mm/mmap: move vma_prepare before vma_adjust_trans_huge
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
1da177e4
LT
32
33struct mempolicy;
34struct anon_vma;
bf181b9f 35struct anon_vma_chain;
e8edc6e0 36struct user_struct;
bce617ed 37struct pt_regs;
1da177e4 38
5ef64cc8
LT
39extern int sysctl_page_lock_unfairness;
40
b7ec1bf3 41void mm_core_init(void);
597b7305
MH
42void init_mm_internals(void);
43
a9ee6cf5 44#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 45extern unsigned long max_mapnr;
fccc9987
JL
46
47static inline void set_max_mapnr(unsigned long limit)
48{
49 max_mapnr = limit;
50}
51#else
52static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
53#endif
54
ca79b0c2
AK
55extern atomic_long_t _totalram_pages;
56static inline unsigned long totalram_pages(void)
57{
58 return (unsigned long)atomic_long_read(&_totalram_pages);
59}
60
61static inline void totalram_pages_inc(void)
62{
63 atomic_long_inc(&_totalram_pages);
64}
65
66static inline void totalram_pages_dec(void)
67{
68 atomic_long_dec(&_totalram_pages);
69}
70
71static inline void totalram_pages_add(long count)
72{
73 atomic_long_add(count, &_totalram_pages);
74}
75
1da177e4 76extern void * high_memory;
1da177e4 77extern int page_cluster;
ea0ffd0c 78extern const int page_cluster_max;
1da177e4
LT
79
80#ifdef CONFIG_SYSCTL
81extern int sysctl_legacy_va_layout;
82#else
83#define sysctl_legacy_va_layout 0
84#endif
85
d07e2259
DC
86#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
87extern const int mmap_rnd_bits_min;
88extern const int mmap_rnd_bits_max;
89extern int mmap_rnd_bits __read_mostly;
90#endif
91#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
92extern const int mmap_rnd_compat_bits_min;
93extern const int mmap_rnd_compat_bits_max;
94extern int mmap_rnd_compat_bits __read_mostly;
95#endif
96
1da177e4 97#include <asm/page.h>
1da177e4 98#include <asm/processor.h>
1da177e4 99
d9344522
AK
100/*
101 * Architectures that support memory tagging (assigning tags to memory regions,
102 * embedding these tags into addresses that point to these memory regions, and
103 * checking that the memory and the pointer tags match on memory accesses)
104 * redefine this macro to strip tags from pointers.
f0953a1b 105 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
106 */
107#ifndef untagged_addr
108#define untagged_addr(addr) (addr)
109#endif
110
79442ed1
TC
111#ifndef __pa_symbol
112#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
113#endif
114
1dff8083
AB
115#ifndef page_to_virt
116#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
117#endif
118
568c5fe5
LA
119#ifndef lm_alias
120#define lm_alias(x) __va(__pa_symbol(x))
121#endif
122
593befa6
DD
123/*
124 * To prevent common memory management code establishing
125 * a zero page mapping on a read fault.
126 * This macro should be defined within <asm/pgtable.h>.
127 * s390 does this to prevent multiplexing of hardware bits
128 * related to the physical page in case of virtualization.
129 */
130#ifndef mm_forbids_zeropage
131#define mm_forbids_zeropage(X) (0)
132#endif
133
a4a3ede2
PT
134/*
135 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
136 * If an architecture decides to implement their own version of
137 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
138 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 139 */
5470dea4 140#if BITS_PER_LONG == 64
3770e52f 141/* This function must be updated when the size of struct page grows above 96
5470dea4
AD
142 * or reduces below 56. The idea that compiler optimizes out switch()
143 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 144 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
145 * this can result in several of the writes here being dropped.
146 */
147#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
148static inline void __mm_zero_struct_page(struct page *page)
149{
150 unsigned long *_pp = (void *)page;
151
3770e52f 152 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
5470dea4
AD
153 BUILD_BUG_ON(sizeof(struct page) & 7);
154 BUILD_BUG_ON(sizeof(struct page) < 56);
3770e52f 155 BUILD_BUG_ON(sizeof(struct page) > 96);
5470dea4
AD
156
157 switch (sizeof(struct page)) {
3770e52f
AB
158 case 96:
159 _pp[11] = 0;
160 fallthrough;
161 case 88:
162 _pp[10] = 0;
163 fallthrough;
5470dea4 164 case 80:
df561f66
GS
165 _pp[9] = 0;
166 fallthrough;
5470dea4 167 case 72:
df561f66
GS
168 _pp[8] = 0;
169 fallthrough;
5470dea4 170 case 64:
df561f66
GS
171 _pp[7] = 0;
172 fallthrough;
5470dea4
AD
173 case 56:
174 _pp[6] = 0;
175 _pp[5] = 0;
176 _pp[4] = 0;
177 _pp[3] = 0;
178 _pp[2] = 0;
179 _pp[1] = 0;
180 _pp[0] = 0;
181 }
182}
183#else
a4a3ede2
PT
184#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
185#endif
186
ea606cf5
AR
187/*
188 * Default maximum number of active map areas, this limits the number of vmas
189 * per mm struct. Users can overwrite this number by sysctl but there is a
190 * problem.
191 *
192 * When a program's coredump is generated as ELF format, a section is created
193 * per a vma. In ELF, the number of sections is represented in unsigned short.
194 * This means the number of sections should be smaller than 65535 at coredump.
195 * Because the kernel adds some informative sections to a image of program at
196 * generating coredump, we need some margin. The number of extra sections is
197 * 1-3 now and depends on arch. We use "5" as safe margin, here.
198 *
199 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
200 * not a hard limit any more. Although some userspace tools can be surprised by
201 * that.
202 */
203#define MAPCOUNT_ELF_CORE_MARGIN (5)
204#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
205
206extern int sysctl_max_map_count;
207
c9b1d098 208extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 209extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 210
49f0ce5f
JM
211extern int sysctl_overcommit_memory;
212extern int sysctl_overcommit_ratio;
213extern unsigned long sysctl_overcommit_kbytes;
214
32927393
CH
215int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
216 loff_t *);
217int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
218 loff_t *);
56f3547b
FT
219int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
220 loff_t *);
49f0ce5f 221
1cfcee72 222#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 223#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 224#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
225#else
226#define nth_page(page,n) ((page) + (n))
659508f9 227#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 228#endif
1da177e4 229
27ac792c
AR
230/* to align the pointer to the (next) page boundary */
231#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
232
335e52c2
DG
233/* to align the pointer to the (prev) page boundary */
234#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
235
0fa73b86 236/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 237#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 238
f86196ea 239#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
240static inline struct folio *lru_to_folio(struct list_head *head)
241{
242 return list_entry((head)->prev, struct folio, lru);
243}
f86196ea 244
5748fbc5
KW
245void setup_initial_init_mm(void *start_code, void *end_code,
246 void *end_data, void *brk);
247
1da177e4
LT
248/*
249 * Linux kernel virtual memory manager primitives.
250 * The idea being to have a "virtual" mm in the same way
251 * we have a virtual fs - giving a cleaner interface to the
252 * mm details, and allowing different kinds of memory mappings
253 * (from shared memory to executable loading to arbitrary
254 * mmap() functions).
255 */
256
490fc053 257struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
258struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
259void vm_area_free(struct vm_area_struct *);
c43692e8 260
1da177e4 261#ifndef CONFIG_MMU
8feae131
DH
262extern struct rb_root nommu_region_tree;
263extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
264
265extern unsigned int kobjsize(const void *objp);
266#endif
267
268/*
605d9288 269 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 270 * When changing, update also include/trace/events/mmflags.h
1da177e4 271 */
cc2383ec
KK
272#define VM_NONE 0x00000000
273
1da177e4
LT
274#define VM_READ 0x00000001 /* currently active flags */
275#define VM_WRITE 0x00000002
276#define VM_EXEC 0x00000004
277#define VM_SHARED 0x00000008
278
7e2cff42 279/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
280#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
281#define VM_MAYWRITE 0x00000020
282#define VM_MAYEXEC 0x00000040
283#define VM_MAYSHARE 0x00000080
284
285#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
b6b7a8fa 286#ifdef CONFIG_MMU
16ba6f81 287#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
b6b7a8fa
DH
288#else /* CONFIG_MMU */
289#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
290#define VM_UFFD_MISSING 0
291#endif /* CONFIG_MMU */
6aab341e 292#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 293#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 294
1da177e4
LT
295#define VM_LOCKED 0x00002000
296#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
297
298 /* Used by sys_madvise() */
299#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
300#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
301
302#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
303#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 304#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 305#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 306#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 307#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 308#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 309#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 310#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 311#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 312
d9104d1c
CG
313#ifdef CONFIG_MEM_SOFT_DIRTY
314# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
315#else
316# define VM_SOFTDIRTY 0
317#endif
318
b379d790 319#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
320#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
321#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 322#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 323
63c17fb8
DH
324#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
325#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
326#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
327#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
328#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 329#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
330#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
331#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
332#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
333#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 334#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
335#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
336
5212213a 337#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
338# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
339# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 340# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
341# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
342# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
343#ifdef CONFIG_PPC
344# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
345#else
346# define VM_PKEY_BIT4 0
8f62c883 347#endif
5212213a
RP
348#endif /* CONFIG_ARCH_HAS_PKEYS */
349
350#if defined(CONFIG_X86)
351# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
352#elif defined(CONFIG_PPC)
353# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
354#elif defined(CONFIG_PARISC)
355# define VM_GROWSUP VM_ARCH_1
356#elif defined(CONFIG_IA64)
357# define VM_GROWSUP VM_ARCH_1
74a04967
KA
358#elif defined(CONFIG_SPARC64)
359# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
360# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
361#elif defined(CONFIG_ARM64)
362# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
363# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
364#elif !defined(CONFIG_MMU)
365# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
366#endif
367
9f341931
CM
368#if defined(CONFIG_ARM64_MTE)
369# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
370# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
371#else
372# define VM_MTE VM_NONE
373# define VM_MTE_ALLOWED VM_NONE
374#endif
375
cc2383ec
KK
376#ifndef VM_GROWSUP
377# define VM_GROWSUP VM_NONE
378#endif
379
7677f7fd
AR
380#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
381# define VM_UFFD_MINOR_BIT 37
382# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
383#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
384# define VM_UFFD_MINOR VM_NONE
385#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
386
a8bef8ff
MG
387/* Bits set in the VMA until the stack is in its final location */
388#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
389
c62da0c3
AK
390#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
391
392/* Common data flag combinations */
393#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
394 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
395#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
396 VM_MAYWRITE | VM_MAYEXEC)
397#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
398 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
399
400#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
401#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
402#endif
403
1da177e4
LT
404#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
405#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
406#endif
407
408#ifdef CONFIG_STACK_GROWSUP
30bdbb78 409#define VM_STACK VM_GROWSUP
1da177e4 410#else
30bdbb78 411#define VM_STACK VM_GROWSDOWN
1da177e4
LT
412#endif
413
30bdbb78
KK
414#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
415
6cb4d9a2
AK
416/* VMA basic access permission flags */
417#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
418
419
b291f000 420/*
78f11a25 421 * Special vmas that are non-mergable, non-mlock()able.
b291f000 422 */
9050d7eb 423#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 424
b4443772
AK
425/* This mask prevents VMA from being scanned with khugepaged */
426#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
427
a0715cc2
AT
428/* This mask defines which mm->def_flags a process can inherit its parent */
429#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
430
e430a95a
SB
431/* This mask represents all the VMA flag bits used by mlock */
432#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
de60f5f1 433
2c2d57b5
KA
434/* Arch-specific flags to clear when updating VM flags on protection change */
435#ifndef VM_ARCH_CLEAR
436# define VM_ARCH_CLEAR VM_NONE
437#endif
438#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
439
1da177e4
LT
440/*
441 * mapping from the currently active vm_flags protection bits (the
442 * low four bits) to a page protection mask..
443 */
1da177e4 444
dde16072
PX
445/*
446 * The default fault flags that should be used by most of the
447 * arch-specific page fault handlers.
448 */
449#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
450 FAULT_FLAG_KILLABLE | \
451 FAULT_FLAG_INTERRUPTIBLE)
dde16072 452
4064b982
PX
453/**
454 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 455 * @flags: Fault flags.
4064b982
PX
456 *
457 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 458 * the mmap_lock for too long a time when waiting for another condition
4064b982 459 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
460 * mmap_lock in the first round to avoid potential starvation of other
461 * processes that would also want the mmap_lock.
4064b982
PX
462 *
463 * Return: true if the page fault allows retry and this is the first
464 * attempt of the fault handling; false otherwise.
465 */
da2f5eb3 466static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
467{
468 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
469 (!(flags & FAULT_FLAG_TRIED));
470}
471
282a8e03
RZ
472#define FAULT_FLAG_TRACE \
473 { FAULT_FLAG_WRITE, "WRITE" }, \
474 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
475 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
476 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
477 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
478 { FAULT_FLAG_TRIED, "TRIED" }, \
479 { FAULT_FLAG_USER, "USER" }, \
480 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
481 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
482 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 483
54cb8821 484/*
11192337 485 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
486 * ->fault function. The vma's ->fault is responsible for returning a bitmask
487 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 488 *
c20cd45e
MH
489 * MM layer fills up gfp_mask for page allocations but fault handler might
490 * alter it if its implementation requires a different allocation context.
491 *
9b4bdd2f 492 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 493 */
d0217ac0 494struct vm_fault {
5857c920 495 const struct {
742d3372
WD
496 struct vm_area_struct *vma; /* Target VMA */
497 gfp_t gfp_mask; /* gfp mask to be used for allocations */
498 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
499 unsigned long address; /* Faulting virtual address - masked */
500 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 501 };
da2f5eb3 502 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 503 * XXX: should really be 'const' */
82b0f8c3 504 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 505 * the 'address' */
a2d58167
DJ
506 pud_t *pud; /* Pointer to pud entry matching
507 * the 'address'
508 */
5db4f15c
YS
509 union {
510 pte_t orig_pte; /* Value of PTE at the time of fault */
511 pmd_t orig_pmd; /* Value of PMD at the time of fault,
512 * used by PMD fault only.
513 */
514 };
d0217ac0 515
3917048d 516 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 517 struct page *page; /* ->fault handlers should return a
83c54070 518 * page here, unless VM_FAULT_NOPAGE
d0217ac0 519 * is set (which is also implied by
83c54070 520 * VM_FAULT_ERROR).
d0217ac0 521 */
82b0f8c3 522 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
523 pte_t *pte; /* Pointer to pte entry matching
524 * the 'address'. NULL if the page
525 * table hasn't been allocated.
