mm: support POSIX_FADV_NOREUSE
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
1da177e4
LT
32
33struct mempolicy;
34struct anon_vma;
bf181b9f 35struct anon_vma_chain;
e8edc6e0 36struct user_struct;
bce617ed 37struct pt_regs;
1da177e4 38
5ef64cc8
LT
39extern int sysctl_page_lock_unfairness;
40
597b7305
MH
41void init_mm_internals(void);
42
a9ee6cf5 43#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 44extern unsigned long max_mapnr;
fccc9987
JL
45
46static inline void set_max_mapnr(unsigned long limit)
47{
48 max_mapnr = limit;
49}
50#else
51static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
52#endif
53
ca79b0c2
AK
54extern atomic_long_t _totalram_pages;
55static inline unsigned long totalram_pages(void)
56{
57 return (unsigned long)atomic_long_read(&_totalram_pages);
58}
59
60static inline void totalram_pages_inc(void)
61{
62 atomic_long_inc(&_totalram_pages);
63}
64
65static inline void totalram_pages_dec(void)
66{
67 atomic_long_dec(&_totalram_pages);
68}
69
70static inline void totalram_pages_add(long count)
71{
72 atomic_long_add(count, &_totalram_pages);
73}
74
1da177e4 75extern void * high_memory;
1da177e4 76extern int page_cluster;
ea0ffd0c 77extern const int page_cluster_max;
1da177e4
LT
78
79#ifdef CONFIG_SYSCTL
80extern int sysctl_legacy_va_layout;
81#else
82#define sysctl_legacy_va_layout 0
83#endif
84
d07e2259
DC
85#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
86extern const int mmap_rnd_bits_min;
87extern const int mmap_rnd_bits_max;
88extern int mmap_rnd_bits __read_mostly;
89#endif
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
91extern const int mmap_rnd_compat_bits_min;
92extern const int mmap_rnd_compat_bits_max;
93extern int mmap_rnd_compat_bits __read_mostly;
94#endif
95
1da177e4 96#include <asm/page.h>
1da177e4 97#include <asm/processor.h>
1da177e4 98
d9344522
AK
99/*
100 * Architectures that support memory tagging (assigning tags to memory regions,
101 * embedding these tags into addresses that point to these memory regions, and
102 * checking that the memory and the pointer tags match on memory accesses)
103 * redefine this macro to strip tags from pointers.
f0953a1b 104 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
105 */
106#ifndef untagged_addr
107#define untagged_addr(addr) (addr)
108#endif
109
79442ed1
TC
110#ifndef __pa_symbol
111#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
112#endif
113
1dff8083
AB
114#ifndef page_to_virt
115#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
116#endif
117
568c5fe5
LA
118#ifndef lm_alias
119#define lm_alias(x) __va(__pa_symbol(x))
120#endif
121
593befa6
DD
122/*
123 * To prevent common memory management code establishing
124 * a zero page mapping on a read fault.
125 * This macro should be defined within <asm/pgtable.h>.
126 * s390 does this to prevent multiplexing of hardware bits
127 * related to the physical page in case of virtualization.
128 */
129#ifndef mm_forbids_zeropage
130#define mm_forbids_zeropage(X) (0)
131#endif
132
a4a3ede2
PT
133/*
134 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
135 * If an architecture decides to implement their own version of
136 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
137 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 138 */
5470dea4
AD
139#if BITS_PER_LONG == 64
140/* This function must be updated when the size of struct page grows above 80
141 * or reduces below 56. The idea that compiler optimizes out switch()
142 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 143 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
144 * this can result in several of the writes here being dropped.
145 */
146#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
147static inline void __mm_zero_struct_page(struct page *page)
148{
149 unsigned long *_pp = (void *)page;
150
151 /* Check that struct page is either 56, 64, 72, or 80 bytes */
152 BUILD_BUG_ON(sizeof(struct page) & 7);
153 BUILD_BUG_ON(sizeof(struct page) < 56);
154 BUILD_BUG_ON(sizeof(struct page) > 80);
155
156 switch (sizeof(struct page)) {
157 case 80:
df561f66
GS
158 _pp[9] = 0;
159 fallthrough;
5470dea4 160 case 72:
df561f66
GS
161 _pp[8] = 0;
162 fallthrough;
5470dea4 163 case 64:
df561f66
GS
164 _pp[7] = 0;
165 fallthrough;
5470dea4
AD
166 case 56:
167 _pp[6] = 0;
168 _pp[5] = 0;
169 _pp[4] = 0;
170 _pp[3] = 0;
171 _pp[2] = 0;
172 _pp[1] = 0;
173 _pp[0] = 0;
174 }
175}
176#else
a4a3ede2
PT
177#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
178#endif
179
ea606cf5
AR
180/*
181 * Default maximum number of active map areas, this limits the number of vmas
182 * per mm struct. Users can overwrite this number by sysctl but there is a
183 * problem.
