mm/kasan: simplify and refine kasan_cache code
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
1da177e4
LT
32
33struct mempolicy;
34struct anon_vma;
bf181b9f 35struct anon_vma_chain;
e8edc6e0 36struct user_struct;
bce617ed 37struct pt_regs;
1da177e4 38
5ef64cc8
LT
39extern int sysctl_page_lock_unfairness;
40
597b7305
MH
41void init_mm_internals(void);
42
a9ee6cf5 43#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 44extern unsigned long max_mapnr;
fccc9987
JL
45
46static inline void set_max_mapnr(unsigned long limit)
47{
48 max_mapnr = limit;
49}
50#else
51static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
52#endif
53
ca79b0c2
AK
54extern atomic_long_t _totalram_pages;
55static inline unsigned long totalram_pages(void)
56{
57 return (unsigned long)atomic_long_read(&_totalram_pages);
58}
59
60static inline void totalram_pages_inc(void)
61{
62 atomic_long_inc(&_totalram_pages);
63}
64
65static inline void totalram_pages_dec(void)
66{
67 atomic_long_dec(&_totalram_pages);
68}
69
70static inline void totalram_pages_add(long count)
71{
72 atomic_long_add(count, &_totalram_pages);
73}
74
1da177e4 75extern void * high_memory;
1da177e4 76extern int page_cluster;
ea0ffd0c 77extern const int page_cluster_max;
1da177e4
LT
78
79#ifdef CONFIG_SYSCTL
80extern int sysctl_legacy_va_layout;
81#else
82#define sysctl_legacy_va_layout 0
83#endif
84
d07e2259
DC
85#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
86extern const int mmap_rnd_bits_min;
87extern const int mmap_rnd_bits_max;
88extern int mmap_rnd_bits __read_mostly;
89#endif
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
91extern const int mmap_rnd_compat_bits_min;
92extern const int mmap_rnd_compat_bits_max;
93extern int mmap_rnd_compat_bits __read_mostly;
94#endif
95
1da177e4 96#include <asm/page.h>
1da177e4 97#include <asm/processor.h>
1da177e4 98
d9344522
AK
99/*
100 * Architectures that support memory tagging (assigning tags to memory regions,
101 * embedding these tags into addresses that point to these memory regions, and
102 * checking that the memory and the pointer tags match on memory accesses)
103 * redefine this macro to strip tags from pointers.
f0953a1b 104 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
105 */
106#ifndef untagged_addr
107#define untagged_addr(addr) (addr)
108#endif
109
79442ed1
TC
110#ifndef __pa_symbol
111#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
112#endif
113
1dff8083
AB
114#ifndef page_to_virt
115#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
116#endif
117
568c5fe5
LA
118#ifndef lm_alias
119#define lm_alias(x) __va(__pa_symbol(x))
120#endif
121
593befa6
DD
122/*
123 * To prevent common memory management code establishing
124 * a zero page mapping on a read fault.
125 * This macro should be defined within <asm/pgtable.h>.
126 * s390 does this to prevent multiplexing of hardware bits
127 * related to the physical page in case of virtualization.
128 */
129#ifndef mm_forbids_zeropage
130#define mm_forbids_zeropage(X) (0)
131#endif
132
a4a3ede2
PT
133/*
134 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
135 * If an architecture decides to implement their own version of
136 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
137 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 138 */
5470dea4
AD
139#if BITS_PER_LONG == 64
140/* This function must be updated when the size of struct page grows above 80
141 * or reduces below 56. The idea that compiler optimizes out switch()
142 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 143 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
144 * this can result in several of the writes here being dropped.
145 */
146#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
147static inline void __mm_zero_struct_page(struct page *page)
148{
149 unsigned long *_pp = (void *)page;
150
151 /* Check that struct page is either 56, 64, 72, or 80 bytes */
152 BUILD_BUG_ON(sizeof(struct page) & 7);
153 BUILD_BUG_ON(sizeof(struct page) < 56);
154 BUILD_BUG_ON(sizeof(struct page) > 80);
155
156 switch (sizeof(struct page)) {
157 case 80:
df561f66
GS
158 _pp[9] = 0;
159 fallthrough;
5470dea4 160 case 72:
df561f66
GS
161 _pp[8] = 0;
162 fallthrough;
5470dea4 163 case 64:
df561f66
GS
164 _pp[7] = 0;
165 fallthrough;
5470dea4
AD
166 case 56:
167 _pp[6] = 0;
168 _pp[5] = 0;
169 _pp[4] = 0;
170 _pp[3] = 0;
171 _pp[2] = 0;
172 _pp[1] = 0;
173 _pp[0] = 0;
174 }
175}
176#else
a4a3ede2
PT
177#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
178#endif
179
ea606cf5
AR
180/*
181 * Default maximum number of active map areas, this limits the number of vmas
182 * per mm struct. Users can overwrite this number by sysctl but there is a
183 * problem.
184 *
185 * When a program's coredump is generated as ELF format, a section is created
186 * per a vma. In ELF, the number of sections is represented in unsigned short.
187 * This means the number of sections should be smaller than 65535 at coredump.
188 * Because the kernel adds some informative sections to a image of program at
189 * generating coredump, we need some margin. The number of extra sections is
190 * 1-3 now and depends on arch. We use "5" as safe margin, here.
191 *
192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193 * not a hard limit any more. Although some userspace tools can be surprised by
194 * that.
195 */
196#define MAPCOUNT_ELF_CORE_MARGIN (5)
197#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198
199extern int sysctl_max_map_count;
200
c9b1d098 201extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 202extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 203
49f0ce5f
JM
204extern int sysctl_overcommit_memory;
205extern int sysctl_overcommit_ratio;
206extern unsigned long sysctl_overcommit_kbytes;
207
32927393
CH
208int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
209 loff_t *);
210int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
211 loff_t *);
56f3547b
FT
212int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
213 loff_t *);
49f0ce5f 214
1cfcee72 215#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 216#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 217#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
218#else
219#define nth_page(page,n) ((page) + (n))
659508f9 220#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 221#endif
1da177e4 222
27ac792c
AR
223/* to align the pointer to the (next) page boundary */
224#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
225
335e52c2
DG
226/* to align the pointer to the (prev) page boundary */
227#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
228
0fa73b86 229/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 230#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 231
f86196ea 232#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
233static inline struct folio *lru_to_folio(struct list_head *head)
234{
235 return list_entry((head)->prev, struct folio, lru);
236}
f86196ea 237
5748fbc5
KW
238void setup_initial_init_mm(void *start_code, void *end_code,
239 void *end_data, void *brk);
240
1da177e4
LT
241/*
242 * Linux kernel virtual memory manager primitives.
243 * The idea being to have a "virtual" mm in the same way
244 * we have a virtual fs - giving a cleaner interface to the
245 * mm details, and allowing different kinds of memory mappings
246 * (from shared memory to executable loading to arbitrary
247 * mmap() functions).
248 */
249
490fc053 250struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
251struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
252void vm_area_free(struct vm_area_struct *);
c43692e8 253
1da177e4 254#ifndef CONFIG_MMU
8feae131
DH
255extern struct rb_root nommu_region_tree;
256extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
257
258extern unsigned int kobjsize(const void *objp);
259#endif
260
261/*
605d9288 262 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 263 * When changing, update also include/trace/events/mmflags.h
1da177e4 264 */
cc2383ec
KK
265#define VM_NONE 0x00000000
266
1da177e4
LT
267#define VM_READ 0x00000001 /* currently active flags */
268#define VM_WRITE 0x00000002
269#define VM_EXEC 0x00000004
270#define VM_SHARED 0x00000008
271
7e2cff42 272/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
273#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
274#define VM_MAYWRITE 0x00000020
275#define VM_MAYEXEC 0x00000040
276#define VM_MAYSHARE 0x00000080
277
278#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 279#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 280#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 281#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 282
1da177e4
LT
283#define VM_LOCKED 0x00002000
284#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
285
286 /* Used by sys_madvise() */
287#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
288#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
289
290#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
291#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 292#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 293#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 294#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 295#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 296#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 297#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 298#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 299#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 300
d9104d1c
CG
301#ifdef CONFIG_MEM_SOFT_DIRTY
302# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
303#else
304# define VM_SOFTDIRTY 0
305#endif
306
b379d790 307#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
308#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
309#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 310#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 311
63c17fb8
DH
312#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
313#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
314#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
315#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
316#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 317#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
318#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
319#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
320#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
321#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 322#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
323#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
324
5212213a 325#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
326# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
327# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 328# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
329# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
330# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
331#ifdef CONFIG_PPC
332# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
333#else
334# define VM_PKEY_BIT4 0
8f62c883 335#endif
5212213a
RP
336#endif /* CONFIG_ARCH_HAS_PKEYS */
337
338#if defined(CONFIG_X86)
339# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
340#elif defined(CONFIG_PPC)
341# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
342#elif defined(CONFIG_PARISC)
343# define VM_GROWSUP VM_ARCH_1
344#elif defined(CONFIG_IA64)
345# define VM_GROWSUP VM_ARCH_1
74a04967
KA
346#elif defined(CONFIG_SPARC64)
347# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
348# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
349#elif defined(CONFIG_ARM64)
350# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
351# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
352#elif !defined(CONFIG_MMU)
353# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
354#endif
355
9f341931
CM
356#if defined(CONFIG_ARM64_MTE)
357# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
358# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
359#else
360# define VM_MTE VM_NONE
361# define VM_MTE_ALLOWED VM_NONE
362#endif
363
cc2383ec
KK
364#ifndef VM_GROWSUP
365# define VM_GROWSUP VM_NONE
366#endif
367
7677f7fd
AR
368#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
369# define VM_UFFD_MINOR_BIT 37
370# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
371#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
372# define VM_UFFD_MINOR VM_NONE
373#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
374
a8bef8ff
MG
375/* Bits set in the VMA until the stack is in its final location */
376#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
377
c62da0c3
AK
378#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
379
380/* Common data flag combinations */
381#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
382 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
383#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
384 VM_MAYWRITE | VM_MAYEXEC)
385#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387
388#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
389#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
390#endif
391
1da177e4
LT
392#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
393#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
394#endif
395
396#ifdef CONFIG_STACK_GROWSUP
30bdbb78 397#define VM_STACK VM_GROWSUP
1da177e4 398#else
30bdbb78 399#define VM_STACK VM_GROWSDOWN
1da177e4
LT
400#endif
401
30bdbb78
KK
402#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
403
6cb4d9a2
AK
404/* VMA basic access permission flags */
405#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
406
407
b291f000 408/*
78f11a25 409 * Special vmas that are non-mergable, non-mlock()able.
b291f000 410 */
9050d7eb 411#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 412
b4443772
AK
413/* This mask prevents VMA from being scanned with khugepaged */
414#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
415
a0715cc2
AT
416/* This mask defines which mm->def_flags a process can inherit its parent */
417#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
418
de60f5f1
EM
419/* This mask is used to clear all the VMA flags used by mlock */
420#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
421
2c2d57b5
KA
422/* Arch-specific flags to clear when updating VM flags on protection change */
423#ifndef VM_ARCH_CLEAR
424# define VM_ARCH_CLEAR VM_NONE
425#endif
426#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
427
1da177e4
LT
428/*
429 * mapping from the currently active vm_flags protection bits (the
430 * low four bits) to a page protection mask..
431 */
1da177e4 432
dde16072
PX
433/*
434 * The default fault flags that should be used by most of the
435 * arch-specific page fault handlers.
436 */
437#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
438 FAULT_FLAG_KILLABLE | \
439 FAULT_FLAG_INTERRUPTIBLE)
dde16072 440
4064b982
PX
441/**
442 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 443 * @flags: Fault flags.
4064b982
PX
444 *
445 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 446 * the mmap_lock for too long a time when waiting for another condition
4064b982 447 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
448 * mmap_lock in the first round to avoid potential starvation of other
449 * processes that would also want the mmap_lock.
4064b982
PX
450 *
451 * Return: true if the page fault allows retry and this is the first
452 * attempt of the fault handling; false otherwise.
453 */
da2f5eb3 454static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
455{
456 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
457 (!(flags & FAULT_FLAG_TRIED));
458}
459
282a8e03
RZ
460#define FAULT_FLAG_TRACE \
461 { FAULT_FLAG_WRITE, "WRITE" }, \
462 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
463 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
464 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
465 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
466 { FAULT_FLAG_TRIED, "TRIED" }, \
467 { FAULT_FLAG_USER, "USER" }, \
468 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
469 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
470 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 471
54cb8821 472/*
11192337 473 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
474 * ->fault function. The vma's ->fault is responsible for returning a bitmask
475 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 476 *
c20cd45e
MH
477 * MM layer fills up gfp_mask for page allocations but fault handler might
478 * alter it if its implementation requires a different allocation context.
479 *
9b4bdd2f 480 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 481 */
d0217ac0 482struct vm_fault {
5857c920 483 const struct {
742d3372
WD
484 struct vm_area_struct *vma; /* Target VMA */
485 gfp_t gfp_mask; /* gfp mask to be used for allocations */
486 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
487 unsigned long address; /* Faulting virtual address - masked */
488 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 489 };
da2f5eb3 490 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 491 * XXX: should really be 'const' */
82b0f8c3 492 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 493 * the 'address' */
a2d58167
DJ
494 pud_t *pud; /* Pointer to pud entry matching
495 * the 'address'
496 */
5db4f15c
YS
497 union {
498 pte_t orig_pte; /* Value of PTE at the time of fault */
499 pmd_t orig_pmd; /* Value of PMD at the time of fault,
500 * used by PMD fault only.
