mm/vmalloc: replace BUG_ON with a simple if statement
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
1da177e4
LT
32
33struct mempolicy;
34struct anon_vma;
bf181b9f 35struct anon_vma_chain;
e8edc6e0 36struct user_struct;
bce617ed 37struct pt_regs;
1da177e4 38
5ef64cc8
LT
39extern int sysctl_page_lock_unfairness;
40
597b7305
MH
41void init_mm_internals(void);
42
a9ee6cf5 43#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 44extern unsigned long max_mapnr;
fccc9987
JL
45
46static inline void set_max_mapnr(unsigned long limit)
47{
48 max_mapnr = limit;
49}
50#else
51static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
52#endif
53
ca79b0c2
AK
54extern atomic_long_t _totalram_pages;
55static inline unsigned long totalram_pages(void)
56{
57 return (unsigned long)atomic_long_read(&_totalram_pages);
58}
59
60static inline void totalram_pages_inc(void)
61{
62 atomic_long_inc(&_totalram_pages);
63}
64
65static inline void totalram_pages_dec(void)
66{
67 atomic_long_dec(&_totalram_pages);
68}
69
70static inline void totalram_pages_add(long count)
71{
72 atomic_long_add(count, &_totalram_pages);
73}
74
1da177e4 75extern void * high_memory;
1da177e4 76extern int page_cluster;
ea0ffd0c 77extern const int page_cluster_max;
1da177e4
LT
78
79#ifdef CONFIG_SYSCTL
80extern int sysctl_legacy_va_layout;
81#else
82#define sysctl_legacy_va_layout 0
83#endif
84
d07e2259
DC
85#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
86extern const int mmap_rnd_bits_min;
87extern const int mmap_rnd_bits_max;
88extern int mmap_rnd_bits __read_mostly;
89#endif
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
91extern const int mmap_rnd_compat_bits_min;
92extern const int mmap_rnd_compat_bits_max;
93extern int mmap_rnd_compat_bits __read_mostly;
94#endif
95
1da177e4 96#include <asm/page.h>
1da177e4 97#include <asm/processor.h>
1da177e4 98
d9344522
AK
99/*
100 * Architectures that support memory tagging (assigning tags to memory regions,
101 * embedding these tags into addresses that point to these memory regions, and
102 * checking that the memory and the pointer tags match on memory accesses)
103 * redefine this macro to strip tags from pointers.
f0953a1b 104 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
105 */
106#ifndef untagged_addr
107#define untagged_addr(addr) (addr)
108#endif
109
79442ed1
TC
110#ifndef __pa_symbol
111#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
112#endif
113
1dff8083
AB
114#ifndef page_to_virt
115#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
116#endif
117
568c5fe5
LA
118#ifndef lm_alias
119#define lm_alias(x) __va(__pa_symbol(x))
120#endif
121
593befa6
DD
122/*
123 * To prevent common memory management code establishing
124 * a zero page mapping on a read fault.
125 * This macro should be defined within <asm/pgtable.h>.
126 * s390 does this to prevent multiplexing of hardware bits
127 * related to the physical page in case of virtualization.
128 */
129#ifndef mm_forbids_zeropage
130#define mm_forbids_zeropage(X) (0)
131#endif
132
a4a3ede2
PT
133/*
134 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
135 * If an architecture decides to implement their own version of
136 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
137 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 138 */
5470dea4
AD
139#if BITS_PER_LONG == 64
140/* This function must be updated when the size of struct page grows above 80
141 * or reduces below 56. The idea that compiler optimizes out switch()
142 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 143 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
144 * this can result in several of the writes here being dropped.
145 */
146#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
147static inline void __mm_zero_struct_page(struct page *page)
148{
149 unsigned long *_pp = (void *)page;
150
151 /* Check that struct page is either 56, 64, 72, or 80 bytes */
152 BUILD_BUG_ON(sizeof(struct page) & 7);
153 BUILD_BUG_ON(sizeof(struct page) < 56);
154 BUILD_BUG_ON(sizeof(struct page) > 80);
155
156 switch (sizeof(struct page)) {
157 case 80:
df561f66
GS
158 _pp[9] = 0;
159 fallthrough;
5470dea4 160 case 72:
df561f66
GS
161 _pp[8] = 0;
162 fallthrough;
5470dea4 163 case 64:
df561f66
GS
164 _pp[7] = 0;
165 fallthrough;
5470dea4
AD
166 case 56:
167 _pp[6] = 0;
168 _pp[5] = 0;
169 _pp[4] = 0;
170 _pp[3] = 0;
171 _pp[2] = 0;
172 _pp[1] = 0;
173 _pp[0] = 0;
174 }
175}
176#else
a4a3ede2
PT
177#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
178#endif
179
ea606cf5
AR
180/*
181 * Default maximum number of active map areas, this limits the number of vmas
182 * per mm struct. Users can overwrite this number by sysctl but there is a
183 * problem.
184 *
185 * When a program's coredump is generated as ELF format, a section is created
186 * per a vma. In ELF, the number of sections is represented in unsigned short.
187 * This means the number of sections should be smaller than 65535 at coredump.
188 * Because the kernel adds some informative sections to a image of program at
189 * generating coredump, we need some margin. The number of extra sections is
190 * 1-3 now and depends on arch. We use "5" as safe margin, here.
191 *
192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193 * not a hard limit any more. Although some userspace tools can be surprised by
194 * that.
195 */
196#define MAPCOUNT_ELF_CORE_MARGIN (5)
197#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198
199extern int sysctl_max_map_count;
200
c9b1d098 201extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 202extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 203
49f0ce5f
JM
204extern int sysctl_overcommit_memory;
205extern int sysctl_overcommit_ratio;
206extern unsigned long sysctl_overcommit_kbytes;
207
32927393
CH
208int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
209 loff_t *);
210int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
211 loff_t *);
56f3547b
FT
212int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
213 loff_t *);
49f0ce5f 214
1cfcee72 215#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 216#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 217#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
218#else
219#define nth_page(page,n) ((page) + (n))
659508f9 220#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 221#endif
1da177e4 222
27ac792c
AR
223/* to align the pointer to the (next) page boundary */
224#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
225
335e52c2
DG
226/* to align the pointer to the (prev) page boundary */
227#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
228
0fa73b86 229/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 230#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 231
f86196ea 232#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
233static inline struct folio *lru_to_folio(struct list_head *head)
234{
235 return list_entry((head)->prev, struct folio, lru);
236}
f86196ea 237
5748fbc5
KW
238void setup_initial_init_mm(void *start_code, void *end_code,
239 void *end_data, void *brk);
240
1da177e4
LT
241/*
242 * Linux kernel virtual memory manager primitives.
243 * The idea being to have a "virtual" mm in the same way
244 * we have a virtual fs - giving a cleaner interface to the
245 * mm details, and allowing different kinds of memory mappings
246 * (from shared memory to executable loading to arbitrary
247 * mmap() functions).
248 */
249
490fc053 250struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
251struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
252void vm_area_free(struct vm_area_struct *);
c43692e8 253
1da177e4 254#ifndef CONFIG_MMU
8feae131
DH
255extern struct rb_root nommu_region_tree;
256extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
257
258extern unsigned int kobjsize(const void *objp);
259#endif
260
261/*
605d9288 262 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 263 * When changing, update also include/trace/events/mmflags.h
1da177e4 264 */
cc2383ec
KK
265#define VM_NONE 0x00000000
266
1da177e4
LT
267#define VM_READ 0x00000001 /* currently active flags */
268#define VM_WRITE 0x00000002
269#define VM_EXEC 0x00000004
270#define VM_SHARED 0x00000008
271
7e2cff42 272/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
273#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
274#define VM_MAYWRITE 0x00000020
275#define VM_MAYEXEC 0x00000040
276#define VM_MAYSHARE 0x00000080
277
278#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
b6b7a8fa 279#ifdef CONFIG_MMU
16ba6f81 280#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
b6b7a8fa
DH
281#else /* CONFIG_MMU */
282#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
283#define VM_UFFD_MISSING 0
284#endif /* CONFIG_MMU */
6aab341e 285#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 286#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 287
1da177e4
LT
288#define VM_LOCKED 0x00002000
289#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
290
291 /* Used by sys_madvise() */
292#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
293#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
294
295#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
296#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 297#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 298#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 299#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 300#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 301#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 302#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 303#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 304#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 305
d9104d1c
CG
306#ifdef CONFIG_MEM_SOFT_DIRTY
307# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
308#else
309# define VM_SOFTDIRTY 0
310#endif
311
b379d790 312#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
313#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
314#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 315#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 316
63c17fb8
DH
317#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
318#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
320#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
321#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 322#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
323#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
324#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
325#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
326#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 327#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
328#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
329
5212213a 330#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
331# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
332# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 333# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
334# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
335# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
336#ifdef CONFIG_PPC
337# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
338#else
339# define VM_PKEY_BIT4 0
8f62c883 340#endif
5212213a
RP
341#endif /* CONFIG_ARCH_HAS_PKEYS */
342
343#if defined(CONFIG_X86)
344# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
345#elif defined(CONFIG_PPC)
346# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
347#elif defined(CONFIG_PARISC)
348# define VM_GROWSUP VM_ARCH_1
349#elif defined(CONFIG_IA64)
350# define VM_GROWSUP VM_ARCH_1
74a04967
KA
351#elif defined(CONFIG_SPARC64)
352# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
353# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
354#elif defined(CONFIG_ARM64)
355# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
356# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
357#elif !defined(CONFIG_MMU)
358# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
359#endif
360
9f341931
CM
361#if defined(CONFIG_ARM64_MTE)
362# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
363# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
364#else
365# define VM_MTE VM_NONE
366# define VM_MTE_ALLOWED VM_NONE
367#endif
368
cc2383ec
KK
369#ifndef VM_GROWSUP
370# define VM_GROWSUP VM_NONE
371#endif
372
7677f7fd
AR
373#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
374# define VM_UFFD_MINOR_BIT 37
375# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
376#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
377# define VM_UFFD_MINOR VM_NONE
378#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
379
a8bef8ff
MG
380/* Bits set in the VMA until the stack is in its final location */
381#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
382
c62da0c3
AK
383#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
384
385/* Common data flag combinations */
386#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
387 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
388#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
389 VM_MAYWRITE | VM_MAYEXEC)
390#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
391 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
392
393#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
394#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
395#endif
396
1da177e4
LT
397#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
398#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
399#endif
400
401#ifdef CONFIG_STACK_GROWSUP
30bdbb78 402#define VM_STACK VM_GROWSUP
1da177e4 403#else
30bdbb78 404#define VM_STACK VM_GROWSDOWN
1da177e4
LT
405#endif
406
30bdbb78
KK
407#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
408
6cb4d9a2
AK
409/* VMA basic access permission flags */
410#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
411
412
b291f000 413/*
78f11a25 414 * Special vmas that are non-mergable, non-mlock()able.
b291f000 415 */
9050d7eb 416#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 417
b4443772
AK
418/* This mask prevents VMA from being scanned with khugepaged */
419#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
420
a0715cc2
AT
421/* This mask defines which mm->def_flags a process can inherit its parent */
422#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
423
e430a95a
SB
424/* This mask represents all the VMA flag bits used by mlock */
425#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
de60f5f1 426
2c2d57b5
KA
427/* Arch-specific flags to clear when updating VM flags on protection change */
428#ifndef VM_ARCH_CLEAR
429# define VM_ARCH_CLEAR VM_NONE
430#endif
431#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
432
1da177e4
LT
433/*
434 * mapping from the currently active vm_flags protection bits (the
435 * low four bits) to a page protection mask..
436 */
1da177e4 437
dde16072
PX
438/*
439 * The default fault flags that should be used by most of the
440 * arch-specific page fault handlers.
441 */
442#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
443 FAULT_FLAG_KILLABLE | \
444 FAULT_FLAG_INTERRUPTIBLE)
dde16072 445
4064b982
PX
446/**
447 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 448 * @flags: Fault flags.
4064b982
PX
449 *
450 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 451 * the mmap_lock for too long a time when waiting for another condition
4064b982 452 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
453 * mmap_lock in the first round to avoid potential starvation of other
454 * processes that would also want the mmap_lock.
4064b982
PX
455 *
456 * Return: true if the page fault allows retry and this is the first
457 * attempt of the fault handling; false otherwise.
458 */
da2f5eb3 459static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
460{
461 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
462 (!(flags & FAULT_FLAG_TRIED));
463}
464
282a8e03
RZ
465#define FAULT_FLAG_TRACE \
466 { FAULT_FLAG_WRITE, "WRITE" }, \
467 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
468 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
469 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
470 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
471 { FAULT_FLAG_TRIED, "TRIED" }, \
472 { FAULT_FLAG_USER, "USER" }, \
473 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
474 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
475 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 476
54cb8821 477/*
11192337 478 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
479 * ->fault function. The vma's ->fault is responsible for returning a bitmask
480 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 481 *
c20cd45e
MH
482 * MM layer fills up gfp_mask for page allocations but fault handler might
483 * alter it if its implementation requires a different allocation context.
484 *
9b4bdd2f 485 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 486 */
d0217ac0 487struct vm_fault {
5857c920 488 const struct {
742d3372
WD
489 struct vm_area_struct *vma; /* Target VMA */
490 gfp_t gfp_mask; /* gfp mask to be used for allocations */
491 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
492 unsigned long address; /* Faulting virtual address - masked */
493 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 494 };
da2f5eb3 495 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 496 * XXX: should really be 'const' */
82b0f8c3 497 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 498 * the 'address' */
a2d58167
DJ
499 pud_t *pud; /* Pointer to pud entry matching
500 * the 'address'
501 */
5db4f15c
YS
502 union {
503 pte_t orig_pte; /* Value of PTE at the time of fault */
504 pmd_t orig_pmd; /* Value of PMD at the time of fault,
505 * used by PMD fault only.
506 */
507 };
d0217ac0 508
3917048d 509 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 510 struct page *page; /* ->fault handlers should return a
83c54070 511 * page here, unless VM_FAULT_NOPAGE
d0217ac0 512 * is set (which is also implied by
83c54070 513 * VM_FAULT_ERROR).
d0217ac0 514 */
82b0f8c3 515 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
516 pte_t *pte; /* Pointer to pte entry matching
517 * the 'address'. NULL if the page
518 * table hasn't been allocated.
