mm: make MEMFD_CREATE into a selectable config option
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
ef6a22b7 32#include <linux/slab.h>
1da177e4
LT
33
34struct mempolicy;
35struct anon_vma;
bf181b9f 36struct anon_vma_chain;
e8edc6e0 37struct user_struct;
bce617ed 38struct pt_regs;
1da177e4 39
5ef64cc8
LT
40extern int sysctl_page_lock_unfairness;
41
b7ec1bf3 42void mm_core_init(void);
597b7305
MH
43void init_mm_internals(void);
44
a9ee6cf5 45#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 46extern unsigned long max_mapnr;
fccc9987
JL
47
48static inline void set_max_mapnr(unsigned long limit)
49{
50 max_mapnr = limit;
51}
52#else
53static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
54#endif
55
ca79b0c2
AK
56extern atomic_long_t _totalram_pages;
57static inline unsigned long totalram_pages(void)
58{
59 return (unsigned long)atomic_long_read(&_totalram_pages);
60}
61
62static inline void totalram_pages_inc(void)
63{
64 atomic_long_inc(&_totalram_pages);
65}
66
67static inline void totalram_pages_dec(void)
68{
69 atomic_long_dec(&_totalram_pages);
70}
71
72static inline void totalram_pages_add(long count)
73{
74 atomic_long_add(count, &_totalram_pages);
75}
76
1da177e4 77extern void * high_memory;
1da177e4 78extern int page_cluster;
ea0ffd0c 79extern const int page_cluster_max;
1da177e4
LT
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
d07e2259
DC
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
1da177e4 98#include <asm/page.h>
1da177e4 99#include <asm/processor.h>
1da177e4 100
79442ed1
TC
101#ifndef __pa_symbol
102#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
103#endif
104
1dff8083
AB
105#ifndef page_to_virt
106#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
107#endif
108
568c5fe5
LA
109#ifndef lm_alias
110#define lm_alias(x) __va(__pa_symbol(x))
111#endif
112
593befa6
DD
113/*
114 * To prevent common memory management code establishing
115 * a zero page mapping on a read fault.
116 * This macro should be defined within <asm/pgtable.h>.
117 * s390 does this to prevent multiplexing of hardware bits
118 * related to the physical page in case of virtualization.
119 */
120#ifndef mm_forbids_zeropage
121#define mm_forbids_zeropage(X) (0)
122#endif
123
a4a3ede2
PT
124/*
125 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
126 * If an architecture decides to implement their own version of
127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
128 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 129 */
5470dea4 130#if BITS_PER_LONG == 64
3770e52f 131/* This function must be updated when the size of struct page grows above 96
5470dea4
AD
132 * or reduces below 56. The idea that compiler optimizes out switch()
133 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 134 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
135 * this can result in several of the writes here being dropped.
136 */
137#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
138static inline void __mm_zero_struct_page(struct page *page)
139{
140 unsigned long *_pp = (void *)page;
141
3770e52f 142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
5470dea4
AD
143 BUILD_BUG_ON(sizeof(struct page) & 7);
144 BUILD_BUG_ON(sizeof(struct page) < 56);
3770e52f 145 BUILD_BUG_ON(sizeof(struct page) > 96);
5470dea4
AD
146
147 switch (sizeof(struct page)) {
3770e52f
AB
148 case 96:
149 _pp[11] = 0;
150 fallthrough;
151 case 88:
152 _pp[10] = 0;
153 fallthrough;
5470dea4 154 case 80:
df561f66
GS
155 _pp[9] = 0;
156 fallthrough;
5470dea4 157 case 72:
df561f66
GS
158 _pp[8] = 0;
159 fallthrough;
5470dea4 160 case 64:
df561f66
GS
161 _pp[7] = 0;
162 fallthrough;
5470dea4
AD
163 case 56:
164 _pp[6] = 0;
165 _pp[5] = 0;
166 _pp[4] = 0;
167 _pp[3] = 0;
168 _pp[2] = 0;
169 _pp[1] = 0;
170 _pp[0] = 0;
171 }
172}
173#else
a4a3ede2
PT
174#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
175#endif
176
ea606cf5
AR
177/*
178 * Default maximum number of active map areas, this limits the number of vmas
179 * per mm struct. Users can overwrite this number by sysctl but there is a
180 * problem.
181 *
182 * When a program's coredump is generated as ELF format, a section is created
183 * per a vma. In ELF, the number of sections is represented in unsigned short.
184 * This means the number of sections should be smaller than 65535 at coredump.
185 * Because the kernel adds some informative sections to a image of program at
186 * generating coredump, we need some margin. The number of extra sections is
187 * 1-3 now and depends on arch. We use "5" as safe margin, here.
188 *
189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190 * not a hard limit any more. Although some userspace tools can be surprised by
191 * that.
192 */
193#define MAPCOUNT_ELF_CORE_MARGIN (5)
194#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195
196extern int sysctl_max_map_count;
197
c9b1d098 198extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 199extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 200
49f0ce5f
JM
201extern int sysctl_overcommit_memory;
202extern int sysctl_overcommit_ratio;
203extern unsigned long sysctl_overcommit_kbytes;
204
32927393
CH
205int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 loff_t *);
207int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
56f3547b
FT
209int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
49f0ce5f 211
1cfcee72 212#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 214#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
215#else
216#define nth_page(page,n) ((page) + (n))
659508f9 217#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 218#endif
1da177e4 219
27ac792c
AR
220/* to align the pointer to the (next) page boundary */
221#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222
335e52c2
DG
223/* to align the pointer to the (prev) page boundary */
224#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
225
0fa73b86 226/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 227#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 228
f86196ea 229#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
230static inline struct folio *lru_to_folio(struct list_head *head)
231{
232 return list_entry((head)->prev, struct folio, lru);
233}
f86196ea 234
5748fbc5
KW
235void setup_initial_init_mm(void *start_code, void *end_code,
236 void *end_data, void *brk);
237
1da177e4
LT
238/*
239 * Linux kernel virtual memory manager primitives.
240 * The idea being to have a "virtual" mm in the same way
241 * we have a virtual fs - giving a cleaner interface to the
242 * mm details, and allowing different kinds of memory mappings
243 * (from shared memory to executable loading to arbitrary
244 * mmap() functions).
245 */
246
490fc053 247struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
248struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249void vm_area_free(struct vm_area_struct *);
0d2ebf9c
SB
250/* Use only if VMA has no other users */
251void __vm_area_free(struct vm_area_struct *vma);
c43692e8 252
1da177e4 253#ifndef CONFIG_MMU
8feae131
DH
254extern struct rb_root nommu_region_tree;
255extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
256
257extern unsigned int kobjsize(const void *objp);
258#endif
259
260/*
605d9288 261 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 262 * When changing, update also include/trace/events/mmflags.h
1da177e4 263 */
cc2383ec
KK
264#define VM_NONE 0x00000000
265
1da177e4
LT
266#define VM_READ 0x00000001 /* currently active flags */
267#define VM_WRITE 0x00000002
268#define VM_EXEC 0x00000004
269#define VM_SHARED 0x00000008
270
7e2cff42 271/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
272#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
273#define VM_MAYWRITE 0x00000020
274#define VM_MAYEXEC 0x00000040
275#define VM_MAYSHARE 0x00000080
276
277#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
b6b7a8fa 278#ifdef CONFIG_MMU
16ba6f81 279#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
b6b7a8fa
DH
280#else /* CONFIG_MMU */
281#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282#define VM_UFFD_MISSING 0
283#endif /* CONFIG_MMU */
6aab341e 284#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 285#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 286
1da177e4
LT
287#define VM_LOCKED 0x00002000
288#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
289
290 /* Used by sys_madvise() */
291#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
292#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
293
294#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
295#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 296#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 297#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 298#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 299#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 300#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 301#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 302#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 303#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 304
d9104d1c
CG
305#ifdef CONFIG_MEM_SOFT_DIRTY
306# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
307#else
308# define VM_SOFTDIRTY 0
309#endif
310
b379d790 311#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
312#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
313#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 314#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 315
63c17fb8
DH
316#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
318#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
320#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 321#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
322#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
323#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
324#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
325#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 326#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
327#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
328
5212213a 329#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
330# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
331# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 332# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
333# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
334# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
335#ifdef CONFIG_PPC
336# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
337#else
338# define VM_PKEY_BIT4 0
8f62c883 339#endif
5212213a
RP
340#endif /* CONFIG_ARCH_HAS_PKEYS */
341
342#if defined(CONFIG_X86)
343# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
344#elif defined(CONFIG_PPC)
345# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
346#elif defined(CONFIG_PARISC)
347# define VM_GROWSUP VM_ARCH_1
348#elif defined(CONFIG_IA64)
349# define VM_GROWSUP VM_ARCH_1
74a04967
KA
350#elif defined(CONFIG_SPARC64)
351# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
352# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
353#elif defined(CONFIG_ARM64)
354# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
355# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
356#elif !defined(CONFIG_MMU)
357# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
358#endif
359
9f341931
CM
360#if defined(CONFIG_ARM64_MTE)
361# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
362# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
363#else
364# define VM_MTE VM_NONE
365# define VM_MTE_ALLOWED VM_NONE
366#endif
367
cc2383ec
KK
368#ifndef VM_GROWSUP
369# define VM_GROWSUP VM_NONE
370#endif
371
7677f7fd
AR
372#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
373# define VM_UFFD_MINOR_BIT 37
374# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
375#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
376# define VM_UFFD_MINOR VM_NONE
377#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
378
a8bef8ff 379/* Bits set in the VMA until the stack is in its final location */
f66066bc 380#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
a8bef8ff 381
c62da0c3
AK
382#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
383
384/* Common data flag combinations */
385#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
388 VM_MAYWRITE | VM_MAYEXEC)
389#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
390 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
391
392#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
393#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
394#endif
395
1da177e4
LT
396#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
397#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
398#endif
399
400#ifdef CONFIG_STACK_GROWSUP
30bdbb78 401#define VM_STACK VM_GROWSUP
f66066bc 402#define VM_STACK_EARLY VM_GROWSDOWN
1da177e4 403#else
30bdbb78 404#define VM_STACK VM_GROWSDOWN
f66066bc 405#define VM_STACK_EARLY 0
1da177e4
LT
406#endif
407
30bdbb78
KK
408#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
409
6cb4d9a2
AK
410/* VMA basic access permission flags */
411#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
412
413
b291f000 414/*
78f11a25 415 * Special vmas that are non-mergable, non-mlock()able.
b291f000 416 */
9050d7eb 417#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 418
b4443772
AK
419/* This mask prevents VMA from being scanned with khugepaged */
420#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
421
a0715cc2
AT
422/* This mask defines which mm->def_flags a process can inherit its parent */
423#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
424
e430a95a
SB
425/* This mask represents all the VMA flag bits used by mlock */
426#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
de60f5f1 427
2c2d57b5
KA
428/* Arch-specific flags to clear when updating VM flags on protection change */
429#ifndef VM_ARCH_CLEAR
430# define VM_ARCH_CLEAR VM_NONE
431#endif
432#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
433
1da177e4
LT
434/*
435 * mapping from the currently active vm_flags protection bits (the
436 * low four bits) to a page protection mask..
437 */
1da177e4 438
dde16072
PX
439/*
440 * The default fault flags that should be used by most of the
441 * arch-specific page fault handlers.
442 */
443#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
444 FAULT_FLAG_KILLABLE | \
445 FAULT_FLAG_INTERRUPTIBLE)
dde16072 446
4064b982
PX
447/**
448 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 449 * @flags: Fault flags.
4064b982
PX
450 *
451 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 452 * the mmap_lock for too long a time when waiting for another condition
4064b982 453 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
454 * mmap_lock in the first round to avoid potential starvation of other
455 * processes that would also want the mmap_lock.
4064b982
PX
456 *
457 * Return: true if the page fault allows retry and this is the first
458 * attempt of the fault handling; false otherwise.
459 */
da2f5eb3 460static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
461{
462 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
463 (!(flags & FAULT_FLAG_TRIED));
464}
465
282a8e03
RZ
466#define FAULT_FLAG_TRACE \
467 { FAULT_FLAG_WRITE, "WRITE" }, \
468 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
469 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
470 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
471 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
472 { FAULT_FLAG_TRIED, "TRIED" }, \
473 { FAULT_FLAG_USER, "USER" }, \
474 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee 475 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
55324e46
SB
476 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
477 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
282a8e03 478
54cb8821 479/*
11192337 480 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
481 * ->fault function. The vma's ->fault is responsible for returning a bitmask
482 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 483 *
c20cd45e
MH
484 * MM layer fills up gfp_mask for page allocations but fault handler might
485 * alter it if its implementation requires a different allocation context.
486 *
9b4bdd2f 487 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 488 */
d0217ac0 489struct vm_fault {
5857c920 490 const struct {
742d3372
WD
491 struct vm_area_struct *vma; /* Target VMA */
492 gfp_t gfp_mask; /* gfp mask to be used for allocations */
493 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
494 unsigned long address; /* Faulting virtual address - masked */
495 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 496 };
da2f5eb3 497 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 498 * XXX: should really be 'const' */
82b0f8c3 499 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 500 * the 'address' */
a2d58167
DJ
501 pud_t *pud; /* Pointer to pud entry matching
502 * the 'address'
503 */
5db4f15c
YS
504 union {
505 pte_t orig_pte; /* Value of PTE at the time of fault */
506 pmd_t orig_pmd; /* Value of PMD at the time of fault,
507 * used by PMD fault only.
508 */
509 };
d0217ac0 510
3917048d 511 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 512 struct page *page; /* ->fault handlers should return a
83c54070 513 * page here, unless VM_FAULT_NOPAGE
d0217ac0 514 * is set (which is also implied by
83c54070 515 * VM_FAULT_ERROR).
d0217ac0 516 */
82b0f8c3 517 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
518 pte_t *pte; /* Pointer to pte entry matching
519 * the 'address'. NULL if the page
520 * table hasn't been allocated.
521 */
522 spinlock_t *ptl; /* Page table lock.
523 * Protects pte page table if 'pte'
524 * is not NULL, otherwise pmd.
525 */
7267ec00 526 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
527 * vm_ops->map_pages() sets up a page
528 * table from atomic context.
7267ec00
KS
529 * do_fault_around() pre-allocates
530 * page table to avoid allocation from
531 * atomic context.
532 */
54cb8821 533};
1da177e4 534
c791ace1
DJ
535/* page entry size for vm->huge_fault() */
536enum page_entry_size {
537 PE_SIZE_PTE = 0,
538 PE_SIZE_PMD,
539 PE_SIZE_PUD,
540};
541
1da177e4
LT
542/*
543 * These are the virtual MM functions - opening of an area, closing and
544 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 545 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
546 */
547struct vm_operations_struct {
548 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
549 /**
550 * @close: Called when the VMA is being removed from the MM.
551 * Context: User context. May sleep. Caller holds mmap_lock.
552 */
1da177e4 553 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
554 /* Called any time before splitting to check if it's allowed */
555 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 556 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
557 /*
558 * Called by mprotect() to make driver-specific permission
559 * checks before mprotect() is finalised. The VMA must not
3e0ee843 560 * be modified. Returns 0 if mprotect() can proceed.