501 */
502 };
d0217ac0 503
3917048d 504 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 505 struct page *page; /* ->fault handlers should return a
83c54070 506 * page here, unless VM_FAULT_NOPAGE
d0217ac0 507 * is set (which is also implied by
83c54070 508 * VM_FAULT_ERROR).
d0217ac0 509 */
82b0f8c3 510 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
511 pte_t *pte; /* Pointer to pte entry matching
512 * the 'address'. NULL if the page
513 * table hasn't been allocated.
514 */
515 spinlock_t *ptl; /* Page table lock.
516 * Protects pte page table if 'pte'
517 * is not NULL, otherwise pmd.
518 */
7267ec00 519 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
520 * vm_ops->map_pages() sets up a page
521 * table from atomic context.
7267ec00
KS
522 * do_fault_around() pre-allocates
523 * page table to avoid allocation from
524 * atomic context.
525 */
54cb8821 526};
1da177e4 527
c791ace1
DJ
528/* page entry size for vm->huge_fault() */
529enum page_entry_size {
530 PE_SIZE_PTE = 0,
531 PE_SIZE_PMD,
532 PE_SIZE_PUD,
533};
534
1da177e4
LT
535/*
536 * These are the virtual MM functions - opening of an area, closing and
537 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 538 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
539 */
540struct vm_operations_struct {
541 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
542 /**
543 * @close: Called when the VMA is being removed from the MM.
544 * Context: User context. May sleep. Caller holds mmap_lock.
545 */
1da177e4 546 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
547 /* Called any time before splitting to check if it's allowed */
548 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 549 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
550 /*
551 * Called by mprotect() to make driver-specific permission
552 * checks before mprotect() is finalised. The VMA must not
3e0ee843 553 * be modified. Returns 0 if mprotect() can proceed.
95bb7c42
SC
554 */
555 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
556 unsigned long end, unsigned long newflags);
1c8f4220
SJ
557 vm_fault_t (*fault)(struct vm_fault *vmf);
558 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
559 enum page_entry_size pe_size);
f9ce0be7 560 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 561 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 562 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
563
564 /* notification that a previously read-only page is about to become
565 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 566 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 567
dd906184 568 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 569 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 570
28b2ee20 571 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
572 * for use by special VMAs. See also generic_access_phys() for a generic
573 * implementation useful for any iomem mapping.
28b2ee20
RR
574 */
575 int (*access)(struct vm_area_struct *vma, unsigned long addr,
576 void *buf, int len, int write);
78d683e8
AL
577
578 /* Called by the /proc/PID/maps code to ask the vma whether it
579 * has a special name. Returning non-NULL will also cause this
580 * vma to be dumped unconditionally. */
581 const char *(*name)(struct vm_area_struct *vma);
582
1da177e4 583#ifdef CONFIG_NUMA
a6020ed7
LS
584 /*
585 * set_policy() op must add a reference to any non-NULL @new mempolicy
586 * to hold the policy upon return. Caller should pass NULL @new to
587 * remove a policy and fall back to surrounding context--i.e. do not
588 * install a MPOL_DEFAULT policy, nor the task or system default
589 * mempolicy.
590 */
1da177e4 591 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
592
593 /*
594 * get_policy() op must add reference [mpol_get()] to any policy at
595 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
596 * in mm/mempolicy.c will do this automatically.
597 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 598 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
599 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
600 * must return NULL--i.e., do not "fallback" to task or system default
601 * policy.
602 */
1da177e4
LT
603 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
604 unsigned long addr);
605#endif
667a0a06
DV
606 /*
607 * Called by vm_normal_page() for special PTEs to find the
608 * page for @addr. This is useful if the default behavior
609 * (using pte_page()) would not find the correct page.
610 */
611 struct page *(*find_special_page)(struct vm_area_struct *vma,
612 unsigned long addr);
1da177e4
LT
613};
614
027232da
KS
615static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
616{
bfd40eaf
KS
617 static const struct vm_operations_struct dummy_vm_ops = {};
618
a670468f 619 memset(vma, 0, sizeof(*vma));
027232da 620 vma->vm_mm = mm;
bfd40eaf 621 vma->vm_ops = &dummy_vm_ops;
027232da
KS
622 INIT_LIST_HEAD(&vma->anon_vma_chain);
623}
624
bfd40eaf
KS
625static inline void vma_set_anonymous(struct vm_area_struct *vma)
626{
627 vma->vm_ops = NULL;
628}
629
43675e6f
YS
630static inline bool vma_is_anonymous(struct vm_area_struct *vma)
631{
632 return !vma->vm_ops;
633}
634
222100ee
AK
635static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
636{
637 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
638
639 if (!maybe_stack)
640 return false;
641
642 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
643 VM_STACK_INCOMPLETE_SETUP)
644 return true;
645
646 return false;
647}
648
7969f226
AK
649static inline bool vma_is_foreign(struct vm_area_struct *vma)
650{
651 if (!current->mm)
652 return true;
653
654 if (current->mm != vma->vm_mm)
655 return true;
656
657 return false;
658}
3122e80e
AK
659
660static inline bool vma_is_accessible(struct vm_area_struct *vma)
661{
6cb4d9a2 662 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
663}
664
f39af059
MWO
665static inline
666struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
667{
668 return mas_find(&vmi->mas, max);
669}
670
671static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
672{
673 /*
674 * Uses vma_find() to get the first VMA when the iterator starts.
675 * Calling mas_next() could skip the first entry.
676 */
677 return vma_find(vmi, ULONG_MAX);
678}
679
680static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
681{
682 return mas_prev(&vmi->mas, 0);
683}
684
685static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
686{
687 return vmi->mas.index;
688}
689
690#define for_each_vma(__vmi, __vma) \
691 while (((__vma) = vma_next(&(__vmi))) != NULL)
692
693/* The MM code likes to work with exclusive end addresses */
694#define for_each_vma_range(__vmi, __vma, __end) \
695 while (((__vma) = vma_find(&(__vmi), (__end) - 1)) != NULL)
696
43675e6f
YS
697#ifdef CONFIG_SHMEM
698/*
699 * The vma_is_shmem is not inline because it is used only by slow
700 * paths in userfault.
701 */
702bool vma_is_shmem(struct vm_area_struct *vma);
d09e8ca6 703bool vma_is_anon_shmem(struct vm_area_struct *vma);
43675e6f
YS
704#else
705static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
d09e8ca6 706static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
43675e6f
YS
707#endif
708
709int vma_is_stack_for_current(struct vm_area_struct *vma);
710
8b11ec1b
LT
711/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
712#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
713
1da177e4
LT
714struct mmu_gather;
715struct inode;
716
5bf34d7c
MWO
717static inline unsigned int compound_order(struct page *page)
718{
719 if (!PageHead(page))
720 return 0;
721 return page[1].compound_order;
722}
723
724/**
725 * folio_order - The allocation order of a folio.
726 * @folio: The folio.
727 *
728 * A folio is composed of 2^order pages. See get_order() for the definition
729 * of order.
730 *
731 * Return: The order of the folio.
732 */
733static inline unsigned int folio_order(struct folio *folio)
734{
c3a15bff
MWO
735 if (!folio_test_large(folio))
736 return 0;
737 return folio->_folio_order;
5bf34d7c
MWO
738}
739
71e3aac0 740#include <linux/huge_mm.h>
1da177e4
LT
741
742/*
743 * Methods to modify the page usage count.
744 *
745 * What counts for a page usage:
746 * - cache mapping (page->mapping)
747 * - private data (page->private)
748 * - page mapped in a task's page tables, each mapping
749 * is counted separately
750 *
751 * Also, many kernel routines increase the page count before a critical
752 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
753 */
754
755/*
da6052f7 756 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 757 */
7c8ee9a8
NP
758static inline int put_page_testzero(struct page *page)
759{
fe896d18
JK
760 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
761 return page_ref_dec_and_test(page);
7c8ee9a8 762}
1da177e4 763
b620f633
MWO
764static inline int folio_put_testzero(struct folio *folio)
765{
766 return put_page_testzero(&folio->page);
767}
768
1da177e4 769/*
7c8ee9a8
NP
770 * Try to grab a ref unless the page has a refcount of zero, return false if
771 * that is the case.
8e0861fa
AK
772 * This can be called when MMU is off so it must not access
773 * any of the virtual mappings.
1da177e4 774 */
c2530328 775static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 776{
fe896d18 777 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 778}
1da177e4 779
53df8fdc 780extern int page_is_ram(unsigned long pfn);
124fe20d
DW
781
782enum {
783 REGION_INTERSECTS,
784 REGION_DISJOINT,
785 REGION_MIXED,
786};
787
1c29f25b
TK
788int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
789 unsigned long desc);
53df8fdc 790
48667e7a 791/* Support for virtually mapped pages */
b3bdda02
CL
792struct page *vmalloc_to_page(const void *addr);
793unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 794
0738c4bb
PM
795/*
796 * Determine if an address is within the vmalloc range
797 *
798 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
799 * is no special casing required.
800 */
9bd3bb67
AK
801
802#ifndef is_ioremap_addr
803#define is_ioremap_addr(x) is_vmalloc_addr(x)
804#endif
805
81ac3ad9 806#ifdef CONFIG_MMU
186525bd 807extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
808extern int is_vmalloc_or_module_addr(const void *x);
809#else
186525bd
IM
810static inline bool is_vmalloc_addr(const void *x)
811{
812 return false;
813}
934831d0 814static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
815{
816 return 0;
817}
818#endif
9e2779fa 819
74e8ee47
MWO
820/*
821 * How many times the entire folio is mapped as a single unit (eg by a
822 * PMD or PUD entry). This is probably not what you want, except for
cb67f428
HD
823 * debugging purposes - it does not include PTE-mapped sub-pages; look
824 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
74e8ee47
MWO
825 */
826static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 827{
74e8ee47
MWO
828 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
829 return atomic_read(folio_mapcount_ptr(folio)) + 1;
6dc5ea16
JH
830}
831
6988f31d
KK
832/*
833 * Mapcount of compound page as a whole, does not include mapped sub-pages.
cb67f428 834 * Must be called only on head of compound page.
6988f31d 835 */
cb67f428 836static inline int head_compound_mapcount(struct page *head)
53f9263b 837{
cb67f428
HD
838 return atomic_read(compound_mapcount_ptr(head)) + 1;
839}
840
4b51634c
HD
841/*
842 * If a 16GB hugetlb page were mapped by PTEs of all of its 4kB sub-pages,
843 * its subpages_mapcount would be 0x400000: choose the COMPOUND_MAPPED bit
844 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
845 * leaves subpages_mapcount at 0, but avoid surprise if it participates later.
6988f31d 846 */
4b51634c
HD
847#define COMPOUND_MAPPED 0x800000
848#define SUBPAGES_MAPPED (COMPOUND_MAPPED - 1)
849
cb67f428 850/*
be5ef2d9 851 * Number of sub-pages mapped by PTE, does not include compound mapcount.
cb67f428
HD
852 * Must be called only on head of compound page.
853 */
854static inline int head_subpages_mapcount(struct page *head)
53f9263b 855{
4b51634c 856 return atomic_read(subpages_mapcount_ptr(head)) & SUBPAGES_MAPPED;
53f9263b
KS
857}
858
70b50f94
AA
859/*
860 * The atomic page->_mapcount, starts from -1: so that transitions
861 * both from it and to it can be tracked, using atomic_inc_and_test
862 * and atomic_add_negative(-1).
863 */
22b751c3 864static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
865{
866 atomic_set(&(page)->_mapcount, -1);
867}
868
6988f31d
KK
869/*
870 * Mapcount of 0-order page; when compound sub-page, includes
cb67f428 871 * compound_mapcount of compound_head of page.
6988f31d
KK
872 *
873 * Result is undefined for pages which cannot be mapped into userspace.
874 * For example SLAB or special types of pages. See function page_has_type().
875 * They use this place in struct page differently.
876 */
70b50f94
AA
877static inline int page_mapcount(struct page *page)
878{
cb67f428 879 int mapcount = atomic_read(&page->_mapcount) + 1;
b20ce5e0 880
cb67f428
HD
881 if (likely(!PageCompound(page)))
882 return mapcount;
883 page = compound_head(page);
884 return head_compound_mapcount(page) + mapcount;
b20ce5e0
KS
885}
886
be5ef2d9 887int total_compound_mapcount(struct page *head);
4ba1119c 888
cb67f428
HD
889/**
890 * folio_mapcount() - Calculate the number of mappings of this folio.
891 * @folio: The folio.
892 *
893 * A large folio tracks both how many times the entire folio is mapped,
894 * and how many times each individual page in the folio is mapped.
895 * This function calculates the total number of times the folio is
896 * mapped.
897 *
898 * Return: The number of times this folio is mapped.
899 */
900static inline int folio_mapcount(struct folio *folio)
4ba1119c 901{
cb67f428
HD
902 if (likely(!folio_test_large(folio)))
903 return atomic_read(&folio->_mapcount) + 1;
be5ef2d9 904 return total_compound_mapcount(&folio->page);
4ba1119c
MWO
905}
906
b20ce5e0
KS
907static inline int total_mapcount(struct page *page)
908{
be5ef2d9
HD
909 if (likely(!PageCompound(page)))
910 return atomic_read(&page->_mapcount) + 1;
911 return total_compound_mapcount(compound_head(page));
912}
913
914static inline bool folio_large_is_mapped(struct folio *folio)
915{
4b51634c
HD
916 /*
917 * Reading folio_mapcount_ptr() below could be omitted if hugetlb
918 * participated in incrementing subpages_mapcount when compound mapped.