519 */
520 spinlock_t *ptl; /* Page table lock.
521 * Protects pte page table if 'pte'
522 * is not NULL, otherwise pmd.
523 */
7267ec00 524 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
525 * vm_ops->map_pages() sets up a page
526 * table from atomic context.
7267ec00
KS
527 * do_fault_around() pre-allocates
528 * page table to avoid allocation from
529 * atomic context.
530 */
54cb8821 531};
1da177e4 532
c791ace1
DJ
533/* page entry size for vm->huge_fault() */
534enum page_entry_size {
535 PE_SIZE_PTE = 0,
536 PE_SIZE_PMD,
537 PE_SIZE_PUD,
538};
539
1da177e4
LT
540/*
541 * These are the virtual MM functions - opening of an area, closing and
542 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 543 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
544 */
545struct vm_operations_struct {
546 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
547 /**
548 * @close: Called when the VMA is being removed from the MM.
549 * Context: User context. May sleep. Caller holds mmap_lock.
550 */
1da177e4 551 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
552 /* Called any time before splitting to check if it's allowed */
553 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 554 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
555 /*
556 * Called by mprotect() to make driver-specific permission
557 * checks before mprotect() is finalised. The VMA must not
3e0ee843 558 * be modified. Returns 0 if mprotect() can proceed.
95bb7c42
SC
559 */
560 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
561 unsigned long end, unsigned long newflags);
1c8f4220
SJ
562 vm_fault_t (*fault)(struct vm_fault *vmf);
563 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
564 enum page_entry_size pe_size);
f9ce0be7 565 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 566 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 567 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
568
569 /* notification that a previously read-only page is about to become
570 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 571 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 572
dd906184 573 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 574 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 575
28b2ee20 576 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
577 * for use by special VMAs. See also generic_access_phys() for a generic
578 * implementation useful for any iomem mapping.
28b2ee20
RR
579 */
580 int (*access)(struct vm_area_struct *vma, unsigned long addr,
581 void *buf, int len, int write);
78d683e8
AL
582
583 /* Called by the /proc/PID/maps code to ask the vma whether it
584 * has a special name. Returning non-NULL will also cause this
585 * vma to be dumped unconditionally. */
586 const char *(*name)(struct vm_area_struct *vma);
587
1da177e4 588#ifdef CONFIG_NUMA
a6020ed7
LS
589 /*
590 * set_policy() op must add a reference to any non-NULL @new mempolicy
591 * to hold the policy upon return. Caller should pass NULL @new to
592 * remove a policy and fall back to surrounding context--i.e. do not
593 * install a MPOL_DEFAULT policy, nor the task or system default
594 * mempolicy.
595 */
1da177e4 596 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
597
598 /*
599 * get_policy() op must add reference [mpol_get()] to any policy at
600 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
601 * in mm/mempolicy.c will do this automatically.
602 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 603 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
604 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
605 * must return NULL--i.e., do not "fallback" to task or system default
606 * policy.
607 */
1da177e4
LT
608 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
609 unsigned long addr);
610#endif
667a0a06
DV
611 /*
612 * Called by vm_normal_page() for special PTEs to find the
613 * page for @addr. This is useful if the default behavior
614 * (using pte_page()) would not find the correct page.
615 */
616 struct page *(*find_special_page)(struct vm_area_struct *vma,
617 unsigned long addr);
1da177e4
LT
618};
619
027232da
KS
620static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
621{
bfd40eaf
KS
622 static const struct vm_operations_struct dummy_vm_ops = {};
623
a670468f 624 memset(vma, 0, sizeof(*vma));
027232da 625 vma->vm_mm = mm;
bfd40eaf 626 vma->vm_ops = &dummy_vm_ops;
027232da
KS
627 INIT_LIST_HEAD(&vma->anon_vma_chain);
628}
629
bc292ab0
SB
630/* Use when VMA is not part of the VMA tree and needs no locking */
631static inline void vm_flags_init(struct vm_area_struct *vma,
632 vm_flags_t flags)
633{
634 ACCESS_PRIVATE(vma, __vm_flags) = flags;
635}
636
637/* Use when VMA is part of the VMA tree and modifications need coordination */
638static inline void vm_flags_reset(struct vm_area_struct *vma,
639 vm_flags_t flags)
640{
641 mmap_assert_write_locked(vma->vm_mm);
642 vm_flags_init(vma, flags);
643}
644
645static inline void vm_flags_set(struct vm_area_struct *vma,
646 vm_flags_t flags)
647{
648 mmap_assert_write_locked(vma->vm_mm);
649 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
650}
651
652static inline void vm_flags_clear(struct vm_area_struct *vma,
653 vm_flags_t flags)
654{
655 mmap_assert_write_locked(vma->vm_mm);
656 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
657}
658
68f48381
SB
659/*
660 * Use only if VMA is not part of the VMA tree or has no other users and
661 * therefore needs no locking.
662 */
663static inline void __vm_flags_mod(struct vm_area_struct *vma,
664 vm_flags_t set, vm_flags_t clear)
665{
666 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
667}
668
bc292ab0
SB
669/*
670 * Use only when the order of set/clear operations is unimportant, otherwise
671 * use vm_flags_{set|clear} explicitly.
672 */
673static inline void vm_flags_mod(struct vm_area_struct *vma,
674 vm_flags_t set, vm_flags_t clear)
675{
676 mmap_assert_write_locked(vma->vm_mm);
68f48381 677 __vm_flags_mod(vma, set, clear);
bc292ab0
SB
678}
679
bfd40eaf
KS
680static inline void vma_set_anonymous(struct vm_area_struct *vma)
681{
682 vma->vm_ops = NULL;
683}
684
43675e6f
YS
685static inline bool vma_is_anonymous(struct vm_area_struct *vma)
686{
687 return !vma->vm_ops;
688}
689
222100ee
AK
690static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
691{
692 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
693
694 if (!maybe_stack)
695 return false;
696
697 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
698 VM_STACK_INCOMPLETE_SETUP)
699 return true;
700
701 return false;
702}
703
7969f226
AK
704static inline bool vma_is_foreign(struct vm_area_struct *vma)
705{
706 if (!current->mm)
707 return true;
708
709 if (current->mm != vma->vm_mm)
710 return true;
711
712 return false;
713}
3122e80e
AK
714
715static inline bool vma_is_accessible(struct vm_area_struct *vma)
716{
6cb4d9a2 717 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
718}
719
f39af059
MWO
720static inline
721struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
722{
b62b633e 723 return mas_find(&vmi->mas, max - 1);
f39af059
MWO
724}
725
726static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
727{
728 /*
b62b633e 729 * Uses mas_find() to get the first VMA when the iterator starts.
f39af059
MWO
730 * Calling mas_next() could skip the first entry.
731 */
b62b633e 732 return mas_find(&vmi->mas, ULONG_MAX);
f39af059
MWO
733}
734
735static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
736{
737 return mas_prev(&vmi->mas, 0);
738}
739
740static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
741{
742 return vmi->mas.index;
743}
744
b62b633e
LH
745static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
746{
747 return vmi->mas.last + 1;
748}
749static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
750 unsigned long count)
751{
752 return mas_expected_entries(&vmi->mas, count);
753}
754
755/* Free any unused preallocations */
756static inline void vma_iter_free(struct vma_iterator *vmi)
757{
758 mas_destroy(&vmi->mas);
759}
760
761static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
762 struct vm_area_struct *vma)
763{
764 vmi->mas.index = vma->vm_start;
765 vmi->mas.last = vma->vm_end - 1;
766 mas_store(&vmi->mas, vma);
767 if (unlikely(mas_is_err(&vmi->mas)))
768 return -ENOMEM;
769
770 return 0;
771}
772
773static inline void vma_iter_invalidate(struct vma_iterator *vmi)
774{
775 mas_pause(&vmi->mas);
776}
777
778static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
779{
780 mas_set(&vmi->mas, addr);
781}
782
f39af059
MWO
783#define for_each_vma(__vmi, __vma) \
784 while (((__vma) = vma_next(&(__vmi))) != NULL)
785
786/* The MM code likes to work with exclusive end addresses */
787#define for_each_vma_range(__vmi, __vma, __end) \
b62b633e 788 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
f39af059 789
43675e6f
YS
790#ifdef CONFIG_SHMEM
791/*
792 * The vma_is_shmem is not inline because it is used only by slow
793 * paths in userfault.
794 */
795bool vma_is_shmem(struct vm_area_struct *vma);
d09e8ca6 796bool vma_is_anon_shmem(struct vm_area_struct *vma);
43675e6f
YS
797#else
798static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
d09e8ca6 799static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
43675e6f
YS
800#endif
801
802int vma_is_stack_for_current(struct vm_area_struct *vma);
803
8b11ec1b
LT
804/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
805#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
806
1da177e4
LT
807struct mmu_gather;
808struct inode;
809
5eb5cea1
MWO
810/*
811 * compound_order() can be called without holding a reference, which means
812 * that niceties like page_folio() don't work. These callers should be
813 * prepared to handle wild return values. For example, PG_head may be
814 * set before _folio_order is initialised, or this may be a tail page.
815 * See compaction.c for some good examples.
816 */
5bf34d7c
MWO
817static inline unsigned int compound_order(struct page *page)
818{
5eb5cea1
MWO
819 struct folio *folio = (struct folio *)page;
820
821 if (!test_bit(PG_head, &folio->flags))
5bf34d7c 822 return 0;
5eb5cea1 823 return folio->_folio_order;
5bf34d7c
MWO
824}
825
826/**
827 * folio_order - The allocation order of a folio.
828 * @folio: The folio.
829 *
830 * A folio is composed of 2^order pages. See get_order() for the definition
831 * of order.
832 *
833 * Return: The order of the folio.
834 */
835static inline unsigned int folio_order(struct folio *folio)
836{
c3a15bff
MWO
837 if (!folio_test_large(folio))
838 return 0;
839 return folio->_folio_order;
5bf34d7c
MWO
840}
841
71e3aac0 842#include <linux/huge_mm.h>
1da177e4
LT
843
844/*
845 * Methods to modify the page usage count.
846 *
847 * What counts for a page usage:
848 * - cache mapping (page->mapping)
849 * - private data (page->private)
850 * - page mapped in a task's page tables, each mapping
851 * is counted separately
852 *
853 * Also, many kernel routines increase the page count before a critical
854 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
855 */
856
857/*
da6052f7 858 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 859 */
7c8ee9a8
NP
860static inline int put_page_testzero(struct page *page)
861{
fe896d18
JK
862 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
863 return page_ref_dec_and_test(page);
7c8ee9a8 864}
1da177e4 865
b620f633
MWO
866static inline int folio_put_testzero(struct folio *folio)
867{
868 return put_page_testzero(&folio->page);
869}
870
1da177e4 871/*
7c8ee9a8
NP
872 * Try to grab a ref unless the page has a refcount of zero, return false if
873 * that is the case.
8e0861fa
AK
874 * This can be called when MMU is off so it must not access
875 * any of the virtual mappings.
1da177e4 876 */
c2530328 877static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 878{
fe896d18 879 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 880}
1da177e4 881
53df8fdc 882extern int page_is_ram(unsigned long pfn);
124fe20d
DW
883
884enum {
885 REGION_INTERSECTS,
886 REGION_DISJOINT,
887 REGION_MIXED,
888};
889
1c29f25b
TK
890int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
891 unsigned long desc);
53df8fdc 892
48667e7a 893/* Support for virtually mapped pages */
b3bdda02
CL
894struct page *vmalloc_to_page(const void *addr);
895unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 896
0738c4bb
PM
897/*
898 * Determine if an address is within the vmalloc range
899 *
900 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
901 * is no special casing required.
902 */
9bd3bb67
AK
903
904#ifndef is_ioremap_addr
905#define is_ioremap_addr(x) is_vmalloc_addr(x)
906#endif
907
81ac3ad9 908#ifdef CONFIG_MMU
186525bd 909extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
910extern int is_vmalloc_or_module_addr(const void *x);
911#else
186525bd
IM
912static inline bool is_vmalloc_addr(const void *x)
913{
914 return false;
915}
934831d0 916static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
917{
918 return 0;
919}
920#endif
9e2779fa 921
74e8ee47
MWO
922/*
923 * How many times the entire folio is mapped as a single unit (eg by a
924 * PMD or PUD entry). This is probably not what you want, except for
cb67f428
HD
925 * debugging purposes - it does not include PTE-mapped sub-pages; look
926 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
74e8ee47
MWO
927 */
928static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 929{
74e8ee47 930 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1aa4d03b 931 return atomic_read(&folio->_entire_mapcount) + 1;
cb67f428
HD
932}
933
70b50f94
AA
934/*
935 * The atomic page->_mapcount, starts from -1: so that transitions
936 * both from it and to it can be tracked, using atomic_inc_and_test
937 * and atomic_add_negative(-1).
938 */
22b751c3 939static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
940{
941 atomic_set(&(page)->_mapcount, -1);
942}
943
c97eeb8f
MWO
944/**
945 * page_mapcount() - Number of times this precise page is mapped.
946 * @page: The page.
947 *
948 * The number of times this page is mapped. If this page is part of
949 * a large folio, it includes the number of times this page is mapped
950 * as part of that folio.
6988f31d 951 *
c97eeb8f 952 * The result is undefined for pages which cannot be mapped into userspace.
6988f31d 953 * For example SLAB or special types of pages. See function page_has_type().
c97eeb8f 954 * They use this field in struct page differently.
6988f31d 955 */
70b50f94
AA
956static inline int page_mapcount(struct page *page)
957{
cb67f428 958 int mapcount = atomic_read(&page->_mapcount) + 1;
b20ce5e0 959
c97eeb8f
MWO
960 if (unlikely(PageCompound(page)))
961 mapcount += folio_entire_mapcount(page_folio(page));
962
963 return mapcount;
b20ce5e0
KS
964}
965
b14224fb 966int folio_total_mapcount(struct folio *folio);
4ba1119c 967
cb67f428
HD
968/**
969 * folio_mapcount() - Calculate the number of mappings of this folio.