95bb7c42
SC
561 */
562 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
563 unsigned long end, unsigned long newflags);
1c8f4220
SJ
564 vm_fault_t (*fault)(struct vm_fault *vmf);
565 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
566 enum page_entry_size pe_size);
f9ce0be7 567 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 568 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 569 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
570
571 /* notification that a previously read-only page is about to become
572 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 573 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 574
dd906184 575 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 576 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 577
28b2ee20 578 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
579 * for use by special VMAs. See also generic_access_phys() for a generic
580 * implementation useful for any iomem mapping.
28b2ee20
RR
581 */
582 int (*access)(struct vm_area_struct *vma, unsigned long addr,
583 void *buf, int len, int write);
78d683e8
AL
584
585 /* Called by the /proc/PID/maps code to ask the vma whether it
586 * has a special name. Returning non-NULL will also cause this
587 * vma to be dumped unconditionally. */
588 const char *(*name)(struct vm_area_struct *vma);
589
1da177e4 590#ifdef CONFIG_NUMA
a6020ed7
LS
591 /*
592 * set_policy() op must add a reference to any non-NULL @new mempolicy
593 * to hold the policy upon return. Caller should pass NULL @new to
594 * remove a policy and fall back to surrounding context--i.e. do not
595 * install a MPOL_DEFAULT policy, nor the task or system default
596 * mempolicy.
597 */
1da177e4 598 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
599
600 /*
601 * get_policy() op must add reference [mpol_get()] to any policy at
602 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
603 * in mm/mempolicy.c will do this automatically.
604 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 605 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
606 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
607 * must return NULL--i.e., do not "fallback" to task or system default
608 * policy.
609 */
1da177e4
LT
610 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
611 unsigned long addr);
612#endif
667a0a06
DV
613 /*
614 * Called by vm_normal_page() for special PTEs to find the
615 * page for @addr. This is useful if the default behavior
616 * (using pte_page()) would not find the correct page.
617 */
618 struct page *(*find_special_page)(struct vm_area_struct *vma,
619 unsigned long addr);
1da177e4
LT
620};
621
ef6a22b7
MG
622#ifdef CONFIG_NUMA_BALANCING
623static inline void vma_numab_state_init(struct vm_area_struct *vma)
624{
625 vma->numab_state = NULL;
626}
627static inline void vma_numab_state_free(struct vm_area_struct *vma)
628{
629 kfree(vma->numab_state);
630}
631#else
632static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
633static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
634#endif /* CONFIG_NUMA_BALANCING */
635
5e31275c 636#ifdef CONFIG_PER_VMA_LOCK
5e31275c
SB
637/*
638 * Try to read-lock a vma. The function is allowed to occasionally yield false
639 * locked result to avoid performance overhead, in which case we fall back to
640 * using mmap_lock. The function should never yield false unlocked result.
641 */
642static inline bool vma_start_read(struct vm_area_struct *vma)
643{
b1f02b95
JH
644 /*
645 * Check before locking. A race might cause false locked result.
646 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
647 * ACQUIRE semantics, because this is just a lockless check whose result
648 * we don't rely on for anything - the mm_lock_seq read against which we
649 * need ordering is below.
650 */
651 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
5e31275c
SB
652 return false;
653
c7f8f31c 654 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
5e31275c
SB
655 return false;
656
657 /*
658 * Overflow might produce false locked result.
659 * False unlocked result is impossible because we modify and check
c7f8f31c 660 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
5e31275c 661 * modification invalidates all existing locks.
b1f02b95
JH
662 *
663 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
664 * racing with vma_end_write_all(), we only start reading from the VMA
665 * after it has been unlocked.
666 * This pairs with RELEASE semantics in vma_end_write_all().
5e31275c 667 */
b1f02b95 668 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
c7f8f31c 669 up_read(&vma->vm_lock->lock);
5e31275c
SB
670 return false;
671 }
672 return true;
673}
674
675static inline void vma_end_read(struct vm_area_struct *vma)
676{
677 rcu_read_lock(); /* keeps vma alive till the end of up_read */
c7f8f31c 678 up_read(&vma->vm_lock->lock);
5e31275c
SB
679 rcu_read_unlock();
680}
681
55fd6fcc 682static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
5e31275c 683{
5e31275c
SB
684 mmap_assert_write_locked(vma->vm_mm);
685
686 /*
687 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
688 * mm->mm_lock_seq can't be concurrently modified.
689 */
b1f02b95 690 *mm_lock_seq = vma->vm_mm->mm_lock_seq;
55fd6fcc
SB
691 return (vma->vm_lock_seq == *mm_lock_seq);
692}
693
694static inline void vma_start_write(struct vm_area_struct *vma)
695{
696 int mm_lock_seq;
697
698 if (__is_vma_write_locked(vma, &mm_lock_seq))
5e31275c
SB
699 return;
700
c7f8f31c 701 down_write(&vma->vm_lock->lock);
b1f02b95
JH
702 /*
703 * We should use WRITE_ONCE() here because we can have concurrent reads
704 * from the early lockless pessimistic check in vma_start_read().
705 * We don't really care about the correctness of that early check, but
706 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
707 */
708 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
c7f8f31c 709 up_write(&vma->vm_lock->lock);
5e31275c
SB
710}
711
55fd6fcc
SB
712static inline bool vma_try_start_write(struct vm_area_struct *vma)
713{
714 int mm_lock_seq;
715
716 if (__is_vma_write_locked(vma, &mm_lock_seq))
717 return true;
718
719 if (!down_write_trylock(&vma->vm_lock->lock))
720 return false;
721
b1f02b95 722 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
55fd6fcc
SB
723 up_write(&vma->vm_lock->lock);
724 return true;
725}
726
5e31275c
SB
727static inline void vma_assert_write_locked(struct vm_area_struct *vma)
728{
55fd6fcc
SB
729 int mm_lock_seq;
730
731 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
5e31275c
SB
732}
733
457f67be
SB
734static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
735{
736 /* When detaching vma should be write-locked */
737 if (detached)
738 vma_assert_write_locked(vma);
739 vma->detached = detached;
740}
741
50ee3253
SB
742struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
743 unsigned long address);
744
5e31275c
SB
745#else /* CONFIG_PER_VMA_LOCK */
746
5e31275c
SB
747static inline bool vma_start_read(struct vm_area_struct *vma)
748 { return false; }
749static inline void vma_end_read(struct vm_area_struct *vma) {}
750static inline void vma_start_write(struct vm_area_struct *vma) {}
55fd6fcc
SB
751static inline bool vma_try_start_write(struct vm_area_struct *vma)
752 { return true; }
5e31275c 753static inline void vma_assert_write_locked(struct vm_area_struct *vma) {}
457f67be
SB
754static inline void vma_mark_detached(struct vm_area_struct *vma,
755 bool detached) {}
5e31275c
SB
756
757#endif /* CONFIG_PER_VMA_LOCK */
758
c7f8f31c
SB
759/*
760 * WARNING: vma_init does not initialize vma->vm_lock.
761 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
762 */
027232da
KS
763static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
764{
bfd40eaf
KS
765 static const struct vm_operations_struct dummy_vm_ops = {};
766
a670468f 767 memset(vma, 0, sizeof(*vma));
027232da 768 vma->vm_mm = mm;
bfd40eaf 769 vma->vm_ops = &dummy_vm_ops;
027232da 770 INIT_LIST_HEAD(&vma->anon_vma_chain);
457f67be 771 vma_mark_detached(vma, false);
ef6a22b7 772 vma_numab_state_init(vma);
027232da
KS
773}
774
bc292ab0
SB
775/* Use when VMA is not part of the VMA tree and needs no locking */
776static inline void vm_flags_init(struct vm_area_struct *vma,
777 vm_flags_t flags)
778{
779 ACCESS_PRIVATE(vma, __vm_flags) = flags;
780}
781
782/* Use when VMA is part of the VMA tree and modifications need coordination */
783static inline void vm_flags_reset(struct vm_area_struct *vma,
784 vm_flags_t flags)
785{
c7322933 786 vma_start_write(vma);
bc292ab0
SB
787 vm_flags_init(vma, flags);
788}
789
601c3c29
SB
790static inline void vm_flags_reset_once(struct vm_area_struct *vma,
791 vm_flags_t flags)
792{
c7322933 793 vma_start_write(vma);
601c3c29
SB
794 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
795}
796
bc292ab0
SB
797static inline void vm_flags_set(struct vm_area_struct *vma,
798 vm_flags_t flags)
799{
c7322933 800 vma_start_write(vma);
bc292ab0
SB
801 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
802}
803
804static inline void vm_flags_clear(struct vm_area_struct *vma,
805 vm_flags_t flags)
806{
c7322933 807 vma_start_write(vma);
bc292ab0
SB
808 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
809}
810
68f48381
SB
811/*
812 * Use only if VMA is not part of the VMA tree or has no other users and
813 * therefore needs no locking.
814 */
815static inline void __vm_flags_mod(struct vm_area_struct *vma,
816 vm_flags_t set, vm_flags_t clear)
817{
818 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
819}
820
bc292ab0
SB
821/*
822 * Use only when the order of set/clear operations is unimportant, otherwise
823 * use vm_flags_{set|clear} explicitly.
824 */
825static inline void vm_flags_mod(struct vm_area_struct *vma,
826 vm_flags_t set, vm_flags_t clear)
827{
c7322933 828 vma_start_write(vma);
68f48381 829 __vm_flags_mod(vma, set, clear);
bc292ab0
SB
830}
831
bfd40eaf
KS
832static inline void vma_set_anonymous(struct vm_area_struct *vma)
833{
834 vma->vm_ops = NULL;
835}
836
43675e6f
YS
837static inline bool vma_is_anonymous(struct vm_area_struct *vma)
838{
839 return !vma->vm_ops;
840}
841
222100ee
AK
842static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
843{
844 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
845
846 if (!maybe_stack)
847 return false;
848
849 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
850 VM_STACK_INCOMPLETE_SETUP)
851 return true;
852
853 return false;
854}
855
7969f226
AK
856static inline bool vma_is_foreign(struct vm_area_struct *vma)
857{
858 if (!current->mm)
859 return true;
860
861 if (current->mm != vma->vm_mm)
862 return true;
863
864 return false;
865}
3122e80e
AK
866
867static inline bool vma_is_accessible(struct vm_area_struct *vma)
868{
6cb4d9a2 869 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
870}
871
f39af059
MWO
872static inline
873struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
874{
b62b633e 875 return mas_find(&vmi->mas, max - 1);
f39af059
MWO
876}
877
878static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
879{
880 /*
b62b633e 881 * Uses mas_find() to get the first VMA when the iterator starts.
f39af059
MWO
882 * Calling mas_next() could skip the first entry.
883 */
b62b633e 884 return mas_find(&vmi->mas, ULONG_MAX);
f39af059
MWO
885}
886
bb5dbd22
LH
887static inline
888struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
889{
890 return mas_next_range(&vmi->mas, ULONG_MAX);
891}
892
893
f39af059
MWO
894static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
895{
896 return mas_prev(&vmi->mas, 0);
897}
898
bb5dbd22
LH
899static inline
900struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
901{
902 return mas_prev_range(&vmi->mas, 0);
903}
904
f39af059
MWO
905static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
906{
907 return vmi->mas.index;
908}
909
b62b633e
LH
910static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
911{
912 return vmi->mas.last + 1;
913}
914static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
915 unsigned long count)
916{
917 return mas_expected_entries(&vmi->mas, count);
918}
919
920/* Free any unused preallocations */
921static inline void vma_iter_free(struct vma_iterator *vmi)
922{
923 mas_destroy(&vmi->mas);
924}
925
926static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
927 struct vm_area_struct *vma)
928{
929 vmi->mas.index = vma->vm_start;
930 vmi->mas.last = vma->vm_end - 1;
931 mas_store(&vmi->mas, vma);
932 if (unlikely(mas_is_err(&vmi->mas)))
933 return -ENOMEM;
934
935 return 0;
936}
937
938static inline void vma_iter_invalidate(struct vma_iterator *vmi)
939{
940 mas_pause(&vmi->mas);
941}
942
943static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
944{
945 mas_set(&vmi->mas, addr);
946}
947
f39af059
MWO
948#define for_each_vma(__vmi, __vma) \
949 while (((__vma) = vma_next(&(__vmi))) != NULL)
950
951/* The MM code likes to work with exclusive end addresses */
952#define for_each_vma_range(__vmi, __vma, __end) \
b62b633e 953 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
f39af059 954
43675e6f
YS
955#ifdef CONFIG_SHMEM
956/*
957 * The vma_is_shmem is not inline because it is used only by slow
958 * paths in userfault.
959 */
960bool vma_is_shmem(struct vm_area_struct *vma);
d09e8ca6 961bool vma_is_anon_shmem(struct vm_area_struct *vma);
43675e6f
YS
962#else
963static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
d09e8ca6 964static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
43675e6f
YS
965#endif
966
967int vma_is_stack_for_current(struct vm_area_struct *vma);
968
8b11ec1b
LT
969/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
970#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
971
1da177e4
LT
972struct mmu_gather;
973struct inode;
974
5eb5cea1
MWO
975/*
976 * compound_order() can be called without holding a reference, which means
977 * that niceties like page_folio() don't work. These callers should be
978 * prepared to handle wild return values. For example, PG_head may be
979 * set before _folio_order is initialised, or this may be a tail page.
980 * See compaction.c for some good examples.
981 */
5bf34d7c
MWO
982static inline unsigned int compound_order(struct page *page)
983{
5eb5cea1
MWO
984 struct folio *folio = (struct folio *)page;
985
986 if (!test_bit(PG_head, &folio->flags))
5bf34d7c 987 return 0;
5eb5cea1 988 return folio->_folio_order;
5bf34d7c
MWO
989}
990
991/**
992 * folio_order - The allocation order of a folio.
993 * @folio: The folio.
994 *
995 * A folio is composed of 2^order pages. See get_order() for the definition
996 * of order.
997 *
998 * Return: The order of the folio.
999 */
1000static inline unsigned int folio_order(struct folio *folio)
1001{
c3a15bff
MWO
1002 if (!folio_test_large(folio))
1003 return 0;
1004 return folio->_folio_order;
5bf34d7c
MWO
1005}
1006
71e3aac0 1007#include <linux/huge_mm.h>
1da177e4
LT
1008
1009/*
1010 * Methods to modify the page usage count.
1011 *
1012 * What counts for a page usage:
1013 * - cache mapping (page->mapping)
1014 * - private data (page->private)
1015 * - page mapped in a task's page tables, each mapping
1016 * is counted separately
1017 *
1018 * Also, many kernel routines increase the page count before a critical
1019 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
1020 */
1021
1022/*
da6052f7 1023 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 1024 */
7c8ee9a8
NP
1025static inline int put_page_testzero(struct page *page)
1026{
fe896d18
JK
1027 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1028 return page_ref_dec_and_test(page);
7c8ee9a8 1029}
1da177e4 1030
b620f633
MWO
1031static inline int folio_put_testzero(struct folio *folio)
1032{
1033 return put_page_testzero(&folio->page);
1034}
1035
1da177e4 1036/*
7c8ee9a8
NP
1037 * Try to grab a ref unless the page has a refcount of zero, return false if
1038 * that is the case.