919 */
920 return atomic_read(folio_subpages_mapcount_ptr(folio)) > 0 ||
921 atomic_read(folio_mapcount_ptr(folio)) >= 0;
cb67f428
HD
922}
923
924/**
925 * folio_mapped - Is this folio mapped into userspace?
926 * @folio: The folio.
927 *
928 * Return: True if any page in this folio is referenced by user page tables.
929 */
930static inline bool folio_mapped(struct folio *folio)
931{
be5ef2d9
HD
932 if (likely(!folio_test_large(folio)))
933 return atomic_read(&folio->_mapcount) >= 0;
934 return folio_large_is_mapped(folio);
935}
936
937/*
938 * Return true if this page is mapped into pagetables.
939 * For compound page it returns true if any sub-page of compound page is mapped,
940 * even if this particular sub-page is not itself mapped by any PTE or PMD.
941 */
942static inline bool page_mapped(struct page *page)
943{
944 if (likely(!PageCompound(page)))
945 return atomic_read(&page->_mapcount) >= 0;
946 return folio_large_is_mapped(page_folio(page));
70b50f94
AA
947}
948
b49af68f
CL
949static inline struct page *virt_to_head_page(const void *x)
950{
951 struct page *page = virt_to_page(x);
ccaafd7f 952
1d798ca3 953 return compound_head(page);
b49af68f
CL
954}
955
7d4203c1
VB
956static inline struct folio *virt_to_folio(const void *x)
957{
958 struct page *page = virt_to_page(x);
959
960 return page_folio(page);
961}
962
8d29c703 963void __folio_put(struct folio *folio);
ddc58f27 964
1d7ea732 965void put_pages_list(struct list_head *pages);
1da177e4 966
8dfcc9ba 967void split_page(struct page *page, unsigned int order);
715cbfd6 968void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 969
a1554c00
ML
970unsigned long nr_free_buffer_pages(void);
971
33f2ef89
AW
972/*
973 * Compound pages have a destructor function. Provide a
974 * prototype for that function and accessor functions.
f1e61557 975 * These are _only_ valid on the head of a compound page.
33f2ef89 976 */
f1e61557
KS
977typedef void compound_page_dtor(struct page *);
978
979/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
980enum compound_dtor_id {
981 NULL_COMPOUND_DTOR,
982 COMPOUND_PAGE_DTOR,
983#ifdef CONFIG_HUGETLB_PAGE
984 HUGETLB_PAGE_DTOR,
9a982250
KS
985#endif
986#ifdef CONFIG_TRANSPARENT_HUGEPAGE
987 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
988#endif
989 NR_COMPOUND_DTORS,
990};
ae70eddd 991extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
992
993static inline void set_compound_page_dtor(struct page *page,
f1e61557 994 enum compound_dtor_id compound_dtor)
33f2ef89 995{
f1e61557
KS
996 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
997 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
998}
999
9fd33058
SK
1000static inline void folio_set_compound_dtor(struct folio *folio,
1001 enum compound_dtor_id compound_dtor)
1002{
1003 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1004 folio->_folio_dtor = compound_dtor;
1005}
1006
5375336c 1007void destroy_large_folio(struct folio *folio);
33f2ef89 1008
bac3cf4d 1009static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
1010{
1011 return atomic_read(compound_pincount_ptr(head));
1012}
1013
f1e61557 1014static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 1015{
e4b294c2 1016 page[1].compound_order = order;
5232c63f 1017#ifdef CONFIG_64BIT
1378a5ee 1018 page[1].compound_nr = 1U << order;
5232c63f 1019#endif
d85f3385
CL
1020}
1021
d8c6546b
MWO
1022/* Returns the number of pages in this potentially compound page. */
1023static inline unsigned long compound_nr(struct page *page)
1024{
1378a5ee
MWO
1025 if (!PageHead(page))
1026 return 1;
5232c63f 1027#ifdef CONFIG_64BIT
1378a5ee 1028 return page[1].compound_nr;
5232c63f
MWO
1029#else
1030 return 1UL << compound_order(page);
1031#endif
d8c6546b
MWO
1032}
1033
a50b854e
MWO
1034/* Returns the number of bytes in this potentially compound page. */
1035static inline unsigned long page_size(struct page *page)
1036{
1037 return PAGE_SIZE << compound_order(page);
1038}
1039
94ad9338
MWO
1040/* Returns the number of bits needed for the number of bytes in a page */
1041static inline unsigned int page_shift(struct page *page)
1042{
1043 return PAGE_SHIFT + compound_order(page);
1044}
1045
18788cfa
MWO
1046/**
1047 * thp_order - Order of a transparent huge page.
1048 * @page: Head page of a transparent huge page.
1049 */
1050static inline unsigned int thp_order(struct page *page)
1051{
1052 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1053 return compound_order(page);
1054}
1055
1056/**
1057 * thp_nr_pages - The number of regular pages in this huge page.
1058 * @page: The head page of a huge page.
1059 */
1060static inline int thp_nr_pages(struct page *page)
1061{
1062 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1063 return compound_nr(page);
1064}
1065
1066/**
1067 * thp_size - Size of a transparent huge page.
1068 * @page: Head page of a transparent huge page.
1069 *
1070 * Return: Number of bytes in this page.
1071 */
1072static inline unsigned long thp_size(struct page *page)
1073{
1074 return PAGE_SIZE << thp_order(page);
1075}
1076
9a982250
KS
1077void free_compound_page(struct page *page);
1078
3dece370 1079#ifdef CONFIG_MMU
14fd403f
AA
1080/*
1081 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1082 * servicing faults for write access. In the normal case, do always want
1083 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1084 * that do not have writing enabled, when used by access_process_vm.
1085 */
1086static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1087{
1088 if (likely(vma->vm_flags & VM_WRITE))
1089 pte = pte_mkwrite(pte);
1090 return pte;
1091}
8c6e50b0 1092
f9ce0be7 1093vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1094void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1095
2b740303
SJ
1096vm_fault_t finish_fault(struct vm_fault *vmf);
1097vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1098#endif
14fd403f 1099
1da177e4
LT
1100/*
1101 * Multiple processes may "see" the same page. E.g. for untouched
1102 * mappings of /dev/null, all processes see the same page full of
1103 * zeroes, and text pages of executables and shared libraries have
1104 * only one copy in memory, at most, normally.
1105 *
1106 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1107 * page_count() == 0 means the page is free. page->lru is then used for
1108 * freelist management in the buddy allocator.
da6052f7 1109 * page_count() > 0 means the page has been allocated.
1da177e4 1110 *
da6052f7
NP
1111 * Pages are allocated by the slab allocator in order to provide memory
1112 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1113 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1114 * unless a particular usage is carefully commented. (the responsibility of
1115 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1116 *
da6052f7
NP
1117 * A page may be used by anyone else who does a __get_free_page().
1118 * In this case, page_count still tracks the references, and should only
1119 * be used through the normal accessor functions. The top bits of page->flags
1120 * and page->virtual store page management information, but all other fields
1121 * are unused and could be used privately, carefully. The management of this
1122 * page is the responsibility of the one who allocated it, and those who have
1123 * subsequently been given references to it.
1124 *
1125 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1126 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1127 * The following discussion applies only to them.
1128 *
da6052f7
NP
1129 * A pagecache page contains an opaque `private' member, which belongs to the
1130 * page's address_space. Usually, this is the address of a circular list of
1131 * the page's disk buffers. PG_private must be set to tell the VM to call
1132 * into the filesystem to release these pages.
1da177e4 1133 *
da6052f7
NP
1134 * A page may belong to an inode's memory mapping. In this case, page->mapping
1135 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1136 * in units of PAGE_SIZE.
1da177e4 1137 *
da6052f7
NP
1138 * If pagecache pages are not associated with an inode, they are said to be
1139 * anonymous pages. These may become associated with the swapcache, and in that
1140 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1141 *
da6052f7
NP
1142 * In either case (swapcache or inode backed), the pagecache itself holds one
1143 * reference to the page. Setting PG_private should also increment the
1144 * refcount. The each user mapping also has a reference to the page.
1da177e4 1145 *
da6052f7 1146 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1147 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1148 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1149 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1150 *
da6052f7 1151 * All pagecache pages may be subject to I/O:
1da177e4
LT
1152 * - inode pages may need to be read from disk,
1153 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1154 * to be written back to the inode on disk,
1155 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1156 * modified may need to be swapped out to swap space and (later) to be read
1157 * back into memory.
1da177e4
LT
1158 */
1159
27674ef6 1160#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1161DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1162
f4f451a1
MS
1163bool __put_devmap_managed_page_refs(struct page *page, int refs);
1164static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1165{
1166 if (!static_branch_unlikely(&devmap_managed_key))
1167 return false;
1168 if (!is_zone_device_page(page))
1169 return false;
f4f451a1 1170 return __put_devmap_managed_page_refs(page, refs);
e7638488 1171}
27674ef6 1172#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1173static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1174{
1175 return false;
1176}
27674ef6 1177#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1178
f4f451a1
MS
1179static inline bool put_devmap_managed_page(struct page *page)
1180{
1181 return put_devmap_managed_page_refs(page, 1);
1182}
1183
f958d7b5 1184/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1185#define folio_ref_zero_or_close_to_overflow(folio) \
1186 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1187
1188/**
1189 * folio_get - Increment the reference count on a folio.
1190 * @folio: The folio.
1191 *
1192 * Context: May be called in any context, as long as you know that
1193 * you have a refcount on the folio. If you do not already have one,
1194 * folio_try_get() may be the right interface for you to use.
1195 */
1196static inline void folio_get(struct folio *folio)
1197{
1198 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1199 folio_ref_inc(folio);
1200}
f958d7b5 1201
3565fce3
DW
1202static inline void get_page(struct page *page)
1203{
86d234cb 1204 folio_get(page_folio(page));
3565fce3
DW
1205}
1206
0f089235 1207int __must_check try_grab_page(struct page *page, unsigned int flags);
cd1adf1b
LT
1208
1209static inline __must_check bool try_get_page(struct page *page)
1210{
1211 page = compound_head(page);
1212 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1213 return false;
1214 page_ref_inc(page);
1215 return true;
1216}
3565fce3 1217
b620f633
MWO
1218/**
1219 * folio_put - Decrement the reference count on a folio.
1220 * @folio: The folio.
1221 *
1222 * If the folio's reference count reaches zero, the memory will be
1223 * released back to the page allocator and may be used by another
1224 * allocation immediately. Do not access the memory or the struct folio
1225 * after calling folio_put() unless you can be sure that it wasn't the
1226 * last reference.
1227 *
1228 * Context: May be called in process or interrupt context, but not in NMI
1229 * context. May be called while holding a spinlock.
1230 */
1231static inline void folio_put(struct folio *folio)
1232{
1233 if (folio_put_testzero(folio))
8d29c703 1234 __folio_put(folio);
b620f633
MWO
1235}
1236
3fe7fa58
MWO
1237/**
1238 * folio_put_refs - Reduce the reference count on a folio.
1239 * @folio: The folio.
1240 * @refs: The amount to subtract from the folio's reference count.
1241 *
1242 * If the folio's reference count reaches zero, the memory will be
1243 * released back to the page allocator and may be used by another
1244 * allocation immediately. Do not access the memory or the struct folio
1245 * after calling folio_put_refs() unless you can be sure that these weren't
1246 * the last references.
1247 *
1248 * Context: May be called in process or interrupt context, but not in NMI
1249 * context. May be called while holding a spinlock.
1250 */
1251static inline void folio_put_refs(struct folio *folio, int refs)
1252{
1253 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1254 __folio_put(folio);
3fe7fa58
MWO
1255}
1256
0411d6ee
SP
1257/*
1258 * union release_pages_arg - an array of pages or folios
449c7967 1259 *
0411d6ee 1260 * release_pages() releases a simple array of multiple pages, and
449c7967
LT
1261 * accepts various different forms of said page array: either
1262 * a regular old boring array of pages, an array of folios, or
1263 * an array of encoded page pointers.
1264 *
1265 * The transparent union syntax for this kind of "any of these
1266 * argument types" is all kinds of ugly, so look away.
1267 */
1268typedef union {
1269 struct page **pages;
1270 struct folio **folios;
1271 struct encoded_page **encoded_pages;
1272} release_pages_arg __attribute__ ((__transparent_union__));
1273
1274void release_pages(release_pages_arg, int nr);
e3c4cebf
MWO
1275
1276/**
1277 * folios_put - Decrement the reference count on an array of folios.
1278 * @folios: The folios.
1279 * @nr: How many folios there are.
1280 *
1281 * Like folio_put(), but for an array of folios. This is more efficient
1282 * than writing the loop yourself as it will optimise the locks which
1283 * need to be taken if the folios are freed.
1284 *
1285 * Context: May be called in process or interrupt context, but not in NMI
1286 * context. May be called while holding a spinlock.
1287 */
1288static inline void folios_put(struct folio **folios, unsigned int nr)
1289{
449c7967 1290 release_pages(folios, nr);
3fe7fa58
MWO
1291}
1292
3565fce3
DW
1293static inline void put_page(struct page *page)
1294{
b620f633 1295 struct folio *folio = page_folio(page);
3565fce3 1296
7b2d55d2 1297 /*
89574945
CH
1298 * For some devmap managed pages we need to catch refcount transition
1299 * from 2 to 1:
7b2d55d2 1300 */
89574945 1301 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1302 return;
b620f633 1303 folio_put(folio);
3565fce3
DW
1304}
1305
3faa52c0
JH
1306/*
1307 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1308 * the page's refcount so that two separate items are tracked: the original page
1309 * reference count, and also a new count of how many pin_user_pages() calls were
1310 * made against the page. ("gup-pinned" is another term for the latter).
