mm/mmap: free vm_area_struct without call_rcu in exit_mmap
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
1da177e4
LT
32
33struct mempolicy;
34struct anon_vma;
bf181b9f 35struct anon_vma_chain;
e8edc6e0 36struct user_struct;
bce617ed 37struct pt_regs;
1da177e4 38
5ef64cc8
LT
39extern int sysctl_page_lock_unfairness;
40
b7ec1bf3 41void mm_core_init(void);
597b7305
MH
42void init_mm_internals(void);
43
a9ee6cf5 44#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 45extern unsigned long max_mapnr;
fccc9987
JL
46
47static inline void set_max_mapnr(unsigned long limit)
48{
49 max_mapnr = limit;
50}
51#else
52static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
53#endif
54
ca79b0c2
AK
55extern atomic_long_t _totalram_pages;
56static inline unsigned long totalram_pages(void)
57{
58 return (unsigned long)atomic_long_read(&_totalram_pages);
59}
60
61static inline void totalram_pages_inc(void)
62{
63 atomic_long_inc(&_totalram_pages);
64}
65
66static inline void totalram_pages_dec(void)
67{
68 atomic_long_dec(&_totalram_pages);
69}
70
71static inline void totalram_pages_add(long count)
72{
73 atomic_long_add(count, &_totalram_pages);
74}
75
1da177e4 76extern void * high_memory;
1da177e4 77extern int page_cluster;
ea0ffd0c 78extern const int page_cluster_max;
1da177e4
LT
79
80#ifdef CONFIG_SYSCTL
81extern int sysctl_legacy_va_layout;
82#else
83#define sysctl_legacy_va_layout 0
84#endif
85
d07e2259
DC
86#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
87extern const int mmap_rnd_bits_min;
88extern const int mmap_rnd_bits_max;
89extern int mmap_rnd_bits __read_mostly;
90#endif
91#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
92extern const int mmap_rnd_compat_bits_min;
93extern const int mmap_rnd_compat_bits_max;
94extern int mmap_rnd_compat_bits __read_mostly;
95#endif
96
1da177e4 97#include <asm/page.h>
1da177e4 98#include <asm/processor.h>
1da177e4 99
d9344522
AK
100/*
101 * Architectures that support memory tagging (assigning tags to memory regions,
102 * embedding these tags into addresses that point to these memory regions, and
103 * checking that the memory and the pointer tags match on memory accesses)
104 * redefine this macro to strip tags from pointers.
f0953a1b 105 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
106 */
107#ifndef untagged_addr
108#define untagged_addr(addr) (addr)
109#endif
110
79442ed1
TC
111#ifndef __pa_symbol
112#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
113#endif
114
1dff8083
AB
115#ifndef page_to_virt
116#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
117#endif
118
568c5fe5
LA
119#ifndef lm_alias
120#define lm_alias(x) __va(__pa_symbol(x))
121#endif
122
593befa6
DD
123/*
124 * To prevent common memory management code establishing
125 * a zero page mapping on a read fault.
126 * This macro should be defined within <asm/pgtable.h>.
127 * s390 does this to prevent multiplexing of hardware bits
128 * related to the physical page in case of virtualization.
129 */
130#ifndef mm_forbids_zeropage
131#define mm_forbids_zeropage(X) (0)
132#endif
133
a4a3ede2
PT
134/*
135 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
136 * If an architecture decides to implement their own version of
137 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
138 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 139 */
5470dea4 140#if BITS_PER_LONG == 64
3770e52f 141/* This function must be updated when the size of struct page grows above 96
5470dea4
AD
142 * or reduces below 56. The idea that compiler optimizes out switch()
143 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 144 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
145 * this can result in several of the writes here being dropped.
146 */
147#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
148static inline void __mm_zero_struct_page(struct page *page)
149{
150 unsigned long *_pp = (void *)page;
151
3770e52f 152 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
5470dea4
AD
153 BUILD_BUG_ON(sizeof(struct page) & 7);
154 BUILD_BUG_ON(sizeof(struct page) < 56);
3770e52f 155 BUILD_BUG_ON(sizeof(struct page) > 96);
5470dea4
AD
156
157 switch (sizeof(struct page)) {
3770e52f
AB
158 case 96:
159 _pp[11] = 0;
160 fallthrough;
161 case 88:
162 _pp[10] = 0;
163 fallthrough;
5470dea4 164 case 80:
df561f66
GS
165 _pp[9] = 0;
166 fallthrough;
5470dea4 167 case 72:
df561f66
GS
168 _pp[8] = 0;
169 fallthrough;
5470dea4 170 case 64:
df561f66
GS
171 _pp[7] = 0;
172 fallthrough;
5470dea4
AD
173 case 56:
174 _pp[6] = 0;
175 _pp[5] = 0;
176 _pp[4] = 0;
177 _pp[3] = 0;
178 _pp[2] = 0;
179 _pp[1] = 0;
180 _pp[0] = 0;
181 }
182}
183#else
a4a3ede2
PT
184#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
185#endif
186
ea606cf5
AR
187/*
188 * Default maximum number of active map areas, this limits the number of vmas
189 * per mm struct. Users can overwrite this number by sysctl but there is a
190 * problem.
191 *
192 * When a program's coredump is generated as ELF format, a section is created
193 * per a vma. In ELF, the number of sections is represented in unsigned short.
194 * This means the number of sections should be smaller than 65535 at coredump.
195 * Because the kernel adds some informative sections to a image of program at
196 * generating coredump, we need some margin. The number of extra sections is
197 * 1-3 now and depends on arch. We use "5" as safe margin, here.
198 *
199 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
200 * not a hard limit any more. Although some userspace tools can be surprised by
201 * that.
202 */
203#define MAPCOUNT_ELF_CORE_MARGIN (5)
204#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
205
206extern int sysctl_max_map_count;
207
c9b1d098 208extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 209extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 210
49f0ce5f
JM
211extern int sysctl_overcommit_memory;
212extern int sysctl_overcommit_ratio;
213extern unsigned long sysctl_overcommit_kbytes;
214
32927393
CH
215int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
216 loff_t *);
217int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
218 loff_t *);
56f3547b
FT
219int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
220 loff_t *);
49f0ce5f 221
1cfcee72 222#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 223#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 224#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
225#else
226#define nth_page(page,n) ((page) + (n))
659508f9 227#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 228#endif
1da177e4 229
27ac792c
AR
230/* to align the pointer to the (next) page boundary */
231#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
232
335e52c2
DG
233/* to align the pointer to the (prev) page boundary */
234#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
235
0fa73b86 236/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 237#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 238
f86196ea 239#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
240static inline struct folio *lru_to_folio(struct list_head *head)
241{
242 return list_entry((head)->prev, struct folio, lru);
243}
f86196ea 244
5748fbc5
KW
245void setup_initial_init_mm(void *start_code, void *end_code,
246 void *end_data, void *brk);
247
1da177e4
LT
248/*
249 * Linux kernel virtual memory manager primitives.
250 * The idea being to have a "virtual" mm in the same way
251 * we have a virtual fs - giving a cleaner interface to the
252 * mm details, and allowing different kinds of memory mappings
253 * (from shared memory to executable loading to arbitrary
254 * mmap() functions).
255 */
256
490fc053 257struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
258struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
259void vm_area_free(struct vm_area_struct *);
0d2ebf9c
SB
260/* Use only if VMA has no other users */
261void __vm_area_free(struct vm_area_struct *vma);
c43692e8 262
1da177e4 263#ifndef CONFIG_MMU
8feae131
DH
264extern struct rb_root nommu_region_tree;
265extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
266
267extern unsigned int kobjsize(const void *objp);
268#endif
269
270/*
605d9288 271 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 272 * When changing, update also include/trace/events/mmflags.h
1da177e4 273 */
cc2383ec
KK
274#define VM_NONE 0x00000000
275
1da177e4
LT
276#define VM_READ 0x00000001 /* currently active flags */
277#define VM_WRITE 0x00000002
278#define VM_EXEC 0x00000004
279#define VM_SHARED 0x00000008
280
7e2cff42 281/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
282#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
283#define VM_MAYWRITE 0x00000020
284#define VM_MAYEXEC 0x00000040
285#define VM_MAYSHARE 0x00000080
286
287#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
b6b7a8fa 288#ifdef CONFIG_MMU
16ba6f81 289#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
b6b7a8fa
DH
290#else /* CONFIG_MMU */
291#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
292#define VM_UFFD_MISSING 0
293#endif /* CONFIG_MMU */
6aab341e 294#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 295#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 296
1da177e4
LT
297#define VM_LOCKED 0x00002000
298#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
299
300 /* Used by sys_madvise() */
301#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
302#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
303
304#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
305#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 306#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 307#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 308#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 309#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 310#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 311#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 312#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 313#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 314
d9104d1c
CG
315#ifdef CONFIG_MEM_SOFT_DIRTY
316# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
317#else
318# define VM_SOFTDIRTY 0
319#endif
320
b379d790 321#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
322#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
323#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 324#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 325
63c17fb8
DH
326#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
327#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
328#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
329#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
330#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 331#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
332#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
333#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
334#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
335#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 336#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
337#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
338
5212213a 339#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
340# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
341# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 342# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
343# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
344# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
345#ifdef CONFIG_PPC
346# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
347#else
348# define VM_PKEY_BIT4 0
8f62c883 349#endif
5212213a
RP
350#endif /* CONFIG_ARCH_HAS_PKEYS */
351
352#if defined(CONFIG_X86)
353# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
354#elif defined(CONFIG_PPC)
355# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
356#elif defined(CONFIG_PARISC)
357# define VM_GROWSUP VM_ARCH_1
358#elif defined(CONFIG_IA64)
359# define VM_GROWSUP VM_ARCH_1
74a04967
KA
360#elif defined(CONFIG_SPARC64)
361# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
362# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
363#elif defined(CONFIG_ARM64)
364# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
365# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
366#elif !defined(CONFIG_MMU)
367# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
368#endif
369
9f341931
CM
370#if defined(CONFIG_ARM64_MTE)
371# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
372# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
373#else
374# define VM_MTE VM_NONE
375# define VM_MTE_ALLOWED VM_NONE
376#endif
377
cc2383ec
KK
378#ifndef VM_GROWSUP
379# define VM_GROWSUP VM_NONE
380#endif
381
7677f7fd
AR
382#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
383# define VM_UFFD_MINOR_BIT 37
384# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
385#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
386# define VM_UFFD_MINOR VM_NONE
387#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
388
a8bef8ff
MG
389/* Bits set in the VMA until the stack is in its final location */
390#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
391
c62da0c3
AK
392#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
393
394/* Common data flag combinations */
395#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
396 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
397#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
398 VM_MAYWRITE | VM_MAYEXEC)
399#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
400 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
401
402#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
403#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
404#endif
405
1da177e4
LT
406#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
407#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
408#endif
409
410#ifdef CONFIG_STACK_GROWSUP
30bdbb78 411#define VM_STACK VM_GROWSUP
1da177e4 412#else
30bdbb78 413#define VM_STACK VM_GROWSDOWN
1da177e4
LT
414#endif
415
30bdbb78
KK
416#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
417
6cb4d9a2
AK
418/* VMA basic access permission flags */
419#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
420
421
b291f000 422/*
78f11a25 423 * Special vmas that are non-mergable, non-mlock()able.
b291f000 424 */
9050d7eb 425#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 426
b4443772
AK
427/* This mask prevents VMA from being scanned with khugepaged */
428#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
429
a0715cc2
AT
430/* This mask defines which mm->def_flags a process can inherit its parent */
431#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
432
e430a95a
SB
433/* This mask represents all the VMA flag bits used by mlock */
434#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
de60f5f1 435
2c2d57b5
KA
436/* Arch-specific flags to clear when updating VM flags on protection change */
437#ifndef VM_ARCH_CLEAR
438# define VM_ARCH_CLEAR VM_NONE
439#endif
440#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
441
1da177e4
LT
442/*
443 * mapping from the currently active vm_flags protection bits (the
444 * low four bits) to a page protection mask..
445 */
1da177e4 446
dde16072
PX
447/*
448 * The default fault flags that should be used by most of the
449 * arch-specific page fault handlers.
450 */
451#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
452 FAULT_FLAG_KILLABLE | \
453 FAULT_FLAG_INTERRUPTIBLE)
dde16072 454
4064b982
PX
455/**
456 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 457 * @flags: Fault flags.
4064b982
PX
458 *
459 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 460 * the mmap_lock for too long a time when waiting for another condition
4064b982 461 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
462 * mmap_lock in the first round to avoid potential starvation of other
463 * processes that would also want the mmap_lock.
4064b982
PX
464 *
465 * Return: true if the page fault allows retry and this is the first
466 * attempt of the fault handling; false otherwise.
467 */
da2f5eb3 468static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
469{
470 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
471 (!(flags & FAULT_FLAG_TRIED));
472}
473
282a8e03
RZ
474#define FAULT_FLAG_TRACE \
475 { FAULT_FLAG_WRITE, "WRITE" }, \
476 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
477 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
478 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
479 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
480 { FAULT_FLAG_TRIED, "TRIED" }, \
481 { FAULT_FLAG_USER, "USER" }, \
482 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee 483 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
55324e46
SB
484 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
485 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
282a8e03 486
54cb8821 487/*
11192337 488 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
489 * ->fault function. The vma's ->fault is responsible for returning a bitmask
490 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 491 *
c20cd45e
MH
492 * MM layer fills up gfp_mask for page allocations but fault handler might
493 * alter it if its implementation requires a different allocation context.
494 *
9b4bdd2f 495 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 496 */
d0217ac0 497struct vm_fault {
5857c920 498 const struct {
742d3372
WD
499 struct vm_area_struct *vma; /* Target VMA */
500 gfp_t gfp_mask; /* gfp mask to be used for allocations */
501 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
502 unsigned long address; /* Faulting virtual address - masked */
503 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 504 };
da2f5eb3 505 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 506 * XXX: should really be 'const' */
82b0f8c3 507 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 508 * the 'address' */
a2d58167
DJ
509 pud_t *pud; /* Pointer to pud entry matching
510 * the 'address'
511 */
5db4f15c
YS
512 union {
513 pte_t orig_pte; /* Value of PTE at the time of fault */
514 pmd_t orig_pmd; /* Value of PMD at the time of fault,
515 * used by PMD fault only.
516 */
517 };
d0217ac0 518
3917048d 519 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 520 struct page *page; /* ->fault handlers should return a
83c54070 521 * page here, unless VM_FAULT_NOPAGE
d0217ac0 522 * is set (which is also implied by
83c54070 523 * VM_FAULT_ERROR).
d0217ac0 524 */
82b0f8c3 525 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
526 pte_t *pte; /* Pointer to pte entry matching
527 * the 'address'. NULL if the page
528 * table hasn't been allocated.