970 * @folio: The folio.
971 *
972 * A large folio tracks both how many times the entire folio is mapped,
973 * and how many times each individual page in the folio is mapped.
974 * This function calculates the total number of times the folio is
975 * mapped.
976 *
977 * Return: The number of times this folio is mapped.
978 */
979static inline int folio_mapcount(struct folio *folio)
4ba1119c 980{
cb67f428
HD
981 if (likely(!folio_test_large(folio)))
982 return atomic_read(&folio->_mapcount) + 1;
b14224fb 983 return folio_total_mapcount(folio);
4ba1119c
MWO
984}
985
b20ce5e0
KS
986static inline int total_mapcount(struct page *page)
987{
be5ef2d9
HD
988 if (likely(!PageCompound(page)))
989 return atomic_read(&page->_mapcount) + 1;
b14224fb 990 return folio_total_mapcount(page_folio(page));
be5ef2d9
HD
991}
992
993static inline bool folio_large_is_mapped(struct folio *folio)
994{
4b51634c 995 /*
1aa4d03b 996 * Reading _entire_mapcount below could be omitted if hugetlb
eec20426 997 * participated in incrementing nr_pages_mapped when compound mapped.
4b51634c 998 */
eec20426 999 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1aa4d03b 1000 atomic_read(&folio->_entire_mapcount) >= 0;
cb67f428
HD
1001}
1002
1003/**
1004 * folio_mapped - Is this folio mapped into userspace?
1005 * @folio: The folio.
1006 *
1007 * Return: True if any page in this folio is referenced by user page tables.
1008 */
1009static inline bool folio_mapped(struct folio *folio)
1010{
be5ef2d9
HD
1011 if (likely(!folio_test_large(folio)))
1012 return atomic_read(&folio->_mapcount) >= 0;
1013 return folio_large_is_mapped(folio);
1014}
1015
1016/*
1017 * Return true if this page is mapped into pagetables.
1018 * For compound page it returns true if any sub-page of compound page is mapped,
1019 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1020 */
1021static inline bool page_mapped(struct page *page)
1022{
1023 if (likely(!PageCompound(page)))
1024 return atomic_read(&page->_mapcount) >= 0;
1025 return folio_large_is_mapped(page_folio(page));
70b50f94
AA
1026}
1027
b49af68f
CL
1028static inline struct page *virt_to_head_page(const void *x)
1029{
1030 struct page *page = virt_to_page(x);
ccaafd7f 1031
1d798ca3 1032 return compound_head(page);
b49af68f
CL
1033}
1034
7d4203c1
VB
1035static inline struct folio *virt_to_folio(const void *x)
1036{
1037 struct page *page = virt_to_page(x);
1038
1039 return page_folio(page);
1040}
1041
8d29c703 1042void __folio_put(struct folio *folio);
ddc58f27 1043
1d7ea732 1044void put_pages_list(struct list_head *pages);
1da177e4 1045
8dfcc9ba 1046void split_page(struct page *page, unsigned int order);
715cbfd6 1047void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 1048
a1554c00
ML
1049unsigned long nr_free_buffer_pages(void);
1050
33f2ef89
AW
1051/*
1052 * Compound pages have a destructor function. Provide a
1053 * prototype for that function and accessor functions.
f1e61557 1054 * These are _only_ valid on the head of a compound page.
33f2ef89 1055 */
f1e61557
KS
1056typedef void compound_page_dtor(struct page *);
1057
1058/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1059enum compound_dtor_id {
1060 NULL_COMPOUND_DTOR,
1061 COMPOUND_PAGE_DTOR,
1062#ifdef CONFIG_HUGETLB_PAGE
1063 HUGETLB_PAGE_DTOR,
9a982250
KS
1064#endif
1065#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1066 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
1067#endif
1068 NR_COMPOUND_DTORS,
1069};
ae70eddd 1070extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
1071
1072static inline void set_compound_page_dtor(struct page *page,
f1e61557 1073 enum compound_dtor_id compound_dtor)
33f2ef89 1074{
bad6da64
MWO
1075 struct folio *folio = (struct folio *)page;
1076
f1e61557 1077 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
bad6da64
MWO
1078 VM_BUG_ON_PAGE(!PageHead(page), page);
1079 folio->_folio_dtor = compound_dtor;
33f2ef89
AW
1080}
1081
9fd33058
SK
1082static inline void folio_set_compound_dtor(struct folio *folio,
1083 enum compound_dtor_id compound_dtor)
1084{
1085 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1086 folio->_folio_dtor = compound_dtor;
1087}
1088
5375336c 1089void destroy_large_folio(struct folio *folio);
33f2ef89 1090
f1e61557 1091static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 1092{
bad6da64
MWO
1093 struct folio *folio = (struct folio *)page;
1094
1095 folio->_folio_order = order;
5232c63f 1096#ifdef CONFIG_64BIT
bad6da64 1097 folio->_folio_nr_pages = 1U << order;
5232c63f 1098#endif
d85f3385
CL
1099}
1100
a50b854e
MWO
1101/* Returns the number of bytes in this potentially compound page. */
1102static inline unsigned long page_size(struct page *page)
1103{
1104 return PAGE_SIZE << compound_order(page);
1105}
1106
94ad9338
MWO
1107/* Returns the number of bits needed for the number of bytes in a page */
1108static inline unsigned int page_shift(struct page *page)
1109{
1110 return PAGE_SHIFT + compound_order(page);
1111}
1112
18788cfa
MWO
1113/**
1114 * thp_order - Order of a transparent huge page.
1115 * @page: Head page of a transparent huge page.
1116 */
1117static inline unsigned int thp_order(struct page *page)
1118{
1119 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1120 return compound_order(page);
1121}
1122
18788cfa
MWO
1123/**
1124 * thp_size - Size of a transparent huge page.
1125 * @page: Head page of a transparent huge page.
1126 *
1127 * Return: Number of bytes in this page.
1128 */
1129static inline unsigned long thp_size(struct page *page)
1130{
1131 return PAGE_SIZE << thp_order(page);
1132}
1133
9a982250
KS
1134void free_compound_page(struct page *page);
1135
3dece370 1136#ifdef CONFIG_MMU
14fd403f
AA
1137/*
1138 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1139 * servicing faults for write access. In the normal case, do always want
1140 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1141 * that do not have writing enabled, when used by access_process_vm.
1142 */
1143static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1144{
1145 if (likely(vma->vm_flags & VM_WRITE))
1146 pte = pte_mkwrite(pte);
1147 return pte;
1148}
8c6e50b0 1149
f9ce0be7 1150vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1151void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1152
2b740303
SJ
1153vm_fault_t finish_fault(struct vm_fault *vmf);
1154vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1155#endif
14fd403f 1156
1da177e4
LT
1157/*
1158 * Multiple processes may "see" the same page. E.g. for untouched
1159 * mappings of /dev/null, all processes see the same page full of
1160 * zeroes, and text pages of executables and shared libraries have
1161 * only one copy in memory, at most, normally.
1162 *
1163 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1164 * page_count() == 0 means the page is free. page->lru is then used for
1165 * freelist management in the buddy allocator.
da6052f7 1166 * page_count() > 0 means the page has been allocated.
1da177e4 1167 *
da6052f7
NP
1168 * Pages are allocated by the slab allocator in order to provide memory
1169 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1170 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1171 * unless a particular usage is carefully commented. (the responsibility of
1172 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1173 *
da6052f7
NP
1174 * A page may be used by anyone else who does a __get_free_page().
1175 * In this case, page_count still tracks the references, and should only
1176 * be used through the normal accessor functions. The top bits of page->flags
1177 * and page->virtual store page management information, but all other fields
1178 * are unused and could be used privately, carefully. The management of this
1179 * page is the responsibility of the one who allocated it, and those who have
1180 * subsequently been given references to it.
1181 *
1182 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1183 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1184 * The following discussion applies only to them.
1185 *
da6052f7
NP
1186 * A pagecache page contains an opaque `private' member, which belongs to the
1187 * page's address_space. Usually, this is the address of a circular list of
1188 * the page's disk buffers. PG_private must be set to tell the VM to call
1189 * into the filesystem to release these pages.
1da177e4 1190 *
da6052f7
NP
1191 * A page may belong to an inode's memory mapping. In this case, page->mapping
1192 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1193 * in units of PAGE_SIZE.
1da177e4 1194 *
da6052f7
NP
1195 * If pagecache pages are not associated with an inode, they are said to be
1196 * anonymous pages. These may become associated with the swapcache, and in that
1197 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1198 *
da6052f7
NP
1199 * In either case (swapcache or inode backed), the pagecache itself holds one
1200 * reference to the page. Setting PG_private should also increment the
1201 * refcount. The each user mapping also has a reference to the page.
1da177e4 1202 *
da6052f7 1203 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1204 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1205 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1206 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1207 *
da6052f7 1208 * All pagecache pages may be subject to I/O:
1da177e4
LT
1209 * - inode pages may need to be read from disk,
1210 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1211 * to be written back to the inode on disk,
1212 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1213 * modified may need to be swapped out to swap space and (later) to be read
1214 * back into memory.
1da177e4
LT
1215 */
1216
27674ef6 1217#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1218DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1219
f4f451a1
MS
1220bool __put_devmap_managed_page_refs(struct page *page, int refs);
1221static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1222{
1223 if (!static_branch_unlikely(&devmap_managed_key))
1224 return false;
1225 if (!is_zone_device_page(page))
1226 return false;
f4f451a1 1227 return __put_devmap_managed_page_refs(page, refs);
e7638488 1228}
27674ef6 1229#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1230static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1231{
1232 return false;
1233}
27674ef6 1234#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1235
f4f451a1
MS
1236static inline bool put_devmap_managed_page(struct page *page)
1237{
1238 return put_devmap_managed_page_refs(page, 1);
1239}
1240
f958d7b5 1241/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1242#define folio_ref_zero_or_close_to_overflow(folio) \
1243 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1244
1245/**
1246 * folio_get - Increment the reference count on a folio.
1247 * @folio: The folio.
1248 *
1249 * Context: May be called in any context, as long as you know that
1250 * you have a refcount on the folio. If you do not already have one,
1251 * folio_try_get() may be the right interface for you to use.
1252 */
1253static inline void folio_get(struct folio *folio)
1254{
1255 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1256 folio_ref_inc(folio);
1257}
f958d7b5 1258
3565fce3
DW
1259static inline void get_page(struct page *page)
1260{
86d234cb 1261 folio_get(page_folio(page));
3565fce3
DW
1262}
1263
0f089235 1264int __must_check try_grab_page(struct page *page, unsigned int flags);
cd1adf1b
LT
1265
1266static inline __must_check bool try_get_page(struct page *page)
1267{
1268 page = compound_head(page);
1269 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1270 return false;
1271 page_ref_inc(page);
1272 return true;
1273}
3565fce3 1274
b620f633
MWO
1275/**
1276 * folio_put - Decrement the reference count on a folio.
1277 * @folio: The folio.
1278 *
1279 * If the folio's reference count reaches zero, the memory will be
1280 * released back to the page allocator and may be used by another
1281 * allocation immediately. Do not access the memory or the struct folio
1282 * after calling folio_put() unless you can be sure that it wasn't the
1283 * last reference.
1284 *
1285 * Context: May be called in process or interrupt context, but not in NMI
1286 * context. May be called while holding a spinlock.
1287 */
1288static inline void folio_put(struct folio *folio)
1289{
1290 if (folio_put_testzero(folio))
8d29c703 1291 __folio_put(folio);
b620f633
MWO
1292}
1293
3fe7fa58
MWO
1294/**
1295 * folio_put_refs - Reduce the reference count on a folio.
1296 * @folio: The folio.
1297 * @refs: The amount to subtract from the folio's reference count.
1298 *
1299 * If the folio's reference count reaches zero, the memory will be
1300 * released back to the page allocator and may be used by another
1301 * allocation immediately. Do not access the memory or the struct folio
1302 * after calling folio_put_refs() unless you can be sure that these weren't
1303 * the last references.
1304 *
1305 * Context: May be called in process or interrupt context, but not in NMI
1306 * context. May be called while holding a spinlock.
1307 */
1308static inline void folio_put_refs(struct folio *folio, int refs)
1309{
1310 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1311 __folio_put(folio);
3fe7fa58
MWO
1312}
1313
0411d6ee
SP
1314/*
1315 * union release_pages_arg - an array of pages or folios
449c7967 1316 *
0411d6ee 1317 * release_pages() releases a simple array of multiple pages, and
449c7967
LT
1318 * accepts various different forms of said page array: either
1319 * a regular old boring array of pages, an array of folios, or
1320 * an array of encoded page pointers.
1321 *
1322 * The transparent union syntax for this kind of "any of these
1323 * argument types" is all kinds of ugly, so look away.
1324 */
1325typedef union {
1326 struct page **pages;
1327 struct folio **folios;
1328 struct encoded_page **encoded_pages;
1329} release_pages_arg __attribute__ ((__transparent_union__));
1330
1331void release_pages(release_pages_arg, int nr);
e3c4cebf
MWO
1332
1333/**
1334 * folios_put - Decrement the reference count on an array of folios.
1335 * @folios: The folios.
1336 * @nr: How many folios there are.
1337 *
1338 * Like folio_put(), but for an array of folios. This is more efficient
1339 * than writing the loop yourself as it will optimise the locks which
1340 * need to be taken if the folios are freed.
1341 *
1342 * Context: May be called in process or interrupt context, but not in NMI
1343 * context. May be called while holding a spinlock.
1344 */
1345static inline void folios_put(struct folio **folios, unsigned int nr)
1346{
449c7967 1347 release_pages(folios, nr);
3fe7fa58
MWO
1348}
1349
3565fce3
DW
1350static inline void put_page(struct page *page)
1351{
b620f633 1352 struct folio *folio = page_folio(page);
3565fce3 1353
7b2d55d2 1354 /*
89574945
CH
1355 * For some devmap managed pages we need to catch refcount transition
1356 * from 2 to 1:
7b2d55d2 1357 */
89574945 1358 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1359 return;
b620f633 1360 folio_put(folio);
3565fce3
DW
1361}
1362
3faa52c0
JH
1363/*
1364 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1365 * the page's refcount so that two separate items are tracked: the original page
1366 * reference count, and also a new count of how many pin_user_pages() calls were
1367 * made against the page. ("gup-pinned" is another term for the latter).