526 */
527 spinlock_t *ptl; /* Page table lock.
528 * Protects pte page table if 'pte'
529 * is not NULL, otherwise pmd.
530 */
7267ec00 531 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
532 * vm_ops->map_pages() sets up a page
533 * table from atomic context.
7267ec00
KS
534 * do_fault_around() pre-allocates
535 * page table to avoid allocation from
536 * atomic context.
537 */
54cb8821 538};
1da177e4 539
c791ace1
DJ
540/* page entry size for vm->huge_fault() */
541enum page_entry_size {
542 PE_SIZE_PTE = 0,
543 PE_SIZE_PMD,
544 PE_SIZE_PUD,
545};
546
1da177e4
LT
547/*
548 * These are the virtual MM functions - opening of an area, closing and
549 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 550 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
551 */
552struct vm_operations_struct {
553 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
554 /**
555 * @close: Called when the VMA is being removed from the MM.
556 * Context: User context. May sleep. Caller holds mmap_lock.
557 */
1da177e4 558 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
559 /* Called any time before splitting to check if it's allowed */
560 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 561 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
562 /*
563 * Called by mprotect() to make driver-specific permission
564 * checks before mprotect() is finalised. The VMA must not
3e0ee843 565 * be modified. Returns 0 if mprotect() can proceed.
95bb7c42
SC
566 */
567 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
568 unsigned long end, unsigned long newflags);
1c8f4220
SJ
569 vm_fault_t (*fault)(struct vm_fault *vmf);
570 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
571 enum page_entry_size pe_size);
f9ce0be7 572 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 573 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 574 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
575
576 /* notification that a previously read-only page is about to become
577 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 578 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 579
dd906184 580 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 581 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 582
28b2ee20 583 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
584 * for use by special VMAs. See also generic_access_phys() for a generic
585 * implementation useful for any iomem mapping.
28b2ee20
RR
586 */
587 int (*access)(struct vm_area_struct *vma, unsigned long addr,
588 void *buf, int len, int write);
78d683e8
AL
589
590 /* Called by the /proc/PID/maps code to ask the vma whether it
591 * has a special name. Returning non-NULL will also cause this
592 * vma to be dumped unconditionally. */
593 const char *(*name)(struct vm_area_struct *vma);
594
1da177e4 595#ifdef CONFIG_NUMA
a6020ed7
LS
596 /*
597 * set_policy() op must add a reference to any non-NULL @new mempolicy
598 * to hold the policy upon return. Caller should pass NULL @new to
599 * remove a policy and fall back to surrounding context--i.e. do not
600 * install a MPOL_DEFAULT policy, nor the task or system default
601 * mempolicy.
602 */
1da177e4 603 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
604
605 /*
606 * get_policy() op must add reference [mpol_get()] to any policy at
607 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
608 * in mm/mempolicy.c will do this automatically.
609 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 610 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
611 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
612 * must return NULL--i.e., do not "fallback" to task or system default
613 * policy.
614 */
1da177e4
LT
615 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
616 unsigned long addr);
617#endif
667a0a06
DV
618 /*
619 * Called by vm_normal_page() for special PTEs to find the
620 * page for @addr. This is useful if the default behavior
621 * (using pte_page()) would not find the correct page.
622 */
623 struct page *(*find_special_page)(struct vm_area_struct *vma,
624 unsigned long addr);
1da177e4
LT
625};
626
5e31275c
SB
627#ifdef CONFIG_PER_VMA_LOCK
628static inline void vma_init_lock(struct vm_area_struct *vma)
629{
630 init_rwsem(&vma->lock);
631 vma->vm_lock_seq = -1;
632}
633
634/*
635 * Try to read-lock a vma. The function is allowed to occasionally yield false
636 * locked result to avoid performance overhead, in which case we fall back to
637 * using mmap_lock. The function should never yield false unlocked result.
638 */
639static inline bool vma_start_read(struct vm_area_struct *vma)
640{
641 /* Check before locking. A race might cause false locked result. */
642 if (vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))
643 return false;
644
645 if (unlikely(down_read_trylock(&vma->lock) == 0))
646 return false;
647
648 /*
649 * Overflow might produce false locked result.
650 * False unlocked result is impossible because we modify and check
651 * vma->vm_lock_seq under vma->lock protection and mm->mm_lock_seq
652 * modification invalidates all existing locks.
653 */
654 if (unlikely(vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))) {
655 up_read(&vma->lock);
656 return false;
657 }
658 return true;
659}
660
661static inline void vma_end_read(struct vm_area_struct *vma)
662{
663 rcu_read_lock(); /* keeps vma alive till the end of up_read */
664 up_read(&vma->lock);
665 rcu_read_unlock();
666}
667
668static inline void vma_start_write(struct vm_area_struct *vma)
669{
670 int mm_lock_seq;
671
672 mmap_assert_write_locked(vma->vm_mm);
673
674 /*
675 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
676 * mm->mm_lock_seq can't be concurrently modified.
677 */
678 mm_lock_seq = READ_ONCE(vma->vm_mm->mm_lock_seq);
679 if (vma->vm_lock_seq == mm_lock_seq)
680 return;
681
682 down_write(&vma->lock);
683 vma->vm_lock_seq = mm_lock_seq;
684 up_write(&vma->lock);
685}
686
687static inline void vma_assert_write_locked(struct vm_area_struct *vma)
688{
689 mmap_assert_write_locked(vma->vm_mm);
690 /*
691 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
692 * mm->mm_lock_seq can't be concurrently modified.
693 */
694 VM_BUG_ON_VMA(vma->vm_lock_seq != READ_ONCE(vma->vm_mm->mm_lock_seq), vma);
695}
696
697#else /* CONFIG_PER_VMA_LOCK */
698
699static inline void vma_init_lock(struct vm_area_struct *vma) {}
700static inline bool vma_start_read(struct vm_area_struct *vma)
701 { return false; }
702static inline void vma_end_read(struct vm_area_struct *vma) {}
703static inline void vma_start_write(struct vm_area_struct *vma) {}
704static inline void vma_assert_write_locked(struct vm_area_struct *vma) {}
705
706#endif /* CONFIG_PER_VMA_LOCK */
707
027232da
KS
708static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
709{
bfd40eaf
KS
710 static const struct vm_operations_struct dummy_vm_ops = {};
711
a670468f 712 memset(vma, 0, sizeof(*vma));
027232da 713 vma->vm_mm = mm;
bfd40eaf 714 vma->vm_ops = &dummy_vm_ops;
027232da 715 INIT_LIST_HEAD(&vma->anon_vma_chain);
5e31275c 716 vma_init_lock(vma);
027232da
KS
717}
718
bc292ab0
SB
719/* Use when VMA is not part of the VMA tree and needs no locking */
720static inline void vm_flags_init(struct vm_area_struct *vma,
721 vm_flags_t flags)
722{
723 ACCESS_PRIVATE(vma, __vm_flags) = flags;
724}
725
726/* Use when VMA is part of the VMA tree and modifications need coordination */
727static inline void vm_flags_reset(struct vm_area_struct *vma,
728 vm_flags_t flags)
729{
c7322933 730 vma_start_write(vma);
bc292ab0
SB
731 vm_flags_init(vma, flags);
732}
733
601c3c29
SB
734static inline void vm_flags_reset_once(struct vm_area_struct *vma,
735 vm_flags_t flags)
736{
c7322933 737 vma_start_write(vma);
601c3c29
SB
738 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
739}
740
bc292ab0
SB
741static inline void vm_flags_set(struct vm_area_struct *vma,
742 vm_flags_t flags)
743{
c7322933 744 vma_start_write(vma);
bc292ab0
SB
745 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
746}
747
748static inline void vm_flags_clear(struct vm_area_struct *vma,
749 vm_flags_t flags)
750{
c7322933 751 vma_start_write(vma);
bc292ab0
SB
752 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
753}
754
68f48381
SB
755/*
756 * Use only if VMA is not part of the VMA tree or has no other users and
757 * therefore needs no locking.
758 */
759static inline void __vm_flags_mod(struct vm_area_struct *vma,
760 vm_flags_t set, vm_flags_t clear)
761{
762 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
763}
764
bc292ab0
SB
765/*
766 * Use only when the order of set/clear operations is unimportant, otherwise
767 * use vm_flags_{set|clear} explicitly.
768 */
769static inline void vm_flags_mod(struct vm_area_struct *vma,
770 vm_flags_t set, vm_flags_t clear)
771{
c7322933 772 vma_start_write(vma);
68f48381 773 __vm_flags_mod(vma, set, clear);
bc292ab0
SB
774}
775
bfd40eaf
KS
776static inline void vma_set_anonymous(struct vm_area_struct *vma)
777{
778 vma->vm_ops = NULL;
779}
780
43675e6f
YS
781static inline bool vma_is_anonymous(struct vm_area_struct *vma)
782{
783 return !vma->vm_ops;
784}
785
222100ee
AK
786static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
787{
788 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
789
790 if (!maybe_stack)
791 return false;
792
793 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
794 VM_STACK_INCOMPLETE_SETUP)
795 return true;
796
797 return false;
798}
799
7969f226
AK
800static inline bool vma_is_foreign(struct vm_area_struct *vma)
801{
802 if (!current->mm)
803 return true;
804
805 if (current->mm != vma->vm_mm)
806 return true;
807
808 return false;
809}
3122e80e
AK
810
811static inline bool vma_is_accessible(struct vm_area_struct *vma)
812{
6cb4d9a2 813 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
814}
815
f39af059
MWO
816static inline
817struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
818{
b62b633e 819 return mas_find(&vmi->mas, max - 1);
f39af059
MWO
820}
821
822static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
823{
824 /*
b62b633e 825 * Uses mas_find() to get the first VMA when the iterator starts.
f39af059
MWO
826 * Calling mas_next() could skip the first entry.
827 */
b62b633e 828 return mas_find(&vmi->mas, ULONG_MAX);
f39af059
MWO
829}
830
831static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
832{
833 return mas_prev(&vmi->mas, 0);
834}
835
836static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
837{
838 return vmi->mas.index;
839}
840
b62b633e
LH
841static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
842{
843 return vmi->mas.last + 1;
844}
845static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
846 unsigned long count)
847{
848 return mas_expected_entries(&vmi->mas, count);
849}
850
851/* Free any unused preallocations */
852static inline void vma_iter_free(struct vma_iterator *vmi)
853{
854 mas_destroy(&vmi->mas);
855}
856
857static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
858 struct vm_area_struct *vma)
859{
860 vmi->mas.index = vma->vm_start;
861 vmi->mas.last = vma->vm_end - 1;
862 mas_store(&vmi->mas, vma);
863 if (unlikely(mas_is_err(&vmi->mas)))
864 return -ENOMEM;
865
866 return 0;
867}
868
869static inline void vma_iter_invalidate(struct vma_iterator *vmi)
870{
871 mas_pause(&vmi->mas);
872}
873
874static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
875{
876 mas_set(&vmi->mas, addr);
877}
878
f39af059
MWO
879#define for_each_vma(__vmi, __vma) \
880 while (((__vma) = vma_next(&(__vmi))) != NULL)
881
882/* The MM code likes to work with exclusive end addresses */
883#define for_each_vma_range(__vmi, __vma, __end) \
b62b633e 884 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
f39af059 885
43675e6f
YS
886#ifdef CONFIG_SHMEM
887/*
888 * The vma_is_shmem is not inline because it is used only by slow
889 * paths in userfault.
890 */
891bool vma_is_shmem(struct vm_area_struct *vma);
d09e8ca6 892bool vma_is_anon_shmem(struct vm_area_struct *vma);
43675e6f
YS
893#else
894static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
d09e8ca6 895static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
43675e6f
YS
896#endif
897
898int vma_is_stack_for_current(struct vm_area_struct *vma);
899
8b11ec1b
LT
900/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
901#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
902
1da177e4
LT
903struct mmu_gather;
904struct inode;
905
5eb5cea1
MWO
906/*
907 * compound_order() can be called without holding a reference, which means
908 * that niceties like page_folio() don't work. These callers should be
909 * prepared to handle wild return values. For example, PG_head may be
910 * set before _folio_order is initialised, or this may be a tail page.
911 * See compaction.c for some good examples.
912 */
5bf34d7c
MWO
913static inline unsigned int compound_order(struct page *page)
914{
5eb5cea1
MWO
915 struct folio *folio = (struct folio *)page;
916
917 if (!test_bit(PG_head, &folio->flags))
5bf34d7c 918 return 0;
5eb5cea1 919 return folio->_folio_order;
5bf34d7c
MWO
920}
921
922/**
923 * folio_order - The allocation order of a folio.
924 * @folio: The folio.
925 *
926 * A folio is composed of 2^order pages. See get_order() for the definition
927 * of order.
928 *
929 * Return: The order of the folio.
930 */
931static inline unsigned int folio_order(struct folio *folio)
932{
c3a15bff
MWO
933 if (!folio_test_large(folio))
934 return 0;
935 return folio->_folio_order;
5bf34d7c
MWO
936}
937
71e3aac0 938#include <linux/huge_mm.h>
1da177e4
LT
939
940/*
941 * Methods to modify the page usage count.
942 *
943 * What counts for a page usage:
944 * - cache mapping (page->mapping)
945 * - private data (page->private)
946 * - page mapped in a task's page tables, each mapping
947 * is counted separately
948 *
949 * Also, many kernel routines increase the page count before a critical
950 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
951 */
952
953/*
da6052f7 954 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 955 */
7c8ee9a8
NP
956static inline int put_page_testzero(struct page *page)
957{
fe896d18
JK
958 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
959 return page_ref_dec_and_test(page);
7c8ee9a8 960}
1da177e4 961
b620f633
MWO
962static inline int folio_put_testzero(struct folio *folio)
963{
964 return put_page_testzero(&folio->page);
965}
966
1da177e4 967/*
7c8ee9a8
NP
968 * Try to grab a ref unless the page has a refcount of zero, return false if
969 * that is the case.
8e0861fa
AK
970 * This can be called when MMU is off so it must not access
971 * any of the virtual mappings.
