */
1921static inline size_t folio_size(struct folio *folio)
1922{
1923 return PAGE_SIZE << folio_order(folio);
1924}
1925
fa4e3f5f
VMO
1926/**
1927 * folio_estimated_sharers - Estimate the number of sharers of a folio.
1928 * @folio: The folio.
1929 *
1930 * folio_estimated_sharers() aims to serve as a function to efficiently
1931 * estimate the number of processes sharing a folio. This is done by
1932 * looking at the precise mapcount of the first subpage in the folio, and
1933 * assuming the other subpages are the same. This may not be true for large
1934 * folios. If you want exact mapcounts for exact calculations, look at
1935 * page_mapcount() or folio_total_mapcount().
1936 *
1937 * Return: The estimated number of processes sharing a folio.
1938 */
1939static inline int folio_estimated_sharers(struct folio *folio)
1940{
1941 return page_mapcount(folio_page(folio, 0));
1942}
1943
b424de33
MWO
1944#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1945static inline int arch_make_page_accessible(struct page *page)
1946{
1947 return 0;
1948}
1949#endif
1950
1951#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1952static inline int arch_make_folio_accessible(struct folio *folio)
1953{
1954 int ret;
1955 long i, nr = folio_nr_pages(folio);
1956
1957 for (i = 0; i < nr; i++) {
1958 ret = arch_make_page_accessible(folio_page(folio, i));
1959 if (ret)
1960 break;
1961 }
1962
1963 return ret;
1964}
1965#endif
1966
f6ac2354
CL
1967/*
1968 * Some inline functions in vmstat.h depend on page_zone()
1969 */
1970#include <linux/vmstat.h>
1971
33dd4e0e 1972static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1973{
1dff8083 1974 return page_to_virt(page);
1da177e4
LT
1975}
1976
1977#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1978#define HASHED_PAGE_VIRTUAL
1979#endif
1980
1981#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1982static inline void *page_address(const struct page *page)
1983{
1984 return page->virtual;
1985}
1986static inline void set_page_address(struct page *page, void *address)
1987{
1988 page->virtual = address;
1989}
1da177e4
LT
1990#define page_address_init() do { } while(0)
1991#endif
1992
1993#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1994void *page_address(const struct page *page);
1da177e4
LT
1995void set_page_address(struct page *page, void *virtual);
1996void page_address_init(void);
1997#endif
1998
1999#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2000#define page_address(page) lowmem_page_address(page)
2001#define set_page_address(page, address) do { } while(0)
2002#define page_address_init() do { } while(0)
2003#endif
2004
7d4203c1
VB
2005static inline void *folio_address(const struct folio *folio)
2006{
2007 return page_address(&folio->page);
2008}
2009
e39155ea 2010extern void *page_rmapping(struct page *page);
f6ab1f7f
HY
2011extern pgoff_t __page_file_index(struct page *page);
2012
1da177e4
LT
2013/*
2014 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 2015 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
2016 */
2017static inline pgoff_t page_index(struct page *page)
2018{
2019 if (unlikely(PageSwapCache(page)))
f6ab1f7f 2020 return __page_file_index(page);
1da177e4
LT
2021 return page->index;
2022}
2023
2f064f34
MH
2024/*
2025 * Return true only if the page has been allocated with
2026 * ALLOC_NO_WATERMARKS and the low watermark was not
2027 * met implying that the system is under some pressure.
2028 */
1d7bab6a 2029static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
2030{
2031 /*
c07aea3e
MC
2032 * lru.next has bit 1 set if the page is allocated from the
2033 * pfmemalloc reserves. Callers may simply overwrite it if
2034 * they do not need to preserve that information.
2f064f34 2035 */
c07aea3e 2036 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
2037}
2038
02d65d6f
SK
2039/*
2040 * Return true only if the folio has been allocated with
2041 * ALLOC_NO_WATERMARKS and the low watermark was not
2042 * met implying that the system is under some pressure.
2043 */
2044static inline bool folio_is_pfmemalloc(const struct folio *folio)
2045{
2046 /*
2047 * lru.next has bit 1 set if the page is allocated from the
2048 * pfmemalloc reserves. Callers may simply overwrite it if
2049 * they do not need to preserve that information.
2050 */
2051 return (uintptr_t)folio->lru.next & BIT(1);
2052}
2053
2f064f34
MH
2054/*
2055 * Only to be called by the page allocator on a freshly allocated
2056 * page.
2057 */
2058static inline void set_page_pfmemalloc(struct page *page)
2059{
c07aea3e 2060 page->lru.next = (void *)BIT(1);
2f064f34
MH
2061}
2062
2063static inline void clear_page_pfmemalloc(struct page *page)
2064{
c07aea3e 2065 page->lru.next = NULL;
2f064f34
MH
2066}
2067
1c0fe6e3
NP
2068/*
2069 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2070 */
2071extern void pagefault_out_of_memory(void);
2072
1da177e4 2073#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 2074#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 2075#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 2076
ddd588b5 2077/*
7bf02ea2 2078 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
2079 * various contexts.
2080 */
4b59e6c4 2081#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 2082
974f4367
MH
2083extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2084static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2085{
2086 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2087}
1da177e4 2088
21b85b09
MK
2089/*
2090 * Parameter block passed down to zap_pte_range in exceptional cases.
2091 */
2092struct zap_details {
2093 struct folio *single_folio; /* Locked folio to be unmapped */
2094 bool even_cows; /* Zap COWed private pages too? */
2095 zap_flags_t zap_flags; /* Extra flags for zapping */
2096};
2097
2098/*
2099 * Whether to drop the pte markers, for example, the uffd-wp information for
2100 * file-backed memory. This should only be specified when we will completely
2101 * drop the page in the mm, either by truncation or unmapping of the vma. By
2102 * default, the flag is not set.
2103 */
2104#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
04ada095
MK
2105/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2106#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
21b85b09 2107
af7f588d
MD
2108#ifdef CONFIG_SCHED_MM_CID
2109void sched_mm_cid_before_execve(struct task_struct *t);
2110void sched_mm_cid_after_execve(struct task_struct *t);
2111void sched_mm_cid_fork(struct task_struct *t);
2112void sched_mm_cid_exit_signals(struct task_struct *t);
2113static inline int task_mm_cid(struct task_struct *t)
2114{
2115 return t->mm_cid;
2116}
2117#else
2118static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2119static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2120static inline void sched_mm_cid_fork(struct task_struct *t) { }
2121static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2122static inline int task_mm_cid(struct task_struct *t)
2123{
2124 /*
2125 * Use the processor id as a fall-back when the mm cid feature is
2126 * disabled. This provides functional per-cpu data structure accesses
2127 * in user-space, althrough it won't provide the memory usage benefits.