184 *
185 * When a program's coredump is generated as ELF format, a section is created
186 * per a vma. In ELF, the number of sections is represented in unsigned short.
187 * This means the number of sections should be smaller than 65535 at coredump.
188 * Because the kernel adds some informative sections to a image of program at
189 * generating coredump, we need some margin. The number of extra sections is
190 * 1-3 now and depends on arch. We use "5" as safe margin, here.
191 *
192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193 * not a hard limit any more. Although some userspace tools can be surprised by
194 * that.
195 */
196#define MAPCOUNT_ELF_CORE_MARGIN (5)
197#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198
199extern int sysctl_max_map_count;
200
c9b1d098 201extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 202extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 203
49f0ce5f
JM
204extern int sysctl_overcommit_memory;
205extern int sysctl_overcommit_ratio;
206extern unsigned long sysctl_overcommit_kbytes;
207
32927393
CH
208int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
209 loff_t *);
210int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
211 loff_t *);
56f3547b
FT
212int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
213 loff_t *);
49f0ce5f 214
1cfcee72 215#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 216#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 217#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
218#else
219#define nth_page(page,n) ((page) + (n))
659508f9 220#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 221#endif
1da177e4 222
27ac792c
AR
223/* to align the pointer to the (next) page boundary */
224#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
225
335e52c2
DG
226/* to align the pointer to the (prev) page boundary */
227#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
228
0fa73b86 229/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 230#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 231
f86196ea 232#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
233static inline struct folio *lru_to_folio(struct list_head *head)
234{
235 return list_entry((head)->prev, struct folio, lru);
236}
f86196ea 237
5748fbc5
KW
238void setup_initial_init_mm(void *start_code, void *end_code,
239 void *end_data, void *brk);
240
1da177e4
LT
241/*
242 * Linux kernel virtual memory manager primitives.
243 * The idea being to have a "virtual" mm in the same way
244 * we have a virtual fs - giving a cleaner interface to the
245 * mm details, and allowing different kinds of memory mappings
246 * (from shared memory to executable loading to arbitrary
247 * mmap() functions).
248 */
249
490fc053 250struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
251struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
252void vm_area_free(struct vm_area_struct *);
c43692e8 253
1da177e4 254#ifndef CONFIG_MMU
8feae131
DH
255extern struct rb_root nommu_region_tree;
256extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
257
258extern unsigned int kobjsize(const void *objp);
259#endif
260
261/*
605d9288 262 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 263 * When changing, update also include/trace/events/mmflags.h
1da177e4 264 */
cc2383ec
KK
265#define VM_NONE 0x00000000
266
1da177e4
LT
267#define VM_READ 0x00000001 /* currently active flags */
268#define VM_WRITE 0x00000002
269#define VM_EXEC 0x00000004
270#define VM_SHARED 0x00000008
271
7e2cff42 272/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
273#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
274#define VM_MAYWRITE 0x00000020
275#define VM_MAYEXEC 0x00000040
276#define VM_MAYSHARE 0x00000080
277
278#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
b6b7a8fa 279#ifdef CONFIG_MMU
16ba6f81 280#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
b6b7a8fa
DH
281#else /* CONFIG_MMU */
282#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
283#define VM_UFFD_MISSING 0
284#endif /* CONFIG_MMU */
6aab341e 285#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 286#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 287
1da177e4
LT
288#define VM_LOCKED 0x00002000
289#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
290
291 /* Used by sys_madvise() */
292#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
293#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
294
295#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
296#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 297#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 298#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 299#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 300#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 301#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 302#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 303#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 304#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 305
d9104d1c
CG
306#ifdef CONFIG_MEM_SOFT_DIRTY
307# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
308#else
309# define VM_SOFTDIRTY 0
310#endif
311
b379d790 312#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
313#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
314#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 315#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 316
63c17fb8
DH
317#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
318#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
320#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
321#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 322#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
323#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
324#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
325#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
326#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 327#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
328#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
329