1da177e4 972 */
c2530328 973static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 974{
fe896d18 975 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 976}
1da177e4 977
3c1ea2c7
VMO
978static inline struct folio *folio_get_nontail_page(struct page *page)
979{
980 if (unlikely(!get_page_unless_zero(page)))
981 return NULL;
982 return (struct folio *)page;
983}
984
53df8fdc 985extern int page_is_ram(unsigned long pfn);
124fe20d
DW
986
987enum {
988 REGION_INTERSECTS,
989 REGION_DISJOINT,
990 REGION_MIXED,
991};
992
1c29f25b
TK
993int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
994 unsigned long desc);
53df8fdc 995
48667e7a 996/* Support for virtually mapped pages */
b3bdda02
CL
997struct page *vmalloc_to_page(const void *addr);
998unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 999
0738c4bb
PM
1000/*
1001 * Determine if an address is within the vmalloc range
1002 *
1003 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1004 * is no special casing required.
1005 */
9bd3bb67
AK
1006
1007#ifndef is_ioremap_addr
1008#define is_ioremap_addr(x) is_vmalloc_addr(x)
1009#endif
1010
81ac3ad9 1011#ifdef CONFIG_MMU
186525bd 1012extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
1013extern int is_vmalloc_or_module_addr(const void *x);
1014#else
186525bd
IM
1015static inline bool is_vmalloc_addr(const void *x)
1016{
1017 return false;
1018}
934831d0 1019static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
1020{
1021 return 0;
1022}
1023#endif
9e2779fa 1024
74e8ee47
MWO
1025/*
1026 * How many times the entire folio is mapped as a single unit (eg by a
1027 * PMD or PUD entry). This is probably not what you want, except for
cb67f428
HD
1028 * debugging purposes - it does not include PTE-mapped sub-pages; look
1029 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
74e8ee47
MWO
1030 */
1031static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 1032{
74e8ee47 1033 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1aa4d03b 1034 return atomic_read(&folio->_entire_mapcount) + 1;
53f9263b
KS
1035}
1036
70b50f94
AA
1037/*
1038 * The atomic page->_mapcount, starts from -1: so that transitions
1039 * both from it and to it can be tracked, using atomic_inc_and_test
1040 * and atomic_add_negative(-1).
1041 */
22b751c3 1042static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
1043{
1044 atomic_set(&(page)->_mapcount, -1);
1045}
1046
c97eeb8f
MWO
1047/**
1048 * page_mapcount() - Number of times this precise page is mapped.
1049 * @page: The page.
1050 *
1051 * The number of times this page is mapped. If this page is part of
1052 * a large folio, it includes the number of times this page is mapped
1053 * as part of that folio.
6988f31d 1054 *
c97eeb8f 1055 * The result is undefined for pages which cannot be mapped into userspace.
6988f31d 1056 * For example SLAB or special types of pages. See function page_has_type().
c97eeb8f 1057 * They use this field in struct page differently.
6988f31d 1058 */
70b50f94
AA
1059static inline int page_mapcount(struct page *page)
1060{
cb67f428 1061 int mapcount = atomic_read(&page->_mapcount) + 1;
b20ce5e0 1062
c97eeb8f
MWO
1063 if (unlikely(PageCompound(page)))
1064 mapcount += folio_entire_mapcount(page_folio(page));
1065
1066 return mapcount;
b20ce5e0
KS
1067}
1068
b14224fb 1069int folio_total_mapcount(struct folio *folio);
4ba1119c 1070
cb67f428
HD
1071/**
1072 * folio_mapcount() - Calculate the number of mappings of this folio.
1073 * @folio: The folio.
1074 *
1075 * A large folio tracks both how many times the entire folio is mapped,
1076 * and how many times each individual page in the folio is mapped.
1077 * This function calculates the total number of times the folio is
1078 * mapped.
1079 *
1080 * Return: The number of times this folio is mapped.
1081 */
1082static inline int folio_mapcount(struct folio *folio)
4ba1119c 1083{
cb67f428
HD
1084 if (likely(!folio_test_large(folio)))
1085 return atomic_read(&folio->_mapcount) + 1;
b14224fb 1086 return folio_total_mapcount(folio);
4ba1119c
MWO
1087}
1088
b20ce5e0
KS
1089static inline int total_mapcount(struct page *page)
1090{
be5ef2d9
HD
1091 if (likely(!PageCompound(page)))
1092 return atomic_read(&page->_mapcount) + 1;
b14224fb 1093 return folio_total_mapcount(page_folio(page));
be5ef2d9
HD
1094}
1095
1096static inline bool folio_large_is_mapped(struct folio *folio)
1097{
4b51634c 1098 /*
1aa4d03b 1099 * Reading _entire_mapcount below could be omitted if hugetlb
eec20426 1100 * participated in incrementing nr_pages_mapped when compound mapped.
4b51634c 1101 */
eec20426 1102 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1aa4d03b 1103 atomic_read(&folio->_entire_mapcount) >= 0;
cb67f428
HD
1104}
1105
1106/**
1107 * folio_mapped - Is this folio mapped into userspace?
1108 * @folio: The folio.
1109 *
1110 * Return: True if any page in this folio is referenced by user page tables.
1111 */
1112static inline bool folio_mapped(struct folio *folio)
1113{
be5ef2d9
HD
1114 if (likely(!folio_test_large(folio)))
1115 return atomic_read(&folio->_mapcount) >= 0;
1116 return folio_large_is_mapped(folio);
1117}
1118
1119/*
1120 * Return true if this page is mapped into pagetables.
1121 * For compound page it returns true if any sub-page of compound page is mapped,
1122 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1123 */
1124static inline bool page_mapped(struct page *page)
1125{
1126 if (likely(!PageCompound(page)))
1127 return atomic_read(&page->_mapcount) >= 0;
1128 return folio_large_is_mapped(page_folio(page));
70b50f94
AA
1129}
1130
b49af68f
CL
1131static inline struct page *virt_to_head_page(const void *x)
1132{
1133 struct page *page = virt_to_page(x);
ccaafd7f 1134
1d798ca3 1135 return compound_head(page);
b49af68f
CL
1136}
1137
7d4203c1
VB
1138static inline struct folio *virt_to_folio(const void *x)
1139{
1140 struct page *page = virt_to_page(x);
1141
1142 return page_folio(page);
1143}
1144
8d29c703 1145void __folio_put(struct folio *folio);
ddc58f27 1146
1d7ea732 1147void put_pages_list(struct list_head *pages);
1da177e4 1148
8dfcc9ba 1149void split_page(struct page *page, unsigned int order);
715cbfd6 1150void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 1151
a1554c00
ML
1152unsigned long nr_free_buffer_pages(void);
1153
33f2ef89
AW
1154/*
1155 * Compound pages have a destructor function. Provide a
1156 * prototype for that function and accessor functions.
f1e61557 1157 * These are _only_ valid on the head of a compound page.
33f2ef89 1158 */
f1e61557
KS
1159typedef void compound_page_dtor(struct page *);
1160
1161/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1162enum compound_dtor_id {
1163 NULL_COMPOUND_DTOR,
1164 COMPOUND_PAGE_DTOR,
1165#ifdef CONFIG_HUGETLB_PAGE
1166 HUGETLB_PAGE_DTOR,
9a982250
KS
1167#endif
1168#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1169 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
1170#endif
1171 NR_COMPOUND_DTORS,
1172};
ae70eddd 1173extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
1174
1175static inline void set_compound_page_dtor(struct page *page,
f1e61557 1176 enum compound_dtor_id compound_dtor)
33f2ef89 1177{
bad6da64
MWO
1178 struct folio *folio = (struct folio *)page;
1179
f1e61557 1180 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
bad6da64
MWO
1181 VM_BUG_ON_PAGE(!PageHead(page), page);
1182 folio->_folio_dtor = compound_dtor;
33f2ef89
AW
1183}
1184
9fd33058
SK
1185static inline void folio_set_compound_dtor(struct folio *folio,
1186 enum compound_dtor_id compound_dtor)
1187{
1188 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1189 folio->_folio_dtor = compound_dtor;
1190}
1191
5375336c 1192void destroy_large_folio(struct folio *folio);
33f2ef89 1193
f1e61557 1194static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 1195{
bad6da64 1196 struct folio *folio = (struct folio *)page;
9fd33058
SK
1197
1198 folio->_folio_order = order;
1199#ifdef CONFIG_64BIT
bad6da64 1200 folio->_folio_nr_pages = 1U << order;
5232c63f 1201#endif
d8c6546b
MWO
1202}
1203
a50b854e
MWO
1204/* Returns the number of bytes in this potentially compound page. */
1205static inline unsigned long page_size(struct page *page)
1206{
1207 return PAGE_SIZE << compound_order(page);
1208}
1209
94ad9338
MWO
1210/* Returns the number of bits needed for the number of bytes in a page */
1211static inline unsigned int page_shift(struct page *page)
1212{
1213 return PAGE_SHIFT + compound_order(page);
1214}
1215
18788cfa
MWO
1216/**
1217 * thp_order - Order of a transparent huge page.
1218 * @page: Head page of a transparent huge page.
1219 */
1220static inline unsigned int thp_order(struct page *page)
1221{
1222 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1223 return compound_order(page);
1224}
1225
18788cfa
MWO
1226/**
1227 * thp_size - Size of a transparent huge page.
1228 * @page: Head page of a transparent huge page.
1229 *
1230 * Return: Number of bytes in this page.
1231 */
1232static inline unsigned long thp_size(struct page *page)
1233{
1234 return PAGE_SIZE << thp_order(page);
1235}
1236
9a982250
KS
1237void free_compound_page(struct page *page);
1238
3dece370 1239#ifdef CONFIG_MMU
14fd403f
AA
1240/*
1241 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1242 * servicing faults for write access. In the normal case, do always want
1243 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1244 * that do not have writing enabled, when used by access_process_vm.
1245 */
1246static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1247{
1248 if (likely(vma->vm_flags & VM_WRITE))
1249 pte = pte_mkwrite(pte);
1250 return pte;
1251}
8c6e50b0 1252
f9ce0be7 1253vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1254void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1255
2b740303
SJ
1256vm_fault_t finish_fault(struct vm_fault *vmf);
1257vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1258#endif
14fd403f 1259
1da177e4
LT
1260/*
1261 * Multiple processes may "see" the same page. E.g. for untouched
1262 * mappings of /dev/null, all processes see the same page full of
1263 * zeroes, and text pages of executables and shared libraries have
1264 * only one copy in memory, at most, normally.
1265 *
1266 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1267 * page_count() == 0 means the page is free. page->lru is then used for
1268 * freelist management in the buddy allocator.
da6052f7 1269 * page_count() > 0 means the page has been allocated.
1da177e4 1270 *
da6052f7
NP
1271 * Pages are allocated by the slab allocator in order to provide memory
1272 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1273 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1274 * unless a particular usage is carefully commented. (the responsibility of
1275 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1276 *
da6052f7
NP
1277 * A page may be used by anyone else who does a __get_free_page().
1278 * In this case, page_count still tracks the references, and should only
1279 * be used through the normal accessor functions. The top bits of page->flags
1280 * and page->virtual store page management information, but all other fields
1281 * are unused and could be used privately, carefully. The management of this
1282 * page is the responsibility of the one who allocated it, and those who have
1283 * subsequently been given references to it.
1284 *
1285 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1286 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1287 * The following discussion applies only to them.
1288 *
da6052f7
NP
1289 * A pagecache page contains an opaque `private' member, which belongs to the
1290 * page's address_space. Usually, this is the address of a circular list of
1291 * the page's disk buffers. PG_private must be set to tell the VM to call
1292 * into the filesystem to release these pages.
1da177e4 1293 *
da6052f7
NP
1294 * A page may belong to an inode's memory mapping. In this case, page->mapping
1295 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1296 * in units of PAGE_SIZE.
1da177e4 1297 *
da6052f7
NP
1298 * If pagecache pages are not associated with an inode, they are said to be
1299 * anonymous pages. These may become associated with the swapcache, and in that
1300 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1301 *
da6052f7
NP
1302 * In either case (swapcache or inode backed), the pagecache itself holds one
1303 * reference to the page. Setting PG_private should also increment the
1304 * refcount. The each user mapping also has a reference to the page.
1da177e4 1305 *
da6052f7 1306 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1307 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1308 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1309 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1310 *
da6052f7 1311 * All pagecache pages may be subject to I/O:
1da177e4
LT
1312 * - inode pages may need to be read from disk,
1313 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1314 * to be written back to the inode on disk,
1315 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1316 * modified may need to be swapped out to swap space and (later) to be read
1317 * back into memory.
1da177e4
LT
1318 */
1319
27674ef6 1320#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1321DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1322
f4f451a1
MS
1323bool __put_devmap_managed_page_refs(struct page *page, int refs);
1324static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1325{
1326 if (!static_branch_unlikely(&devmap_managed_key))
1327 return false;
1328 if (!is_zone_device_page(page))
1329 return false;
f4f451a1 1330 return __put_devmap_managed_page_refs(page, refs);
e7638488 1331}
27674ef6 1332#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1333static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1334{
1335 return false;
1336}
27674ef6 1337#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1338
f4f451a1
MS
1339static inline bool put_devmap_managed_page(struct page *page)
1340{
1341 return put_devmap_managed_page_refs(page, 1);
1342}
1343
f958d7b5 1344/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1345#define folio_ref_zero_or_close_to_overflow(folio) \
1346 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1347
1348/**
1349 * folio_get - Increment the reference count on a folio.
1350 * @folio: The folio.
1351 *
1352 * Context: May be called in any context, as long as you know that
1353 * you have a refcount on the folio. If you do not already have one,
1354 * folio_try_get() may be the right interface for you to use.
1355 */
1356static inline void folio_get(struct folio *folio)
1357{
1358 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1359 folio_ref_inc(folio);
1360}
f958d7b5 1361
3565fce3
DW
1362static inline void get_page(struct page *page)
1363{
86d234cb 1364 folio_get(page_folio(page));
3565fce3
DW
1365}
1366
cd1adf1b
LT
1367static inline __must_check bool try_get_page(struct page *page)
1368{
1369 page = compound_head(page);
1370 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1371 return false;
1372 page_ref_inc(page);
1373 return true;
1374}
3565fce3 1375
b620f633
MWO
1376/**
1377 * folio_put - Decrement the reference count on a folio.
1378 * @folio: The folio.
1379 *
1380 * If the folio's reference count reaches zero, the memory will be
1381 * released back to the page allocator and may be used by another
1382 * allocation immediately. Do not access the memory or the struct folio
1383 * after calling folio_put() unless you can be sure that it wasn't the
1384 * last reference.
1385 *
1386 * Context: May be called in process or interrupt context, but not in NMI
1387 * context. May be called while holding a spinlock.
