mm: Make pte_mkwrite() take a VMA
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
ef6a22b7 32#include <linux/slab.h>
1da177e4
LT
33
34struct mempolicy;
35struct anon_vma;
bf181b9f 36struct anon_vma_chain;
e8edc6e0 37struct user_struct;
bce617ed 38struct pt_regs;
1da177e4 39
5ef64cc8
LT
40extern int sysctl_page_lock_unfairness;
41
b7ec1bf3 42void mm_core_init(void);
597b7305
MH
43void init_mm_internals(void);
44
a9ee6cf5 45#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 46extern unsigned long max_mapnr;
fccc9987
JL
47
48static inline void set_max_mapnr(unsigned long limit)
49{
50 max_mapnr = limit;
51}
52#else
53static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
54#endif
55
ca79b0c2
AK
56extern atomic_long_t _totalram_pages;
57static inline unsigned long totalram_pages(void)
58{
59 return (unsigned long)atomic_long_read(&_totalram_pages);
60}
61
62static inline void totalram_pages_inc(void)
63{
64 atomic_long_inc(&_totalram_pages);
65}
66
67static inline void totalram_pages_dec(void)
68{
69 atomic_long_dec(&_totalram_pages);
70}
71
72static inline void totalram_pages_add(long count)
73{
74 atomic_long_add(count, &_totalram_pages);
75}
76
1da177e4 77extern void * high_memory;
1da177e4 78extern int page_cluster;
ea0ffd0c 79extern const int page_cluster_max;
1da177e4
LT
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
d07e2259
DC
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
1da177e4 98#include <asm/page.h>
1da177e4 99#include <asm/processor.h>
1da177e4 100
79442ed1
TC
101#ifndef __pa_symbol
102#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
103#endif
104
1dff8083
AB
105#ifndef page_to_virt
106#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
107#endif
108
568c5fe5
LA
109#ifndef lm_alias
110#define lm_alias(x) __va(__pa_symbol(x))
111#endif
112
593befa6
DD
113/*
114 * To prevent common memory management code establishing
115 * a zero page mapping on a read fault.
116 * This macro should be defined within <asm/pgtable.h>.
117 * s390 does this to prevent multiplexing of hardware bits
118 * related to the physical page in case of virtualization.
119 */
120#ifndef mm_forbids_zeropage
121#define mm_forbids_zeropage(X) (0)
122#endif
123
a4a3ede2
PT
124/*
125 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
126 * If an architecture decides to implement their own version of
127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
128 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 129 */
5470dea4 130#if BITS_PER_LONG == 64
3770e52f 131/* This function must be updated when the size of struct page grows above 96
5470dea4
AD
132 * or reduces below 56. The idea that compiler optimizes out switch()
133 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 134 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
135 * this can result in several of the writes here being dropped.
136 */
137#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
138static inline void __mm_zero_struct_page(struct page *page)
139{
140 unsigned long *_pp = (void *)page;
141
3770e52f 142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
5470dea4
AD
143 BUILD_BUG_ON(sizeof(struct page) & 7);
144 BUILD_BUG_ON(sizeof(struct page) < 56);
3770e52f 145 BUILD_BUG_ON(sizeof(struct page) > 96);
5470dea4
AD
146
147 switch (sizeof(struct page)) {
3770e52f
AB
148 case 96:
149 _pp[11] = 0;
150 fallthrough;
151 case 88:
152 _pp[10] = 0;
153 fallthrough;
5470dea4 154 case 80:
df561f66
GS
155 _pp[9] = 0;
156 fallthrough;
5470dea4 157 case 72:
df561f66
GS
158 _pp[8] = 0;
159 fallthrough;
5470dea4 160 case 64:
df561f66
GS
161 _pp[7] = 0;
162 fallthrough;
5470dea4
AD
163 case 56:
164 _pp[6] = 0;
165 _pp[5] = 0;
166 _pp[4] = 0;
167 _pp[3] = 0;
168 _pp[2] = 0;
169 _pp[1] = 0;
170 _pp[0] = 0;
171 }
172}
173#else
a4a3ede2
PT
174#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
175#endif
176
ea606cf5
AR
177/*
178 * Default maximum number of active map areas, this limits the number of vmas
179 * per mm struct. Users can overwrite this number by sysctl but there is a
180 * problem.
181 *
182 * When a program's coredump is generated as ELF format, a section is created
183 * per a vma. In ELF, the number of sections is represented in unsigned short.
184 * This means the number of sections should be smaller than 65535 at coredump.
185 * Because the kernel adds some informative sections to a image of program at
186 * generating coredump, we need some margin. The number of extra sections is
187 * 1-3 now and depends on arch. We use "5" as safe margin, here.
188 *
189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190 * not a hard limit any more. Although some userspace tools can be surprised by
191 * that.
192 */
193#define MAPCOUNT_ELF_CORE_MARGIN (5)
194#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195
196extern int sysctl_max_map_count;
197
c9b1d098 198extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 199extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 200
49f0ce5f
JM
201extern int sysctl_overcommit_memory;
202extern int sysctl_overcommit_ratio;
203extern unsigned long sysctl_overcommit_kbytes;
204
32927393
CH
205int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 loff_t *);
207int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
56f3547b
FT
209int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
49f0ce5f 211
1cfcee72 212#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 214#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
215#else
216#define nth_page(page,n) ((page) + (n))
659508f9 217#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 218#endif
1da177e4 219
27ac792c
AR
220/* to align the pointer to the (next) page boundary */
221#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222
335e52c2
DG
223/* to align the pointer to the (prev) page boundary */
224#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
225
0fa73b86 226/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 227#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 228
f86196ea 229#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
230static inline struct folio *lru_to_folio(struct list_head *head)
231{
232 return list_entry((head)->prev, struct folio, lru);
233}
f86196ea 234
5748fbc5
KW
235void setup_initial_init_mm(void *start_code, void *end_code,
236 void *end_data, void *brk);
237
1da177e4
LT
238/*
239 * Linux kernel virtual memory manager primitives.
240 * The idea being to have a "virtual" mm in the same way
241 * we have a virtual fs - giving a cleaner interface to the
242 * mm details, and allowing different kinds of memory mappings
243 * (from shared memory to executable loading to arbitrary
244 * mmap() functions).
245 */
246
490fc053 247struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
248struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249void vm_area_free(struct vm_area_struct *);
0d2ebf9c
SB
250/* Use only if VMA has no other users */
251void __vm_area_free(struct vm_area_struct *vma);
c43692e8 252
1da177e4 253#ifndef CONFIG_MMU
8feae131
DH
254extern struct rb_root nommu_region_tree;
255extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
256
257extern unsigned int kobjsize(const void *objp);
258#endif
259
260/*
605d9288 261 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 262 * When changing, update also include/trace/events/mmflags.h
1da177e4 263 */
cc2383ec
KK
264#define VM_NONE 0x00000000
265
1da177e4
LT
266#define VM_READ 0x00000001 /* currently active flags */
267#define VM_WRITE 0x00000002
268#define VM_EXEC 0x00000004
269#define VM_SHARED 0x00000008
270
7e2cff42 271/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
272#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
273#define VM_MAYWRITE 0x00000020
274#define VM_MAYEXEC 0x00000040
275#define VM_MAYSHARE 0x00000080
276
277#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
b6b7a8fa 278#ifdef CONFIG_MMU
16ba6f81 279#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
b6b7a8fa
DH
280#else /* CONFIG_MMU */
281#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282#define VM_UFFD_MISSING 0
283#endif /* CONFIG_MMU */
6aab341e 284#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 285#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 286
1da177e4
LT
287#define VM_LOCKED 0x00002000
288#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
289
290 /* Used by sys_madvise() */
291#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
292#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
293
294#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
295#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 296#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 297#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 298#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 299#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 300#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 301#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 302#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 303#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 304
d9104d1c
CG
305#ifdef CONFIG_MEM_SOFT_DIRTY
306# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
307#else
308# define VM_SOFTDIRTY 0
309#endif
310
b379d790 311#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
312#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
313#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 314#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 315
63c17fb8
DH
316#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
318#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
320#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 321#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
322#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
323#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
324#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
325#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 326#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
327#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
328
5212213a 329#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
330# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
331# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 332# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
333# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
334# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
335#ifdef CONFIG_PPC
336# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
337#else
338# define VM_PKEY_BIT4 0
8f62c883 339#endif
5212213a
RP
340#endif /* CONFIG_ARCH_HAS_PKEYS */
341
342#if defined(CONFIG_X86)
343# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
344#elif defined(CONFIG_PPC)
345# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
346#elif defined(CONFIG_PARISC)
347# define VM_GROWSUP VM_ARCH_1
348#elif defined(CONFIG_IA64)
349# define VM_GROWSUP VM_ARCH_1
74a04967
KA
350#elif defined(CONFIG_SPARC64)
351# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
352# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
353#elif defined(CONFIG_ARM64)
354# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
355# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
356#elif !defined(CONFIG_MMU)
357# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
358#endif
359
9f341931
CM
360#if defined(CONFIG_ARM64_MTE)
361# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
362# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
363#else
364# define VM_MTE VM_NONE
365# define VM_MTE_ALLOWED VM_NONE
366#endif
367
cc2383ec
KK
368#ifndef VM_GROWSUP
369# define VM_GROWSUP VM_NONE
370#endif
371
7677f7fd
AR
372#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
373# define VM_UFFD_MINOR_BIT 37
374# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
375#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
376# define VM_UFFD_MINOR VM_NONE
377#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
378
a8bef8ff 379/* Bits set in the VMA until the stack is in its final location */
f66066bc 380#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
a8bef8ff 381
c62da0c3
AK
382#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
383
384/* Common data flag combinations */
385#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
388 VM_MAYWRITE | VM_MAYEXEC)
389#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
390 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
391
392#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
393#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
394#endif
395
1da177e4
LT
396#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
397#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
398#endif
399
400#ifdef CONFIG_STACK_GROWSUP
30bdbb78 401#define VM_STACK VM_GROWSUP
f66066bc 402#define VM_STACK_EARLY VM_GROWSDOWN
1da177e4 403#else
30bdbb78 404#define VM_STACK VM_GROWSDOWN
f66066bc 405#define VM_STACK_EARLY 0
1da177e4
LT
406#endif
407
30bdbb78
KK
408#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
409
6cb4d9a2
AK
410/* VMA basic access permission flags */
411#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
412
413
b291f000 414/*
78f11a25 415 * Special vmas that are non-mergable, non-mlock()able.
b291f000 416 */
9050d7eb 417#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 418
b4443772
AK
419/* This mask prevents VMA from being scanned with khugepaged */
420#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
421
a0715cc2
AT
422/* This mask defines which mm->def_flags a process can inherit its parent */
423#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
424
e430a95a
SB
425/* This mask represents all the VMA flag bits used by mlock */
426#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
de60f5f1 427
2c2d57b5
KA
428/* Arch-specific flags to clear when updating VM flags on protection change */
429#ifndef VM_ARCH_CLEAR
430# define VM_ARCH_CLEAR VM_NONE
431#endif
432#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
433
1da177e4
LT
434/*
435 * mapping from the currently active vm_flags protection bits (the
436 * low four bits) to a page protection mask..
437 */
1da177e4 438
dde16072
PX
439/*
440 * The default fault flags that should be used by most of the
441 * arch-specific page fault handlers.
442 */
443#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
444 FAULT_FLAG_KILLABLE | \
445 FAULT_FLAG_INTERRUPTIBLE)
dde16072 446
4064b982
PX
447/**
448 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 449 * @flags: Fault flags.
4064b982
PX
450 *
451 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 452 * the mmap_lock for too long a time when waiting for another condition
4064b982 453 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
454 * mmap_lock in the first round to avoid potential starvation of other
455 * processes that would also want the mmap_lock.
4064b982
PX
456 *
457 * Return: true if the page fault allows retry and this is the first
458 * attempt of the fault handling; false otherwise.
459 */
da2f5eb3 460static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
461{
462 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
463 (!(flags & FAULT_FLAG_TRIED));
464}
465
282a8e03
RZ
466#define FAULT_FLAG_TRACE \
467 { FAULT_FLAG_WRITE, "WRITE" }, \
468 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
469 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
470 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
471 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
472 { FAULT_FLAG_TRIED, "TRIED" }, \
473 { FAULT_FLAG_USER, "USER" }, \
474 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee 475 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
55324e46
SB
476 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
477 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
282a8e03 478
54cb8821 479/*
11192337 480 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
481 * ->fault function. The vma's ->fault is responsible for returning a bitmask
482 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 483 *
c20cd45e
MH
484 * MM layer fills up gfp_mask for page allocations but fault handler might
485 * alter it if its implementation requires a different allocation context.
486 *
9b4bdd2f 487 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 488 */
d0217ac0 489struct vm_fault {
5857c920 490 const struct {
742d3372
WD
491 struct vm_area_struct *vma; /* Target VMA */
492 gfp_t gfp_mask; /* gfp mask to be used for allocations */
493 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
494 unsigned long address; /* Faulting virtual address - masked */
495 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 496 };
da2f5eb3 497 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 498 * XXX: should really be 'const' */
82b0f8c3 499 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 500 * the 'address' */
a2d58167
DJ
501 pud_t *pud; /* Pointer to pud entry matching
502 * the 'address'
503 */
5db4f15c
YS
504 union {
505 pte_t orig_pte; /* Value of PTE at the time of fault */
506 pmd_t orig_pmd; /* Value of PMD at the time of fault,
507 * used by PMD fault only.
508 */
509 };
d0217ac0 510
3917048d 511 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 512 struct page *page; /* ->fault handlers should return a
83c54070 513 * page here, unless VM_FAULT_NOPAGE
d0217ac0 514 * is set (which is also implied by
83c54070 515 * VM_FAULT_ERROR).
d0217ac0 516 */
82b0f8c3 517 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
518 pte_t *pte; /* Pointer to pte entry matching
519 * the 'address'. NULL if the page
520 * table hasn't been allocated.
521 */
522 spinlock_t *ptl; /* Page table lock.
523 * Protects pte page table if 'pte'
524 * is not NULL, otherwise pmd.
525 */
7267ec00 526 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
527 * vm_ops->map_pages() sets up a page
528 * table from atomic context.
7267ec00
KS
529 * do_fault_around() pre-allocates
530 * page table to avoid allocation from
531 * atomic context.
532 */
54cb8821 533};
1da177e4 534
c791ace1
DJ
535/* page entry size for vm->huge_fault() */
536enum page_entry_size {
537 PE_SIZE_PTE = 0,
538 PE_SIZE_PMD,
539 PE_SIZE_PUD,
540};
541
1da177e4
LT
542/*
543 * These are the virtual MM functions - opening of an area, closing and
544 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 545 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
546 */
547struct vm_operations_struct {
548 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
549 /**
550 * @close: Called when the VMA is being removed from the MM.
551 * Context: User context. May sleep. Caller holds mmap_lock.