8e0861fa
AK
1039 * This can be called when MMU is off so it must not access
1040 * any of the virtual mappings.
1da177e4 1041 */
c2530328 1042static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 1043{
fe896d18 1044 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 1045}
1da177e4 1046
3c1ea2c7
VMO
1047static inline struct folio *folio_get_nontail_page(struct page *page)
1048{
1049 if (unlikely(!get_page_unless_zero(page)))
1050 return NULL;
1051 return (struct folio *)page;
1052}
1053
53df8fdc 1054extern int page_is_ram(unsigned long pfn);
124fe20d
DW
1055
1056enum {
1057 REGION_INTERSECTS,
1058 REGION_DISJOINT,
1059 REGION_MIXED,
1060};
1061
1c29f25b
TK
1062int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1063 unsigned long desc);
53df8fdc 1064
48667e7a 1065/* Support for virtually mapped pages */
b3bdda02
CL
1066struct page *vmalloc_to_page(const void *addr);
1067unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 1068
0738c4bb
PM
1069/*
1070 * Determine if an address is within the vmalloc range
1071 *
1072 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1073 * is no special casing required.
1074 */
9bd3bb67
AK
1075
1076#ifndef is_ioremap_addr
1077#define is_ioremap_addr(x) is_vmalloc_addr(x)
1078#endif
1079
81ac3ad9 1080#ifdef CONFIG_MMU
186525bd 1081extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
1082extern int is_vmalloc_or_module_addr(const void *x);
1083#else
186525bd
IM
1084static inline bool is_vmalloc_addr(const void *x)
1085{
1086 return false;
1087}
934831d0 1088static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
1089{
1090 return 0;
1091}
1092#endif
9e2779fa 1093
74e8ee47
MWO
1094/*
1095 * How many times the entire folio is mapped as a single unit (eg by a
1096 * PMD or PUD entry). This is probably not what you want, except for
cb67f428
HD
1097 * debugging purposes - it does not include PTE-mapped sub-pages; look
1098 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
74e8ee47
MWO
1099 */
1100static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 1101{
74e8ee47 1102 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1aa4d03b 1103 return atomic_read(&folio->_entire_mapcount) + 1;
53f9263b
KS
1104}
1105
70b50f94
AA
1106/*
1107 * The atomic page->_mapcount, starts from -1: so that transitions
1108 * both from it and to it can be tracked, using atomic_inc_and_test
1109 * and atomic_add_negative(-1).
1110 */
22b751c3 1111static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
1112{
1113 atomic_set(&(page)->_mapcount, -1);
1114}
1115
c97eeb8f
MWO
1116/**
1117 * page_mapcount() - Number of times this precise page is mapped.
1118 * @page: The page.
1119 *
1120 * The number of times this page is mapped. If this page is part of
1121 * a large folio, it includes the number of times this page is mapped
1122 * as part of that folio.
6988f31d 1123 *
c97eeb8f 1124 * The result is undefined for pages which cannot be mapped into userspace.
6988f31d 1125 * For example SLAB or special types of pages. See function page_has_type().
c97eeb8f 1126 * They use this field in struct page differently.
6988f31d 1127 */
70b50f94
AA
1128static inline int page_mapcount(struct page *page)
1129{
cb67f428 1130 int mapcount = atomic_read(&page->_mapcount) + 1;
b20ce5e0 1131
c97eeb8f
MWO
1132 if (unlikely(PageCompound(page)))
1133 mapcount += folio_entire_mapcount(page_folio(page));
1134
1135 return mapcount;
b20ce5e0
KS
1136}
1137
b14224fb 1138int folio_total_mapcount(struct folio *folio);
4ba1119c 1139
cb67f428
HD
1140/**
1141 * folio_mapcount() - Calculate the number of mappings of this folio.
1142 * @folio: The folio.
1143 *
1144 * A large folio tracks both how many times the entire folio is mapped,
1145 * and how many times each individual page in the folio is mapped.
1146 * This function calculates the total number of times the folio is
1147 * mapped.
1148 *
1149 * Return: The number of times this folio is mapped.
1150 */
1151static inline int folio_mapcount(struct folio *folio)
4ba1119c 1152{
cb67f428
HD
1153 if (likely(!folio_test_large(folio)))
1154 return atomic_read(&folio->_mapcount) + 1;
b14224fb 1155 return folio_total_mapcount(folio);
4ba1119c
MWO
1156}
1157
b20ce5e0
KS
1158static inline int total_mapcount(struct page *page)
1159{
be5ef2d9
HD
1160 if (likely(!PageCompound(page)))
1161 return atomic_read(&page->_mapcount) + 1;
b14224fb 1162 return folio_total_mapcount(page_folio(page));
be5ef2d9
HD
1163}
1164
1165static inline bool folio_large_is_mapped(struct folio *folio)
1166{
4b51634c 1167 /*
1aa4d03b 1168 * Reading _entire_mapcount below could be omitted if hugetlb
eec20426 1169 * participated in incrementing nr_pages_mapped when compound mapped.
4b51634c 1170 */
eec20426 1171 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1aa4d03b 1172 atomic_read(&folio->_entire_mapcount) >= 0;
cb67f428
HD
1173}
1174
1175/**
1176 * folio_mapped - Is this folio mapped into userspace?
1177 * @folio: The folio.
1178 *
1179 * Return: True if any page in this folio is referenced by user page tables.
1180 */
1181static inline bool folio_mapped(struct folio *folio)
1182{
be5ef2d9
HD
1183 if (likely(!folio_test_large(folio)))
1184 return atomic_read(&folio->_mapcount) >= 0;
1185 return folio_large_is_mapped(folio);
1186}
1187
1188/*
1189 * Return true if this page is mapped into pagetables.
1190 * For compound page it returns true if any sub-page of compound page is mapped,
1191 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1192 */
1193static inline bool page_mapped(struct page *page)
1194{
1195 if (likely(!PageCompound(page)))
1196 return atomic_read(&page->_mapcount) >= 0;
1197 return folio_large_is_mapped(page_folio(page));
70b50f94
AA
1198}
1199
b49af68f
CL
1200static inline struct page *virt_to_head_page(const void *x)
1201{
1202 struct page *page = virt_to_page(x);
ccaafd7f 1203
1d798ca3 1204 return compound_head(page);
b49af68f
CL
1205}
1206
7d4203c1
VB
1207static inline struct folio *virt_to_folio(const void *x)
1208{
1209 struct page *page = virt_to_page(x);
1210
1211 return page_folio(page);
1212}
1213
8d29c703 1214void __folio_put(struct folio *folio);
ddc58f27 1215
1d7ea732 1216void put_pages_list(struct list_head *pages);
1da177e4 1217
8dfcc9ba 1218void split_page(struct page *page, unsigned int order);
715cbfd6 1219void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 1220
a1554c00
ML
1221unsigned long nr_free_buffer_pages(void);
1222
33f2ef89
AW
1223/*
1224 * Compound pages have a destructor function. Provide a
1225 * prototype for that function and accessor functions.
f1e61557 1226 * These are _only_ valid on the head of a compound page.
33f2ef89 1227 */
f1e61557
KS
1228typedef void compound_page_dtor(struct page *);
1229
1230/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1231enum compound_dtor_id {
1232 NULL_COMPOUND_DTOR,
1233 COMPOUND_PAGE_DTOR,
1234#ifdef CONFIG_HUGETLB_PAGE
1235 HUGETLB_PAGE_DTOR,
9a982250
KS
1236#endif
1237#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1238 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
1239#endif
1240 NR_COMPOUND_DTORS,
1241};
33f2ef89 1242
9fd33058
SK
1243static inline void folio_set_compound_dtor(struct folio *folio,
1244 enum compound_dtor_id compound_dtor)
1245{
1246 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1247 folio->_folio_dtor = compound_dtor;
1248}
1249
5375336c 1250void destroy_large_folio(struct folio *folio);
33f2ef89 1251
a50b854e
MWO
1252/* Returns the number of bytes in this potentially compound page. */
1253static inline unsigned long page_size(struct page *page)
1254{
1255 return PAGE_SIZE << compound_order(page);
1256}
1257
94ad9338
MWO
1258/* Returns the number of bits needed for the number of bytes in a page */
1259static inline unsigned int page_shift(struct page *page)
1260{
1261 return PAGE_SHIFT + compound_order(page);
1262}
1263
18788cfa
MWO
1264/**
1265 * thp_order - Order of a transparent huge page.
1266 * @page: Head page of a transparent huge page.
1267 */
1268static inline unsigned int thp_order(struct page *page)
1269{
1270 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1271 return compound_order(page);
1272}
1273
18788cfa
MWO
1274/**
1275 * thp_size - Size of a transparent huge page.
1276 * @page: Head page of a transparent huge page.
1277 *
1278 * Return: Number of bytes in this page.
1279 */
1280static inline unsigned long thp_size(struct page *page)
1281{
1282 return PAGE_SIZE << thp_order(page);
1283}
1284
9a982250
KS
1285void free_compound_page(struct page *page);
1286
3dece370 1287#ifdef CONFIG_MMU
14fd403f
AA
1288/*
1289 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1290 * servicing faults for write access. In the normal case, do always want
1291 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1292 * that do not have writing enabled, when used by access_process_vm.
1293 */
1294static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1295{
1296 if (likely(vma->vm_flags & VM_WRITE))
1297 pte = pte_mkwrite(pte);
1298 return pte;
1299}
8c6e50b0 1300
f9ce0be7 1301vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1302void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1303
2b740303
SJ
1304vm_fault_t finish_fault(struct vm_fault *vmf);
1305vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1306#endif
14fd403f 1307
1da177e4
LT
1308/*
1309 * Multiple processes may "see" the same page. E.g. for untouched
1310 * mappings of /dev/null, all processes see the same page full of
1311 * zeroes, and text pages of executables and shared libraries have
1312 * only one copy in memory, at most, normally.
1313 *
1314 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1315 * page_count() == 0 means the page is free. page->lru is then used for
1316 * freelist management in the buddy allocator.
da6052f7 1317 * page_count() > 0 means the page has been allocated.
1da177e4 1318 *
da6052f7
NP
1319 * Pages are allocated by the slab allocator in order to provide memory
1320 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1321 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1322 * unless a particular usage is carefully commented. (the responsibility of
1323 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1324 *
da6052f7
NP
1325 * A page may be used by anyone else who does a __get_free_page().
1326 * In this case, page_count still tracks the references, and should only
1327 * be used through the normal accessor functions. The top bits of page->flags
1328 * and page->virtual store page management information, but all other fields
1329 * are unused and could be used privately, carefully. The management of this
1330 * page is the responsibility of the one who allocated it, and those who have
1331 * subsequently been given references to it.
1332 *
1333 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1334 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1335 * The following discussion applies only to them.
1336 *
da6052f7
NP
1337 * A pagecache page contains an opaque `private' member, which belongs to the
1338 * page's address_space. Usually, this is the address of a circular list of
1339 * the page's disk buffers. PG_private must be set to tell the VM to call
1340 * into the filesystem to release these pages.
1da177e4 1341 *
da6052f7
NP
1342 * A page may belong to an inode's memory mapping. In this case, page->mapping
1343 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1344 * in units of PAGE_SIZE.
1da177e4 1345 *
da6052f7
NP
1346 * If pagecache pages are not associated with an inode, they are said to be
1347 * anonymous pages. These may become associated with the swapcache, and in that
1348 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1349 *
da6052f7
NP
1350 * In either case (swapcache or inode backed), the pagecache itself holds one
1351 * reference to the page. Setting PG_private should also increment the
1352 * refcount. The each user mapping also has a reference to the page.
1da177e4 1353 *
da6052f7 1354 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1355 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1356 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1357 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1358 *
da6052f7 1359 * All pagecache pages may be subject to I/O:
1da177e4
LT
1360 * - inode pages may need to be read from disk,
1361 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1362 * to be written back to the inode on disk,
1363 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1364 * modified may need to be swapped out to swap space and (later) to be read
1365 * back into memory.
1da177e4
LT
1366 */
1367
27674ef6 1368#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1369DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1370
f4f451a1
MS
1371bool __put_devmap_managed_page_refs(struct page *page, int refs);
1372static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1373{
1374 if (!static_branch_unlikely(&devmap_managed_key))
1375 return false;
1376 if (!is_zone_device_page(page))
1377 return false;
f4f451a1 1378 return __put_devmap_managed_page_refs(page, refs);
e7638488 1379}
27674ef6 1380#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1381static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1382{
1383 return false;
1384}
27674ef6 1385#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1386
f4f451a1
MS
1387static inline bool put_devmap_managed_page(struct page *page)
1388{
1389 return put_devmap_managed_page_refs(page, 1);
1390}
1391
f958d7b5 1392/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1393#define folio_ref_zero_or_close_to_overflow(folio) \
1394 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1395
1396/**
1397 * folio_get - Increment the reference count on a folio.
1398 * @folio: The folio.
1399 *
1400 * Context: May be called in any context, as long as you know that
1401 * you have a refcount on the folio. If you do not already have one,
1402 * folio_try_get() may be the right interface for you to use.
1403 */
1404static inline void folio_get(struct folio *folio)
1405{
1406 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1407 folio_ref_inc(folio);
1408}
f958d7b5 1409
3565fce3
DW
1410static inline void get_page(struct page *page)
1411{
86d234cb 1412 folio_get(page_folio(page));
3565fce3
DW
1413}
1414
cd1adf1b
LT
1415static inline __must_check bool try_get_page(struct page *page)
1416{
1417 page = compound_head(page);
1418 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1419 return false;
1420 page_ref_inc(page);
1421 return true;
1422}
3565fce3 1423
b620f633
MWO
1424/**
1425 * folio_put - Decrement the reference count on a folio.
1426 * @folio: The folio.
1427 *
1428 * If the folio's reference count reaches zero, the memory will be
1429 * released back to the page allocator and may be used by another
1430 * allocation immediately. Do not access the memory or the struct folio
1431 * after calling folio_put() unless you can be sure that it wasn't the
1432 * last reference.
1433 *
1434 * Context: May be called in process or interrupt context, but not in NMI
1435 * context. May be called while holding a spinlock.
1436 */
1437static inline void folio_put(struct folio *folio)
1438{
1439 if (folio_put_testzero(folio))
8d29c703 1440 __folio_put(folio);
b620f633
MWO
1441}
1442
3fe7fa58
MWO
1443/**
1444 * folio_put_refs - Reduce the reference count on a folio.
1445 * @folio: The folio.
1446 * @refs: The amount to subtract from the folio's reference count.
1447 *
1448 * If the folio's reference count reaches zero, the memory will be
1449 * released back to the page allocator and may be used by another
1450 * allocation immediately. Do not access the memory or the struct folio
1451 * after calling folio_put_refs() unless you can be sure that these weren't
1452 * the last references.