1388 */
1389static inline void folio_put(struct folio *folio)
1390{
1391 if (folio_put_testzero(folio))
8d29c703 1392 __folio_put(folio);
b620f633
MWO
1393}
1394
3fe7fa58
MWO
1395/**
1396 * folio_put_refs - Reduce the reference count on a folio.
1397 * @folio: The folio.
1398 * @refs: The amount to subtract from the folio's reference count.
1399 *
1400 * If the folio's reference count reaches zero, the memory will be
1401 * released back to the page allocator and may be used by another
1402 * allocation immediately. Do not access the memory or the struct folio
1403 * after calling folio_put_refs() unless you can be sure that these weren't
1404 * the last references.
1405 *
1406 * Context: May be called in process or interrupt context, but not in NMI
1407 * context. May be called while holding a spinlock.
1408 */
1409static inline void folio_put_refs(struct folio *folio, int refs)
1410{
1411 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1412 __folio_put(folio);
3fe7fa58
MWO
1413}
1414
0411d6ee
SP
1415/*
1416 * union release_pages_arg - an array of pages or folios
449c7967 1417 *
0411d6ee 1418 * release_pages() releases a simple array of multiple pages, and
449c7967
LT
1419 * accepts various different forms of said page array: either
1420 * a regular old boring array of pages, an array of folios, or
1421 * an array of encoded page pointers.
1422 *
1423 * The transparent union syntax for this kind of "any of these
1424 * argument types" is all kinds of ugly, so look away.
1425 */
1426typedef union {
1427 struct page **pages;
1428 struct folio **folios;
1429 struct encoded_page **encoded_pages;
1430} release_pages_arg __attribute__ ((__transparent_union__));
1431
1432void release_pages(release_pages_arg, int nr);
e3c4cebf
MWO
1433
1434/**
1435 * folios_put - Decrement the reference count on an array of folios.
1436 * @folios: The folios.
1437 * @nr: How many folios there are.
1438 *
1439 * Like folio_put(), but for an array of folios. This is more efficient
1440 * than writing the loop yourself as it will optimise the locks which
1441 * need to be taken if the folios are freed.
1442 *
1443 * Context: May be called in process or interrupt context, but not in NMI
1444 * context. May be called while holding a spinlock.
1445 */
1446static inline void folios_put(struct folio **folios, unsigned int nr)
1447{
449c7967 1448 release_pages(folios, nr);
3fe7fa58
MWO
1449}
1450
3565fce3
DW
1451static inline void put_page(struct page *page)
1452{
b620f633 1453 struct folio *folio = page_folio(page);
3565fce3 1454
7b2d55d2 1455 /*
89574945
CH
1456 * For some devmap managed pages we need to catch refcount transition
1457 * from 2 to 1:
7b2d55d2 1458 */
89574945 1459 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1460 return;
b620f633 1461 folio_put(folio);
3565fce3
DW
1462}
1463
3faa52c0
JH
1464/*
1465 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1466 * the page's refcount so that two separate items are tracked: the original page
1467 * reference count, and also a new count of how many pin_user_pages() calls were
1468 * made against the page. ("gup-pinned" is another term for the latter).
1469 *
1470 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1471 * distinct from normal pages. As such, the unpin_user_page() call (and its
1472 * variants) must be used in order to release gup-pinned pages.
1473 *
1474 * Choice of value:
1475 *
1476 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1477 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1478 * simpler, due to the fact that adding an even power of two to the page
1479 * refcount has the effect of using only the upper N bits, for the code that
1480 * counts up using the bias value. This means that the lower bits are left for
1481 * the exclusive use of the original code that increments and decrements by one
1482 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1483 *
3faa52c0
JH
1484 * Of course, once the lower bits overflow into the upper bits (and this is
1485 * OK, because subtraction recovers the original values), then visual inspection
1486 * no longer suffices to directly view the separate counts. However, for normal
1487 * applications that don't have huge page reference counts, this won't be an
1488 * issue.
fc1d8e7c 1489 *
40fcc7fc
MWO
1490 * Locking: the lockless algorithm described in folio_try_get_rcu()
1491 * provides safe operation for get_user_pages(), page_mkclean() and
1492 * other calls that race to set up page table entries.
fc1d8e7c 1493 */
3faa52c0 1494#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1495
3faa52c0 1496void unpin_user_page(struct page *page);
f1f6a7dd
JH
1497void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1498 bool make_dirty);
458a4f78
JM
1499void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1500 bool make_dirty);
f1f6a7dd 1501void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1502
97a7e473
PX
1503static inline bool is_cow_mapping(vm_flags_t flags)
1504{
1505 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1506}
1507
fc4f4be9
DH
1508#ifndef CONFIG_MMU
1509static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1510{
1511 /*
1512 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1513 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1514 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1515 * underlying memory if ptrace is active, so this is only possible if
1516 * ptrace does not apply. Note that there is no mprotect() to upgrade
1517 * write permissions later.
1518 */
b6b7a8fa 1519 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
fc4f4be9
DH
1520}
1521#endif
1522
9127ab4f
CS
1523#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1524#define SECTION_IN_PAGE_FLAGS
1525#endif
1526
89689ae7 1527/*
7a8010cd
VB
1528 * The identification function is mainly used by the buddy allocator for
1529 * determining if two pages could be buddies. We are not really identifying
1530 * the zone since we could be using the section number id if we do not have
1531 * node id available in page flags.
1532 * We only guarantee that it will return the same value for two combinable
1533 * pages in a zone.
89689ae7 1534 */
cb2b95e1
AW
1535static inline int page_zone_id(struct page *page)
1536{
89689ae7 1537 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1538}
1539
89689ae7 1540#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1541extern int page_to_nid(const struct page *page);
89689ae7 1542#else
33dd4e0e 1543static inline int page_to_nid(const struct page *page)
d41dee36 1544{
f165b378
PT
1545 struct page *p = (struct page *)page;
1546
1547 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1548}
89689ae7
CL
1549#endif
1550
874fd90c
MWO
1551static inline int folio_nid(const struct folio *folio)
1552{
1553 return page_to_nid(&folio->page);
1554}
1555
57e0a030 1556#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1557/* page access time bits needs to hold at least 4 seconds */
1558#define PAGE_ACCESS_TIME_MIN_BITS 12
1559#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1560#define PAGE_ACCESS_TIME_BUCKETS \
1561 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1562#else
1563#define PAGE_ACCESS_TIME_BUCKETS 0
1564#endif
1565
1566#define PAGE_ACCESS_TIME_MASK \
1567 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1568
90572890 1569static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1570{
90572890 1571 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1572}
1573
90572890 1574static inline int cpupid_to_pid(int cpupid)
57e0a030 1575{
90572890 1576 return cpupid & LAST__PID_MASK;
57e0a030 1577}
b795854b 1578
90572890 1579static inline int cpupid_to_cpu(int cpupid)
b795854b 1580{
90572890 1581 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1582}
1583
90572890 1584static inline int cpupid_to_nid(int cpupid)
b795854b 1585{
90572890 1586 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1587}
1588
90572890 1589static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1590{
90572890 1591 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1592}
1593
90572890 1594static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1595{
90572890 1596 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1597}
1598
8c8a743c
PZ
1599static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1600{
1601 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1602}
1603
1604#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1605#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1606static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1607{
1ae71d03 1608 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1609}
90572890
PZ
1610
1611static inline int page_cpupid_last(struct page *page)
1612{
1613 return page->_last_cpupid;
1614}
1615static inline void page_cpupid_reset_last(struct page *page)
b795854b 1616{
1ae71d03 1617 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1618}
1619#else
90572890 1620static inline int page_cpupid_last(struct page *page)
75980e97 1621{
90572890 1622 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1623}
1624
90572890 1625extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1626
90572890 1627static inline void page_cpupid_reset_last(struct page *page)
75980e97 1628{
09940a4f 1629 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1630}
90572890 1631#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536
HY
1632
1633static inline int xchg_page_access_time(struct page *page, int time)
1634{
1635 int last_time;
1636
1637 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1638 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1639}
90572890
PZ
1640#else /* !CONFIG_NUMA_BALANCING */
1641static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1642{
90572890 1643 return page_to_nid(page); /* XXX */
57e0a030
MG
1644}
1645
33024536
HY
1646static inline int xchg_page_access_time(struct page *page, int time)
1647{
1648 return 0;
1649}
1650
90572890 1651static inline int page_cpupid_last(struct page *page)
57e0a030 1652{
90572890 1653 return page_to_nid(page); /* XXX */
57e0a030
MG
1654}
1655
90572890 1656static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1657{
1658 return -1;
1659}
1660
90572890 1661static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1662{
1663 return -1;
1664}
1665
90572890 1666static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1667{
1668 return -1;
1669}
1670
90572890
PZ
1671static inline int cpu_pid_to_cpupid(int nid, int pid)
1672{
1673 return -1;
1674}
1675
1676static inline bool cpupid_pid_unset(int cpupid)
b795854b 1677{
2b787449 1678 return true;
b795854b
MG
1679}
1680
90572890 1681static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1682{
1683}
8c8a743c
PZ
1684
1685static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1686{
1687 return false;
1688}
90572890 1689#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1690
2e903b91 1691#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1692
cf10bd4c
AK
1693/*
1694 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1695 * setting tags for all pages to native kernel tag value 0xff, as the default
1696 * value 0x00 maps to 0xff.
1697 */
1698
2813b9c0
AK
1699static inline u8 page_kasan_tag(const struct page *page)
1700{
cf10bd4c
AK
1701 u8 tag = 0xff;
1702
1703 if (kasan_enabled()) {
1704 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1705 tag ^= 0xff;
1706 }
1707
1708 return tag;
2813b9c0
AK
1709}
1710
1711static inline void page_kasan_tag_set(struct page *page, u8 tag)
1712{
27fe7339
PC
1713 unsigned long old_flags, flags;
1714
1715 if (!kasan_enabled())
1716 return;
1717
1718 tag ^= 0xff;
1719 old_flags = READ_ONCE(page->flags);
1720 do {
1721 flags = old_flags;
1722 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1723 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1724 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1725}
1726
1727static inline void page_kasan_tag_reset(struct page *page)
1728{
34303244
AK
1729 if (kasan_enabled())
1730 page_kasan_tag_set(page, 0xff);
2813b9c0 1731}
34303244
AK
1732
1733#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1734
2813b9c0
AK
1735static inline u8 page_kasan_tag(const struct page *page)
1736{
1737 return 0xff;
1738}
1739
1740static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1741static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1742
1743#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1744
33dd4e0e 1745static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1746{
1747 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1748}
1749
75ef7184
MG
1750static inline pg_data_t *page_pgdat(const struct page *page)
1751{
1752 return NODE_DATA(page_to_nid(page));
1753}
1754
32b8fc48
MWO
1755static inline struct zone *folio_zone(const struct folio *folio)
1756{
1757 return page_zone(&folio->page);
1758}
1759
1760static inline pg_data_t *folio_pgdat(const struct folio *folio)
1761{
1762 return page_pgdat(&folio->page);
1763}
1764
9127ab4f 1765#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1766static inline void set_page_section(struct page *page, unsigned long section)
1767{
1768 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1769 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1770}
1771
aa462abe 1772static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1773{
1774 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1775}
308c05e3 1776#endif
d41dee36 1777
bf6bd276
MWO
1778/**
1779 * folio_pfn - Return the Page Frame Number of a folio.
1780 * @folio: The folio.
1781 *
1782 * A folio may contain multiple pages. The pages have consecutive
1783 * Page Frame Numbers.
1784 *
1785 * Return: The Page Frame Number of the first page in the folio.
1786 */
1787static inline unsigned long folio_pfn(struct folio *folio)
1788{
1789 return page_to_pfn(&folio->page);
1790}
1791
018ee47f
YZ
1792static inline struct folio *pfn_folio(unsigned long pfn)
1793{
1794 return page_folio(pfn_to_page(pfn));
1795}
1796
0b90ddae
MWO
1797/**
1798 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1799 * @folio: The folio.
1800 *
1801 * This function checks if a folio has been pinned via a call to
1802 * a function in the pin_user_pages() family.
1803 *
1804 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1805 * because it means "definitely not pinned for DMA", but true means "probably
1806 * pinned for DMA, but possibly a false positive due to having at least
1807 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1808 *
1809 * False positives are OK, because: a) it's unlikely for a folio to
1810 * get that many refcounts, and b) all the callers of this routine are
1811 * expected to be able to deal gracefully with a false positive.
1812 *
1813 * For large folios, the result will be exactly correct. That's because
94688e8e 1814 * we have more tracking data available: the _pincount field is used
0b90ddae
MWO
1815 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1816 *
1817 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1818 *
1819 * Return: True, if it is likely that the page has been "dma-pinned".
1820 * False, if the page is definitely not dma-pinned.
1821 */
1822static inline bool folio_maybe_dma_pinned(struct folio *folio)
1823{
1824 if (folio_test_large(folio))
94688e8e 1825 return atomic_read(&folio->_pincount) > 0;
0b90ddae
MWO
1826
1827 /*
1828 * folio_ref_count() is signed. If that refcount overflows, then
1829 * folio_ref_count() returns a negative value, and callers will avoid
1830 * further incrementing the refcount.
1831 *
1832 * Here, for that overflow case, use the sign bit to count a little
1833 * bit higher via unsigned math, and thus still get an accurate result.
1834 */
1835 return ((unsigned int)folio_ref_count(folio)) >=
1836 GUP_PIN_COUNTING_BIAS;
1837}
1838
1839static inline bool page_maybe_dma_pinned(struct page *page)
1840{
1841 return folio_maybe_dma_pinned(page_folio(page));
1842}
1843
1844/*
1845 * This should most likely only be called during fork() to see whether we
fb3d824d 1846 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1847 *
1848 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1849 */
1850static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1851 struct page *page)
1852{
623a1ddf 1853 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1854
1855 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1856 return false;
1857
1858 return page_maybe_dma_pinned(page);
1859}
1860
8e3560d9
PT
1861/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1862#ifdef CONFIG_MIGRATION
6077c943 1863static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9 1864{
1c563432
MK
1865#ifdef CONFIG_CMA
1866 int mt = get_pageblock_migratetype(page);
1867
1868 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1869 return false;
1870#endif
fcab34b4
AW
1871 /* The zero page may always be pinned */
1872 if (is_zero_pfn(page_to_pfn(page)))
1873 return true;
1874
1875 /* Coherent device memory must always allow eviction. */
1876 if (is_device_coherent_page(page))
1877 return false;
1878
1879 /* Otherwise, non-movable zone pages can be pinned. */
1880 return !is_zone_movable_page(page);
8e3560d9
PT
1881}
1882#else
6077c943 1883static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9
PT
1884{
1885 return true;
1886}
1887#endif
1888
6077c943 1889static inline bool folio_is_longterm_pinnable(struct folio *folio)
536939ff 1890{
6077c943 1891 return is_longterm_pinnable_page(&folio->page);
536939ff
MWO
1892}
1893
2f1b6248 1894static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1895{
1896 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1897 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1898}
2f1b6248 1899
348f8b6c
DH
1900static inline void set_page_node(struct page *page, unsigned long node)
1901{
1902 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1903 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1904}
89689ae7 1905
2f1b6248 1906static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1907 unsigned long node, unsigned long pfn)
1da177e4 1908{
348f8b6c
DH
1909 set_page_zone(page, zone);
1910 set_page_node(page, node);
9127ab4f 1911#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1912 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1913#endif
1da177e4
LT
1914}
1915
7b230db3
MWO
1916/**
1917 * folio_nr_pages - The number of pages in the folio.