5212213a 330#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
331# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
332# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 333# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
334# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
335# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
336#ifdef CONFIG_PPC
337# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
338#else
339# define VM_PKEY_BIT4 0
8f62c883 340#endif
5212213a
RP
341#endif /* CONFIG_ARCH_HAS_PKEYS */
342
343#if defined(CONFIG_X86)
344# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
345#elif defined(CONFIG_PPC)
346# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
347#elif defined(CONFIG_PARISC)
348# define VM_GROWSUP VM_ARCH_1
349#elif defined(CONFIG_IA64)
350# define VM_GROWSUP VM_ARCH_1
74a04967
KA
351#elif defined(CONFIG_SPARC64)
352# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
353# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
354#elif defined(CONFIG_ARM64)
355# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
356# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
357#elif !defined(CONFIG_MMU)
358# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
359#endif
360
9f341931
CM
361#if defined(CONFIG_ARM64_MTE)
362# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
363# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
364#else
365# define VM_MTE VM_NONE
366# define VM_MTE_ALLOWED VM_NONE
367#endif
368
cc2383ec
KK
369#ifndef VM_GROWSUP
370# define VM_GROWSUP VM_NONE
371#endif
372
7677f7fd
AR
373#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
374# define VM_UFFD_MINOR_BIT 37
375# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
376#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
377# define VM_UFFD_MINOR VM_NONE
378#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
379
a8bef8ff
MG
380/* Bits set in the VMA until the stack is in its final location */
381#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
382
c62da0c3
AK
383#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
384
385/* Common data flag combinations */
386#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
387 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
388#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
389 VM_MAYWRITE | VM_MAYEXEC)
390#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
391 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
392
393#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
394#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
395#endif
396
1da177e4
LT
397#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
398#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
399#endif
400
401#ifdef CONFIG_STACK_GROWSUP
30bdbb78 402#define VM_STACK VM_GROWSUP
1da177e4 403#else
30bdbb78 404#define VM_STACK VM_GROWSDOWN
1da177e4
LT
405#endif
406
30bdbb78
KK
407#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
408
6cb4d9a2
AK
409/* VMA basic access permission flags */
410#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
411
412
b291f000 413/*
78f11a25 414 * Special vmas that are non-mergable, non-mlock()able.
b291f000 415 */
9050d7eb 416#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 417
b4443772
AK
418/* This mask prevents VMA from being scanned with khugepaged */
419#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
420
a0715cc2
AT
421/* This mask defines which mm->def_flags a process can inherit its parent */
422#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
423
de60f5f1
EM
424/* This mask is used to clear all the VMA flags used by mlock */
425#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
426
2c2d57b5
KA
427/* Arch-specific flags to clear when updating VM flags on protection change */
428#ifndef VM_ARCH_CLEAR
429# define VM_ARCH_CLEAR VM_NONE
430#endif
431#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
432
1da177e4
LT
433/*
434 * mapping from the currently active vm_flags protection bits (the
435 * low four bits) to a page protection mask..
436 */
1da177e4 437
dde16072
PX
438/*
439 * The default fault flags that should be used by most of the
440 * arch-specific page fault handlers.
441 */
442#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
443 FAULT_FLAG_KILLABLE | \
444 FAULT_FLAG_INTERRUPTIBLE)
dde16072 445
4064b982
PX
446/**
447 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 448 * @flags: Fault flags.
4064b982
PX
449 *
450 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 451 * the mmap_lock for too long a time when waiting for another condition
4064b982 452 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
453 * mmap_lock in the first round to avoid potential starvation of other
454 * processes that would also want the mmap_lock.
4064b982
PX
455 *
456 * Return: true if the page fault allows retry and this is the first
457 * attempt of the fault handling; false otherwise.
458 */
da2f5eb3 459static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
460{
461 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
462 (!(flags & FAULT_FLAG_TRIED));
463}
464
282a8e03
RZ
465#define FAULT_FLAG_TRACE \
466 { FAULT_FLAG_WRITE, "WRITE" }, \
467 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
468 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
469 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
470 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
471 { FAULT_FLAG_TRIED, "TRIED" }, \
472 { FAULT_FLAG_USER, "USER" }, \
473 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
474 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
475 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 476
54cb8821 477/*
11192337 478 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
479 * ->fault function. The vma's ->fault is responsible for returning a bitmask
480 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 481 *
c20cd45e
MH
482 * MM layer fills up gfp_mask for page allocations but fault handler might
483 * alter it if its implementation requires a different allocation context.