1311 *
1312 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1313 * distinct from normal pages. As such, the unpin_user_page() call (and its
1314 * variants) must be used in order to release gup-pinned pages.
1315 *
1316 * Choice of value:
1317 *
1318 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1319 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1320 * simpler, due to the fact that adding an even power of two to the page
1321 * refcount has the effect of using only the upper N bits, for the code that
1322 * counts up using the bias value. This means that the lower bits are left for
1323 * the exclusive use of the original code that increments and decrements by one
1324 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1325 *
3faa52c0
JH
1326 * Of course, once the lower bits overflow into the upper bits (and this is
1327 * OK, because subtraction recovers the original values), then visual inspection
1328 * no longer suffices to directly view the separate counts. However, for normal
1329 * applications that don't have huge page reference counts, this won't be an
1330 * issue.
fc1d8e7c 1331 *
40fcc7fc
MWO
1332 * Locking: the lockless algorithm described in folio_try_get_rcu()
1333 * provides safe operation for get_user_pages(), page_mkclean() and
1334 * other calls that race to set up page table entries.
fc1d8e7c 1335 */
3faa52c0 1336#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1337
3faa52c0 1338void unpin_user_page(struct page *page);
f1f6a7dd
JH
1339void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1340 bool make_dirty);
458a4f78
JM
1341void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1342 bool make_dirty);
f1f6a7dd 1343void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1344
97a7e473
PX
1345static inline bool is_cow_mapping(vm_flags_t flags)
1346{
1347 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1348}
1349
9127ab4f
CS
1350#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1351#define SECTION_IN_PAGE_FLAGS
1352#endif
1353
89689ae7 1354/*
7a8010cd
VB
1355 * The identification function is mainly used by the buddy allocator for
1356 * determining if two pages could be buddies. We are not really identifying
1357 * the zone since we could be using the section number id if we do not have
1358 * node id available in page flags.
1359 * We only guarantee that it will return the same value for two combinable
1360 * pages in a zone.
89689ae7 1361 */
cb2b95e1
AW
1362static inline int page_zone_id(struct page *page)
1363{
89689ae7 1364 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1365}
1366
89689ae7 1367#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1368extern int page_to_nid(const struct page *page);
89689ae7 1369#else
33dd4e0e 1370static inline int page_to_nid(const struct page *page)
d41dee36 1371{
f165b378
PT
1372 struct page *p = (struct page *)page;
1373
1374 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1375}
89689ae7
CL
1376#endif
1377
874fd90c
MWO
1378static inline int folio_nid(const struct folio *folio)
1379{
1380 return page_to_nid(&folio->page);
1381}
1382
57e0a030 1383#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1384/* page access time bits needs to hold at least 4 seconds */
1385#define PAGE_ACCESS_TIME_MIN_BITS 12
1386#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1387#define PAGE_ACCESS_TIME_BUCKETS \
1388 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1389#else
1390#define PAGE_ACCESS_TIME_BUCKETS 0
1391#endif
1392
1393#define PAGE_ACCESS_TIME_MASK \
1394 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1395
90572890 1396static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1397{
90572890 1398 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1399}
1400
90572890 1401static inline int cpupid_to_pid(int cpupid)
57e0a030 1402{
90572890 1403 return cpupid & LAST__PID_MASK;
57e0a030 1404}
b795854b 1405
90572890 1406static inline int cpupid_to_cpu(int cpupid)
b795854b 1407{
90572890 1408 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1409}
1410
90572890 1411static inline int cpupid_to_nid(int cpupid)
b795854b 1412{
90572890 1413 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1414}
1415
90572890 1416static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1417{
90572890 1418 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1419}
1420
90572890 1421static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1422{
90572890 1423 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1424}
1425
8c8a743c
PZ
1426static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1427{
1428 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1429}
1430
1431#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1432#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1433static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1434{
1ae71d03 1435 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1436}
90572890
PZ
1437
1438static inline int page_cpupid_last(struct page *page)
1439{
1440 return page->_last_cpupid;
1441}
1442static inline void page_cpupid_reset_last(struct page *page)
b795854b 1443{
1ae71d03 1444 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1445}
1446#else
90572890 1447static inline int page_cpupid_last(struct page *page)
75980e97 1448{
90572890 1449 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1450}
1451
90572890 1452extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1453
90572890 1454static inline void page_cpupid_reset_last(struct page *page)
75980e97 1455{
09940a4f 1456 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1457}
90572890 1458#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536
HY
1459
1460static inline int xchg_page_access_time(struct page *page, int time)
1461{
1462 int last_time;
1463
1464 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1465 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1466}
90572890
PZ
1467#else /* !CONFIG_NUMA_BALANCING */
1468static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1469{
90572890 1470 return page_to_nid(page); /* XXX */
57e0a030
MG
1471}
1472
33024536
HY
1473static inline int xchg_page_access_time(struct page *page, int time)
1474{
1475 return 0;
1476}
1477
90572890 1478static inline int page_cpupid_last(struct page *page)
57e0a030 1479{
90572890 1480 return page_to_nid(page); /* XXX */
57e0a030
MG
1481}
1482
90572890 1483static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1484{
1485 return -1;
1486}
1487
90572890 1488static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1489{
1490 return -1;
1491}
1492
90572890 1493static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1494{
1495 return -1;
1496}
1497
90572890
PZ
1498static inline int cpu_pid_to_cpupid(int nid, int pid)
1499{
1500 return -1;
1501}
1502
1503static inline bool cpupid_pid_unset(int cpupid)
b795854b 1504{
2b787449 1505 return true;
b795854b
MG
1506}
1507
90572890 1508static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1509{
1510}
8c8a743c
PZ
1511
1512static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1513{
1514 return false;
1515}
90572890 1516#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1517
2e903b91 1518#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1519
cf10bd4c
AK
1520/*
1521 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1522 * setting tags for all pages to native kernel tag value 0xff, as the default
1523 * value 0x00 maps to 0xff.
1524 */
1525
2813b9c0
AK
1526static inline u8 page_kasan_tag(const struct page *page)
1527{
cf10bd4c
AK
1528 u8 tag = 0xff;
1529
1530 if (kasan_enabled()) {
1531 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1532 tag ^= 0xff;
1533 }
1534
1535 return tag;
2813b9c0
AK
1536}
1537
1538static inline void page_kasan_tag_set(struct page *page, u8 tag)
1539{
27fe7339
PC
1540 unsigned long old_flags, flags;
1541
1542 if (!kasan_enabled())
1543 return;
1544
1545 tag ^= 0xff;
1546 old_flags = READ_ONCE(page->flags);
1547 do {
1548 flags = old_flags;
1549 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1550 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1551 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1552}
1553
1554static inline void page_kasan_tag_reset(struct page *page)
1555{
34303244
AK
1556 if (kasan_enabled())
1557 page_kasan_tag_set(page, 0xff);
2813b9c0 1558}
34303244
AK
1559
1560#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1561
2813b9c0
AK
1562static inline u8 page_kasan_tag(const struct page *page)
1563{
1564 return 0xff;
1565}
1566
1567static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1568static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1569
1570#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1571
33dd4e0e 1572static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1573{
1574 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1575}
1576
75ef7184
MG
1577static inline pg_data_t *page_pgdat(const struct page *page)
1578{
1579 return NODE_DATA(page_to_nid(page));
1580}
1581
32b8fc48
MWO
1582static inline struct zone *folio_zone(const struct folio *folio)
1583{
1584 return page_zone(&folio->page);
1585}
1586
1587static inline pg_data_t *folio_pgdat(const struct folio *folio)
1588{
1589 return page_pgdat(&folio->page);
1590}
1591
9127ab4f 1592#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1593static inline void set_page_section(struct page *page, unsigned long section)
1594{
1595 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1596 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1597}
1598
aa462abe 1599static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1600{
1601 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1602}
308c05e3 1603#endif
d41dee36 1604
bf6bd276
MWO
1605/**
1606 * folio_pfn - Return the Page Frame Number of a folio.
1607 * @folio: The folio.
1608 *
1609 * A folio may contain multiple pages. The pages have consecutive
1610 * Page Frame Numbers.
1611 *
1612 * Return: The Page Frame Number of the first page in the folio.
1613 */
1614static inline unsigned long folio_pfn(struct folio *folio)
1615{
1616 return page_to_pfn(&folio->page);
1617}
1618
018ee47f
YZ
1619static inline struct folio *pfn_folio(unsigned long pfn)
1620{
1621 return page_folio(pfn_to_page(pfn));
1622}
1623
3d11b225
MWO
1624static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1625{
1626 return &folio_page(folio, 1)->compound_pincount;
1627}
1628
0b90ddae
MWO
1629/**
1630 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1631 * @folio: The folio.
1632 *
1633 * This function checks if a folio has been pinned via a call to
1634 * a function in the pin_user_pages() family.
1635 *
1636 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1637 * because it means "definitely not pinned for DMA", but true means "probably
1638 * pinned for DMA, but possibly a false positive due to having at least
1639 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1640 *
1641 * False positives are OK, because: a) it's unlikely for a folio to
1642 * get that many refcounts, and b) all the callers of this routine are
1643 * expected to be able to deal gracefully with a false positive.
1644 *
1645 * For large folios, the result will be exactly correct. That's because
1646 * we have more tracking data available: the compound_pincount is used
1647 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1648 *
1649 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1650 *
1651 * Return: True, if it is likely that the page has been "dma-pinned".
1652 * False, if the page is definitely not dma-pinned.
1653 */
1654static inline bool folio_maybe_dma_pinned(struct folio *folio)
1655{
1656 if (folio_test_large(folio))
1657 return atomic_read(folio_pincount_ptr(folio)) > 0;
1658
1659 /*
1660 * folio_ref_count() is signed. If that refcount overflows, then
1661 * folio_ref_count() returns a negative value, and callers will avoid
1662 * further incrementing the refcount.
1663 *
1664 * Here, for that overflow case, use the sign bit to count a little
1665 * bit higher via unsigned math, and thus still get an accurate result.
1666 */
1667 return ((unsigned int)folio_ref_count(folio)) >=
1668 GUP_PIN_COUNTING_BIAS;
1669}
1670
1671static inline bool page_maybe_dma_pinned(struct page *page)
1672{
1673 return folio_maybe_dma_pinned(page_folio(page));
1674}
1675
1676/*
1677 * This should most likely only be called during fork() to see whether we
fb3d824d 1678 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1679 *
1680 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1681 */
1682static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1683 struct page *page)
1684{
623a1ddf 1685 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1686
1687 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1688 return false;
1689
1690 return page_maybe_dma_pinned(page);
1691}
1692
8e3560d9
PT
1693/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1694#ifdef CONFIG_MIGRATION
6077c943 1695static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9 1696{
1c563432
MK
1697#ifdef CONFIG_CMA
1698 int mt = get_pageblock_migratetype(page);
1699
1700 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1701 return false;
1702#endif
fcab34b4
AW
1703 /* The zero page may always be pinned */
1704 if (is_zero_pfn(page_to_pfn(page)))
1705 return true;
1706
1707 /* Coherent device memory must always allow eviction. */
1708 if (is_device_coherent_page(page))
1709 return false;
1710
1711 /* Otherwise, non-movable zone pages can be pinned. */
1712 return !is_zone_movable_page(page);
8e3560d9
PT
1713}
1714#else
6077c943 1715static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9
PT
1716{
1717 return true;
1718}
1719#endif
1720
6077c943 1721static inline bool folio_is_longterm_pinnable(struct folio *folio)
536939ff 1722{
6077c943 1723 return is_longterm_pinnable_page(&folio->page);
536939ff
MWO
1724}
1725
2f1b6248 1726static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1727{
1728 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1729 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1730}
2f1b6248 1731
348f8b6c
DH
1732static inline void set_page_node(struct page *page, unsigned long node)
1733{
1734 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1735 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1736}
89689ae7 1737
2f1b6248 1738static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1739 unsigned long node, unsigned long pfn)
1da177e4 1740{
348f8b6c
DH
1741 set_page_zone(page, zone);
1742 set_page_node(page, node);
9127ab4f 1743#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1744 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1745#endif
1da177e4
LT
1746}
1747
7b230db3
MWO
1748/**
1749 * folio_nr_pages - The number of pages in the folio.
1750 * @folio: The folio.
1751 *
1752 * Return: A positive power of two.
1753 */
1754static inline long folio_nr_pages(struct folio *folio)
1755{
c3a15bff
MWO
1756 if (!folio_test_large(folio))
1757 return 1;
1758#ifdef CONFIG_64BIT
1759 return folio->_folio_nr_pages;
1760#else
1761 return 1L << folio->_folio_order;
1762#endif
7b230db3
MWO
1763}
1764
1765/**
1766 * folio_next - Move to the next physical folio.
1767 * @folio: The folio we're currently operating on.
1768 *
1769 * If you have physically contiguous memory which may span more than
1770 * one folio (eg a &struct bio_vec), use this function to move from one
1771 * folio to the next. Do not use it if the memory is only virtually
1772 * contiguous as the folios are almost certainly not adjacent to each
1773 * other. This is the folio equivalent to writing ``page++``.
1774 *
1775 * Context: We assume that the folios are refcounted and/or locked at a
1776 * higher level and do not adjust the reference counts.
1777 * Return: The next struct folio.
1778 */
1779static inline struct folio *folio_next(struct folio *folio)
1780{
1781 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1782}
1783
1784/**
1785 * folio_shift - The size of the memory described by this folio.
1786 * @folio: The folio.
1787 *
1788 * A folio represents a number of bytes which is a power-of-two in size.