529 */
530 spinlock_t *ptl; /* Page table lock.
531 * Protects pte page table if 'pte'
532 * is not NULL, otherwise pmd.
533 */
7267ec00 534 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
535 * vm_ops->map_pages() sets up a page
536 * table from atomic context.
7267ec00
KS
537 * do_fault_around() pre-allocates
538 * page table to avoid allocation from
539 * atomic context.
540 */
54cb8821 541};
1da177e4 542
c791ace1
DJ
543/* page entry size for vm->huge_fault() */
544enum page_entry_size {
545 PE_SIZE_PTE = 0,
546 PE_SIZE_PMD,
547 PE_SIZE_PUD,
548};
549
1da177e4
LT
550/*
551 * These are the virtual MM functions - opening of an area, closing and
552 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 553 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
554 */
555struct vm_operations_struct {
556 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
557 /**
558 * @close: Called when the VMA is being removed from the MM.
559 * Context: User context. May sleep. Caller holds mmap_lock.
560 */
1da177e4 561 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
562 /* Called any time before splitting to check if it's allowed */
563 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 564 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
565 /*
566 * Called by mprotect() to make driver-specific permission
567 * checks before mprotect() is finalised. The VMA must not
3e0ee843 568 * be modified. Returns 0 if mprotect() can proceed.
95bb7c42
SC
569 */
570 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
571 unsigned long end, unsigned long newflags);
1c8f4220
SJ
572 vm_fault_t (*fault)(struct vm_fault *vmf);
573 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
574 enum page_entry_size pe_size);
f9ce0be7 575 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 576 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 577 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
578
579 /* notification that a previously read-only page is about to become
580 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 581 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 582
dd906184 583 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 584 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 585
28b2ee20 586 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
587 * for use by special VMAs. See also generic_access_phys() for a generic
588 * implementation useful for any iomem mapping.
28b2ee20
RR
589 */
590 int (*access)(struct vm_area_struct *vma, unsigned long addr,
591 void *buf, int len, int write);
78d683e8
AL
592
593 /* Called by the /proc/PID/maps code to ask the vma whether it
594 * has a special name. Returning non-NULL will also cause this
595 * vma to be dumped unconditionally. */
596 const char *(*name)(struct vm_area_struct *vma);
597
1da177e4 598#ifdef CONFIG_NUMA
a6020ed7
LS
599 /*
600 * set_policy() op must add a reference to any non-NULL @new mempolicy
601 * to hold the policy upon return. Caller should pass NULL @new to
602 * remove a policy and fall back to surrounding context--i.e. do not
603 * install a MPOL_DEFAULT policy, nor the task or system default
604 * mempolicy.
605 */
1da177e4 606 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
607
608 /*
609 * get_policy() op must add reference [mpol_get()] to any policy at
610 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
611 * in mm/mempolicy.c will do this automatically.
612 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 613 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
614 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
615 * must return NULL--i.e., do not "fallback" to task or system default
616 * policy.
617 */
1da177e4
LT
618 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
619 unsigned long addr);
620#endif
667a0a06
DV
621 /*
622 * Called by vm_normal_page() for special PTEs to find the
623 * page for @addr. This is useful if the default behavior
624 * (using pte_page()) would not find the correct page.
625 */
626 struct page *(*find_special_page)(struct vm_area_struct *vma,
627 unsigned long addr);
1da177e4
LT
628};
629
5e31275c
SB
630#ifdef CONFIG_PER_VMA_LOCK
631static inline void vma_init_lock(struct vm_area_struct *vma)
632{
633 init_rwsem(&vma->lock);
634 vma->vm_lock_seq = -1;
635}
636
637/*
638 * Try to read-lock a vma. The function is allowed to occasionally yield false
639 * locked result to avoid performance overhead, in which case we fall back to
640 * using mmap_lock. The function should never yield false unlocked result.
641 */
642static inline bool vma_start_read(struct vm_area_struct *vma)
643{
644 /* Check before locking. A race might cause false locked result. */
645 if (vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))
646 return false;
647
648 if (unlikely(down_read_trylock(&vma->lock) == 0))
649 return false;
650
651 /*
652 * Overflow might produce false locked result.
653 * False unlocked result is impossible because we modify and check
654 * vma->vm_lock_seq under vma->lock protection and mm->mm_lock_seq
655 * modification invalidates all existing locks.
656 */
657 if (unlikely(vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))) {
658 up_read(&vma->lock);
659 return false;
660 }
661 return true;
662}
663
664static inline void vma_end_read(struct vm_area_struct *vma)
665{
666 rcu_read_lock(); /* keeps vma alive till the end of up_read */
667 up_read(&vma->lock);
668 rcu_read_unlock();
669}
670
55fd6fcc 671static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
5e31275c 672{
5e31275c
SB
673 mmap_assert_write_locked(vma->vm_mm);
674
675 /*
676 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
677 * mm->mm_lock_seq can't be concurrently modified.
678 */
55fd6fcc
SB
679 *mm_lock_seq = READ_ONCE(vma->vm_mm->mm_lock_seq);
680 return (vma->vm_lock_seq == *mm_lock_seq);
681}
682
683static inline void vma_start_write(struct vm_area_struct *vma)
684{
685 int mm_lock_seq;
686
687 if (__is_vma_write_locked(vma, &mm_lock_seq))
5e31275c
SB
688 return;
689
690 down_write(&vma->lock);
691 vma->vm_lock_seq = mm_lock_seq;
692 up_write(&vma->lock);
693}
694
55fd6fcc
SB
695static inline bool vma_try_start_write(struct vm_area_struct *vma)
696{
697 int mm_lock_seq;
698
699 if (__is_vma_write_locked(vma, &mm_lock_seq))
700 return true;
701
702 if (!down_write_trylock(&vma->vm_lock->lock))
703 return false;
704
705 vma->vm_lock_seq = mm_lock_seq;
706 up_write(&vma->vm_lock->lock);
707 return true;
708}
709
5e31275c
SB
710static inline void vma_assert_write_locked(struct vm_area_struct *vma)
711{
55fd6fcc
SB
712 int mm_lock_seq;
713
714 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
5e31275c
SB
715}
716
457f67be
SB
717static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
718{
719 /* When detaching vma should be write-locked */
720 if (detached)
721 vma_assert_write_locked(vma);
722 vma->detached = detached;
723}
724
50ee3253
SB
725struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
726 unsigned long address);
727
5e31275c
SB
728#else /* CONFIG_PER_VMA_LOCK */
729
730static inline void vma_init_lock(struct vm_area_struct *vma) {}
731static inline bool vma_start_read(struct vm_area_struct *vma)
732 { return false; }
733static inline void vma_end_read(struct vm_area_struct *vma) {}
734static inline void vma_start_write(struct vm_area_struct *vma) {}
55fd6fcc
SB
735static inline bool vma_try_start_write(struct vm_area_struct *vma)
736 { return true; }
5e31275c 737static inline void vma_assert_write_locked(struct vm_area_struct *vma) {}
457f67be
SB
738static inline void vma_mark_detached(struct vm_area_struct *vma,
739 bool detached) {}
5e31275c
SB
740
741#endif /* CONFIG_PER_VMA_LOCK */
742
027232da
KS
743static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
744{
bfd40eaf
KS
745 static const struct vm_operations_struct dummy_vm_ops = {};
746
a670468f 747 memset(vma, 0, sizeof(*vma));
027232da 748 vma->vm_mm = mm;
bfd40eaf 749 vma->vm_ops = &dummy_vm_ops;
027232da 750 INIT_LIST_HEAD(&vma->anon_vma_chain);
457f67be 751 vma_mark_detached(vma, false);
5e31275c 752 vma_init_lock(vma);
027232da
KS
753}
754
bc292ab0
SB
755/* Use when VMA is not part of the VMA tree and needs no locking */
756static inline void vm_flags_init(struct vm_area_struct *vma,
757 vm_flags_t flags)
758{
759 ACCESS_PRIVATE(vma, __vm_flags) = flags;
760}
761
762/* Use when VMA is part of the VMA tree and modifications need coordination */
763static inline void vm_flags_reset(struct vm_area_struct *vma,
764 vm_flags_t flags)
765{
c7322933 766 vma_start_write(vma);
bc292ab0
SB
767 vm_flags_init(vma, flags);
768}
769
601c3c29
SB
770static inline void vm_flags_reset_once(struct vm_area_struct *vma,
771 vm_flags_t flags)
772{
c7322933 773 vma_start_write(vma);
601c3c29
SB
774 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
775}
776
bc292ab0
SB
777static inline void vm_flags_set(struct vm_area_struct *vma,
778 vm_flags_t flags)
779{
c7322933 780 vma_start_write(vma);
bc292ab0
SB
781 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
782}
783
784static inline void vm_flags_clear(struct vm_area_struct *vma,
785 vm_flags_t flags)
786{
c7322933 787 vma_start_write(vma);
bc292ab0
SB
788 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
789}
790
68f48381
SB
791/*
792 * Use only if VMA is not part of the VMA tree or has no other users and
793 * therefore needs no locking.
794 */
795static inline void __vm_flags_mod(struct vm_area_struct *vma,
796 vm_flags_t set, vm_flags_t clear)
797{
798 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
799}
800
bc292ab0
SB
801/*
802 * Use only when the order of set/clear operations is unimportant, otherwise
803 * use vm_flags_{set|clear} explicitly.
804 */
805static inline void vm_flags_mod(struct vm_area_struct *vma,
806 vm_flags_t set, vm_flags_t clear)
807{
c7322933 808 vma_start_write(vma);
68f48381 809 __vm_flags_mod(vma, set, clear);
bc292ab0
SB
810}
811
bfd40eaf
KS
812static inline void vma_set_anonymous(struct vm_area_struct *vma)
813{
814 vma->vm_ops = NULL;
815}
816
43675e6f
YS
817static inline bool vma_is_anonymous(struct vm_area_struct *vma)
818{
819 return !vma->vm_ops;
820}
821
222100ee
AK
822static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
823{
824 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
825
826 if (!maybe_stack)
827 return false;
828
829 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
830 VM_STACK_INCOMPLETE_SETUP)
831 return true;
832
833 return false;
834}
835
7969f226
AK
836static inline bool vma_is_foreign(struct vm_area_struct *vma)
837{
838 if (!current->mm)
839 return true;
840
841 if (current->mm != vma->vm_mm)
842 return true;
843
844 return false;
845}
3122e80e
AK
846
847static inline bool vma_is_accessible(struct vm_area_struct *vma)
848{
6cb4d9a2 849 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
850}
851
f39af059
MWO
852static inline
853struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
854{
b62b633e 855 return mas_find(&vmi->mas, max - 1);
f39af059
MWO
856}
857
858static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
859{
860 /*
b62b633e 861 * Uses mas_find() to get the first VMA when the iterator starts.
f39af059
MWO
862 * Calling mas_next() could skip the first entry.
863 */
b62b633e 864 return mas_find(&vmi->mas, ULONG_MAX);
f39af059
MWO
865}
866
867static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
868{
869 return mas_prev(&vmi->mas, 0);
870}
871
872static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
873{
874 return vmi->mas.index;
875}
876
b62b633e
LH
877static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
878{
879 return vmi->mas.last + 1;
880}
881static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
882 unsigned long count)
883{
884 return mas_expected_entries(&vmi->mas, count);
885}
886
887/* Free any unused preallocations */
888static inline void vma_iter_free(struct vma_iterator *vmi)
889{
890 mas_destroy(&vmi->mas);
891}
892
893static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
894 struct vm_area_struct *vma)
895{
896 vmi->mas.index = vma->vm_start;
897 vmi->mas.last = vma->vm_end - 1;
898 mas_store(&vmi->mas, vma);
899 if (unlikely(mas_is_err(&vmi->mas)))
900 return -ENOMEM;
901
902 return 0;
903}
904
905static inline void vma_iter_invalidate(struct vma_iterator *vmi)
906{
907 mas_pause(&vmi->mas);
908}
909
910static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
911{
912 mas_set(&vmi->mas, addr);
913}
914
f39af059
MWO
915#define for_each_vma(__vmi, __vma) \
916 while (((__vma) = vma_next(&(__vmi))) != NULL)
917
918/* The MM code likes to work with exclusive end addresses */
919#define for_each_vma_range(__vmi, __vma, __end) \
b62b633e 920 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
f39af059 921
43675e6f
YS
922#ifdef CONFIG_SHMEM
923/*
924 * The vma_is_shmem is not inline because it is used only by slow
925 * paths in userfault.
926 */
927bool vma_is_shmem(struct vm_area_struct *vma);
d09e8ca6 928bool vma_is_anon_shmem(struct vm_area_struct *vma);
43675e6f
YS
929#else
930static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
d09e8ca6 931static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
43675e6f
YS
932#endif
933
934int vma_is_stack_for_current(struct vm_area_struct *vma);
935
8b11ec1b
LT
936/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
937#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
938
1da177e4
LT
939struct mmu_gather;
940struct inode;
941
5eb5cea1
MWO
942/*
943 * compound_order() can be called without holding a reference, which means
944 * that niceties like page_folio() don't work. These callers should be
945 * prepared to handle wild return values. For example, PG_head may be
946 * set before _folio_order is initialised, or this may be a tail page.
947 * See compaction.c for some good examples.
948 */
5bf34d7c
MWO
949static inline unsigned int compound_order(struct page *page)
950{
5eb5cea1
MWO
951 struct folio *folio = (struct folio *)page;
952
953 if (!test_bit(PG_head, &folio->flags))
5bf34d7c 954 return 0;
5eb5cea1 955 return folio->_folio_order;
5bf34d7c
MWO
956}
957
958/**
959 * folio_order - The allocation order of a folio.
960 * @folio: The folio.
961 *
962 * A folio is composed of 2^order pages. See get_order() for the definition
963 * of order.
964 *
965 * Return: The order of the folio.
966 */
967static inline unsigned int folio_order(struct folio *folio)
968{
c3a15bff
MWO
969 if (!folio_test_large(folio))
970 return 0;
971 return folio->_folio_order;
5bf34d7c
MWO
972}
973
71e3aac0 974#include <linux/huge_mm.h>
1da177e4
LT
975
976/*
977 * Methods to modify the page usage count.