1453 *
1454 * Context: May be called in process or interrupt context, but not in NMI
1455 * context. May be called while holding a spinlock.
1456 */
1457static inline void folio_put_refs(struct folio *folio, int refs)
1458{
1459 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1460 __folio_put(folio);
3fe7fa58
MWO
1461}
1462
0411d6ee
SP
1463/*
1464 * union release_pages_arg - an array of pages or folios
449c7967 1465 *
0411d6ee 1466 * release_pages() releases a simple array of multiple pages, and
449c7967
LT
1467 * accepts various different forms of said page array: either
1468 * a regular old boring array of pages, an array of folios, or
1469 * an array of encoded page pointers.
1470 *
1471 * The transparent union syntax for this kind of "any of these
1472 * argument types" is all kinds of ugly, so look away.
1473 */
1474typedef union {
1475 struct page **pages;
1476 struct folio **folios;
1477 struct encoded_page **encoded_pages;
1478} release_pages_arg __attribute__ ((__transparent_union__));
1479
1480void release_pages(release_pages_arg, int nr);
e3c4cebf
MWO
1481
1482/**
1483 * folios_put - Decrement the reference count on an array of folios.
1484 * @folios: The folios.
1485 * @nr: How many folios there are.
1486 *
1487 * Like folio_put(), but for an array of folios. This is more efficient
1488 * than writing the loop yourself as it will optimise the locks which
1489 * need to be taken if the folios are freed.
1490 *
1491 * Context: May be called in process or interrupt context, but not in NMI
1492 * context. May be called while holding a spinlock.
1493 */
1494static inline void folios_put(struct folio **folios, unsigned int nr)
1495{
449c7967 1496 release_pages(folios, nr);
3fe7fa58
MWO
1497}
1498
3565fce3
DW
1499static inline void put_page(struct page *page)
1500{
b620f633 1501 struct folio *folio = page_folio(page);
3565fce3 1502
7b2d55d2 1503 /*
89574945
CH
1504 * For some devmap managed pages we need to catch refcount transition
1505 * from 2 to 1:
7b2d55d2 1506 */
89574945 1507 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1508 return;
b620f633 1509 folio_put(folio);
3565fce3
DW
1510}
1511
3faa52c0
JH
1512/*
1513 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1514 * the page's refcount so that two separate items are tracked: the original page
1515 * reference count, and also a new count of how many pin_user_pages() calls were
1516 * made against the page. ("gup-pinned" is another term for the latter).
1517 *
1518 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1519 * distinct from normal pages. As such, the unpin_user_page() call (and its
1520 * variants) must be used in order to release gup-pinned pages.
1521 *
1522 * Choice of value:
1523 *
1524 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1525 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1526 * simpler, due to the fact that adding an even power of two to the page
1527 * refcount has the effect of using only the upper N bits, for the code that
1528 * counts up using the bias value. This means that the lower bits are left for
1529 * the exclusive use of the original code that increments and decrements by one
1530 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1531 *
3faa52c0
JH
1532 * Of course, once the lower bits overflow into the upper bits (and this is
1533 * OK, because subtraction recovers the original values), then visual inspection
1534 * no longer suffices to directly view the separate counts. However, for normal
1535 * applications that don't have huge page reference counts, this won't be an
1536 * issue.
fc1d8e7c 1537 *
40fcc7fc
MWO
1538 * Locking: the lockless algorithm described in folio_try_get_rcu()
1539 * provides safe operation for get_user_pages(), page_mkclean() and
1540 * other calls that race to set up page table entries.
fc1d8e7c 1541 */
3faa52c0 1542#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1543
3faa52c0 1544void unpin_user_page(struct page *page);
f1f6a7dd
JH
1545void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1546 bool make_dirty);
458a4f78
JM
1547void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1548 bool make_dirty);
f1f6a7dd 1549void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1550
97a7e473
PX
1551static inline bool is_cow_mapping(vm_flags_t flags)
1552{
1553 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1554}
1555
fc4f4be9
DH
1556#ifndef CONFIG_MMU
1557static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1558{
1559 /*
1560 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1561 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1562 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1563 * underlying memory if ptrace is active, so this is only possible if
1564 * ptrace does not apply. Note that there is no mprotect() to upgrade
1565 * write permissions later.
1566 */
b6b7a8fa 1567 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
fc4f4be9
DH
1568}
1569#endif
1570
9127ab4f
CS
1571#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1572#define SECTION_IN_PAGE_FLAGS
1573#endif
1574
89689ae7 1575/*
7a8010cd
VB
1576 * The identification function is mainly used by the buddy allocator for
1577 * determining if two pages could be buddies. We are not really identifying
1578 * the zone since we could be using the section number id if we do not have
1579 * node id available in page flags.
1580 * We only guarantee that it will return the same value for two combinable
1581 * pages in a zone.
89689ae7 1582 */
cb2b95e1
AW
1583static inline int page_zone_id(struct page *page)
1584{
89689ae7 1585 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1586}
1587
89689ae7 1588#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1589extern int page_to_nid(const struct page *page);
89689ae7 1590#else
33dd4e0e 1591static inline int page_to_nid(const struct page *page)
d41dee36 1592{
f165b378
PT
1593 struct page *p = (struct page *)page;
1594
1595 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1596}
89689ae7
CL
1597#endif
1598
874fd90c
MWO
1599static inline int folio_nid(const struct folio *folio)
1600{
1601 return page_to_nid(&folio->page);
1602}
1603
57e0a030 1604#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1605/* page access time bits needs to hold at least 4 seconds */
1606#define PAGE_ACCESS_TIME_MIN_BITS 12
1607#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1608#define PAGE_ACCESS_TIME_BUCKETS \
1609 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1610#else
1611#define PAGE_ACCESS_TIME_BUCKETS 0
1612#endif
1613
1614#define PAGE_ACCESS_TIME_MASK \
1615 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1616
90572890 1617static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1618{
90572890 1619 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1620}
1621
90572890 1622static inline int cpupid_to_pid(int cpupid)
57e0a030 1623{
90572890 1624 return cpupid & LAST__PID_MASK;
57e0a030 1625}
b795854b 1626
90572890 1627static inline int cpupid_to_cpu(int cpupid)
b795854b 1628{
90572890 1629 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1630}
1631
90572890 1632static inline int cpupid_to_nid(int cpupid)
b795854b 1633{
90572890 1634 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1635}
1636
90572890 1637static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1638{
90572890 1639 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1640}
1641
90572890 1642static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1643{
90572890 1644 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1645}
1646
8c8a743c
PZ
1647static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1648{
1649 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1650}
1651
1652#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1653#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1654static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1655{
1ae71d03 1656 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1657}
90572890
PZ
1658
1659static inline int page_cpupid_last(struct page *page)
1660{
1661 return page->_last_cpupid;
1662}
1663static inline void page_cpupid_reset_last(struct page *page)
b795854b 1664{
1ae71d03 1665 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1666}
1667#else
90572890 1668static inline int page_cpupid_last(struct page *page)
75980e97 1669{
90572890 1670 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1671}
1672
90572890 1673extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1674
90572890 1675static inline void page_cpupid_reset_last(struct page *page)
75980e97 1676{
09940a4f 1677 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1678}
90572890 1679#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536
HY
1680
1681static inline int xchg_page_access_time(struct page *page, int time)
1682{
1683 int last_time;
1684
1685 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1686 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1687}
fc137c0d
R
1688
1689static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1690{
1691 unsigned int pid_bit;
1692
d46031f4 1693 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
20f58648
R
1694 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) {
1695 __set_bit(pid_bit, &vma->numab_state->access_pids[1]);
fc137c0d
R
1696 }
1697}
90572890
PZ
1698#else /* !CONFIG_NUMA_BALANCING */
1699static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1700{
90572890 1701 return page_to_nid(page); /* XXX */
57e0a030
MG
1702}
1703
33024536
HY
1704static inline int xchg_page_access_time(struct page *page, int time)
1705{
1706 return 0;
1707}
1708
90572890 1709static inline int page_cpupid_last(struct page *page)
57e0a030 1710{
90572890 1711 return page_to_nid(page); /* XXX */
57e0a030
MG
1712}
1713
90572890 1714static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1715{
1716 return -1;
1717}
1718
90572890 1719static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1720{
1721 return -1;
1722}
1723
90572890 1724static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1725{
1726 return -1;
1727}
1728
90572890
PZ
1729static inline int cpu_pid_to_cpupid(int nid, int pid)
1730{
1731 return -1;
1732}
1733
1734static inline bool cpupid_pid_unset(int cpupid)
b795854b 1735{
2b787449 1736 return true;
b795854b
MG
1737}
1738
90572890 1739static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1740{
1741}
8c8a743c
PZ
1742
1743static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1744{
1745 return false;
1746}
fc137c0d
R
1747
1748static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1749{
1750}
90572890 1751#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1752
2e903b91 1753#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1754
cf10bd4c
AK
1755/*
1756 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1757 * setting tags for all pages to native kernel tag value 0xff, as the default
1758 * value 0x00 maps to 0xff.
1759 */
1760
2813b9c0
AK
1761static inline u8 page_kasan_tag(const struct page *page)
1762{
cf10bd4c
AK
1763 u8 tag = 0xff;
1764
1765 if (kasan_enabled()) {
1766 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1767 tag ^= 0xff;
1768 }
1769
1770 return tag;
2813b9c0
AK
1771}
1772
1773static inline void page_kasan_tag_set(struct page *page, u8 tag)
1774{
27fe7339
PC
1775 unsigned long old_flags, flags;
1776
1777 if (!kasan_enabled())
1778 return;
1779
1780 tag ^= 0xff;
1781 old_flags = READ_ONCE(page->flags);
1782 do {
1783 flags = old_flags;
1784 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1785 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1786 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1787}
1788
1789static inline void page_kasan_tag_reset(struct page *page)
1790{
34303244
AK
1791 if (kasan_enabled())
1792 page_kasan_tag_set(page, 0xff);
2813b9c0 1793}
34303244
AK
1794
1795#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1796
2813b9c0
AK
1797static inline u8 page_kasan_tag(const struct page *page)
1798{
1799 return 0xff;
1800}
1801
1802static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1803static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1804
1805#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1806
33dd4e0e 1807static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1808{
1809 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1810}
1811
75ef7184
MG
1812static inline pg_data_t *page_pgdat(const struct page *page)
1813{
1814 return NODE_DATA(page_to_nid(page));
1815}
1816
32b8fc48
MWO
1817static inline struct zone *folio_zone(const struct folio *folio)
1818{
1819 return page_zone(&folio->page);
1820}
1821
1822static inline pg_data_t *folio_pgdat(const struct folio *folio)
1823{
1824 return page_pgdat(&folio->page);
1825}
1826
9127ab4f 1827#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1828static inline void set_page_section(struct page *page, unsigned long section)
1829{
1830 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1831 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1832}
1833
aa462abe 1834static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1835{
1836 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1837}
308c05e3 1838#endif
d41dee36 1839
bf6bd276
MWO
1840/**
1841 * folio_pfn - Return the Page Frame Number of a folio.
1842 * @folio: The folio.
1843 *
1844 * A folio may contain multiple pages. The pages have consecutive
1845 * Page Frame Numbers.
1846 *
1847 * Return: The Page Frame Number of the first page in the folio.
1848 */
1849static inline unsigned long folio_pfn(struct folio *folio)
1850{
1851 return page_to_pfn(&folio->page);
1852}
1853
018ee47f
YZ
1854static inline struct folio *pfn_folio(unsigned long pfn)
1855{
1856 return page_folio(pfn_to_page(pfn));
1857}
1858
0b90ddae
MWO
1859/**
1860 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1861 * @folio: The folio.
1862 *
1863 * This function checks if a folio has been pinned via a call to
1864 * a function in the pin_user_pages() family.
1865 *
1866 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1867 * because it means "definitely not pinned for DMA", but true means "probably
1868 * pinned for DMA, but possibly a false positive due to having at least
1869 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1870 *
1871 * False positives are OK, because: a) it's unlikely for a folio to
1872 * get that many refcounts, and b) all the callers of this routine are
1873 * expected to be able to deal gracefully with a false positive.
1874 *
1875 * For large folios, the result will be exactly correct. That's because
94688e8e 1876 * we have more tracking data available: the _pincount field is used
0b90ddae
MWO
1877 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1878 *
1879 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1880 *
1881 * Return: True, if it is likely that the page has been "dma-pinned".
1882 * False, if the page is definitely not dma-pinned.
1883 */
1884static inline bool folio_maybe_dma_pinned(struct folio *folio)
1885{
1886 if (folio_test_large(folio))
94688e8e 1887 return atomic_read(&folio->_pincount) > 0;
0b90ddae
MWO
1888
1889 /*
1890 * folio_ref_count() is signed. If that refcount overflows, then
1891 * folio_ref_count() returns a negative value, and callers will avoid
1892 * further incrementing the refcount.
1893 *
1894 * Here, for that overflow case, use the sign bit to count a little
1895 * bit higher via unsigned math, and thus still get an accurate result.
1896 */
1897 return ((unsigned int)folio_ref_count(folio)) >=
1898 GUP_PIN_COUNTING_BIAS;
1899}
1900
1901static inline bool page_maybe_dma_pinned(struct page *page)
1902{
1903 return folio_maybe_dma_pinned(page_folio(page));
1904}
1905
1906/*
1907 * This should most likely only be called during fork() to see whether we
fb3d824d 1908 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1909 *
1910 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1911 */
1912static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1913 struct page *page)
1914{
623a1ddf 1915 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1916
1917 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1918 return false;
1919
1920 return page_maybe_dma_pinned(page);
1921}
1922
c8070b78
DH
1923/**
1924 * is_zero_page - Query if a page is a zero page
1925 * @page: The page to query
1926 *
1927 * This returns true if @page is one of the permanent zero pages.
1928 */
1929static inline bool is_zero_page(const struct page *page)
1930{
1931 return is_zero_pfn(page_to_pfn(page));
1932}
1933
1934/**
1935 * is_zero_folio - Query if a folio is a zero page
1936 * @folio: The folio to query
1937 *
1938 * This returns true if @folio is one of the permanent zero pages.
1939 */
1940static inline bool is_zero_folio(const struct folio *folio)
1941{
1942 return is_zero_page(&folio->page);
1943}
1944
5d949953 1945/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
8e3560d9 1946#ifdef CONFIG_MIGRATION
5d949953 1947static inline bool folio_is_longterm_pinnable(struct folio *folio)
8e3560d9 1948{
1c563432 1949#ifdef CONFIG_CMA
5d949953 1950 int mt = folio_migratetype(folio);
1c563432
MK
1951
1952 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1953 return false;
1954#endif
c8070b78 1955 /* The zero page can be "pinned" but gets special handling. */
6e17c6de 1956 if (is_zero_folio(folio))
fcab34b4
AW
1957 return true;
1958
1959 /* Coherent device memory must always allow eviction. */
5d949953 1960 if (folio_is_device_coherent(folio))
fcab34b4
AW
1961 return false;
1962
5d949953
VMO
1963 /* Otherwise, non-movable zone folios can be pinned. */
1964 return !folio_is_zone_movable(folio);
1965
8e3560d9
PT
1966}
1967#else
5d949953 1968static inline bool folio_is_longterm_pinnable(struct folio *folio)
8e3560d9
PT
1969{
1970 return true;
1971}
1972#endif
1973
2f1b6248 1974static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1975{
1976 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1977 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1978}
2f1b6248 1979
348f8b6c
DH
1980static inline void set_page_node(struct page *page, unsigned long node)
1981{
1982 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1983 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1984}
89689ae7 1985
2f1b6248 1986static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1987 unsigned long node, unsigned long pfn)
1da177e4 1988{
348f8b6c
DH
1989 set_page_zone(page, zone);
1990 set_page_node(page, node);
9127ab4f 1991#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1992 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1993#endif
1da177e4
LT
1994}
1995
7b230db3
MWO
1996/**
1997 * folio_nr_pages - The number of pages in the folio.