1789 * This function tells you which power-of-two the folio is. See also
1790 * folio_size() and folio_order().
1791 *
1792 * Context: The caller should have a reference on the folio to prevent
1793 * it from being split. It is not necessary for the folio to be locked.
1794 * Return: The base-2 logarithm of the size of this folio.
1795 */
1796static inline unsigned int folio_shift(struct folio *folio)
1797{
1798 return PAGE_SHIFT + folio_order(folio);
1799}
1800
1801/**
1802 * folio_size - The number of bytes in a folio.
1803 * @folio: The folio.
1804 *
1805 * Context: The caller should have a reference on the folio to prevent
1806 * it from being split. It is not necessary for the folio to be locked.
1807 * Return: The number of bytes in this folio.
1808 */
1809static inline size_t folio_size(struct folio *folio)
1810{
1811 return PAGE_SIZE << folio_order(folio);
1812}
1813
b424de33
MWO
1814#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1815static inline int arch_make_page_accessible(struct page *page)
1816{
1817 return 0;
1818}
1819#endif
1820
1821#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1822static inline int arch_make_folio_accessible(struct folio *folio)
1823{
1824 int ret;
1825 long i, nr = folio_nr_pages(folio);
1826
1827 for (i = 0; i < nr; i++) {
1828 ret = arch_make_page_accessible(folio_page(folio, i));
1829 if (ret)
1830 break;
1831 }
1832
1833 return ret;
1834}
1835#endif
1836
f6ac2354
CL
1837/*
1838 * Some inline functions in vmstat.h depend on page_zone()
1839 */
1840#include <linux/vmstat.h>
1841
33dd4e0e 1842static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1843{
1dff8083 1844 return page_to_virt(page);
1da177e4
LT
1845}
1846
1847#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1848#define HASHED_PAGE_VIRTUAL
1849#endif
1850
1851#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1852static inline void *page_address(const struct page *page)
1853{
1854 return page->virtual;
1855}
1856static inline void set_page_address(struct page *page, void *address)
1857{
1858 page->virtual = address;
1859}
1da177e4
LT
1860#define page_address_init() do { } while(0)
1861#endif
1862
1863#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1864void *page_address(const struct page *page);
1da177e4
LT
1865void set_page_address(struct page *page, void *virtual);
1866void page_address_init(void);
1867#endif
1868
1869#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1870#define page_address(page) lowmem_page_address(page)
1871#define set_page_address(page, address) do { } while(0)
1872#define page_address_init() do { } while(0)
1873#endif
1874
7d4203c1
VB
1875static inline void *folio_address(const struct folio *folio)
1876{
1877 return page_address(&folio->page);
1878}
1879
e39155ea 1880extern void *page_rmapping(struct page *page);
f6ab1f7f
HY
1881extern pgoff_t __page_file_index(struct page *page);
1882
1da177e4
LT
1883/*
1884 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1885 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1886 */
1887static inline pgoff_t page_index(struct page *page)
1888{
1889 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1890 return __page_file_index(page);
1da177e4
LT
1891 return page->index;
1892}
1893
2f064f34
MH
1894/*
1895 * Return true only if the page has been allocated with
1896 * ALLOC_NO_WATERMARKS and the low watermark was not
1897 * met implying that the system is under some pressure.
1898 */
1d7bab6a 1899static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1900{
1901 /*
c07aea3e
MC
1902 * lru.next has bit 1 set if the page is allocated from the
1903 * pfmemalloc reserves. Callers may simply overwrite it if
1904 * they do not need to preserve that information.
2f064f34 1905 */
c07aea3e 1906 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
1907}
1908
1909/*
1910 * Only to be called by the page allocator on a freshly allocated
1911 * page.
1912 */
1913static inline void set_page_pfmemalloc(struct page *page)
1914{
c07aea3e 1915 page->lru.next = (void *)BIT(1);
2f064f34
MH
1916}
1917
1918static inline void clear_page_pfmemalloc(struct page *page)
1919{
c07aea3e 1920 page->lru.next = NULL;
2f064f34
MH
1921}
1922
1c0fe6e3
NP
1923/*
1924 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1925 */
1926extern void pagefault_out_of_memory(void);
1927
1da177e4 1928#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1929#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 1930#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 1931
ddd588b5 1932/*
7bf02ea2 1933 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1934 * various contexts.
1935 */
4b59e6c4 1936#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1937
974f4367
MH
1938extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
1939static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
1940{
1941 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
1942}
1da177e4 1943
21b85b09
MK
1944/*
1945 * Parameter block passed down to zap_pte_range in exceptional cases.
1946 */
1947struct zap_details {
1948 struct folio *single_folio; /* Locked folio to be unmapped */
1949 bool even_cows; /* Zap COWed private pages too? */
1950 zap_flags_t zap_flags; /* Extra flags for zapping */
1951};
1952
1953/*
1954 * Whether to drop the pte markers, for example, the uffd-wp information for
1955 * file-backed memory. This should only be specified when we will completely
1956 * drop the page in the mm, either by truncation or unmapping of the vma. By
1957 * default, the flag is not set.
1958 */
1959#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
04ada095
MK
1960/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
1961#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
21b85b09 1962
710ec38b 1963#ifdef CONFIG_MMU
7f43add4 1964extern bool can_do_mlock(void);
710ec38b
AB
1965#else
1966static inline bool can_do_mlock(void) { return false; }
1967#endif
d7c9e99a
AG
1968extern int user_shm_lock(size_t, struct ucounts *);
1969extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 1970
318e9342
VMO
1971struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
1972 pte_t pte);
25b2995a
CH
1973struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1974 pte_t pte);
28093f9f
GS
1975struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1976 pmd_t pmd);
7e675137 1977
27d036e3
LR
1978void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1979 unsigned long size);
14f5ff5d 1980void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1981 unsigned long size);
21b85b09
MK
1982void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1983 unsigned long size, struct zap_details *details);
763ecb03
LH
1984void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1985 struct vm_area_struct *start_vma, unsigned long start,
1986 unsigned long end);
e6473092 1987
ac46d4f3
JG
1988struct mmu_notifier_range;
1989
42b77728 1990void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1991 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1992int
1993copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 1994int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 1995 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
1996int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1997 unsigned long *pfn);
d87fe660 1998int follow_phys(struct vm_area_struct *vma, unsigned long address,
1999 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
2000int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2001 void *buf, int len, int write);
1da177e4 2002
7caef267 2003extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 2004extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 2005void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 2006void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 2007int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 2008
7ee1dd3f 2009#ifdef CONFIG_MMU
2b740303 2010extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2011 unsigned long address, unsigned int flags,
2012 struct pt_regs *regs);
64019a2e 2013extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
2014 unsigned long address, unsigned int fault_flags,
2015 bool *unlocked);
977fbdcd
MW
2016void unmap_mapping_pages(struct address_space *mapping,
2017 pgoff_t start, pgoff_t nr, bool even_cows);
2018void unmap_mapping_range(struct address_space *mapping,
2019 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 2020#else
2b740303 2021static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2022 unsigned long address, unsigned int flags,
2023 struct pt_regs *regs)
7ee1dd3f
DH
2024{
2025 /* should never happen if there's no MMU */
2026 BUG();
2027 return VM_FAULT_SIGBUS;
2028}
64019a2e 2029static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 2030 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
2031{
2032 /* should never happen if there's no MMU */
2033 BUG();
2034 return -EFAULT;
2035}
977fbdcd
MW
2036static inline void unmap_mapping_pages(struct address_space *mapping,
2037 pgoff_t start, pgoff_t nr, bool even_cows) { }
2038static inline void unmap_mapping_range(struct address_space *mapping,
2039 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 2040#endif
f33ea7f4 2041
977fbdcd
MW
2042static inline void unmap_shared_mapping_range(struct address_space *mapping,
2043 loff_t const holebegin, loff_t const holelen)
2044{
2045 unmap_mapping_range(mapping, holebegin, holelen, 0);
2046}
2047
2048extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2049 void *buf, int len, unsigned int gup_flags);
5ddd36b9 2050extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 2051 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
2052extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2053 void *buf, int len, unsigned int gup_flags);
1da177e4 2054
64019a2e 2055long get_user_pages_remote(struct mm_struct *mm,
1e987790 2056 unsigned long start, unsigned long nr_pages,
9beae1ea 2057 unsigned int gup_flags, struct page **pages,
5b56d49f 2058 struct vm_area_struct **vmas, int *locked);
64019a2e 2059long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2060 unsigned long start, unsigned long nr_pages,
2061 unsigned int gup_flags, struct page **pages,
2062 struct vm_area_struct **vmas, int *locked);
c12d2da5 2063long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 2064 unsigned int gup_flags, struct page **pages,
cde70140 2065 struct vm_area_struct **vmas);
eddb1c22
JH
2066long pin_user_pages(unsigned long start, unsigned long nr_pages,
2067 unsigned int gup_flags, struct page **pages,
2068 struct vm_area_struct **vmas);
c12d2da5 2069long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 2070 struct page **pages, unsigned int gup_flags);
91429023
JH
2071long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2072 struct page **pages, unsigned int gup_flags);
9a4e9f3b 2073
73b0140b
IW
2074int get_user_pages_fast(unsigned long start, int nr_pages,
2075 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
2076int pin_user_pages_fast(unsigned long start, int nr_pages,
2077 unsigned int gup_flags, struct page **pages);
8025e5dd 2078
79eb597c
DJ
2079int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2080int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2081 struct task_struct *task, bool bypass_rlim);
2082
18022c5d
MG
2083struct kvec;
2084int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
2085 struct page **pages);
f3e8fccd 2086struct page *get_dump_page(unsigned long addr);
1da177e4 2087
b5e84594
MWO
2088bool folio_mark_dirty(struct folio *folio);
2089bool set_page_dirty(struct page *page);
1da177e4 2090int set_page_dirty_lock(struct page *page);
b9ea2515 2091
a9090253 2092int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 2093
b6a2fea3
OW
2094extern unsigned long move_page_tables(struct vm_area_struct *vma,
2095 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
2096 unsigned long new_addr, unsigned long len,
2097 bool need_rmap_locks);
58705444
PX
2098
2099/*
2100 * Flags used by change_protection(). For now we make it a bitmap so
2101 * that we can pass in multiple flags just like parameters. However
2102 * for now all the callers are only use one of the flags at the same
2103 * time.
2104 */
64fe24a3
DH
2105/*
2106 * Whether we should manually check if we can map individual PTEs writable,
2107 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2108 * PTEs automatically in a writable mapping.
2109 */
2110#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
2111/* Whether this protection change is for NUMA hints */
2112#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2113/* Whether this change is for write protecting */
2114#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2115#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2116#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2117 MM_CP_UFFD_WP_RESOLVE)
58705444 2118
eb309ec8
DH
2119int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2120static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2121{
2122 /*
2123 * We want to check manually if we can change individual PTEs writable
2124 * if we can't do that automatically for all PTEs in a mapping. For
2125 * private mappings, that's always the case when we have write
2126 * permissions as we properly have to handle COW.
2127 */
2128 if (vma->vm_flags & VM_SHARED)
2129 return vma_wants_writenotify(vma, vma->vm_page_prot);
2130 return !!(vma->vm_flags & VM_WRITE);
2131
2132}
6a56ccbc
DH
2133bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2134 pte_t pte);
a79390f5 2135extern long change_protection(struct mmu_gather *tlb,
4a18419f 2136 struct vm_area_struct *vma, unsigned long start,
1ef488ed 2137 unsigned long end, unsigned long cp_flags);
4a18419f 2138extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
b6a2fea3
OW
2139 struct vm_area_struct **pprev, unsigned long start,
2140 unsigned long end, unsigned long newflags);
1da177e4 2141
465a454f
PZ
2142/*
2143 * doesn't attempt to fault and will return short.
2144 */
dadbb612
SJ
2145int get_user_pages_fast_only(unsigned long start, int nr_pages,
2146 unsigned int gup_flags, struct page **pages);
104acc32
JH
2147int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2148 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2149
2150static inline bool get_user_page_fast_only(unsigned long addr,
2151 unsigned int gup_flags, struct page **pagep)
2152{
2153 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2154}
d559db08
KH
2155/*
2156 * per-process(per-mm_struct) statistics.