978 *
979 * What counts for a page usage:
980 * - cache mapping (page->mapping)
981 * - private data (page->private)
982 * - page mapped in a task's page tables, each mapping
983 * is counted separately
984 *
985 * Also, many kernel routines increase the page count before a critical
986 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
987 */
988
989/*
da6052f7 990 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 991 */
7c8ee9a8
NP
992static inline int put_page_testzero(struct page *page)
993{
fe896d18
JK
994 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
995 return page_ref_dec_and_test(page);
7c8ee9a8 996}
1da177e4 997
b620f633
MWO
998static inline int folio_put_testzero(struct folio *folio)
999{
1000 return put_page_testzero(&folio->page);
1001}
1002
1da177e4 1003/*
7c8ee9a8
NP
1004 * Try to grab a ref unless the page has a refcount of zero, return false if
1005 * that is the case.
8e0861fa
AK
1006 * This can be called when MMU is off so it must not access
1007 * any of the virtual mappings.
1da177e4 1008 */
c2530328 1009static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 1010{
fe896d18 1011 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 1012}
1da177e4 1013
3c1ea2c7
VMO
1014static inline struct folio *folio_get_nontail_page(struct page *page)
1015{
1016 if (unlikely(!get_page_unless_zero(page)))
1017 return NULL;
1018 return (struct folio *)page;
1019}
1020
53df8fdc 1021extern int page_is_ram(unsigned long pfn);
124fe20d
DW
1022
1023enum {
1024 REGION_INTERSECTS,
1025 REGION_DISJOINT,
1026 REGION_MIXED,
1027};
1028
1c29f25b
TK
1029int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1030 unsigned long desc);
53df8fdc 1031
48667e7a 1032/* Support for virtually mapped pages */
b3bdda02
CL
1033struct page *vmalloc_to_page(const void *addr);
1034unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 1035
0738c4bb
PM
1036/*
1037 * Determine if an address is within the vmalloc range
1038 *
1039 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1040 * is no special casing required.
1041 */
9bd3bb67
AK
1042
1043#ifndef is_ioremap_addr
1044#define is_ioremap_addr(x) is_vmalloc_addr(x)
1045#endif
1046
81ac3ad9 1047#ifdef CONFIG_MMU
186525bd 1048extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
1049extern int is_vmalloc_or_module_addr(const void *x);
1050#else
186525bd
IM
1051static inline bool is_vmalloc_addr(const void *x)
1052{
1053 return false;
1054}
934831d0 1055static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
1056{
1057 return 0;
1058}
1059#endif
9e2779fa 1060
74e8ee47
MWO
1061/*
1062 * How many times the entire folio is mapped as a single unit (eg by a
1063 * PMD or PUD entry). This is probably not what you want, except for
cb67f428
HD
1064 * debugging purposes - it does not include PTE-mapped sub-pages; look
1065 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
74e8ee47
MWO
1066 */
1067static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 1068{
74e8ee47 1069 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1aa4d03b 1070 return atomic_read(&folio->_entire_mapcount) + 1;
53f9263b
KS
1071}
1072
70b50f94
AA
1073/*
1074 * The atomic page->_mapcount, starts from -1: so that transitions
1075 * both from it and to it can be tracked, using atomic_inc_and_test
1076 * and atomic_add_negative(-1).
1077 */
22b751c3 1078static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
1079{
1080 atomic_set(&(page)->_mapcount, -1);
1081}
1082
c97eeb8f
MWO
1083/**
1084 * page_mapcount() - Number of times this precise page is mapped.
1085 * @page: The page.
1086 *
1087 * The number of times this page is mapped. If this page is part of
1088 * a large folio, it includes the number of times this page is mapped
1089 * as part of that folio.
6988f31d 1090 *
c97eeb8f 1091 * The result is undefined for pages which cannot be mapped into userspace.
6988f31d 1092 * For example SLAB or special types of pages. See function page_has_type().
c97eeb8f 1093 * They use this field in struct page differently.
6988f31d 1094 */
70b50f94
AA
1095static inline int page_mapcount(struct page *page)
1096{
cb67f428 1097 int mapcount = atomic_read(&page->_mapcount) + 1;
b20ce5e0 1098
c97eeb8f
MWO
1099 if (unlikely(PageCompound(page)))
1100 mapcount += folio_entire_mapcount(page_folio(page));
1101
1102 return mapcount;
b20ce5e0
KS
1103}
1104
b14224fb 1105int folio_total_mapcount(struct folio *folio);
4ba1119c 1106
cb67f428
HD
1107/**
1108 * folio_mapcount() - Calculate the number of mappings of this folio.
1109 * @folio: The folio.
1110 *
1111 * A large folio tracks both how many times the entire folio is mapped,
1112 * and how many times each individual page in the folio is mapped.
1113 * This function calculates the total number of times the folio is
1114 * mapped.
1115 *
1116 * Return: The number of times this folio is mapped.
1117 */
1118static inline int folio_mapcount(struct folio *folio)
4ba1119c 1119{
cb67f428
HD
1120 if (likely(!folio_test_large(folio)))
1121 return atomic_read(&folio->_mapcount) + 1;
b14224fb 1122 return folio_total_mapcount(folio);
4ba1119c
MWO
1123}
1124
b20ce5e0
KS
1125static inline int total_mapcount(struct page *page)
1126{
be5ef2d9
HD
1127 if (likely(!PageCompound(page)))
1128 return atomic_read(&page->_mapcount) + 1;
b14224fb 1129 return folio_total_mapcount(page_folio(page));
be5ef2d9
HD
1130}
1131
1132static inline bool folio_large_is_mapped(struct folio *folio)
1133{
4b51634c 1134 /*
1aa4d03b 1135 * Reading _entire_mapcount below could be omitted if hugetlb
eec20426 1136 * participated in incrementing nr_pages_mapped when compound mapped.
4b51634c 1137 */
eec20426 1138 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1aa4d03b 1139 atomic_read(&folio->_entire_mapcount) >= 0;
cb67f428
HD
1140}
1141
1142/**
1143 * folio_mapped - Is this folio mapped into userspace?
1144 * @folio: The folio.
1145 *
1146 * Return: True if any page in this folio is referenced by user page tables.
1147 */
1148static inline bool folio_mapped(struct folio *folio)
1149{
be5ef2d9
HD
1150 if (likely(!folio_test_large(folio)))
1151 return atomic_read(&folio->_mapcount) >= 0;
1152 return folio_large_is_mapped(folio);
1153}
1154
1155/*
1156 * Return true if this page is mapped into pagetables.
1157 * For compound page it returns true if any sub-page of compound page is mapped,
1158 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1159 */
1160static inline bool page_mapped(struct page *page)
1161{
1162 if (likely(!PageCompound(page)))
1163 return atomic_read(&page->_mapcount) >= 0;
1164 return folio_large_is_mapped(page_folio(page));
70b50f94
AA
1165}
1166
b49af68f
CL
1167static inline struct page *virt_to_head_page(const void *x)
1168{
1169 struct page *page = virt_to_page(x);
ccaafd7f 1170
1d798ca3 1171 return compound_head(page);
b49af68f
CL
1172}
1173
7d4203c1
VB
1174static inline struct folio *virt_to_folio(const void *x)
1175{
1176 struct page *page = virt_to_page(x);
1177
1178 return page_folio(page);
1179}
1180
8d29c703 1181void __folio_put(struct folio *folio);
ddc58f27 1182
1d7ea732 1183void put_pages_list(struct list_head *pages);
1da177e4 1184
8dfcc9ba 1185void split_page(struct page *page, unsigned int order);
715cbfd6 1186void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 1187
a1554c00
ML
1188unsigned long nr_free_buffer_pages(void);
1189
33f2ef89
AW
1190/*
1191 * Compound pages have a destructor function. Provide a
1192 * prototype for that function and accessor functions.
f1e61557 1193 * These are _only_ valid on the head of a compound page.
33f2ef89 1194 */
f1e61557
KS
1195typedef void compound_page_dtor(struct page *);
1196
1197/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1198enum compound_dtor_id {
1199 NULL_COMPOUND_DTOR,
1200 COMPOUND_PAGE_DTOR,
1201#ifdef CONFIG_HUGETLB_PAGE
1202 HUGETLB_PAGE_DTOR,
9a982250
KS
1203#endif
1204#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1205 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
1206#endif
1207 NR_COMPOUND_DTORS,
1208};
ae70eddd 1209extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
1210
1211static inline void set_compound_page_dtor(struct page *page,
f1e61557 1212 enum compound_dtor_id compound_dtor)
33f2ef89 1213{
bad6da64
MWO
1214 struct folio *folio = (struct folio *)page;
1215
f1e61557 1216 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
bad6da64
MWO
1217 VM_BUG_ON_PAGE(!PageHead(page), page);
1218 folio->_folio_dtor = compound_dtor;
33f2ef89
AW
1219}
1220
9fd33058
SK
1221static inline void folio_set_compound_dtor(struct folio *folio,
1222 enum compound_dtor_id compound_dtor)
1223{
1224 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1225 folio->_folio_dtor = compound_dtor;
1226}
1227
5375336c 1228void destroy_large_folio(struct folio *folio);
33f2ef89 1229
f1e61557 1230static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 1231{
bad6da64 1232 struct folio *folio = (struct folio *)page;
9fd33058
SK
1233
1234 folio->_folio_order = order;
1235#ifdef CONFIG_64BIT
bad6da64 1236 folio->_folio_nr_pages = 1U << order;
5232c63f 1237#endif
d8c6546b
MWO
1238}
1239
a50b854e
MWO
1240/* Returns the number of bytes in this potentially compound page. */
1241static inline unsigned long page_size(struct page *page)
1242{
1243 return PAGE_SIZE << compound_order(page);
1244}
1245
94ad9338
MWO
1246/* Returns the number of bits needed for the number of bytes in a page */
1247static inline unsigned int page_shift(struct page *page)
1248{
1249 return PAGE_SHIFT + compound_order(page);
1250}
1251
18788cfa
MWO
1252/**
1253 * thp_order - Order of a transparent huge page.
1254 * @page: Head page of a transparent huge page.
1255 */
1256static inline unsigned int thp_order(struct page *page)
1257{
1258 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1259 return compound_order(page);
1260}
1261
18788cfa
MWO
1262/**
1263 * thp_size - Size of a transparent huge page.
1264 * @page: Head page of a transparent huge page.
1265 *
1266 * Return: Number of bytes in this page.
1267 */
1268static inline unsigned long thp_size(struct page *page)
1269{
1270 return PAGE_SIZE << thp_order(page);
1271}
1272
9a982250
KS
1273void free_compound_page(struct page *page);
1274
3dece370 1275#ifdef CONFIG_MMU
14fd403f
AA
1276/*
1277 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1278 * servicing faults for write access. In the normal case, do always want
1279 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1280 * that do not have writing enabled, when used by access_process_vm.
1281 */
1282static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1283{
1284 if (likely(vma->vm_flags & VM_WRITE))
1285 pte = pte_mkwrite(pte);
1286 return pte;
1287}
8c6e50b0 1288
f9ce0be7 1289vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1290void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1291
2b740303
SJ
1292vm_fault_t finish_fault(struct vm_fault *vmf);
1293vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1294#endif
14fd403f 1295
1da177e4
LT
1296/*
1297 * Multiple processes may "see" the same page. E.g. for untouched
1298 * mappings of /dev/null, all processes see the same page full of
1299 * zeroes, and text pages of executables and shared libraries have
1300 * only one copy in memory, at most, normally.
1301 *
1302 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1303 * page_count() == 0 means the page is free. page->lru is then used for
1304 * freelist management in the buddy allocator.
da6052f7 1305 * page_count() > 0 means the page has been allocated.
1da177e4 1306 *
da6052f7
NP
1307 * Pages are allocated by the slab allocator in order to provide memory
1308 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1309 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1310 * unless a particular usage is carefully commented. (the responsibility of
1311 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1312 *
da6052f7
NP
1313 * A page may be used by anyone else who does a __get_free_page().
1314 * In this case, page_count still tracks the references, and should only
1315 * be used through the normal accessor functions. The top bits of page->flags
1316 * and page->virtual store page management information, but all other fields
1317 * are unused and could be used privately, carefully. The management of this
1318 * page is the responsibility of the one who allocated it, and those who have
1319 * subsequently been given references to it.
1320 *
1321 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1322 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1323 * The following discussion applies only to them.
1324 *
da6052f7
NP
1325 * A pagecache page contains an opaque `private' member, which belongs to the
1326 * page's address_space. Usually, this is the address of a circular list of
1327 * the page's disk buffers. PG_private must be set to tell the VM to call
1328 * into the filesystem to release these pages.
1da177e4 1329 *
da6052f7
NP
1330 * A page may belong to an inode's memory mapping. In this case, page->mapping
1331 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1332 * in units of PAGE_SIZE.
1da177e4 1333 *
da6052f7
NP
1334 * If pagecache pages are not associated with an inode, they are said to be
1335 * anonymous pages. These may become associated with the swapcache, and in that
1336 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1337 *
da6052f7
NP
1338 * In either case (swapcache or inode backed), the pagecache itself holds one
1339 * reference to the page. Setting PG_private should also increment the
1340 * refcount. The each user mapping also has a reference to the page.
1da177e4 1341 *
da6052f7 1342 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1343 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1344 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1345 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1346 *
da6052f7 1347 * All pagecache pages may be subject to I/O:
1da177e4
LT
1348 * - inode pages may need to be read from disk,
1349 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1350 * to be written back to the inode on disk,
1351 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1352 * modified may need to be swapped out to swap space and (later) to be read
1353 * back into memory.
1da177e4
LT
1354 */
1355
27674ef6 1356#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1357DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1358
f4f451a1
MS
1359bool __put_devmap_managed_page_refs(struct page *page, int refs);
1360static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1361{
1362 if (!static_branch_unlikely(&devmap_managed_key))
1363 return false;
1364 if (!is_zone_device_page(page))
1365 return false;
f4f451a1 1366 return __put_devmap_managed_page_refs(page, refs);
e7638488 1367}
27674ef6 1368#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1369static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1370{
1371 return false;
1372}
27674ef6 1373#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1374
f4f451a1
MS
1375static inline bool put_devmap_managed_page(struct page *page)
1376{
1377 return put_devmap_managed_page_refs(page, 1);
1378}
1379
f958d7b5 1380/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1381#define folio_ref_zero_or_close_to_overflow(folio) \
1382 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1383
1384/**
1385 * folio_get - Increment the reference count on a folio.
1386 * @folio: The folio.
1387 *
1388 * Context: May be called in any context, as long as you know that
1389 * you have a refcount on the folio. If you do not already have one,
1390 * folio_try_get() may be the right interface for you to use.