1998 * @folio: The folio.
1999 *
2000 * Return: A positive power of two.
2001 */
2002static inline long folio_nr_pages(struct folio *folio)
2003{
c3a15bff
MWO
2004 if (!folio_test_large(folio))
2005 return 1;
2006#ifdef CONFIG_64BIT
2007 return folio->_folio_nr_pages;
2008#else
2009 return 1L << folio->_folio_order;
2010#endif
7b230db3
MWO
2011}
2012
21a000fe
MWO
2013/*
2014 * compound_nr() returns the number of pages in this potentially compound
2015 * page. compound_nr() can be called on a tail page, and is defined to
2016 * return 1 in that case.
2017 */
2018static inline unsigned long compound_nr(struct page *page)
2019{
2020 struct folio *folio = (struct folio *)page;
2021
2022 if (!test_bit(PG_head, &folio->flags))
2023 return 1;
2024#ifdef CONFIG_64BIT
2025 return folio->_folio_nr_pages;
2026#else
2027 return 1L << folio->_folio_order;
2028#endif
2029}
2030
2031/**
2032 * thp_nr_pages - The number of regular pages in this huge page.
2033 * @page: The head page of a huge page.
2034 */
2035static inline int thp_nr_pages(struct page *page)
2036{
2037 return folio_nr_pages((struct folio *)page);
2038}
2039
7b230db3
MWO
2040/**
2041 * folio_next - Move to the next physical folio.
2042 * @folio: The folio we're currently operating on.
2043 *
2044 * If you have physically contiguous memory which may span more than
2045 * one folio (eg a &struct bio_vec), use this function to move from one
2046 * folio to the next. Do not use it if the memory is only virtually
2047 * contiguous as the folios are almost certainly not adjacent to each
2048 * other. This is the folio equivalent to writing ``page++``.
2049 *
2050 * Context: We assume that the folios are refcounted and/or locked at a
2051 * higher level and do not adjust the reference counts.
2052 * Return: The next struct folio.
2053 */
2054static inline struct folio *folio_next(struct folio *folio)
2055{
2056 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2057}
2058
2059/**
2060 * folio_shift - The size of the memory described by this folio.
2061 * @folio: The folio.
2062 *
2063 * A folio represents a number of bytes which is a power-of-two in size.
2064 * This function tells you which power-of-two the folio is. See also
2065 * folio_size() and folio_order().
2066 *
2067 * Context: The caller should have a reference on the folio to prevent
2068 * it from being split. It is not necessary for the folio to be locked.
2069 * Return: The base-2 logarithm of the size of this folio.
2070 */
2071static inline unsigned int folio_shift(struct folio *folio)
2072{
2073 return PAGE_SHIFT + folio_order(folio);
2074}
2075
2076/**
2077 * folio_size - The number of bytes in a folio.
2078 * @folio: The folio.
2079 *
2080 * Context: The caller should have a reference on the folio to prevent
2081 * it from being split. It is not necessary for the folio to be locked.
2082 * Return: The number of bytes in this folio.
2083 */
2084static inline size_t folio_size(struct folio *folio)
2085{
2086 return PAGE_SIZE << folio_order(folio);
2087}
2088
fa4e3f5f
VMO
2089/**
2090 * folio_estimated_sharers - Estimate the number of sharers of a folio.
2091 * @folio: The folio.
2092 *
2093 * folio_estimated_sharers() aims to serve as a function to efficiently
2094 * estimate the number of processes sharing a folio. This is done by
2095 * looking at the precise mapcount of the first subpage in the folio, and
2096 * assuming the other subpages are the same. This may not be true for large
2097 * folios. If you want exact mapcounts for exact calculations, look at
2098 * page_mapcount() or folio_total_mapcount().
2099 *
2100 * Return: The estimated number of processes sharing a folio.
2101 */
2102static inline int folio_estimated_sharers(struct folio *folio)
2103{
2104 return page_mapcount(folio_page(folio, 0));
2105}
2106
b424de33
MWO
2107#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2108static inline int arch_make_page_accessible(struct page *page)
2109{
2110 return 0;
2111}
2112#endif
2113
2114#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2115static inline int arch_make_folio_accessible(struct folio *folio)
2116{
2117 int ret;
2118 long i, nr = folio_nr_pages(folio);
2119
2120 for (i = 0; i < nr; i++) {
2121 ret = arch_make_page_accessible(folio_page(folio, i));
2122 if (ret)
2123 break;
2124 }
2125
2126 return ret;
2127}
2128#endif
2129
f6ac2354
CL
2130/*
2131 * Some inline functions in vmstat.h depend on page_zone()
2132 */
2133#include <linux/vmstat.h>
2134
33dd4e0e 2135static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 2136{
1dff8083 2137 return page_to_virt(page);
1da177e4
LT
2138}
2139
2140#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2141#define HASHED_PAGE_VIRTUAL
2142#endif
2143
2144#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
2145static inline void *page_address(const struct page *page)
2146{
2147 return page->virtual;
2148}
2149static inline void set_page_address(struct page *page, void *address)
2150{
2151 page->virtual = address;
2152}
1da177e4
LT
2153#define page_address_init() do { } while(0)
2154#endif
2155
2156#if defined(HASHED_PAGE_VIRTUAL)
f9918794 2157void *page_address(const struct page *page);
1da177e4
LT
2158void set_page_address(struct page *page, void *virtual);
2159void page_address_init(void);
2160#endif
2161
2162#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2163#define page_address(page) lowmem_page_address(page)
2164#define set_page_address(page, address) do { } while(0)
2165#define page_address_init() do { } while(0)
2166#endif
2167
7d4203c1
VB
2168static inline void *folio_address(const struct folio *folio)
2169{
2170 return page_address(&folio->page);
2171}
2172
f6ab1f7f
HY
2173extern pgoff_t __page_file_index(struct page *page);
2174
1da177e4
LT
2175/*
2176 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 2177 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
2178 */
2179static inline pgoff_t page_index(struct page *page)
2180{
2181 if (unlikely(PageSwapCache(page)))
f6ab1f7f 2182 return __page_file_index(page);
1da177e4
LT
2183 return page->index;
2184}
2185
2f064f34
MH
2186/*
2187 * Return true only if the page has been allocated with
2188 * ALLOC_NO_WATERMARKS and the low watermark was not
2189 * met implying that the system is under some pressure.
2190 */
1d7bab6a 2191static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
2192{
2193 /*
c07aea3e
MC
2194 * lru.next has bit 1 set if the page is allocated from the
2195 * pfmemalloc reserves. Callers may simply overwrite it if
2196 * they do not need to preserve that information.
2f064f34 2197 */
c07aea3e 2198 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
2199}
2200
02d65d6f
SK
2201/*
2202 * Return true only if the folio has been allocated with
2203 * ALLOC_NO_WATERMARKS and the low watermark was not
2204 * met implying that the system is under some pressure.
2205 */
2206static inline bool folio_is_pfmemalloc(const struct folio *folio)
2207{
2208 /*
2209 * lru.next has bit 1 set if the page is allocated from the
2210 * pfmemalloc reserves. Callers may simply overwrite it if
2211 * they do not need to preserve that information.
2212 */
2213 return (uintptr_t)folio->lru.next & BIT(1);
2214}
2215
2f064f34
MH
2216/*
2217 * Only to be called by the page allocator on a freshly allocated
2218 * page.
2219 */
2220static inline void set_page_pfmemalloc(struct page *page)
2221{
c07aea3e 2222 page->lru.next = (void *)BIT(1);
2f064f34
MH
2223}
2224
2225static inline void clear_page_pfmemalloc(struct page *page)
2226{
c07aea3e 2227 page->lru.next = NULL;
2f064f34
MH
2228}
2229
1c0fe6e3
NP
2230/*
2231 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2232 */
2233extern void pagefault_out_of_memory(void);
2234
1da177e4 2235#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 2236#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 2237#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 2238
ddd588b5 2239/*
7bf02ea2 2240 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
2241 * various contexts.
2242 */
4b59e6c4 2243#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 2244
974f4367
MH
2245extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2246static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2247{
2248 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2249}
1da177e4 2250
21b85b09
MK
2251/*
2252 * Parameter block passed down to zap_pte_range in exceptional cases.
2253 */
2254struct zap_details {
2255 struct folio *single_folio; /* Locked folio to be unmapped */
2256 bool even_cows; /* Zap COWed private pages too? */
2257 zap_flags_t zap_flags; /* Extra flags for zapping */
2258};
2259
2260/*
2261 * Whether to drop the pte markers, for example, the uffd-wp information for
2262 * file-backed memory. This should only be specified when we will completely
2263 * drop the page in the mm, either by truncation or unmapping of the vma. By
2264 * default, the flag is not set.
2265 */
2266#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
04ada095
MK
2267/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2268#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
21b85b09 2269
af7f588d
MD
2270#ifdef CONFIG_SCHED_MM_CID
2271void sched_mm_cid_before_execve(struct task_struct *t);
2272void sched_mm_cid_after_execve(struct task_struct *t);
2273void sched_mm_cid_fork(struct task_struct *t);
2274void sched_mm_cid_exit_signals(struct task_struct *t);
2275static inline int task_mm_cid(struct task_struct *t)
2276{
2277 return t->mm_cid;
2278}
2279#else
2280static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2281static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2282static inline void sched_mm_cid_fork(struct task_struct *t) { }
2283static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2284static inline int task_mm_cid(struct task_struct *t)
2285{
2286 /*
2287 * Use the processor id as a fall-back when the mm cid feature is
2288 * disabled. This provides functional per-cpu data structure accesses
2289 * in user-space, althrough it won't provide the memory usage benefits.
2290 */
2291 return raw_smp_processor_id();
2292}
2293#endif
2294
710ec38b 2295#ifdef CONFIG_MMU
7f43add4 2296extern bool can_do_mlock(void);
710ec38b
AB
2297#else
2298static inline bool can_do_mlock(void) { return false; }
2299#endif
d7c9e99a
AG
2300extern int user_shm_lock(size_t, struct ucounts *);
2301extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 2302
318e9342
VMO
2303struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2304 pte_t pte);
25b2995a
CH
2305struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2306 pte_t pte);
28093f9f
GS
2307struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2308 pmd_t pmd);
7e675137 2309
27d036e3
LR
2310void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2311 unsigned long size);
21b85b09
MK
2312void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2313 unsigned long size, struct zap_details *details);
e9adcfec
MK
2314static inline void zap_vma_pages(struct vm_area_struct *vma)
2315{
2316 zap_page_range_single(vma, vma->vm_start,
2317 vma->vm_end - vma->vm_start, NULL);
2318}
763ecb03
LH
2319void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2320 struct vm_area_struct *start_vma, unsigned long start,
68f48381 2321 unsigned long end, bool mm_wr_locked);
e6473092 2322
ac46d4f3
JG
2323struct mmu_notifier_range;
2324
42b77728 2325void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 2326 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
2327int
2328copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 2329int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 2330 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
2331int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2332 unsigned long *pfn);
d87fe660 2333int follow_phys(struct vm_area_struct *vma, unsigned long address,
2334 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
2335int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2336 void *buf, int len, int write);
1da177e4 2337
7caef267 2338extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 2339extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 2340void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 2341void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 2342int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 2343
d85a143b
LT
2344struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2345 unsigned long address, struct pt_regs *regs);
2346
7ee1dd3f 2347#ifdef CONFIG_MMU
2b740303 2348extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2349 unsigned long address, unsigned int flags,
2350 struct pt_regs *regs);
64019a2e 2351extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
2352 unsigned long address, unsigned int fault_flags,
2353 bool *unlocked);
977fbdcd
MW
2354void unmap_mapping_pages(struct address_space *mapping,
2355 pgoff_t start, pgoff_t nr, bool even_cows);
2356void unmap_mapping_range(struct address_space *mapping,
2357 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 2358#else
2b740303 2359static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2360 unsigned long address, unsigned int flags,
2361 struct pt_regs *regs)
7ee1dd3f
DH
2362{
2363 /* should never happen if there's no MMU */
2364 BUG();
2365 return VM_FAULT_SIGBUS;
2366}
64019a2e 2367static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 2368 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
2369{
2370 /* should never happen if there's no MMU */
2371 BUG();
2372 return -EFAULT;
2373}
977fbdcd
MW
2374static inline void unmap_mapping_pages(struct address_space *mapping,
2375 pgoff_t start, pgoff_t nr, bool even_cows) { }
2376static inline void unmap_mapping_range(struct address_space *mapping,
2377 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 2378#endif
f33ea7f4 2379
977fbdcd
MW
2380static inline void unmap_shared_mapping_range(struct address_space *mapping,
2381 loff_t const holebegin, loff_t const holelen)
2382{
2383 unmap_mapping_range(mapping, holebegin, holelen, 0);
2384}
2385
ca5e8632
LS
2386static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2387 unsigned long addr);
2388
977fbdcd
MW
2389extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2390 void *buf, int len, unsigned int gup_flags);
5ddd36b9 2391extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 2392 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
2393extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2394 void *buf, int len, unsigned int gup_flags);
1da177e4 2395
64019a2e 2396long get_user_pages_remote(struct mm_struct *mm,
ca5e8632
LS
2397 unsigned long start, unsigned long nr_pages,
2398 unsigned int gup_flags, struct page **pages,
2399 int *locked);
64019a2e 2400long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2401 unsigned long start, unsigned long nr_pages,
2402 unsigned int gup_flags, struct page **pages,
0b295316 2403 int *locked);
ca5e8632
LS
2404
2405static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2406 unsigned long addr,
2407 int gup_flags,
2408 struct vm_area_struct **vmap)
2409{
2410 struct page *page;
2411 struct vm_area_struct *vma;
2412 int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2413
2414 if (got < 0)
2415 return ERR_PTR(got);
2416 if (got == 0)
2417 return NULL;
2418
2419 vma = vma_lookup(mm, addr);
2420 if (WARN_ON_ONCE(!vma)) {
2421 put_page(page);
2422 return ERR_PTR(-EINVAL);
2423 }
2424
2425 *vmap = vma;
2426 return page;
2427}
2428
c12d2da5 2429long get_user_pages(unsigned long start, unsigned long nr_pages,
54d02069 2430 unsigned int gup_flags, struct page **pages);
eddb1c22 2431long pin_user_pages(unsigned long start, unsigned long nr_pages,
4c630f30 2432 unsigned int gup_flags, struct page **pages);
c12d2da5 2433long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 2434 struct page **pages, unsigned int gup_flags);
91429023
JH
2435long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2436 struct page **pages, unsigned int gup_flags);
9a4e9f3b 2437
73b0140b
IW
2438int get_user_pages_fast(unsigned long start, int nr_pages,
2439 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
2440int pin_user_pages_fast(unsigned long start, int nr_pages,
2441 unsigned int gup_flags, struct page **pages);
1101fb8f 2442void folio_add_pin(struct folio *folio);
8025e5dd 2443
79eb597c
DJ
2444int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2445int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2446 struct task_struct *task, bool bypass_rlim);
2447
18022c5d 2448struct kvec;
f3e8fccd 2449struct page *get_dump_page(unsigned long addr);
1da177e4 2450
b5e84594
MWO
2451bool folio_mark_dirty(struct folio *folio);
2452bool set_page_dirty(struct page *page);
1da177e4 2453int set_page_dirty_lock(struct page *page);
b9ea2515 2454
a9090253 2455int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 2456
b6a2fea3
OW
2457extern unsigned long move_page_tables(struct vm_area_struct *vma,
2458 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
2459 unsigned long new_addr, unsigned long len,
2460 bool need_rmap_locks);
58705444
PX
2461
2462/*
2463 * Flags used by change_protection(). For now we make it a bitmap so
2464 * that we can pass in multiple flags just like parameters. However
2465 * for now all the callers are only use one of the flags at the same
2466 * time.