2157 */
d559db08
KH
2158static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2159{
f1a79412 2160 return percpu_counter_read_positive(&mm->rss_stat[member]);
69c97823 2161}
d559db08 2162
f1a79412 2163void mm_trace_rss_stat(struct mm_struct *mm, int member);
b3d1411b 2164
d559db08
KH
2165static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2166{
f1a79412 2167 percpu_counter_add(&mm->rss_stat[member], value);
b3d1411b 2168
f1a79412 2169 mm_trace_rss_stat(mm, member);
d559db08
KH
2170}
2171
2172static inline void inc_mm_counter(struct mm_struct *mm, int member)
2173{
f1a79412 2174 percpu_counter_inc(&mm->rss_stat[member]);
b3d1411b 2175
f1a79412 2176 mm_trace_rss_stat(mm, member);
d559db08
KH
2177}
2178
2179static inline void dec_mm_counter(struct mm_struct *mm, int member)
2180{
f1a79412 2181 percpu_counter_dec(&mm->rss_stat[member]);
b3d1411b 2182
f1a79412 2183 mm_trace_rss_stat(mm, member);
d559db08
KH
2184}
2185
eca56ff9
JM
2186/* Optimized variant when page is already known not to be PageAnon */
2187static inline int mm_counter_file(struct page *page)
2188{
2189 if (PageSwapBacked(page))
2190 return MM_SHMEMPAGES;
2191 return MM_FILEPAGES;
2192}
2193
2194static inline int mm_counter(struct page *page)
2195{
2196 if (PageAnon(page))
2197 return MM_ANONPAGES;
2198 return mm_counter_file(page);
2199}
2200
d559db08
KH
2201static inline unsigned long get_mm_rss(struct mm_struct *mm)
2202{
2203 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2204 get_mm_counter(mm, MM_ANONPAGES) +
2205 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2206}
2207
2208static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2209{
2210 return max(mm->hiwater_rss, get_mm_rss(mm));
2211}
2212
2213static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2214{
2215 return max(mm->hiwater_vm, mm->total_vm);
2216}
2217
2218static inline void update_hiwater_rss(struct mm_struct *mm)
2219{
2220 unsigned long _rss = get_mm_rss(mm);
2221
2222 if ((mm)->hiwater_rss < _rss)
2223 (mm)->hiwater_rss = _rss;
2224}
2225
2226static inline void update_hiwater_vm(struct mm_struct *mm)
2227{
2228 if (mm->hiwater_vm < mm->total_vm)
2229 mm->hiwater_vm = mm->total_vm;
2230}
2231
695f0559
PC
2232static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2233{
2234 mm->hiwater_rss = get_mm_rss(mm);
2235}
2236
d559db08
KH
2237static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2238 struct mm_struct *mm)
2239{
2240 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2241
2242 if (*maxrss < hiwater_rss)
2243 *maxrss = hiwater_rss;
2244}
2245
53bddb4e 2246#if defined(SPLIT_RSS_COUNTING)
05af2e10 2247void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2248#else
05af2e10 2249static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2250{
2251}
2252#endif
465a454f 2253
78e7c5af
AK
2254#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2255static inline int pte_special(pte_t pte)
2256{
2257 return 0;
2258}
2259
2260static inline pte_t pte_mkspecial(pte_t pte)
2261{
2262 return pte;
2263}
2264#endif
2265
17596731 2266#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2267static inline int pte_devmap(pte_t pte)
2268{
2269 return 0;
2270}
2271#endif
2272
25ca1d6c
NK
2273extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2274 spinlock_t **ptl);
2275static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2276 spinlock_t **ptl)
2277{
2278 pte_t *ptep;
2279 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2280 return ptep;
2281}
c9cfcddf 2282
c2febafc
KS
2283#ifdef __PAGETABLE_P4D_FOLDED
2284static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2285 unsigned long address)
2286{
2287 return 0;
2288}
2289#else
2290int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2291#endif
2292
b4e98d9a 2293#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2294static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2295 unsigned long address)
2296{
2297 return 0;
2298}
b4e98d9a
KS
2299static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2300static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2301
5f22df00 2302#else
c2febafc 2303int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2304
b4e98d9a
KS
2305static inline void mm_inc_nr_puds(struct mm_struct *mm)
2306{
6d212db1
MS
2307 if (mm_pud_folded(mm))
2308 return;
af5b0f6a 2309 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2310}
2311
2312static inline void mm_dec_nr_puds(struct mm_struct *mm)
2313{
6d212db1
MS
2314 if (mm_pud_folded(mm))
2315 return;
af5b0f6a 2316 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2317}
5f22df00
NP
2318#endif
2319
2d2f5119 2320#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2321static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2322 unsigned long address)
2323{
2324 return 0;
2325}
dc6c9a35 2326
dc6c9a35
KS
2327static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2328static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2329
5f22df00 2330#else
1bb3630e 2331int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2332
dc6c9a35
KS
2333static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2334{
6d212db1
MS
2335 if (mm_pmd_folded(mm))
2336 return;
af5b0f6a 2337 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2338}
2339
2340static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2341{
6d212db1
MS
2342 if (mm_pmd_folded(mm))
2343 return;
af5b0f6a 2344 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2345}
5f22df00
NP
2346#endif
2347
c4812909 2348#ifdef CONFIG_MMU
af5b0f6a 2349static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2350{
af5b0f6a 2351 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2352}
2353
af5b0f6a 2354static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2355{
af5b0f6a 2356 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2357}
2358
2359static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2360{
af5b0f6a 2361 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2362}
2363
2364static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2365{
af5b0f6a 2366 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2367}
2368#else
c4812909 2369
af5b0f6a
KS
2370static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2371static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2372{
2373 return 0;
2374}
2375
2376static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2377static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2378#endif
2379
4cf58924
JFG
2380int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2381int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2382
f949286c
MR
2383#if defined(CONFIG_MMU)
2384
c2febafc
KS
2385static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2386 unsigned long address)
2387{
2388 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2389 NULL : p4d_offset(pgd, address);
2390}
2391
2392static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2393 unsigned long address)
1da177e4 2394{
c2febafc
KS
2395 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2396 NULL : pud_offset(p4d, address);
1da177e4 2397}
d8626138 2398
1da177e4
LT
2399static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2400{
1bb3630e
HD
2401 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2402 NULL: pmd_offset(pud, address);
1da177e4 2403}
f949286c 2404#endif /* CONFIG_MMU */
1bb3630e 2405
57c1ffce 2406#if USE_SPLIT_PTE_PTLOCKS
597d795a 2407#if ALLOC_SPLIT_PTLOCKS
b35f1819 2408void __init ptlock_cache_init(void);
539edb58
PZ
2409extern bool ptlock_alloc(struct page *page);
2410extern void ptlock_free(struct page *page);
2411
2412static inline spinlock_t *ptlock_ptr(struct page *page)
2413{
2414 return page->ptl;
2415}
597d795a 2416#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2417static inline void ptlock_cache_init(void)
2418{
2419}
2420
49076ec2
KS
2421static inline bool ptlock_alloc(struct page *page)
2422{
49076ec2
KS
2423 return true;
2424}
539edb58 2425
49076ec2
KS
2426static inline void ptlock_free(struct page *page)
2427{
49076ec2
KS
2428}
2429
2430static inline spinlock_t *ptlock_ptr(struct page *page)
2431{
539edb58 2432 return &page->ptl;
49076ec2 2433}
597d795a 2434#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2435
2436static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2437{
2438 return ptlock_ptr(pmd_page(*pmd));
2439}
2440
2441static inline bool ptlock_init(struct page *page)
2442{
2443 /*
2444 * prep_new_page() initialize page->private (and therefore page->ptl)
2445 * with 0. Make sure nobody took it in use in between.
2446 *
2447 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2448 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2449 */
309381fe 2450 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2451 if (!ptlock_alloc(page))
2452 return false;
2453 spin_lock_init(ptlock_ptr(page));
2454 return true;
2455}
2456
57c1ffce 2457#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2458/*
2459 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2460 */
49076ec2
KS
2461static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2462{
2463 return &mm->page_table_lock;
2464}
b35f1819 2465static inline void ptlock_cache_init(void) {}
49076ec2 2466static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2467static inline void ptlock_free(struct page *page) {}
57c1ffce 2468#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2469
b35f1819
KS
2470static inline void pgtable_init(void)
2471{
2472 ptlock_cache_init();
2473 pgtable_cache_init();
2474}
2475
b4ed71f5 2476static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2477{
706874e9
VD
2478 if (!ptlock_init(page))
2479 return false;
1d40a5ea 2480 __SetPageTable(page);
f0c0c115 2481 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2482 return true;
2f569afd
MS
2483}
2484
b4ed71f5 2485static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2486{
9e247bab 2487 ptlock_free(page);
1d40a5ea 2488 __ClearPageTable(page);
f0c0c115 2489 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2490}
2491
c74df32c
HD
2492#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2493({ \
4c21e2f2 2494 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2495 pte_t *__pte = pte_offset_map(pmd, address); \
2496 *(ptlp) = __ptl; \
2497 spin_lock(__ptl); \
2498 __pte; \
2499})
2500
2501#define pte_unmap_unlock(pte, ptl) do { \
2502 spin_unlock(ptl); \
2503 pte_unmap(pte); \
2504} while (0)
2505
4cf58924 2506#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2507
2508#define pte_alloc_map(mm, pmd, address) \
4cf58924 2509 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2510
c74df32c 2511#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2512 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2513 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2514
1bb3630e 2515#define pte_alloc_kernel(pmd, address) \
4cf58924 2516 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2517 NULL: pte_offset_kernel(pmd, address))
1da177e4 2518
e009bb30
KS
2519#if USE_SPLIT_PMD_PTLOCKS
2520
7e25de77 2521static inline struct page *pmd_pgtable_page(pmd_t *pmd)
634391ac
MS
2522{
2523 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2524 return virt_to_page((void *)((unsigned long) pmd & mask));
2525}
2526
e009bb30
KS
2527static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2528{
373dfda2 2529 return ptlock_ptr(pmd_pgtable_page(pmd));
e009bb30
KS
2530}
2531
b2b29d6d 2532static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2533{
e009bb30
KS
2534#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2535 page->pmd_huge_pte = NULL;
2536#endif
49076ec2 2537 return ptlock_init(page);
e009bb30
KS
2538}
2539
b2b29d6d 2540static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2541{
2542#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2543 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2544#endif
49076ec2 2545 ptlock_free(page);
e009bb30
KS
2546}
2547
373dfda2 2548#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
e009bb30
KS
2549
2550#else
2551
9a86cb7b
KS
2552static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2553{
2554 return &mm->page_table_lock;
2555}
2556
b2b29d6d
MW
2557static inline bool pmd_ptlock_init(struct page *page) { return true; }
2558static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2559
c389a250 2560#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2561
e009bb30
KS
2562#endif
2563
9a86cb7b
KS
2564static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2565{
2566 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2567 spin_lock(ptl);
2568 return ptl;
2569}
2570
b2b29d6d
MW
2571static inline bool pgtable_pmd_page_ctor(struct page *page)
2572{
2573 if (!pmd_ptlock_init(page))
2574 return false;
2575 __SetPageTable(page);
f0c0c115 2576 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2577 return true;
2578}
2579
2580static inline void pgtable_pmd_page_dtor(struct page *page)
2581{
2582 pmd_ptlock_free(page);
2583 __ClearPageTable(page);
f0c0c115 2584 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2585}
2586
a00cc7d9
MW
2587/*
2588 * No scalability reason to split PUD locks yet, but follow the same pattern
2589 * as the PMD locks to make it easier if we decide to. The VM should not be
2590 * considered ready to switch to split PUD locks yet; there may be places
2591 * which need to be converted from page_table_lock.
2592 */
2593static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2594{
2595 return &mm->page_table_lock;
2596}
2597
2598static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2599{
2600 spinlock_t *ptl = pud_lockptr(mm, pud);
2601
2602 spin_lock(ptl);
2603 return ptl;
2604}
62906027 2605
a00cc7d9 2606extern void __init pagecache_init(void);
49a7f04a
DH
2607extern void free_initmem(void);
2608
69afade7
JL
2609/*
2610 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2611 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2612 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2613 * Return pages freed into the buddy system.
2614 */
11199692 2615extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2616 int poison, const char *s);
c3d5f5f0 2617
c3d5f5f0 2618extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2619extern void mem_init_print_info(void);
69afade7 2620
4b50bcc7 2621extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2622
69afade7 2623/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2624static inline void free_reserved_page(struct page *page)
69afade7
JL
2625{
2626 ClearPageReserved(page);
2627 init_page_count(page);
2628 __free_page(page);
69afade7
JL
2629 adjust_managed_page_count(page, 1);
2630}
a0cd7a7c 2631#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2632
2633static inline void mark_page_reserved(struct page *page)
2634{
2635 SetPageReserved(page);
2636 adjust_managed_page_count(page, -1);
2637}
2638
2639/*
2640 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2641 * The freed pages will be poisoned with pattern "poison" if it's within
2642 * range [0, UCHAR_MAX].
2643 * Return pages freed into the buddy system.