1391 */
1392static inline void folio_get(struct folio *folio)
1393{
1394 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1395 folio_ref_inc(folio);
1396}
f958d7b5 1397
3565fce3
DW
1398static inline void get_page(struct page *page)
1399{
86d234cb 1400 folio_get(page_folio(page));
3565fce3
DW
1401}
1402
cd1adf1b
LT
1403static inline __must_check bool try_get_page(struct page *page)
1404{
1405 page = compound_head(page);
1406 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1407 return false;
1408 page_ref_inc(page);
1409 return true;
1410}
3565fce3 1411
b620f633
MWO
1412/**
1413 * folio_put - Decrement the reference count on a folio.
1414 * @folio: The folio.
1415 *
1416 * If the folio's reference count reaches zero, the memory will be
1417 * released back to the page allocator and may be used by another
1418 * allocation immediately. Do not access the memory or the struct folio
1419 * after calling folio_put() unless you can be sure that it wasn't the
1420 * last reference.
1421 *
1422 * Context: May be called in process or interrupt context, but not in NMI
1423 * context. May be called while holding a spinlock.
1424 */
1425static inline void folio_put(struct folio *folio)
1426{
1427 if (folio_put_testzero(folio))
8d29c703 1428 __folio_put(folio);
b620f633
MWO
1429}
1430
3fe7fa58
MWO
1431/**
1432 * folio_put_refs - Reduce the reference count on a folio.
1433 * @folio: The folio.
1434 * @refs: The amount to subtract from the folio's reference count.
1435 *
1436 * If the folio's reference count reaches zero, the memory will be
1437 * released back to the page allocator and may be used by another
1438 * allocation immediately. Do not access the memory or the struct folio
1439 * after calling folio_put_refs() unless you can be sure that these weren't
1440 * the last references.
1441 *
1442 * Context: May be called in process or interrupt context, but not in NMI
1443 * context. May be called while holding a spinlock.
1444 */
1445static inline void folio_put_refs(struct folio *folio, int refs)
1446{
1447 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1448 __folio_put(folio);
3fe7fa58
MWO
1449}
1450
0411d6ee
SP
1451/*
1452 * union release_pages_arg - an array of pages or folios
449c7967 1453 *
0411d6ee 1454 * release_pages() releases a simple array of multiple pages, and
449c7967
LT
1455 * accepts various different forms of said page array: either
1456 * a regular old boring array of pages, an array of folios, or
1457 * an array of encoded page pointers.
1458 *
1459 * The transparent union syntax for this kind of "any of these
1460 * argument types" is all kinds of ugly, so look away.
1461 */
1462typedef union {
1463 struct page **pages;
1464 struct folio **folios;
1465 struct encoded_page **encoded_pages;
1466} release_pages_arg __attribute__ ((__transparent_union__));
1467
1468void release_pages(release_pages_arg, int nr);
e3c4cebf
MWO
1469
1470/**
1471 * folios_put - Decrement the reference count on an array of folios.
1472 * @folios: The folios.
1473 * @nr: How many folios there are.
1474 *
1475 * Like folio_put(), but for an array of folios. This is more efficient
1476 * than writing the loop yourself as it will optimise the locks which
1477 * need to be taken if the folios are freed.
1478 *
1479 * Context: May be called in process or interrupt context, but not in NMI
1480 * context. May be called while holding a spinlock.
1481 */
1482static inline void folios_put(struct folio **folios, unsigned int nr)
1483{
449c7967 1484 release_pages(folios, nr);
3fe7fa58
MWO
1485}
1486
3565fce3
DW
1487static inline void put_page(struct page *page)
1488{
b620f633 1489 struct folio *folio = page_folio(page);
3565fce3 1490
7b2d55d2 1491 /*
89574945
CH
1492 * For some devmap managed pages we need to catch refcount transition
1493 * from 2 to 1:
7b2d55d2 1494 */
89574945 1495 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1496 return;
b620f633 1497 folio_put(folio);
3565fce3
DW
1498}
1499
3faa52c0
JH
1500/*
1501 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1502 * the page's refcount so that two separate items are tracked: the original page
1503 * reference count, and also a new count of how many pin_user_pages() calls were
1504 * made against the page. ("gup-pinned" is another term for the latter).
1505 *
1506 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1507 * distinct from normal pages. As such, the unpin_user_page() call (and its
1508 * variants) must be used in order to release gup-pinned pages.
1509 *
1510 * Choice of value:
1511 *
1512 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1513 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1514 * simpler, due to the fact that adding an even power of two to the page
1515 * refcount has the effect of using only the upper N bits, for the code that
1516 * counts up using the bias value. This means that the lower bits are left for
1517 * the exclusive use of the original code that increments and decrements by one
1518 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1519 *
3faa52c0
JH
1520 * Of course, once the lower bits overflow into the upper bits (and this is
1521 * OK, because subtraction recovers the original values), then visual inspection
1522 * no longer suffices to directly view the separate counts. However, for normal
1523 * applications that don't have huge page reference counts, this won't be an
1524 * issue.
fc1d8e7c 1525 *
40fcc7fc
MWO
1526 * Locking: the lockless algorithm described in folio_try_get_rcu()
1527 * provides safe operation for get_user_pages(), page_mkclean() and
1528 * other calls that race to set up page table entries.
fc1d8e7c 1529 */
3faa52c0 1530#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1531
3faa52c0 1532void unpin_user_page(struct page *page);
f1f6a7dd
JH
1533void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1534 bool make_dirty);
458a4f78
JM
1535void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1536 bool make_dirty);
f1f6a7dd 1537void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1538
97a7e473
PX
1539static inline bool is_cow_mapping(vm_flags_t flags)
1540{
1541 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1542}
1543
fc4f4be9
DH
1544#ifndef CONFIG_MMU
1545static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1546{
1547 /*
1548 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1549 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1550 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1551 * underlying memory if ptrace is active, so this is only possible if
1552 * ptrace does not apply. Note that there is no mprotect() to upgrade
1553 * write permissions later.
1554 */
b6b7a8fa 1555 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
fc4f4be9
DH
1556}
1557#endif
1558
9127ab4f
CS
1559#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1560#define SECTION_IN_PAGE_FLAGS
1561#endif
1562
89689ae7 1563/*
7a8010cd
VB
1564 * The identification function is mainly used by the buddy allocator for
1565 * determining if two pages could be buddies. We are not really identifying
1566 * the zone since we could be using the section number id if we do not have
1567 * node id available in page flags.
1568 * We only guarantee that it will return the same value for two combinable
1569 * pages in a zone.
89689ae7 1570 */
cb2b95e1
AW
1571static inline int page_zone_id(struct page *page)
1572{
89689ae7 1573 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1574}
1575
89689ae7 1576#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1577extern int page_to_nid(const struct page *page);
89689ae7 1578#else
33dd4e0e 1579static inline int page_to_nid(const struct page *page)
d41dee36 1580{
f165b378
PT
1581 struct page *p = (struct page *)page;
1582
1583 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1584}
89689ae7
CL
1585#endif
1586
874fd90c
MWO
1587static inline int folio_nid(const struct folio *folio)
1588{
1589 return page_to_nid(&folio->page);
1590}
1591
57e0a030 1592#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1593/* page access time bits needs to hold at least 4 seconds */
1594#define PAGE_ACCESS_TIME_MIN_BITS 12
1595#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1596#define PAGE_ACCESS_TIME_BUCKETS \
1597 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1598#else
1599#define PAGE_ACCESS_TIME_BUCKETS 0
1600#endif
1601
1602#define PAGE_ACCESS_TIME_MASK \
1603 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1604
90572890 1605static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1606{
90572890 1607 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1608}
1609
90572890 1610static inline int cpupid_to_pid(int cpupid)
57e0a030 1611{
90572890 1612 return cpupid & LAST__PID_MASK;
57e0a030 1613}
b795854b 1614
90572890 1615static inline int cpupid_to_cpu(int cpupid)
b795854b 1616{
90572890 1617 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1618}
1619
90572890 1620static inline int cpupid_to_nid(int cpupid)
b795854b 1621{
90572890 1622 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1623}
1624
90572890 1625static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1626{
90572890 1627 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1628}
1629
90572890 1630static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1631{
90572890 1632 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1633}
1634
8c8a743c
PZ
1635static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1636{
1637 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1638}
1639
1640#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1641#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1642static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1643{
1ae71d03 1644 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1645}
90572890
PZ
1646
1647static inline int page_cpupid_last(struct page *page)
1648{
1649 return page->_last_cpupid;
1650}
1651static inline void page_cpupid_reset_last(struct page *page)
b795854b 1652{
1ae71d03 1653 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1654}
1655#else
90572890 1656static inline int page_cpupid_last(struct page *page)
75980e97 1657{
90572890 1658 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1659}
1660
90572890 1661extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1662
90572890 1663static inline void page_cpupid_reset_last(struct page *page)
75980e97 1664{
09940a4f 1665 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1666}
90572890 1667#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536
HY
1668
1669static inline int xchg_page_access_time(struct page *page, int time)
1670{
1671 int last_time;
1672
1673 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1674 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1675}
90572890
PZ
1676#else /* !CONFIG_NUMA_BALANCING */
1677static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1678{
90572890 1679 return page_to_nid(page); /* XXX */
57e0a030
MG
1680}
1681
33024536
HY
1682static inline int xchg_page_access_time(struct page *page, int time)
1683{
1684 return 0;
1685}
1686
90572890 1687static inline int page_cpupid_last(struct page *page)
57e0a030 1688{
90572890 1689 return page_to_nid(page); /* XXX */
57e0a030
MG
1690}
1691
90572890 1692static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1693{
1694 return -1;
1695}
1696
90572890 1697static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1698{
1699 return -1;
1700}
1701
90572890 1702static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1703{
1704 return -1;
1705}
1706
90572890
PZ
1707static inline int cpu_pid_to_cpupid(int nid, int pid)
1708{
1709 return -1;
1710}
1711
1712static inline bool cpupid_pid_unset(int cpupid)
b795854b 1713{
2b787449 1714 return true;
b795854b
MG
1715}
1716
90572890 1717static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1718{
1719}
8c8a743c
PZ
1720
1721static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1722{
1723 return false;
1724}
90572890 1725#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1726
2e903b91 1727#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1728
cf10bd4c
AK
1729/*
1730 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1731 * setting tags for all pages to native kernel tag value 0xff, as the default
1732 * value 0x00 maps to 0xff.
1733 */
1734
2813b9c0
AK
1735static inline u8 page_kasan_tag(const struct page *page)
1736{
cf10bd4c
AK
1737 u8 tag = 0xff;
1738
1739 if (kasan_enabled()) {
1740 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1741 tag ^= 0xff;
1742 }
1743
1744 return tag;
2813b9c0
AK
1745}
1746
1747static inline void page_kasan_tag_set(struct page *page, u8 tag)
1748{
27fe7339
PC
1749 unsigned long old_flags, flags;
1750
1751 if (!kasan_enabled())
1752 return;
1753
1754 tag ^= 0xff;
1755 old_flags = READ_ONCE(page->flags);
1756 do {
1757 flags = old_flags;
1758 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1759 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1760 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1761}
1762
1763static inline void page_kasan_tag_reset(struct page *page)
1764{
34303244
AK
1765 if (kasan_enabled())
1766 page_kasan_tag_set(page, 0xff);
2813b9c0 1767}
34303244
AK
1768
1769#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1770
2813b9c0
AK
1771static inline u8 page_kasan_tag(const struct page *page)
1772{
1773 return 0xff;
1774}
1775
1776static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1777static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1778
1779#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1780
33dd4e0e 1781static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1782{
1783 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1784}
1785
75ef7184
MG
1786static inline pg_data_t *page_pgdat(const struct page *page)
1787{
1788 return NODE_DATA(page_to_nid(page));
1789}
1790
32b8fc48
MWO
1791static inline struct zone *folio_zone(const struct folio *folio)
1792{
1793 return page_zone(&folio->page);
1794}
1795
1796static inline pg_data_t *folio_pgdat(const struct folio *folio)
1797{
1798 return page_pgdat(&folio->page);
1799}
1800
9127ab4f 1801#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1802static inline void set_page_section(struct page *page, unsigned long section)
1803{
1804 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1805 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1806}
1807
aa462abe 1808static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1809{
1810 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1811}
308c05e3 1812#endif
d41dee36 1813
bf6bd276
MWO
1814/**
1815 * folio_pfn - Return the Page Frame Number of a folio.
1816 * @folio: The folio.
1817 *
1818 * A folio may contain multiple pages. The pages have consecutive
1819 * Page Frame Numbers.
1820 *
1821 * Return: The Page Frame Number of the first page in the folio.
1822 */
1823static inline unsigned long folio_pfn(struct folio *folio)
1824{
1825 return page_to_pfn(&folio->page);
1826}
1827
018ee47f
YZ
1828static inline struct folio *pfn_folio(unsigned long pfn)
1829{
1830 return page_folio(pfn_to_page(pfn));
1831}
1832
0b90ddae
MWO
1833/**
1834 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1835 * @folio: The folio.
1836 *
1837 * This function checks if a folio has been pinned via a call to
1838 * a function in the pin_user_pages() family.
1839 *
1840 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1841 * because it means "definitely not pinned for DMA", but true means "probably
1842 * pinned for DMA, but possibly a false positive due to having at least
1843 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1844 *
1845 * False positives are OK, because: a) it's unlikely for a folio to
1846 * get that many refcounts, and b) all the callers of this routine are
1847 * expected to be able to deal gracefully with a false positive.
1848 *
1849 * For large folios, the result will be exactly correct. That's because
94688e8e 1850 * we have more tracking data available: the _pincount field is used
0b90ddae
MWO
1851 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1852 *
1853 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1854 *
1855 * Return: True, if it is likely that the page has been "dma-pinned".
1856 * False, if the page is definitely not dma-pinned.
1857 */
1858static inline bool folio_maybe_dma_pinned(struct folio *folio)
1859{
1860 if (folio_test_large(folio))
94688e8e 1861 return atomic_read(&folio->_pincount) > 0;
0b90ddae
MWO
1862
1863 /*
1864 * folio_ref_count() is signed. If that refcount overflows, then
1865 * folio_ref_count() returns a negative value, and callers will avoid
1866 * further incrementing the refcount.
1867 *
1868 * Here, for that overflow case, use the sign bit to count a little
1869 * bit higher via unsigned math, and thus still get an accurate result.