1918 * @folio: The folio.
1919 *
1920 * Return: A positive power of two.
1921 */
1922static inline long folio_nr_pages(struct folio *folio)
1923{
c3a15bff
MWO
1924 if (!folio_test_large(folio))
1925 return 1;
1926#ifdef CONFIG_64BIT
1927 return folio->_folio_nr_pages;
1928#else
1929 return 1L << folio->_folio_order;
1930#endif
7b230db3
MWO
1931}
1932
21a000fe
MWO
1933/*
1934 * compound_nr() returns the number of pages in this potentially compound
1935 * page. compound_nr() can be called on a tail page, and is defined to
1936 * return 1 in that case.
1937 */
1938static inline unsigned long compound_nr(struct page *page)
1939{
1940 struct folio *folio = (struct folio *)page;
1941
1942 if (!test_bit(PG_head, &folio->flags))
1943 return 1;
1944#ifdef CONFIG_64BIT
1945 return folio->_folio_nr_pages;
1946#else
1947 return 1L << folio->_folio_order;
1948#endif
1949}
1950
1951/**
1952 * thp_nr_pages - The number of regular pages in this huge page.
1953 * @page: The head page of a huge page.
1954 */
1955static inline int thp_nr_pages(struct page *page)
1956{
1957 return folio_nr_pages((struct folio *)page);
1958}
1959
7b230db3
MWO
1960/**
1961 * folio_next - Move to the next physical folio.
1962 * @folio: The folio we're currently operating on.
1963 *
1964 * If you have physically contiguous memory which may span more than
1965 * one folio (eg a &struct bio_vec), use this function to move from one
1966 * folio to the next. Do not use it if the memory is only virtually
1967 * contiguous as the folios are almost certainly not adjacent to each
1968 * other. This is the folio equivalent to writing ``page++``.
1969 *
1970 * Context: We assume that the folios are refcounted and/or locked at a
1971 * higher level and do not adjust the reference counts.
1972 * Return: The next struct folio.
1973 */
1974static inline struct folio *folio_next(struct folio *folio)
1975{
1976 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1977}
1978
1979/**
1980 * folio_shift - The size of the memory described by this folio.
1981 * @folio: The folio.
1982 *
1983 * A folio represents a number of bytes which is a power-of-two in size.
1984 * This function tells you which power-of-two the folio is. See also
1985 * folio_size() and folio_order().
1986 *
1987 * Context: The caller should have a reference on the folio to prevent
1988 * it from being split. It is not necessary for the folio to be locked.
1989 * Return: The base-2 logarithm of the size of this folio.
1990 */
1991static inline unsigned int folio_shift(struct folio *folio)
1992{
1993 return PAGE_SHIFT + folio_order(folio);
1994}
1995
1996/**
1997 * folio_size - The number of bytes in a folio.
1998 * @folio: The folio.
1999 *
2000 * Context: The caller should have a reference on the folio to prevent
2001 * it from being split. It is not necessary for the folio to be locked.
2002 * Return: The number of bytes in this folio.
2003 */
2004static inline size_t folio_size(struct folio *folio)
2005{
2006 return PAGE_SIZE << folio_order(folio);
2007}
2008
fa4e3f5f
VMO
2009/**
2010 * folio_estimated_sharers - Estimate the number of sharers of a folio.
2011 * @folio: The folio.
2012 *
2013 * folio_estimated_sharers() aims to serve as a function to efficiently
2014 * estimate the number of processes sharing a folio. This is done by
2015 * looking at the precise mapcount of the first subpage in the folio, and
2016 * assuming the other subpages are the same. This may not be true for large
2017 * folios. If you want exact mapcounts for exact calculations, look at
2018 * page_mapcount() or folio_total_mapcount().
2019 *
2020 * Return: The estimated number of processes sharing a folio.
2021 */
2022static inline int folio_estimated_sharers(struct folio *folio)
2023{
2024 return page_mapcount(folio_page(folio, 0));
2025}
2026
b424de33
MWO
2027#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2028static inline int arch_make_page_accessible(struct page *page)
2029{
2030 return 0;
2031}
2032#endif
2033
2034#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2035static inline int arch_make_folio_accessible(struct folio *folio)
2036{
2037 int ret;
2038 long i, nr = folio_nr_pages(folio);
2039
2040 for (i = 0; i < nr; i++) {
2041 ret = arch_make_page_accessible(folio_page(folio, i));
2042 if (ret)
2043 break;
2044 }
2045
2046 return ret;
2047}
2048#endif
2049
f6ac2354
CL
2050/*
2051 * Some inline functions in vmstat.h depend on page_zone()
2052 */
2053#include <linux/vmstat.h>
2054
33dd4e0e 2055static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 2056{
1dff8083 2057 return page_to_virt(page);
1da177e4
LT
2058}
2059
2060#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2061#define HASHED_PAGE_VIRTUAL
2062#endif
2063
2064#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
2065static inline void *page_address(const struct page *page)
2066{
2067 return page->virtual;
2068}
2069static inline void set_page_address(struct page *page, void *address)
2070{
2071 page->virtual = address;
2072}
1da177e4
LT
2073#define page_address_init() do { } while(0)
2074#endif
2075
2076#if defined(HASHED_PAGE_VIRTUAL)
f9918794 2077void *page_address(const struct page *page);
1da177e4
LT
2078void set_page_address(struct page *page, void *virtual);
2079void page_address_init(void);
2080#endif
2081
2082#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2083#define page_address(page) lowmem_page_address(page)
2084#define set_page_address(page, address) do { } while(0)
2085#define page_address_init() do { } while(0)
2086#endif
2087
7d4203c1
VB
2088static inline void *folio_address(const struct folio *folio)
2089{
2090 return page_address(&folio->page);
2091}
2092
e39155ea 2093extern void *page_rmapping(struct page *page);
f6ab1f7f
HY
2094extern pgoff_t __page_file_index(struct page *page);
2095
1da177e4
LT
2096/*
2097 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 2098 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
2099 */
2100static inline pgoff_t page_index(struct page *page)
2101{
2102 if (unlikely(PageSwapCache(page)))
f6ab1f7f 2103 return __page_file_index(page);
1da177e4
LT
2104 return page->index;
2105}
2106
2f064f34
MH
2107/*
2108 * Return true only if the page has been allocated with
2109 * ALLOC_NO_WATERMARKS and the low watermark was not
2110 * met implying that the system is under some pressure.
2111 */
1d7bab6a 2112static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
2113{
2114 /*
c07aea3e
MC
2115 * lru.next has bit 1 set if the page is allocated from the
2116 * pfmemalloc reserves. Callers may simply overwrite it if
2117 * they do not need to preserve that information.
2f064f34 2118 */
c07aea3e 2119 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
2120}
2121
02d65d6f
SK
2122/*
2123 * Return true only if the folio has been allocated with
2124 * ALLOC_NO_WATERMARKS and the low watermark was not
2125 * met implying that the system is under some pressure.
2126 */
2127static inline bool folio_is_pfmemalloc(const struct folio *folio)
2128{
2129 /*
2130 * lru.next has bit 1 set if the page is allocated from the
2131 * pfmemalloc reserves. Callers may simply overwrite it if
2132 * they do not need to preserve that information.
2133 */
2134 return (uintptr_t)folio->lru.next & BIT(1);
2135}
2136
2f064f34
MH
2137/*
2138 * Only to be called by the page allocator on a freshly allocated
2139 * page.
2140 */
2141static inline void set_page_pfmemalloc(struct page *page)
2142{
c07aea3e 2143 page->lru.next = (void *)BIT(1);
2f064f34
MH
2144}
2145
2146static inline void clear_page_pfmemalloc(struct page *page)
2147{
c07aea3e 2148 page->lru.next = NULL;
2f064f34
MH
2149}
2150
1c0fe6e3
NP
2151/*
2152 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2153 */
2154extern void pagefault_out_of_memory(void);
2155
1da177e4 2156#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 2157#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 2158#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 2159
ddd588b5 2160/*
7bf02ea2 2161 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
2162 * various contexts.
2163 */
4b59e6c4 2164#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 2165
974f4367
MH
2166extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2167static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2168{
2169 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2170}
1da177e4 2171
21b85b09
MK
2172/*
2173 * Parameter block passed down to zap_pte_range in exceptional cases.
2174 */
2175struct zap_details {
2176 struct folio *single_folio; /* Locked folio to be unmapped */
2177 bool even_cows; /* Zap COWed private pages too? */
2178 zap_flags_t zap_flags; /* Extra flags for zapping */
2179};
2180
2181/*
2182 * Whether to drop the pte markers, for example, the uffd-wp information for
2183 * file-backed memory. This should only be specified when we will completely
2184 * drop the page in the mm, either by truncation or unmapping of the vma. By
2185 * default, the flag is not set.
2186 */
2187#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
04ada095
MK
2188/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2189#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
21b85b09 2190
af7f588d
MD
2191#ifdef CONFIG_SCHED_MM_CID
2192void sched_mm_cid_before_execve(struct task_struct *t);
2193void sched_mm_cid_after_execve(struct task_struct *t);
2194void sched_mm_cid_fork(struct task_struct *t);
2195void sched_mm_cid_exit_signals(struct task_struct *t);
2196static inline int task_mm_cid(struct task_struct *t)
2197{
2198 return t->mm_cid;
2199}
2200#else
2201static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2202static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2203static inline void sched_mm_cid_fork(struct task_struct *t) { }
2204static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2205static inline int task_mm_cid(struct task_struct *t)
2206{
2207 /*
2208 * Use the processor id as a fall-back when the mm cid feature is
2209 * disabled. This provides functional per-cpu data structure accesses
2210 * in user-space, althrough it won't provide the memory usage benefits.
2211 */
2212 return raw_smp_processor_id();
2213}
2214#endif
2215
710ec38b 2216#ifdef CONFIG_MMU
7f43add4 2217extern bool can_do_mlock(void);
710ec38b
AB
2218#else
2219static inline bool can_do_mlock(void) { return false; }
2220#endif
d7c9e99a
AG
2221extern int user_shm_lock(size_t, struct ucounts *);
2222extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 2223
318e9342
VMO
2224struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2225 pte_t pte);
25b2995a
CH
2226struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2227 pte_t pte);
28093f9f
GS
2228struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2229 pmd_t pmd);
7e675137 2230
27d036e3
LR
2231void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2232 unsigned long size);
21b85b09
MK
2233void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2234 unsigned long size, struct zap_details *details);
e9adcfec
MK
2235static inline void zap_vma_pages(struct vm_area_struct *vma)
2236{
2237 zap_page_range_single(vma, vma->vm_start,
2238 vma->vm_end - vma->vm_start, NULL);
2239}
763ecb03
LH
2240void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2241 struct vm_area_struct *start_vma, unsigned long start,
68f48381 2242 unsigned long end, bool mm_wr_locked);
e6473092 2243
ac46d4f3
JG
2244struct mmu_notifier_range;
2245
42b77728 2246void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 2247 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
2248int
2249copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 2250int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 2251 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
2252int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2253 unsigned long *pfn);
d87fe660 2254int follow_phys(struct vm_area_struct *vma, unsigned long address,
2255 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
2256int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2257 void *buf, int len, int write);
1da177e4 2258
7caef267 2259extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 2260extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 2261void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 2262void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 2263int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 2264
7ee1dd3f 2265#ifdef CONFIG_MMU
2b740303 2266extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2267 unsigned long address, unsigned int flags,
2268 struct pt_regs *regs);
64019a2e 2269extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
2270 unsigned long address, unsigned int fault_flags,
2271 bool *unlocked);
977fbdcd
MW
2272void unmap_mapping_pages(struct address_space *mapping,
2273 pgoff_t start, pgoff_t nr, bool even_cows);
2274void unmap_mapping_range(struct address_space *mapping,
2275 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 2276#else
2b740303 2277static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2278 unsigned long address, unsigned int flags,
2279 struct pt_regs *regs)
7ee1dd3f
DH
2280{
2281 /* should never happen if there's no MMU */
2282 BUG();
2283 return VM_FAULT_SIGBUS;
2284}
64019a2e 2285static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 2286 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
2287{
2288 /* should never happen if there's no MMU */
2289 BUG();
2290 return -EFAULT;
2291}
977fbdcd
MW
2292static inline void unmap_mapping_pages(struct address_space *mapping,
2293 pgoff_t start, pgoff_t nr, bool even_cows) { }
2294static inline void unmap_mapping_range(struct address_space *mapping,
2295 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 2296#endif
f33ea7f4 2297
977fbdcd
MW
2298static inline void unmap_shared_mapping_range(struct address_space *mapping,
2299 loff_t const holebegin, loff_t const holelen)
2300{
2301 unmap_mapping_range(mapping, holebegin, holelen, 0);
2302}
2303
2304extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2305 void *buf, int len, unsigned int gup_flags);
5ddd36b9 2306extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 2307 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
2308extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2309 void *buf, int len, unsigned int gup_flags);
1da177e4 2310
64019a2e 2311long get_user_pages_remote(struct mm_struct *mm,
1e987790 2312 unsigned long start, unsigned long nr_pages,
9beae1ea 2313 unsigned int gup_flags, struct page **pages,
5b56d49f 2314 struct vm_area_struct **vmas, int *locked);
64019a2e 2315long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2316 unsigned long start, unsigned long nr_pages,
2317 unsigned int gup_flags, struct page **pages,
2318 struct vm_area_struct **vmas, int *locked);
c12d2da5 2319long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 2320 unsigned int gup_flags, struct page **pages,
cde70140 2321 struct vm_area_struct **vmas);
eddb1c22
JH
2322long pin_user_pages(unsigned long start, unsigned long nr_pages,
2323 unsigned int gup_flags, struct page **pages,
2324 struct vm_area_struct **vmas);
c12d2da5 2325long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 2326 struct page **pages, unsigned int gup_flags);
91429023
JH
2327long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2328 struct page **pages, unsigned int gup_flags);
9a4e9f3b 2329
73b0140b
IW
2330int get_user_pages_fast(unsigned long start, int nr_pages,
2331 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
2332int pin_user_pages_fast(unsigned long start, int nr_pages,
2333 unsigned int gup_flags, struct page **pages);
8025e5dd 2334
79eb597c
DJ
2335int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2336int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2337 struct task_struct *task, bool bypass_rlim);
2338
18022c5d 2339struct kvec;
f3e8fccd 2340struct page *get_dump_page(unsigned long addr);
1da177e4 2341
b5e84594
MWO
2342bool folio_mark_dirty(struct folio *folio);
2343bool set_page_dirty(struct page *page);
1da177e4 2344int set_page_dirty_lock(struct page *page);
b9ea2515 2345
a9090253 2346int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 2347
b6a2fea3
OW
2348extern unsigned long move_page_tables(struct vm_area_struct *vma,
2349 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
2350 unsigned long new_addr, unsigned long len,
2351 bool need_rmap_locks);
58705444
PX
2352
2353/*
2354 * Flags used by change_protection(). For now we make it a bitmap so
2355 * that we can pass in multiple flags just like parameters. However
2356 * for now all the callers are only use one of the flags at the same
2357 * time.