69afade7
JL
2644 */
2645static inline unsigned long free_initmem_default(int poison)
2646{
2647 extern char __init_begin[], __init_end[];
2648
11199692 2649 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2650 poison, "unused kernel image (initmem)");
69afade7
JL
2651}
2652
7ee3d4e8
JL
2653static inline unsigned long get_num_physpages(void)
2654{
2655 int nid;
2656 unsigned long phys_pages = 0;
2657
2658 for_each_online_node(nid)
2659 phys_pages += node_present_pages(nid);
2660
2661 return phys_pages;
2662}
2663
c713216d 2664/*
3f08a302 2665 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2666 * zones, allocate the backing mem_map and account for memory holes in an
2667 * architecture independent manner.
c713216d
MG
2668 *
2669 * An architecture is expected to register range of page frames backed by
0ee332c1 2670 * physical memory with memblock_add[_node]() before calling
9691a071 2671 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2672 * usage, an architecture is expected to do something like
2673 *
2674 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2675 * max_highmem_pfn};
2676 * for_each_valid_physical_page_range()
952eea9b 2677 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2678 * free_area_init(max_zone_pfns);
c713216d 2679 */
9691a071 2680void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2681unsigned long node_map_pfn_alignment(void);
32996250
YL
2682unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2683 unsigned long end_pfn);
c713216d
MG
2684extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2685 unsigned long end_pfn);
2686extern void get_pfn_range_for_nid(unsigned int nid,
2687 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 2688
a9ee6cf5 2689#ifndef CONFIG_NUMA
6f24fbd3 2690static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2691{
2692 return 0;
2693}
2694#else
2695/* please see mm/page_alloc.c */
2696extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2697#endif
2698
0e0b864e 2699extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2700extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2701 unsigned long, unsigned long, enum meminit_context,
2702 struct vmem_altmap *, int migratetype);
bc75d33f 2703extern void setup_per_zone_wmarks(void);
bd3400ea 2704extern void calculate_min_free_kbytes(void);
1b79acc9 2705extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2706extern void mem_init(void);
8feae131 2707extern void __init mmap_init(void);
974f4367
MH
2708
2709extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2710static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
2711{
2712 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
2713}
d02bd27b 2714extern long si_mem_available(void);
1da177e4
LT
2715extern void si_meminfo(struct sysinfo * val);
2716extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2717#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2718extern unsigned long arch_reserved_kernel_pages(void);
2719#endif
1da177e4 2720
a8e99259
MH
2721extern __printf(3, 4)
2722void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2723
e7c8d5c9 2724extern void setup_per_cpu_pageset(void);
e7c8d5c9 2725
75f7ad8e
PS
2726/* page_alloc.c */
2727extern int min_free_kbytes;
1c30844d 2728extern int watermark_boost_factor;
795ae7a0 2729extern int watermark_scale_factor;
51930df5 2730extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2731
8feae131 2732/* nommu.c */
33e5d769 2733extern atomic_long_t mmap_pages_allocated;
7e660872 2734extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2735
6b2dbba8 2736/* interval_tree.c */
6b2dbba8 2737void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2738 struct rb_root_cached *root);
9826a516
ML
2739void vma_interval_tree_insert_after(struct vm_area_struct *node,
2740 struct vm_area_struct *prev,
f808c13f 2741 struct rb_root_cached *root);
6b2dbba8 2742void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2743 struct rb_root_cached *root);
2744struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2745 unsigned long start, unsigned long last);
2746struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2747 unsigned long start, unsigned long last);
2748
2749#define vma_interval_tree_foreach(vma, root, start, last) \
2750 for (vma = vma_interval_tree_iter_first(root, start, last); \
2751 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2752
bf181b9f 2753void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2754 struct rb_root_cached *root);
bf181b9f 2755void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2756 struct rb_root_cached *root);
2757struct anon_vma_chain *
2758anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2759 unsigned long start, unsigned long last);
bf181b9f
ML
2760struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2761 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2762#ifdef CONFIG_DEBUG_VM_RB
2763void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2764#endif
bf181b9f
ML
2765
2766#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2767 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2768 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2769
1da177e4 2770/* mmap.c */
34b4e4aa 2771extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2772extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2773 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2774 struct vm_area_struct *expand);
2775static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2776 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2777{
2778 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2779}
1da177e4
LT
2780extern struct vm_area_struct *vma_merge(struct mm_struct *,
2781 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2782 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
5c26f6ac 2783 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
1da177e4 2784extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2785extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2786 unsigned long addr, int new_below);
2787extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2788 unsigned long addr, int new_below);
1da177e4 2789extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 2790extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2791extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2792 unsigned long addr, unsigned long len, pgoff_t pgoff,
2793 bool *need_rmap_locks);
1da177e4 2794extern void exit_mmap(struct mm_struct *);
925d1c40 2795
d4af56c5
LH
2796void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas);
2797void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas);
2798
9c599024
CG
2799static inline int check_data_rlimit(unsigned long rlim,
2800 unsigned long new,
2801 unsigned long start,
2802 unsigned long end_data,
2803 unsigned long start_data)
2804{
2805 if (rlim < RLIM_INFINITY) {
2806 if (((new - start) + (end_data - start_data)) > rlim)
2807 return -ENOSPC;
2808 }
2809
2810 return 0;
2811}
2812
7906d00c
AA
2813extern int mm_take_all_locks(struct mm_struct *mm);
2814extern void mm_drop_all_locks(struct mm_struct *mm);
2815
fe69d560 2816extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 2817extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 2818extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2819extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2820
84638335
KK
2821extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2822extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2823
2eefd878
DS
2824extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2825 const struct vm_special_mapping *sm);
3935ed6a
SS
2826extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2827 unsigned long addr, unsigned long len,
a62c34bd
AL
2828 unsigned long flags,
2829 const struct vm_special_mapping *spec);
2830/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2831extern int install_special_mapping(struct mm_struct *mm,
2832 unsigned long addr, unsigned long len,
2833 unsigned long flags, struct page **pages);
1da177e4 2834
649775be 2835unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 2836unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 2837
1da177e4
LT
2838extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2839
0165ab44 2840extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2841 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2842 struct list_head *uf);
1fcfd8db 2843extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2844 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2845 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
11f9a21a
LH
2846extern int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm,
2847 unsigned long start, size_t len, struct list_head *uf,
2848 bool downgrade);
897ab3e0
MR
2849extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2850 struct list_head *uf);
0726b01e 2851extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2852
bebeb3d6
ML
2853#ifdef CONFIG_MMU
2854extern int __mm_populate(unsigned long addr, unsigned long len,
2855 int ignore_errors);
2856static inline void mm_populate(unsigned long addr, unsigned long len)
2857{
2858 /* Ignore errors */
2859 (void) __mm_populate(addr, len, 1);
2860}
2861#else
2862static inline void mm_populate(unsigned long addr, unsigned long len) {}
2863#endif
2864
e4eb1ff6 2865/* These take the mm semaphore themselves */
5d22fc25 2866extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2867extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2868extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2869extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2870 unsigned long, unsigned long,
2871 unsigned long, unsigned long);
1da177e4 2872
db4fbfb9
ML
2873struct vm_unmapped_area_info {
2874#define VM_UNMAPPED_AREA_TOPDOWN 1
2875 unsigned long flags;
2876 unsigned long length;
2877 unsigned long low_limit;
2878 unsigned long high_limit;
2879 unsigned long align_mask;
2880 unsigned long align_offset;
2881};
2882
baceaf1c 2883extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2884
85821aab 2885/* truncate.c */
1da177e4 2886extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2887extern void truncate_inode_pages_range(struct address_space *,
2888 loff_t lstart, loff_t lend);
91b0abe3 2889extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2890
2891/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2892extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2893extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2894 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2895extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 2896
1be7107f 2897extern unsigned long stack_guard_gap;
d05f3169 2898/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2899extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2900
11192337 2901/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2902extern int expand_downwards(struct vm_area_struct *vma,
2903 unsigned long address);
8ca3eb08 2904#if VM_GROWSUP
46dea3d0 2905extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2906#else
fee7e49d 2907 #define expand_upwards(vma, address) (0)
9ab88515 2908#endif
1da177e4
LT
2909
2910/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2911extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2912extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2913 struct vm_area_struct **pprev);
2914
abdba2dd
LH
2915/*
2916 * Look up the first VMA which intersects the interval [start_addr, end_addr)
2917 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 2918 */
ce6d42f2 2919struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 2920 unsigned long start_addr, unsigned long end_addr);
1da177e4 2921
ce6d42f2
LH
2922/**
2923 * vma_lookup() - Find a VMA at a specific address
2924 * @mm: The process address space.
2925 * @addr: The user address.
2926 *
2927 * Return: The vm_area_struct at the given address, %NULL otherwise.
2928 */
2929static inline
2930struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2931{
d7c62295 2932 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
2933}
2934
1be7107f
HD
2935static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2936{
2937 unsigned long vm_start = vma->vm_start;
2938
2939 if (vma->vm_flags & VM_GROWSDOWN) {
2940 vm_start -= stack_guard_gap;
2941 if (vm_start > vma->vm_start)
2942 vm_start = 0;
2943 }
2944 return vm_start;
2945}
2946
2947static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2948{
2949 unsigned long vm_end = vma->vm_end;
2950
2951 if (vma->vm_flags & VM_GROWSUP) {
2952 vm_end += stack_guard_gap;
2953 if (vm_end < vma->vm_end)
2954 vm_end = -PAGE_SIZE;
2955 }
2956 return vm_end;
2957}
2958
1da177e4
LT
2959static inline unsigned long vma_pages(struct vm_area_struct *vma)
2960{
2961 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2962}
2963
640708a2
PE
2964/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2965static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2966 unsigned long vm_start, unsigned long vm_end)
2967{
dc8635b2 2968 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
2969
2970 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2971 vma = NULL;
2972
2973 return vma;
2974}
2975
017b1660
MK
2976static inline bool range_in_vma(struct vm_area_struct *vma,
2977 unsigned long start, unsigned long end)
2978{
2979 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2980}
2981
bad849b3 2982#ifdef CONFIG_MMU
804af2cf 2983pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2984void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2985#else
2986static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2987{
2988 return __pgprot(0);
2989}
64e45507
PF
2990static inline void vma_set_page_prot(struct vm_area_struct *vma)
2991{
2992 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2993}
bad849b3
DH
2994#endif
2995
295992fb
CK
2996void vma_set_file(struct vm_area_struct *vma, struct file *file);
2997
5877231f 2998#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2999unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
3000 unsigned long start, unsigned long end);
3001#endif
3002
deceb6cd 3003struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
3004int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3005 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
3006int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3007 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 3008int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
3009int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3010 struct page **pages, unsigned long *num);
a667d745
SJ
3011int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3012 unsigned long num);
3013int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3014 unsigned long num);
ae2b01f3 3015vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 3016 unsigned long pfn);
f5e6d1d5
MW
3017vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3018 unsigned long pfn, pgprot_t pgprot);
5d747637 3019vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 3020 pfn_t pfn);
574c5b3d
TH
3021vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
3022 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
3023vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3024 unsigned long addr, pfn_t pfn);
b4cbb197
LT
3025int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3026
1c8f4220
SJ
3027static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3028 unsigned long addr, struct page *page)
3029{
3030 int err = vm_insert_page(vma, addr, page);
3031
3032 if (err == -ENOMEM)
3033 return VM_FAULT_OOM;
3034 if (err < 0 && err != -EBUSY)
3035 return VM_FAULT_SIGBUS;
3036
3037 return VM_FAULT_NOPAGE;
3038}
3039
f8f6ae5d
JG
3040#ifndef io_remap_pfn_range
3041static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3042 unsigned long addr, unsigned long pfn,
3043 unsigned long size, pgprot_t prot)
3044{
3045 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3046}
3047#endif
3048
d97baf94
SJ
3049static inline vm_fault_t vmf_error(int err)
3050{
3051 if (err == -ENOMEM)
3052 return VM_FAULT_OOM;
3053 return VM_FAULT_SIGBUS;
3054}
3055
df06b37f
KB
3056struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3057 unsigned int foll_flags);
240aadee 3058
2b740303 3059static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3060{
3061 if (vm_fault & VM_FAULT_OOM)
3062 return -ENOMEM;
3063 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3064 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3065 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3066 return -EFAULT;
3067 return 0;
3068}
3069
a7f22660
DH
3070/*
3071 * Indicates for which pages that are write-protected in the page table,
3072 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
3073 * GUP pin will remain consistent with the pages mapped into the page tables
3074 * of the MM.
3075 *
3076 * Temporary unmapping of PageAnonExclusive() pages or clearing of
3077 * PageAnonExclusive() has to protect against concurrent GUP:
3078 * * Ordinary GUP: Using the PT lock
3079 * * GUP-fast and fork(): mm->write_protect_seq
088b8aa5
DH
3080 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
3081 * page_try_share_anon_rmap()
a7f22660
DH
3082 *
3083 * Must be called with the (sub)page that's actually referenced via the
3084 * page table entry, which might not necessarily be the head page for a
3085 * PTE-mapped THP.
84209e87
DH
3086 *
3087 * If the vma is NULL, we're coming from the GUP-fast path and might have
3088 * to fallback to the slow path just to lookup the vma.
a7f22660 3089 */
84209e87
DH
3090static inline bool gup_must_unshare(struct vm_area_struct *vma,
3091 unsigned int flags, struct page *page)
a7f22660
DH
3092{
3093 /*
3094 * FOLL_WRITE is implicitly handled correctly as the page table entry
3095 * has to be writable -- and if it references (part of) an anonymous
3096 * folio, that part is required to be marked exclusive.
3097 */
3098 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
3099 return false;
3100 /*
3101 * Note: PageAnon(page) is stable until the page is actually getting
3102 * freed.
3103 */
84209e87
DH
3104 if (!PageAnon(page)) {
3105 /*
3106 * We only care about R/O long-term pining: R/O short-term
3107 * pinning does not have the semantics to observe successive
3108 * changes through the process page tables.
3109 */
3110 if (!(flags & FOLL_LONGTERM))
3111 return false;
3112
3113 /* We really need the vma ... */
3114 if (!vma)
3115 return true;
3116
3117 /*
3118 * ... because we only care about writable private ("COW")
3119 * mappings where we have to break COW early.
3120 */
3121 return is_cow_mapping(vma->vm_flags);
3122 }
088b8aa5
DH
3123
3124 /* Paired with a memory barrier in page_try_share_anon_rmap(). */
3125 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
3126 smp_rmb();
3127
a7f22660
DH
3128 /*
3129 * Note that PageKsm() pages cannot be exclusive, and consequently,
3130 * cannot get pinned.
3131 */
3132 return !PageAnonExclusive(page);
3133}
3134
474098ed
DH
3135/*
3136 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3137 * a (NUMA hinting) fault is required.
3138 */
3139static inline bool gup_can_follow_protnone(unsigned int flags)
3140{
3141 /*
3142 * FOLL_FORCE has to be able to make progress even if the VMA is
3143 * inaccessible. Further, FOLL_FORCE access usually does not represent
3144 * application behaviour and we should avoid triggering NUMA hinting
3145 * faults.