1870 */
1871 return ((unsigned int)folio_ref_count(folio)) >=
1872 GUP_PIN_COUNTING_BIAS;
1873}
1874
1875static inline bool page_maybe_dma_pinned(struct page *page)
1876{
1877 return folio_maybe_dma_pinned(page_folio(page));
1878}
1879
1880/*
1881 * This should most likely only be called during fork() to see whether we
fb3d824d 1882 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1883 *
1884 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1885 */
1886static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1887 struct page *page)
1888{
623a1ddf 1889 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1890
1891 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1892 return false;
1893
1894 return page_maybe_dma_pinned(page);
1895}
1896
8e3560d9
PT
1897/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1898#ifdef CONFIG_MIGRATION
6077c943 1899static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9 1900{
1c563432
MK
1901#ifdef CONFIG_CMA
1902 int mt = get_pageblock_migratetype(page);
1903
1904 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1905 return false;
1906#endif
fcab34b4
AW
1907 /* The zero page may always be pinned */
1908 if (is_zero_pfn(page_to_pfn(page)))
1909 return true;
1910
1911 /* Coherent device memory must always allow eviction. */
1912 if (is_device_coherent_page(page))
1913 return false;
1914
1915 /* Otherwise, non-movable zone pages can be pinned. */
1916 return !is_zone_movable_page(page);
8e3560d9
PT
1917}
1918#else
6077c943 1919static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9
PT
1920{
1921 return true;
1922}
1923#endif
1924
6077c943 1925static inline bool folio_is_longterm_pinnable(struct folio *folio)
536939ff 1926{
6077c943 1927 return is_longterm_pinnable_page(&folio->page);
536939ff
MWO
1928}
1929
2f1b6248 1930static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1931{
1932 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1933 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1934}
2f1b6248 1935
348f8b6c
DH
1936static inline void set_page_node(struct page *page, unsigned long node)
1937{
1938 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1939 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1940}
89689ae7 1941
2f1b6248 1942static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1943 unsigned long node, unsigned long pfn)
1da177e4 1944{
348f8b6c
DH
1945 set_page_zone(page, zone);
1946 set_page_node(page, node);
9127ab4f 1947#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1948 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1949#endif
1da177e4
LT
1950}
1951
7b230db3
MWO
1952/**
1953 * folio_nr_pages - The number of pages in the folio.
1954 * @folio: The folio.
1955 *
1956 * Return: A positive power of two.
1957 */
1958static inline long folio_nr_pages(struct folio *folio)
1959{
c3a15bff
MWO
1960 if (!folio_test_large(folio))
1961 return 1;
1962#ifdef CONFIG_64BIT
1963 return folio->_folio_nr_pages;
1964#else
1965 return 1L << folio->_folio_order;
1966#endif
7b230db3
MWO
1967}
1968
21a000fe
MWO
1969/*
1970 * compound_nr() returns the number of pages in this potentially compound
1971 * page. compound_nr() can be called on a tail page, and is defined to
1972 * return 1 in that case.
1973 */
1974static inline unsigned long compound_nr(struct page *page)
1975{
1976 struct folio *folio = (struct folio *)page;
1977
1978 if (!test_bit(PG_head, &folio->flags))
1979 return 1;
1980#ifdef CONFIG_64BIT
1981 return folio->_folio_nr_pages;
1982#else
1983 return 1L << folio->_folio_order;
1984#endif
1985}
1986
1987/**
1988 * thp_nr_pages - The number of regular pages in this huge page.
1989 * @page: The head page of a huge page.
1990 */
1991static inline int thp_nr_pages(struct page *page)
1992{
1993 return folio_nr_pages((struct folio *)page);
1994}
1995
7b230db3
MWO
1996/**
1997 * folio_next - Move to the next physical folio.
1998 * @folio: The folio we're currently operating on.
1999 *
2000 * If you have physically contiguous memory which may span more than
2001 * one folio (eg a &struct bio_vec), use this function to move from one
2002 * folio to the next. Do not use it if the memory is only virtually
2003 * contiguous as the folios are almost certainly not adjacent to each
2004 * other. This is the folio equivalent to writing ``page++``.
2005 *
2006 * Context: We assume that the folios are refcounted and/or locked at a
2007 * higher level and do not adjust the reference counts.
2008 * Return: The next struct folio.
2009 */
2010static inline struct folio *folio_next(struct folio *folio)
2011{
2012 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2013}
2014
2015/**
2016 * folio_shift - The size of the memory described by this folio.
2017 * @folio: The folio.
2018 *
2019 * A folio represents a number of bytes which is a power-of-two in size.
2020 * This function tells you which power-of-two the folio is. See also
2021 * folio_size() and folio_order().
2022 *
2023 * Context: The caller should have a reference on the folio to prevent
2024 * it from being split. It is not necessary for the folio to be locked.
2025 * Return: The base-2 logarithm of the size of this folio.
2026 */
2027static inline unsigned int folio_shift(struct folio *folio)
2028{
2029 return PAGE_SHIFT + folio_order(folio);
2030}
2031
2032/**
2033 * folio_size - The number of bytes in a folio.
2034 * @folio: The folio.
2035 *
2036 * Context: The caller should have a reference on the folio to prevent
2037 * it from being split. It is not necessary for the folio to be locked.
2038 * Return: The number of bytes in this folio.
2039 */
2040static inline size_t folio_size(struct folio *folio)
2041{
2042 return PAGE_SIZE << folio_order(folio);
2043}
2044
fa4e3f5f
VMO
2045/**
2046 * folio_estimated_sharers - Estimate the number of sharers of a folio.
2047 * @folio: The folio.
2048 *
2049 * folio_estimated_sharers() aims to serve as a function to efficiently
2050 * estimate the number of processes sharing a folio. This is done by
2051 * looking at the precise mapcount of the first subpage in the folio, and
2052 * assuming the other subpages are the same. This may not be true for large
2053 * folios. If you want exact mapcounts for exact calculations, look at
2054 * page_mapcount() or folio_total_mapcount().
2055 *
2056 * Return: The estimated number of processes sharing a folio.
2057 */
2058static inline int folio_estimated_sharers(struct folio *folio)
2059{
2060 return page_mapcount(folio_page(folio, 0));
2061}
2062
b424de33
MWO
2063#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2064static inline int arch_make_page_accessible(struct page *page)
2065{
2066 return 0;
2067}
2068#endif
2069
2070#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2071static inline int arch_make_folio_accessible(struct folio *folio)
2072{
2073 int ret;
2074 long i, nr = folio_nr_pages(folio);
2075
2076 for (i = 0; i < nr; i++) {
2077 ret = arch_make_page_accessible(folio_page(folio, i));
2078 if (ret)
2079 break;
2080 }
2081
2082 return ret;
2083}
2084#endif
2085
f6ac2354
CL
2086/*
2087 * Some inline functions in vmstat.h depend on page_zone()
2088 */
2089#include <linux/vmstat.h>
2090
33dd4e0e 2091static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 2092{
1dff8083 2093 return page_to_virt(page);
1da177e4
LT
2094}
2095
2096#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2097#define HASHED_PAGE_VIRTUAL
2098#endif
2099
2100#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
2101static inline void *page_address(const struct page *page)
2102{
2103 return page->virtual;
2104}
2105static inline void set_page_address(struct page *page, void *address)
2106{
2107 page->virtual = address;
2108}
1da177e4
LT
2109#define page_address_init() do { } while(0)
2110#endif
2111
2112#if defined(HASHED_PAGE_VIRTUAL)
f9918794 2113void *page_address(const struct page *page);
1da177e4
LT
2114void set_page_address(struct page *page, void *virtual);
2115void page_address_init(void);
2116#endif
2117
2118#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2119#define page_address(page) lowmem_page_address(page)
2120#define set_page_address(page, address) do { } while(0)
2121#define page_address_init() do { } while(0)
2122#endif
2123
7d4203c1
VB
2124static inline void *folio_address(const struct folio *folio)
2125{
2126 return page_address(&folio->page);
2127}
2128
e39155ea 2129extern void *page_rmapping(struct page *page);
f6ab1f7f
HY
2130extern pgoff_t __page_file_index(struct page *page);
2131
1da177e4
LT
2132/*
2133 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 2134 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
2135 */
2136static inline pgoff_t page_index(struct page *page)
2137{
2138 if (unlikely(PageSwapCache(page)))
f6ab1f7f 2139 return __page_file_index(page);
1da177e4
LT
2140 return page->index;
2141}
2142
2f064f34
MH
2143/*
2144 * Return true only if the page has been allocated with
2145 * ALLOC_NO_WATERMARKS and the low watermark was not
2146 * met implying that the system is under some pressure.
2147 */
1d7bab6a 2148static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
2149{
2150 /*
c07aea3e
MC
2151 * lru.next has bit 1 set if the page is allocated from the
2152 * pfmemalloc reserves. Callers may simply overwrite it if
2153 * they do not need to preserve that information.
2f064f34 2154 */
c07aea3e 2155 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
2156}
2157
02d65d6f
SK
2158/*
2159 * Return true only if the folio has been allocated with
2160 * ALLOC_NO_WATERMARKS and the low watermark was not
2161 * met implying that the system is under some pressure.
2162 */
2163static inline bool folio_is_pfmemalloc(const struct folio *folio)
2164{
2165 /*
2166 * lru.next has bit 1 set if the page is allocated from the
2167 * pfmemalloc reserves. Callers may simply overwrite it if
2168 * they do not need to preserve that information.
2169 */
2170 return (uintptr_t)folio->lru.next & BIT(1);
2171}
2172
2f064f34
MH
2173/*
2174 * Only to be called by the page allocator on a freshly allocated
2175 * page.
2176 */
2177static inline void set_page_pfmemalloc(struct page *page)
2178{
c07aea3e 2179 page->lru.next = (void *)BIT(1);
2f064f34
MH
2180}
2181
2182static inline void clear_page_pfmemalloc(struct page *page)
2183{
c07aea3e 2184 page->lru.next = NULL;
2f064f34
MH
2185}
2186
1c0fe6e3
NP
2187/*
2188 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2189 */
2190extern void pagefault_out_of_memory(void);
2191
1da177e4 2192#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 2193#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 2194#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 2195
ddd588b5 2196/*
7bf02ea2 2197 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
2198 * various contexts.
2199 */
4b59e6c4 2200#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 2201
974f4367
MH
2202extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2203static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2204{
2205 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2206}
1da177e4 2207
21b85b09
MK
2208/*
2209 * Parameter block passed down to zap_pte_range in exceptional cases.
2210 */
2211struct zap_details {
2212 struct folio *single_folio; /* Locked folio to be unmapped */
2213 bool even_cows; /* Zap COWed private pages too? */
2214 zap_flags_t zap_flags; /* Extra flags for zapping */
2215};
2216
2217/*
2218 * Whether to drop the pte markers, for example, the uffd-wp information for
2219 * file-backed memory. This should only be specified when we will completely
2220 * drop the page in the mm, either by truncation or unmapping of the vma. By
2221 * default, the flag is not set.
2222 */
2223#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
04ada095
MK
2224/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2225#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
21b85b09 2226
af7f588d
MD
2227#ifdef CONFIG_SCHED_MM_CID
2228void sched_mm_cid_before_execve(struct task_struct *t);
2229void sched_mm_cid_after_execve(struct task_struct *t);
2230void sched_mm_cid_fork(struct task_struct *t);
2231void sched_mm_cid_exit_signals(struct task_struct *t);
2232static inline int task_mm_cid(struct task_struct *t)
2233{
2234 return t->mm_cid;
2235}
2236#else
2237static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2238static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2239static inline void sched_mm_cid_fork(struct task_struct *t) { }
2240static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2241static inline int task_mm_cid(struct task_struct *t)
2242{
2243 /*
2244 * Use the processor id as a fall-back when the mm cid feature is
2245 * disabled. This provides functional per-cpu data structure accesses
2246 * in user-space, althrough it won't provide the memory usage benefits.
2247 */
2248 return raw_smp_processor_id();
2249}
2250#endif
2251
710ec38b 2252#ifdef CONFIG_MMU
7f43add4 2253extern bool can_do_mlock(void);
710ec38b
AB
2254#else
2255static inline bool can_do_mlock(void) { return false; }
2256#endif
d7c9e99a
AG
2257extern int user_shm_lock(size_t, struct ucounts *);
2258extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 2259
318e9342
VMO
2260struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2261 pte_t pte);
25b2995a
CH
2262struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2263 pte_t pte);
28093f9f
GS
2264struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2265 pmd_t pmd);
7e675137 2266
27d036e3
LR
2267void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2268 unsigned long size);
21b85b09
MK
2269void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2270 unsigned long size, struct zap_details *details);
e9adcfec
MK
2271static inline void zap_vma_pages(struct vm_area_struct *vma)
2272{
2273 zap_page_range_single(vma, vma->vm_start,
2274 vma->vm_end - vma->vm_start, NULL);
2275}
763ecb03
LH
2276void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2277 struct vm_area_struct *start_vma, unsigned long start,
68f48381 2278 unsigned long end, bool mm_wr_locked);
e6473092 2279
ac46d4f3
JG
2280struct mmu_notifier_range;
2281
42b77728 2282void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 2283 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
2284int
2285copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 2286int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 2287 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
2288int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2289 unsigned long *pfn);
d87fe660 2290int follow_phys(struct vm_area_struct *vma, unsigned long address,
2291 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
2292int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2293 void *buf, int len, int write);
1da177e4 2294
7caef267 2295extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 2296extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 2297void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 2298void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 2299int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 2300
7ee1dd3f 2301#ifdef CONFIG_MMU
2b740303 2302extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2303 unsigned long address, unsigned int flags,
2304 struct pt_regs *regs);
64019a2e 2305extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
2306 unsigned long address, unsigned int fault_flags,
2307 bool *unlocked);
977fbdcd
MW
2308void unmap_mapping_pages(struct address_space *mapping,
2309 pgoff_t start, pgoff_t nr, bool even_cows);
2310void unmap_mapping_range(struct address_space *mapping,
2311 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 2312#else
2b740303 2313static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2314 unsigned long address, unsigned int flags,
2315 struct pt_regs *regs)
7ee1dd3f
DH
2316{
2317 /* should never happen if there's no MMU */
2318 BUG();
2319 return VM_FAULT_SIGBUS;
2320}
64019a2e 2321static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 2322 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
2323{
2324 /* should never happen if there's no MMU */
2325 BUG();
2326 return -EFAULT;
2327}
977fbdcd
MW
2328static inline void unmap_mapping_pages(struct address_space *mapping,
2329 pgoff_t start, pgoff_t nr, bool even_cows) { }
2330static inline void unmap_mapping_range(struct address_space *mapping,
2331 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 2332#endif
f33ea7f4 2333
977fbdcd
MW
2334static inline void unmap_shared_mapping_range(struct address_space *mapping,
2335 loff_t const holebegin, loff_t const holelen)
2336{
2337 unmap_mapping_range(mapping, holebegin, holelen, 0);
2338}
2339
2340extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2341 void *buf, int len, unsigned int gup_flags);
5ddd36b9 2342extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 2343 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
2344extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2345 void *buf, int len, unsigned int gup_flags);
1da177e4 2346
64019a2e 2347long get_user_pages_remote(struct mm_struct *mm,
1e987790 2348 unsigned long start, unsigned long nr_pages,
9beae1ea 2349 unsigned int gup_flags, struct page **pages,
5b56d49f 2350 struct vm_area_struct **vmas, int *locked);
64019a2e 2351long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2352 unsigned long start, unsigned long nr_pages,
2353 unsigned int gup_flags, struct page **pages,
2354 struct vm_area_struct **vmas, int *locked);
c12d2da5 2355long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 2356 unsigned int gup_flags, struct page **pages,
cde70140 2357 struct vm_area_struct **vmas);
eddb1c22
JH
2358long pin_user_pages(unsigned long start, unsigned long nr_pages,
2359 unsigned int gup_flags, struct page **pages,
2360 struct vm_area_struct **vmas);
c12d2da5 2361long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 2362 struct page **pages, unsigned int gup_flags);
91429023
JH
2363long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2364 struct page **pages, unsigned int gup_flags);
9a4e9f3b 2365
73b0140b
IW
2366int get_user_pages_fast(unsigned long start, int nr_pages,
2367 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
2368int pin_user_pages_fast(unsigned long start, int nr_pages,
2369 unsigned int gup_flags, struct page **pages);
8025e5dd 2370
79eb597c
DJ
2371int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2372int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2373 struct task_struct *task, bool bypass_rlim);
2374
18022c5d 2375struct kvec;
f3e8fccd 2376struct page *get_dump_page(unsigned long addr);
1da177e4 2377
b5e84594
MWO
2378bool folio_mark_dirty(struct folio *folio);
2379bool set_page_dirty(struct page *page);
1da177e4 2380int set_page_dirty_lock(struct page *page);
b9ea2515 2381
a9090253 2382int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 2383
b6a2fea3
OW
2384extern unsigned long move_page_tables(struct vm_area_struct *vma,
2385 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
2386 unsigned long new_addr, unsigned long len,
2387 bool need_rmap_locks);
58705444
PX
2388
2389/*
2390 * Flags used by change_protection(). For now we make it a bitmap so
2391 * that we can pass in multiple flags just like parameters. However
2392 * for now all the callers are only use one of the flags at the same
2393 * time.