1368 *
1369 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1370 * distinct from normal pages. As such, the unpin_user_page() call (and its
1371 * variants) must be used in order to release gup-pinned pages.
1372 *
1373 * Choice of value:
1374 *
1375 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1376 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1377 * simpler, due to the fact that adding an even power of two to the page
1378 * refcount has the effect of using only the upper N bits, for the code that
1379 * counts up using the bias value. This means that the lower bits are left for
1380 * the exclusive use of the original code that increments and decrements by one
1381 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1382 *
3faa52c0
JH
1383 * Of course, once the lower bits overflow into the upper bits (and this is
1384 * OK, because subtraction recovers the original values), then visual inspection
1385 * no longer suffices to directly view the separate counts. However, for normal
1386 * applications that don't have huge page reference counts, this won't be an
1387 * issue.
fc1d8e7c 1388 *
40fcc7fc
MWO
1389 * Locking: the lockless algorithm described in folio_try_get_rcu()
1390 * provides safe operation for get_user_pages(), page_mkclean() and
1391 * other calls that race to set up page table entries.
fc1d8e7c 1392 */
3faa52c0 1393#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1394
3faa52c0 1395void unpin_user_page(struct page *page);
f1f6a7dd
JH
1396void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1397 bool make_dirty);
458a4f78
JM
1398void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1399 bool make_dirty);
f1f6a7dd 1400void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1401
97a7e473
PX
1402static inline bool is_cow_mapping(vm_flags_t flags)
1403{
1404 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1405}
1406
fc4f4be9
DH
1407#ifndef CONFIG_MMU
1408static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1409{
1410 /*
1411 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1412 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1413 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1414 * underlying memory if ptrace is active, so this is only possible if
1415 * ptrace does not apply. Note that there is no mprotect() to upgrade
1416 * write permissions later.
1417 */
b6b7a8fa 1418 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
fc4f4be9
DH
1419}
1420#endif
1421
9127ab4f
CS
1422#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1423#define SECTION_IN_PAGE_FLAGS
1424#endif
1425
89689ae7 1426/*
7a8010cd
VB
1427 * The identification function is mainly used by the buddy allocator for
1428 * determining if two pages could be buddies. We are not really identifying
1429 * the zone since we could be using the section number id if we do not have
1430 * node id available in page flags.
1431 * We only guarantee that it will return the same value for two combinable
1432 * pages in a zone.
89689ae7 1433 */
cb2b95e1
AW
1434static inline int page_zone_id(struct page *page)
1435{
89689ae7 1436 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1437}
1438
89689ae7 1439#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1440extern int page_to_nid(const struct page *page);
89689ae7 1441#else
33dd4e0e 1442static inline int page_to_nid(const struct page *page)
d41dee36 1443{
f165b378
PT
1444 struct page *p = (struct page *)page;
1445
1446 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1447}
89689ae7
CL
1448#endif
1449
874fd90c
MWO
1450static inline int folio_nid(const struct folio *folio)
1451{
1452 return page_to_nid(&folio->page);
1453}
1454
57e0a030 1455#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1456/* page access time bits needs to hold at least 4 seconds */
1457#define PAGE_ACCESS_TIME_MIN_BITS 12
1458#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1459#define PAGE_ACCESS_TIME_BUCKETS \
1460 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1461#else
1462#define PAGE_ACCESS_TIME_BUCKETS 0
1463#endif
1464
1465#define PAGE_ACCESS_TIME_MASK \
1466 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1467
90572890 1468static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1469{
90572890 1470 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1471}
1472
90572890 1473static inline int cpupid_to_pid(int cpupid)
57e0a030 1474{
90572890 1475 return cpupid & LAST__PID_MASK;
57e0a030 1476}
b795854b 1477
90572890 1478static inline int cpupid_to_cpu(int cpupid)
b795854b 1479{
90572890 1480 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1481}
1482
90572890 1483static inline int cpupid_to_nid(int cpupid)
b795854b 1484{
90572890 1485 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1486}
1487
90572890 1488static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1489{
90572890 1490 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1491}
1492
90572890 1493static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1494{
90572890 1495 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1496}
1497
8c8a743c
PZ
1498static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1499{
1500 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1501}
1502
1503#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1504#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1505static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1506{
1ae71d03 1507 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1508}
90572890
PZ
1509
1510static inline int page_cpupid_last(struct page *page)
1511{
1512 return page->_last_cpupid;
1513}
1514static inline void page_cpupid_reset_last(struct page *page)
b795854b 1515{
1ae71d03 1516 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1517}
1518#else
90572890 1519static inline int page_cpupid_last(struct page *page)
75980e97 1520{
90572890 1521 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1522}
1523
90572890 1524extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1525
90572890 1526static inline void page_cpupid_reset_last(struct page *page)
75980e97 1527{
09940a4f 1528 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1529}
90572890 1530#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536
HY
1531
1532static inline int xchg_page_access_time(struct page *page, int time)
1533{
1534 int last_time;
1535
1536 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1537 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1538}
90572890
PZ
1539#else /* !CONFIG_NUMA_BALANCING */
1540static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1541{
90572890 1542 return page_to_nid(page); /* XXX */
57e0a030
MG
1543}
1544
33024536
HY
1545static inline int xchg_page_access_time(struct page *page, int time)
1546{
1547 return 0;
1548}
1549
90572890 1550static inline int page_cpupid_last(struct page *page)
57e0a030 1551{
90572890 1552 return page_to_nid(page); /* XXX */
57e0a030
MG
1553}
1554
90572890 1555static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1556{
1557 return -1;
1558}
1559
90572890 1560static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1561{
1562 return -1;
1563}
1564
90572890 1565static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1566{
1567 return -1;
1568}
1569
90572890
PZ
1570static inline int cpu_pid_to_cpupid(int nid, int pid)
1571{
1572 return -1;
1573}
1574
1575static inline bool cpupid_pid_unset(int cpupid)
b795854b 1576{
2b787449 1577 return true;
b795854b
MG
1578}
1579
90572890 1580static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1581{
1582}
8c8a743c
PZ
1583
1584static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1585{
1586 return false;
1587}
90572890 1588#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1589
2e903b91 1590#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1591
cf10bd4c
AK
1592/*
1593 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1594 * setting tags for all pages to native kernel tag value 0xff, as the default
1595 * value 0x00 maps to 0xff.
1596 */
1597
2813b9c0
AK
1598static inline u8 page_kasan_tag(const struct page *page)
1599{
cf10bd4c
AK
1600 u8 tag = 0xff;
1601
1602 if (kasan_enabled()) {
1603 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1604 tag ^= 0xff;
1605 }
1606
1607 return tag;
2813b9c0
AK
1608}
1609
1610static inline void page_kasan_tag_set(struct page *page, u8 tag)
1611{
27fe7339
PC
1612 unsigned long old_flags, flags;
1613
1614 if (!kasan_enabled())
1615 return;
1616
1617 tag ^= 0xff;
1618 old_flags = READ_ONCE(page->flags);
1619 do {
1620 flags = old_flags;
1621 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1622 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1623 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1624}
1625
1626static inline void page_kasan_tag_reset(struct page *page)
1627{
34303244
AK
1628 if (kasan_enabled())
1629 page_kasan_tag_set(page, 0xff);
2813b9c0 1630}
34303244
AK
1631
1632#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1633
2813b9c0
AK
1634static inline u8 page_kasan_tag(const struct page *page)
1635{
1636 return 0xff;
1637}
1638
1639static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1640static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1641
1642#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1643
33dd4e0e 1644static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1645{
1646 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1647}
1648
75ef7184
MG
1649static inline pg_data_t *page_pgdat(const struct page *page)
1650{
1651 return NODE_DATA(page_to_nid(page));
1652}
1653
32b8fc48
MWO
1654static inline struct zone *folio_zone(const struct folio *folio)
1655{
1656 return page_zone(&folio->page);
1657}
1658
1659static inline pg_data_t *folio_pgdat(const struct folio *folio)
1660{
1661 return page_pgdat(&folio->page);
1662}
1663
9127ab4f 1664#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1665static inline void set_page_section(struct page *page, unsigned long section)
1666{
1667 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1668 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1669}
1670
aa462abe 1671static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1672{
1673 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1674}
308c05e3 1675#endif
d41dee36 1676
bf6bd276
MWO
1677/**
1678 * folio_pfn - Return the Page Frame Number of a folio.
1679 * @folio: The folio.
1680 *
1681 * A folio may contain multiple pages. The pages have consecutive
1682 * Page Frame Numbers.
1683 *
1684 * Return: The Page Frame Number of the first page in the folio.
1685 */
1686static inline unsigned long folio_pfn(struct folio *folio)
1687{
1688 return page_to_pfn(&folio->page);
1689}
1690
018ee47f
YZ
1691static inline struct folio *pfn_folio(unsigned long pfn)
1692{
1693 return page_folio(pfn_to_page(pfn));
1694}
1695
0b90ddae
MWO
1696/**
1697 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1698 * @folio: The folio.
1699 *
1700 * This function checks if a folio has been pinned via a call to
1701 * a function in the pin_user_pages() family.
1702 *
1703 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1704 * because it means "definitely not pinned for DMA", but true means "probably
1705 * pinned for DMA, but possibly a false positive due to having at least
1706 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1707 *
1708 * False positives are OK, because: a) it's unlikely for a folio to
1709 * get that many refcounts, and b) all the callers of this routine are
1710 * expected to be able to deal gracefully with a false positive.
1711 *
1712 * For large folios, the result will be exactly correct. That's because
94688e8e 1713 * we have more tracking data available: the _pincount field is used
0b90ddae
MWO
1714 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1715 *
1716 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1717 *
1718 * Return: True, if it is likely that the page has been "dma-pinned".
1719 * False, if the page is definitely not dma-pinned.
1720 */
1721static inline bool folio_maybe_dma_pinned(struct folio *folio)
1722{
1723 if (folio_test_large(folio))
94688e8e 1724 return atomic_read(&folio->_pincount) > 0;
0b90ddae
MWO
1725
1726 /*
1727 * folio_ref_count() is signed. If that refcount overflows, then
1728 * folio_ref_count() returns a negative value, and callers will avoid
1729 * further incrementing the refcount.
1730 *
1731 * Here, for that overflow case, use the sign bit to count a little
1732 * bit higher via unsigned math, and thus still get an accurate result.
1733 */
1734 return ((unsigned int)folio_ref_count(folio)) >=
1735 GUP_PIN_COUNTING_BIAS;
1736}
1737
1738static inline bool page_maybe_dma_pinned(struct page *page)
1739{
1740 return folio_maybe_dma_pinned(page_folio(page));
1741}
1742
1743/*
1744 * This should most likely only be called during fork() to see whether we
fb3d824d 1745 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1746 *
1747 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1748 */
1749static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1750 struct page *page)
1751{
623a1ddf 1752 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1753
1754 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1755 return false;
1756
1757 return page_maybe_dma_pinned(page);
1758}
1759
8e3560d9
PT
1760/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1761#ifdef CONFIG_MIGRATION
6077c943 1762static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9 1763{
1c563432
MK
1764#ifdef CONFIG_CMA
1765 int mt = get_pageblock_migratetype(page);
1766
1767 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1768 return false;
1769#endif
fcab34b4
AW
1770 /* The zero page may always be pinned */
1771 if (is_zero_pfn(page_to_pfn(page)))
1772 return true;
1773
1774 /* Coherent device memory must always allow eviction. */
1775 if (is_device_coherent_page(page))
1776 return false;
1777
1778 /* Otherwise, non-movable zone pages can be pinned. */
1779 return !is_zone_movable_page(page);
8e3560d9
PT
1780}
1781#else
6077c943 1782static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9
PT
1783{
1784 return true;
1785}
1786#endif
1787
6077c943 1788static inline bool folio_is_longterm_pinnable(struct folio *folio)
536939ff 1789{
6077c943 1790 return is_longterm_pinnable_page(&folio->page);
536939ff
MWO
1791}
1792
2f1b6248 1793static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1794{
1795 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1796 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1797}
2f1b6248 1798
348f8b6c
DH
1799static inline void set_page_node(struct page *page, unsigned long node)
1800{
1801 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1802 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1803}
89689ae7 1804
2f1b6248 1805static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1806 unsigned long node, unsigned long pfn)
1da177e4 1807{
348f8b6c
DH
1808 set_page_zone(page, zone);
1809 set_page_node(page, node);
9127ab4f 1810#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1811 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1812#endif
1da177e4
LT
1813}
1814
7b230db3
MWO
1815/**
1816 * folio_nr_pages - The number of pages in the folio.
1817 * @folio: The folio.
1818 *
1819 * Return: A positive power of two.
1820 */
1821static inline long folio_nr_pages(struct folio *folio)
1822{
c3a15bff
MWO
1823 if (!folio_test_large(folio))
1824 return 1;
1825#ifdef CONFIG_64BIT
1826 return folio->_folio_nr_pages;
1827#else
1828 return 1L << folio->_folio_order;
1829#endif
7b230db3
MWO
1830}
1831
21a000fe
MWO
1832/*
1833 * compound_nr() returns the number of pages in this potentially compound
1834 * page. compound_nr() can be called on a tail page, and is defined to
1835 * return 1 in that case.
1836 */
1837static inline unsigned long compound_nr(struct page *page)
1838{
1839 struct folio *folio = (struct folio *)page;
1840
1841 if (!test_bit(PG_head, &folio->flags))
1842 return 1;
1843#ifdef CONFIG_64BIT
1844 return folio->_folio_nr_pages;
1845#else
1846 return 1L << folio->_folio_order;
1847#endif
1848}
1849
1850/**
1851 * thp_nr_pages - The number of regular pages in this huge page.
1852 * @page: The head page of a huge page.