2128 */
2129 return raw_smp_processor_id();
2130}
2131#endif
2132
710ec38b 2133#ifdef CONFIG_MMU
7f43add4 2134extern bool can_do_mlock(void);
710ec38b
AB
2135#else
2136static inline bool can_do_mlock(void) { return false; }
2137#endif
d7c9e99a
AG
2138extern int user_shm_lock(size_t, struct ucounts *);
2139extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 2140
318e9342
VMO
2141struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2142 pte_t pte);
25b2995a
CH
2143struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2144 pte_t pte);
28093f9f
GS
2145struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2146 pmd_t pmd);
7e675137 2147
27d036e3
LR
2148void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2149 unsigned long size);
21b85b09
MK
2150void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2151 unsigned long size, struct zap_details *details);
e9adcfec
MK
2152static inline void zap_vma_pages(struct vm_area_struct *vma)
2153{
2154 zap_page_range_single(vma, vma->vm_start,
2155 vma->vm_end - vma->vm_start, NULL);
2156}
763ecb03
LH
2157void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2158 struct vm_area_struct *start_vma, unsigned long start,
68f48381 2159 unsigned long end, bool mm_wr_locked);
e6473092 2160
ac46d4f3
JG
2161struct mmu_notifier_range;
2162
42b77728 2163void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 2164 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
2165int
2166copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 2167int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 2168 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
2169int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2170 unsigned long *pfn);
d87fe660 2171int follow_phys(struct vm_area_struct *vma, unsigned long address,
2172 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
2173int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2174 void *buf, int len, int write);
1da177e4 2175
7caef267 2176extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 2177extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 2178void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 2179void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 2180int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 2181
7ee1dd3f 2182#ifdef CONFIG_MMU
2b740303 2183extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2184 unsigned long address, unsigned int flags,
2185 struct pt_regs *regs);
64019a2e 2186extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
2187 unsigned long address, unsigned int fault_flags,
2188 bool *unlocked);
977fbdcd
MW
2189void unmap_mapping_pages(struct address_space *mapping,
2190 pgoff_t start, pgoff_t nr, bool even_cows);
2191void unmap_mapping_range(struct address_space *mapping,
2192 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 2193#else
2b740303 2194static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2195 unsigned long address, unsigned int flags,
2196 struct pt_regs *regs)
7ee1dd3f
DH
2197{
2198 /* should never happen if there's no MMU */
2199 BUG();
2200 return VM_FAULT_SIGBUS;
2201}
64019a2e 2202static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 2203 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
2204{
2205 /* should never happen if there's no MMU */
2206 BUG();
2207 return -EFAULT;
2208}
977fbdcd
MW
2209static inline void unmap_mapping_pages(struct address_space *mapping,
2210 pgoff_t start, pgoff_t nr, bool even_cows) { }
2211static inline void unmap_mapping_range(struct address_space *mapping,
2212 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 2213#endif
f33ea7f4 2214
977fbdcd
MW
2215static inline void unmap_shared_mapping_range(struct address_space *mapping,
2216 loff_t const holebegin, loff_t const holelen)
2217{
2218 unmap_mapping_range(mapping, holebegin, holelen, 0);
2219}
2220
2221extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2222 void *buf, int len, unsigned int gup_flags);
5ddd36b9 2223extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 2224 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
2225extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2226 void *buf, int len, unsigned int gup_flags);
1da177e4 2227
64019a2e 2228long get_user_pages_remote(struct mm_struct *mm,
1e987790 2229 unsigned long start, unsigned long nr_pages,
9beae1ea 2230 unsigned int gup_flags, struct page **pages,
5b56d49f 2231 struct vm_area_struct **vmas, int *locked);
64019a2e 2232long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2233 unsigned long start, unsigned long nr_pages,
2234 unsigned int gup_flags, struct page **pages,
2235 struct vm_area_struct **vmas, int *locked);
c12d2da5 2236long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 2237 unsigned int gup_flags, struct page **pages,
cde70140 2238 struct vm_area_struct **vmas);
eddb1c22
JH
2239long pin_user_pages(unsigned long start, unsigned long nr_pages,
2240 unsigned int gup_flags, struct page **pages,
2241 struct vm_area_struct **vmas);
c12d2da5 2242long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 2243 struct page **pages, unsigned int gup_flags);
91429023
JH
2244long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2245 struct page **pages, unsigned int gup_flags);
9a4e9f3b 2246
73b0140b
IW
2247int get_user_pages_fast(unsigned long start, int nr_pages,
2248 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
2249int pin_user_pages_fast(unsigned long start, int nr_pages,
2250 unsigned int gup_flags, struct page **pages);
8025e5dd 2251
79eb597c
DJ
2252int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2253int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2254 struct task_struct *task, bool bypass_rlim);
2255
18022c5d 2256struct kvec;
f3e8fccd 2257struct page *get_dump_page(unsigned long addr);
1da177e4 2258
b5e84594
MWO
2259bool folio_mark_dirty(struct folio *folio);
2260bool set_page_dirty(struct page *page);
1da177e4 2261int set_page_dirty_lock(struct page *page);
b9ea2515 2262
a9090253 2263int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 2264
b6a2fea3
OW
2265extern unsigned long move_page_tables(struct vm_area_struct *vma,
2266 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
2267 unsigned long new_addr, unsigned long len,
2268 bool need_rmap_locks);
58705444
PX
2269
2270/*
2271 * Flags used by change_protection(). For now we make it a bitmap so
2272 * that we can pass in multiple flags just like parameters. However
2273 * for now all the callers are only use one of the flags at the same
2274 * time.
2275 */
64fe24a3
DH
2276/*
2277 * Whether we should manually check if we can map individual PTEs writable,
2278 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2279 * PTEs automatically in a writable mapping.
2280 */
2281#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
2282/* Whether this protection change is for NUMA hints */
2283#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2284/* Whether this change is for write protecting */
2285#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2286#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2287#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2288 MM_CP_UFFD_WP_RESOLVE)
58705444 2289
eb309ec8
DH
2290int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2291static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2292{
2293 /*
2294 * We want to check manually if we can change individual PTEs writable
2295 * if we can't do that automatically for all PTEs in a mapping. For
2296 * private mappings, that's always the case when we have write
2297 * permissions as we properly have to handle COW.
2298 */
2299 if (vma->vm_flags & VM_SHARED)
2300 return vma_wants_writenotify(vma, vma->vm_page_prot);
2301 return !!(vma->vm_flags & VM_WRITE);
2302
2303}
6a56ccbc
DH
2304bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2305 pte_t pte);
a79390f5 2306extern long change_protection(struct mmu_gather *tlb,
4a18419f 2307 struct vm_area_struct *vma, unsigned long start,
1ef488ed 2308 unsigned long end, unsigned long cp_flags);
2286a691
LH
2309extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2310 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2311 unsigned long start, unsigned long end, unsigned long newflags);
1da177e4 2312
465a454f
PZ
2313/*
2314 * doesn't attempt to fault and will return short.