2358 */
64fe24a3
DH
2359/*
2360 * Whether we should manually check if we can map individual PTEs writable,
2361 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2362 * PTEs automatically in a writable mapping.
2363 */
2364#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
2365/* Whether this protection change is for NUMA hints */
2366#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2367/* Whether this change is for write protecting */
2368#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2369#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2370#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2371 MM_CP_UFFD_WP_RESOLVE)
58705444 2372
eb309ec8
DH
2373int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2374static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2375{
2376 /*
2377 * We want to check manually if we can change individual PTEs writable
2378 * if we can't do that automatically for all PTEs in a mapping. For
2379 * private mappings, that's always the case when we have write
2380 * permissions as we properly have to handle COW.
2381 */
2382 if (vma->vm_flags & VM_SHARED)
2383 return vma_wants_writenotify(vma, vma->vm_page_prot);
2384 return !!(vma->vm_flags & VM_WRITE);
2385
2386}
6a56ccbc
DH
2387bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2388 pte_t pte);
a79390f5 2389extern long change_protection(struct mmu_gather *tlb,
4a18419f 2390 struct vm_area_struct *vma, unsigned long start,
1ef488ed 2391 unsigned long end, unsigned long cp_flags);
2286a691
LH
2392extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2393 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2394 unsigned long start, unsigned long end, unsigned long newflags);
1da177e4 2395
465a454f
PZ
2396/*
2397 * doesn't attempt to fault and will return short.
2398 */
dadbb612
SJ
2399int get_user_pages_fast_only(unsigned long start, int nr_pages,
2400 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2401
2402static inline bool get_user_page_fast_only(unsigned long addr,
2403 unsigned int gup_flags, struct page **pagep)
2404{
2405 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2406}
d559db08
KH
2407/*
2408 * per-process(per-mm_struct) statistics.
2409 */
d559db08
KH
2410static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2411{
f1a79412 2412 return percpu_counter_read_positive(&mm->rss_stat[member]);
69c97823 2413}
d559db08 2414
f1a79412 2415void mm_trace_rss_stat(struct mm_struct *mm, int member);
b3d1411b 2416
d559db08
KH
2417static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2418{
f1a79412 2419 percpu_counter_add(&mm->rss_stat[member], value);
b3d1411b 2420
f1a79412 2421 mm_trace_rss_stat(mm, member);
d559db08
KH
2422}
2423
2424static inline void inc_mm_counter(struct mm_struct *mm, int member)
2425{
f1a79412 2426 percpu_counter_inc(&mm->rss_stat[member]);
b3d1411b 2427
f1a79412 2428 mm_trace_rss_stat(mm, member);
d559db08
KH
2429}
2430
2431static inline void dec_mm_counter(struct mm_struct *mm, int member)
2432{
f1a79412 2433 percpu_counter_dec(&mm->rss_stat[member]);
b3d1411b 2434
f1a79412 2435 mm_trace_rss_stat(mm, member);
d559db08
KH
2436}
2437
eca56ff9
JM
2438/* Optimized variant when page is already known not to be PageAnon */
2439static inline int mm_counter_file(struct page *page)
2440{
2441 if (PageSwapBacked(page))
2442 return MM_SHMEMPAGES;
2443 return MM_FILEPAGES;
2444}
2445
2446static inline int mm_counter(struct page *page)
2447{
2448 if (PageAnon(page))
2449 return MM_ANONPAGES;
2450 return mm_counter_file(page);
2451}
2452
d559db08
KH
2453static inline unsigned long get_mm_rss(struct mm_struct *mm)
2454{
2455 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2456 get_mm_counter(mm, MM_ANONPAGES) +
2457 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2458}
2459
2460static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2461{
2462 return max(mm->hiwater_rss, get_mm_rss(mm));
2463}
2464
2465static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2466{
2467 return max(mm->hiwater_vm, mm->total_vm);
2468}
2469
2470static inline void update_hiwater_rss(struct mm_struct *mm)
2471{
2472 unsigned long _rss = get_mm_rss(mm);
2473
2474 if ((mm)->hiwater_rss < _rss)
2475 (mm)->hiwater_rss = _rss;
2476}
2477
2478static inline void update_hiwater_vm(struct mm_struct *mm)
2479{
2480 if (mm->hiwater_vm < mm->total_vm)
2481 mm->hiwater_vm = mm->total_vm;
2482}
2483
695f0559
PC
2484static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2485{
2486 mm->hiwater_rss = get_mm_rss(mm);
2487}
2488
d559db08
KH
2489static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2490 struct mm_struct *mm)
2491{
2492 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2493
2494 if (*maxrss < hiwater_rss)
2495 *maxrss = hiwater_rss;
2496}
2497
53bddb4e 2498#if defined(SPLIT_RSS_COUNTING)
05af2e10 2499void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2500#else
05af2e10 2501static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2502{
2503}
2504#endif
465a454f 2505
78e7c5af
AK
2506#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2507static inline int pte_special(pte_t pte)
2508{
2509 return 0;
2510}
2511
2512static inline pte_t pte_mkspecial(pte_t pte)
2513{
2514 return pte;
2515}
2516#endif
2517
17596731 2518#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2519static inline int pte_devmap(pte_t pte)
2520{
2521 return 0;
2522}
2523#endif
2524
25ca1d6c
NK
2525extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2526 spinlock_t **ptl);
2527static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2528 spinlock_t **ptl)
2529{
2530 pte_t *ptep;
2531 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2532 return ptep;
2533}
c9cfcddf 2534
c2febafc
KS
2535#ifdef __PAGETABLE_P4D_FOLDED
2536static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2537 unsigned long address)
2538{
2539 return 0;
2540}
2541#else
2542int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2543#endif
2544
b4e98d9a 2545#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2546static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2547 unsigned long address)
2548{
2549 return 0;
2550}
b4e98d9a
KS
2551static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2552static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2553
5f22df00 2554#else
c2febafc 2555int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2556
b4e98d9a
KS
2557static inline void mm_inc_nr_puds(struct mm_struct *mm)
2558{
6d212db1
MS
2559 if (mm_pud_folded(mm))
2560 return;
af5b0f6a 2561 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2562}
2563
2564static inline void mm_dec_nr_puds(struct mm_struct *mm)
2565{
6d212db1
MS
2566 if (mm_pud_folded(mm))
2567 return;
af5b0f6a 2568 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2569}
5f22df00
NP
2570#endif
2571
2d2f5119 2572#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2573static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2574 unsigned long address)
2575{
2576 return 0;
2577}
dc6c9a35 2578
dc6c9a35
KS
2579static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2580static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2581
5f22df00 2582#else
1bb3630e 2583int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2584
dc6c9a35
KS
2585static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2586{
6d212db1
MS
2587 if (mm_pmd_folded(mm))
2588 return;
af5b0f6a 2589 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2590}
2591
2592static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2593{
6d212db1
MS
2594 if (mm_pmd_folded(mm))
2595 return;
af5b0f6a 2596 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2597}
5f22df00
NP
2598#endif
2599
c4812909 2600#ifdef CONFIG_MMU
af5b0f6a 2601static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2602{
af5b0f6a 2603 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2604}
2605
af5b0f6a 2606static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2607{
af5b0f6a 2608 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2609}
2610
2611static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2612{
af5b0f6a 2613 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2614}
2615
2616static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2617{
af5b0f6a 2618 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2619}
2620#else
c4812909 2621
af5b0f6a
KS
2622static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2623static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2624{
2625 return 0;
2626}
2627
2628static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2629static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2630#endif
2631
4cf58924
JFG
2632int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2633int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2634
f949286c
MR
2635#if defined(CONFIG_MMU)
2636
c2febafc
KS
2637static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2638 unsigned long address)
2639{
2640 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2641 NULL : p4d_offset(pgd, address);
2642}
2643
2644static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2645 unsigned long address)
1da177e4 2646{
c2febafc
KS
2647 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2648 NULL : pud_offset(p4d, address);
1da177e4 2649}
d8626138 2650
1da177e4
LT
2651static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2652{
1bb3630e
HD
2653 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2654 NULL: pmd_offset(pud, address);
1da177e4 2655}
f949286c 2656#endif /* CONFIG_MMU */
1bb3630e 2657
57c1ffce 2658#if USE_SPLIT_PTE_PTLOCKS
597d795a 2659#if ALLOC_SPLIT_PTLOCKS
b35f1819 2660void __init ptlock_cache_init(void);
539edb58
PZ
2661extern bool ptlock_alloc(struct page *page);
2662extern void ptlock_free(struct page *page);
2663
2664static inline spinlock_t *ptlock_ptr(struct page *page)
2665{
2666 return page->ptl;
2667}
597d795a 2668#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2669static inline void ptlock_cache_init(void)
2670{
2671}
2672
49076ec2
KS
2673static inline bool ptlock_alloc(struct page *page)
2674{
49076ec2
KS
2675 return true;
2676}
539edb58 2677
49076ec2
KS
2678static inline void ptlock_free(struct page *page)
2679{
49076ec2
KS
2680}
2681
2682static inline spinlock_t *ptlock_ptr(struct page *page)
2683{
539edb58 2684 return &page->ptl;
49076ec2 2685}
597d795a 2686#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2687
2688static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2689{
2690 return ptlock_ptr(pmd_page(*pmd));
2691}
2692
2693static inline bool ptlock_init(struct page *page)
2694{
2695 /*
2696 * prep_new_page() initialize page->private (and therefore page->ptl)
2697 * with 0. Make sure nobody took it in use in between.
2698 *
2699 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2700 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2701 */
309381fe 2702 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2703 if (!ptlock_alloc(page))
2704 return false;
2705 spin_lock_init(ptlock_ptr(page));
2706 return true;
2707}
2708
57c1ffce 2709#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2710/*
2711 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2712 */
49076ec2
KS
2713static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2714{
2715 return &mm->page_table_lock;
2716}
b35f1819 2717static inline void ptlock_cache_init(void) {}
49076ec2 2718static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2719static inline void ptlock_free(struct page *page) {}
57c1ffce 2720#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2721
b4ed71f5 2722static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2723{
706874e9
VD
2724 if (!ptlock_init(page))
2725 return false;
1d40a5ea 2726 __SetPageTable(page);
f0c0c115 2727 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2728 return true;
2f569afd
MS
2729}
2730
b4ed71f5 2731static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2732{
9e247bab 2733 ptlock_free(page);
1d40a5ea 2734 __ClearPageTable(page);
f0c0c115 2735 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2736}
2737
c74df32c
HD
2738#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2739({ \
4c21e2f2 2740 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2741 pte_t *__pte = pte_offset_map(pmd, address); \
2742 *(ptlp) = __ptl; \
2743 spin_lock(__ptl); \
2744 __pte; \
2745})
2746
2747#define pte_unmap_unlock(pte, ptl) do { \
2748 spin_unlock(ptl); \
2749 pte_unmap(pte); \
2750} while (0)
2751
4cf58924 2752#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2753
2754#define pte_alloc_map(mm, pmd, address) \
4cf58924 2755 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2756
c74df32c 2757#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2758 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2759 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2760
1bb3630e 2761#define pte_alloc_kernel(pmd, address) \
4cf58924 2762 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2763 NULL: pte_offset_kernel(pmd, address))
1da177e4 2764
e009bb30
KS
2765#if USE_SPLIT_PMD_PTLOCKS
2766
7e25de77 2767static inline struct page *pmd_pgtable_page(pmd_t *pmd)
634391ac
MS
2768{
2769 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2770 return virt_to_page((void *)((unsigned long) pmd & mask));
2771}
2772
e009bb30
KS
2773static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2774{
373dfda2 2775 return ptlock_ptr(pmd_pgtable_page(pmd));
e009bb30
KS
2776}
2777
b2b29d6d 2778static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2779{
e009bb30
KS
2780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2781 page->pmd_huge_pte = NULL;
2782#endif
49076ec2 2783 return ptlock_init(page);
e009bb30
KS
2784}
2785
b2b29d6d 2786static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2787{
2788#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2789 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2790#endif
49076ec2 2791 ptlock_free(page);
e009bb30
KS
2792}
2793
373dfda2 2794#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
e009bb30
KS
2795
2796#else
2797
9a86cb7b
KS
2798static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2799{
2800 return &mm->page_table_lock;
2801}
2802
b2b29d6d
MW
2803static inline bool pmd_ptlock_init(struct page *page) { return true; }
2804static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2805
c389a250 2806#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2807
e009bb30
KS
2808#endif
2809
9a86cb7b
KS
2810static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2811{
2812 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2813 spin_lock(ptl);
2814 return ptl;
2815}
2816
b2b29d6d
MW
2817static inline bool pgtable_pmd_page_ctor(struct page *page)
2818{
2819 if (!pmd_ptlock_init(page))
2820 return false;
2821 __SetPageTable(page);
f0c0c115 2822 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2823 return true;
2824}
2825
2826static inline void pgtable_pmd_page_dtor(struct page *page)
2827{
2828 pmd_ptlock_free(page);
2829 __ClearPageTable(page);
f0c0c115 2830 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2831}
2832
a00cc7d9
MW
2833/*
2834 * No scalability reason to split PUD locks yet, but follow the same pattern
2835 * as the PMD locks to make it easier if we decide to. The VM should not be
2836 * considered ready to switch to split PUD locks yet; there may be places
2837 * which need to be converted from page_table_lock.