1853 */
1854static inline int thp_nr_pages(struct page *page)
1855{
1856 return folio_nr_pages((struct folio *)page);
1857}
1858
7b230db3
MWO
1859/**
1860 * folio_next - Move to the next physical folio.
1861 * @folio: The folio we're currently operating on.
1862 *
1863 * If you have physically contiguous memory which may span more than
1864 * one folio (eg a &struct bio_vec), use this function to move from one
1865 * folio to the next. Do not use it if the memory is only virtually
1866 * contiguous as the folios are almost certainly not adjacent to each
1867 * other. This is the folio equivalent to writing ``page++``.
1868 *
1869 * Context: We assume that the folios are refcounted and/or locked at a
1870 * higher level and do not adjust the reference counts.
1871 * Return: The next struct folio.
1872 */
1873static inline struct folio *folio_next(struct folio *folio)
1874{
1875 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1876}
1877
1878/**
1879 * folio_shift - The size of the memory described by this folio.
1880 * @folio: The folio.
1881 *
1882 * A folio represents a number of bytes which is a power-of-two in size.
1883 * This function tells you which power-of-two the folio is. See also
1884 * folio_size() and folio_order().
1885 *
1886 * Context: The caller should have a reference on the folio to prevent
1887 * it from being split. It is not necessary for the folio to be locked.
1888 * Return: The base-2 logarithm of the size of this folio.
1889 */
1890static inline unsigned int folio_shift(struct folio *folio)
1891{
1892 return PAGE_SHIFT + folio_order(folio);
1893}
1894
1895/**
1896 * folio_size - The number of bytes in a folio.
1897 * @folio: The folio.
1898 *
1899 * Context: The caller should have a reference on the folio to prevent
1900 * it from being split. It is not necessary for the folio to be locked.
1901 * Return: The number of bytes in this folio.
1902 */
1903static inline size_t folio_size(struct folio *folio)
1904{
1905 return PAGE_SIZE << folio_order(folio);
1906}
1907
b424de33
MWO
1908#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1909static inline int arch_make_page_accessible(struct page *page)
1910{
1911 return 0;
1912}
1913#endif
1914
1915#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1916static inline int arch_make_folio_accessible(struct folio *folio)
1917{
1918 int ret;
1919 long i, nr = folio_nr_pages(folio);
1920
1921 for (i = 0; i < nr; i++) {
1922 ret = arch_make_page_accessible(folio_page(folio, i));
1923 if (ret)
1924 break;
1925 }
1926
1927 return ret;
1928}
1929#endif
1930
f6ac2354
CL
1931/*
1932 * Some inline functions in vmstat.h depend on page_zone()
1933 */
1934#include <linux/vmstat.h>
1935
33dd4e0e 1936static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1937{
1dff8083 1938 return page_to_virt(page);
1da177e4
LT
1939}
1940
1941#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1942#define HASHED_PAGE_VIRTUAL
1943#endif
1944
1945#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1946static inline void *page_address(const struct page *page)
1947{
1948 return page->virtual;
1949}
1950static inline void set_page_address(struct page *page, void *address)
1951{
1952 page->virtual = address;
1953}
1da177e4
LT
1954#define page_address_init() do { } while(0)
1955#endif
1956
1957#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1958void *page_address(const struct page *page);
1da177e4
LT
1959void set_page_address(struct page *page, void *virtual);
1960void page_address_init(void);
1961#endif
1962
1963#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1964#define page_address(page) lowmem_page_address(page)
1965#define set_page_address(page, address) do { } while(0)
1966#define page_address_init() do { } while(0)
1967#endif
1968
7d4203c1
VB
1969static inline void *folio_address(const struct folio *folio)
1970{
1971 return page_address(&folio->page);
1972}
1973
e39155ea 1974extern void *page_rmapping(struct page *page);
f6ab1f7f
HY
1975extern pgoff_t __page_file_index(struct page *page);
1976
1da177e4
LT
1977/*
1978 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1979 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1980 */
1981static inline pgoff_t page_index(struct page *page)
1982{
1983 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1984 return __page_file_index(page);
1da177e4
LT
1985 return page->index;
1986}
1987
2f064f34
MH
1988/*
1989 * Return true only if the page has been allocated with
1990 * ALLOC_NO_WATERMARKS and the low watermark was not
1991 * met implying that the system is under some pressure.
1992 */
1d7bab6a 1993static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1994{
1995 /*
c07aea3e
MC
1996 * lru.next has bit 1 set if the page is allocated from the
1997 * pfmemalloc reserves. Callers may simply overwrite it if
1998 * they do not need to preserve that information.
2f064f34 1999 */
c07aea3e 2000 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
2001}
2002
02d65d6f
SK
2003/*
2004 * Return true only if the folio has been allocated with
2005 * ALLOC_NO_WATERMARKS and the low watermark was not
2006 * met implying that the system is under some pressure.
2007 */
2008static inline bool folio_is_pfmemalloc(const struct folio *folio)
2009{
2010 /*
2011 * lru.next has bit 1 set if the page is allocated from the
2012 * pfmemalloc reserves. Callers may simply overwrite it if
2013 * they do not need to preserve that information.
2014 */
2015 return (uintptr_t)folio->lru.next & BIT(1);
2016}
2017
2f064f34
MH
2018/*
2019 * Only to be called by the page allocator on a freshly allocated
2020 * page.
2021 */
2022static inline void set_page_pfmemalloc(struct page *page)
2023{
c07aea3e 2024 page->lru.next = (void *)BIT(1);
2f064f34
MH
2025}
2026
2027static inline void clear_page_pfmemalloc(struct page *page)
2028{
c07aea3e 2029 page->lru.next = NULL;
2f064f34
MH
2030}
2031
1c0fe6e3
NP
2032/*
2033 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2034 */
2035extern void pagefault_out_of_memory(void);
2036
1da177e4 2037#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 2038#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 2039#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 2040
ddd588b5 2041/*
7bf02ea2 2042 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
2043 * various contexts.
2044 */
4b59e6c4 2045#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 2046
974f4367
MH
2047extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2048static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2049{
2050 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2051}
1da177e4 2052
21b85b09
MK
2053/*
2054 * Parameter block passed down to zap_pte_range in exceptional cases.
2055 */
2056struct zap_details {
2057 struct folio *single_folio; /* Locked folio to be unmapped */
2058 bool even_cows; /* Zap COWed private pages too? */
2059 zap_flags_t zap_flags; /* Extra flags for zapping */
2060};
2061
2062/*
2063 * Whether to drop the pte markers, for example, the uffd-wp information for
2064 * file-backed memory. This should only be specified when we will completely
2065 * drop the page in the mm, either by truncation or unmapping of the vma. By
2066 * default, the flag is not set.
2067 */
2068#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
04ada095
MK
2069/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2070#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
21b85b09 2071
710ec38b 2072#ifdef CONFIG_MMU
7f43add4 2073extern bool can_do_mlock(void);
710ec38b
AB
2074#else
2075static inline bool can_do_mlock(void) { return false; }
2076#endif
d7c9e99a
AG
2077extern int user_shm_lock(size_t, struct ucounts *);
2078extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 2079
318e9342
VMO
2080struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2081 pte_t pte);
25b2995a
CH
2082struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2083 pte_t pte);
28093f9f
GS
2084struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2085 pmd_t pmd);
7e675137 2086
27d036e3
LR
2087void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2088 unsigned long size);
21b85b09
MK
2089void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2090 unsigned long size, struct zap_details *details);
e9adcfec
MK
2091static inline void zap_vma_pages(struct vm_area_struct *vma)
2092{
2093 zap_page_range_single(vma, vma->vm_start,
2094 vma->vm_end - vma->vm_start, NULL);
2095}
763ecb03
LH
2096void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2097 struct vm_area_struct *start_vma, unsigned long start,
68f48381 2098 unsigned long end, bool mm_wr_locked);
e6473092 2099
ac46d4f3
JG
2100struct mmu_notifier_range;
2101
42b77728 2102void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 2103 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
2104int
2105copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 2106int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 2107 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
2108int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2109 unsigned long *pfn);
d87fe660 2110int follow_phys(struct vm_area_struct *vma, unsigned long address,
2111 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
2112int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2113 void *buf, int len, int write);
1da177e4 2114
7caef267 2115extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 2116extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 2117void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 2118void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 2119int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 2120
7ee1dd3f 2121#ifdef CONFIG_MMU
2b740303 2122extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2123 unsigned long address, unsigned int flags,
2124 struct pt_regs *regs);
64019a2e 2125extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
2126 unsigned long address, unsigned int fault_flags,
2127 bool *unlocked);
977fbdcd
MW
2128void unmap_mapping_pages(struct address_space *mapping,
2129 pgoff_t start, pgoff_t nr, bool even_cows);
2130void unmap_mapping_range(struct address_space *mapping,
2131 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 2132#else
2b740303 2133static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2134 unsigned long address, unsigned int flags,
2135 struct pt_regs *regs)
7ee1dd3f
DH
2136{
2137 /* should never happen if there's no MMU */
2138 BUG();
2139 return VM_FAULT_SIGBUS;
2140}
64019a2e 2141static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 2142 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
2143{
2144 /* should never happen if there's no MMU */
2145 BUG();
2146 return -EFAULT;
2147}
977fbdcd
MW
2148static inline void unmap_mapping_pages(struct address_space *mapping,
2149 pgoff_t start, pgoff_t nr, bool even_cows) { }
2150static inline void unmap_mapping_range(struct address_space *mapping,
2151 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 2152#endif
f33ea7f4 2153
977fbdcd
MW
2154static inline void unmap_shared_mapping_range(struct address_space *mapping,
2155 loff_t const holebegin, loff_t const holelen)
2156{
2157 unmap_mapping_range(mapping, holebegin, holelen, 0);
2158}
2159
2160extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2161 void *buf, int len, unsigned int gup_flags);
5ddd36b9 2162extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 2163 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
2164extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2165 void *buf, int len, unsigned int gup_flags);
1da177e4 2166
64019a2e 2167long get_user_pages_remote(struct mm_struct *mm,
1e987790 2168 unsigned long start, unsigned long nr_pages,
9beae1ea 2169 unsigned int gup_flags, struct page **pages,
5b56d49f 2170 struct vm_area_struct **vmas, int *locked);
64019a2e 2171long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2172 unsigned long start, unsigned long nr_pages,
2173 unsigned int gup_flags, struct page **pages,
2174 struct vm_area_struct **vmas, int *locked);
c12d2da5 2175long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 2176 unsigned int gup_flags, struct page **pages,
cde70140 2177 struct vm_area_struct **vmas);
eddb1c22
JH
2178long pin_user_pages(unsigned long start, unsigned long nr_pages,
2179 unsigned int gup_flags, struct page **pages,
2180 struct vm_area_struct **vmas);
c12d2da5 2181long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 2182 struct page **pages, unsigned int gup_flags);
91429023
JH
2183long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2184 struct page **pages, unsigned int gup_flags);
9a4e9f3b 2185
73b0140b
IW
2186int get_user_pages_fast(unsigned long start, int nr_pages,
2187 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
2188int pin_user_pages_fast(unsigned long start, int nr_pages,
2189 unsigned int gup_flags, struct page **pages);
8025e5dd 2190
79eb597c
DJ
2191int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2192int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2193 struct task_struct *task, bool bypass_rlim);
2194
18022c5d
MG
2195struct kvec;
2196int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
2197 struct page **pages);
f3e8fccd 2198struct page *get_dump_page(unsigned long addr);
1da177e4 2199
b5e84594
MWO
2200bool folio_mark_dirty(struct folio *folio);
2201bool set_page_dirty(struct page *page);
1da177e4 2202int set_page_dirty_lock(struct page *page);
b9ea2515 2203
a9090253 2204int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 2205
b6a2fea3
OW
2206extern unsigned long move_page_tables(struct vm_area_struct *vma,
2207 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
2208 unsigned long new_addr, unsigned long len,
2209 bool need_rmap_locks);
58705444
PX
2210
2211/*
2212 * Flags used by change_protection(). For now we make it a bitmap so
2213 * that we can pass in multiple flags just like parameters. However
2214 * for now all the callers are only use one of the flags at the same
2215 * time.
2216 */
64fe24a3
DH
2217/*
2218 * Whether we should manually check if we can map individual PTEs writable,
2219 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2220 * PTEs automatically in a writable mapping.
2221 */
2222#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
2223/* Whether this protection change is for NUMA hints */
2224#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2225/* Whether this change is for write protecting */
2226#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2227#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2228#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2229 MM_CP_UFFD_WP_RESOLVE)
58705444 2230
eb309ec8
DH
2231int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2232static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2233{
2234 /*
2235 * We want to check manually if we can change individual PTEs writable
2236 * if we can't do that automatically for all PTEs in a mapping. For
2237 * private mappings, that's always the case when we have write
2238 * permissions as we properly have to handle COW.
2239 */
2240 if (vma->vm_flags & VM_SHARED)
2241 return vma_wants_writenotify(vma, vma->vm_page_prot);
2242 return !!(vma->vm_flags & VM_WRITE);
2243
2244}
6a56ccbc
DH
2245bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2246 pte_t pte);
a79390f5 2247extern long change_protection(struct mmu_gather *tlb,
4a18419f 2248 struct vm_area_struct *vma, unsigned long start,
1ef488ed 2249 unsigned long end, unsigned long cp_flags);
2286a691
LH
2250extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2251 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2252 unsigned long start, unsigned long end, unsigned long newflags);
1da177e4 2253
465a454f
PZ
2254/*
2255 * doesn't attempt to fault and will return short.
2256 */
dadbb612
SJ
2257int get_user_pages_fast_only(unsigned long start, int nr_pages,
2258 unsigned int gup_flags, struct page **pages);
104acc32
JH
2259int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2260 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2261
2262static inline bool get_user_page_fast_only(unsigned long addr,
2263 unsigned int gup_flags, struct page **pagep)
2264{
2265 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2266}
d559db08
KH
2267/*
2268 * per-process(per-mm_struct) statistics.