2315 */
dadbb612
SJ
2316int get_user_pages_fast_only(unsigned long start, int nr_pages,
2317 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2318
2319static inline bool get_user_page_fast_only(unsigned long addr,
2320 unsigned int gup_flags, struct page **pagep)
2321{
2322 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2323}
d559db08
KH
2324/*
2325 * per-process(per-mm_struct) statistics.
2326 */
d559db08
KH
2327static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2328{
f1a79412 2329 return percpu_counter_read_positive(&mm->rss_stat[member]);
69c97823 2330}
d559db08 2331
f1a79412 2332void mm_trace_rss_stat(struct mm_struct *mm, int member);
b3d1411b 2333
d559db08
KH
2334static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2335{
f1a79412 2336 percpu_counter_add(&mm->rss_stat[member], value);
b3d1411b 2337
f1a79412 2338 mm_trace_rss_stat(mm, member);
d559db08
KH
2339}
2340
2341static inline void inc_mm_counter(struct mm_struct *mm, int member)
2342{
f1a79412 2343 percpu_counter_inc(&mm->rss_stat[member]);
b3d1411b 2344
f1a79412 2345 mm_trace_rss_stat(mm, member);
d559db08
KH
2346}
2347
2348static inline void dec_mm_counter(struct mm_struct *mm, int member)
2349{
f1a79412 2350 percpu_counter_dec(&mm->rss_stat[member]);
b3d1411b 2351
f1a79412 2352 mm_trace_rss_stat(mm, member);
d559db08
KH
2353}
2354
eca56ff9
JM
2355/* Optimized variant when page is already known not to be PageAnon */
2356static inline int mm_counter_file(struct page *page)
2357{
2358 if (PageSwapBacked(page))
2359 return MM_SHMEMPAGES;
2360 return MM_FILEPAGES;
2361}
2362
2363static inline int mm_counter(struct page *page)
2364{
2365 if (PageAnon(page))
2366 return MM_ANONPAGES;
2367 return mm_counter_file(page);
2368}
2369
d559db08
KH
2370static inline unsigned long get_mm_rss(struct mm_struct *mm)
2371{
2372 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2373 get_mm_counter(mm, MM_ANONPAGES) +
2374 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2375}
2376
2377static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2378{
2379 return max(mm->hiwater_rss, get_mm_rss(mm));
2380}
2381
2382static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2383{
2384 return max(mm->hiwater_vm, mm->total_vm);
2385}
2386
2387static inline void update_hiwater_rss(struct mm_struct *mm)
2388{
2389 unsigned long _rss = get_mm_rss(mm);
2390
2391 if ((mm)->hiwater_rss < _rss)
2392 (mm)->hiwater_rss = _rss;
2393}
2394
2395static inline void update_hiwater_vm(struct mm_struct *mm)
2396{
2397 if (mm->hiwater_vm < mm->total_vm)
2398 mm->hiwater_vm = mm->total_vm;
2399}
2400
695f0559
PC
2401static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2402{
2403 mm->hiwater_rss = get_mm_rss(mm);
2404}
2405
d559db08
KH
2406static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2407 struct mm_struct *mm)
2408{
2409 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2410
2411 if (*maxrss < hiwater_rss)
2412 *maxrss = hiwater_rss;
2413}
2414
53bddb4e 2415#if defined(SPLIT_RSS_COUNTING)
05af2e10 2416void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2417#else
05af2e10 2418static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2419{
2420}
2421#endif
465a454f 2422
78e7c5af
AK
2423#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2424static inline int pte_special(pte_t pte)
2425{
2426 return 0;
2427}
2428
2429static inline pte_t pte_mkspecial(pte_t pte)
2430{
2431 return pte;
2432}
2433#endif
2434
17596731 2435#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2436static inline int pte_devmap(pte_t pte)
2437{
2438 return 0;
2439}
2440#endif
2441
25ca1d6c
NK
2442extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2443 spinlock_t **ptl);
2444static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2445 spinlock_t **ptl)
2446{
2447 pte_t *ptep;
2448 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2449 return ptep;
2450}
c9cfcddf 2451
c2febafc
KS
2452#ifdef __PAGETABLE_P4D_FOLDED
2453static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2454 unsigned long address)
2455{
2456 return 0;
2457}
2458#else
2459int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2460#endif
2461
b4e98d9a 2462#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2463static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2464 unsigned long address)
2465{
2466 return 0;
2467}
b4e98d9a
KS
2468static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2469static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2470
5f22df00 2471#else
c2febafc 2472int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2473
b4e98d9a
KS
2474static inline void mm_inc_nr_puds(struct mm_struct *mm)
2475{
6d212db1
MS
2476 if (mm_pud_folded(mm))
2477 return;
af5b0f6a 2478 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2479}
2480
2481static inline void mm_dec_nr_puds(struct mm_struct *mm)
2482{
6d212db1
MS
2483 if (mm_pud_folded(mm))
2484 return;
af5b0f6a 2485 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2486}
5f22df00
NP
2487#endif
2488
2d2f5119 2489#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2490static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2491 unsigned long address)
2492{
2493 return 0;
2494}
dc6c9a35 2495
dc6c9a35
KS
2496static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2497static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2498
5f22df00 2499#else
1bb3630e 2500int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2501
dc6c9a35
KS
2502static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2503{
6d212db1
MS
2504 if (mm_pmd_folded(mm))
2505 return;
af5b0f6a 2506 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2507}
2508
2509static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2510{
6d212db1
MS
2511 if (mm_pmd_folded(mm))
2512 return;
af5b0f6a 2513 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2514}
5f22df00
NP
2515#endif
2516
c4812909 2517#ifdef CONFIG_MMU
af5b0f6a 2518static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2519{
af5b0f6a 2520 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2521}
2522
af5b0f6a 2523static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2524{
af5b0f6a 2525 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2526}
2527
2528static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2529{
af5b0f6a 2530 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2531}
2532
2533static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2534{
af5b0f6a 2535 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2536}
2537#else
c4812909 2538
af5b0f6a
KS
2539static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2540static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2541{
2542 return 0;
2543}
2544
2545static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2546static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2547#endif
2548
4cf58924
JFG
2549int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2550int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2551
f949286c
MR
2552#if defined(CONFIG_MMU)
2553
c2febafc
KS
2554static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2555 unsigned long address)
2556{
2557 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2558 NULL : p4d_offset(pgd, address);
2559}
2560
2561static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2562 unsigned long address)
1da177e4 2563{
c2febafc
KS
2564 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2565 NULL : pud_offset(p4d, address);
1da177e4 2566}
d8626138 2567
1da177e4
LT
2568static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2569{
1bb3630e
HD
2570 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2571 NULL: pmd_offset(pud, address);
1da177e4 2572}
f949286c 2573#endif /* CONFIG_MMU */
1bb3630e 2574
57c1ffce 2575#if USE_SPLIT_PTE_PTLOCKS
597d795a 2576#if ALLOC_SPLIT_PTLOCKS
b35f1819 2577void __init ptlock_cache_init(void);
539edb58
PZ
2578extern bool ptlock_alloc(struct page *page);
2579extern void ptlock_free(struct page *page);
2580
2581static inline spinlock_t *ptlock_ptr(struct page *page)
2582{
2583 return page->ptl;
2584}
597d795a 2585#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2586static inline void ptlock_cache_init(void)
2587{
2588}
2589
49076ec2
KS
2590static inline bool ptlock_alloc(struct page *page)
2591{
49076ec2
KS
2592 return true;
2593}
539edb58 2594
49076ec2
KS
2595static inline void ptlock_free(struct page *page)
2596{
49076ec2
KS
2597}
2598
2599static inline spinlock_t *ptlock_ptr(struct page *page)
2600{
539edb58 2601 return &page->ptl;
49076ec2 2602}
597d795a 2603#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2604
2605static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2606{
2607 return ptlock_ptr(pmd_page(*pmd));
2608}
2609
2610static inline bool ptlock_init(struct page *page)
2611{
2612 /*
2613 * prep_new_page() initialize page->private (and therefore page->ptl)
2614 * with 0. Make sure nobody took it in use in between.