552 */
1da177e4 553 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
554 /* Called any time before splitting to check if it's allowed */
555 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 556 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
557 /*
558 * Called by mprotect() to make driver-specific permission
559 * checks before mprotect() is finalised. The VMA must not
3e0ee843 560 * be modified. Returns 0 if mprotect() can proceed.
95bb7c42
SC
561 */
562 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
563 unsigned long end, unsigned long newflags);
1c8f4220
SJ
564 vm_fault_t (*fault)(struct vm_fault *vmf);
565 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
566 enum page_entry_size pe_size);
f9ce0be7 567 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 568 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 569 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
570
571 /* notification that a previously read-only page is about to become
572 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 573 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 574
dd906184 575 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 576 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 577
28b2ee20 578 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
579 * for use by special VMAs. See also generic_access_phys() for a generic
580 * implementation useful for any iomem mapping.
28b2ee20
RR
581 */
582 int (*access)(struct vm_area_struct *vma, unsigned long addr,
583 void *buf, int len, int write);
78d683e8
AL
584
585 /* Called by the /proc/PID/maps code to ask the vma whether it
586 * has a special name. Returning non-NULL will also cause this
587 * vma to be dumped unconditionally. */
588 const char *(*name)(struct vm_area_struct *vma);
589
1da177e4 590#ifdef CONFIG_NUMA
a6020ed7
LS
591 /*
592 * set_policy() op must add a reference to any non-NULL @new mempolicy
593 * to hold the policy upon return. Caller should pass NULL @new to
594 * remove a policy and fall back to surrounding context--i.e. do not
595 * install a MPOL_DEFAULT policy, nor the task or system default
596 * mempolicy.
597 */
1da177e4 598 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
599
600 /*
601 * get_policy() op must add reference [mpol_get()] to any policy at
602 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
603 * in mm/mempolicy.c will do this automatically.
604 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 605 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
606 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
607 * must return NULL--i.e., do not "fallback" to task or system default
608 * policy.
609 */
1da177e4
LT
610 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
611 unsigned long addr);
612#endif
667a0a06
DV
613 /*
614 * Called by vm_normal_page() for special PTEs to find the
615 * page for @addr. This is useful if the default behavior
616 * (using pte_page()) would not find the correct page.
617 */
618 struct page *(*find_special_page)(struct vm_area_struct *vma,
619 unsigned long addr);
1da177e4
LT
620};
621
ef6a22b7
MG
622#ifdef CONFIG_NUMA_BALANCING
623static inline void vma_numab_state_init(struct vm_area_struct *vma)
624{
625 vma->numab_state = NULL;
626}
627static inline void vma_numab_state_free(struct vm_area_struct *vma)
628{
629 kfree(vma->numab_state);
630}
631#else
632static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
633static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
634#endif /* CONFIG_NUMA_BALANCING */
635
5e31275c 636#ifdef CONFIG_PER_VMA_LOCK
5e31275c
SB
637/*
638 * Try to read-lock a vma. The function is allowed to occasionally yield false
639 * locked result to avoid performance overhead, in which case we fall back to
640 * using mmap_lock. The function should never yield false unlocked result.
641 */
642static inline bool vma_start_read(struct vm_area_struct *vma)
643{
644 /* Check before locking. A race might cause false locked result. */
645 if (vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))
646 return false;
647
c7f8f31c 648 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
5e31275c
SB
649 return false;
650
651 /*
652 * Overflow might produce false locked result.
653 * False unlocked result is impossible because we modify and check
c7f8f31c 654 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
5e31275c
SB
655 * modification invalidates all existing locks.
656 */
657 if (unlikely(vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))) {
c7f8f31c 658 up_read(&vma->vm_lock->lock);
5e31275c
SB
659 return false;
660 }
661 return true;
662}
663
664static inline void vma_end_read(struct vm_area_struct *vma)
665{
666 rcu_read_lock(); /* keeps vma alive till the end of up_read */
c7f8f31c 667 up_read(&vma->vm_lock->lock);
5e31275c
SB
668 rcu_read_unlock();
669}
670
55fd6fcc 671static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
5e31275c 672{
5e31275c
SB
673 mmap_assert_write_locked(vma->vm_mm);
674
675 /*
676 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
677 * mm->mm_lock_seq can't be concurrently modified.
678 */
55fd6fcc
SB
679 *mm_lock_seq = READ_ONCE(vma->vm_mm->mm_lock_seq);
680 return (vma->vm_lock_seq == *mm_lock_seq);
681}
682
683static inline void vma_start_write(struct vm_area_struct *vma)
684{
685 int mm_lock_seq;
686
687 if (__is_vma_write_locked(vma, &mm_lock_seq))
5e31275c
SB
688 return;
689
c7f8f31c 690 down_write(&vma->vm_lock->lock);
5e31275c 691 vma->vm_lock_seq = mm_lock_seq;
c7f8f31c 692 up_write(&vma->vm_lock->lock);
5e31275c
SB
693}
694
55fd6fcc
SB
695static inline bool vma_try_start_write(struct vm_area_struct *vma)
696{
697 int mm_lock_seq;
698
699 if (__is_vma_write_locked(vma, &mm_lock_seq))
700 return true;
701
702 if (!down_write_trylock(&vma->vm_lock->lock))
703 return false;
704
705 vma->vm_lock_seq = mm_lock_seq;
706 up_write(&vma->vm_lock->lock);
707 return true;
708}
709
5e31275c
SB
710static inline void vma_assert_write_locked(struct vm_area_struct *vma)
711{
55fd6fcc
SB
712 int mm_lock_seq;
713
714 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
5e31275c
SB
715}
716
457f67be
SB
717static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
718{
719 /* When detaching vma should be write-locked */
720 if (detached)
721 vma_assert_write_locked(vma);
722 vma->detached = detached;
723}
724
50ee3253
SB
725struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
726 unsigned long address);
727
5e31275c
SB
728#else /* CONFIG_PER_VMA_LOCK */
729
5e31275c
SB
730static inline bool vma_start_read(struct vm_area_struct *vma)
731 { return false; }
732static inline void vma_end_read(struct vm_area_struct *vma) {}
733static inline void vma_start_write(struct vm_area_struct *vma) {}
55fd6fcc
SB
734static inline bool vma_try_start_write(struct vm_area_struct *vma)
735 { return true; }
5e31275c 736static inline void vma_assert_write_locked(struct vm_area_struct *vma) {}
457f67be
SB
737static inline void vma_mark_detached(struct vm_area_struct *vma,
738 bool detached) {}
5e31275c
SB
739
740#endif /* CONFIG_PER_VMA_LOCK */
741
c7f8f31c
SB
742/*
743 * WARNING: vma_init does not initialize vma->vm_lock.
744 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
745 */
027232da
KS
746static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
747{
bfd40eaf
KS
748 static const struct vm_operations_struct dummy_vm_ops = {};
749
a670468f 750 memset(vma, 0, sizeof(*vma));
027232da 751 vma->vm_mm = mm;
bfd40eaf 752 vma->vm_ops = &dummy_vm_ops;
027232da 753 INIT_LIST_HEAD(&vma->anon_vma_chain);
457f67be 754 vma_mark_detached(vma, false);
ef6a22b7 755 vma_numab_state_init(vma);
027232da
KS
756}
757
bc292ab0
SB
758/* Use when VMA is not part of the VMA tree and needs no locking */
759static inline void vm_flags_init(struct vm_area_struct *vma,
760 vm_flags_t flags)
761{
762 ACCESS_PRIVATE(vma, __vm_flags) = flags;
763}
764
765/* Use when VMA is part of the VMA tree and modifications need coordination */
766static inline void vm_flags_reset(struct vm_area_struct *vma,
767 vm_flags_t flags)
768{
c7322933 769 vma_start_write(vma);
bc292ab0
SB
770 vm_flags_init(vma, flags);
771}
772
601c3c29
SB
773static inline void vm_flags_reset_once(struct vm_area_struct *vma,
774 vm_flags_t flags)
775{
c7322933 776 vma_start_write(vma);
601c3c29
SB
777 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
778}
779
bc292ab0
SB
780static inline void vm_flags_set(struct vm_area_struct *vma,
781 vm_flags_t flags)
782{
c7322933 783 vma_start_write(vma);
bc292ab0
SB
784 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
785}
786
787static inline void vm_flags_clear(struct vm_area_struct *vma,
788 vm_flags_t flags)
789{
c7322933 790 vma_start_write(vma);
bc292ab0
SB
791 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
792}
793
68f48381
SB
794/*
795 * Use only if VMA is not part of the VMA tree or has no other users and
796 * therefore needs no locking.
797 */
798static inline void __vm_flags_mod(struct vm_area_struct *vma,
799 vm_flags_t set, vm_flags_t clear)
800{
801 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
802}
803
bc292ab0
SB
804/*
805 * Use only when the order of set/clear operations is unimportant, otherwise
806 * use vm_flags_{set|clear} explicitly.
807 */
808static inline void vm_flags_mod(struct vm_area_struct *vma,
809 vm_flags_t set, vm_flags_t clear)
810{
c7322933 811 vma_start_write(vma);
68f48381 812 __vm_flags_mod(vma, set, clear);
bc292ab0
SB
813}
814
bfd40eaf
KS
815static inline void vma_set_anonymous(struct vm_area_struct *vma)
816{
817 vma->vm_ops = NULL;
818}
819
43675e6f
YS
820static inline bool vma_is_anonymous(struct vm_area_struct *vma)
821{
822 return !vma->vm_ops;
823}
824
222100ee
AK
825static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
826{
827 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
828
829 if (!maybe_stack)
830 return false;
831
832 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
833 VM_STACK_INCOMPLETE_SETUP)
834 return true;
835
836 return false;
837}
838
7969f226
AK
839static inline bool vma_is_foreign(struct vm_area_struct *vma)
840{
841 if (!current->mm)
842 return true;
843
844 if (current->mm != vma->vm_mm)
845 return true;
846
847 return false;
848}
3122e80e
AK
849
850static inline bool vma_is_accessible(struct vm_area_struct *vma)
851{
6cb4d9a2 852 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
853}
854
f39af059
MWO
855static inline
856struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
857{
b62b633e 858 return mas_find(&vmi->mas, max - 1);
f39af059
MWO
859}
860
861static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
862{
863 /*
b62b633e 864 * Uses mas_find() to get the first VMA when the iterator starts.
f39af059
MWO
865 * Calling mas_next() could skip the first entry.
866 */
b62b633e 867 return mas_find(&vmi->mas, ULONG_MAX);
f39af059
MWO
868}
869
bb5dbd22
LH
870static inline
871struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
872{
873 return mas_next_range(&vmi->mas, ULONG_MAX);
874}
875
876
f39af059
MWO
877static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
878{
879 return mas_prev(&vmi->mas, 0);
880}
881
bb5dbd22
LH
882static inline
883struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
884{
885 return mas_prev_range(&vmi->mas, 0);
886}
887
f39af059
MWO
888static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
889{
890 return vmi->mas.index;
891}
892
b62b633e
LH
893static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
894{
895 return vmi->mas.last + 1;
896}
897static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
898 unsigned long count)
899{
900 return mas_expected_entries(&vmi->mas, count);
901}
902
903/* Free any unused preallocations */
904static inline void vma_iter_free(struct vma_iterator *vmi)
905{
906 mas_destroy(&vmi->mas);
907}
908
909static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
910 struct vm_area_struct *vma)
911{
912 vmi->mas.index = vma->vm_start;
913 vmi->mas.last = vma->vm_end - 1;
914 mas_store(&vmi->mas, vma);
915 if (unlikely(mas_is_err(&vmi->mas)))
916 return -ENOMEM;
917
918 return 0;
919}
920
921static inline void vma_iter_invalidate(struct vma_iterator *vmi)
922{
923 mas_pause(&vmi->mas);
924}
925
926static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
927{
928 mas_set(&vmi->mas, addr);
929}
930
f39af059
MWO
931#define for_each_vma(__vmi, __vma) \
932 while (((__vma) = vma_next(&(__vmi))) != NULL)
933
934/* The MM code likes to work with exclusive end addresses */
935#define for_each_vma_range(__vmi, __vma, __end) \
b62b633e 936 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
f39af059 937
43675e6f
YS
938#ifdef CONFIG_SHMEM
939/*
940 * The vma_is_shmem is not inline because it is used only by slow
941 * paths in userfault.
942 */
943bool vma_is_shmem(struct vm_area_struct *vma);
d09e8ca6 944bool vma_is_anon_shmem(struct vm_area_struct *vma);
43675e6f
YS
945#else
946static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
d09e8ca6 947static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
43675e6f
YS
948#endif
949
950int vma_is_stack_for_current(struct vm_area_struct *vma);
951
8b11ec1b
LT
952/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
953#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
954
1da177e4
LT
955struct mmu_gather;
956struct inode;
957
5eb5cea1
MWO
958/*
959 * compound_order() can be called without holding a reference, which means
960 * that niceties like page_folio() don't work. These callers should be
961 * prepared to handle wild return values. For example, PG_head may be
962 * set before _folio_order is initialised, or this may be a tail page.
963 * See compaction.c for some good examples.
964 */
5bf34d7c
MWO
965static inline unsigned int compound_order(struct page *page)
966{
5eb5cea1
MWO
967 struct folio *folio = (struct folio *)page;
968
969 if (!test_bit(PG_head, &folio->flags))
5bf34d7c 970 return 0;
5eb5cea1 971 return folio->_folio_order;
5bf34d7c
MWO
972}
973
974/**
975 * folio_order - The allocation order of a folio.
976 * @folio: The folio.
977 *
978 * A folio is composed of 2^order pages. See get_order() for the definition
979 * of order.
980 *
981 * Return: The order of the folio.
982 */
983static inline unsigned int folio_order(struct folio *folio)
984{
c3a15bff
MWO
985 if (!folio_test_large(folio))
986 return 0;
987 return folio->_folio_order;
5bf34d7c
MWO
988}
989
71e3aac0 990#include <linux/huge_mm.h>
1da177e4
LT
991
992/*
993 * Methods to modify the page usage count.
994 *
995 * What counts for a page usage:
996 * - cache mapping (page->mapping)
997 * - private data (page->private)
998 * - page mapped in a task's page tables, each mapping
999 * is counted separately
1000 *
1001 * Also, many kernel routines increase the page count before a critical
1002 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
1003 */
1004
1005/*
da6052f7 1006 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 1007 */
7c8ee9a8
NP
1008static inline int put_page_testzero(struct page *page)
1009{
fe896d18
JK
1010 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1011 return page_ref_dec_and_test(page);
7c8ee9a8 1012}
1da177e4 1013
b620f633
MWO
1014static inline int folio_put_testzero(struct folio *folio)
1015{
1016 return put_page_testzero(&folio->page);
1017}
1018
1da177e4 1019/*
7c8ee9a8
NP
1020 * Try to grab a ref unless the page has a refcount of zero, return false if
1021 * that is the case.
8e0861fa
AK
1022 * This can be called when MMU is off so it must not access
1023 * any of the virtual mappings.