2394 */
64fe24a3
DH
2395/*
2396 * Whether we should manually check if we can map individual PTEs writable,
2397 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2398 * PTEs automatically in a writable mapping.
2399 */
2400#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
2401/* Whether this protection change is for NUMA hints */
2402#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2403/* Whether this change is for write protecting */
2404#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2405#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2406#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2407 MM_CP_UFFD_WP_RESOLVE)
58705444 2408
eb309ec8
DH
2409int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2410static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2411{
2412 /*
2413 * We want to check manually if we can change individual PTEs writable
2414 * if we can't do that automatically for all PTEs in a mapping. For
2415 * private mappings, that's always the case when we have write
2416 * permissions as we properly have to handle COW.
2417 */
2418 if (vma->vm_flags & VM_SHARED)
2419 return vma_wants_writenotify(vma, vma->vm_page_prot);
2420 return !!(vma->vm_flags & VM_WRITE);
2421
2422}
6a56ccbc
DH
2423bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2424 pte_t pte);
a79390f5 2425extern long change_protection(struct mmu_gather *tlb,
4a18419f 2426 struct vm_area_struct *vma, unsigned long start,
1ef488ed 2427 unsigned long end, unsigned long cp_flags);
2286a691
LH
2428extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2429 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2430 unsigned long start, unsigned long end, unsigned long newflags);
1da177e4 2431
465a454f
PZ
2432/*
2433 * doesn't attempt to fault and will return short.
2434 */
dadbb612
SJ
2435int get_user_pages_fast_only(unsigned long start, int nr_pages,
2436 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2437
2438static inline bool get_user_page_fast_only(unsigned long addr,
2439 unsigned int gup_flags, struct page **pagep)
2440{
2441 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2442}
d559db08
KH
2443/*
2444 * per-process(per-mm_struct) statistics.
2445 */
d559db08
KH
2446static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2447{
f1a79412 2448 return percpu_counter_read_positive(&mm->rss_stat[member]);
69c97823 2449}
d559db08 2450
f1a79412 2451void mm_trace_rss_stat(struct mm_struct *mm, int member);
b3d1411b 2452
d559db08
KH
2453static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2454{
f1a79412 2455 percpu_counter_add(&mm->rss_stat[member], value);
b3d1411b 2456
f1a79412 2457 mm_trace_rss_stat(mm, member);
d559db08
KH
2458}
2459
2460static inline void inc_mm_counter(struct mm_struct *mm, int member)
2461{
f1a79412 2462 percpu_counter_inc(&mm->rss_stat[member]);
b3d1411b 2463
f1a79412 2464 mm_trace_rss_stat(mm, member);
d559db08
KH
2465}
2466
2467static inline void dec_mm_counter(struct mm_struct *mm, int member)
2468{
f1a79412 2469 percpu_counter_dec(&mm->rss_stat[member]);
b3d1411b 2470
f1a79412 2471 mm_trace_rss_stat(mm, member);
d559db08
KH
2472}
2473
eca56ff9
JM
2474/* Optimized variant when page is already known not to be PageAnon */
2475static inline int mm_counter_file(struct page *page)
2476{
2477 if (PageSwapBacked(page))
2478 return MM_SHMEMPAGES;
2479 return MM_FILEPAGES;
2480}
2481
2482static inline int mm_counter(struct page *page)
2483{
2484 if (PageAnon(page))
2485 return MM_ANONPAGES;
2486 return mm_counter_file(page);
2487}
2488
d559db08
KH
2489static inline unsigned long get_mm_rss(struct mm_struct *mm)
2490{
2491 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2492 get_mm_counter(mm, MM_ANONPAGES) +
2493 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2494}
2495
2496static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2497{
2498 return max(mm->hiwater_rss, get_mm_rss(mm));
2499}
2500
2501static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2502{
2503 return max(mm->hiwater_vm, mm->total_vm);
2504}
2505
2506static inline void update_hiwater_rss(struct mm_struct *mm)
2507{
2508 unsigned long _rss = get_mm_rss(mm);
2509
2510 if ((mm)->hiwater_rss < _rss)
2511 (mm)->hiwater_rss = _rss;
2512}
2513
2514static inline void update_hiwater_vm(struct mm_struct *mm)
2515{
2516 if (mm->hiwater_vm < mm->total_vm)
2517 mm->hiwater_vm = mm->total_vm;
2518}
2519
695f0559
PC
2520static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2521{
2522 mm->hiwater_rss = get_mm_rss(mm);
2523}
2524
d559db08
KH
2525static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2526 struct mm_struct *mm)
2527{
2528 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2529
2530 if (*maxrss < hiwater_rss)
2531 *maxrss = hiwater_rss;
2532}
2533
53bddb4e 2534#if defined(SPLIT_RSS_COUNTING)
05af2e10 2535void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2536#else
05af2e10 2537static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2538{
2539}
2540#endif
465a454f 2541
78e7c5af
AK
2542#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2543static inline int pte_special(pte_t pte)
2544{
2545 return 0;
2546}
2547
2548static inline pte_t pte_mkspecial(pte_t pte)
2549{
2550 return pte;
2551}
2552#endif
2553
17596731 2554#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2555static inline int pte_devmap(pte_t pte)
2556{
2557 return 0;
2558}
2559#endif
2560
25ca1d6c
NK
2561extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2562 spinlock_t **ptl);
2563static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2564 spinlock_t **ptl)
2565{
2566 pte_t *ptep;
2567 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2568 return ptep;
2569}
c9cfcddf 2570
c2febafc
KS
2571#ifdef __PAGETABLE_P4D_FOLDED
2572static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2573 unsigned long address)
2574{
2575 return 0;
2576}
2577#else
2578int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2579#endif
2580
b4e98d9a 2581#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2582static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2583 unsigned long address)
2584{
2585 return 0;
2586}
b4e98d9a
KS
2587static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2588static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2589
5f22df00 2590#else
c2febafc 2591int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2592
b4e98d9a
KS
2593static inline void mm_inc_nr_puds(struct mm_struct *mm)
2594{
6d212db1
MS
2595 if (mm_pud_folded(mm))
2596 return;
af5b0f6a 2597 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2598}
2599
2600static inline void mm_dec_nr_puds(struct mm_struct *mm)
2601{
6d212db1
MS
2602 if (mm_pud_folded(mm))
2603 return;
af5b0f6a 2604 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2605}
5f22df00
NP
2606#endif
2607
2d2f5119 2608#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2609static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2610 unsigned long address)
2611{
2612 return 0;
2613}
dc6c9a35 2614
dc6c9a35
KS
2615static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2616static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2617
5f22df00 2618#else
1bb3630e 2619int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2620
dc6c9a35
KS
2621static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2622{
6d212db1
MS
2623 if (mm_pmd_folded(mm))
2624 return;
af5b0f6a 2625 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2626}
2627
2628static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2629{
6d212db1
MS
2630 if (mm_pmd_folded(mm))
2631 return;
af5b0f6a 2632 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2633}
5f22df00
NP
2634#endif
2635
c4812909 2636#ifdef CONFIG_MMU
af5b0f6a 2637static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2638{
af5b0f6a 2639 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2640}
2641
af5b0f6a 2642static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2643{
af5b0f6a 2644 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2645}
2646
2647static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2648{
af5b0f6a 2649 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2650}
2651
2652static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2653{
af5b0f6a 2654 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2655}
2656#else
c4812909 2657
af5b0f6a
KS
2658static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2659static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2660{
2661 return 0;
2662}
2663
2664static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2665static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2666#endif
2667
4cf58924
JFG
2668int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2669int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2670
f949286c
MR
2671#if defined(CONFIG_MMU)
2672
c2febafc
KS
2673static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2674 unsigned long address)
2675{
2676 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2677 NULL : p4d_offset(pgd, address);
2678}
2679
2680static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2681 unsigned long address)
1da177e4 2682{
c2febafc
KS
2683 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2684 NULL : pud_offset(p4d, address);
1da177e4 2685}
d8626138 2686
1da177e4
LT
2687static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2688{
1bb3630e
HD
2689 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2690 NULL: pmd_offset(pud, address);
1da177e4 2691}
f949286c 2692#endif /* CONFIG_MMU */
1bb3630e 2693
57c1ffce 2694#if USE_SPLIT_PTE_PTLOCKS
597d795a 2695#if ALLOC_SPLIT_PTLOCKS
b35f1819 2696void __init ptlock_cache_init(void);
539edb58
PZ
2697extern bool ptlock_alloc(struct page *page);
2698extern void ptlock_free(struct page *page);
2699
2700static inline spinlock_t *ptlock_ptr(struct page *page)
2701{
2702 return page->ptl;
2703}
597d795a 2704#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2705static inline void ptlock_cache_init(void)
2706{
2707}
2708
49076ec2
KS
2709static inline bool ptlock_alloc(struct page *page)
2710{
49076ec2
KS
2711 return true;
2712}
539edb58 2713
49076ec2
KS
2714static inline void ptlock_free(struct page *page)
2715{
49076ec2
KS
2716}
2717
2718static inline spinlock_t *ptlock_ptr(struct page *page)
2719{
539edb58 2720 return &page->ptl;
49076ec2 2721}
597d795a 2722#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2723
2724static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2725{
2726 return ptlock_ptr(pmd_page(*pmd));
2727}
2728
2729static inline bool ptlock_init(struct page *page)
2730{
2731 /*
2732 * prep_new_page() initialize page->private (and therefore page->ptl)
2733 * with 0. Make sure nobody took it in use in between.
2734 *
2735 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2736 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2737 */
309381fe 2738 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2739 if (!ptlock_alloc(page))
2740 return false;
2741 spin_lock_init(ptlock_ptr(page));
2742 return true;
2743}
2744
57c1ffce 2745#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2746/*
2747 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2748 */
49076ec2
KS
2749static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2750{
2751 return &mm->page_table_lock;
2752}
b35f1819 2753static inline void ptlock_cache_init(void) {}
49076ec2 2754static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2755static inline void ptlock_free(struct page *page) {}
57c1ffce 2756#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2757
b4ed71f5 2758static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2759{
706874e9
VD
2760 if (!ptlock_init(page))
2761 return false;
1d40a5ea 2762 __SetPageTable(page);
f0c0c115 2763 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2764 return true;
2f569afd
MS
2765}
2766
b4ed71f5 2767static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2768{
9e247bab 2769 ptlock_free(page);
1d40a5ea 2770 __ClearPageTable(page);
f0c0c115 2771 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2772}
2773
c74df32c
HD
2774#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2775({ \
4c21e2f2 2776 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2777 pte_t *__pte = pte_offset_map(pmd, address); \
2778 *(ptlp) = __ptl; \
2779 spin_lock(__ptl); \
2780 __pte; \
2781})
2782
2783#define pte_unmap_unlock(pte, ptl) do { \
2784 spin_unlock(ptl); \
2785 pte_unmap(pte); \
2786} while (0)
2787
4cf58924 2788#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2789
2790#define pte_alloc_map(mm, pmd, address) \
4cf58924 2791 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2792
c74df32c 2793#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2794 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2795 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2796
1bb3630e 2797#define pte_alloc_kernel(pmd, address) \
4cf58924 2798 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2799 NULL: pte_offset_kernel(pmd, address))
1da177e4 2800
e009bb30
KS
2801#if USE_SPLIT_PMD_PTLOCKS
2802
7e25de77 2803static inline struct page *pmd_pgtable_page(pmd_t *pmd)
634391ac
MS
2804{
2805 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2806 return virt_to_page((void *)((unsigned long) pmd & mask));
2807}
2808
e009bb30
KS
2809static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2810{
373dfda2 2811 return ptlock_ptr(pmd_pgtable_page(pmd));
e009bb30
KS
2812}
2813
b2b29d6d 2814static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2815{
e009bb30
KS
2816#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2817 page->pmd_huge_pte = NULL;
2818#endif
49076ec2 2819 return ptlock_init(page);
e009bb30
KS
2820}
2821
b2b29d6d 2822static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2823{
2824#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2825 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2826#endif
49076ec2 2827 ptlock_free(page);
e009bb30
KS
2828}
2829
373dfda2 2830#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
e009bb30
KS
2831
2832#else
2833
9a86cb7b
KS
2834static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2835{
2836 return &mm->page_table_lock;
2837}
2838
b2b29d6d
MW
2839static inline bool pmd_ptlock_init(struct page *page) { return true; }
2840static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2841
c389a250 2842#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2843
e009bb30
KS
2844#endif
2845
9a86cb7b
KS
2846static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2847{
2848 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2849 spin_lock(ptl);
2850 return ptl;
2851}
2852
b2b29d6d
MW
2853static inline bool pgtable_pmd_page_ctor(struct page *page)
2854{
2855 if (!pmd_ptlock_init(page))
2856 return false;
2857 __SetPageTable(page);
f0c0c115 2858 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2859 return true;
2860}
2861
2862static inline void pgtable_pmd_page_dtor(struct page *page)
2863{
2864 pmd_ptlock_free(page);
2865 __ClearPageTable(page);
f0c0c115 2866 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2867}
2868
a00cc7d9
MW
2869/*
2870 * No scalability reason to split PUD locks yet, but follow the same pattern
2871 * as the PMD locks to make it easier if we decide to. The VM should not be
2872 * considered ready to switch to split PUD locks yet; there may be places
2873 * which need to be converted from page_table_lock.