2615 *
2616 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2617 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2618 */
309381fe 2619 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2620 if (!ptlock_alloc(page))
2621 return false;
2622 spin_lock_init(ptlock_ptr(page));
2623 return true;
2624}
2625
57c1ffce 2626#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2627/*
2628 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2629 */
49076ec2
KS
2630static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2631{
2632 return &mm->page_table_lock;
2633}
b35f1819 2634static inline void ptlock_cache_init(void) {}
49076ec2 2635static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2636static inline void ptlock_free(struct page *page) {}
57c1ffce 2637#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2638
b35f1819
KS
2639static inline void pgtable_init(void)
2640{
2641 ptlock_cache_init();
2642 pgtable_cache_init();
2643}
2644
b4ed71f5 2645static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2646{
706874e9
VD
2647 if (!ptlock_init(page))
2648 return false;
1d40a5ea 2649 __SetPageTable(page);
f0c0c115 2650 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2651 return true;
2f569afd
MS
2652}
2653
b4ed71f5 2654static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2655{
9e247bab 2656 ptlock_free(page);
1d40a5ea 2657 __ClearPageTable(page);
f0c0c115 2658 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2659}
2660
c74df32c
HD
2661#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2662({ \
4c21e2f2 2663 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2664 pte_t *__pte = pte_offset_map(pmd, address); \
2665 *(ptlp) = __ptl; \
2666 spin_lock(__ptl); \
2667 __pte; \
2668})
2669
2670#define pte_unmap_unlock(pte, ptl) do { \
2671 spin_unlock(ptl); \
2672 pte_unmap(pte); \
2673} while (0)
2674
4cf58924 2675#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2676
2677#define pte_alloc_map(mm, pmd, address) \
4cf58924 2678 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2679
c74df32c 2680#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2681 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2682 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2683
1bb3630e 2684#define pte_alloc_kernel(pmd, address) \
4cf58924 2685 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2686 NULL: pte_offset_kernel(pmd, address))
1da177e4 2687
e009bb30
KS
2688#if USE_SPLIT_PMD_PTLOCKS
2689
7e25de77 2690static inline struct page *pmd_pgtable_page(pmd_t *pmd)
634391ac
MS
2691{
2692 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2693 return virt_to_page((void *)((unsigned long) pmd & mask));
2694}
2695
e009bb30
KS
2696static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2697{
373dfda2 2698 return ptlock_ptr(pmd_pgtable_page(pmd));
e009bb30
KS
2699}
2700
b2b29d6d 2701static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2702{
e009bb30
KS
2703#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2704 page->pmd_huge_pte = NULL;
2705#endif
49076ec2 2706 return ptlock_init(page);
e009bb30
KS
2707}
2708
b2b29d6d 2709static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2710{
2711#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2712 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2713#endif
49076ec2 2714 ptlock_free(page);
e009bb30
KS
2715}
2716
373dfda2 2717#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
e009bb30
KS
2718
2719#else
2720
9a86cb7b
KS
2721static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2722{
2723 return &mm->page_table_lock;
2724}
2725
b2b29d6d
MW
2726static inline bool pmd_ptlock_init(struct page *page) { return true; }
2727static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2728
c389a250 2729#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2730
e009bb30
KS
2731#endif
2732
9a86cb7b
KS
2733static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2734{
2735 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2736 spin_lock(ptl);
2737 return ptl;
2738}
2739
b2b29d6d
MW
2740static inline bool pgtable_pmd_page_ctor(struct page *page)
2741{
2742 if (!pmd_ptlock_init(page))
2743 return false;
2744 __SetPageTable(page);
f0c0c115 2745 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2746 return true;
2747}
2748
2749static inline void pgtable_pmd_page_dtor(struct page *page)
2750{
2751 pmd_ptlock_free(page);
2752 __ClearPageTable(page);
f0c0c115 2753 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2754}
2755
a00cc7d9
MW
2756/*
2757 * No scalability reason to split PUD locks yet, but follow the same pattern
2758 * as the PMD locks to make it easier if we decide to. The VM should not be
2759 * considered ready to switch to split PUD locks yet; there may be places
2760 * which need to be converted from page_table_lock.
2761 */
2762static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2763{
2764 return &mm->page_table_lock;
2765}
2766
2767static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2768{
2769 spinlock_t *ptl = pud_lockptr(mm, pud);
2770
2771 spin_lock(ptl);
2772 return ptl;
2773}
62906027 2774
a00cc7d9 2775extern void __init pagecache_init(void);
49a7f04a
DH
2776extern void free_initmem(void);
2777
69afade7
JL
2778/*
2779 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2780 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2781 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2782 * Return pages freed into the buddy system.
2783 */
11199692 2784extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2785 int poison, const char *s);
c3d5f5f0 2786
c3d5f5f0 2787extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2788extern void mem_init_print_info(void);
69afade7 2789
4b50bcc7 2790extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2791
69afade7 2792/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2793static inline void free_reserved_page(struct page *page)
69afade7
JL
2794{
2795 ClearPageReserved(page);
2796 init_page_count(page);
2797 __free_page(page);
69afade7
JL
2798 adjust_managed_page_count(page, 1);
2799}
a0cd7a7c 2800#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2801
2802static inline void mark_page_reserved(struct page *page)
2803{
2804 SetPageReserved(page);
2805 adjust_managed_page_count(page, -1);
2806}
2807
2808/*
2809 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2810 * The freed pages will be poisoned with pattern "poison" if it's within
2811 * range [0, UCHAR_MAX].
2812 * Return pages freed into the buddy system.