1da177e4 1024 */
c2530328 1025static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 1026{
fe896d18 1027 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 1028}
1da177e4 1029
3c1ea2c7
VMO
1030static inline struct folio *folio_get_nontail_page(struct page *page)
1031{
1032 if (unlikely(!get_page_unless_zero(page)))
1033 return NULL;
1034 return (struct folio *)page;
1035}
1036
53df8fdc 1037extern int page_is_ram(unsigned long pfn);
124fe20d
DW
1038
1039enum {
1040 REGION_INTERSECTS,
1041 REGION_DISJOINT,
1042 REGION_MIXED,
1043};
1044
1c29f25b
TK
1045int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1046 unsigned long desc);
53df8fdc 1047
48667e7a 1048/* Support for virtually mapped pages */
b3bdda02
CL
1049struct page *vmalloc_to_page(const void *addr);
1050unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 1051
0738c4bb
PM
1052/*
1053 * Determine if an address is within the vmalloc range
1054 *
1055 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1056 * is no special casing required.
1057 */
9bd3bb67
AK
1058
1059#ifndef is_ioremap_addr
1060#define is_ioremap_addr(x) is_vmalloc_addr(x)
1061#endif
1062
81ac3ad9 1063#ifdef CONFIG_MMU
186525bd 1064extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
1065extern int is_vmalloc_or_module_addr(const void *x);
1066#else
186525bd
IM
1067static inline bool is_vmalloc_addr(const void *x)
1068{
1069 return false;
1070}
934831d0 1071static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
1072{
1073 return 0;
1074}
1075#endif
9e2779fa 1076
74e8ee47
MWO
1077/*
1078 * How many times the entire folio is mapped as a single unit (eg by a
1079 * PMD or PUD entry). This is probably not what you want, except for
cb67f428
HD
1080 * debugging purposes - it does not include PTE-mapped sub-pages; look
1081 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
74e8ee47
MWO
1082 */
1083static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 1084{
74e8ee47 1085 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1aa4d03b 1086 return atomic_read(&folio->_entire_mapcount) + 1;
53f9263b
KS
1087}
1088
70b50f94
AA
1089/*
1090 * The atomic page->_mapcount, starts from -1: so that transitions
1091 * both from it and to it can be tracked, using atomic_inc_and_test
1092 * and atomic_add_negative(-1).
1093 */
22b751c3 1094static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
1095{
1096 atomic_set(&(page)->_mapcount, -1);
1097}
1098
c97eeb8f
MWO
1099/**
1100 * page_mapcount() - Number of times this precise page is mapped.
1101 * @page: The page.
1102 *
1103 * The number of times this page is mapped. If this page is part of
1104 * a large folio, it includes the number of times this page is mapped
1105 * as part of that folio.
6988f31d 1106 *
c97eeb8f 1107 * The result is undefined for pages which cannot be mapped into userspace.
6988f31d 1108 * For example SLAB or special types of pages. See function page_has_type().
c97eeb8f 1109 * They use this field in struct page differently.
6988f31d 1110 */
70b50f94
AA
1111static inline int page_mapcount(struct page *page)
1112{
cb67f428 1113 int mapcount = atomic_read(&page->_mapcount) + 1;
b20ce5e0 1114
c97eeb8f
MWO
1115 if (unlikely(PageCompound(page)))
1116 mapcount += folio_entire_mapcount(page_folio(page));
1117
1118 return mapcount;
b20ce5e0
KS
1119}
1120
b14224fb 1121int folio_total_mapcount(struct folio *folio);
4ba1119c 1122
cb67f428
HD
1123/**
1124 * folio_mapcount() - Calculate the number of mappings of this folio.
1125 * @folio: The folio.
1126 *
1127 * A large folio tracks both how many times the entire folio is mapped,
1128 * and how many times each individual page in the folio is mapped.
1129 * This function calculates the total number of times the folio is
1130 * mapped.
1131 *
1132 * Return: The number of times this folio is mapped.
1133 */
1134static inline int folio_mapcount(struct folio *folio)
4ba1119c 1135{
cb67f428
HD
1136 if (likely(!folio_test_large(folio)))
1137 return atomic_read(&folio->_mapcount) + 1;
b14224fb 1138 return folio_total_mapcount(folio);
4ba1119c
MWO
1139}
1140
b20ce5e0
KS
1141static inline int total_mapcount(struct page *page)
1142{
be5ef2d9
HD
1143 if (likely(!PageCompound(page)))
1144 return atomic_read(&page->_mapcount) + 1;
b14224fb 1145 return folio_total_mapcount(page_folio(page));
be5ef2d9
HD
1146}
1147
1148static inline bool folio_large_is_mapped(struct folio *folio)
1149{
4b51634c 1150 /*
1aa4d03b 1151 * Reading _entire_mapcount below could be omitted if hugetlb
eec20426 1152 * participated in incrementing nr_pages_mapped when compound mapped.
4b51634c 1153 */
eec20426 1154 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1aa4d03b 1155 atomic_read(&folio->_entire_mapcount) >= 0;
cb67f428
HD
1156}
1157
1158/**
1159 * folio_mapped - Is this folio mapped into userspace?
1160 * @folio: The folio.
1161 *
1162 * Return: True if any page in this folio is referenced by user page tables.
1163 */
1164static inline bool folio_mapped(struct folio *folio)
1165{
be5ef2d9
HD
1166 if (likely(!folio_test_large(folio)))
1167 return atomic_read(&folio->_mapcount) >= 0;
1168 return folio_large_is_mapped(folio);
1169}
1170
1171/*
1172 * Return true if this page is mapped into pagetables.
1173 * For compound page it returns true if any sub-page of compound page is mapped,
1174 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1175 */
1176static inline bool page_mapped(struct page *page)
1177{
1178 if (likely(!PageCompound(page)))
1179 return atomic_read(&page->_mapcount) >= 0;
1180 return folio_large_is_mapped(page_folio(page));
70b50f94
AA
1181}
1182
b49af68f
CL
1183static inline struct page *virt_to_head_page(const void *x)
1184{
1185 struct page *page = virt_to_page(x);
ccaafd7f 1186
1d798ca3 1187 return compound_head(page);
b49af68f
CL
1188}
1189
7d4203c1
VB
1190static inline struct folio *virt_to_folio(const void *x)
1191{
1192 struct page *page = virt_to_page(x);
1193
1194 return page_folio(page);
1195}
1196
8d29c703 1197void __folio_put(struct folio *folio);
ddc58f27 1198
1d7ea732 1199void put_pages_list(struct list_head *pages);
1da177e4 1200
8dfcc9ba 1201void split_page(struct page *page, unsigned int order);
715cbfd6 1202void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 1203
a1554c00
ML
1204unsigned long nr_free_buffer_pages(void);
1205
33f2ef89
AW
1206/*
1207 * Compound pages have a destructor function. Provide a
1208 * prototype for that function and accessor functions.
f1e61557 1209 * These are _only_ valid on the head of a compound page.
33f2ef89 1210 */
f1e61557
KS
1211typedef void compound_page_dtor(struct page *);
1212
1213/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1214enum compound_dtor_id {
1215 NULL_COMPOUND_DTOR,
1216 COMPOUND_PAGE_DTOR,
1217#ifdef CONFIG_HUGETLB_PAGE
1218 HUGETLB_PAGE_DTOR,
9a982250
KS
1219#endif
1220#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1221 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
1222#endif
1223 NR_COMPOUND_DTORS,
1224};
33f2ef89 1225
9fd33058
SK
1226static inline void folio_set_compound_dtor(struct folio *folio,
1227 enum compound_dtor_id compound_dtor)
1228{
1229 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1230 folio->_folio_dtor = compound_dtor;
1231}
1232
5375336c 1233void destroy_large_folio(struct folio *folio);
33f2ef89 1234
a50b854e
MWO
1235/* Returns the number of bytes in this potentially compound page. */
1236static inline unsigned long page_size(struct page *page)
1237{
1238 return PAGE_SIZE << compound_order(page);
1239}
1240
94ad9338
MWO
1241/* Returns the number of bits needed for the number of bytes in a page */
1242static inline unsigned int page_shift(struct page *page)
1243{
1244 return PAGE_SHIFT + compound_order(page);
1245}
1246
18788cfa
MWO
1247/**
1248 * thp_order - Order of a transparent huge page.
1249 * @page: Head page of a transparent huge page.
1250 */
1251static inline unsigned int thp_order(struct page *page)
1252{
1253 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1254 return compound_order(page);
1255}
1256
18788cfa
MWO
1257/**
1258 * thp_size - Size of a transparent huge page.
1259 * @page: Head page of a transparent huge page.
1260 *
1261 * Return: Number of bytes in this page.
1262 */
1263static inline unsigned long thp_size(struct page *page)
1264{
1265 return PAGE_SIZE << thp_order(page);
1266}
1267
9a982250
KS
1268void free_compound_page(struct page *page);
1269
3dece370 1270#ifdef CONFIG_MMU
14fd403f
AA
1271/*
1272 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1273 * servicing faults for write access. In the normal case, do always want
1274 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1275 * that do not have writing enabled, when used by access_process_vm.
1276 */
1277static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1278{
1279 if (likely(vma->vm_flags & VM_WRITE))
161e393c 1280 pte = pte_mkwrite(pte, vma);
14fd403f
AA
1281 return pte;
1282}
8c6e50b0 1283
f9ce0be7 1284vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1285void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1286
2b740303
SJ
1287vm_fault_t finish_fault(struct vm_fault *vmf);
1288vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1289#endif
14fd403f 1290
1da177e4
LT
1291/*
1292 * Multiple processes may "see" the same page. E.g. for untouched
1293 * mappings of /dev/null, all processes see the same page full of
1294 * zeroes, and text pages of executables and shared libraries have
1295 * only one copy in memory, at most, normally.
1296 *
1297 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1298 * page_count() == 0 means the page is free. page->lru is then used for
1299 * freelist management in the buddy allocator.
da6052f7 1300 * page_count() > 0 means the page has been allocated.
1da177e4 1301 *
da6052f7
NP
1302 * Pages are allocated by the slab allocator in order to provide memory
1303 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1304 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1305 * unless a particular usage is carefully commented. (the responsibility of
1306 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1307 *
da6052f7
NP
1308 * A page may be used by anyone else who does a __get_free_page().
1309 * In this case, page_count still tracks the references, and should only
1310 * be used through the normal accessor functions. The top bits of page->flags
1311 * and page->virtual store page management information, but all other fields
1312 * are unused and could be used privately, carefully. The management of this
1313 * page is the responsibility of the one who allocated it, and those who have
1314 * subsequently been given references to it.
1315 *
1316 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1317 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1318 * The following discussion applies only to them.
1319 *
da6052f7
NP
1320 * A pagecache page contains an opaque `private' member, which belongs to the
1321 * page's address_space. Usually, this is the address of a circular list of
1322 * the page's disk buffers. PG_private must be set to tell the VM to call
1323 * into the filesystem to release these pages.
1da177e4 1324 *
da6052f7
NP
1325 * A page may belong to an inode's memory mapping. In this case, page->mapping
1326 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1327 * in units of PAGE_SIZE.
1da177e4 1328 *
da6052f7
NP
1329 * If pagecache pages are not associated with an inode, they are said to be
1330 * anonymous pages. These may become associated with the swapcache, and in that
1331 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1332 *
da6052f7
NP
1333 * In either case (swapcache or inode backed), the pagecache itself holds one
1334 * reference to the page. Setting PG_private should also increment the
1335 * refcount. The each user mapping also has a reference to the page.
1da177e4 1336 *
da6052f7 1337 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1338 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1339 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1340 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1341 *
da6052f7 1342 * All pagecache pages may be subject to I/O:
1da177e4
LT
1343 * - inode pages may need to be read from disk,
1344 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1345 * to be written back to the inode on disk,
1346 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1347 * modified may need to be swapped out to swap space and (later) to be read
1348 * back into memory.
1da177e4
LT
1349 */
1350
27674ef6 1351#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1352DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1353
f4f451a1
MS
1354bool __put_devmap_managed_page_refs(struct page *page, int refs);
1355static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1356{
1357 if (!static_branch_unlikely(&devmap_managed_key))
1358 return false;
1359 if (!is_zone_device_page(page))
1360 return false;
f4f451a1 1361 return __put_devmap_managed_page_refs(page, refs);
e7638488 1362}
27674ef6 1363#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1364static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1365{
1366 return false;
1367}
27674ef6 1368#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1369
f4f451a1
MS
1370static inline bool put_devmap_managed_page(struct page *page)
1371{
1372 return put_devmap_managed_page_refs(page, 1);
1373}
1374
f958d7b5 1375/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1376#define folio_ref_zero_or_close_to_overflow(folio) \
1377 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1378
1379/**
1380 * folio_get - Increment the reference count on a folio.
1381 * @folio: The folio.
1382 *
1383 * Context: May be called in any context, as long as you know that
1384 * you have a refcount on the folio. If you do not already have one,
1385 * folio_try_get() may be the right interface for you to use.
1386 */
1387static inline void folio_get(struct folio *folio)
1388{
1389 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1390 folio_ref_inc(folio);
1391}
f958d7b5 1392
3565fce3
DW
1393static inline void get_page(struct page *page)
1394{
86d234cb 1395 folio_get(page_folio(page));
3565fce3
DW
1396}
1397
cd1adf1b
LT
1398static inline __must_check bool try_get_page(struct page *page)
1399{
1400 page = compound_head(page);
1401 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1402 return false;
1403 page_ref_inc(page);
1404 return true;
1405}
3565fce3 1406
b620f633
MWO
1407/**
1408 * folio_put - Decrement the reference count on a folio.
1409 * @folio: The folio.
1410 *
1411 * If the folio's reference count reaches zero, the memory will be
1412 * released back to the page allocator and may be used by another
1413 * allocation immediately. Do not access the memory or the struct folio
1414 * after calling folio_put() unless you can be sure that it wasn't the
1415 * last reference.
1416 *
1417 * Context: May be called in process or interrupt context, but not in NMI
1418 * context. May be called while holding a spinlock.
1419 */
1420static inline void folio_put(struct folio *folio)
1421{
1422 if (folio_put_testzero(folio))
8d29c703 1423 __folio_put(folio);
b620f633
MWO
1424}
1425
3fe7fa58
MWO
1426/**
1427 * folio_put_refs - Reduce the reference count on a folio.
1428 * @folio: The folio.
1429 * @refs: The amount to subtract from the folio's reference count.
1430 *
1431 * If the folio's reference count reaches zero, the memory will be
1432 * released back to the page allocator and may be used by another
1433 * allocation immediately. Do not access the memory or the struct folio
1434 * after calling folio_put_refs() unless you can be sure that these weren't
1435 * the last references.
1436 *
1437 * Context: May be called in process or interrupt context, but not in NMI
1438 * context. May be called while holding a spinlock.
1439 */
1440static inline void folio_put_refs(struct folio *folio, int refs)
1441{
1442 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1443 __folio_put(folio);
3fe7fa58
MWO
1444}
1445
0411d6ee
SP
1446/*
1447 * union release_pages_arg - an array of pages or folios
449c7967 1448 *
0411d6ee 1449 * release_pages() releases a simple array of multiple pages, and
449c7967
LT
1450 * accepts various different forms of said page array: either
1451 * a regular old boring array of pages, an array of folios, or
1452 * an array of encoded page pointers.