2467 */
64fe24a3
DH
2468/*
2469 * Whether we should manually check if we can map individual PTEs writable,
2470 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2471 * PTEs automatically in a writable mapping.
2472 */
2473#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
2474/* Whether this protection change is for NUMA hints */
2475#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2476/* Whether this change is for write protecting */
2477#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2478#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2479#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2480 MM_CP_UFFD_WP_RESOLVE)
58705444 2481
54cbbbf3 2482bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
eb309ec8
DH
2483int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2484static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2485{
2486 /*
2487 * We want to check manually if we can change individual PTEs writable
2488 * if we can't do that automatically for all PTEs in a mapping. For
2489 * private mappings, that's always the case when we have write
2490 * permissions as we properly have to handle COW.
2491 */
2492 if (vma->vm_flags & VM_SHARED)
2493 return vma_wants_writenotify(vma, vma->vm_page_prot);
2494 return !!(vma->vm_flags & VM_WRITE);
2495
2496}
6a56ccbc
DH
2497bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2498 pte_t pte);
a79390f5 2499extern long change_protection(struct mmu_gather *tlb,
4a18419f 2500 struct vm_area_struct *vma, unsigned long start,
1ef488ed 2501 unsigned long end, unsigned long cp_flags);
2286a691
LH
2502extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2503 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2504 unsigned long start, unsigned long end, unsigned long newflags);
1da177e4 2505
465a454f
PZ
2506/*
2507 * doesn't attempt to fault and will return short.
2508 */
dadbb612
SJ
2509int get_user_pages_fast_only(unsigned long start, int nr_pages,
2510 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2511
2512static inline bool get_user_page_fast_only(unsigned long addr,
2513 unsigned int gup_flags, struct page **pagep)
2514{
2515 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2516}
d559db08
KH
2517/*
2518 * per-process(per-mm_struct) statistics.
2519 */
d559db08
KH
2520static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2521{
f1a79412 2522 return percpu_counter_read_positive(&mm->rss_stat[member]);
69c97823 2523}
d559db08 2524
f1a79412 2525void mm_trace_rss_stat(struct mm_struct *mm, int member);
b3d1411b 2526
d559db08
KH
2527static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2528{
f1a79412 2529 percpu_counter_add(&mm->rss_stat[member], value);
b3d1411b 2530
f1a79412 2531 mm_trace_rss_stat(mm, member);
d559db08
KH
2532}
2533
2534static inline void inc_mm_counter(struct mm_struct *mm, int member)
2535{
f1a79412 2536 percpu_counter_inc(&mm->rss_stat[member]);
b3d1411b 2537
f1a79412 2538 mm_trace_rss_stat(mm, member);
d559db08
KH
2539}
2540
2541static inline void dec_mm_counter(struct mm_struct *mm, int member)
2542{
f1a79412 2543 percpu_counter_dec(&mm->rss_stat[member]);
b3d1411b 2544
f1a79412 2545 mm_trace_rss_stat(mm, member);
d559db08
KH
2546}
2547
eca56ff9
JM
2548/* Optimized variant when page is already known not to be PageAnon */
2549static inline int mm_counter_file(struct page *page)
2550{
2551 if (PageSwapBacked(page))
2552 return MM_SHMEMPAGES;
2553 return MM_FILEPAGES;
2554}
2555
2556static inline int mm_counter(struct page *page)
2557{
2558 if (PageAnon(page))
2559 return MM_ANONPAGES;
2560 return mm_counter_file(page);
2561}
2562
d559db08
KH
2563static inline unsigned long get_mm_rss(struct mm_struct *mm)
2564{
2565 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2566 get_mm_counter(mm, MM_ANONPAGES) +
2567 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2568}
2569
2570static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2571{
2572 return max(mm->hiwater_rss, get_mm_rss(mm));
2573}
2574
2575static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2576{
2577 return max(mm->hiwater_vm, mm->total_vm);
2578}
2579
2580static inline void update_hiwater_rss(struct mm_struct *mm)
2581{
2582 unsigned long _rss = get_mm_rss(mm);
2583
2584 if ((mm)->hiwater_rss < _rss)
2585 (mm)->hiwater_rss = _rss;
2586}
2587
2588static inline void update_hiwater_vm(struct mm_struct *mm)
2589{
2590 if (mm->hiwater_vm < mm->total_vm)
2591 mm->hiwater_vm = mm->total_vm;
2592}
2593
695f0559
PC
2594static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2595{
2596 mm->hiwater_rss = get_mm_rss(mm);
2597}
2598
d559db08
KH
2599static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2600 struct mm_struct *mm)
2601{
2602 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2603
2604 if (*maxrss < hiwater_rss)
2605 *maxrss = hiwater_rss;
2606}
2607
53bddb4e 2608#if defined(SPLIT_RSS_COUNTING)
05af2e10 2609void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2610#else
05af2e10 2611static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2612{
2613}
2614#endif
465a454f 2615
78e7c5af
AK
2616#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2617static inline int pte_special(pte_t pte)
2618{
2619 return 0;
2620}
2621
2622static inline pte_t pte_mkspecial(pte_t pte)
2623{
2624 return pte;
2625}
2626#endif
2627
17596731 2628#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2629static inline int pte_devmap(pte_t pte)
2630{
2631 return 0;
2632}
2633#endif
2634
25ca1d6c
NK
2635extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2636 spinlock_t **ptl);
2637static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2638 spinlock_t **ptl)
2639{
2640 pte_t *ptep;
2641 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2642 return ptep;
2643}
c9cfcddf 2644
c2febafc
KS
2645#ifdef __PAGETABLE_P4D_FOLDED
2646static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2647 unsigned long address)
2648{
2649 return 0;
2650}
2651#else
2652int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2653#endif
2654
b4e98d9a 2655#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2656static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2657 unsigned long address)
2658{
2659 return 0;
2660}
b4e98d9a
KS
2661static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2662static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2663
5f22df00 2664#else
c2febafc 2665int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2666
b4e98d9a
KS
2667static inline void mm_inc_nr_puds(struct mm_struct *mm)
2668{
6d212db1
MS
2669 if (mm_pud_folded(mm))
2670 return;
af5b0f6a 2671 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2672}
2673
2674static inline void mm_dec_nr_puds(struct mm_struct *mm)
2675{
6d212db1
MS
2676 if (mm_pud_folded(mm))
2677 return;
af5b0f6a 2678 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2679}
5f22df00
NP
2680#endif
2681
2d2f5119 2682#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2683static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2684 unsigned long address)
2685{
2686 return 0;
2687}
dc6c9a35 2688
dc6c9a35
KS
2689static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2690static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2691
5f22df00 2692#else
1bb3630e 2693int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2694
dc6c9a35
KS
2695static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2696{
6d212db1
MS
2697 if (mm_pmd_folded(mm))
2698 return;
af5b0f6a 2699 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2700}
2701
2702static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2703{
6d212db1
MS
2704 if (mm_pmd_folded(mm))
2705 return;
af5b0f6a 2706 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2707}
5f22df00
NP
2708#endif
2709
c4812909 2710#ifdef CONFIG_MMU
af5b0f6a 2711static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2712{
af5b0f6a 2713 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2714}
2715
af5b0f6a 2716static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2717{
af5b0f6a 2718 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2719}
2720
2721static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2722{
af5b0f6a 2723 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2724}
2725
2726static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2727{
af5b0f6a 2728 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2729}
2730#else
c4812909 2731
af5b0f6a
KS
2732static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2733static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2734{
2735 return 0;
2736}
2737
2738static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2739static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2740#endif
2741
4cf58924
JFG
2742int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2743int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2744
f949286c
MR
2745#if defined(CONFIG_MMU)
2746
c2febafc
KS
2747static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2748 unsigned long address)
2749{
2750 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2751 NULL : p4d_offset(pgd, address);
2752}
2753
2754static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2755 unsigned long address)
1da177e4 2756{
c2febafc
KS
2757 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2758 NULL : pud_offset(p4d, address);
1da177e4 2759}
d8626138 2760
1da177e4
LT
2761static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2762{
1bb3630e
HD
2763 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2764 NULL: pmd_offset(pud, address);
1da177e4 2765}
f949286c 2766#endif /* CONFIG_MMU */
1bb3630e 2767
57c1ffce 2768#if USE_SPLIT_PTE_PTLOCKS
597d795a 2769#if ALLOC_SPLIT_PTLOCKS
b35f1819 2770void __init ptlock_cache_init(void);
539edb58
PZ
2771extern bool ptlock_alloc(struct page *page);
2772extern void ptlock_free(struct page *page);
2773
2774static inline spinlock_t *ptlock_ptr(struct page *page)
2775{
2776 return page->ptl;
2777}
597d795a 2778#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2779static inline void ptlock_cache_init(void)
2780{
2781}
2782
49076ec2
KS
2783static inline bool ptlock_alloc(struct page *page)
2784{
49076ec2
KS
2785 return true;
2786}
539edb58 2787
49076ec2
KS
2788static inline void ptlock_free(struct page *page)
2789{
49076ec2
KS
2790}
2791
2792static inline spinlock_t *ptlock_ptr(struct page *page)
2793{
539edb58 2794 return &page->ptl;
49076ec2 2795}
597d795a 2796#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2797
2798static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2799{
2800 return ptlock_ptr(pmd_page(*pmd));
2801}
2802
2803static inline bool ptlock_init(struct page *page)
2804{
2805 /*
2806 * prep_new_page() initialize page->private (and therefore page->ptl)
2807 * with 0. Make sure nobody took it in use in between.
2808 *
2809 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2810 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2811 */
309381fe 2812 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2813 if (!ptlock_alloc(page))
2814 return false;
2815 spin_lock_init(ptlock_ptr(page));
2816 return true;
2817}
2818
57c1ffce 2819#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2820/*
2821 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2822 */
49076ec2
KS
2823static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2824{
2825 return &mm->page_table_lock;
2826}
b35f1819 2827static inline void ptlock_cache_init(void) {}
49076ec2 2828static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2829static inline void ptlock_free(struct page *page) {}
57c1ffce 2830#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2831
b4ed71f5 2832static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2833{
706874e9
VD
2834 if (!ptlock_init(page))
2835 return false;
1d40a5ea 2836 __SetPageTable(page);
f0c0c115 2837 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2838 return true;
2f569afd
MS
2839}
2840
b4ed71f5 2841static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2842{
9e247bab 2843 ptlock_free(page);
1d40a5ea 2844 __ClearPageTable(page);
f0c0c115 2845 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2846}
2847
0d940a9b
HD
2848pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2849static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2850{
2851 return __pte_offset_map(pmd, addr, NULL);
2852}
2853
2854pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2855 unsigned long addr, spinlock_t **ptlp);
2856static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2857 unsigned long addr, spinlock_t **ptlp)
2858{
2859 pte_t *pte;
2860
2861 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2862 return pte;
2863}
2864
2865pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2866 unsigned long addr, spinlock_t **ptlp);
c74df32c
HD
2867
2868#define pte_unmap_unlock(pte, ptl) do { \
2869 spin_unlock(ptl); \
2870 pte_unmap(pte); \
2871} while (0)
2872
4cf58924 2873#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2874
2875#define pte_alloc_map(mm, pmd, address) \
4cf58924 2876 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2877
c74df32c 2878#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2879 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2880 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2881
1bb3630e 2882#define pte_alloc_kernel(pmd, address) \
4cf58924 2883 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2884 NULL: pte_offset_kernel(pmd, address))
1da177e4 2885
e009bb30
KS
2886#if USE_SPLIT_PMD_PTLOCKS
2887
7e25de77 2888static inline struct page *pmd_pgtable_page(pmd_t *pmd)
634391ac
MS
2889{
2890 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2891 return virt_to_page((void *)((unsigned long) pmd & mask));
2892}
2893
e009bb30
KS
2894static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2895{
373dfda2 2896 return ptlock_ptr(pmd_pgtable_page(pmd));
e009bb30
KS
2897}
2898
b2b29d6d 2899static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2900{
e009bb30
KS
2901#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2902 page->pmd_huge_pte = NULL;
2903#endif
49076ec2 2904 return ptlock_init(page);
e009bb30
KS
2905}
2906
b2b29d6d 2907static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2908{
2909#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2910 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2911#endif
49076ec2 2912 ptlock_free(page);
e009bb30
KS
2913}
2914
373dfda2 2915#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
e009bb30
KS
2916
2917#else
2918
9a86cb7b
KS
2919static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2920{
2921 return &mm->page_table_lock;
2922}
2923
b2b29d6d
MW
2924static inline bool pmd_ptlock_init(struct page *page) { return true; }
2925static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2926
c389a250 2927#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2928
e009bb30
KS
2929#endif
2930
9a86cb7b
KS
2931static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2932{
2933 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2934 spin_lock(ptl);
2935 return ptl;
2936}
2937
b2b29d6d
MW
2938static inline bool pgtable_pmd_page_ctor(struct page *page)
2939{
2940 if (!pmd_ptlock_init(page))
2941 return false;
2942 __SetPageTable(page);
f0c0c115 2943 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2944 return true;
2945}
2946
2947static inline void pgtable_pmd_page_dtor(struct page *page)
2948{
2949 pmd_ptlock_free(page);
2950 __ClearPageTable(page);
f0c0c115 2951 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2952}
2953
a00cc7d9
MW
2954/*
2955 * No scalability reason to split PUD locks yet, but follow the same pattern
2956 * as the PMD locks to make it easier if we decide to. The VM should not be
2957 * considered ready to switch to split PUD locks yet; there may be places
2958 * which need to be converted from page_table_lock.