2874 */
2875static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2876{
2877 return &mm->page_table_lock;
2878}
2879
2880static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2881{
2882 spinlock_t *ptl = pud_lockptr(mm, pud);
2883
2884 spin_lock(ptl);
2885 return ptl;
2886}
62906027 2887
a00cc7d9 2888extern void __init pagecache_init(void);
49a7f04a
DH
2889extern void free_initmem(void);
2890
69afade7
JL
2891/*
2892 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2893 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2894 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2895 * Return pages freed into the buddy system.
2896 */
11199692 2897extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2898 int poison, const char *s);
c3d5f5f0 2899
c3d5f5f0 2900extern void adjust_managed_page_count(struct page *page, long count);
69afade7 2901
4b50bcc7 2902extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2903
69afade7 2904/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2905static inline void free_reserved_page(struct page *page)
69afade7
JL
2906{
2907 ClearPageReserved(page);
2908 init_page_count(page);
2909 __free_page(page);
69afade7
JL
2910 adjust_managed_page_count(page, 1);
2911}
a0cd7a7c 2912#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2913
2914static inline void mark_page_reserved(struct page *page)
2915{
2916 SetPageReserved(page);
2917 adjust_managed_page_count(page, -1);
2918}
2919
2920/*
2921 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2922 * The freed pages will be poisoned with pattern "poison" if it's within
2923 * range [0, UCHAR_MAX].
2924 * Return pages freed into the buddy system.
69afade7
JL
2925 */
2926static inline unsigned long free_initmem_default(int poison)
2927{
2928 extern char __init_begin[], __init_end[];
2929
11199692 2930 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2931 poison, "unused kernel image (initmem)");
69afade7
JL
2932}
2933
7ee3d4e8
JL
2934static inline unsigned long get_num_physpages(void)
2935{
2936 int nid;
2937 unsigned long phys_pages = 0;
2938
2939 for_each_online_node(nid)
2940 phys_pages += node_present_pages(nid);
2941
2942 return phys_pages;
2943}
2944
c713216d 2945/*
3f08a302 2946 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2947 * zones, allocate the backing mem_map and account for memory holes in an
2948 * architecture independent manner.
c713216d
MG
2949 *
2950 * An architecture is expected to register range of page frames backed by
0ee332c1 2951 * physical memory with memblock_add[_node]() before calling
9691a071 2952 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2953 * usage, an architecture is expected to do something like
2954 *
2955 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2956 * max_highmem_pfn};
2957 * for_each_valid_physical_page_range()
952eea9b 2958 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2959 * free_area_init(max_zone_pfns);
c713216d 2960 */
9691a071 2961void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2962unsigned long node_map_pfn_alignment(void);
32996250
YL
2963unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2964 unsigned long end_pfn);
c713216d
MG
2965extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2966 unsigned long end_pfn);
2967extern void get_pfn_range_for_nid(unsigned int nid,
2968 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 2969
a9ee6cf5 2970#ifndef CONFIG_NUMA
6f24fbd3 2971static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2972{
2973 return 0;
2974}
2975#else
2976/* please see mm/page_alloc.c */
2977extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2978#endif
2979
0e0b864e 2980extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2981extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2982 unsigned long, unsigned long, enum meminit_context,
2983 struct vmem_altmap *, int migratetype);
bc75d33f 2984extern void setup_per_zone_wmarks(void);
bd3400ea 2985extern void calculate_min_free_kbytes(void);
1b79acc9 2986extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2987extern void mem_init(void);
8feae131 2988extern void __init mmap_init(void);
974f4367
MH
2989
2990extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2991static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
2992{
2993 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
2994}
d02bd27b 2995extern long si_mem_available(void);
1da177e4
LT
2996extern void si_meminfo(struct sysinfo * val);
2997extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2998#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2999extern unsigned long arch_reserved_kernel_pages(void);
3000#endif
1da177e4 3001
a8e99259
MH
3002extern __printf(3, 4)
3003void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 3004
e7c8d5c9 3005extern void setup_per_cpu_pageset(void);
e7c8d5c9 3006
75f7ad8e
PS
3007/* page_alloc.c */
3008extern int min_free_kbytes;
1c30844d 3009extern int watermark_boost_factor;
795ae7a0 3010extern int watermark_scale_factor;
51930df5 3011extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 3012
8feae131 3013/* nommu.c */
33e5d769 3014extern atomic_long_t mmap_pages_allocated;
7e660872 3015extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 3016
6b2dbba8 3017/* interval_tree.c */
6b2dbba8 3018void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 3019 struct rb_root_cached *root);
9826a516
ML
3020void vma_interval_tree_insert_after(struct vm_area_struct *node,
3021 struct vm_area_struct *prev,
f808c13f 3022 struct rb_root_cached *root);
6b2dbba8 3023void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
3024 struct rb_root_cached *root);
3025struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
3026 unsigned long start, unsigned long last);
3027struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3028 unsigned long start, unsigned long last);
3029
3030#define vma_interval_tree_foreach(vma, root, start, last) \
3031 for (vma = vma_interval_tree_iter_first(root, start, last); \
3032 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 3033
bf181b9f 3034void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 3035 struct rb_root_cached *root);
bf181b9f 3036void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
3037 struct rb_root_cached *root);
3038struct anon_vma_chain *
3039anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3040 unsigned long start, unsigned long last);
bf181b9f
ML
3041struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3042 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
3043#ifdef CONFIG_DEBUG_VM_RB
3044void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3045#endif
bf181b9f
ML
3046
3047#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3048 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3049 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3050
1da177e4 3051/* mmap.c */
34b4e4aa 3052extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
7c9813e8
LH
3053extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3054 unsigned long start, unsigned long end, pgoff_t pgoff,
3055 struct vm_area_struct *next);
cf51e86d
LH
3056extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3057 unsigned long start, unsigned long end, pgoff_t pgoff);
9760ebff 3058extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
f2ebfe43
LH
3059 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3060 unsigned long end, unsigned long vm_flags, struct anon_vma *,
3061 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3062 struct anon_vma_name *);
1da177e4 3063extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
9760ebff
LH
3064extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3065 unsigned long addr, int new_below);
3066extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3067 unsigned long addr, int new_below);
1da177e4 3068extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 3069extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 3070extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
3071 unsigned long addr, unsigned long len, pgoff_t pgoff,
3072 bool *need_rmap_locks);
1da177e4 3073extern void exit_mmap(struct mm_struct *);
925d1c40 3074
9c599024
CG
3075static inline int check_data_rlimit(unsigned long rlim,
3076 unsigned long new,
3077 unsigned long start,
3078 unsigned long end_data,
3079 unsigned long start_data)
3080{
3081 if (rlim < RLIM_INFINITY) {
3082 if (((new - start) + (end_data - start_data)) > rlim)
3083 return -ENOSPC;
3084 }
3085
3086 return 0;
3087}
3088
7906d00c
AA
3089extern int mm_take_all_locks(struct mm_struct *mm);
3090extern void mm_drop_all_locks(struct mm_struct *mm);
3091
fe69d560 3092extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 3093extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 3094extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 3095extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 3096
84638335
KK
3097extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3098extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3099
2eefd878
DS
3100extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3101 const struct vm_special_mapping *sm);
3935ed6a
SS
3102extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3103 unsigned long addr, unsigned long len,
a62c34bd
AL
3104 unsigned long flags,
3105 const struct vm_special_mapping *spec);
3106/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
3107extern int install_special_mapping(struct mm_struct *mm,
3108 unsigned long addr, unsigned long len,
3109 unsigned long flags, struct page **pages);
1da177e4 3110
649775be 3111unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 3112unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 3113
1da177e4
LT
3114extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3115
0165ab44 3116extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
3117 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3118 struct list_head *uf);
1fcfd8db 3119extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 3120 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 3121 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
183654ce 3122extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
11f9a21a
LH
3123 unsigned long start, size_t len, struct list_head *uf,
3124 bool downgrade);
897ab3e0
MR
3125extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3126 struct list_head *uf);
0726b01e 3127extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 3128
bebeb3d6 3129#ifdef CONFIG_MMU
27b26701
LH
3130extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3131 unsigned long start, unsigned long end,
3132 struct list_head *uf, bool downgrade);
bebeb3d6
ML
3133extern int __mm_populate(unsigned long addr, unsigned long len,
3134 int ignore_errors);
3135static inline void mm_populate(unsigned long addr, unsigned long len)
3136{
3137 /* Ignore errors */
3138 (void) __mm_populate(addr, len, 1);
3139}
3140#else
3141static inline void mm_populate(unsigned long addr, unsigned long len) {}
3142#endif
3143
e4eb1ff6 3144/* These take the mm semaphore themselves */
5d22fc25 3145extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 3146extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 3147extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 3148extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
3149 unsigned long, unsigned long,
3150 unsigned long, unsigned long);
1da177e4 3151
db4fbfb9
ML
3152struct vm_unmapped_area_info {
3153#define VM_UNMAPPED_AREA_TOPDOWN 1
3154 unsigned long flags;
3155 unsigned long length;
3156 unsigned long low_limit;
3157 unsigned long high_limit;
3158 unsigned long align_mask;
3159 unsigned long align_offset;
3160};
3161
baceaf1c 3162extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 3163
85821aab 3164/* truncate.c */
1da177e4 3165extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
3166extern void truncate_inode_pages_range(struct address_space *,
3167 loff_t lstart, loff_t lend);
91b0abe3 3168extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
3169
3170/* generic vm_area_ops exported for stackable file systems */
2bcd6454 3171extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 3172extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 3173 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 3174extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 3175
1be7107f 3176extern unsigned long stack_guard_gap;
d05f3169 3177/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 3178extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 3179
11192337 3180/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
3181extern int expand_downwards(struct vm_area_struct *vma,
3182 unsigned long address);
8ca3eb08 3183#if VM_GROWSUP
46dea3d0 3184extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 3185#else
fee7e49d 3186 #define expand_upwards(vma, address) (0)
9ab88515 3187#endif
1da177e4
LT
3188
3189/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3190extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3191extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3192 struct vm_area_struct **pprev);
3193
abdba2dd
LH
3194/*
3195 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3196 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 3197 */
ce6d42f2 3198struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 3199 unsigned long start_addr, unsigned long end_addr);
1da177e4 3200
ce6d42f2
LH
3201/**
3202 * vma_lookup() - Find a VMA at a specific address
3203 * @mm: The process address space.
3204 * @addr: The user address.
3205 *
3206 * Return: The vm_area_struct at the given address, %NULL otherwise.
3207 */
3208static inline
3209struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3210{
d7c62295 3211 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
3212}
3213
1be7107f
HD
3214static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3215{
3216 unsigned long vm_start = vma->vm_start;
3217
3218 if (vma->vm_flags & VM_GROWSDOWN) {
3219 vm_start -= stack_guard_gap;
3220 if (vm_start > vma->vm_start)
3221 vm_start = 0;
3222 }
3223 return vm_start;
3224}
3225
3226static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3227{
3228 unsigned long vm_end = vma->vm_end;
3229
3230 if (vma->vm_flags & VM_GROWSUP) {
3231 vm_end += stack_guard_gap;
3232 if (vm_end < vma->vm_end)
3233 vm_end = -PAGE_SIZE;
3234 }
3235 return vm_end;
3236}
3237
1da177e4
LT
3238static inline unsigned long vma_pages(struct vm_area_struct *vma)
3239{
3240 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3241}
3242
640708a2
PE
3243/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3244static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3245 unsigned long vm_start, unsigned long vm_end)
3246{
dc8635b2 3247 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
3248
3249 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3250 vma = NULL;
3251
3252 return vma;
3253}
3254
017b1660
MK
3255static inline bool range_in_vma(struct vm_area_struct *vma,
3256 unsigned long start, unsigned long end)
3257{
3258 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3259}
3260
bad849b3 3261#ifdef CONFIG_MMU
804af2cf 3262pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 3263void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
3264#else
3265static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3266{
3267 return __pgprot(0);
3268}
64e45507
PF
3269static inline void vma_set_page_prot(struct vm_area_struct *vma)
3270{
3271 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3272}
bad849b3
DH
3273#endif
3274
295992fb
CK
3275void vma_set_file(struct vm_area_struct *vma, struct file *file);
3276
5877231f 3277#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 3278unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
3279 unsigned long start, unsigned long end);
3280#endif
3281
deceb6cd 3282struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
3283int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3284 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
3285int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3286 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 3287int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
3288int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3289 struct page **pages, unsigned long *num);
a667d745
SJ
3290int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3291 unsigned long num);
3292int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3293 unsigned long num);
ae2b01f3 3294vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 3295 unsigned long pfn);
f5e6d1d5
MW
3296vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3297 unsigned long pfn, pgprot_t pgprot);
5d747637 3298vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 3299 pfn_t pfn);
ab77dab4
SJ
3300vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3301 unsigned long addr, pfn_t pfn);
b4cbb197
LT
3302int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3303
1c8f4220
SJ
3304static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3305 unsigned long addr, struct page *page)
3306{
3307 int err = vm_insert_page(vma, addr, page);
3308
3309 if (err == -ENOMEM)
3310 return VM_FAULT_OOM;
3311 if (err < 0 && err != -EBUSY)
3312 return VM_FAULT_SIGBUS;
3313
3314 return VM_FAULT_NOPAGE;
3315}
3316
f8f6ae5d
JG
3317#ifndef io_remap_pfn_range
3318static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3319 unsigned long addr, unsigned long pfn,
3320 unsigned long size, pgprot_t prot)
3321{
3322 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3323}
3324#endif
3325
d97baf94
SJ
3326static inline vm_fault_t vmf_error(int err)
3327{
3328 if (err == -ENOMEM)
3329 return VM_FAULT_OOM;
3330 return VM_FAULT_SIGBUS;
3331}
3332
df06b37f
KB
3333struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3334 unsigned int foll_flags);
240aadee 3335
2b740303 3336static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3337{
3338 if (vm_fault & VM_FAULT_OOM)
3339 return -ENOMEM;
3340 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3341 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3342 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3343 return -EFAULT;
3344 return 0;
3345}
3346
474098ed
DH
3347/*
3348 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3349 * a (NUMA hinting) fault is required.