1453 *
1454 * The transparent union syntax for this kind of "any of these
1455 * argument types" is all kinds of ugly, so look away.
1456 */
1457typedef union {
1458 struct page **pages;
1459 struct folio **folios;
1460 struct encoded_page **encoded_pages;
1461} release_pages_arg __attribute__ ((__transparent_union__));
1462
1463void release_pages(release_pages_arg, int nr);
e3c4cebf
MWO
1464
1465/**
1466 * folios_put - Decrement the reference count on an array of folios.
1467 * @folios: The folios.
1468 * @nr: How many folios there are.
1469 *
1470 * Like folio_put(), but for an array of folios. This is more efficient
1471 * than writing the loop yourself as it will optimise the locks which
1472 * need to be taken if the folios are freed.
1473 *
1474 * Context: May be called in process or interrupt context, but not in NMI
1475 * context. May be called while holding a spinlock.
1476 */
1477static inline void folios_put(struct folio **folios, unsigned int nr)
1478{
449c7967 1479 release_pages(folios, nr);
3fe7fa58
MWO
1480}
1481
3565fce3
DW
1482static inline void put_page(struct page *page)
1483{
b620f633 1484 struct folio *folio = page_folio(page);
3565fce3 1485
7b2d55d2 1486 /*
89574945
CH
1487 * For some devmap managed pages we need to catch refcount transition
1488 * from 2 to 1:
7b2d55d2 1489 */
89574945 1490 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1491 return;
b620f633 1492 folio_put(folio);
3565fce3
DW
1493}
1494
3faa52c0
JH
1495/*
1496 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1497 * the page's refcount so that two separate items are tracked: the original page
1498 * reference count, and also a new count of how many pin_user_pages() calls were
1499 * made against the page. ("gup-pinned" is another term for the latter).
1500 *
1501 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1502 * distinct from normal pages. As such, the unpin_user_page() call (and its
1503 * variants) must be used in order to release gup-pinned pages.
1504 *
1505 * Choice of value:
1506 *
1507 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1508 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1509 * simpler, due to the fact that adding an even power of two to the page
1510 * refcount has the effect of using only the upper N bits, for the code that
1511 * counts up using the bias value. This means that the lower bits are left for
1512 * the exclusive use of the original code that increments and decrements by one
1513 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1514 *
3faa52c0
JH
1515 * Of course, once the lower bits overflow into the upper bits (and this is
1516 * OK, because subtraction recovers the original values), then visual inspection
1517 * no longer suffices to directly view the separate counts. However, for normal
1518 * applications that don't have huge page reference counts, this won't be an
1519 * issue.
fc1d8e7c 1520 *
40fcc7fc
MWO
1521 * Locking: the lockless algorithm described in folio_try_get_rcu()
1522 * provides safe operation for get_user_pages(), page_mkclean() and
1523 * other calls that race to set up page table entries.
fc1d8e7c 1524 */
3faa52c0 1525#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1526
3faa52c0 1527void unpin_user_page(struct page *page);
f1f6a7dd
JH
1528void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1529 bool make_dirty);
458a4f78
JM
1530void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1531 bool make_dirty);
f1f6a7dd 1532void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1533
97a7e473
PX
1534static inline bool is_cow_mapping(vm_flags_t flags)
1535{
1536 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1537}
1538
fc4f4be9
DH
1539#ifndef CONFIG_MMU
1540static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1541{
1542 /*
1543 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1544 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1545 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1546 * underlying memory if ptrace is active, so this is only possible if
1547 * ptrace does not apply. Note that there is no mprotect() to upgrade
1548 * write permissions later.
1549 */
b6b7a8fa 1550 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
fc4f4be9
DH
1551}
1552#endif
1553
9127ab4f
CS
1554#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1555#define SECTION_IN_PAGE_FLAGS
1556#endif
1557
89689ae7 1558/*
7a8010cd
VB
1559 * The identification function is mainly used by the buddy allocator for
1560 * determining if two pages could be buddies. We are not really identifying
1561 * the zone since we could be using the section number id if we do not have
1562 * node id available in page flags.
1563 * We only guarantee that it will return the same value for two combinable
1564 * pages in a zone.
89689ae7 1565 */
cb2b95e1
AW
1566static inline int page_zone_id(struct page *page)
1567{
89689ae7 1568 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1569}
1570
89689ae7 1571#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1572extern int page_to_nid(const struct page *page);
89689ae7 1573#else
33dd4e0e 1574static inline int page_to_nid(const struct page *page)
d41dee36 1575{
f165b378
PT
1576 struct page *p = (struct page *)page;
1577
1578 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1579}
89689ae7
CL
1580#endif
1581
874fd90c
MWO
1582static inline int folio_nid(const struct folio *folio)
1583{
1584 return page_to_nid(&folio->page);
1585}
1586
57e0a030 1587#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1588/* page access time bits needs to hold at least 4 seconds */
1589#define PAGE_ACCESS_TIME_MIN_BITS 12
1590#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1591#define PAGE_ACCESS_TIME_BUCKETS \
1592 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1593#else
1594#define PAGE_ACCESS_TIME_BUCKETS 0
1595#endif
1596
1597#define PAGE_ACCESS_TIME_MASK \
1598 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1599
90572890 1600static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1601{
90572890 1602 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1603}
1604
90572890 1605static inline int cpupid_to_pid(int cpupid)
57e0a030 1606{
90572890 1607 return cpupid & LAST__PID_MASK;
57e0a030 1608}
b795854b 1609
90572890 1610static inline int cpupid_to_cpu(int cpupid)
b795854b 1611{
90572890 1612 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1613}
1614
90572890 1615static inline int cpupid_to_nid(int cpupid)
b795854b 1616{
90572890 1617 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1618}
1619
90572890 1620static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1621{
90572890 1622 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1623}
1624
90572890 1625static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1626{
90572890 1627 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1628}
1629
8c8a743c
PZ
1630static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1631{
1632 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1633}
1634
1635#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1636#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1637static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1638{
1ae71d03 1639 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1640}
90572890
PZ
1641
1642static inline int page_cpupid_last(struct page *page)
1643{
1644 return page->_last_cpupid;
1645}
1646static inline void page_cpupid_reset_last(struct page *page)
b795854b 1647{
1ae71d03 1648 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1649}
1650#else
90572890 1651static inline int page_cpupid_last(struct page *page)
75980e97 1652{
90572890 1653 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1654}
1655
90572890 1656extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1657
90572890 1658static inline void page_cpupid_reset_last(struct page *page)
75980e97 1659{
09940a4f 1660 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1661}
90572890 1662#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536
HY
1663
1664static inline int xchg_page_access_time(struct page *page, int time)
1665{
1666 int last_time;
1667
1668 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1669 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1670}
fc137c0d
R
1671
1672static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1673{
1674 unsigned int pid_bit;
1675
d46031f4 1676 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
20f58648
R
1677 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) {
1678 __set_bit(pid_bit, &vma->numab_state->access_pids[1]);
fc137c0d
R
1679 }
1680}
90572890
PZ
1681#else /* !CONFIG_NUMA_BALANCING */
1682static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1683{
90572890 1684 return page_to_nid(page); /* XXX */
57e0a030
MG
1685}
1686
33024536
HY
1687static inline int xchg_page_access_time(struct page *page, int time)
1688{
1689 return 0;
1690}
1691
90572890 1692static inline int page_cpupid_last(struct page *page)
57e0a030 1693{
90572890 1694 return page_to_nid(page); /* XXX */
57e0a030
MG
1695}
1696
90572890 1697static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1698{
1699 return -1;
1700}
1701
90572890 1702static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1703{
1704 return -1;
1705}
1706
90572890 1707static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1708{
1709 return -1;
1710}
1711
90572890
PZ
1712static inline int cpu_pid_to_cpupid(int nid, int pid)
1713{
1714 return -1;
1715}
1716
1717static inline bool cpupid_pid_unset(int cpupid)
b795854b 1718{
2b787449 1719 return true;
b795854b
MG
1720}
1721
90572890 1722static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1723{
1724}
8c8a743c
PZ
1725
1726static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1727{
1728 return false;
1729}
fc137c0d
R
1730
1731static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1732{
1733}
90572890 1734#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1735
2e903b91 1736#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1737
cf10bd4c
AK
1738/*
1739 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1740 * setting tags for all pages to native kernel tag value 0xff, as the default
1741 * value 0x00 maps to 0xff.
1742 */
1743
2813b9c0
AK
1744static inline u8 page_kasan_tag(const struct page *page)
1745{
cf10bd4c
AK
1746 u8 tag = 0xff;
1747
1748 if (kasan_enabled()) {
1749 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1750 tag ^= 0xff;
1751 }
1752
1753 return tag;
2813b9c0
AK
1754}
1755
1756static inline void page_kasan_tag_set(struct page *page, u8 tag)
1757{
27fe7339
PC
1758 unsigned long old_flags, flags;
1759
1760 if (!kasan_enabled())
1761 return;
1762
1763 tag ^= 0xff;
1764 old_flags = READ_ONCE(page->flags);
1765 do {
1766 flags = old_flags;
1767 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1768 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1769 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1770}
1771
1772static inline void page_kasan_tag_reset(struct page *page)
1773{
34303244
AK
1774 if (kasan_enabled())
1775 page_kasan_tag_set(page, 0xff);
2813b9c0 1776}
34303244
AK
1777
1778#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1779
2813b9c0
AK
1780static inline u8 page_kasan_tag(const struct page *page)
1781{
1782 return 0xff;
1783}
1784
1785static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1786static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1787
1788#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1789
33dd4e0e 1790static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1791{
1792 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1793}
1794
75ef7184
MG
1795static inline pg_data_t *page_pgdat(const struct page *page)
1796{
1797 return NODE_DATA(page_to_nid(page));
1798}
1799
32b8fc48
MWO
1800static inline struct zone *folio_zone(const struct folio *folio)
1801{
1802 return page_zone(&folio->page);
1803}
1804
1805static inline pg_data_t *folio_pgdat(const struct folio *folio)
1806{
1807 return page_pgdat(&folio->page);
1808}
1809
9127ab4f 1810#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1811static inline void set_page_section(struct page *page, unsigned long section)
1812{
1813 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1814 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1815}
1816
aa462abe 1817static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1818{
1819 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1820}
308c05e3 1821#endif
d41dee36 1822
bf6bd276
MWO
1823/**
1824 * folio_pfn - Return the Page Frame Number of a folio.
1825 * @folio: The folio.
1826 *
1827 * A folio may contain multiple pages. The pages have consecutive
1828 * Page Frame Numbers.
1829 *
1830 * Return: The Page Frame Number of the first page in the folio.
1831 */
1832static inline unsigned long folio_pfn(struct folio *folio)
1833{
1834 return page_to_pfn(&folio->page);
1835}
1836
018ee47f
YZ
1837static inline struct folio *pfn_folio(unsigned long pfn)
1838{
1839 return page_folio(pfn_to_page(pfn));
1840}
1841
0b90ddae
MWO
1842/**
1843 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1844 * @folio: The folio.
1845 *
1846 * This function checks if a folio has been pinned via a call to
1847 * a function in the pin_user_pages() family.
1848 *
1849 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1850 * because it means "definitely not pinned for DMA", but true means "probably
1851 * pinned for DMA, but possibly a false positive due to having at least
1852 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1853 *
1854 * False positives are OK, because: a) it's unlikely for a folio to
1855 * get that many refcounts, and b) all the callers of this routine are
1856 * expected to be able to deal gracefully with a false positive.
1857 *
1858 * For large folios, the result will be exactly correct. That's because
94688e8e 1859 * we have more tracking data available: the _pincount field is used
0b90ddae
MWO
1860 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1861 *
1862 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1863 *
1864 * Return: True, if it is likely that the page has been "dma-pinned".
1865 * False, if the page is definitely not dma-pinned.
1866 */
1867static inline bool folio_maybe_dma_pinned(struct folio *folio)
1868{
1869 if (folio_test_large(folio))
94688e8e 1870 return atomic_read(&folio->_pincount) > 0;
0b90ddae
MWO
1871
1872 /*
1873 * folio_ref_count() is signed. If that refcount overflows, then
1874 * folio_ref_count() returns a negative value, and callers will avoid
1875 * further incrementing the refcount.
1876 *
1877 * Here, for that overflow case, use the sign bit to count a little
1878 * bit higher via unsigned math, and thus still get an accurate result.
1879 */
1880 return ((unsigned int)folio_ref_count(folio)) >=
1881 GUP_PIN_COUNTING_BIAS;
1882}
1883
1884static inline bool page_maybe_dma_pinned(struct page *page)
1885{
1886 return folio_maybe_dma_pinned(page_folio(page));
1887}
1888
1889/*
1890 * This should most likely only be called during fork() to see whether we
fb3d824d 1891 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1892 *
1893 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1894 */
1895static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1896 struct page *page)
1897{
623a1ddf 1898 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1899
1900 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1901 return false;
1902
1903 return page_maybe_dma_pinned(page);
1904}
1905
c8070b78
DH
1906/**
1907 * is_zero_page - Query if a page is a zero page
1908 * @page: The page to query
1909 *
1910 * This returns true if @page is one of the permanent zero pages.
1911 */
1912static inline bool is_zero_page(const struct page *page)
1913{
1914 return is_zero_pfn(page_to_pfn(page));
1915}
1916
1917/**
1918 * is_zero_folio - Query if a folio is a zero page
1919 * @folio: The folio to query
1920 *
1921 * This returns true if @folio is one of the permanent zero pages.
1922 */
1923static inline bool is_zero_folio(const struct folio *folio)
1924{
1925 return is_zero_page(&folio->page);
1926}
1927
5d949953 1928/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
8e3560d9 1929#ifdef CONFIG_MIGRATION
5d949953 1930static inline bool folio_is_longterm_pinnable(struct folio *folio)
8e3560d9 1931{
1c563432 1932#ifdef CONFIG_CMA
5d949953 1933 int mt = folio_migratetype(folio);
1c563432
MK
1934
1935 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1936 return false;
1937#endif
c8070b78 1938 /* The zero page can be "pinned" but gets special handling. */
6e17c6de 1939 if (is_zero_folio(folio))
fcab34b4
AW
1940 return true;
1941
1942 /* Coherent device memory must always allow eviction. */
5d949953 1943 if (folio_is_device_coherent(folio))
fcab34b4
AW
1944 return false;
1945
5d949953
VMO
1946 /* Otherwise, non-movable zone folios can be pinned. */
1947 return !folio_is_zone_movable(folio);
1948
8e3560d9
PT
1949}
1950#else
5d949953 1951static inline bool folio_is_longterm_pinnable(struct folio *folio)
8e3560d9
PT
1952{
1953 return true;
1954}
1955#endif
1956
2f1b6248 1957static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1958{
1959 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1960 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1961}
2f1b6248 1962
348f8b6c
DH
1963static inline void set_page_node(struct page *page, unsigned long node)
1964{
1965 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1966 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1967}
89689ae7 1968
2f1b6248 1969static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1970 unsigned long node, unsigned long pfn)
1da177e4 1971{
348f8b6c
DH
1972 set_page_zone(page, zone);
1973 set_page_node(page, node);
9127ab4f 1974#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1975 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1976#endif
1da177e4
LT
1977}
1978
7b230db3
MWO
1979/**
1980 * folio_nr_pages - The number of pages in the folio.