2269 */
d559db08
KH
2270static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2271{
f1a79412 2272 return percpu_counter_read_positive(&mm->rss_stat[member]);
69c97823 2273}
d559db08 2274
f1a79412 2275void mm_trace_rss_stat(struct mm_struct *mm, int member);
b3d1411b 2276
d559db08
KH
2277static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2278{
f1a79412 2279 percpu_counter_add(&mm->rss_stat[member], value);
b3d1411b 2280
f1a79412 2281 mm_trace_rss_stat(mm, member);
d559db08
KH
2282}
2283
2284static inline void inc_mm_counter(struct mm_struct *mm, int member)
2285{
f1a79412 2286 percpu_counter_inc(&mm->rss_stat[member]);
b3d1411b 2287
f1a79412 2288 mm_trace_rss_stat(mm, member);
d559db08
KH
2289}
2290
2291static inline void dec_mm_counter(struct mm_struct *mm, int member)
2292{
f1a79412 2293 percpu_counter_dec(&mm->rss_stat[member]);
b3d1411b 2294
f1a79412 2295 mm_trace_rss_stat(mm, member);
d559db08
KH
2296}
2297
eca56ff9
JM
2298/* Optimized variant when page is already known not to be PageAnon */
2299static inline int mm_counter_file(struct page *page)
2300{
2301 if (PageSwapBacked(page))
2302 return MM_SHMEMPAGES;
2303 return MM_FILEPAGES;
2304}
2305
2306static inline int mm_counter(struct page *page)
2307{
2308 if (PageAnon(page))
2309 return MM_ANONPAGES;
2310 return mm_counter_file(page);
2311}
2312
d559db08
KH
2313static inline unsigned long get_mm_rss(struct mm_struct *mm)
2314{
2315 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2316 get_mm_counter(mm, MM_ANONPAGES) +
2317 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2318}
2319
2320static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2321{
2322 return max(mm->hiwater_rss, get_mm_rss(mm));
2323}
2324
2325static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2326{
2327 return max(mm->hiwater_vm, mm->total_vm);
2328}
2329
2330static inline void update_hiwater_rss(struct mm_struct *mm)
2331{
2332 unsigned long _rss = get_mm_rss(mm);
2333
2334 if ((mm)->hiwater_rss < _rss)
2335 (mm)->hiwater_rss = _rss;
2336}
2337
2338static inline void update_hiwater_vm(struct mm_struct *mm)
2339{
2340 if (mm->hiwater_vm < mm->total_vm)
2341 mm->hiwater_vm = mm->total_vm;
2342}
2343
695f0559
PC
2344static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2345{
2346 mm->hiwater_rss = get_mm_rss(mm);
2347}
2348
d559db08
KH
2349static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2350 struct mm_struct *mm)
2351{
2352 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2353
2354 if (*maxrss < hiwater_rss)
2355 *maxrss = hiwater_rss;
2356}
2357
53bddb4e 2358#if defined(SPLIT_RSS_COUNTING)
05af2e10 2359void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2360#else
05af2e10 2361static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2362{
2363}
2364#endif
465a454f 2365
78e7c5af
AK
2366#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2367static inline int pte_special(pte_t pte)
2368{
2369 return 0;
2370}
2371
2372static inline pte_t pte_mkspecial(pte_t pte)
2373{
2374 return pte;
2375}
2376#endif
2377
17596731 2378#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2379static inline int pte_devmap(pte_t pte)
2380{
2381 return 0;
2382}
2383#endif
2384
25ca1d6c
NK
2385extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2386 spinlock_t **ptl);
2387static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2388 spinlock_t **ptl)
2389{
2390 pte_t *ptep;
2391 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2392 return ptep;
2393}
c9cfcddf 2394
c2febafc
KS
2395#ifdef __PAGETABLE_P4D_FOLDED
2396static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2397 unsigned long address)
2398{
2399 return 0;
2400}
2401#else
2402int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2403#endif
2404
b4e98d9a 2405#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2406static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2407 unsigned long address)
2408{
2409 return 0;
2410}
b4e98d9a
KS
2411static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2412static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2413
5f22df00 2414#else
c2febafc 2415int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2416
b4e98d9a
KS
2417static inline void mm_inc_nr_puds(struct mm_struct *mm)
2418{
6d212db1
MS
2419 if (mm_pud_folded(mm))
2420 return;
af5b0f6a 2421 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2422}
2423
2424static inline void mm_dec_nr_puds(struct mm_struct *mm)
2425{
6d212db1
MS
2426 if (mm_pud_folded(mm))
2427 return;
af5b0f6a 2428 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2429}
5f22df00
NP
2430#endif
2431
2d2f5119 2432#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2433static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2434 unsigned long address)
2435{
2436 return 0;
2437}
dc6c9a35 2438
dc6c9a35
KS
2439static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2440static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2441
5f22df00 2442#else
1bb3630e 2443int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2444
dc6c9a35
KS
2445static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2446{
6d212db1
MS
2447 if (mm_pmd_folded(mm))
2448 return;
af5b0f6a 2449 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2450}
2451
2452static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2453{
6d212db1
MS
2454 if (mm_pmd_folded(mm))
2455 return;
af5b0f6a 2456 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2457}
5f22df00
NP
2458#endif
2459
c4812909 2460#ifdef CONFIG_MMU
af5b0f6a 2461static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2462{
af5b0f6a 2463 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2464}
2465
af5b0f6a 2466static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2467{
af5b0f6a 2468 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2469}
2470
2471static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2472{
af5b0f6a 2473 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2474}
2475
2476static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2477{
af5b0f6a 2478 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2479}
2480#else
c4812909 2481
af5b0f6a
KS
2482static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2483static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2484{
2485 return 0;
2486}
2487
2488static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2489static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2490#endif
2491
4cf58924
JFG
2492int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2493int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2494
f949286c
MR
2495#if defined(CONFIG_MMU)
2496
c2febafc
KS
2497static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2498 unsigned long address)
2499{
2500 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2501 NULL : p4d_offset(pgd, address);
2502}
2503
2504static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2505 unsigned long address)
1da177e4 2506{
c2febafc
KS
2507 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2508 NULL : pud_offset(p4d, address);
1da177e4 2509}
d8626138 2510
1da177e4
LT
2511static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2512{
1bb3630e
HD
2513 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2514 NULL: pmd_offset(pud, address);
1da177e4 2515}
f949286c 2516#endif /* CONFIG_MMU */
1bb3630e 2517
57c1ffce 2518#if USE_SPLIT_PTE_PTLOCKS
597d795a 2519#if ALLOC_SPLIT_PTLOCKS
b35f1819 2520void __init ptlock_cache_init(void);
539edb58
PZ
2521extern bool ptlock_alloc(struct page *page);
2522extern void ptlock_free(struct page *page);
2523
2524static inline spinlock_t *ptlock_ptr(struct page *page)
2525{
2526 return page->ptl;
2527}
597d795a 2528#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2529static inline void ptlock_cache_init(void)
2530{
2531}
2532
49076ec2
KS
2533static inline bool ptlock_alloc(struct page *page)
2534{
49076ec2
KS
2535 return true;
2536}
539edb58 2537
49076ec2
KS
2538static inline void ptlock_free(struct page *page)
2539{
49076ec2
KS
2540}
2541
2542static inline spinlock_t *ptlock_ptr(struct page *page)
2543{
539edb58 2544 return &page->ptl;
49076ec2 2545}
597d795a 2546#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2547
2548static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2549{
2550 return ptlock_ptr(pmd_page(*pmd));
2551}
2552
2553static inline bool ptlock_init(struct page *page)
2554{
2555 /*
2556 * prep_new_page() initialize page->private (and therefore page->ptl)
2557 * with 0. Make sure nobody took it in use in between.
2558 *
2559 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2560 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2561 */
309381fe 2562 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2563 if (!ptlock_alloc(page))
2564 return false;
2565 spin_lock_init(ptlock_ptr(page));
2566 return true;
2567}
2568
57c1ffce 2569#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2570/*
2571 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2572 */
49076ec2
KS
2573static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2574{
2575 return &mm->page_table_lock;
2576}
b35f1819 2577static inline void ptlock_cache_init(void) {}
49076ec2 2578static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2579static inline void ptlock_free(struct page *page) {}
57c1ffce 2580#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2581
b35f1819
KS
2582static inline void pgtable_init(void)
2583{
2584 ptlock_cache_init();
2585 pgtable_cache_init();
2586}
2587
b4ed71f5 2588static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2589{
706874e9
VD
2590 if (!ptlock_init(page))
2591 return false;
1d40a5ea 2592 __SetPageTable(page);
f0c0c115 2593 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2594 return true;
2f569afd
MS
2595}
2596
b4ed71f5 2597static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2598{
9e247bab 2599 ptlock_free(page);
1d40a5ea 2600 __ClearPageTable(page);
f0c0c115 2601 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2602}
2603
c74df32c
HD
2604#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2605({ \
4c21e2f2 2606 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2607 pte_t *__pte = pte_offset_map(pmd, address); \
2608 *(ptlp) = __ptl; \
2609 spin_lock(__ptl); \
2610 __pte; \
2611})
2612
2613#define pte_unmap_unlock(pte, ptl) do { \
2614 spin_unlock(ptl); \
2615 pte_unmap(pte); \
2616} while (0)
2617
4cf58924 2618#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2619
2620#define pte_alloc_map(mm, pmd, address) \
4cf58924 2621 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2622
c74df32c 2623#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2624 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2625 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2626
1bb3630e 2627#define pte_alloc_kernel(pmd, address) \
4cf58924 2628 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2629 NULL: pte_offset_kernel(pmd, address))
1da177e4 2630
e009bb30
KS
2631#if USE_SPLIT_PMD_PTLOCKS
2632
7e25de77 2633static inline struct page *pmd_pgtable_page(pmd_t *pmd)
634391ac
MS
2634{
2635 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2636 return virt_to_page((void *)((unsigned long) pmd & mask));
2637}
2638
e009bb30
KS
2639static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2640{
373dfda2 2641 return ptlock_ptr(pmd_pgtable_page(pmd));
e009bb30
KS
2642}
2643
b2b29d6d 2644static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2645{
e009bb30
KS
2646#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2647 page->pmd_huge_pte = NULL;
2648#endif
49076ec2 2649 return ptlock_init(page);
e009bb30
KS
2650}
2651
b2b29d6d 2652static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2653{
2654#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2655 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2656#endif
49076ec2 2657 ptlock_free(page);
e009bb30
KS
2658}
2659
373dfda2 2660#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
e009bb30
KS
2661
2662#else
2663
9a86cb7b
KS
2664static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2665{
2666 return &mm->page_table_lock;
2667}
2668
b2b29d6d
MW
2669static inline bool pmd_ptlock_init(struct page *page) { return true; }
2670static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2671
c389a250 2672#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2673
e009bb30
KS
2674#endif
2675
9a86cb7b
KS
2676static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2677{
2678 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2679 spin_lock(ptl);
2680 return ptl;
2681}
2682
b2b29d6d
MW
2683static inline bool pgtable_pmd_page_ctor(struct page *page)
2684{
2685 if (!pmd_ptlock_init(page))
2686 return false;
2687 __SetPageTable(page);
f0c0c115 2688 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2689 return true;
2690}
2691
2692static inline void pgtable_pmd_page_dtor(struct page *page)
2693{
2694 pmd_ptlock_free(page);
2695 __ClearPageTable(page);
f0c0c115 2696 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2697}
2698
a00cc7d9
MW
2699/*
2700 * No scalability reason to split PUD locks yet, but follow the same pattern
2701 * as the PMD locks to make it easier if we decide to. The VM should not be
2702 * considered ready to switch to split PUD locks yet; there may be places
2703 * which need to be converted from page_table_lock.
2704 */
2705static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2706{
2707 return &mm->page_table_lock;
2708}
2709
2710static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2711{
2712 spinlock_t *ptl = pud_lockptr(mm, pud);
2713
2714 spin_lock(ptl);
2715 return ptl;
2716}
62906027 2717
a00cc7d9 2718extern void __init pagecache_init(void);
49a7f04a
DH
2719extern void free_initmem(void);
2720
69afade7
JL
2721/*
2722 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2723 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2724 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2725 * Return pages freed into the buddy system.
2726 */
11199692 2727extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2728 int poison, const char *s);
c3d5f5f0 2729
c3d5f5f0 2730extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2731extern void mem_init_print_info(void);
69afade7 2732
4b50bcc7 2733extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2734
69afade7 2735/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2736static inline void free_reserved_page(struct page *page)
69afade7
JL
2737{
2738 ClearPageReserved(page);
2739 init_page_count(page);
2740 __free_page(page);
69afade7
JL
2741 adjust_managed_page_count(page, 1);
2742}
a0cd7a7c 2743#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2744
2745static inline void mark_page_reserved(struct page *page)
2746{
2747 SetPageReserved(page);
2748 adjust_managed_page_count(page, -1);
2749}
2750
2751/*
2752 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2753 * The freed pages will be poisoned with pattern "poison" if it's within
2754 * range [0, UCHAR_MAX].
2755 * Return pages freed into the buddy system.