2838 */
2839static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2840{
2841 return &mm->page_table_lock;
2842}
2843
2844static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2845{
2846 spinlock_t *ptl = pud_lockptr(mm, pud);
2847
2848 spin_lock(ptl);
2849 return ptl;
2850}
62906027 2851
a00cc7d9 2852extern void __init pagecache_init(void);
49a7f04a
DH
2853extern void free_initmem(void);
2854
69afade7
JL
2855/*
2856 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2857 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2858 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2859 * Return pages freed into the buddy system.
2860 */
11199692 2861extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2862 int poison, const char *s);
c3d5f5f0 2863
c3d5f5f0 2864extern void adjust_managed_page_count(struct page *page, long count);
69afade7 2865
4b50bcc7 2866extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2867
69afade7 2868/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2869static inline void free_reserved_page(struct page *page)
69afade7
JL
2870{
2871 ClearPageReserved(page);
2872 init_page_count(page);
2873 __free_page(page);
69afade7
JL
2874 adjust_managed_page_count(page, 1);
2875}
a0cd7a7c 2876#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2877
2878static inline void mark_page_reserved(struct page *page)
2879{
2880 SetPageReserved(page);
2881 adjust_managed_page_count(page, -1);
2882}
2883
2884/*
2885 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2886 * The freed pages will be poisoned with pattern "poison" if it's within
2887 * range [0, UCHAR_MAX].
2888 * Return pages freed into the buddy system.
69afade7
JL
2889 */
2890static inline unsigned long free_initmem_default(int poison)
2891{
2892 extern char __init_begin[], __init_end[];
2893
11199692 2894 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2895 poison, "unused kernel image (initmem)");
69afade7
JL
2896}
2897
7ee3d4e8
JL
2898static inline unsigned long get_num_physpages(void)
2899{
2900 int nid;
2901 unsigned long phys_pages = 0;
2902
2903 for_each_online_node(nid)
2904 phys_pages += node_present_pages(nid);
2905
2906 return phys_pages;
2907}
2908
c713216d 2909/*
3f08a302 2910 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2911 * zones, allocate the backing mem_map and account for memory holes in an
2912 * architecture independent manner.
c713216d
MG
2913 *
2914 * An architecture is expected to register range of page frames backed by
0ee332c1 2915 * physical memory with memblock_add[_node]() before calling
9691a071 2916 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2917 * usage, an architecture is expected to do something like
2918 *
2919 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2920 * max_highmem_pfn};
2921 * for_each_valid_physical_page_range()
952eea9b 2922 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2923 * free_area_init(max_zone_pfns);
c713216d 2924 */
9691a071 2925void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2926unsigned long node_map_pfn_alignment(void);
32996250
YL
2927unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2928 unsigned long end_pfn);
c713216d
MG
2929extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2930 unsigned long end_pfn);
2931extern void get_pfn_range_for_nid(unsigned int nid,
2932 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 2933
a9ee6cf5 2934#ifndef CONFIG_NUMA
6f24fbd3 2935static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2936{
2937 return 0;
2938}
2939#else
2940/* please see mm/page_alloc.c */
2941extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2942#endif
2943
0e0b864e 2944extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2945extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2946 unsigned long, unsigned long, enum meminit_context,
2947 struct vmem_altmap *, int migratetype);
bc75d33f 2948extern void setup_per_zone_wmarks(void);
bd3400ea 2949extern void calculate_min_free_kbytes(void);
1b79acc9 2950extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2951extern void mem_init(void);
8feae131 2952extern void __init mmap_init(void);
974f4367
MH
2953
2954extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2955static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
2956{
2957 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
2958}
d02bd27b 2959extern long si_mem_available(void);
1da177e4
LT
2960extern void si_meminfo(struct sysinfo * val);
2961extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2962#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2963extern unsigned long arch_reserved_kernel_pages(void);
2964#endif
1da177e4 2965
a8e99259
MH
2966extern __printf(3, 4)
2967void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2968
e7c8d5c9 2969extern void setup_per_cpu_pageset(void);
e7c8d5c9 2970
75f7ad8e
PS
2971/* page_alloc.c */
2972extern int min_free_kbytes;
1c30844d 2973extern int watermark_boost_factor;
795ae7a0 2974extern int watermark_scale_factor;
51930df5 2975extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2976
8feae131 2977/* nommu.c */
33e5d769 2978extern atomic_long_t mmap_pages_allocated;
7e660872 2979extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2980
6b2dbba8 2981/* interval_tree.c */
6b2dbba8 2982void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2983 struct rb_root_cached *root);
9826a516
ML
2984void vma_interval_tree_insert_after(struct vm_area_struct *node,
2985 struct vm_area_struct *prev,
f808c13f 2986 struct rb_root_cached *root);
6b2dbba8 2987void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2988 struct rb_root_cached *root);
2989struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2990 unsigned long start, unsigned long last);
2991struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2992 unsigned long start, unsigned long last);
2993
2994#define vma_interval_tree_foreach(vma, root, start, last) \
2995 for (vma = vma_interval_tree_iter_first(root, start, last); \
2996 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2997
bf181b9f 2998void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2999 struct rb_root_cached *root);
bf181b9f 3000void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
3001 struct rb_root_cached *root);
3002struct anon_vma_chain *
3003anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3004 unsigned long start, unsigned long last);
bf181b9f
ML
3005struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3006 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
3007#ifdef CONFIG_DEBUG_VM_RB
3008void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3009#endif
bf181b9f
ML
3010
3011#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3012 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3013 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3014
1da177e4 3015/* mmap.c */
34b4e4aa 3016extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
7c9813e8
LH
3017extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3018 unsigned long start, unsigned long end, pgoff_t pgoff,
3019 struct vm_area_struct *next);
cf51e86d
LH
3020extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3021 unsigned long start, unsigned long end, pgoff_t pgoff);
9760ebff 3022extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
f2ebfe43
LH
3023 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3024 unsigned long end, unsigned long vm_flags, struct anon_vma *,
3025 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3026 struct anon_vma_name *);
1da177e4 3027extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
9760ebff
LH
3028extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3029 unsigned long addr, int new_below);
3030extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3031 unsigned long addr, int new_below);
1da177e4 3032extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 3033extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 3034extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
3035 unsigned long addr, unsigned long len, pgoff_t pgoff,
3036 bool *need_rmap_locks);
1da177e4 3037extern void exit_mmap(struct mm_struct *);
925d1c40 3038
9c599024
CG
3039static inline int check_data_rlimit(unsigned long rlim,
3040 unsigned long new,
3041 unsigned long start,
3042 unsigned long end_data,
3043 unsigned long start_data)
3044{
3045 if (rlim < RLIM_INFINITY) {
3046 if (((new - start) + (end_data - start_data)) > rlim)
3047 return -ENOSPC;
3048 }
3049
3050 return 0;
3051}
3052
7906d00c
AA
3053extern int mm_take_all_locks(struct mm_struct *mm);
3054extern void mm_drop_all_locks(struct mm_struct *mm);
3055
fe69d560 3056extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 3057extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 3058extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 3059extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 3060
84638335
KK
3061extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3062extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3063
2eefd878
DS
3064extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3065 const struct vm_special_mapping *sm);
3935ed6a
SS
3066extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3067 unsigned long addr, unsigned long len,
a62c34bd
AL
3068 unsigned long flags,
3069 const struct vm_special_mapping *spec);
3070/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
3071extern int install_special_mapping(struct mm_struct *mm,
3072 unsigned long addr, unsigned long len,
3073 unsigned long flags, struct page **pages);
1da177e4 3074
649775be 3075unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 3076unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 3077
1da177e4
LT
3078extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3079
0165ab44 3080extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
3081 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3082 struct list_head *uf);
1fcfd8db 3083extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 3084 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 3085 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
183654ce 3086extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
11f9a21a
LH
3087 unsigned long start, size_t len, struct list_head *uf,
3088 bool downgrade);
897ab3e0
MR
3089extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3090 struct list_head *uf);
0726b01e 3091extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 3092
bebeb3d6 3093#ifdef CONFIG_MMU
27b26701
LH
3094extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3095 unsigned long start, unsigned long end,
3096 struct list_head *uf, bool downgrade);
bebeb3d6
ML
3097extern int __mm_populate(unsigned long addr, unsigned long len,
3098 int ignore_errors);
3099static inline void mm_populate(unsigned long addr, unsigned long len)
3100{
3101 /* Ignore errors */
3102 (void) __mm_populate(addr, len, 1);
3103}
3104#else
3105static inline void mm_populate(unsigned long addr, unsigned long len) {}
3106#endif
3107
e4eb1ff6 3108/* These take the mm semaphore themselves */
5d22fc25 3109extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 3110extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 3111extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 3112extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
3113 unsigned long, unsigned long,
3114 unsigned long, unsigned long);
1da177e4 3115
db4fbfb9
ML
3116struct vm_unmapped_area_info {
3117#define VM_UNMAPPED_AREA_TOPDOWN 1
3118 unsigned long flags;
3119 unsigned long length;
3120 unsigned long low_limit;
3121 unsigned long high_limit;
3122 unsigned long align_mask;
3123 unsigned long align_offset;
3124};
3125
baceaf1c 3126extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 3127
85821aab 3128/* truncate.c */
1da177e4 3129extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
3130extern void truncate_inode_pages_range(struct address_space *,
3131 loff_t lstart, loff_t lend);
91b0abe3 3132extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
3133
3134/* generic vm_area_ops exported for stackable file systems */
2bcd6454 3135extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 3136extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 3137 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 3138extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 3139
1be7107f 3140extern unsigned long stack_guard_gap;
d05f3169 3141/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 3142extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 3143
11192337 3144/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
3145extern int expand_downwards(struct vm_area_struct *vma,
3146 unsigned long address);
8ca3eb08 3147#if VM_GROWSUP
46dea3d0 3148extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 3149#else
fee7e49d 3150 #define expand_upwards(vma, address) (0)
9ab88515 3151#endif
1da177e4
LT
3152
3153/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3154extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3155extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3156 struct vm_area_struct **pprev);
3157
abdba2dd
LH
3158/*
3159 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3160 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 3161 */
ce6d42f2 3162struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 3163 unsigned long start_addr, unsigned long end_addr);
1da177e4 3164
ce6d42f2
LH
3165/**
3166 * vma_lookup() - Find a VMA at a specific address
3167 * @mm: The process address space.
3168 * @addr: The user address.
3169 *
3170 * Return: The vm_area_struct at the given address, %NULL otherwise.
3171 */
3172static inline
3173struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3174{
d7c62295 3175 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
3176}
3177
1be7107f
HD
3178static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3179{
3180 unsigned long vm_start = vma->vm_start;
3181
3182 if (vma->vm_flags & VM_GROWSDOWN) {
3183 vm_start -= stack_guard_gap;
3184 if (vm_start > vma->vm_start)
3185 vm_start = 0;
3186 }
3187 return vm_start;
3188}
3189
3190static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3191{
3192 unsigned long vm_end = vma->vm_end;
3193
3194 if (vma->vm_flags & VM_GROWSUP) {
3195 vm_end += stack_guard_gap;
3196 if (vm_end < vma->vm_end)
3197 vm_end = -PAGE_SIZE;
3198 }
3199 return vm_end;
3200}
3201
1da177e4
LT
3202static inline unsigned long vma_pages(struct vm_area_struct *vma)
3203{
3204 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3205}
3206
640708a2
PE
3207/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3208static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3209 unsigned long vm_start, unsigned long vm_end)
3210{
dc8635b2 3211 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
3212
3213 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3214 vma = NULL;
3215
3216 return vma;
3217}
3218
017b1660
MK
3219static inline bool range_in_vma(struct vm_area_struct *vma,
3220 unsigned long start, unsigned long end)
3221{
3222 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3223}
3224
bad849b3 3225#ifdef CONFIG_MMU
804af2cf 3226pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 3227void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
3228#else
3229static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3230{
3231 return __pgprot(0);
3232}
64e45507
PF
3233static inline void vma_set_page_prot(struct vm_area_struct *vma)
3234{
3235 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3236}
bad849b3
DH
3237#endif
3238
295992fb
CK
3239void vma_set_file(struct vm_area_struct *vma, struct file *file);
3240
5877231f 3241#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 3242unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
3243 unsigned long start, unsigned long end);
3244#endif
3245
deceb6cd 3246struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
3247int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3248 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
3249int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3250 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 3251int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
3252int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3253 struct page **pages, unsigned long *num);
a667d745
SJ
3254int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3255 unsigned long num);
3256int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3257 unsigned long num);
ae2b01f3 3258vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 3259 unsigned long pfn);
f5e6d1d5
MW
3260vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3261 unsigned long pfn, pgprot_t pgprot);
5d747637 3262vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 3263 pfn_t pfn);
ab77dab4
SJ
3264vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3265 unsigned long addr, pfn_t pfn);
b4cbb197
LT
3266int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3267
1c8f4220
SJ
3268static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3269 unsigned long addr, struct page *page)
3270{
3271 int err = vm_insert_page(vma, addr, page);
3272
3273 if (err == -ENOMEM)
3274 return VM_FAULT_OOM;
3275 if (err < 0 && err != -EBUSY)
3276 return VM_FAULT_SIGBUS;
3277
3278 return VM_FAULT_NOPAGE;
3279}
3280
f8f6ae5d
JG
3281#ifndef io_remap_pfn_range
3282static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3283 unsigned long addr, unsigned long pfn,
3284 unsigned long size, pgprot_t prot)
3285{
3286 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3287}
3288#endif
3289
d97baf94
SJ
3290static inline vm_fault_t vmf_error(int err)
3291{
3292 if (err == -ENOMEM)
3293 return VM_FAULT_OOM;
3294 return VM_FAULT_SIGBUS;
3295}
3296
df06b37f
KB
3297struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3298 unsigned int foll_flags);
240aadee 3299
2b740303 3300static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3301{
3302 if (vm_fault & VM_FAULT_OOM)
3303 return -ENOMEM;
3304 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3305 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3306 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3307 return -EFAULT;
3308 return 0;
3309}
3310
474098ed
DH
3311/*
3312 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3313 * a (NUMA hinting) fault is required.