1981 * @folio: The folio.
1982 *
1983 * Return: A positive power of two.
1984 */
1985static inline long folio_nr_pages(struct folio *folio)
1986{
c3a15bff
MWO
1987 if (!folio_test_large(folio))
1988 return 1;
1989#ifdef CONFIG_64BIT
1990 return folio->_folio_nr_pages;
1991#else
1992 return 1L << folio->_folio_order;
1993#endif
7b230db3
MWO
1994}
1995
21a000fe
MWO
1996/*
1997 * compound_nr() returns the number of pages in this potentially compound
1998 * page. compound_nr() can be called on a tail page, and is defined to
1999 * return 1 in that case.
2000 */
2001static inline unsigned long compound_nr(struct page *page)
2002{
2003 struct folio *folio = (struct folio *)page;
2004
2005 if (!test_bit(PG_head, &folio->flags))
2006 return 1;
2007#ifdef CONFIG_64BIT
2008 return folio->_folio_nr_pages;
2009#else
2010 return 1L << folio->_folio_order;
2011#endif
2012}
2013
2014/**
2015 * thp_nr_pages - The number of regular pages in this huge page.
2016 * @page: The head page of a huge page.
2017 */
2018static inline int thp_nr_pages(struct page *page)
2019{
2020 return folio_nr_pages((struct folio *)page);
2021}
2022
7b230db3
MWO
2023/**
2024 * folio_next - Move to the next physical folio.
2025 * @folio: The folio we're currently operating on.
2026 *
2027 * If you have physically contiguous memory which may span more than
2028 * one folio (eg a &struct bio_vec), use this function to move from one
2029 * folio to the next. Do not use it if the memory is only virtually
2030 * contiguous as the folios are almost certainly not adjacent to each
2031 * other. This is the folio equivalent to writing ``page++``.
2032 *
2033 * Context: We assume that the folios are refcounted and/or locked at a
2034 * higher level and do not adjust the reference counts.
2035 * Return: The next struct folio.
2036 */
2037static inline struct folio *folio_next(struct folio *folio)
2038{
2039 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2040}
2041
2042/**
2043 * folio_shift - The size of the memory described by this folio.
2044 * @folio: The folio.
2045 *
2046 * A folio represents a number of bytes which is a power-of-two in size.
2047 * This function tells you which power-of-two the folio is. See also
2048 * folio_size() and folio_order().
2049 *
2050 * Context: The caller should have a reference on the folio to prevent
2051 * it from being split. It is not necessary for the folio to be locked.
2052 * Return: The base-2 logarithm of the size of this folio.
2053 */
2054static inline unsigned int folio_shift(struct folio *folio)
2055{
2056 return PAGE_SHIFT + folio_order(folio);
2057}
2058
2059/**
2060 * folio_size - The number of bytes in a folio.
2061 * @folio: The folio.
2062 *
2063 * Context: The caller should have a reference on the folio to prevent
2064 * it from being split. It is not necessary for the folio to be locked.
2065 * Return: The number of bytes in this folio.
2066 */
2067static inline size_t folio_size(struct folio *folio)
2068{
2069 return PAGE_SIZE << folio_order(folio);
2070}
2071
fa4e3f5f
VMO
2072/**
2073 * folio_estimated_sharers - Estimate the number of sharers of a folio.
2074 * @folio: The folio.
2075 *
2076 * folio_estimated_sharers() aims to serve as a function to efficiently
2077 * estimate the number of processes sharing a folio. This is done by
2078 * looking at the precise mapcount of the first subpage in the folio, and
2079 * assuming the other subpages are the same. This may not be true for large
2080 * folios. If you want exact mapcounts for exact calculations, look at
2081 * page_mapcount() or folio_total_mapcount().
2082 *
2083 * Return: The estimated number of processes sharing a folio.
2084 */
2085static inline int folio_estimated_sharers(struct folio *folio)
2086{
2087 return page_mapcount(folio_page(folio, 0));
2088}
2089
b424de33
MWO
2090#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2091static inline int arch_make_page_accessible(struct page *page)
2092{
2093 return 0;
2094}
2095#endif
2096
2097#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2098static inline int arch_make_folio_accessible(struct folio *folio)
2099{
2100 int ret;
2101 long i, nr = folio_nr_pages(folio);
2102
2103 for (i = 0; i < nr; i++) {
2104 ret = arch_make_page_accessible(folio_page(folio, i));
2105 if (ret)
2106 break;
2107 }
2108
2109 return ret;
2110}
2111#endif
2112
f6ac2354
CL
2113/*
2114 * Some inline functions in vmstat.h depend on page_zone()
2115 */
2116#include <linux/vmstat.h>
2117
33dd4e0e 2118static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 2119{
1dff8083 2120 return page_to_virt(page);
1da177e4
LT
2121}
2122
2123#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2124#define HASHED_PAGE_VIRTUAL
2125#endif
2126
2127#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
2128static inline void *page_address(const struct page *page)
2129{
2130 return page->virtual;
2131}
2132static inline void set_page_address(struct page *page, void *address)
2133{
2134 page->virtual = address;
2135}
1da177e4
LT
2136#define page_address_init() do { } while(0)
2137#endif
2138
2139#if defined(HASHED_PAGE_VIRTUAL)
f9918794 2140void *page_address(const struct page *page);
1da177e4
LT
2141void set_page_address(struct page *page, void *virtual);
2142void page_address_init(void);
2143#endif
2144
2145#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2146#define page_address(page) lowmem_page_address(page)
2147#define set_page_address(page, address) do { } while(0)
2148#define page_address_init() do { } while(0)
2149#endif
2150
7d4203c1
VB
2151static inline void *folio_address(const struct folio *folio)
2152{
2153 return page_address(&folio->page);
2154}
2155
e39155ea 2156extern void *page_rmapping(struct page *page);
f6ab1f7f
HY
2157extern pgoff_t __page_file_index(struct page *page);
2158
1da177e4
LT
2159/*
2160 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 2161 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
2162 */
2163static inline pgoff_t page_index(struct page *page)
2164{
2165 if (unlikely(PageSwapCache(page)))
f6ab1f7f 2166 return __page_file_index(page);
1da177e4
LT
2167 return page->index;
2168}
2169
2f064f34
MH
2170/*
2171 * Return true only if the page has been allocated with
2172 * ALLOC_NO_WATERMARKS and the low watermark was not
2173 * met implying that the system is under some pressure.
2174 */
1d7bab6a 2175static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
2176{
2177 /*
c07aea3e
MC
2178 * lru.next has bit 1 set if the page is allocated from the
2179 * pfmemalloc reserves. Callers may simply overwrite it if
2180 * they do not need to preserve that information.
2f064f34 2181 */
c07aea3e 2182 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
2183}
2184
02d65d6f
SK
2185/*
2186 * Return true only if the folio has been allocated with
2187 * ALLOC_NO_WATERMARKS and the low watermark was not
2188 * met implying that the system is under some pressure.
2189 */
2190static inline bool folio_is_pfmemalloc(const struct folio *folio)
2191{
2192 /*
2193 * lru.next has bit 1 set if the page is allocated from the
2194 * pfmemalloc reserves. Callers may simply overwrite it if
2195 * they do not need to preserve that information.
2196 */
2197 return (uintptr_t)folio->lru.next & BIT(1);
2198}
2199
2f064f34
MH
2200/*
2201 * Only to be called by the page allocator on a freshly allocated
2202 * page.
2203 */
2204static inline void set_page_pfmemalloc(struct page *page)
2205{
c07aea3e 2206 page->lru.next = (void *)BIT(1);
2f064f34
MH
2207}
2208
2209static inline void clear_page_pfmemalloc(struct page *page)
2210{
c07aea3e 2211 page->lru.next = NULL;
2f064f34
MH
2212}
2213
1c0fe6e3
NP
2214/*
2215 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2216 */
2217extern void pagefault_out_of_memory(void);
2218
1da177e4 2219#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 2220#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 2221#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 2222
ddd588b5 2223/*
7bf02ea2 2224 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
2225 * various contexts.
2226 */
4b59e6c4 2227#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 2228
974f4367
MH
2229extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2230static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2231{
2232 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2233}
1da177e4 2234
21b85b09
MK
2235/*
2236 * Parameter block passed down to zap_pte_range in exceptional cases.
2237 */
2238struct zap_details {
2239 struct folio *single_folio; /* Locked folio to be unmapped */
2240 bool even_cows; /* Zap COWed private pages too? */
2241 zap_flags_t zap_flags; /* Extra flags for zapping */
2242};
2243
2244/*
2245 * Whether to drop the pte markers, for example, the uffd-wp information for
2246 * file-backed memory. This should only be specified when we will completely
2247 * drop the page in the mm, either by truncation or unmapping of the vma. By
2248 * default, the flag is not set.
2249 */
2250#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
04ada095
MK
2251/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2252#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
21b85b09 2253
af7f588d
MD
2254#ifdef CONFIG_SCHED_MM_CID
2255void sched_mm_cid_before_execve(struct task_struct *t);
2256void sched_mm_cid_after_execve(struct task_struct *t);
2257void sched_mm_cid_fork(struct task_struct *t);
2258void sched_mm_cid_exit_signals(struct task_struct *t);
2259static inline int task_mm_cid(struct task_struct *t)
2260{
2261 return t->mm_cid;
2262}
2263#else
2264static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2265static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2266static inline void sched_mm_cid_fork(struct task_struct *t) { }
2267static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2268static inline int task_mm_cid(struct task_struct *t)
2269{
2270 /*
2271 * Use the processor id as a fall-back when the mm cid feature is
2272 * disabled. This provides functional per-cpu data structure accesses
2273 * in user-space, althrough it won't provide the memory usage benefits.
2274 */
2275 return raw_smp_processor_id();
2276}
2277#endif
2278
710ec38b 2279#ifdef CONFIG_MMU
7f43add4 2280extern bool can_do_mlock(void);
710ec38b
AB
2281#else
2282static inline bool can_do_mlock(void) { return false; }
2283#endif
d7c9e99a
AG
2284extern int user_shm_lock(size_t, struct ucounts *);
2285extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 2286
318e9342
VMO
2287struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2288 pte_t pte);
25b2995a
CH
2289struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2290 pte_t pte);
28093f9f
GS
2291struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2292 pmd_t pmd);
7e675137 2293
27d036e3
LR
2294void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2295 unsigned long size);
21b85b09
MK
2296void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2297 unsigned long size, struct zap_details *details);
e9adcfec
MK
2298static inline void zap_vma_pages(struct vm_area_struct *vma)
2299{
2300 zap_page_range_single(vma, vma->vm_start,
2301 vma->vm_end - vma->vm_start, NULL);
2302}
763ecb03
LH
2303void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2304 struct vm_area_struct *start_vma, unsigned long start,
68f48381 2305 unsigned long end, bool mm_wr_locked);
e6473092 2306
ac46d4f3
JG
2307struct mmu_notifier_range;
2308
42b77728 2309void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 2310 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
2311int
2312copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 2313int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 2314 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
2315int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2316 unsigned long *pfn);
d87fe660 2317int follow_phys(struct vm_area_struct *vma, unsigned long address,
2318 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
2319int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2320 void *buf, int len, int write);
1da177e4 2321
7caef267 2322extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 2323extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 2324void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 2325void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 2326int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 2327
d85a143b
LT
2328struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2329 unsigned long address, struct pt_regs *regs);
2330
7ee1dd3f 2331#ifdef CONFIG_MMU
2b740303 2332extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2333 unsigned long address, unsigned int flags,
2334 struct pt_regs *regs);
64019a2e 2335extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
2336 unsigned long address, unsigned int fault_flags,
2337 bool *unlocked);
977fbdcd
MW
2338void unmap_mapping_pages(struct address_space *mapping,
2339 pgoff_t start, pgoff_t nr, bool even_cows);
2340void unmap_mapping_range(struct address_space *mapping,
2341 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 2342#else
2b740303 2343static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2344 unsigned long address, unsigned int flags,
2345 struct pt_regs *regs)
7ee1dd3f
DH
2346{
2347 /* should never happen if there's no MMU */
2348 BUG();
2349 return VM_FAULT_SIGBUS;
2350}
64019a2e 2351static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 2352 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
2353{
2354 /* should never happen if there's no MMU */
2355 BUG();
2356 return -EFAULT;
2357}
977fbdcd
MW
2358static inline void unmap_mapping_pages(struct address_space *mapping,
2359 pgoff_t start, pgoff_t nr, bool even_cows) { }
2360static inline void unmap_mapping_range(struct address_space *mapping,
2361 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 2362#endif
f33ea7f4 2363
977fbdcd
MW
2364static inline void unmap_shared_mapping_range(struct address_space *mapping,
2365 loff_t const holebegin, loff_t const holelen)
2366{
2367 unmap_mapping_range(mapping, holebegin, holelen, 0);
2368}
2369
ca5e8632
LS
2370static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2371 unsigned long addr);
2372
977fbdcd
MW
2373extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2374 void *buf, int len, unsigned int gup_flags);
5ddd36b9 2375extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 2376 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
2377extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2378 void *buf, int len, unsigned int gup_flags);
1da177e4 2379
64019a2e 2380long get_user_pages_remote(struct mm_struct *mm,
ca5e8632
LS
2381 unsigned long start, unsigned long nr_pages,
2382 unsigned int gup_flags, struct page **pages,
2383 int *locked);
64019a2e 2384long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2385 unsigned long start, unsigned long nr_pages,
2386 unsigned int gup_flags, struct page **pages,
0b295316 2387 int *locked);
ca5e8632
LS
2388
2389static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2390 unsigned long addr,
2391 int gup_flags,
2392 struct vm_area_struct **vmap)
2393{
2394 struct page *page;
2395 struct vm_area_struct *vma;
2396 int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2397
2398 if (got < 0)
2399 return ERR_PTR(got);
2400 if (got == 0)
2401 return NULL;
2402
2403 vma = vma_lookup(mm, addr);
2404 if (WARN_ON_ONCE(!vma)) {
2405 put_page(page);
2406 return ERR_PTR(-EINVAL);
2407 }
2408
2409 *vmap = vma;
2410 return page;
2411}
2412
c12d2da5 2413long get_user_pages(unsigned long start, unsigned long nr_pages,
54d02069 2414 unsigned int gup_flags, struct page **pages);
eddb1c22 2415long pin_user_pages(unsigned long start, unsigned long nr_pages,
4c630f30 2416 unsigned int gup_flags, struct page **pages);
c12d2da5 2417long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 2418 struct page **pages, unsigned int gup_flags);
91429023
JH
2419long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2420 struct page **pages, unsigned int gup_flags);
9a4e9f3b 2421
73b0140b
IW
2422int get_user_pages_fast(unsigned long start, int nr_pages,
2423 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
2424int pin_user_pages_fast(unsigned long start, int nr_pages,
2425 unsigned int gup_flags, struct page **pages);
1101fb8f 2426void folio_add_pin(struct folio *folio);
8025e5dd 2427
79eb597c
DJ
2428int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2429int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2430 struct task_struct *task, bool bypass_rlim);
2431
18022c5d 2432struct kvec;
f3e8fccd 2433struct page *get_dump_page(unsigned long addr);
1da177e4 2434
b5e84594
MWO
2435bool folio_mark_dirty(struct folio *folio);
2436bool set_page_dirty(struct page *page);
1da177e4 2437int set_page_dirty_lock(struct page *page);
b9ea2515 2438
a9090253 2439int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 2440
b6a2fea3
OW
2441extern unsigned long move_page_tables(struct vm_area_struct *vma,
2442 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
2443 unsigned long new_addr, unsigned long len,
2444 bool need_rmap_locks);
58705444
PX
2445
2446/*
2447 * Flags used by change_protection(). For now we make it a bitmap so
2448 * that we can pass in multiple flags just like parameters. However
2449 * for now all the callers are only use one of the flags at the same
2450 * time.