69afade7
JL
2813 */
2814static inline unsigned long free_initmem_default(int poison)
2815{
2816 extern char __init_begin[], __init_end[];
2817
11199692 2818 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2819 poison, "unused kernel image (initmem)");
69afade7
JL
2820}
2821
7ee3d4e8
JL
2822static inline unsigned long get_num_physpages(void)
2823{
2824 int nid;
2825 unsigned long phys_pages = 0;
2826
2827 for_each_online_node(nid)
2828 phys_pages += node_present_pages(nid);
2829
2830 return phys_pages;
2831}
2832
c713216d 2833/*
3f08a302 2834 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2835 * zones, allocate the backing mem_map and account for memory holes in an
2836 * architecture independent manner.
c713216d
MG
2837 *
2838 * An architecture is expected to register range of page frames backed by
0ee332c1 2839 * physical memory with memblock_add[_node]() before calling
9691a071 2840 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2841 * usage, an architecture is expected to do something like
2842 *
2843 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2844 * max_highmem_pfn};
2845 * for_each_valid_physical_page_range()
952eea9b 2846 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2847 * free_area_init(max_zone_pfns);
c713216d 2848 */
9691a071 2849void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2850unsigned long node_map_pfn_alignment(void);
32996250
YL
2851unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2852 unsigned long end_pfn);
c713216d
MG
2853extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2854 unsigned long end_pfn);
2855extern void get_pfn_range_for_nid(unsigned int nid,
2856 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 2857
a9ee6cf5 2858#ifndef CONFIG_NUMA
6f24fbd3 2859static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2860{
2861 return 0;
2862}
2863#else
2864/* please see mm/page_alloc.c */
2865extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2866#endif
2867
0e0b864e 2868extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2869extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2870 unsigned long, unsigned long, enum meminit_context,
2871 struct vmem_altmap *, int migratetype);
bc75d33f 2872extern void setup_per_zone_wmarks(void);
bd3400ea 2873extern void calculate_min_free_kbytes(void);
1b79acc9 2874extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2875extern void mem_init(void);
8feae131 2876extern void __init mmap_init(void);
974f4367
MH
2877
2878extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2879static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
2880{
2881 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
2882}
d02bd27b 2883extern long si_mem_available(void);
1da177e4
LT
2884extern void si_meminfo(struct sysinfo * val);
2885extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2886#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2887extern unsigned long arch_reserved_kernel_pages(void);
2888#endif
1da177e4 2889
a8e99259
MH
2890extern __printf(3, 4)
2891void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2892
e7c8d5c9 2893extern void setup_per_cpu_pageset(void);
e7c8d5c9 2894
75f7ad8e
PS
2895/* page_alloc.c */
2896extern int min_free_kbytes;
1c30844d 2897extern int watermark_boost_factor;
795ae7a0 2898extern int watermark_scale_factor;
51930df5 2899extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2900
8feae131 2901/* nommu.c */
33e5d769 2902extern atomic_long_t mmap_pages_allocated;
7e660872 2903extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2904
6b2dbba8 2905/* interval_tree.c */
6b2dbba8 2906void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2907 struct rb_root_cached *root);
9826a516
ML
2908void vma_interval_tree_insert_after(struct vm_area_struct *node,
2909 struct vm_area_struct *prev,
f808c13f 2910 struct rb_root_cached *root);
6b2dbba8 2911void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2912 struct rb_root_cached *root);
2913struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2914 unsigned long start, unsigned long last);
2915struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2916 unsigned long start, unsigned long last);
2917
2918#define vma_interval_tree_foreach(vma, root, start, last) \
2919 for (vma = vma_interval_tree_iter_first(root, start, last); \
2920 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2921
bf181b9f 2922void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2923 struct rb_root_cached *root);
bf181b9f 2924void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2925 struct rb_root_cached *root);
2926struct anon_vma_chain *
2927anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2928 unsigned long start, unsigned long last);
bf181b9f
ML
2929struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2930 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2931#ifdef CONFIG_DEBUG_VM_RB
2932void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2933#endif
bf181b9f
ML
2934
2935#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2936 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2937 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2938
1da177e4 2939/* mmap.c */
34b4e4aa 2940extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
7c9813e8
LH
2941extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
2942 unsigned long start, unsigned long end, pgoff_t pgoff,
2943 struct vm_area_struct *next);
cf51e86d
LH
2944extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
2945 unsigned long start, unsigned long end, pgoff_t pgoff);
9760ebff 2946extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
f2ebfe43
LH
2947 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
2948 unsigned long end, unsigned long vm_flags, struct anon_vma *,
2949 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
2950 struct anon_vma_name *);
1da177e4 2951extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
9760ebff
LH
2952extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
2953 unsigned long addr, int new_below);
2954extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
2955 unsigned long addr, int new_below);
1da177e4 2956extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 2957extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2958extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2959 unsigned long addr, unsigned long len, pgoff_t pgoff,
2960 bool *need_rmap_locks);
1da177e4 2961extern void exit_mmap(struct mm_struct *);
925d1c40 2962
9c599024
CG
2963static inline int check_data_rlimit(unsigned long rlim,
2964 unsigned long new,
2965 unsigned long start,
2966 unsigned long end_data,
2967 unsigned long start_data)
2968{
2969 if (rlim < RLIM_INFINITY) {
2970 if (((new - start) + (end_data - start_data)) > rlim)
2971 return -ENOSPC;
2972 }
2973
2974 return 0;
2975}
2976
7906d00c
AA
2977extern int mm_take_all_locks(struct mm_struct *mm);
2978extern void mm_drop_all_locks(struct mm_struct *mm);
2979
fe69d560 2980extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 2981extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 2982extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2983extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2984
84638335
KK
2985extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2986extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2987
2eefd878
DS
2988extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2989 const struct vm_special_mapping *sm);
3935ed6a
SS
2990extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2991 unsigned long addr, unsigned long len,
a62c34bd
AL
2992 unsigned long flags,
2993 const struct vm_special_mapping *spec);
2994/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2995extern int install_special_mapping(struct mm_struct *mm,
2996 unsigned long addr, unsigned long len,
2997 unsigned long flags, struct page **pages);
1da177e4 2998
649775be 2999unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 3000unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 3001
1da177e4
LT
3002extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3003
0165ab44 3004extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
3005 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3006 struct list_head *uf);
1fcfd8db 3007extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 3008 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 3009 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
183654ce 3010extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
11f9a21a
LH