2959 */
2960static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2961{
2962 return &mm->page_table_lock;
2963}
2964
2965static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2966{
2967 spinlock_t *ptl = pud_lockptr(mm, pud);
2968
2969 spin_lock(ptl);
2970 return ptl;
2971}
62906027 2972
a00cc7d9 2973extern void __init pagecache_init(void);
49a7f04a
DH
2974extern void free_initmem(void);
2975
69afade7
JL
2976/*
2977 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2978 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2979 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2980 * Return pages freed into the buddy system.
2981 */
11199692 2982extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2983 int poison, const char *s);
c3d5f5f0 2984
c3d5f5f0 2985extern void adjust_managed_page_count(struct page *page, long count);
69afade7 2986
61167ad5
YD
2987extern void reserve_bootmem_region(phys_addr_t start,
2988 phys_addr_t end, int nid);
92923ca3 2989
69afade7 2990/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2991static inline void free_reserved_page(struct page *page)
69afade7
JL
2992{
2993 ClearPageReserved(page);
2994 init_page_count(page);
2995 __free_page(page);
69afade7
JL
2996 adjust_managed_page_count(page, 1);
2997}
a0cd7a7c 2998#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2999
3000static inline void mark_page_reserved(struct page *page)
3001{
3002 SetPageReserved(page);
3003 adjust_managed_page_count(page, -1);
3004}
3005
3006/*
3007 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
3008 * The freed pages will be poisoned with pattern "poison" if it's within
3009 * range [0, UCHAR_MAX].
3010 * Return pages freed into the buddy system.
69afade7
JL
3011 */
3012static inline unsigned long free_initmem_default(int poison)
3013{
3014 extern char __init_begin[], __init_end[];
3015
11199692 3016 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 3017 poison, "unused kernel image (initmem)");
69afade7
JL
3018}
3019
7ee3d4e8
JL
3020static inline unsigned long get_num_physpages(void)
3021{
3022 int nid;
3023 unsigned long phys_pages = 0;
3024
3025 for_each_online_node(nid)
3026 phys_pages += node_present_pages(nid);
3027
3028 return phys_pages;
3029}
3030
c713216d 3031/*
3f08a302 3032 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
3033 * zones, allocate the backing mem_map and account for memory holes in an
3034 * architecture independent manner.
c713216d
MG
3035 *
3036 * An architecture is expected to register range of page frames backed by
0ee332c1 3037 * physical memory with memblock_add[_node]() before calling
9691a071 3038 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
3039 * usage, an architecture is expected to do something like
3040 *
3041 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3042 * max_highmem_pfn};
3043 * for_each_valid_physical_page_range()
952eea9b 3044 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 3045 * free_area_init(max_zone_pfns);
c713216d 3046 */
9691a071 3047void free_area_init(unsigned long *max_zone_pfn);
1e01979c 3048unsigned long node_map_pfn_alignment(void);
32996250
YL
3049unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3050 unsigned long end_pfn);
c713216d
MG
3051extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3052 unsigned long end_pfn);
3053extern void get_pfn_range_for_nid(unsigned int nid,
3054 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 3055
a9ee6cf5 3056#ifndef CONFIG_NUMA
6f24fbd3 3057static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
3058{
3059 return 0;
3060}
3061#else
3062/* please see mm/page_alloc.c */
3063extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
3064#endif
3065
0e0b864e 3066extern void set_dma_reserve(unsigned long new_dma_reserve);
1da177e4 3067extern void mem_init(void);
8feae131 3068extern void __init mmap_init(void);
974f4367
MH
3069
3070extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3071static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
3072{
3073 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
3074}
d02bd27b 3075extern long si_mem_available(void);
1da177e4
LT
3076extern void si_meminfo(struct sysinfo * val);
3077extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
3078#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3079extern unsigned long arch_reserved_kernel_pages(void);
3080#endif
1da177e4 3081
a8e99259
MH
3082extern __printf(3, 4)
3083void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 3084
e7c8d5c9 3085extern void setup_per_cpu_pageset(void);
e7c8d5c9 3086
8feae131 3087/* nommu.c */
33e5d769 3088extern atomic_long_t mmap_pages_allocated;
7e660872 3089extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 3090
6b2dbba8 3091/* interval_tree.c */
6b2dbba8 3092void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 3093 struct rb_root_cached *root);
9826a516
ML
3094void vma_interval_tree_insert_after(struct vm_area_struct *node,
3095 struct vm_area_struct *prev,
f808c13f 3096 struct rb_root_cached *root);
6b2dbba8 3097void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
3098 struct rb_root_cached *root);
3099struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
3100 unsigned long start, unsigned long last);
3101struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3102 unsigned long start, unsigned long last);
3103
3104#define vma_interval_tree_foreach(vma, root, start, last) \
3105 for (vma = vma_interval_tree_iter_first(root, start, last); \
3106 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 3107
bf181b9f 3108void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 3109 struct rb_root_cached *root);
bf181b9f 3110void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
3111 struct rb_root_cached *root);
3112struct anon_vma_chain *
3113anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3114 unsigned long start, unsigned long last);
bf181b9f
ML
3115struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3116 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
3117#ifdef CONFIG_DEBUG_VM_RB
3118void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3119#endif
bf181b9f
ML
3120
3121#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3122 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3123 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3124
1da177e4 3125/* mmap.c */
34b4e4aa 3126extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
7c9813e8
LH
3127extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3128 unsigned long start, unsigned long end, pgoff_t pgoff,
3129 struct vm_area_struct *next);
cf51e86d
LH
3130extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3131 unsigned long start, unsigned long end, pgoff_t pgoff);
9760ebff 3132extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
f2ebfe43
LH
3133 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3134 unsigned long end, unsigned long vm_flags, struct anon_vma *,
3135 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3136 struct anon_vma_name *);
1da177e4 3137extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
9760ebff
LH
3138extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3139 unsigned long addr, int new_below);
3140extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3141 unsigned long addr, int new_below);
1da177e4 3142extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 3143extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 3144extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
3145 unsigned long addr, unsigned long len, pgoff_t pgoff,
3146 bool *need_rmap_locks);
1da177e4 3147extern void exit_mmap(struct mm_struct *);
925d1c40 3148
9c599024
CG
3149static inline int check_data_rlimit(unsigned long rlim,
3150 unsigned long new,
3151 unsigned long start,
3152 unsigned long end_data,
3153 unsigned long start_data)
3154{
3155 if (rlim < RLIM_INFINITY) {
3156 if (((new - start) + (end_data - start_data)) > rlim)
3157 return -ENOSPC;
3158 }
3159
3160 return 0;
3161}
3162
7906d00c
AA
3163extern int mm_take_all_locks(struct mm_struct *mm);
3164extern void mm_drop_all_locks(struct mm_struct *mm);
3165
fe69d560 3166extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 3167extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 3168extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 3169extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 3170
84638335
KK
3171extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3172extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3173
2eefd878
DS
3174extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3175 const struct vm_special_mapping *sm);
3935ed6a
SS
3176extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3177 unsigned long addr, unsigned long len,
a62c34bd
AL
3178 unsigned long flags,
3179 const struct vm_special_mapping *spec);
3180/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
3181extern int install_special_mapping(struct mm_struct *mm,
3182 unsigned long addr, unsigned long len,
3183 unsigned long flags, struct page **pages);
1da177e4 3184
649775be 3185unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 3186unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 3187
1da177e4
LT
3188extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3189
0165ab44 3190extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
3191 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3192 struct list_head *uf);
1fcfd8db 3193extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 3194 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 3195 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
183654ce 3196extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
11f9a21a 3197 unsigned long start, size_t len, struct list_head *uf,
408579cd 3198 bool unlock);
897ab3e0
MR
3199extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3200 struct list_head *uf);
0726b01e 3201extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 3202
bebeb3d6 3203#ifdef CONFIG_MMU
27b26701
LH
3204extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3205 unsigned long start, unsigned long end,
408579cd 3206 struct list_head *uf, bool unlock);
bebeb3d6
ML
3207extern int __mm_populate(unsigned long addr, unsigned long len,
3208 int ignore_errors);
3209static inline void mm_populate(unsigned long addr, unsigned long len)
3210{
3211 /* Ignore errors */
3212 (void) __mm_populate(addr, len, 1);
3213}
3214#else
3215static inline void mm_populate(unsigned long addr, unsigned long len) {}
3216#endif
3217
e4eb1ff6 3218/* These take the mm semaphore themselves */
5d22fc25 3219extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 3220extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 3221extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 3222extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
3223 unsigned long, unsigned long,
3224 unsigned long, unsigned long);
1da177e4 3225
db4fbfb9
ML
3226struct vm_unmapped_area_info {
3227#define VM_UNMAPPED_AREA_TOPDOWN 1
3228 unsigned long flags;
3229 unsigned long length;
3230 unsigned long low_limit;
3231 unsigned long high_limit;
3232 unsigned long align_mask;
3233 unsigned long align_offset;
3234};
3235
baceaf1c 3236extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 3237
85821aab 3238/* truncate.c */
1da177e4 3239extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
3240extern void truncate_inode_pages_range(struct address_space *,
3241 loff_t lstart, loff_t lend);
91b0abe3 3242extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
3243
3244/* generic vm_area_ops exported for stackable file systems */
2bcd6454 3245extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 3246extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 3247 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 3248extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 3249
1be7107f 3250extern unsigned long stack_guard_gap;
d05f3169 3251/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
8d7071af
LT
3252int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3253struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
d05f3169 3254
11192337 3255/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
8d7071af 3256int expand_downwards(struct vm_area_struct *vma, unsigned long address);
1da177e4
LT
3257
3258/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3259extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3260extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3261 struct vm_area_struct **pprev);
3262
abdba2dd
LH
3263/*
3264 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3265 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 3266 */
ce6d42f2 3267struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 3268 unsigned long start_addr, unsigned long end_addr);
1da177e4 3269
ce6d42f2
LH
3270/**
3271 * vma_lookup() - Find a VMA at a specific address
3272 * @mm: The process address space.
3273 * @addr: The user address.
3274 *
3275 * Return: The vm_area_struct at the given address, %NULL otherwise.
3276 */
3277static inline
3278struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3279{
d7c62295 3280 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
3281}
3282
1be7107f
HD
3283static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3284{
3285 unsigned long vm_start = vma->vm_start;
3286
3287 if (vma->vm_flags & VM_GROWSDOWN) {
3288 vm_start -= stack_guard_gap;
3289 if (vm_start > vma->vm_start)
3290 vm_start = 0;
3291 }
3292 return vm_start;
3293}
3294
3295static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3296{
3297 unsigned long vm_end = vma->vm_end;
3298
3299 if (vma->vm_flags & VM_GROWSUP) {
3300 vm_end += stack_guard_gap;
3301 if (vm_end < vma->vm_end)
3302 vm_end = -PAGE_SIZE;
3303 }
3304 return vm_end;
3305}
3306
1da177e4
LT
3307static inline unsigned long vma_pages(struct vm_area_struct *vma)
3308{
3309 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3310}
3311
640708a2
PE
3312/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3313static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3314 unsigned long vm_start, unsigned long vm_end)
3315{
dc8635b2 3316 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
3317
3318 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3319 vma = NULL;
3320
3321 return vma;
3322}
3323
017b1660
MK
3324static inline bool range_in_vma(struct vm_area_struct *vma,
3325 unsigned long start, unsigned long end)
3326{
3327 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3328}
3329
bad849b3 3330#ifdef CONFIG_MMU
804af2cf 3331pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 3332void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
3333#else
3334static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3335{
3336 return __pgprot(0);
3337}
64e45507
PF
3338static inline void vma_set_page_prot(struct vm_area_struct *vma)
3339{
3340 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3341}
bad849b3
DH
3342#endif
3343
295992fb
CK
3344void vma_set_file(struct vm_area_struct *vma, struct file *file);
3345
5877231f 3346#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 3347unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
3348 unsigned long start, unsigned long end);
3349#endif
3350
f440fa1a 3351struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
8d7071af 3352 unsigned long addr);
deceb6cd
HD
3353int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3354 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
3355int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3356 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 3357int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
3358int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3359 struct page **pages, unsigned long *num);
a667d745
SJ
3360int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3361 unsigned long num);
3362int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3363 unsigned long num);
ae2b01f3 3364vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 3365 unsigned long pfn);
f5e6d1d5
MW
3366vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3367 unsigned long pfn, pgprot_t pgprot);
5d747637 3368vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 3369 pfn_t pfn);
ab77dab4
SJ
3370vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3371 unsigned long addr, pfn_t pfn);
b4cbb197
LT
3372int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3373
1c8f4220
SJ
3374static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3375 unsigned long addr, struct page *page)
3376{
3377 int err = vm_insert_page(vma, addr, page);
3378
3379 if (err == -ENOMEM)
3380 return VM_FAULT_OOM;
3381 if (err < 0 && err != -EBUSY)
3382 return VM_FAULT_SIGBUS;
3383
3384 return VM_FAULT_NOPAGE;
3385}
3386
f8f6ae5d
JG
3387#ifndef io_remap_pfn_range
3388static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3389 unsigned long addr, unsigned long pfn,
3390 unsigned long size, pgprot_t prot)
3391{
3392 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3393}
3394#endif
3395
d97baf94
SJ
3396static inline vm_fault_t vmf_error(int err)
3397{
3398 if (err == -ENOMEM)
3399 return VM_FAULT_OOM;
1ea7ca1b
JC
3400 else if (err == -EHWPOISON)
3401 return VM_FAULT_HWPOISON;
d97baf94
SJ
3402 return VM_FAULT_SIGBUS;
3403}
3404
df06b37f
KB
3405struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3406 unsigned int foll_flags);
240aadee 3407
2b740303 3408static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3409{
3410 if (vm_fault & VM_FAULT_OOM)
3411 return -ENOMEM;
3412 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3413 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3414 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3415 return -EFAULT;
3416 return 0;
3417}
3418
474098ed
DH
3419/*
3420 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3421 * a (NUMA hinting) fault is required.
3422 */
3423static inline bool gup_can_follow_protnone(unsigned int flags)
3424{
3425 /*
3426 * FOLL_FORCE has to be able to make progress even if the VMA is
3427 * inaccessible. Further, FOLL_FORCE access usually does not represent
3428 * application behaviour and we should avoid triggering NUMA hinting
3429 * faults.
3430 */
3431 return flags & FOLL_FORCE;
3432}
3433
8b1e0f81 3434typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3435extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3436 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3437extern int apply_to_existing_page_range(struct mm_struct *mm,
3438 unsigned long address, unsigned long size,
3439 pte_fn_t fn, void *data);
aee16b3c 3440
8823b1db 3441#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3442extern void __kernel_poison_pages(struct page *page, int numpages);
3443extern void __kernel_unpoison_pages(struct page *page, int numpages);
3444extern bool _page_poisoning_enabled_early;
3445DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3446static inline bool page_poisoning_enabled(void)
3447{
3448 return _page_poisoning_enabled_early;
3449}
3450/*
3451 * For use in fast paths after init_mem_debugging() has run, or when a
3452 * false negative result is not harmful when called too early.