2451 */
64fe24a3
DH
2452/*
2453 * Whether we should manually check if we can map individual PTEs writable,
2454 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2455 * PTEs automatically in a writable mapping.
2456 */
2457#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
2458/* Whether this protection change is for NUMA hints */
2459#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2460/* Whether this change is for write protecting */
2461#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2462#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2463#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2464 MM_CP_UFFD_WP_RESOLVE)
58705444 2465
54cbbbf3 2466bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
eb309ec8
DH
2467int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2468static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2469{
2470 /*
2471 * We want to check manually if we can change individual PTEs writable
2472 * if we can't do that automatically for all PTEs in a mapping. For
2473 * private mappings, that's always the case when we have write
2474 * permissions as we properly have to handle COW.
2475 */
2476 if (vma->vm_flags & VM_SHARED)
2477 return vma_wants_writenotify(vma, vma->vm_page_prot);
2478 return !!(vma->vm_flags & VM_WRITE);
2479
2480}
6a56ccbc
DH
2481bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2482 pte_t pte);
a79390f5 2483extern long change_protection(struct mmu_gather *tlb,
4a18419f 2484 struct vm_area_struct *vma, unsigned long start,
1ef488ed 2485 unsigned long end, unsigned long cp_flags);
2286a691
LH
2486extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2487 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2488 unsigned long start, unsigned long end, unsigned long newflags);
1da177e4 2489
465a454f
PZ
2490/*
2491 * doesn't attempt to fault and will return short.
2492 */
dadbb612
SJ
2493int get_user_pages_fast_only(unsigned long start, int nr_pages,
2494 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2495
2496static inline bool get_user_page_fast_only(unsigned long addr,
2497 unsigned int gup_flags, struct page **pagep)
2498{
2499 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2500}
d559db08
KH
2501/*
2502 * per-process(per-mm_struct) statistics.
2503 */
d559db08
KH
2504static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2505{
f1a79412 2506 return percpu_counter_read_positive(&mm->rss_stat[member]);
69c97823 2507}
d559db08 2508
f1a79412 2509void mm_trace_rss_stat(struct mm_struct *mm, int member);
b3d1411b 2510
d559db08
KH
2511static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2512{
f1a79412 2513 percpu_counter_add(&mm->rss_stat[member], value);
b3d1411b 2514
f1a79412 2515 mm_trace_rss_stat(mm, member);
d559db08
KH
2516}
2517
2518static inline void inc_mm_counter(struct mm_struct *mm, int member)
2519{
f1a79412 2520 percpu_counter_inc(&mm->rss_stat[member]);
b3d1411b 2521
f1a79412 2522 mm_trace_rss_stat(mm, member);
d559db08
KH
2523}
2524
2525static inline void dec_mm_counter(struct mm_struct *mm, int member)
2526{
f1a79412 2527 percpu_counter_dec(&mm->rss_stat[member]);
b3d1411b 2528
f1a79412 2529 mm_trace_rss_stat(mm, member);
d559db08
KH
2530}
2531
eca56ff9
JM
2532/* Optimized variant when page is already known not to be PageAnon */
2533static inline int mm_counter_file(struct page *page)
2534{
2535 if (PageSwapBacked(page))
2536 return MM_SHMEMPAGES;
2537 return MM_FILEPAGES;
2538}
2539
2540static inline int mm_counter(struct page *page)
2541{
2542 if (PageAnon(page))
2543 return MM_ANONPAGES;
2544 return mm_counter_file(page);
2545}
2546
d559db08
KH
2547static inline unsigned long get_mm_rss(struct mm_struct *mm)
2548{
2549 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2550 get_mm_counter(mm, MM_ANONPAGES) +
2551 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2552}
2553
2554static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2555{
2556 return max(mm->hiwater_rss, get_mm_rss(mm));
2557}
2558
2559static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2560{
2561 return max(mm->hiwater_vm, mm->total_vm);
2562}
2563
2564static inline void update_hiwater_rss(struct mm_struct *mm)
2565{
2566 unsigned long _rss = get_mm_rss(mm);
2567
2568 if ((mm)->hiwater_rss < _rss)
2569 (mm)->hiwater_rss = _rss;
2570}
2571
2572static inline void update_hiwater_vm(struct mm_struct *mm)
2573{
2574 if (mm->hiwater_vm < mm->total_vm)
2575 mm->hiwater_vm = mm->total_vm;
2576}
2577
695f0559
PC
2578static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2579{
2580 mm->hiwater_rss = get_mm_rss(mm);
2581}
2582
d559db08
KH
2583static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2584 struct mm_struct *mm)
2585{
2586 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2587
2588 if (*maxrss < hiwater_rss)
2589 *maxrss = hiwater_rss;
2590}
2591
53bddb4e 2592#if defined(SPLIT_RSS_COUNTING)
05af2e10 2593void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2594#else
05af2e10 2595static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2596{
2597}
2598#endif
465a454f 2599
78e7c5af
AK
2600#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2601static inline int pte_special(pte_t pte)
2602{
2603 return 0;
2604}
2605
2606static inline pte_t pte_mkspecial(pte_t pte)
2607{
2608 return pte;
2609}
2610#endif
2611
17596731 2612#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2613static inline int pte_devmap(pte_t pte)
2614{
2615 return 0;
2616}
2617#endif
2618
25ca1d6c
NK
2619extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2620 spinlock_t **ptl);
2621static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2622 spinlock_t **ptl)
2623{
2624 pte_t *ptep;
2625 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2626 return ptep;
2627}
c9cfcddf 2628
c2febafc
KS
2629#ifdef __PAGETABLE_P4D_FOLDED
2630static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2631 unsigned long address)
2632{
2633 return 0;
2634}
2635#else
2636int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2637#endif
2638
b4e98d9a 2639#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2640static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2641 unsigned long address)
2642{
2643 return 0;
2644}
b4e98d9a
KS
2645static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2646static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2647
5f22df00 2648#else
c2febafc 2649int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2650
b4e98d9a
KS
2651static inline void mm_inc_nr_puds(struct mm_struct *mm)
2652{
6d212db1
MS
2653 if (mm_pud_folded(mm))
2654 return;
af5b0f6a 2655 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2656}
2657
2658static inline void mm_dec_nr_puds(struct mm_struct *mm)
2659{
6d212db1
MS
2660 if (mm_pud_folded(mm))
2661 return;
af5b0f6a 2662 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2663}
5f22df00
NP
2664#endif
2665
2d2f5119 2666#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2667static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2668 unsigned long address)
2669{
2670 return 0;
2671}
dc6c9a35 2672
dc6c9a35
KS
2673static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2674static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2675
5f22df00 2676#else
1bb3630e 2677int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2678
dc6c9a35
KS
2679static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2680{
6d212db1
MS
2681 if (mm_pmd_folded(mm))
2682 return;
af5b0f6a 2683 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2684}
2685
2686static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2687{
6d212db1
MS
2688 if (mm_pmd_folded(mm))
2689 return;
af5b0f6a 2690 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2691}
5f22df00
NP
2692#endif
2693
c4812909 2694#ifdef CONFIG_MMU
af5b0f6a 2695static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2696{
af5b0f6a 2697 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2698}
2699
af5b0f6a 2700static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2701{
af5b0f6a 2702 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2703}
2704
2705static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2706{
af5b0f6a 2707 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2708}
2709
2710static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2711{
af5b0f6a 2712 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2713}
2714#else
c4812909 2715
af5b0f6a
KS
2716static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2717static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2718{
2719 return 0;
2720}
2721
2722static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2723static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2724#endif
2725
4cf58924
JFG
2726int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2727int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2728
f949286c
MR
2729#if defined(CONFIG_MMU)
2730
c2febafc
KS
2731static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2732 unsigned long address)
2733{
2734 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2735 NULL : p4d_offset(pgd, address);
2736}
2737
2738static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2739 unsigned long address)
1da177e4 2740{
c2febafc
KS
2741 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2742 NULL : pud_offset(p4d, address);
1da177e4 2743}
d8626138 2744
1da177e4
LT
2745static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2746{
1bb3630e
HD
2747 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2748 NULL: pmd_offset(pud, address);
1da177e4 2749}
f949286c 2750#endif /* CONFIG_MMU */
1bb3630e 2751
57c1ffce 2752#if USE_SPLIT_PTE_PTLOCKS
597d795a 2753#if ALLOC_SPLIT_PTLOCKS
b35f1819 2754void __init ptlock_cache_init(void);
539edb58
PZ
2755extern bool ptlock_alloc(struct page *page);
2756extern void ptlock_free(struct page *page);
2757
2758static inline spinlock_t *ptlock_ptr(struct page *page)
2759{
2760 return page->ptl;
2761}
597d795a 2762#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2763static inline void ptlock_cache_init(void)
2764{
2765}
2766
49076ec2
KS
2767static inline bool ptlock_alloc(struct page *page)
2768{
49076ec2
KS
2769 return true;
2770}
539edb58 2771
49076ec2
KS
2772static inline void ptlock_free(struct page *page)
2773{
49076ec2
KS
2774}
2775
2776static inline spinlock_t *ptlock_ptr(struct page *page)
2777{
539edb58 2778 return &page->ptl;
49076ec2 2779}
597d795a 2780#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2781
2782static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2783{
2784 return ptlock_ptr(pmd_page(*pmd));
2785}
2786
2787static inline bool ptlock_init(struct page *page)
2788{
2789 /*
2790 * prep_new_page() initialize page->private (and therefore page->ptl)
2791 * with 0. Make sure nobody took it in use in between.
2792 *
2793 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2794 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2795 */
309381fe 2796 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2797 if (!ptlock_alloc(page))
2798 return false;
2799 spin_lock_init(ptlock_ptr(page));
2800 return true;
2801}
2802
57c1ffce 2803#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2804/*
2805 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2806 */
49076ec2
KS
2807static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2808{
2809 return &mm->page_table_lock;
2810}
b35f1819 2811static inline void ptlock_cache_init(void) {}
49076ec2 2812static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2813static inline void ptlock_free(struct page *page) {}
57c1ffce 2814#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2815
b4ed71f5 2816static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2817{
706874e9
VD
2818 if (!ptlock_init(page))
2819 return false;
1d40a5ea 2820 __SetPageTable(page);
f0c0c115 2821 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2822 return true;
2f569afd
MS
2823}
2824
b4ed71f5 2825static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2826{
9e247bab 2827 ptlock_free(page);
1d40a5ea 2828 __ClearPageTable(page);
f0c0c115 2829 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2830}
2831
0d940a9b
HD
2832pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2833static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2834{
2835 return __pte_offset_map(pmd, addr, NULL);
2836}
2837
2838pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2839 unsigned long addr, spinlock_t **ptlp);
2840static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2841 unsigned long addr, spinlock_t **ptlp)
2842{
2843 pte_t *pte;
2844
2845 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2846 return pte;
2847}
2848
2849pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2850 unsigned long addr, spinlock_t **ptlp);
c74df32c
HD
2851
2852#define pte_unmap_unlock(pte, ptl) do { \
2853 spin_unlock(ptl); \
2854 pte_unmap(pte); \
2855} while (0)
2856
4cf58924 2857#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2858
2859#define pte_alloc_map(mm, pmd, address) \
4cf58924 2860 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2861
c74df32c 2862#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2863 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2864 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2865
1bb3630e 2866#define pte_alloc_kernel(pmd, address) \
4cf58924 2867 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2868 NULL: pte_offset_kernel(pmd, address))
1da177e4 2869
e009bb30
KS
2870#if USE_SPLIT_PMD_PTLOCKS
2871
7e25de77 2872static inline struct page *pmd_pgtable_page(pmd_t *pmd)
634391ac
MS
2873{
2874 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2875 return virt_to_page((void *)((unsigned long) pmd & mask));
2876}
2877
e009bb30
KS
2878static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2879{
373dfda2 2880 return ptlock_ptr(pmd_pgtable_page(pmd));
e009bb30
KS
2881}
2882
b2b29d6d 2883static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2884{
e009bb30
KS
2885#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2886 page->pmd_huge_pte = NULL;
2887#endif
49076ec2 2888 return ptlock_init(page);
e009bb30
KS
2889}
2890
b2b29d6d 2891static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2892{
2893#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2894 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2895#endif
49076ec2 2896 ptlock_free(page);
e009bb30
KS
2897}
2898
373dfda2 2899#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
e009bb30
KS
2900
2901#else
2902
9a86cb7b
KS
2903static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2904{
2905 return &mm->page_table_lock;
2906}
2907
b2b29d6d
MW
2908static inline bool pmd_ptlock_init(struct page *page) { return true; }
2909static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2910
c389a250 2911#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2912
e009bb30
KS
2913#endif
2914
9a86cb7b
KS
2915static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2916{
2917 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2918 spin_lock(ptl);
2919 return ptl;
2920}
2921
b2b29d6d
MW
2922static inline bool pgtable_pmd_page_ctor(struct page *page)
2923{
2924 if (!pmd_ptlock_init(page))
2925 return false;
2926 __SetPageTable(page);
f0c0c115 2927 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2928 return true;
2929}
2930
2931static inline void pgtable_pmd_page_dtor(struct page *page)
2932{
2933 pmd_ptlock_free(page);
2934 __ClearPageTable(page);
f0c0c115 2935 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2936}
2937
a00cc7d9
MW
2938/*
2939 * No scalability reason to split PUD locks yet, but follow the same pattern
2940 * as the PMD locks to make it easier if we decide to. The VM should not be
2941 * considered ready to switch to split PUD locks yet; there may be places
2942 * which need to be converted from page_table_lock.