3146 */
3147 return flags & FOLL_FORCE;
3148}
3149
8b1e0f81 3150typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3151extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3152 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3153extern int apply_to_existing_page_range(struct mm_struct *mm,
3154 unsigned long address, unsigned long size,
3155 pte_fn_t fn, void *data);
aee16b3c 3156
5749fcc5 3157extern void __init init_mem_debugging_and_hardening(void);
8823b1db 3158#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3159extern void __kernel_poison_pages(struct page *page, int numpages);
3160extern void __kernel_unpoison_pages(struct page *page, int numpages);
3161extern bool _page_poisoning_enabled_early;
3162DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3163static inline bool page_poisoning_enabled(void)
3164{
3165 return _page_poisoning_enabled_early;
3166}
3167/*
3168 * For use in fast paths after init_mem_debugging() has run, or when a
3169 * false negative result is not harmful when called too early.
3170 */
3171static inline bool page_poisoning_enabled_static(void)
3172{
3173 return static_branch_unlikely(&_page_poisoning_enabled);
3174}
3175static inline void kernel_poison_pages(struct page *page, int numpages)
3176{
3177 if (page_poisoning_enabled_static())
3178 __kernel_poison_pages(page, numpages);
3179}
3180static inline void kernel_unpoison_pages(struct page *page, int numpages)
3181{
3182 if (page_poisoning_enabled_static())
3183 __kernel_unpoison_pages(page, numpages);
3184}
8823b1db
LA
3185#else
3186static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3187static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3188static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3189static inline void kernel_poison_pages(struct page *page, int numpages) { }
3190static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3191#endif
3192
51cba1eb 3193DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3194static inline bool want_init_on_alloc(gfp_t flags)
3195{
51cba1eb
KC
3196 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3197 &init_on_alloc))
6471384a
AP
3198 return true;
3199 return flags & __GFP_ZERO;
3200}
3201
51cba1eb 3202DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3203static inline bool want_init_on_free(void)
3204{
51cba1eb
KC
3205 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3206 &init_on_free);
6471384a
AP
3207}
3208
8e57f8ac
VB
3209extern bool _debug_pagealloc_enabled_early;
3210DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3211
3212static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3213{
3214 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3215 _debug_pagealloc_enabled_early;
3216}
3217
3218/*
3219 * For use in fast paths after init_debug_pagealloc() has run, or when a
3220 * false negative result is not harmful when called too early.
3221 */
3222static inline bool debug_pagealloc_enabled_static(void)
031bc574 3223{
96a2b03f
VB
3224 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3225 return false;
3226
3227 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3228}
3229
5d6ad668 3230#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3231/*
5d6ad668
MR
3232 * To support DEBUG_PAGEALLOC architecture must ensure that
3233 * __kernel_map_pages() never fails
c87cbc1f 3234 */
d6332692
RE
3235extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3236
77bc7fd6
MR
3237static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3238{
3239 if (debug_pagealloc_enabled_static())
3240 __kernel_map_pages(page, numpages, 1);
3241}
3242
3243static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3244{
3245 if (debug_pagealloc_enabled_static())
3246 __kernel_map_pages(page, numpages, 0);
3247}
5d6ad668 3248#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3249static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3250static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3251#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3252
a6c19dfe 3253#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3254extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3255extern int in_gate_area_no_mm(unsigned long addr);
3256extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3257#else
a6c19dfe
AL
3258static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3259{
3260 return NULL;
3261}
3262static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3263static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3264{
3265 return 0;
3266}
1da177e4
LT
3267#endif /* __HAVE_ARCH_GATE_AREA */
3268
44a70ade
MH
3269extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3270
146732ce
JT
3271#ifdef CONFIG_SYSCTL
3272extern int sysctl_drop_caches;
32927393
CH
3273int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3274 loff_t *);
146732ce
JT
3275#endif
3276
cb731d6c 3277void drop_slab(void);
9d0243bc 3278
7a9166e3
LY
3279#ifndef CONFIG_MMU
3280#define randomize_va_space 0
3281#else
a62eaf15 3282extern int randomize_va_space;
7a9166e3 3283#endif
a62eaf15 3284
045e72ac 3285const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3286#ifdef CONFIG_MMU
03252919 3287void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3288#else
3289static inline void print_vma_addr(char *prefix, unsigned long rip)
3290{
3291}
3292#endif
e6e5494c 3293
35fd1eb1 3294void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3295struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3296 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3297 struct dev_pagemap *pgmap);
7b09f5af
FC
3298void pmd_init(void *addr);
3299void pud_init(void *addr);
29c71111 3300pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3301p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3302pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3303pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3304pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3305 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3306void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3307struct vmem_altmap;
56993b4e
AK
3308void *vmemmap_alloc_block_buf(unsigned long size, int node,
3309 struct vmem_altmap *altmap);
8f6aac41 3310void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2045a3b8
FC
3311void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3312 unsigned long addr, unsigned long next);
3313int vmemmap_check_pmd(pmd_t *pmd, int node,
3314 unsigned long addr, unsigned long next);
0aad818b 3315int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3316 int node, struct vmem_altmap *altmap);
2045a3b8
FC
3317int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3318 int node, struct vmem_altmap *altmap);
7b73d978
CH
3319int vmemmap_populate(unsigned long start, unsigned long end, int node,
3320 struct vmem_altmap *altmap);
c2b91e2e 3321void vmemmap_populate_print_last(void);
0197518c 3322#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3323void vmemmap_free(unsigned long start, unsigned long end,
3324 struct vmem_altmap *altmap);
0197518c 3325#endif
46723bfa 3326void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3327 unsigned long nr_pages);
6a46079c 3328
82ba011b
AK
3329enum mf_flags {
3330 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3331 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3332 MF_MUST_KILL = 1 << 2,
cf870c70 3333 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3334 MF_UNPOISON = 1 << 4,
67f22ba7 3335 MF_SW_SIMULATED = 1 << 5,
38f6d293 3336 MF_NO_RETRY = 1 << 6,
82ba011b 3337};
c36e2024
SR
3338int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3339 unsigned long count, int mf_flags);
83b57531 3340extern int memory_failure(unsigned long pfn, int flags);
06202231 3341extern void memory_failure_queue_kick(int cpu);
847ce401 3342extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3343extern int sysctl_memory_failure_early_kill;
3344extern int sysctl_memory_failure_recovery;
d0505e9f 3345extern void shake_page(struct page *p);
5844a486 3346extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3347extern int soft_offline_page(unsigned long pfn, int flags);
405ce051 3348#ifdef CONFIG_MEMORY_FAILURE
d302c239 3349extern void memory_failure_queue(unsigned long pfn, int flags);
e591ef7d
NH
3350extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3351 bool *migratable_cleared);
5033091d
NH
3352void num_poisoned_pages_inc(unsigned long pfn);
3353void num_poisoned_pages_sub(unsigned long pfn, long i);
405ce051 3354#else
d302c239
TL
3355static inline void memory_failure_queue(unsigned long pfn, int flags)
3356{
3357}
3358
e591ef7d
NH
3359static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3360 bool *migratable_cleared)
405ce051
NH
3361{
3362 return 0;
3363}
d027122d 3364
a46c9304 3365static inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
3366{
3367}
5033091d
NH
3368
3369static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3370{
3371}
3372#endif
3373
3374#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3375extern void memblk_nr_poison_inc(unsigned long pfn);
3376extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3377#else
3378static inline void memblk_nr_poison_inc(unsigned long pfn)
3379{
3380}
3381
3382static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3383{
3384}
405ce051 3385#endif
6a46079c 3386
03b122da
TL
3387#ifndef arch_memory_failure
3388static inline int arch_memory_failure(unsigned long pfn, int flags)
3389{
3390 return -ENXIO;
3391}
3392#endif
3393
3394#ifndef arch_is_platform_page
3395static inline bool arch_is_platform_page(u64 paddr)
3396{
3397 return false;
3398}
3399#endif
cc637b17
XX
3400
3401/*
3402 * Error handlers for various types of pages.
3403 */
cc3e2af4 3404enum mf_result {
cc637b17
XX
3405 MF_IGNORED, /* Error: cannot be handled */
3406 MF_FAILED, /* Error: handling failed */
3407 MF_DELAYED, /* Will be handled later */
3408 MF_RECOVERED, /* Successfully recovered */
3409};
3410
3411enum mf_action_page_type {
3412 MF_MSG_KERNEL,
3413 MF_MSG_KERNEL_HIGH_ORDER,
3414 MF_MSG_SLAB,
3415 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3416 MF_MSG_HUGE,
3417 MF_MSG_FREE_HUGE,
3418 MF_MSG_UNMAP_FAILED,
3419 MF_MSG_DIRTY_SWAPCACHE,
3420 MF_MSG_CLEAN_SWAPCACHE,
3421 MF_MSG_DIRTY_MLOCKED_LRU,
3422 MF_MSG_CLEAN_MLOCKED_LRU,
3423 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3424 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3425 MF_MSG_DIRTY_LRU,
3426 MF_MSG_CLEAN_LRU,
3427 MF_MSG_TRUNCATED_LRU,
3428 MF_MSG_BUDDY,
6100e34b 3429 MF_MSG_DAX,
5d1fd5dc 3430 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3431 MF_MSG_UNKNOWN,
3432};
3433
47ad8475
AA
3434#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3435extern void clear_huge_page(struct page *page,
c79b57e4 3436 unsigned long addr_hint,
47ad8475
AA
3437 unsigned int pages_per_huge_page);
3438extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3439 unsigned long addr_hint,
3440 struct vm_area_struct *vma,
47ad8475 3441 unsigned int pages_per_huge_page);
fa4d75c1
MK
3442extern long copy_huge_page_from_user(struct page *dst_page,
3443 const void __user *usr_src,
810a56b9
MK
3444 unsigned int pages_per_huge_page,
3445 bool allow_pagefault);
2484ca9b
THV
3446
3447/**
3448 * vma_is_special_huge - Are transhuge page-table entries considered special?
3449 * @vma: Pointer to the struct vm_area_struct to consider
3450 *
3451 * Whether transhuge page-table entries are considered "special" following
3452 * the definition in vm_normal_page().
3453 *
3454 * Return: true if transhuge page-table entries should be considered special,
3455 * false otherwise.
3456 */
3457static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3458{
3459 return vma_is_dax(vma) || (vma->vm_file &&
3460 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3461}
3462
47ad8475
AA
3463#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3464
c0a32fc5
SG
3465#ifdef CONFIG_DEBUG_PAGEALLOC
3466extern unsigned int _debug_guardpage_minorder;
96a2b03f 3467DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3468
3469static inline unsigned int debug_guardpage_minorder(void)
3470{
3471 return _debug_guardpage_minorder;
3472}
3473
e30825f1
JK
3474static inline bool debug_guardpage_enabled(void)
3475{
96a2b03f 3476 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3477}
3478
c0a32fc5
SG
3479static inline bool page_is_guard(struct page *page)
3480{
e30825f1
JK
3481 if (!debug_guardpage_enabled())
3482 return false;
3483
3972f6bb 3484 return PageGuard(page);
c0a32fc5
SG
3485}
3486#else
3487static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3488static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3489static inline bool page_is_guard(struct page *page) { return false; }
3490#endif /* CONFIG_DEBUG_PAGEALLOC */
3491
f9872caf
CS
3492#if MAX_NUMNODES > 1
3493void __init setup_nr_node_ids(void);
3494#else
3495static inline void setup_nr_node_ids(void) {}
3496#endif
3497
010c164a
SL
3498extern int memcmp_pages(struct page *page1, struct page *page2);
3499
3500static inline int pages_identical(struct page *page1, struct page *page2)
3501{
3502 return !memcmp_pages(page1, page2);
3503}
3504
c5acad84
TH
3505#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3506unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3507 pgoff_t first_index, pgoff_t nr,
3508 pgoff_t bitmap_pgoff,
3509 unsigned long *bitmap,
3510 pgoff_t *start,
3511 pgoff_t *end);
3512
3513unsigned long wp_shared_mapping_range(struct address_space *mapping,
3514 pgoff_t first_index, pgoff_t nr);
3515#endif
3516
2374c09b
CH
3517extern int sysctl_nr_trim_pages;
3518
5bb1bb35 3519#ifdef CONFIG_PRINTK
8e7f37f2 3520void mem_dump_obj(void *object);
5bb1bb35
PM
3521#else
3522static inline void mem_dump_obj(void *object) {}
3523#endif
8e7f37f2 3524
22247efd
PX
3525/**
3526 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3527 * @seals: the seals to check
3528 * @vma: the vma to operate on
3529 *
3530 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3531 * the vma flags. Return 0 if check pass, or <0 for errors.
3532 */
3533static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3534{
3535 if (seals & F_SEAL_FUTURE_WRITE) {
3536 /*
3537 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3538 * "future write" seal active.
3539 */
3540 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3541 return -EPERM;
3542
3543 /*
3544 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3545 * MAP_SHARED and read-only, take care to not allow mprotect to
3546 * revert protections on such mappings. Do this only for shared
3547 * mappings. For private mappings, don't need to mask
3548 * VM_MAYWRITE as we still want them to be COW-writable.
3549 */
3550 if (vma->vm_flags & VM_SHARED)
3551 vma->vm_flags &= ~(VM_MAYWRITE);
3552 }
3553
3554 return 0;
3555}
3556
9a10064f
CC
3557#ifdef CONFIG_ANON_VMA_NAME
3558int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
3559 unsigned long len_in,
3560 struct anon_vma_name *anon_name);
9a10064f
CC
3561#else
3562static inline int
3563madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 3564 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
3565 return 0;
3566}
3567#endif
3568
1da177e4 3569#endif /* _LINUX_MM_H */