3350 */
3351static inline bool gup_can_follow_protnone(unsigned int flags)
3352{
3353 /*
3354 * FOLL_FORCE has to be able to make progress even if the VMA is
3355 * inaccessible. Further, FOLL_FORCE access usually does not represent
3356 * application behaviour and we should avoid triggering NUMA hinting
3357 * faults.
3358 */
3359 return flags & FOLL_FORCE;
3360}
3361
8b1e0f81 3362typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3363extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3364 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3365extern int apply_to_existing_page_range(struct mm_struct *mm,
3366 unsigned long address, unsigned long size,
3367 pte_fn_t fn, void *data);
aee16b3c 3368
8823b1db 3369#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3370extern void __kernel_poison_pages(struct page *page, int numpages);
3371extern void __kernel_unpoison_pages(struct page *page, int numpages);
3372extern bool _page_poisoning_enabled_early;
3373DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3374static inline bool page_poisoning_enabled(void)
3375{
3376 return _page_poisoning_enabled_early;
3377}
3378/*
3379 * For use in fast paths after init_mem_debugging() has run, or when a
3380 * false negative result is not harmful when called too early.
3381 */
3382static inline bool page_poisoning_enabled_static(void)
3383{
3384 return static_branch_unlikely(&_page_poisoning_enabled);
3385}
3386static inline void kernel_poison_pages(struct page *page, int numpages)
3387{
3388 if (page_poisoning_enabled_static())
3389 __kernel_poison_pages(page, numpages);
3390}
3391static inline void kernel_unpoison_pages(struct page *page, int numpages)
3392{
3393 if (page_poisoning_enabled_static())
3394 __kernel_unpoison_pages(page, numpages);
3395}
8823b1db
LA
3396#else
3397static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3398static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3399static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3400static inline void kernel_poison_pages(struct page *page, int numpages) { }
3401static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3402#endif
3403
51cba1eb 3404DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3405static inline bool want_init_on_alloc(gfp_t flags)
3406{
51cba1eb
KC
3407 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3408 &init_on_alloc))
6471384a
AP
3409 return true;
3410 return flags & __GFP_ZERO;
3411}
3412
51cba1eb 3413DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3414static inline bool want_init_on_free(void)
3415{
51cba1eb
KC
3416 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3417 &init_on_free);
6471384a
AP
3418}
3419
8e57f8ac
VB
3420extern bool _debug_pagealloc_enabled_early;
3421DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3422
3423static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3424{
3425 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3426 _debug_pagealloc_enabled_early;
3427}
3428
3429/*
3430 * For use in fast paths after init_debug_pagealloc() has run, or when a
3431 * false negative result is not harmful when called too early.
3432 */
3433static inline bool debug_pagealloc_enabled_static(void)
031bc574 3434{
96a2b03f
VB
3435 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3436 return false;
3437
3438 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3439}
3440
5d6ad668 3441#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3442/*
5d6ad668
MR
3443 * To support DEBUG_PAGEALLOC architecture must ensure that
3444 * __kernel_map_pages() never fails
c87cbc1f 3445 */
d6332692
RE
3446extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3447
77bc7fd6
MR
3448static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3449{
3450 if (debug_pagealloc_enabled_static())
3451 __kernel_map_pages(page, numpages, 1);
3452}
3453
3454static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3455{
3456 if (debug_pagealloc_enabled_static())
3457 __kernel_map_pages(page, numpages, 0);
3458}
5d6ad668 3459#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3460static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3461static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3462#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3463
a6c19dfe 3464#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3465extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3466extern int in_gate_area_no_mm(unsigned long addr);
3467extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3468#else
a6c19dfe
AL
3469static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3470{
3471 return NULL;
3472}
3473static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3474static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3475{
3476 return 0;
3477}
1da177e4
LT
3478#endif /* __HAVE_ARCH_GATE_AREA */
3479
44a70ade
MH
3480extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3481
146732ce
JT
3482#ifdef CONFIG_SYSCTL
3483extern int sysctl_drop_caches;
32927393
CH
3484int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3485 loff_t *);
146732ce
JT
3486#endif
3487
cb731d6c 3488void drop_slab(void);
9d0243bc 3489
7a9166e3
LY
3490#ifndef CONFIG_MMU
3491#define randomize_va_space 0
3492#else
a62eaf15 3493extern int randomize_va_space;
7a9166e3 3494#endif
a62eaf15 3495
045e72ac 3496const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3497#ifdef CONFIG_MMU
03252919 3498void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3499#else
3500static inline void print_vma_addr(char *prefix, unsigned long rip)
3501{
3502}
3503#endif
e6e5494c 3504
35fd1eb1 3505void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3506struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3507 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3508 struct dev_pagemap *pgmap);
7b09f5af
FC
3509void pmd_init(void *addr);
3510void pud_init(void *addr);
29c71111 3511pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3512p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3513pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3514pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3515pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3516 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3517void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3518struct vmem_altmap;
56993b4e
AK
3519void *vmemmap_alloc_block_buf(unsigned long size, int node,
3520 struct vmem_altmap *altmap);
8f6aac41 3521void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2045a3b8
FC
3522void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3523 unsigned long addr, unsigned long next);
3524int vmemmap_check_pmd(pmd_t *pmd, int node,
3525 unsigned long addr, unsigned long next);
0aad818b 3526int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3527 int node, struct vmem_altmap *altmap);
2045a3b8
FC
3528int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3529 int node, struct vmem_altmap *altmap);
7b73d978
CH
3530int vmemmap_populate(unsigned long start, unsigned long end, int node,
3531 struct vmem_altmap *altmap);
c2b91e2e 3532void vmemmap_populate_print_last(void);
0197518c 3533#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3534void vmemmap_free(unsigned long start, unsigned long end,
3535 struct vmem_altmap *altmap);
0197518c 3536#endif
46723bfa 3537void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3538 unsigned long nr_pages);
6a46079c 3539
82ba011b
AK
3540enum mf_flags {
3541 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3542 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3543 MF_MUST_KILL = 1 << 2,
cf870c70 3544 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3545 MF_UNPOISON = 1 << 4,
67f22ba7 3546 MF_SW_SIMULATED = 1 << 5,
38f6d293 3547 MF_NO_RETRY = 1 << 6,
82ba011b 3548};
c36e2024
SR
3549int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3550 unsigned long count, int mf_flags);
83b57531 3551extern int memory_failure(unsigned long pfn, int flags);
06202231 3552extern void memory_failure_queue_kick(int cpu);
847ce401 3553extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3554extern int sysctl_memory_failure_early_kill;
3555extern int sysctl_memory_failure_recovery;
d0505e9f 3556extern void shake_page(struct page *p);
5844a486 3557extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3558extern int soft_offline_page(unsigned long pfn, int flags);
405ce051 3559#ifdef CONFIG_MEMORY_FAILURE
d302c239 3560extern void memory_failure_queue(unsigned long pfn, int flags);
e591ef7d
NH
3561extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3562 bool *migratable_cleared);
5033091d
NH
3563void num_poisoned_pages_inc(unsigned long pfn);
3564void num_poisoned_pages_sub(unsigned long pfn, long i);
405ce051 3565#else
d302c239
TL
3566static inline void memory_failure_queue(unsigned long pfn, int flags)
3567{
3568}
3569
e591ef7d
NH
3570static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3571 bool *migratable_cleared)
405ce051
NH
3572{
3573 return 0;
3574}
d027122d 3575
a46c9304 3576static inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
3577{
3578}
5033091d
NH
3579
3580static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3581{
3582}
3583#endif
3584
3585#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3586extern void memblk_nr_poison_inc(unsigned long pfn);
3587extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3588#else
3589static inline void memblk_nr_poison_inc(unsigned long pfn)
3590{
3591}
3592
3593static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3594{
3595}
405ce051 3596#endif
6a46079c 3597
03b122da
TL
3598#ifndef arch_memory_failure
3599static inline int arch_memory_failure(unsigned long pfn, int flags)
3600{
3601 return -ENXIO;
3602}
3603#endif
3604
3605#ifndef arch_is_platform_page
3606static inline bool arch_is_platform_page(u64 paddr)
3607{
3608 return false;
3609}
3610#endif
cc637b17
XX
3611
3612/*
3613 * Error handlers for various types of pages.
3614 */
cc3e2af4 3615enum mf_result {
cc637b17
XX
3616 MF_IGNORED, /* Error: cannot be handled */
3617 MF_FAILED, /* Error: handling failed */
3618 MF_DELAYED, /* Will be handled later */
3619 MF_RECOVERED, /* Successfully recovered */
3620};
3621
3622enum mf_action_page_type {
3623 MF_MSG_KERNEL,
3624 MF_MSG_KERNEL_HIGH_ORDER,
3625 MF_MSG_SLAB,
3626 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3627 MF_MSG_HUGE,
3628 MF_MSG_FREE_HUGE,
3629 MF_MSG_UNMAP_FAILED,
3630 MF_MSG_DIRTY_SWAPCACHE,
3631 MF_MSG_CLEAN_SWAPCACHE,
3632 MF_MSG_DIRTY_MLOCKED_LRU,
3633 MF_MSG_CLEAN_MLOCKED_LRU,
3634 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3635 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3636 MF_MSG_DIRTY_LRU,
3637 MF_MSG_CLEAN_LRU,
3638 MF_MSG_TRUNCATED_LRU,
3639 MF_MSG_BUDDY,
6100e34b 3640 MF_MSG_DAX,
5d1fd5dc 3641 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3642 MF_MSG_UNKNOWN,
3643};
3644
44b8f8bf
JY
3645/*
3646 * Sysfs entries for memory failure handling statistics.
3647 */
3648extern const struct attribute_group memory_failure_attr_group;
3649
47ad8475
AA
3650#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3651extern void clear_huge_page(struct page *page,
c79b57e4 3652 unsigned long addr_hint,
47ad8475
AA
3653 unsigned int pages_per_huge_page);
3654extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3655 unsigned long addr_hint,
3656 struct vm_area_struct *vma,
47ad8475 3657 unsigned int pages_per_huge_page);
fa4d75c1
MK
3658extern long copy_huge_page_from_user(struct page *dst_page,
3659 const void __user *usr_src,
810a56b9
MK
3660 unsigned int pages_per_huge_page,
3661 bool allow_pagefault);
2484ca9b
THV
3662
3663/**
3664 * vma_is_special_huge - Are transhuge page-table entries considered special?
3665 * @vma: Pointer to the struct vm_area_struct to consider
3666 *
3667 * Whether transhuge page-table entries are considered "special" following
3668 * the definition in vm_normal_page().
3669 *
3670 * Return: true if transhuge page-table entries should be considered special,
3671 * false otherwise.
3672 */
3673static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3674{
3675 return vma_is_dax(vma) || (vma->vm_file &&
3676 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3677}
3678
47ad8475
AA
3679#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3680
c0a32fc5
SG
3681#ifdef CONFIG_DEBUG_PAGEALLOC
3682extern unsigned int _debug_guardpage_minorder;
96a2b03f 3683DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3684
3685static inline unsigned int debug_guardpage_minorder(void)
3686{
3687 return _debug_guardpage_minorder;
3688}
3689
e30825f1
JK
3690static inline bool debug_guardpage_enabled(void)
3691{
96a2b03f 3692 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3693}
3694
c0a32fc5
SG
3695static inline bool page_is_guard(struct page *page)
3696{
e30825f1
JK
3697 if (!debug_guardpage_enabled())
3698 return false;
3699
3972f6bb 3700 return PageGuard(page);
c0a32fc5
SG
3701}
3702#else
3703static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3704static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3705static inline bool page_is_guard(struct page *page) { return false; }
3706#endif /* CONFIG_DEBUG_PAGEALLOC */
3707
f9872caf
CS
3708#if MAX_NUMNODES > 1
3709void __init setup_nr_node_ids(void);
3710#else
3711static inline void setup_nr_node_ids(void) {}
3712#endif
3713
010c164a
SL
3714extern int memcmp_pages(struct page *page1, struct page *page2);
3715
3716static inline int pages_identical(struct page *page1, struct page *page2)
3717{
3718 return !memcmp_pages(page1, page2);
3719}
3720
c5acad84
TH
3721#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3722unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3723 pgoff_t first_index, pgoff_t nr,
3724 pgoff_t bitmap_pgoff,
3725 unsigned long *bitmap,
3726 pgoff_t *start,
3727 pgoff_t *end);
3728
3729unsigned long wp_shared_mapping_range(struct address_space *mapping,
3730 pgoff_t first_index, pgoff_t nr);
3731#endif
3732
2374c09b
CH
3733extern int sysctl_nr_trim_pages;
3734
5bb1bb35 3735#ifdef CONFIG_PRINTK
8e7f37f2 3736void mem_dump_obj(void *object);
5bb1bb35
PM
3737#else
3738static inline void mem_dump_obj(void *object) {}
3739#endif
8e7f37f2 3740
22247efd
PX
3741/**
3742 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3743 * @seals: the seals to check
3744 * @vma: the vma to operate on
3745 *
3746 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3747 * the vma flags. Return 0 if check pass, or <0 for errors.
3748 */
3749static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3750{
3751 if (seals & F_SEAL_FUTURE_WRITE) {
3752 /*
3753 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3754 * "future write" seal active.
3755 */
3756 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3757 return -EPERM;
3758
3759 /*
3760 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3761 * MAP_SHARED and read-only, take care to not allow mprotect to
3762 * revert protections on such mappings. Do this only for shared
3763 * mappings. For private mappings, don't need to mask
3764 * VM_MAYWRITE as we still want them to be COW-writable.
3765 */
3766 if (vma->vm_flags & VM_SHARED)
1c71222e 3767 vm_flags_clear(vma, VM_MAYWRITE);
22247efd
PX
3768 }
3769
3770 return 0;
3771}
3772
9a10064f
CC
3773#ifdef CONFIG_ANON_VMA_NAME
3774int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
3775 unsigned long len_in,
3776 struct anon_vma_name *anon_name);
9a10064f
CC
3777#else
3778static inline int
3779madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 3780 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
3781 return 0;
3782}
3783#endif
3784
1da177e4 3785#endif /* _LINUX_MM_H */