2943 */
2944static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2945{
2946 return &mm->page_table_lock;
2947}
2948
2949static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2950{
2951 spinlock_t *ptl = pud_lockptr(mm, pud);
2952
2953 spin_lock(ptl);
2954 return ptl;
2955}
62906027 2956
a00cc7d9 2957extern void __init pagecache_init(void);
49a7f04a
DH
2958extern void free_initmem(void);
2959
69afade7
JL
2960/*
2961 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2962 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2963 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2964 * Return pages freed into the buddy system.
2965 */
11199692 2966extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2967 int poison, const char *s);
c3d5f5f0 2968
c3d5f5f0 2969extern void adjust_managed_page_count(struct page *page, long count);
69afade7 2970
61167ad5
YD
2971extern void reserve_bootmem_region(phys_addr_t start,
2972 phys_addr_t end, int nid);
92923ca3 2973
69afade7 2974/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2975static inline void free_reserved_page(struct page *page)
69afade7
JL
2976{
2977 ClearPageReserved(page);
2978 init_page_count(page);
2979 __free_page(page);
69afade7
JL
2980 adjust_managed_page_count(page, 1);
2981}
a0cd7a7c 2982#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2983
2984static inline void mark_page_reserved(struct page *page)
2985{
2986 SetPageReserved(page);
2987 adjust_managed_page_count(page, -1);
2988}
2989
2990/*
2991 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2992 * The freed pages will be poisoned with pattern "poison" if it's within
2993 * range [0, UCHAR_MAX].
2994 * Return pages freed into the buddy system.
69afade7
JL
2995 */
2996static inline unsigned long free_initmem_default(int poison)
2997{
2998 extern char __init_begin[], __init_end[];
2999
11199692 3000 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 3001 poison, "unused kernel image (initmem)");
69afade7
JL
3002}
3003
7ee3d4e8
JL
3004static inline unsigned long get_num_physpages(void)
3005{
3006 int nid;
3007 unsigned long phys_pages = 0;
3008
3009 for_each_online_node(nid)
3010 phys_pages += node_present_pages(nid);
3011
3012 return phys_pages;
3013}
3014
c713216d 3015/*
3f08a302 3016 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
3017 * zones, allocate the backing mem_map and account for memory holes in an
3018 * architecture independent manner.
c713216d
MG
3019 *
3020 * An architecture is expected to register range of page frames backed by
0ee332c1 3021 * physical memory with memblock_add[_node]() before calling
9691a071 3022 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
3023 * usage, an architecture is expected to do something like
3024 *
3025 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3026 * max_highmem_pfn};
3027 * for_each_valid_physical_page_range()
952eea9b 3028 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 3029 * free_area_init(max_zone_pfns);
c713216d 3030 */
9691a071 3031void free_area_init(unsigned long *max_zone_pfn);
1e01979c 3032unsigned long node_map_pfn_alignment(void);
32996250
YL
3033unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3034 unsigned long end_pfn);
c713216d
MG
3035extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3036 unsigned long end_pfn);
3037extern void get_pfn_range_for_nid(unsigned int nid,
3038 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 3039
a9ee6cf5 3040#ifndef CONFIG_NUMA
6f24fbd3 3041static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
3042{
3043 return 0;
3044}
3045#else
3046/* please see mm/page_alloc.c */
3047extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
3048#endif
3049
0e0b864e 3050extern void set_dma_reserve(unsigned long new_dma_reserve);
1da177e4 3051extern void mem_init(void);
8feae131 3052extern void __init mmap_init(void);
974f4367
MH
3053
3054extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3055static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
3056{
3057 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
3058}
d02bd27b 3059extern long si_mem_available(void);
1da177e4
LT
3060extern void si_meminfo(struct sysinfo * val);
3061extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
3062#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3063extern unsigned long arch_reserved_kernel_pages(void);
3064#endif
1da177e4 3065
a8e99259
MH
3066extern __printf(3, 4)
3067void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 3068
e7c8d5c9 3069extern void setup_per_cpu_pageset(void);
e7c8d5c9 3070
8feae131 3071/* nommu.c */
33e5d769 3072extern atomic_long_t mmap_pages_allocated;
7e660872 3073extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 3074
6b2dbba8 3075/* interval_tree.c */
6b2dbba8 3076void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 3077 struct rb_root_cached *root);
9826a516
ML
3078void vma_interval_tree_insert_after(struct vm_area_struct *node,
3079 struct vm_area_struct *prev,
f808c13f 3080 struct rb_root_cached *root);
6b2dbba8 3081void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
3082 struct rb_root_cached *root);
3083struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
3084 unsigned long start, unsigned long last);
3085struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3086 unsigned long start, unsigned long last);
3087
3088#define vma_interval_tree_foreach(vma, root, start, last) \
3089 for (vma = vma_interval_tree_iter_first(root, start, last); \
3090 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 3091
bf181b9f 3092void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 3093 struct rb_root_cached *root);
bf181b9f 3094void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
3095 struct rb_root_cached *root);
3096struct anon_vma_chain *
3097anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3098 unsigned long start, unsigned long last);
bf181b9f
ML
3099struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3100 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
3101#ifdef CONFIG_DEBUG_VM_RB
3102void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3103#endif
bf181b9f
ML
3104
3105#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3106 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3107 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3108
1da177e4 3109/* mmap.c */
34b4e4aa 3110extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
7c9813e8
LH
3111extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3112 unsigned long start, unsigned long end, pgoff_t pgoff,
3113 struct vm_area_struct *next);
cf51e86d
LH
3114extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3115 unsigned long start, unsigned long end, pgoff_t pgoff);
9760ebff 3116extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
f2ebfe43
LH
3117 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3118 unsigned long end, unsigned long vm_flags, struct anon_vma *,
3119 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3120 struct anon_vma_name *);
1da177e4 3121extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
9760ebff
LH
3122extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3123 unsigned long addr, int new_below);
3124extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3125 unsigned long addr, int new_below);
1da177e4 3126extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 3127extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 3128extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
3129 unsigned long addr, unsigned long len, pgoff_t pgoff,
3130 bool *need_rmap_locks);
1da177e4 3131extern void exit_mmap(struct mm_struct *);
925d1c40 3132
9c599024
CG
3133static inline int check_data_rlimit(unsigned long rlim,
3134 unsigned long new,
3135 unsigned long start,
3136 unsigned long end_data,
3137 unsigned long start_data)
3138{
3139 if (rlim < RLIM_INFINITY) {
3140 if (((new - start) + (end_data - start_data)) > rlim)
3141 return -ENOSPC;
3142 }
3143
3144 return 0;
3145}
3146
7906d00c
AA
3147extern int mm_take_all_locks(struct mm_struct *mm);
3148extern void mm_drop_all_locks(struct mm_struct *mm);
3149
fe69d560 3150extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 3151extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 3152extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 3153extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 3154
84638335
KK
3155extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3156extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3157
2eefd878
DS
3158extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3159 const struct vm_special_mapping *sm);
3935ed6a
SS
3160extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3161 unsigned long addr, unsigned long len,
a62c34bd
AL
3162 unsigned long flags,
3163 const struct vm_special_mapping *spec);
3164/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
3165extern int install_special_mapping(struct mm_struct *mm,
3166 unsigned long addr, unsigned long len,
3167 unsigned long flags, struct page **pages);
1da177e4 3168
649775be 3169unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 3170unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 3171
1da177e4
LT
3172extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3173
0165ab44 3174extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
3175 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3176 struct list_head *uf);
1fcfd8db 3177extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 3178 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 3179 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
183654ce 3180extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
11f9a21a 3181 unsigned long start, size_t len, struct list_head *uf,
408579cd 3182 bool unlock);
897ab3e0
MR
3183extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3184 struct list_head *uf);
0726b01e 3185extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 3186
bebeb3d6 3187#ifdef CONFIG_MMU
27b26701
LH
3188extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3189 unsigned long start, unsigned long end,
408579cd 3190 struct list_head *uf, bool unlock);
bebeb3d6
ML
3191extern int __mm_populate(unsigned long addr, unsigned long len,
3192 int ignore_errors);
3193static inline void mm_populate(unsigned long addr, unsigned long len)
3194{
3195 /* Ignore errors */
3196 (void) __mm_populate(addr, len, 1);
3197}
3198#else
3199static inline void mm_populate(unsigned long addr, unsigned long len) {}
3200#endif
3201
e4eb1ff6 3202/* These take the mm semaphore themselves */
5d22fc25 3203extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 3204extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 3205extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 3206extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
3207 unsigned long, unsigned long,
3208 unsigned long, unsigned long);
1da177e4 3209
db4fbfb9
ML
3210struct vm_unmapped_area_info {
3211#define VM_UNMAPPED_AREA_TOPDOWN 1
3212 unsigned long flags;
3213 unsigned long length;
3214 unsigned long low_limit;
3215 unsigned long high_limit;
3216 unsigned long align_mask;
3217 unsigned long align_offset;
3218};
3219
baceaf1c 3220extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 3221
85821aab 3222/* truncate.c */
1da177e4 3223extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
3224extern void truncate_inode_pages_range(struct address_space *,
3225 loff_t lstart, loff_t lend);
91b0abe3 3226extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
3227
3228/* generic vm_area_ops exported for stackable file systems */
2bcd6454 3229extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 3230extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 3231 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 3232extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 3233
1be7107f 3234extern unsigned long stack_guard_gap;
d05f3169 3235/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
8d7071af
LT
3236int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3237struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
d05f3169 3238
11192337 3239/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
8d7071af 3240int expand_downwards(struct vm_area_struct *vma, unsigned long address);
1da177e4
LT
3241
3242/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3243extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3244extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3245 struct vm_area_struct **pprev);
3246
abdba2dd
LH
3247/*
3248 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3249 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 3250 */
ce6d42f2 3251struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 3252 unsigned long start_addr, unsigned long end_addr);
1da177e4 3253
ce6d42f2
LH
3254/**
3255 * vma_lookup() - Find a VMA at a specific address
3256 * @mm: The process address space.
3257 * @addr: The user address.
3258 *
3259 * Return: The vm_area_struct at the given address, %NULL otherwise.
3260 */
3261static inline
3262struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3263{
d7c62295 3264 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
3265}
3266
1be7107f
HD
3267static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3268{
3269 unsigned long vm_start = vma->vm_start;
3270
3271 if (vma->vm_flags & VM_GROWSDOWN) {
3272 vm_start -= stack_guard_gap;
3273 if (vm_start > vma->vm_start)
3274 vm_start = 0;
3275 }
3276 return vm_start;
3277}
3278
3279static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3280{
3281 unsigned long vm_end = vma->vm_end;
3282
3283 if (vma->vm_flags & VM_GROWSUP) {
3284 vm_end += stack_guard_gap;
3285 if (vm_end < vma->vm_end)
3286 vm_end = -PAGE_SIZE;
3287 }
3288 return vm_end;
3289}
3290
1da177e4
LT
3291static inline unsigned long vma_pages(struct vm_area_struct *vma)
3292{
3293 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3294}
3295
640708a2
PE
3296/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3297static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3298 unsigned long vm_start, unsigned long vm_end)
3299{
dc8635b2 3300 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
3301
3302 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3303 vma = NULL;
3304
3305 return vma;
3306}
3307
017b1660
MK
3308static inline bool range_in_vma(struct vm_area_struct *vma,
3309 unsigned long start, unsigned long end)
3310{
3311 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3312}
3313
bad849b3 3314#ifdef CONFIG_MMU
804af2cf 3315pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 3316void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
3317#else
3318static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3319{
3320 return __pgprot(0);
3321}
64e45507
PF
3322static inline void vma_set_page_prot(struct vm_area_struct *vma)
3323{
3324 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3325}
bad849b3
DH
3326#endif
3327
295992fb
CK
3328void vma_set_file(struct vm_area_struct *vma, struct file *file);
3329
5877231f 3330#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 3331unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
3332 unsigned long start, unsigned long end);
3333#endif
3334
f440fa1a 3335struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
8d7071af 3336 unsigned long addr);
deceb6cd
HD
3337int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3338 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
3339int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3340 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 3341int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
3342int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3343 struct page **pages, unsigned long *num);
a667d745
SJ
3344int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3345 unsigned long num);
3346int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3347 unsigned long num);
ae2b01f3 3348vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 3349 unsigned long pfn);
f5e6d1d5
MW
3350vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3351 unsigned long pfn, pgprot_t pgprot);
5d747637 3352vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 3353 pfn_t pfn);
ab77dab4
SJ
3354vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3355 unsigned long addr, pfn_t pfn);
b4cbb197
LT
3356int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3357
1c8f4220
SJ
3358static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3359 unsigned long addr, struct page *page)
3360{
3361 int err = vm_insert_page(vma, addr, page);
3362
3363 if (err == -ENOMEM)
3364 return VM_FAULT_OOM;
3365 if (err < 0 && err != -EBUSY)
3366 return VM_FAULT_SIGBUS;
3367
3368 return VM_FAULT_NOPAGE;
3369}
3370
f8f6ae5d
JG
3371#ifndef io_remap_pfn_range
3372static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3373 unsigned long addr, unsigned long pfn,
3374 unsigned long size, pgprot_t prot)
3375{
3376 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3377}
3378#endif
3379
d97baf94
SJ
3380static inline vm_fault_t vmf_error(int err)
3381{
3382 if (err == -ENOMEM)
3383 return VM_FAULT_OOM;
1ea7ca1b
JC
3384 else if (err == -EHWPOISON)
3385 return VM_FAULT_HWPOISON;
d97baf94
SJ
3386 return VM_FAULT_SIGBUS;
3387}
3388
df06b37f
KB
3389struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3390 unsigned int foll_flags);
240aadee 3391
2b740303 3392static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3393{
3394 if (vm_fault & VM_FAULT_OOM)
3395 return -ENOMEM;
3396 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3397 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3398 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3399 return -EFAULT;
3400 return 0;
3401}
3402
474098ed
DH
3403/*
3404 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3405 * a (NUMA hinting) fault is required.
3406 */
3407static inline bool gup_can_follow_protnone(unsigned int flags)
3408{
3409 /*
3410 * FOLL_FORCE has to be able to make progress even if the VMA is
3411 * inaccessible. Further, FOLL_FORCE access usually does not represent
3412 * application behaviour and we should avoid triggering NUMA hinting
3413 * faults.
3414 */
3415 return flags & FOLL_FORCE;
3416}
3417
8b1e0f81 3418typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3419extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3420 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3421extern int apply_to_existing_page_range(struct mm_struct *mm,
3422 unsigned long address, unsigned long size,
3423 pte_fn_t fn, void *data);
aee16b3c 3424
8823b1db 3425#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3426extern void __kernel_poison_pages(struct page *page, int numpages);
3427extern void __kernel_unpoison_pages(struct page *page, int numpages);
3428extern bool _page_poisoning_enabled_early;
3429DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3430static inline bool page_poisoning_enabled(void)
3431{
3432 return _page_poisoning_enabled_early;
3433}
3434/*
3435 * For use in fast paths after init_mem_debugging() has run, or when a
3436 * false negative result is not harmful when called too early.