3011 unsigned long start, size_t len, struct list_head *uf,
3012 bool downgrade);
897ab3e0
MR
3013extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3014 struct list_head *uf);
0726b01e 3015extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 3016
bebeb3d6 3017#ifdef CONFIG_MMU
27b26701
LH
3018extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3019 unsigned long start, unsigned long end,
3020 struct list_head *uf, bool downgrade);
bebeb3d6
ML
3021extern int __mm_populate(unsigned long addr, unsigned long len,
3022 int ignore_errors);
3023static inline void mm_populate(unsigned long addr, unsigned long len)
3024{
3025 /* Ignore errors */
3026 (void) __mm_populate(addr, len, 1);
3027}
3028#else
3029static inline void mm_populate(unsigned long addr, unsigned long len) {}
3030#endif
3031
e4eb1ff6 3032/* These take the mm semaphore themselves */
5d22fc25 3033extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 3034extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 3035extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 3036extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
3037 unsigned long, unsigned long,
3038 unsigned long, unsigned long);
1da177e4 3039
db4fbfb9
ML
3040struct vm_unmapped_area_info {
3041#define VM_UNMAPPED_AREA_TOPDOWN 1
3042 unsigned long flags;
3043 unsigned long length;
3044 unsigned long low_limit;
3045 unsigned long high_limit;
3046 unsigned long align_mask;
3047 unsigned long align_offset;
3048};
3049
baceaf1c 3050extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 3051
85821aab 3052/* truncate.c */
1da177e4 3053extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
3054extern void truncate_inode_pages_range(struct address_space *,
3055 loff_t lstart, loff_t lend);
91b0abe3 3056extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
3057
3058/* generic vm_area_ops exported for stackable file systems */
2bcd6454 3059extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 3060extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 3061 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 3062extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 3063
1be7107f 3064extern unsigned long stack_guard_gap;
d05f3169 3065/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 3066extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 3067
11192337 3068/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
3069extern int expand_downwards(struct vm_area_struct *vma,
3070 unsigned long address);
8ca3eb08 3071#if VM_GROWSUP
46dea3d0 3072extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 3073#else
fee7e49d 3074 #define expand_upwards(vma, address) (0)
9ab88515 3075#endif
1da177e4
LT
3076
3077/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3078extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3079extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3080 struct vm_area_struct **pprev);
3081
abdba2dd
LH
3082/*
3083 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3084 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 3085 */
ce6d42f2 3086struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 3087 unsigned long start_addr, unsigned long end_addr);
1da177e4 3088
ce6d42f2
LH
3089/**
3090 * vma_lookup() - Find a VMA at a specific address
3091 * @mm: The process address space.
3092 * @addr: The user address.
3093 *
3094 * Return: The vm_area_struct at the given address, %NULL otherwise.
3095 */
3096static inline
3097struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3098{
d7c62295 3099 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
3100}
3101
1be7107f
HD
3102static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3103{
3104 unsigned long vm_start = vma->vm_start;
3105
3106 if (vma->vm_flags & VM_GROWSDOWN) {
3107 vm_start -= stack_guard_gap;
3108 if (vm_start > vma->vm_start)
3109 vm_start = 0;
3110 }
3111 return vm_start;
3112}
3113
3114static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3115{
3116 unsigned long vm_end = vma->vm_end;
3117
3118 if (vma->vm_flags & VM_GROWSUP) {
3119 vm_end += stack_guard_gap;
3120 if (vm_end < vma->vm_end)
3121 vm_end = -PAGE_SIZE;
3122 }
3123 return vm_end;
3124}
3125
1da177e4
LT
3126static inline unsigned long vma_pages(struct vm_area_struct *vma)
3127{
3128 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3129}
3130
640708a2
PE
3131/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3132static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3133 unsigned long vm_start, unsigned long vm_end)
3134{
dc8635b2 3135 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
3136
3137 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3138 vma = NULL;
3139
3140 return vma;
3141}
3142
017b1660
MK
3143static inline bool range_in_vma(struct vm_area_struct *vma,
3144 unsigned long start, unsigned long end)
3145{
3146 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3147}
3148
bad849b3 3149#ifdef CONFIG_MMU
804af2cf 3150pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 3151void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
3152#else
3153static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3154{
3155 return __pgprot(0);
3156}
64e45507
PF
3157static inline void vma_set_page_prot(struct vm_area_struct *vma)
3158{
3159 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3160}
bad849b3
DH
3161#endif
3162
295992fb
CK
3163void vma_set_file(struct vm_area_struct *vma, struct file *file);
3164
5877231f 3165#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 3166unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
3167 unsigned long start, unsigned long end);
3168#endif
3169
deceb6cd 3170struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
3171int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3172 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
3173int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3174 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 3175int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
3176int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3177 struct page **pages, unsigned long *num);
a667d745
SJ
3178int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3179 unsigned long num);
3180int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3181 unsigned long num);
ae2b01f3 3182vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 3183 unsigned long pfn);
f5e6d1d5
MW
3184vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3185 unsigned long pfn, pgprot_t pgprot);
5d747637 3186vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 3187 pfn_t pfn);
574c5b3d
TH
3188vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
3189 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
3190vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3191 unsigned long addr, pfn_t pfn);
b4cbb197
LT
3192int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3193
1c8f4220
SJ
3194static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3195 unsigned long addr, struct page *page)
3196{
3197 int err = vm_insert_page(vma, addr, page);
3198
3199 if (err == -ENOMEM)
3200 return VM_FAULT_OOM;
3201 if (err < 0 && err != -EBUSY)
3202 return VM_FAULT_SIGBUS;
3203
3204 return VM_FAULT_NOPAGE;
3205}
3206
f8f6ae5d
JG
3207#ifndef io_remap_pfn_range
3208static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3209 unsigned long addr, unsigned long pfn,
3210 unsigned long size, pgprot_t prot)
3211{
3212 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3213}
3214#endif
3215
d97baf94
SJ
3216static inline vm_fault_t vmf_error(int err)
3217{
3218 if (err == -ENOMEM)
3219 return VM_FAULT_OOM;
3220 return VM_FAULT_SIGBUS;
3221}
3222
df06b37f
KB
3223struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3224 unsigned int foll_flags);
240aadee 3225
2b740303 3226static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3227{
3228 if (vm_fault & VM_FAULT_OOM)
3229 return -ENOMEM;
3230 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3231 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3232 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3233 return -EFAULT;
3234 return 0;
3235}
3236
474098ed
DH
3237/*
3238 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3239 * a (NUMA hinting) fault is required.
3240 */
3241static inline bool gup_can_follow_protnone(unsigned int flags)
3242{
3243 /*
3244 * FOLL_FORCE has to be able to make progress even if the VMA is
3245 * inaccessible. Further, FOLL_FORCE access usually does not represent
3246 * application behaviour and we should avoid triggering NUMA hinting
3247 * faults.