3314 */
3315static inline bool gup_can_follow_protnone(unsigned int flags)
3316{
3317 /*
3318 * FOLL_FORCE has to be able to make progress even if the VMA is
3319 * inaccessible. Further, FOLL_FORCE access usually does not represent
3320 * application behaviour and we should avoid triggering NUMA hinting
3321 * faults.
3322 */
3323 return flags & FOLL_FORCE;
3324}
3325
8b1e0f81 3326typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3327extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3328 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3329extern int apply_to_existing_page_range(struct mm_struct *mm,
3330 unsigned long address, unsigned long size,
3331 pte_fn_t fn, void *data);
aee16b3c 3332
8823b1db 3333#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3334extern void __kernel_poison_pages(struct page *page, int numpages);
3335extern void __kernel_unpoison_pages(struct page *page, int numpages);
3336extern bool _page_poisoning_enabled_early;
3337DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3338static inline bool page_poisoning_enabled(void)
3339{
3340 return _page_poisoning_enabled_early;
3341}
3342/*
3343 * For use in fast paths after init_mem_debugging() has run, or when a
3344 * false negative result is not harmful when called too early.
3345 */
3346static inline bool page_poisoning_enabled_static(void)
3347{
3348 return static_branch_unlikely(&_page_poisoning_enabled);
3349}
3350static inline void kernel_poison_pages(struct page *page, int numpages)
3351{
3352 if (page_poisoning_enabled_static())
3353 __kernel_poison_pages(page, numpages);
3354}
3355static inline void kernel_unpoison_pages(struct page *page, int numpages)
3356{
3357 if (page_poisoning_enabled_static())
3358 __kernel_unpoison_pages(page, numpages);
3359}
8823b1db
LA
3360#else
3361static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3362static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3363static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3364static inline void kernel_poison_pages(struct page *page, int numpages) { }
3365static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3366#endif
3367
51cba1eb 3368DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3369static inline bool want_init_on_alloc(gfp_t flags)
3370{
51cba1eb
KC
3371 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3372 &init_on_alloc))
6471384a
AP
3373 return true;
3374 return flags & __GFP_ZERO;
3375}
3376
51cba1eb 3377DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3378static inline bool want_init_on_free(void)
3379{
51cba1eb
KC
3380 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3381 &init_on_free);
6471384a
AP
3382}
3383
8e57f8ac
VB
3384extern bool _debug_pagealloc_enabled_early;
3385DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3386
3387static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3388{
3389 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3390 _debug_pagealloc_enabled_early;
3391}
3392
3393/*
3394 * For use in fast paths after init_debug_pagealloc() has run, or when a
3395 * false negative result is not harmful when called too early.
3396 */
3397static inline bool debug_pagealloc_enabled_static(void)
031bc574 3398{
96a2b03f
VB
3399 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3400 return false;
3401
3402 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3403}
3404
5d6ad668 3405#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3406/*
5d6ad668
MR
3407 * To support DEBUG_PAGEALLOC architecture must ensure that
3408 * __kernel_map_pages() never fails
c87cbc1f 3409 */
d6332692
RE
3410extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3411
77bc7fd6
MR
3412static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3413{
3414 if (debug_pagealloc_enabled_static())
3415 __kernel_map_pages(page, numpages, 1);
3416}
3417
3418static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3419{
3420 if (debug_pagealloc_enabled_static())
3421 __kernel_map_pages(page, numpages, 0);
3422}
5d6ad668 3423#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3424static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3425static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3426#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3427
a6c19dfe 3428#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3429extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3430extern int in_gate_area_no_mm(unsigned long addr);
3431extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3432#else
a6c19dfe
AL
3433static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3434{
3435 return NULL;
3436}
3437static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3438static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3439{
3440 return 0;
3441}
1da177e4
LT
3442#endif /* __HAVE_ARCH_GATE_AREA */
3443
44a70ade
MH
3444extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3445
146732ce
JT
3446#ifdef CONFIG_SYSCTL
3447extern int sysctl_drop_caches;
32927393
CH
3448int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3449 loff_t *);
146732ce
JT
3450#endif
3451
cb731d6c 3452void drop_slab(void);
9d0243bc 3453
7a9166e3
LY
3454#ifndef CONFIG_MMU
3455#define randomize_va_space 0
3456#else
a62eaf15 3457extern int randomize_va_space;
7a9166e3 3458#endif
a62eaf15 3459
045e72ac 3460const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3461#ifdef CONFIG_MMU
03252919 3462void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3463#else
3464static inline void print_vma_addr(char *prefix, unsigned long rip)
3465{
3466}
3467#endif
e6e5494c 3468
35fd1eb1 3469void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3470struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3471 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3472 struct dev_pagemap *pgmap);
7b09f5af
FC
3473void pmd_init(void *addr);
3474void pud_init(void *addr);
29c71111 3475pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3476p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3477pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3478pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3479pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3480 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3481void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3482struct vmem_altmap;
56993b4e
AK
3483void *vmemmap_alloc_block_buf(unsigned long size, int node,
3484 struct vmem_altmap *altmap);
8f6aac41 3485void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2045a3b8
FC
3486void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3487 unsigned long addr, unsigned long next);
3488int vmemmap_check_pmd(pmd_t *pmd, int node,
3489 unsigned long addr, unsigned long next);
0aad818b 3490int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3491 int node, struct vmem_altmap *altmap);
2045a3b8
FC
3492int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3493 int node, struct vmem_altmap *altmap);
7b73d978
CH
3494int vmemmap_populate(unsigned long start, unsigned long end, int node,
3495 struct vmem_altmap *altmap);
c2b91e2e 3496void vmemmap_populate_print_last(void);
0197518c 3497#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3498void vmemmap_free(unsigned long start, unsigned long end,
3499 struct vmem_altmap *altmap);
0197518c 3500#endif
46723bfa 3501void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3502 unsigned long nr_pages);
6a46079c 3503
82ba011b
AK
3504enum mf_flags {
3505 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3506 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3507 MF_MUST_KILL = 1 << 2,
cf870c70 3508 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3509 MF_UNPOISON = 1 << 4,
67f22ba7 3510 MF_SW_SIMULATED = 1 << 5,
38f6d293 3511 MF_NO_RETRY = 1 << 6,
82ba011b 3512};
c36e2024
SR
3513int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3514 unsigned long count, int mf_flags);
83b57531 3515extern int memory_failure(unsigned long pfn, int flags);
06202231 3516extern void memory_failure_queue_kick(int cpu);
847ce401 3517extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3518extern int sysctl_memory_failure_early_kill;
3519extern int sysctl_memory_failure_recovery;
d0505e9f 3520extern void shake_page(struct page *p);
5844a486 3521extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3522extern int soft_offline_page(unsigned long pfn, int flags);
405ce051 3523#ifdef CONFIG_MEMORY_FAILURE
d302c239 3524extern void memory_failure_queue(unsigned long pfn, int flags);
e591ef7d
NH
3525extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3526 bool *migratable_cleared);
5033091d
NH
3527void num_poisoned_pages_inc(unsigned long pfn);
3528void num_poisoned_pages_sub(unsigned long pfn, long i);
405ce051 3529#else
d302c239
TL
3530static inline void memory_failure_queue(unsigned long pfn, int flags)
3531{
3532}
3533
e591ef7d
NH
3534static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3535 bool *migratable_cleared)
405ce051
NH
3536{
3537 return 0;
3538}
d027122d 3539
a46c9304 3540static inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
3541{
3542}
5033091d
NH
3543
3544static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3545{
3546}
3547#endif
3548
3549#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3550extern void memblk_nr_poison_inc(unsigned long pfn);
3551extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3552#else
3553static inline void memblk_nr_poison_inc(unsigned long pfn)
3554{
3555}
3556
3557static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3558{
3559}
405ce051 3560#endif
6a46079c 3561
03b122da
TL
3562#ifndef arch_memory_failure
3563static inline int arch_memory_failure(unsigned long pfn, int flags)
3564{
3565 return -ENXIO;
3566}
3567#endif
3568
3569#ifndef arch_is_platform_page
3570static inline bool arch_is_platform_page(u64 paddr)
3571{
3572 return false;
3573}
3574#endif
cc637b17
XX
3575
3576/*
3577 * Error handlers for various types of pages.
3578 */
cc3e2af4 3579enum mf_result {
cc637b17
XX
3580 MF_IGNORED, /* Error: cannot be handled */
3581 MF_FAILED, /* Error: handling failed */
3582 MF_DELAYED, /* Will be handled later */
3583 MF_RECOVERED, /* Successfully recovered */
3584};
3585
3586enum mf_action_page_type {
3587 MF_MSG_KERNEL,
3588 MF_MSG_KERNEL_HIGH_ORDER,
3589 MF_MSG_SLAB,
3590 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3591 MF_MSG_HUGE,
3592 MF_MSG_FREE_HUGE,
3593 MF_MSG_UNMAP_FAILED,
3594 MF_MSG_DIRTY_SWAPCACHE,
3595 MF_MSG_CLEAN_SWAPCACHE,
3596 MF_MSG_DIRTY_MLOCKED_LRU,
3597 MF_MSG_CLEAN_MLOCKED_LRU,
3598 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3599 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3600 MF_MSG_DIRTY_LRU,
3601 MF_MSG_CLEAN_LRU,
3602 MF_MSG_TRUNCATED_LRU,
3603 MF_MSG_BUDDY,
6100e34b 3604 MF_MSG_DAX,
5d1fd5dc 3605 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3606 MF_MSG_UNKNOWN,
3607};
3608
44b8f8bf
JY
3609/*
3610 * Sysfs entries for memory failure handling statistics.
3611 */
3612extern const struct attribute_group memory_failure_attr_group;
3613
47ad8475
AA
3614#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3615extern void clear_huge_page(struct page *page,
c79b57e4 3616 unsigned long addr_hint,
47ad8475
AA
3617 unsigned int pages_per_huge_page);
3618extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3619 unsigned long addr_hint,
3620 struct vm_area_struct *vma,
47ad8475 3621 unsigned int pages_per_huge_page);
fa4d75c1
MK
3622extern long copy_huge_page_from_user(struct page *dst_page,
3623 const void __user *usr_src,
810a56b9
MK
3624 unsigned int pages_per_huge_page,
3625 bool allow_pagefault);
2484ca9b
THV
3626
3627/**
3628 * vma_is_special_huge - Are transhuge page-table entries considered special?
3629 * @vma: Pointer to the struct vm_area_struct to consider
3630 *
3631 * Whether transhuge page-table entries are considered "special" following
3632 * the definition in vm_normal_page().
3633 *
3634 * Return: true if transhuge page-table entries should be considered special,
3635 * false otherwise.
3636 */
3637static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3638{
3639 return vma_is_dax(vma) || (vma->vm_file &&
3640 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3641}
3642
47ad8475
AA
3643#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3644
c0a32fc5
SG
3645#ifdef CONFIG_DEBUG_PAGEALLOC
3646extern unsigned int _debug_guardpage_minorder;
96a2b03f 3647DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3648
3649static inline unsigned int debug_guardpage_minorder(void)
3650{
3651 return _debug_guardpage_minorder;
3652}
3653
e30825f1
JK
3654static inline bool debug_guardpage_enabled(void)
3655{
96a2b03f 3656 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3657}
3658
c0a32fc5
SG
3659static inline bool page_is_guard(struct page *page)
3660{
e30825f1
JK
3661 if (!debug_guardpage_enabled())
3662 return false;
3663
3972f6bb 3664 return PageGuard(page);
c0a32fc5
SG
3665}
3666#else
3667static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3668static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3669static inline bool page_is_guard(struct page *page) { return false; }
3670#endif /* CONFIG_DEBUG_PAGEALLOC */
3671
f9872caf
CS
3672#if MAX_NUMNODES > 1
3673void __init setup_nr_node_ids(void);
3674#else
3675static inline void setup_nr_node_ids(void) {}
3676#endif
3677
010c164a
SL
3678extern int memcmp_pages(struct page *page1, struct page *page2);
3679
3680static inline int pages_identical(struct page *page1, struct page *page2)
3681{
3682 return !memcmp_pages(page1, page2);
3683}
3684
c5acad84
TH
3685#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3686unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3687 pgoff_t first_index, pgoff_t nr,
3688 pgoff_t bitmap_pgoff,
3689 unsigned long *bitmap,
3690 pgoff_t *start,
3691 pgoff_t *end);
3692
3693unsigned long wp_shared_mapping_range(struct address_space *mapping,
3694 pgoff_t first_index, pgoff_t nr);
3695#endif
3696
2374c09b
CH
3697extern int sysctl_nr_trim_pages;
3698
5bb1bb35 3699#ifdef CONFIG_PRINTK
8e7f37f2 3700void mem_dump_obj(void *object);
5bb1bb35
PM
3701#else
3702static inline void mem_dump_obj(void *object) {}
3703#endif
8e7f37f2 3704
22247efd
PX
3705/**
3706 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3707 * @seals: the seals to check
3708 * @vma: the vma to operate on
3709 *
3710 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3711 * the vma flags. Return 0 if check pass, or <0 for errors.
3712 */
3713static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3714{
3715 if (seals & F_SEAL_FUTURE_WRITE) {
3716 /*
3717 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3718 * "future write" seal active.
3719 */
3720 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3721 return -EPERM;
3722
3723 /*
3724 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3725 * MAP_SHARED and read-only, take care to not allow mprotect to
3726 * revert protections on such mappings. Do this only for shared
3727 * mappings. For private mappings, don't need to mask
3728 * VM_MAYWRITE as we still want them to be COW-writable.
3729 */
3730 if (vma->vm_flags & VM_SHARED)
1c71222e 3731 vm_flags_clear(vma, VM_MAYWRITE);
22247efd
PX
3732 }
3733
3734 return 0;
3735}
3736
9a10064f
CC
3737#ifdef CONFIG_ANON_VMA_NAME
3738int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
3739 unsigned long len_in,
3740 struct anon_vma_name *anon_name);
9a10064f
CC
3741#else
3742static inline int
3743madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 3744 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
3745 return 0;
3746}
3747#endif
3748
1da177e4 3749#endif /* _LINUX_MM_H */