69afade7
JL
2756 */
2757static inline unsigned long free_initmem_default(int poison)
2758{
2759 extern char __init_begin[], __init_end[];
2760
11199692 2761 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2762 poison, "unused kernel image (initmem)");
69afade7
JL
2763}
2764
7ee3d4e8
JL
2765static inline unsigned long get_num_physpages(void)
2766{
2767 int nid;
2768 unsigned long phys_pages = 0;
2769
2770 for_each_online_node(nid)
2771 phys_pages += node_present_pages(nid);
2772
2773 return phys_pages;
2774}
2775
c713216d 2776/*
3f08a302 2777 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2778 * zones, allocate the backing mem_map and account for memory holes in an
2779 * architecture independent manner.
c713216d
MG
2780 *
2781 * An architecture is expected to register range of page frames backed by
0ee332c1 2782 * physical memory with memblock_add[_node]() before calling
9691a071 2783 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2784 * usage, an architecture is expected to do something like
2785 *
2786 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2787 * max_highmem_pfn};
2788 * for_each_valid_physical_page_range()
952eea9b 2789 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2790 * free_area_init(max_zone_pfns);
c713216d 2791 */
9691a071 2792void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2793unsigned long node_map_pfn_alignment(void);
32996250
YL
2794unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2795 unsigned long end_pfn);
c713216d
MG
2796extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2797 unsigned long end_pfn);
2798extern void get_pfn_range_for_nid(unsigned int nid,
2799 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 2800
a9ee6cf5 2801#ifndef CONFIG_NUMA
6f24fbd3 2802static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2803{
2804 return 0;
2805}
2806#else
2807/* please see mm/page_alloc.c */
2808extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2809#endif
2810
0e0b864e 2811extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2812extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2813 unsigned long, unsigned long, enum meminit_context,
2814 struct vmem_altmap *, int migratetype);
bc75d33f 2815extern void setup_per_zone_wmarks(void);
bd3400ea 2816extern void calculate_min_free_kbytes(void);
1b79acc9 2817extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2818extern void mem_init(void);
8feae131 2819extern void __init mmap_init(void);
974f4367
MH
2820
2821extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2822static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
2823{
2824 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
2825}
d02bd27b 2826extern long si_mem_available(void);
1da177e4
LT
2827extern void si_meminfo(struct sysinfo * val);
2828extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2829#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2830extern unsigned long arch_reserved_kernel_pages(void);
2831#endif
1da177e4 2832
a8e99259
MH
2833extern __printf(3, 4)
2834void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2835
e7c8d5c9 2836extern void setup_per_cpu_pageset(void);
e7c8d5c9 2837
75f7ad8e
PS
2838/* page_alloc.c */
2839extern int min_free_kbytes;
1c30844d 2840extern int watermark_boost_factor;
795ae7a0 2841extern int watermark_scale_factor;
51930df5 2842extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2843
8feae131 2844/* nommu.c */
33e5d769 2845extern atomic_long_t mmap_pages_allocated;
7e660872 2846extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2847
6b2dbba8 2848/* interval_tree.c */
6b2dbba8 2849void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2850 struct rb_root_cached *root);
9826a516
ML
2851void vma_interval_tree_insert_after(struct vm_area_struct *node,
2852 struct vm_area_struct *prev,
f808c13f 2853 struct rb_root_cached *root);
6b2dbba8 2854void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2855 struct rb_root_cached *root);
2856struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2857 unsigned long start, unsigned long last);
2858struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2859 unsigned long start, unsigned long last);
2860
2861#define vma_interval_tree_foreach(vma, root, start, last) \
2862 for (vma = vma_interval_tree_iter_first(root, start, last); \
2863 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2864
bf181b9f 2865void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2866 struct rb_root_cached *root);
bf181b9f 2867void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2868 struct rb_root_cached *root);
2869struct anon_vma_chain *
2870anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2871 unsigned long start, unsigned long last);
bf181b9f
ML
2872struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2873 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2874#ifdef CONFIG_DEBUG_VM_RB
2875void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2876#endif
bf181b9f
ML
2877
2878#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2879 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2880 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2881
1da177e4 2882/* mmap.c */
34b4e4aa 2883extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
7c9813e8
LH
2884extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
2885 unsigned long start, unsigned long end, pgoff_t pgoff,
2886 struct vm_area_struct *next);
cf51e86d
LH
2887extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
2888 unsigned long start, unsigned long end, pgoff_t pgoff);
9760ebff 2889extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
f2ebfe43
LH
2890 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
2891 unsigned long end, unsigned long vm_flags, struct anon_vma *,
2892 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
2893 struct anon_vma_name *);
1da177e4 2894extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
9760ebff
LH
2895extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
2896 unsigned long addr, int new_below);
2897extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
2898 unsigned long addr, int new_below);
1da177e4 2899extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 2900extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2901extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2902 unsigned long addr, unsigned long len, pgoff_t pgoff,
2903 bool *need_rmap_locks);
1da177e4 2904extern void exit_mmap(struct mm_struct *);
925d1c40 2905
9c599024
CG
2906static inline int check_data_rlimit(unsigned long rlim,
2907 unsigned long new,
2908 unsigned long start,
2909 unsigned long end_data,
2910 unsigned long start_data)
2911{
2912 if (rlim < RLIM_INFINITY) {
2913 if (((new - start) + (end_data - start_data)) > rlim)
2914 return -ENOSPC;
2915 }
2916
2917 return 0;
2918}
2919
7906d00c
AA
2920extern int mm_take_all_locks(struct mm_struct *mm);
2921extern void mm_drop_all_locks(struct mm_struct *mm);
2922
fe69d560 2923extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 2924extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 2925extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2926extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2927
84638335
KK
2928extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2929extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2930
2eefd878
DS
2931extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2932 const struct vm_special_mapping *sm);
3935ed6a
SS
2933extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2934 unsigned long addr, unsigned long len,
a62c34bd
AL
2935 unsigned long flags,
2936 const struct vm_special_mapping *spec);
2937/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2938extern int install_special_mapping(struct mm_struct *mm,
2939 unsigned long addr, unsigned long len,
2940 unsigned long flags, struct page **pages);
1da177e4 2941
649775be 2942unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 2943unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 2944
1da177e4
LT
2945extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2946
0165ab44 2947extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2948 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2949 struct list_head *uf);
1fcfd8db 2950extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2951 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2952 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
183654ce 2953extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
11f9a21a
LH
2954 unsigned long start, size_t len, struct list_head *uf,
2955 bool downgrade);
897ab3e0
MR
2956extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2957 struct list_head *uf);
0726b01e 2958extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2959
bebeb3d6 2960#ifdef CONFIG_MMU
27b26701
LH
2961extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2962 unsigned long start, unsigned long end,
2963 struct list_head *uf, bool downgrade);
bebeb3d6
ML
2964extern int __mm_populate(unsigned long addr, unsigned long len,
2965 int ignore_errors);
2966static inline void mm_populate(unsigned long addr, unsigned long len)
2967{
2968 /* Ignore errors */
2969 (void) __mm_populate(addr, len, 1);
2970}
2971#else
2972static inline void mm_populate(unsigned long addr, unsigned long len) {}
2973#endif
2974
e4eb1ff6 2975/* These take the mm semaphore themselves */
5d22fc25 2976extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2977extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2978extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2979extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2980 unsigned long, unsigned long,
2981 unsigned long, unsigned long);
1da177e4 2982
db4fbfb9
ML
2983struct vm_unmapped_area_info {
2984#define VM_UNMAPPED_AREA_TOPDOWN 1
2985 unsigned long flags;
2986 unsigned long length;
2987 unsigned long low_limit;
2988 unsigned long high_limit;
2989 unsigned long align_mask;
2990 unsigned long align_offset;
2991};
2992
baceaf1c 2993extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2994
85821aab 2995/* truncate.c */
1da177e4 2996extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2997extern void truncate_inode_pages_range(struct address_space *,
2998 loff_t lstart, loff_t lend);
91b0abe3 2999extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
3000
3001/* generic vm_area_ops exported for stackable file systems */
2bcd6454 3002extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 3003extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 3004 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 3005extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 3006
1be7107f 3007extern unsigned long stack_guard_gap;
d05f3169 3008/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 3009extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 3010
11192337 3011/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
3012extern int expand_downwards(struct vm_area_struct *vma,
3013 unsigned long address);
8ca3eb08 3014#if VM_GROWSUP
46dea3d0 3015extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 3016#else
fee7e49d 3017 #define expand_upwards(vma, address) (0)
9ab88515 3018#endif
1da177e4
LT
3019
3020/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3021extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3022extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3023 struct vm_area_struct **pprev);
3024
abdba2dd
LH
3025/*
3026 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3027 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 3028 */
ce6d42f2 3029struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 3030 unsigned long start_addr, unsigned long end_addr);
1da177e4 3031
ce6d42f2
LH
3032/**
3033 * vma_lookup() - Find a VMA at a specific address
3034 * @mm: The process address space.
3035 * @addr: The user address.
3036 *
3037 * Return: The vm_area_struct at the given address, %NULL otherwise.
3038 */
3039static inline
3040struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3041{
d7c62295 3042 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
3043}
3044
1be7107f
HD
3045static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3046{
3047 unsigned long vm_start = vma->vm_start;
3048
3049 if (vma->vm_flags & VM_GROWSDOWN) {
3050 vm_start -= stack_guard_gap;
3051 if (vm_start > vma->vm_start)
3052 vm_start = 0;
3053 }
3054 return vm_start;
3055}
3056
3057static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3058{
3059 unsigned long vm_end = vma->vm_end;
3060
3061 if (vma->vm_flags & VM_GROWSUP) {
3062 vm_end += stack_guard_gap;
3063 if (vm_end < vma->vm_end)
3064 vm_end = -PAGE_SIZE;
3065 }
3066 return vm_end;
3067}
3068
1da177e4
LT
3069static inline unsigned long vma_pages(struct vm_area_struct *vma)
3070{
3071 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3072}
3073
640708a2
PE
3074/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3075static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3076 unsigned long vm_start, unsigned long vm_end)
3077{
dc8635b2 3078 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
3079
3080 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3081 vma = NULL;
3082
3083 return vma;
3084}
3085
017b1660
MK
3086static inline bool range_in_vma(struct vm_area_struct *vma,
3087 unsigned long start, unsigned long end)
3088{
3089 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3090}
3091
bad849b3 3092#ifdef CONFIG_MMU
804af2cf 3093pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 3094void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
3095#else
3096static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3097{
3098 return __pgprot(0);
3099}
64e45507
PF
3100static inline void vma_set_page_prot(struct vm_area_struct *vma)
3101{
3102 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3103}
bad849b3
DH
3104#endif
3105
295992fb
CK
3106void vma_set_file(struct vm_area_struct *vma, struct file *file);
3107
5877231f 3108#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 3109unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
3110 unsigned long start, unsigned long end);
3111#endif
3112
deceb6cd 3113struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
3114int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3115 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
3116int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3117 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 3118int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
3119int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3120 struct page **pages, unsigned long *num);
a667d745
SJ
3121int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3122 unsigned long num);
3123int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3124 unsigned long num);
ae2b01f3 3125vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 3126 unsigned long pfn);
f5e6d1d5
MW
3127vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3128 unsigned long pfn, pgprot_t pgprot);
5d747637 3129vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 3130 pfn_t pfn);
574c5b3d
TH
3131vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
3132 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
3133vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3134 unsigned long addr, pfn_t pfn);
b4cbb197
LT
3135int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3136
1c8f4220
SJ
3137static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3138 unsigned long addr, struct page *page)
3139{
3140 int err = vm_insert_page(vma, addr, page);
3141
3142 if (err == -ENOMEM)
3143 return VM_FAULT_OOM;
3144 if (err < 0 && err != -EBUSY)
3145 return VM_FAULT_SIGBUS;
3146
3147 return VM_FAULT_NOPAGE;
3148}
3149
f8f6ae5d
JG
3150#ifndef io_remap_pfn_range
3151static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3152 unsigned long addr, unsigned long pfn,
3153 unsigned long size, pgprot_t prot)
3154{
3155 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3156}
3157#endif
3158
d97baf94
SJ
3159static inline vm_fault_t vmf_error(int err)
3160{
3161 if (err == -ENOMEM)
3162 return VM_FAULT_OOM;
3163 return VM_FAULT_SIGBUS;
3164}
3165
df06b37f
KB
3166struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3167 unsigned int foll_flags);
240aadee 3168
2b740303 3169static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3170{
3171 if (vm_fault & VM_FAULT_OOM)
3172 return -ENOMEM;
3173 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3174 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3175 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3176 return -EFAULT;
3177 return 0;
3178}
3179
a7f22660
DH
3180/*
3181 * Indicates for which pages that are write-protected in the page table,
3182 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
3183 * GUP pin will remain consistent with the pages mapped into the page tables
3184 * of the MM.
3185 *
3186 * Temporary unmapping of PageAnonExclusive() pages or clearing of
3187 * PageAnonExclusive() has to protect against concurrent GUP:
3188 * * Ordinary GUP: Using the PT lock
3189 * * GUP-fast and fork(): mm->write_protect_seq
088b8aa5
DH
3190 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
3191 * page_try_share_anon_rmap()
a7f22660
DH
3192 *
3193 * Must be called with the (sub)page that's actually referenced via the
3194 * page table entry, which might not necessarily be the head page for a
3195 * PTE-mapped THP.
84209e87
DH
3196 *
3197 * If the vma is NULL, we're coming from the GUP-fast path and might have
3198 * to fallback to the slow path just to lookup the vma.
a7f22660 3199 */
84209e87
DH
3200static inline bool gup_must_unshare(struct vm_area_struct *vma,
3201 unsigned int flags, struct page *page)
a7f22660
DH
3202{
3203 /*
3204 * FOLL_WRITE is implicitly handled correctly as the page table entry
3205 * has to be writable -- and if it references (part of) an anonymous
3206 * folio, that part is required to be marked exclusive.
3207 */
3208 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
3209 return false;
3210 /*
3211 * Note: PageAnon(page) is stable until the page is actually getting
3212 * freed.
3213 */
84209e87
DH
3214 if (!PageAnon(page)) {
3215 /*
3216 * We only care about R/O long-term pining: R/O short-term
3217 * pinning does not have the semantics to observe successive
3218 * changes through the process page tables.
3219 */
3220 if (!(flags & FOLL_LONGTERM))
3221 return false;
3222
3223 /* We really need the vma ... */
3224 if (!vma)
3225 return true;
3226
3227 /*
3228 * ... because we only care about writable private ("COW")
3229 * mappings where we have to break COW early.
3230 */
3231 return is_cow_mapping(vma->vm_flags);
3232 }
088b8aa5
DH
3233
3234 /* Paired with a memory barrier in page_try_share_anon_rmap(). */
3235 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
3236 smp_rmb();
3237
a7f22660
DH
3238 /*
3239 * Note that PageKsm() pages cannot be exclusive, and consequently,
3240 * cannot get pinned.
3241 */
3242 return !PageAnonExclusive(page);
3243}
3244
474098ed
DH
3245/*
3246 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3247 * a (NUMA hinting) fault is required.