3248 */
3249 return flags & FOLL_FORCE;
3250}
3251
8b1e0f81 3252typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3253extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3254 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3255extern int apply_to_existing_page_range(struct mm_struct *mm,
3256 unsigned long address, unsigned long size,
3257 pte_fn_t fn, void *data);
aee16b3c 3258
5749fcc5 3259extern void __init init_mem_debugging_and_hardening(void);
8823b1db 3260#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3261extern void __kernel_poison_pages(struct page *page, int numpages);
3262extern void __kernel_unpoison_pages(struct page *page, int numpages);
3263extern bool _page_poisoning_enabled_early;
3264DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3265static inline bool page_poisoning_enabled(void)
3266{
3267 return _page_poisoning_enabled_early;
3268}
3269/*
3270 * For use in fast paths after init_mem_debugging() has run, or when a
3271 * false negative result is not harmful when called too early.
3272 */
3273static inline bool page_poisoning_enabled_static(void)
3274{
3275 return static_branch_unlikely(&_page_poisoning_enabled);
3276}
3277static inline void kernel_poison_pages(struct page *page, int numpages)
3278{
3279 if (page_poisoning_enabled_static())
3280 __kernel_poison_pages(page, numpages);
3281}
3282static inline void kernel_unpoison_pages(struct page *page, int numpages)
3283{
3284 if (page_poisoning_enabled_static())
3285 __kernel_unpoison_pages(page, numpages);
3286}
8823b1db
LA
3287#else
3288static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3289static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3290static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3291static inline void kernel_poison_pages(struct page *page, int numpages) { }
3292static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3293#endif
3294
51cba1eb 3295DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3296static inline bool want_init_on_alloc(gfp_t flags)
3297{
51cba1eb
KC
3298 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3299 &init_on_alloc))
6471384a
AP
3300 return true;
3301 return flags & __GFP_ZERO;
3302}
3303
51cba1eb 3304DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3305static inline bool want_init_on_free(void)
3306{
51cba1eb
KC
3307 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3308 &init_on_free);
6471384a
AP
3309}
3310
8e57f8ac
VB
3311extern bool _debug_pagealloc_enabled_early;
3312DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3313
3314static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3315{
3316 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3317 _debug_pagealloc_enabled_early;
3318}
3319
3320/*
3321 * For use in fast paths after init_debug_pagealloc() has run, or when a
3322 * false negative result is not harmful when called too early.
3323 */
3324static inline bool debug_pagealloc_enabled_static(void)
031bc574 3325{
96a2b03f
VB
3326 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3327 return false;
3328
3329 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3330}
3331
5d6ad668 3332#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3333/*
5d6ad668
MR
3334 * To support DEBUG_PAGEALLOC architecture must ensure that
3335 * __kernel_map_pages() never fails
c87cbc1f 3336 */
d6332692
RE
3337extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3338
77bc7fd6
MR
3339static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3340{
3341 if (debug_pagealloc_enabled_static())
3342 __kernel_map_pages(page, numpages, 1);
3343}
3344
3345static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3346{
3347 if (debug_pagealloc_enabled_static())
3348 __kernel_map_pages(page, numpages, 0);
3349}
5d6ad668 3350#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3351static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3352static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3353#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3354
a6c19dfe 3355#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3356extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3357extern int in_gate_area_no_mm(unsigned long addr);
3358extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3359#else
a6c19dfe
AL
3360static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3361{
3362 return NULL;
3363}
3364static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3365static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3366{
3367 return 0;
3368}
1da177e4
LT
3369#endif /* __HAVE_ARCH_GATE_AREA */
3370
44a70ade
MH
3371extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3372
146732ce
JT
3373#ifdef CONFIG_SYSCTL
3374extern int sysctl_drop_caches;
32927393
CH
3375int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3376 loff_t *);
146732ce
JT
3377#endif
3378
cb731d6c 3379void drop_slab(void);
9d0243bc 3380
7a9166e3
LY
3381#ifndef CONFIG_MMU
3382#define randomize_va_space 0
3383#else
a62eaf15 3384extern int randomize_va_space;
7a9166e3 3385#endif
a62eaf15 3386
045e72ac 3387const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3388#ifdef CONFIG_MMU
03252919 3389void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3390#else
3391static inline void print_vma_addr(char *prefix, unsigned long rip)
3392{
3393}
3394#endif
e6e5494c 3395
35fd1eb1 3396void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3397struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3398 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3399 struct dev_pagemap *pgmap);
7b09f5af
FC
3400void pmd_init(void *addr);
3401void pud_init(void *addr);
29c71111 3402pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3403p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3404pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3405pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3406pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3407 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3408void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3409struct vmem_altmap;
56993b4e
AK
3410void *vmemmap_alloc_block_buf(unsigned long size, int node,
3411 struct vmem_altmap *altmap);
8f6aac41 3412void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2045a3b8
FC
3413void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3414 unsigned long addr, unsigned long next);
3415int vmemmap_check_pmd(pmd_t *pmd, int node,
3416 unsigned long addr, unsigned long next);
0aad818b 3417int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3418 int node, struct vmem_altmap *altmap);
2045a3b8
FC
3419int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3420 int node, struct vmem_altmap *altmap);
7b73d978
CH
3421int vmemmap_populate(unsigned long start, unsigned long end, int node,
3422 struct vmem_altmap *altmap);
c2b91e2e 3423void vmemmap_populate_print_last(void);
0197518c 3424#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3425void vmemmap_free(unsigned long start, unsigned long end,
3426 struct vmem_altmap *altmap);
0197518c 3427#endif
46723bfa 3428void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3429 unsigned long nr_pages);
6a46079c 3430
82ba011b
AK
3431enum mf_flags {
3432 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3433 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3434 MF_MUST_KILL = 1 << 2,
cf870c70 3435 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3436 MF_UNPOISON = 1 << 4,
67f22ba7 3437 MF_SW_SIMULATED = 1 << 5,
38f6d293 3438 MF_NO_RETRY = 1 << 6,
82ba011b 3439};
c36e2024
SR
3440int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3441 unsigned long count, int mf_flags);
83b57531 3442extern int memory_failure(unsigned long pfn, int flags);
06202231 3443extern void memory_failure_queue_kick(int cpu);
847ce401 3444extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3445extern int sysctl_memory_failure_early_kill;
3446extern int sysctl_memory_failure_recovery;
d0505e9f 3447extern void shake_page(struct page *p);
5844a486 3448extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3449extern int soft_offline_page(unsigned long pfn, int flags);
405ce051 3450#ifdef CONFIG_MEMORY_FAILURE
d302c239 3451extern void memory_failure_queue(unsigned long pfn, int flags);
e591ef7d
NH
3452extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3453 bool *migratable_cleared);
5033091d
NH
3454void num_poisoned_pages_inc(unsigned long pfn);
3455void num_poisoned_pages_sub(unsigned long pfn, long i);
405ce051 3456#else
d302c239
TL
3457static inline void memory_failure_queue(unsigned long pfn, int flags)
3458{
3459}
3460
e591ef7d
NH
3461static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3462 bool *migratable_cleared)
405ce051
NH
3463{
3464 return 0;
3465}
d027122d 3466
a46c9304 3467static inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
3468{
3469}
5033091d
NH
3470
3471static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3472{
3473}
3474#endif
3475
3476#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3477extern void memblk_nr_poison_inc(unsigned long pfn);
3478extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3479#else
3480static inline void memblk_nr_poison_inc(unsigned long pfn)
3481{
3482}
3483
3484static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3485{
3486}
405ce051 3487#endif
6a46079c 3488
03b122da
TL
3489#ifndef arch_memory_failure
3490static inline int arch_memory_failure(unsigned long pfn, int flags)
3491{
3492 return -ENXIO;
3493}
3494#endif
3495
3496#ifndef arch_is_platform_page
3497static inline bool arch_is_platform_page(u64 paddr)
3498{
3499 return false;
3500}
3501#endif
cc637b17
XX
3502
3503/*
3504 * Error handlers for various types of pages.