3453 */
3454static inline bool page_poisoning_enabled_static(void)
3455{
3456 return static_branch_unlikely(&_page_poisoning_enabled);
3457}
3458static inline void kernel_poison_pages(struct page *page, int numpages)
3459{
3460 if (page_poisoning_enabled_static())
3461 __kernel_poison_pages(page, numpages);
3462}
3463static inline void kernel_unpoison_pages(struct page *page, int numpages)
3464{
3465 if (page_poisoning_enabled_static())
3466 __kernel_unpoison_pages(page, numpages);
3467}
8823b1db
LA
3468#else
3469static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3470static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3471static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3472static inline void kernel_poison_pages(struct page *page, int numpages) { }
3473static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3474#endif
3475
51cba1eb 3476DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3477static inline bool want_init_on_alloc(gfp_t flags)
3478{
51cba1eb
KC
3479 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3480 &init_on_alloc))
6471384a
AP
3481 return true;
3482 return flags & __GFP_ZERO;
3483}
3484
51cba1eb 3485DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3486static inline bool want_init_on_free(void)
3487{
51cba1eb
KC
3488 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3489 &init_on_free);
6471384a
AP
3490}
3491
8e57f8ac
VB
3492extern bool _debug_pagealloc_enabled_early;
3493DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3494
3495static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3496{
3497 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3498 _debug_pagealloc_enabled_early;
3499}
3500
3501/*
3502 * For use in fast paths after init_debug_pagealloc() has run, or when a
3503 * false negative result is not harmful when called too early.
3504 */
3505static inline bool debug_pagealloc_enabled_static(void)
031bc574 3506{
96a2b03f
VB
3507 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3508 return false;
3509
3510 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3511}
3512
c87cbc1f 3513/*
5d6ad668
MR
3514 * To support DEBUG_PAGEALLOC architecture must ensure that
3515 * __kernel_map_pages() never fails
c87cbc1f 3516 */
d6332692 3517extern void __kernel_map_pages(struct page *page, int numpages, int enable);
8f14a963 3518#ifdef CONFIG_DEBUG_PAGEALLOC
77bc7fd6
MR
3519static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3520{
3521 if (debug_pagealloc_enabled_static())
3522 __kernel_map_pages(page, numpages, 1);
3523}
3524
3525static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3526{
3527 if (debug_pagealloc_enabled_static())
3528 __kernel_map_pages(page, numpages, 0);
3529}
884c175f
KW
3530
3531extern unsigned int _debug_guardpage_minorder;
3532DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3533
3534static inline unsigned int debug_guardpage_minorder(void)
3535{
3536 return _debug_guardpage_minorder;
3537}
3538
3539static inline bool debug_guardpage_enabled(void)
3540{
3541 return static_branch_unlikely(&_debug_guardpage_enabled);
3542}
3543
3544static inline bool page_is_guard(struct page *page)
3545{
3546 if (!debug_guardpage_enabled())
3547 return false;
3548
3549 return PageGuard(page);
3550}
3551
3552bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3553 int migratetype);
3554static inline bool set_page_guard(struct zone *zone, struct page *page,
3555 unsigned int order, int migratetype)
3556{
3557 if (!debug_guardpage_enabled())
3558 return false;
3559 return __set_page_guard(zone, page, order, migratetype);
3560}
3561
3562void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3563 int migratetype);
3564static inline void clear_page_guard(struct zone *zone, struct page *page,
3565 unsigned int order, int migratetype)
3566{
3567 if (!debug_guardpage_enabled())
3568 return;
3569 __clear_page_guard(zone, page, order, migratetype);
3570}
3571
5d6ad668 3572#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3573static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3574static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
884c175f
KW
3575static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3576static inline bool debug_guardpage_enabled(void) { return false; }
3577static inline bool page_is_guard(struct page *page) { return false; }
3578static inline bool set_page_guard(struct zone *zone, struct page *page,
3579 unsigned int order, int migratetype) { return false; }
3580static inline void clear_page_guard(struct zone *zone, struct page *page,
3581 unsigned int order, int migratetype) {}
5d6ad668 3582#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3583
a6c19dfe 3584#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3585extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3586extern int in_gate_area_no_mm(unsigned long addr);
3587extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3588#else
a6c19dfe
AL
3589static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3590{
3591 return NULL;
3592}
3593static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3594static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3595{
3596 return 0;
3597}
1da177e4
LT
3598#endif /* __HAVE_ARCH_GATE_AREA */
3599
44a70ade
MH
3600extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3601
146732ce
JT
3602#ifdef CONFIG_SYSCTL
3603extern int sysctl_drop_caches;
32927393
CH
3604int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3605 loff_t *);
146732ce
JT
3606#endif
3607
cb731d6c 3608void drop_slab(void);
9d0243bc 3609
7a9166e3
LY
3610#ifndef CONFIG_MMU
3611#define randomize_va_space 0
3612#else
a62eaf15 3613extern int randomize_va_space;
7a9166e3 3614#endif
a62eaf15 3615
045e72ac 3616const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3617#ifdef CONFIG_MMU
03252919 3618void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3619#else
3620static inline void print_vma_addr(char *prefix, unsigned long rip)
3621{
3622}
3623#endif
e6e5494c 3624
35fd1eb1 3625void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3626struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3627 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3628 struct dev_pagemap *pgmap);
7b09f5af
FC
3629void pmd_init(void *addr);
3630void pud_init(void *addr);
29c71111 3631pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3632p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3633pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3634pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3635pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3636 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3637void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3638struct vmem_altmap;
56993b4e
AK
3639void *vmemmap_alloc_block_buf(unsigned long size, int node,
3640 struct vmem_altmap *altmap);
8f6aac41 3641void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2045a3b8
FC
3642void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3643 unsigned long addr, unsigned long next);
3644int vmemmap_check_pmd(pmd_t *pmd, int node,
3645 unsigned long addr, unsigned long next);
0aad818b 3646int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3647 int node, struct vmem_altmap *altmap);
2045a3b8
FC
3648int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3649 int node, struct vmem_altmap *altmap);
7b73d978
CH
3650int vmemmap_populate(unsigned long start, unsigned long end, int node,
3651 struct vmem_altmap *altmap);
c2b91e2e 3652void vmemmap_populate_print_last(void);
0197518c 3653#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3654void vmemmap_free(unsigned long start, unsigned long end,
3655 struct vmem_altmap *altmap);
0197518c 3656#endif
87a7ae75 3657
0b376f1e 3658#ifdef CONFIG_ARCH_WANT_OPTIMIZE_VMEMMAP
87a7ae75
AK
3659static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3660 struct dev_pagemap *pgmap)
3661{
3662 return is_power_of_2(sizeof(struct page)) &&
3663 pgmap && (pgmap_vmemmap_nr(pgmap) > 1) && !altmap;
3664}
3665#else
3666static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3667 struct dev_pagemap *pgmap)
3668{
3669 return false;
3670}
3671#endif
3672
46723bfa 3673void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3674 unsigned long nr_pages);
6a46079c 3675
82ba011b
AK
3676enum mf_flags {
3677 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3678 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3679 MF_MUST_KILL = 1 << 2,
cf870c70 3680 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3681 MF_UNPOISON = 1 << 4,
67f22ba7 3682 MF_SW_SIMULATED = 1 << 5,
38f6d293 3683 MF_NO_RETRY = 1 << 6,
82ba011b 3684};
c36e2024
SR
3685int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3686 unsigned long count, int mf_flags);
83b57531 3687extern int memory_failure(unsigned long pfn, int flags);
06202231 3688extern void memory_failure_queue_kick(int cpu);
847ce401 3689extern int unpoison_memory(unsigned long pfn);
d0505e9f 3690extern void shake_page(struct page *p);
5844a486 3691extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3692extern int soft_offline_page(unsigned long pfn, int flags);
405ce051 3693#ifdef CONFIG_MEMORY_FAILURE
870388db
KW
3694/*
3695 * Sysfs entries for memory failure handling statistics.
3696 */
3697extern const struct attribute_group memory_failure_attr_group;
d302c239 3698extern void memory_failure_queue(unsigned long pfn, int flags);
e591ef7d
NH
3699extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3700 bool *migratable_cleared);
5033091d
NH
3701void num_poisoned_pages_inc(unsigned long pfn);
3702void num_poisoned_pages_sub(unsigned long pfn, long i);
4248d008 3703struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
405ce051 3704#else
d302c239
TL
3705static inline void memory_failure_queue(unsigned long pfn, int flags)
3706{
3707}
3708
e591ef7d
NH
3709static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3710 bool *migratable_cleared)
405ce051
NH
3711{
3712 return 0;
3713}
d027122d 3714
a46c9304 3715static inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
3716{
3717}
5033091d
NH
3718
3719static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3720{
3721}
3722#endif
3723
4248d008
LX
3724#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3725void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3726 struct vm_area_struct *vma, struct list_head *to_kill,
3727 unsigned long ksm_addr);
3728#endif
3729
5033091d
NH
3730#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3731extern void memblk_nr_poison_inc(unsigned long pfn);
3732extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3733#else
3734static inline void memblk_nr_poison_inc(unsigned long pfn)
3735{
3736}
3737
3738static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3739{
3740}
405ce051 3741#endif
6a46079c 3742
03b122da
TL
3743#ifndef arch_memory_failure
3744static inline int arch_memory_failure(unsigned long pfn, int flags)
3745{
3746 return -ENXIO;
3747}
3748#endif
3749
3750#ifndef arch_is_platform_page
3751static inline bool arch_is_platform_page(u64 paddr)
3752{
3753 return false;
3754}
3755#endif
cc637b17
XX
3756
3757/*
3758 * Error handlers for various types of pages.
3759 */
cc3e2af4 3760enum mf_result {
cc637b17
XX
3761 MF_IGNORED, /* Error: cannot be handled */
3762 MF_FAILED, /* Error: handling failed */
3763 MF_DELAYED, /* Will be handled later */
3764 MF_RECOVERED, /* Successfully recovered */
3765};
3766
3767enum mf_action_page_type {
3768 MF_MSG_KERNEL,
3769 MF_MSG_KERNEL_HIGH_ORDER,
3770 MF_MSG_SLAB,
3771 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3772 MF_MSG_HUGE,
3773 MF_MSG_FREE_HUGE,
3774 MF_MSG_UNMAP_FAILED,
3775 MF_MSG_DIRTY_SWAPCACHE,
3776 MF_MSG_CLEAN_SWAPCACHE,
3777 MF_MSG_DIRTY_MLOCKED_LRU,
3778 MF_MSG_CLEAN_MLOCKED_LRU,
3779 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3780 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3781 MF_MSG_DIRTY_LRU,
3782 MF_MSG_CLEAN_LRU,
3783 MF_MSG_TRUNCATED_LRU,
3784 MF_MSG_BUDDY,
6100e34b 3785 MF_MSG_DAX,
5d1fd5dc 3786 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3787 MF_MSG_UNKNOWN,
3788};
3789
47ad8475
AA
3790#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3791extern void clear_huge_page(struct page *page,
c79b57e4 3792 unsigned long addr_hint,
47ad8475 3793 unsigned int pages_per_huge_page);
1cb9dc4b
LS
3794int copy_user_large_folio(struct folio *dst, struct folio *src,
3795 unsigned long addr_hint,
3796 struct vm_area_struct *vma);
e87340ca
Z
3797long copy_folio_from_user(struct folio *dst_folio,
3798 const void __user *usr_src,
3799 bool allow_pagefault);
2484ca9b
THV
3800
3801/**
3802 * vma_is_special_huge - Are transhuge page-table entries considered special?
3803 * @vma: Pointer to the struct vm_area_struct to consider
3804 *
3805 * Whether transhuge page-table entries are considered "special" following
3806 * the definition in vm_normal_page().
3807 *
3808 * Return: true if transhuge page-table entries should be considered special,
3809 * false otherwise.
3810 */
3811static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3812{
3813 return vma_is_dax(vma) || (vma->vm_file &&
3814 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3815}
3816
47ad8475
AA
3817#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3818
f9872caf
CS
3819#if MAX_NUMNODES > 1
3820void __init setup_nr_node_ids(void);
3821#else
3822static inline void setup_nr_node_ids(void) {}
3823#endif
3824
010c164a
SL
3825extern int memcmp_pages(struct page *page1, struct page *page2);
3826
3827static inline int pages_identical(struct page *page1, struct page *page2)
3828{
3829 return !memcmp_pages(page1, page2);
3830}
3831
c5acad84
TH
3832#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3833unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3834 pgoff_t first_index, pgoff_t nr,
3835 pgoff_t bitmap_pgoff,
3836 unsigned long *bitmap,
3837 pgoff_t *start,
3838 pgoff_t *end);
3839
3840unsigned long wp_shared_mapping_range(struct address_space *mapping,
3841 pgoff_t first_index, pgoff_t nr);
3842#endif
3843
2374c09b
CH
3844extern int sysctl_nr_trim_pages;
3845
5bb1bb35 3846#ifdef CONFIG_PRINTK
8e7f37f2 3847void mem_dump_obj(void *object);
5bb1bb35
PM
3848#else
3849static inline void mem_dump_obj(void *object) {}
3850#endif
8e7f37f2 3851
22247efd
PX
3852/**
3853 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3854 * @seals: the seals to check
3855 * @vma: the vma to operate on
3856 *
3857 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3858 * the vma flags. Return 0 if check pass, or <0 for errors.
3859 */
3860static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3861{
3862 if (seals & F_SEAL_FUTURE_WRITE) {
3863 /*
3864 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3865 * "future write" seal active.
3866 */
3867 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3868 return -EPERM;
3869
3870 /*
3871 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3872 * MAP_SHARED and read-only, take care to not allow mprotect to
3873 * revert protections on such mappings. Do this only for shared
3874 * mappings. For private mappings, don't need to mask
3875 * VM_MAYWRITE as we still want them to be COW-writable.
3876 */
3877 if (vma->vm_flags & VM_SHARED)
1c71222e 3878 vm_flags_clear(vma, VM_MAYWRITE);
22247efd
PX
3879 }
3880
3881 return 0;
3882}
3883
9a10064f
CC
3884#ifdef CONFIG_ANON_VMA_NAME
3885int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
3886 unsigned long len_in,
3887 struct anon_vma_name *anon_name);
9a10064f
CC
3888#else
3889static inline int
3890madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 3891 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
3892 return 0;
3893}
3894#endif
3895
dcdfdd40
KS
3896#ifdef CONFIG_UNACCEPTED_MEMORY
3897
3898bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
3899void accept_memory(phys_addr_t start, phys_addr_t end);
3900
3901#else
3902
3903static inline bool range_contains_unaccepted_memory(phys_addr_t start,
3904 phys_addr_t end)
3905{
3906 return false;
3907}
3908
3909static inline void accept_memory(phys_addr_t start, phys_addr_t end)
3910{
3911}
3912
3913#endif
3914
1da177e4 3915#endif /* _LINUX_MM_H */