3248 */
3249static inline bool gup_can_follow_protnone(unsigned int flags)
3250{
3251 /*
3252 * FOLL_FORCE has to be able to make progress even if the VMA is
3253 * inaccessible. Further, FOLL_FORCE access usually does not represent
3254 * application behaviour and we should avoid triggering NUMA hinting
3255 * faults.
3256 */
3257 return flags & FOLL_FORCE;
3258}
3259
8b1e0f81 3260typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3261extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3262 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3263extern int apply_to_existing_page_range(struct mm_struct *mm,
3264 unsigned long address, unsigned long size,
3265 pte_fn_t fn, void *data);
aee16b3c 3266
5749fcc5 3267extern void __init init_mem_debugging_and_hardening(void);
8823b1db 3268#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3269extern void __kernel_poison_pages(struct page *page, int numpages);
3270extern void __kernel_unpoison_pages(struct page *page, int numpages);
3271extern bool _page_poisoning_enabled_early;
3272DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3273static inline bool page_poisoning_enabled(void)
3274{
3275 return _page_poisoning_enabled_early;
3276}
3277/*
3278 * For use in fast paths after init_mem_debugging() has run, or when a
3279 * false negative result is not harmful when called too early.
3280 */
3281static inline bool page_poisoning_enabled_static(void)
3282{
3283 return static_branch_unlikely(&_page_poisoning_enabled);
3284}
3285static inline void kernel_poison_pages(struct page *page, int numpages)
3286{
3287 if (page_poisoning_enabled_static())
3288 __kernel_poison_pages(page, numpages);
3289}
3290static inline void kernel_unpoison_pages(struct page *page, int numpages)
3291{
3292 if (page_poisoning_enabled_static())
3293 __kernel_unpoison_pages(page, numpages);
3294}
8823b1db
LA
3295#else
3296static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3297static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3298static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3299static inline void kernel_poison_pages(struct page *page, int numpages) { }
3300static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3301#endif
3302
51cba1eb 3303DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3304static inline bool want_init_on_alloc(gfp_t flags)
3305{
51cba1eb
KC
3306 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3307 &init_on_alloc))
6471384a
AP
3308 return true;
3309 return flags & __GFP_ZERO;
3310}
3311
51cba1eb 3312DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3313static inline bool want_init_on_free(void)
3314{
51cba1eb
KC
3315 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3316 &init_on_free);
6471384a
AP
3317}
3318
8e57f8ac
VB
3319extern bool _debug_pagealloc_enabled_early;
3320DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3321
3322static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3323{
3324 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3325 _debug_pagealloc_enabled_early;
3326}
3327
3328/*
3329 * For use in fast paths after init_debug_pagealloc() has run, or when a
3330 * false negative result is not harmful when called too early.
3331 */
3332static inline bool debug_pagealloc_enabled_static(void)
031bc574 3333{
96a2b03f
VB
3334 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3335 return false;
3336
3337 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3338}
3339
5d6ad668 3340#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3341/*
5d6ad668
MR
3342 * To support DEBUG_PAGEALLOC architecture must ensure that
3343 * __kernel_map_pages() never fails
c87cbc1f 3344 */
d6332692
RE
3345extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3346
77bc7fd6
MR
3347static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3348{
3349 if (debug_pagealloc_enabled_static())
3350 __kernel_map_pages(page, numpages, 1);
3351}
3352
3353static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3354{
3355 if (debug_pagealloc_enabled_static())
3356 __kernel_map_pages(page, numpages, 0);
3357}
5d6ad668 3358#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3359static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3360static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3361#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3362
a6c19dfe 3363#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3364extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3365extern int in_gate_area_no_mm(unsigned long addr);
3366extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3367#else
a6c19dfe
AL
3368static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3369{
3370 return NULL;
3371}
3372static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3373static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3374{
3375 return 0;
3376}
1da177e4
LT
3377#endif /* __HAVE_ARCH_GATE_AREA */
3378
44a70ade
MH
3379extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3380
146732ce
JT
3381#ifdef CONFIG_SYSCTL
3382extern int sysctl_drop_caches;
32927393
CH
3383int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3384 loff_t *);
146732ce
JT
3385#endif
3386
cb731d6c 3387void drop_slab(void);
9d0243bc 3388
7a9166e3
LY
3389#ifndef CONFIG_MMU
3390#define randomize_va_space 0
3391#else
a62eaf15 3392extern int randomize_va_space;
7a9166e3 3393#endif
a62eaf15 3394
045e72ac 3395const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3396#ifdef CONFIG_MMU
03252919 3397void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3398#else
3399static inline void print_vma_addr(char *prefix, unsigned long rip)
3400{
3401}
3402#endif
e6e5494c 3403
35fd1eb1 3404void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3405struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3406 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3407 struct dev_pagemap *pgmap);
7b09f5af
FC
3408void pmd_init(void *addr);
3409void pud_init(void *addr);
29c71111 3410pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3411p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3412pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3413pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3414pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3415 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3416void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3417struct vmem_altmap;
56993b4e
AK
3418void *vmemmap_alloc_block_buf(unsigned long size, int node,
3419 struct vmem_altmap *altmap);
8f6aac41 3420void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2045a3b8
FC
3421void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3422 unsigned long addr, unsigned long next);
3423int vmemmap_check_pmd(pmd_t *pmd, int node,
3424 unsigned long addr, unsigned long next);
0aad818b 3425int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3426 int node, struct vmem_altmap *altmap);
2045a3b8
FC
3427int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3428 int node, struct vmem_altmap *altmap);
7b73d978
CH
3429int vmemmap_populate(unsigned long start, unsigned long end, int node,
3430 struct vmem_altmap *altmap);
c2b91e2e 3431void vmemmap_populate_print_last(void);
0197518c 3432#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3433void vmemmap_free(unsigned long start, unsigned long end,
3434 struct vmem_altmap *altmap);
0197518c 3435#endif
46723bfa 3436void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3437 unsigned long nr_pages);
6a46079c 3438
82ba011b
AK
3439enum mf_flags {
3440 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3441 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3442 MF_MUST_KILL = 1 << 2,
cf870c70 3443 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3444 MF_UNPOISON = 1 << 4,
67f22ba7 3445 MF_SW_SIMULATED = 1 << 5,
38f6d293 3446 MF_NO_RETRY = 1 << 6,
82ba011b 3447};
c36e2024
SR
3448int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3449 unsigned long count, int mf_flags);
83b57531 3450extern int memory_failure(unsigned long pfn, int flags);
06202231 3451extern void memory_failure_queue_kick(int cpu);
847ce401 3452extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3453extern int sysctl_memory_failure_early_kill;
3454extern int sysctl_memory_failure_recovery;
d0505e9f 3455extern void shake_page(struct page *p);
5844a486 3456extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3457extern int soft_offline_page(unsigned long pfn, int flags);
405ce051 3458#ifdef CONFIG_MEMORY_FAILURE
d302c239 3459extern void memory_failure_queue(unsigned long pfn, int flags);
e591ef7d
NH
3460extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3461 bool *migratable_cleared);
5033091d
NH
3462void num_poisoned_pages_inc(unsigned long pfn);
3463void num_poisoned_pages_sub(unsigned long pfn, long i);
405ce051 3464#else
d302c239
TL
3465static inline void memory_failure_queue(unsigned long pfn, int flags)
3466{
3467}
3468
e591ef7d
NH
3469static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3470 bool *migratable_cleared)
405ce051
NH
3471{
3472 return 0;
3473}
d027122d 3474
a46c9304 3475static inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
3476{
3477}
5033091d
NH
3478
3479static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3480{
3481}
3482#endif
3483
3484#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3485extern void memblk_nr_poison_inc(unsigned long pfn);
3486extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3487#else
3488static inline void memblk_nr_poison_inc(unsigned long pfn)
3489{
3490}
3491
3492static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3493{
3494}
405ce051 3495#endif
6a46079c 3496
03b122da
TL
3497#ifndef arch_memory_failure
3498static inline int arch_memory_failure(unsigned long pfn, int flags)
3499{
3500 return -ENXIO;
3501}
3502#endif
3503
3504#ifndef arch_is_platform_page
3505static inline bool arch_is_platform_page(u64 paddr)
3506{
3507 return false;
3508}
3509#endif
cc637b17
XX
3510
3511/*
3512 * Error handlers for various types of pages.
3513 */
cc3e2af4 3514enum mf_result {
cc637b17
XX
3515 MF_IGNORED, /* Error: cannot be handled */
3516 MF_FAILED, /* Error: handling failed */
3517 MF_DELAYED, /* Will be handled later */
3518 MF_RECOVERED, /* Successfully recovered */
3519};
3520
3521enum mf_action_page_type {
3522 MF_MSG_KERNEL,
3523 MF_MSG_KERNEL_HIGH_ORDER,
3524 MF_MSG_SLAB,
3525 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3526 MF_MSG_HUGE,
3527 MF_MSG_FREE_HUGE,
3528 MF_MSG_UNMAP_FAILED,
3529 MF_MSG_DIRTY_SWAPCACHE,
3530 MF_MSG_CLEAN_SWAPCACHE,
3531 MF_MSG_DIRTY_MLOCKED_LRU,
3532 MF_MSG_CLEAN_MLOCKED_LRU,
3533 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3534 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3535 MF_MSG_DIRTY_LRU,
3536 MF_MSG_CLEAN_LRU,
3537 MF_MSG_TRUNCATED_LRU,
3538 MF_MSG_BUDDY,
6100e34b 3539 MF_MSG_DAX,
5d1fd5dc 3540 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3541 MF_MSG_UNKNOWN,
3542};
3543
44b8f8bf
JY
3544/*
3545 * Sysfs entries for memory failure handling statistics.
3546 */
3547extern const struct attribute_group memory_failure_attr_group;
3548
47ad8475
AA
3549#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3550extern void clear_huge_page(struct page *page,
c79b57e4 3551 unsigned long addr_hint,
47ad8475
AA
3552 unsigned int pages_per_huge_page);
3553extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3554 unsigned long addr_hint,
3555 struct vm_area_struct *vma,
47ad8475 3556 unsigned int pages_per_huge_page);
fa4d75c1
MK
3557extern long copy_huge_page_from_user(struct page *dst_page,
3558 const void __user *usr_src,
810a56b9
MK
3559 unsigned int pages_per_huge_page,
3560 bool allow_pagefault);
2484ca9b
THV
3561
3562/**
3563 * vma_is_special_huge - Are transhuge page-table entries considered special?
3564 * @vma: Pointer to the struct vm_area_struct to consider
3565 *
3566 * Whether transhuge page-table entries are considered "special" following
3567 * the definition in vm_normal_page().
3568 *
3569 * Return: true if transhuge page-table entries should be considered special,
3570 * false otherwise.
3571 */
3572static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3573{
3574 return vma_is_dax(vma) || (vma->vm_file &&
3575 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3576}
3577
47ad8475
AA
3578#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3579
c0a32fc5
SG
3580#ifdef CONFIG_DEBUG_PAGEALLOC
3581extern unsigned int _debug_guardpage_minorder;
96a2b03f 3582DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3583
3584static inline unsigned int debug_guardpage_minorder(void)
3585{
3586 return _debug_guardpage_minorder;
3587}
3588
e30825f1
JK
3589static inline bool debug_guardpage_enabled(void)
3590{
96a2b03f 3591 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3592}
3593
c0a32fc5
SG
3594static inline bool page_is_guard(struct page *page)
3595{
e30825f1
JK
3596 if (!debug_guardpage_enabled())
3597 return false;
3598
3972f6bb 3599 return PageGuard(page);
c0a32fc5
SG
3600}
3601#else
3602static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3603static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3604static inline bool page_is_guard(struct page *page) { return false; }
3605#endif /* CONFIG_DEBUG_PAGEALLOC */
3606
f9872caf
CS
3607#if MAX_NUMNODES > 1
3608void __init setup_nr_node_ids(void);
3609#else
3610static inline void setup_nr_node_ids(void) {}
3611#endif
3612
010c164a
SL
3613extern int memcmp_pages(struct page *page1, struct page *page2);
3614
3615static inline int pages_identical(struct page *page1, struct page *page2)
3616{
3617 return !memcmp_pages(page1, page2);
3618}
3619
c5acad84
TH
3620#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3621unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3622 pgoff_t first_index, pgoff_t nr,
3623 pgoff_t bitmap_pgoff,
3624 unsigned long *bitmap,
3625 pgoff_t *start,
3626 pgoff_t *end);
3627
3628unsigned long wp_shared_mapping_range(struct address_space *mapping,
3629 pgoff_t first_index, pgoff_t nr);
3630#endif
3631
2374c09b
CH
3632extern int sysctl_nr_trim_pages;
3633
5bb1bb35 3634#ifdef CONFIG_PRINTK
8e7f37f2 3635void mem_dump_obj(void *object);
5bb1bb35
PM
3636#else
3637static inline void mem_dump_obj(void *object) {}
3638#endif
8e7f37f2 3639
22247efd
PX
3640/**
3641 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3642 * @seals: the seals to check
3643 * @vma: the vma to operate on
3644 *
3645 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3646 * the vma flags. Return 0 if check pass, or <0 for errors.
3647 */
3648static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3649{
3650 if (seals & F_SEAL_FUTURE_WRITE) {
3651 /*
3652 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3653 * "future write" seal active.
3654 */
3655 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3656 return -EPERM;
3657
3658 /*
3659 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3660 * MAP_SHARED and read-only, take care to not allow mprotect to
3661 * revert protections on such mappings. Do this only for shared
3662 * mappings. For private mappings, don't need to mask
3663 * VM_MAYWRITE as we still want them to be COW-writable.
3664 */
3665 if (vma->vm_flags & VM_SHARED)
1c71222e 3666 vm_flags_clear(vma, VM_MAYWRITE);
22247efd
PX
3667 }
3668
3669 return 0;
3670}
3671
9a10064f
CC
3672#ifdef CONFIG_ANON_VMA_NAME
3673int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
3674 unsigned long len_in,
3675 struct anon_vma_name *anon_name);
9a10064f
CC
3676#else
3677static inline int
3678madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 3679 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
3680 return 0;
3681}
3682#endif
3683
1da177e4 3684#endif /* _LINUX_MM_H */