3505 */
cc3e2af4 3506enum mf_result {
cc637b17
XX
3507 MF_IGNORED, /* Error: cannot be handled */
3508 MF_FAILED, /* Error: handling failed */
3509 MF_DELAYED, /* Will be handled later */
3510 MF_RECOVERED, /* Successfully recovered */
3511};
3512
3513enum mf_action_page_type {
3514 MF_MSG_KERNEL,
3515 MF_MSG_KERNEL_HIGH_ORDER,
3516 MF_MSG_SLAB,
3517 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3518 MF_MSG_HUGE,
3519 MF_MSG_FREE_HUGE,
3520 MF_MSG_UNMAP_FAILED,
3521 MF_MSG_DIRTY_SWAPCACHE,
3522 MF_MSG_CLEAN_SWAPCACHE,
3523 MF_MSG_DIRTY_MLOCKED_LRU,
3524 MF_MSG_CLEAN_MLOCKED_LRU,
3525 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3526 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3527 MF_MSG_DIRTY_LRU,
3528 MF_MSG_CLEAN_LRU,
3529 MF_MSG_TRUNCATED_LRU,
3530 MF_MSG_BUDDY,
6100e34b 3531 MF_MSG_DAX,
5d1fd5dc 3532 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3533 MF_MSG_UNKNOWN,
3534};
3535
44b8f8bf
JY
3536/*
3537 * Sysfs entries for memory failure handling statistics.
3538 */
3539extern const struct attribute_group memory_failure_attr_group;
3540
47ad8475
AA
3541#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3542extern void clear_huge_page(struct page *page,
c79b57e4 3543 unsigned long addr_hint,
47ad8475
AA
3544 unsigned int pages_per_huge_page);
3545extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3546 unsigned long addr_hint,
3547 struct vm_area_struct *vma,
47ad8475 3548 unsigned int pages_per_huge_page);
fa4d75c1
MK
3549extern long copy_huge_page_from_user(struct page *dst_page,
3550 const void __user *usr_src,
810a56b9
MK
3551 unsigned int pages_per_huge_page,
3552 bool allow_pagefault);
2484ca9b
THV
3553
3554/**
3555 * vma_is_special_huge - Are transhuge page-table entries considered special?
3556 * @vma: Pointer to the struct vm_area_struct to consider
3557 *
3558 * Whether transhuge page-table entries are considered "special" following
3559 * the definition in vm_normal_page().
3560 *
3561 * Return: true if transhuge page-table entries should be considered special,
3562 * false otherwise.
3563 */
3564static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3565{
3566 return vma_is_dax(vma) || (vma->vm_file &&
3567 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3568}
3569
47ad8475
AA
3570#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3571
c0a32fc5
SG
3572#ifdef CONFIG_DEBUG_PAGEALLOC
3573extern unsigned int _debug_guardpage_minorder;
96a2b03f 3574DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3575
3576static inline unsigned int debug_guardpage_minorder(void)
3577{
3578 return _debug_guardpage_minorder;
3579}
3580
e30825f1
JK
3581static inline bool debug_guardpage_enabled(void)
3582{
96a2b03f 3583 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3584}
3585
c0a32fc5
SG
3586static inline bool page_is_guard(struct page *page)
3587{
e30825f1
JK
3588 if (!debug_guardpage_enabled())
3589 return false;
3590
3972f6bb 3591 return PageGuard(page);
c0a32fc5
SG
3592}
3593#else
3594static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3595static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3596static inline bool page_is_guard(struct page *page) { return false; }
3597#endif /* CONFIG_DEBUG_PAGEALLOC */
3598
f9872caf
CS
3599#if MAX_NUMNODES > 1
3600void __init setup_nr_node_ids(void);
3601#else
3602static inline void setup_nr_node_ids(void) {}
3603#endif
3604
010c164a
SL
3605extern int memcmp_pages(struct page *page1, struct page *page2);
3606
3607static inline int pages_identical(struct page *page1, struct page *page2)
3608{
3609 return !memcmp_pages(page1, page2);
3610}
3611
c5acad84
TH
3612#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3613unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3614 pgoff_t first_index, pgoff_t nr,
3615 pgoff_t bitmap_pgoff,
3616 unsigned long *bitmap,
3617 pgoff_t *start,
3618 pgoff_t *end);
3619
3620unsigned long wp_shared_mapping_range(struct address_space *mapping,
3621 pgoff_t first_index, pgoff_t nr);
3622#endif
3623
2374c09b
CH
3624extern int sysctl_nr_trim_pages;
3625
5bb1bb35 3626#ifdef CONFIG_PRINTK
8e7f37f2 3627void mem_dump_obj(void *object);
5bb1bb35
PM
3628#else
3629static inline void mem_dump_obj(void *object) {}
3630#endif
8e7f37f2 3631
22247efd
PX
3632/**
3633 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3634 * @seals: the seals to check
3635 * @vma: the vma to operate on
3636 *
3637 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3638 * the vma flags. Return 0 if check pass, or <0 for errors.
3639 */
3640static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3641{
3642 if (seals & F_SEAL_FUTURE_WRITE) {
3643 /*
3644 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3645 * "future write" seal active.
3646 */
3647 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3648 return -EPERM;
3649
3650 /*
3651 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3652 * MAP_SHARED and read-only, take care to not allow mprotect to
3653 * revert protections on such mappings. Do this only for shared
3654 * mappings. For private mappings, don't need to mask
3655 * VM_MAYWRITE as we still want them to be COW-writable.
3656 */
3657 if (vma->vm_flags & VM_SHARED)
1c71222e 3658 vm_flags_clear(vma, VM_MAYWRITE);
22247efd
PX
3659 }
3660
3661 return 0;
3662}
3663
9a10064f
CC
3664#ifdef CONFIG_ANON_VMA_NAME
3665int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
3666 unsigned long len_in,
3667 struct anon_vma_name *anon_name);
9a10064f
CC
3668#else
3669static inline int
3670madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 3671 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
3672 return 0;
3673}
3674#endif
3675
1da177e4 3676#endif /* _LINUX_MM_H */