3437 */
3438static inline bool page_poisoning_enabled_static(void)
3439{
3440 return static_branch_unlikely(&_page_poisoning_enabled);
3441}
3442static inline void kernel_poison_pages(struct page *page, int numpages)
3443{
3444 if (page_poisoning_enabled_static())
3445 __kernel_poison_pages(page, numpages);
3446}
3447static inline void kernel_unpoison_pages(struct page *page, int numpages)
3448{
3449 if (page_poisoning_enabled_static())
3450 __kernel_unpoison_pages(page, numpages);
3451}
8823b1db
LA
3452#else
3453static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3454static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3455static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3456static inline void kernel_poison_pages(struct page *page, int numpages) { }
3457static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3458#endif
3459
51cba1eb 3460DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3461static inline bool want_init_on_alloc(gfp_t flags)
3462{
51cba1eb
KC
3463 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3464 &init_on_alloc))
6471384a
AP
3465 return true;
3466 return flags & __GFP_ZERO;
3467}
3468
51cba1eb 3469DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3470static inline bool want_init_on_free(void)
3471{
51cba1eb
KC
3472 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3473 &init_on_free);
6471384a
AP
3474}
3475
8e57f8ac
VB
3476extern bool _debug_pagealloc_enabled_early;
3477DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3478
3479static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3480{
3481 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3482 _debug_pagealloc_enabled_early;
3483}
3484
3485/*
3486 * For use in fast paths after init_debug_pagealloc() has run, or when a
3487 * false negative result is not harmful when called too early.
3488 */
3489static inline bool debug_pagealloc_enabled_static(void)
031bc574 3490{
96a2b03f
VB
3491 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3492 return false;
3493
3494 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3495}
3496
c87cbc1f 3497/*
5d6ad668
MR
3498 * To support DEBUG_PAGEALLOC architecture must ensure that
3499 * __kernel_map_pages() never fails
c87cbc1f 3500 */
d6332692 3501extern void __kernel_map_pages(struct page *page, int numpages, int enable);
8f14a963 3502#ifdef CONFIG_DEBUG_PAGEALLOC
77bc7fd6
MR
3503static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3504{
3505 if (debug_pagealloc_enabled_static())
3506 __kernel_map_pages(page, numpages, 1);
3507}
3508
3509static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3510{
3511 if (debug_pagealloc_enabled_static())
3512 __kernel_map_pages(page, numpages, 0);
3513}
884c175f
KW
3514
3515extern unsigned int _debug_guardpage_minorder;
3516DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3517
3518static inline unsigned int debug_guardpage_minorder(void)
3519{
3520 return _debug_guardpage_minorder;
3521}
3522
3523static inline bool debug_guardpage_enabled(void)
3524{
3525 return static_branch_unlikely(&_debug_guardpage_enabled);
3526}
3527
3528static inline bool page_is_guard(struct page *page)
3529{
3530 if (!debug_guardpage_enabled())
3531 return false;
3532
3533 return PageGuard(page);
3534}
3535
3536bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3537 int migratetype);
3538static inline bool set_page_guard(struct zone *zone, struct page *page,
3539 unsigned int order, int migratetype)
3540{
3541 if (!debug_guardpage_enabled())
3542 return false;
3543 return __set_page_guard(zone, page, order, migratetype);
3544}
3545
3546void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3547 int migratetype);
3548static inline void clear_page_guard(struct zone *zone, struct page *page,
3549 unsigned int order, int migratetype)
3550{
3551 if (!debug_guardpage_enabled())
3552 return;
3553 __clear_page_guard(zone, page, order, migratetype);
3554}
3555
5d6ad668 3556#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3557static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3558static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
884c175f
KW
3559static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3560static inline bool debug_guardpage_enabled(void) { return false; }
3561static inline bool page_is_guard(struct page *page) { return false; }
3562static inline bool set_page_guard(struct zone *zone, struct page *page,
3563 unsigned int order, int migratetype) { return false; }
3564static inline void clear_page_guard(struct zone *zone, struct page *page,
3565 unsigned int order, int migratetype) {}
5d6ad668 3566#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3567
a6c19dfe 3568#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3569extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3570extern int in_gate_area_no_mm(unsigned long addr);
3571extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3572#else
a6c19dfe
AL
3573static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3574{
3575 return NULL;
3576}
3577static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3578static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3579{
3580 return 0;
3581}
1da177e4
LT
3582#endif /* __HAVE_ARCH_GATE_AREA */
3583
44a70ade
MH
3584extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3585
146732ce
JT
3586#ifdef CONFIG_SYSCTL
3587extern int sysctl_drop_caches;
32927393
CH
3588int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3589 loff_t *);
146732ce
JT
3590#endif
3591
cb731d6c 3592void drop_slab(void);
9d0243bc 3593
7a9166e3
LY
3594#ifndef CONFIG_MMU
3595#define randomize_va_space 0
3596#else
a62eaf15 3597extern int randomize_va_space;
7a9166e3 3598#endif
a62eaf15 3599
045e72ac 3600const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3601#ifdef CONFIG_MMU
03252919 3602void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3603#else
3604static inline void print_vma_addr(char *prefix, unsigned long rip)
3605{
3606}
3607#endif
e6e5494c 3608
35fd1eb1 3609void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3610struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3611 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3612 struct dev_pagemap *pgmap);
7b09f5af
FC
3613void pmd_init(void *addr);
3614void pud_init(void *addr);
29c71111 3615pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3616p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3617pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3618pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3619pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3620 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3621void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3622struct vmem_altmap;
56993b4e
AK
3623void *vmemmap_alloc_block_buf(unsigned long size, int node,
3624 struct vmem_altmap *altmap);
8f6aac41 3625void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2045a3b8
FC
3626void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3627 unsigned long addr, unsigned long next);
3628int vmemmap_check_pmd(pmd_t *pmd, int node,
3629 unsigned long addr, unsigned long next);
0aad818b 3630int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3631 int node, struct vmem_altmap *altmap);
2045a3b8
FC
3632int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3633 int node, struct vmem_altmap *altmap);
7b73d978
CH
3634int vmemmap_populate(unsigned long start, unsigned long end, int node,
3635 struct vmem_altmap *altmap);
c2b91e2e 3636void vmemmap_populate_print_last(void);
0197518c 3637#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3638void vmemmap_free(unsigned long start, unsigned long end,
3639 struct vmem_altmap *altmap);
0197518c 3640#endif
87a7ae75 3641
0b376f1e 3642#ifdef CONFIG_ARCH_WANT_OPTIMIZE_VMEMMAP
87a7ae75
AK
3643static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3644 struct dev_pagemap *pgmap)
3645{
3646 return is_power_of_2(sizeof(struct page)) &&
3647 pgmap && (pgmap_vmemmap_nr(pgmap) > 1) && !altmap;
3648}
3649#else
3650static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3651 struct dev_pagemap *pgmap)
3652{
3653 return false;
3654}
3655#endif
3656
46723bfa 3657void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3658 unsigned long nr_pages);
6a46079c 3659
82ba011b
AK
3660enum mf_flags {
3661 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3662 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3663 MF_MUST_KILL = 1 << 2,
cf870c70 3664 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3665 MF_UNPOISON = 1 << 4,
67f22ba7 3666 MF_SW_SIMULATED = 1 << 5,
38f6d293 3667 MF_NO_RETRY = 1 << 6,
82ba011b 3668};
c36e2024
SR
3669int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3670 unsigned long count, int mf_flags);
83b57531 3671extern int memory_failure(unsigned long pfn, int flags);
06202231 3672extern void memory_failure_queue_kick(int cpu);
847ce401 3673extern int unpoison_memory(unsigned long pfn);
d0505e9f 3674extern void shake_page(struct page *p);
5844a486 3675extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3676extern int soft_offline_page(unsigned long pfn, int flags);
405ce051 3677#ifdef CONFIG_MEMORY_FAILURE
870388db
KW
3678/*
3679 * Sysfs entries for memory failure handling statistics.
3680 */
3681extern const struct attribute_group memory_failure_attr_group;
d302c239 3682extern void memory_failure_queue(unsigned long pfn, int flags);
e591ef7d
NH
3683extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3684 bool *migratable_cleared);
5033091d
NH
3685void num_poisoned_pages_inc(unsigned long pfn);
3686void num_poisoned_pages_sub(unsigned long pfn, long i);
4248d008 3687struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
405ce051 3688#else
d302c239
TL
3689static inline void memory_failure_queue(unsigned long pfn, int flags)
3690{
3691}
3692
e591ef7d
NH
3693static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3694 bool *migratable_cleared)
405ce051
NH
3695{
3696 return 0;
3697}
d027122d 3698
a46c9304 3699static inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
3700{
3701}
5033091d
NH
3702
3703static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3704{
3705}
3706#endif
3707
4248d008
LX
3708#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3709void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3710 struct vm_area_struct *vma, struct list_head *to_kill,
3711 unsigned long ksm_addr);
3712#endif
3713
5033091d
NH
3714#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3715extern void memblk_nr_poison_inc(unsigned long pfn);
3716extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3717#else
3718static inline void memblk_nr_poison_inc(unsigned long pfn)
3719{
3720}
3721
3722static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3723{
3724}
405ce051 3725#endif
6a46079c 3726
03b122da
TL
3727#ifndef arch_memory_failure
3728static inline int arch_memory_failure(unsigned long pfn, int flags)
3729{
3730 return -ENXIO;
3731}
3732#endif
3733
3734#ifndef arch_is_platform_page
3735static inline bool arch_is_platform_page(u64 paddr)
3736{
3737 return false;
3738}
3739#endif
cc637b17
XX
3740
3741/*
3742 * Error handlers for various types of pages.
3743 */
cc3e2af4 3744enum mf_result {
cc637b17
XX
3745 MF_IGNORED, /* Error: cannot be handled */
3746 MF_FAILED, /* Error: handling failed */
3747 MF_DELAYED, /* Will be handled later */
3748 MF_RECOVERED, /* Successfully recovered */
3749};
3750
3751enum mf_action_page_type {
3752 MF_MSG_KERNEL,
3753 MF_MSG_KERNEL_HIGH_ORDER,
3754 MF_MSG_SLAB,
3755 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3756 MF_MSG_HUGE,
3757 MF_MSG_FREE_HUGE,
3758 MF_MSG_UNMAP_FAILED,
3759 MF_MSG_DIRTY_SWAPCACHE,
3760 MF_MSG_CLEAN_SWAPCACHE,
3761 MF_MSG_DIRTY_MLOCKED_LRU,
3762 MF_MSG_CLEAN_MLOCKED_LRU,
3763 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3764 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3765 MF_MSG_DIRTY_LRU,
3766 MF_MSG_CLEAN_LRU,
3767 MF_MSG_TRUNCATED_LRU,
3768 MF_MSG_BUDDY,
6100e34b 3769 MF_MSG_DAX,
5d1fd5dc 3770 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3771 MF_MSG_UNKNOWN,
3772};
3773
47ad8475
AA
3774#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3775extern void clear_huge_page(struct page *page,
c79b57e4 3776 unsigned long addr_hint,
47ad8475 3777 unsigned int pages_per_huge_page);
1cb9dc4b
LS
3778int copy_user_large_folio(struct folio *dst, struct folio *src,
3779 unsigned long addr_hint,
3780 struct vm_area_struct *vma);
e87340ca
Z
3781long copy_folio_from_user(struct folio *dst_folio,
3782 const void __user *usr_src,
3783 bool allow_pagefault);
2484ca9b
THV
3784
3785/**
3786 * vma_is_special_huge - Are transhuge page-table entries considered special?
3787 * @vma: Pointer to the struct vm_area_struct to consider
3788 *
3789 * Whether transhuge page-table entries are considered "special" following
3790 * the definition in vm_normal_page().
3791 *
3792 * Return: true if transhuge page-table entries should be considered special,
3793 * false otherwise.
3794 */
3795static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3796{
3797 return vma_is_dax(vma) || (vma->vm_file &&
3798 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3799}
3800
47ad8475
AA
3801#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3802
f9872caf
CS
3803#if MAX_NUMNODES > 1
3804void __init setup_nr_node_ids(void);
3805#else
3806static inline void setup_nr_node_ids(void) {}
3807#endif
3808
010c164a
SL
3809extern int memcmp_pages(struct page *page1, struct page *page2);
3810
3811static inline int pages_identical(struct page *page1, struct page *page2)
3812{
3813 return !memcmp_pages(page1, page2);
3814}
3815
c5acad84
TH
3816#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3817unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3818 pgoff_t first_index, pgoff_t nr,
3819 pgoff_t bitmap_pgoff,
3820 unsigned long *bitmap,
3821 pgoff_t *start,
3822 pgoff_t *end);
3823
3824unsigned long wp_shared_mapping_range(struct address_space *mapping,
3825 pgoff_t first_index, pgoff_t nr);
3826#endif
3827
2374c09b
CH
3828extern int sysctl_nr_trim_pages;
3829
5bb1bb35 3830#ifdef CONFIG_PRINTK
8e7f37f2 3831void mem_dump_obj(void *object);
5bb1bb35
PM
3832#else
3833static inline void mem_dump_obj(void *object) {}
3834#endif
8e7f37f2 3835
22247efd
PX
3836/**
3837 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3838 * @seals: the seals to check
3839 * @vma: the vma to operate on
3840 *
3841 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3842 * the vma flags. Return 0 if check pass, or <0 for errors.
3843 */
3844static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3845{
3846 if (seals & F_SEAL_FUTURE_WRITE) {
3847 /*
3848 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3849 * "future write" seal active.
3850 */
3851 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3852 return -EPERM;
3853
3854 /*
3855 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3856 * MAP_SHARED and read-only, take care to not allow mprotect to
3857 * revert protections on such mappings. Do this only for shared
3858 * mappings. For private mappings, don't need to mask
3859 * VM_MAYWRITE as we still want them to be COW-writable.
3860 */
3861 if (vma->vm_flags & VM_SHARED)
1c71222e 3862 vm_flags_clear(vma, VM_MAYWRITE);
22247efd
PX
3863 }
3864
3865 return 0;
3866}
3867
9a10064f
CC
3868#ifdef CONFIG_ANON_VMA_NAME
3869int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
3870 unsigned long len_in,
3871 struct anon_vma_name *anon_name);
9a10064f
CC
3872#else
3873static inline int
3874madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 3875 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
3876 return 0;
3877}
3878#endif
3879
dcdfdd40
KS
3880#ifdef CONFIG_UNACCEPTED_MEMORY
3881
3882bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
3883void accept_memory(phys_addr_t start, phys_addr_t end);
3884
3885#else
3886
3887static inline bool range_contains_unaccepted_memory(phys_addr_t start,
3888 phys_addr_t end)
3889{
3890 return false;
3891}
3892
3893static inline void accept_memory(phys_addr_t start, phys_addr_t end)
3894{
3895}
3896
3897#endif
3898
1da177e4 3899#endif /* _LINUX_MM_H */