484 *
9b4bdd2f 485 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 486 */
d0217ac0 487struct vm_fault {
5857c920 488 const struct {
742d3372
WD
489 struct vm_area_struct *vma; /* Target VMA */
490 gfp_t gfp_mask; /* gfp mask to be used for allocations */
491 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
492 unsigned long address; /* Faulting virtual address - masked */
493 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 494 };
da2f5eb3 495 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 496 * XXX: should really be 'const' */
82b0f8c3 497 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 498 * the 'address' */
a2d58167
DJ
499 pud_t *pud; /* Pointer to pud entry matching
500 * the 'address'
501 */
5db4f15c
YS
502 union {
503 pte_t orig_pte; /* Value of PTE at the time of fault */
504 pmd_t orig_pmd; /* Value of PMD at the time of fault,
505 * used by PMD fault only.
506 */
507 };
d0217ac0 508
3917048d 509 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 510 struct page *page; /* ->fault handlers should return a
83c54070 511 * page here, unless VM_FAULT_NOPAGE
d0217ac0 512 * is set (which is also implied by
83c54070 513 * VM_FAULT_ERROR).
d0217ac0 514 */
82b0f8c3 515 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
516 pte_t *pte; /* Pointer to pte entry matching
517 * the 'address'. NULL if the page
518 * table hasn't been allocated.
519 */
520 spinlock_t *ptl; /* Page table lock.
521 * Protects pte page table if 'pte'
522 * is not NULL, otherwise pmd.
523 */
7267ec00 524 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
525 * vm_ops->map_pages() sets up a page
526 * table from atomic context.
7267ec00
KS
527 * do_fault_around() pre-allocates
528 * page table to avoid allocation from
529 * atomic context.
530 */
54cb8821 531};
1da177e4 532
c791ace1
DJ
533/* page entry size for vm->huge_fault() */
534enum page_entry_size {
535 PE_SIZE_PTE = 0,
536 PE_SIZE_PMD,
537 PE_SIZE_PUD,
538};
539
1da177e4
LT
540/*
541 * These are the virtual MM functions - opening of an area, closing and
542 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 543 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
544 */
545struct vm_operations_struct {
546 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
547 /**
548 * @close: Called when the VMA is being removed from the MM.
549 * Context: User context. May sleep. Caller holds mmap_lock.
550 */
1da177e4 551 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
552 /* Called any time before splitting to check if it's allowed */
553 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 554 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
555 /*
556 * Called by mprotect() to make driver-specific permission
557 * checks before mprotect() is finalised. The VMA must not
3e0ee843 558 * be modified. Returns 0 if mprotect() can proceed.
95bb7c42
SC
559 */
560 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
561 unsigned long end, unsigned long newflags);
1c8f4220
SJ
562 vm_fault_t (*fault)(struct vm_fault *vmf);
563 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
564 enum page_entry_size pe_size);
f9ce0be7 565 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 566 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 567 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
568
569 /* notification that a previously read-only page is about to become
570 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 571 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 572
dd906184 573 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 574 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 575
28b2ee20 576 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
577 * for use by special VMAs. See also generic_access_phys() for a generic
578 * implementation useful for any iomem mapping.
28b2ee20
RR
579 */
580 int (*access)(struct vm_area_struct *vma, unsigned long addr,
581 void *buf, int len, int write);
78d683e8
AL
582
583 /* Called by the /proc/PID/maps code to ask the vma whether it
584 * has a special name. Returning non-NULL will also cause this
585 * vma to be dumped unconditionally. */
586 const char *(*name)(struct vm_area_struct *vma);
587
1da177e4 588#ifdef CONFIG_NUMA
a6020ed7
LS
589 /*
590 * set_policy() op must add a reference to any non-NULL @new mempolicy
591 * to hold the policy upon return. Caller should pass NULL @new to
592 * remove a policy and fall back to surrounding context--i.e. do not
593 * install a MPOL_DEFAULT policy, nor the task or system default
594 * mempolicy.
595 */
1da177e4 596 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
597
598 /*
599 * get_policy() op must add reference [mpol_get()] to any policy at
600 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
601 * in mm/mempolicy.c will do this automatically.
602 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 603 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
604 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
605 * must return NULL--i.e., do not "fallback" to task or system default
606 * policy.
607 */
1da177e4
LT
608 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
609 unsigned long addr);
610#endif
667a0a06
DV
611 /*
612 * Called by vm_normal_page() for special PTEs to find the
613 * page for @addr. This is useful if the default behavior
614 * (using pte_page()) would not find the correct page.
615 */
616 struct page *(*find_special_page)(struct vm_area_struct *vma,
617 unsigned long addr);
1da177e4
LT
618};
619
027232da
KS
620static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
621{
bfd40eaf
KS
622 static const struct vm_operations_struct dummy_vm_ops = {};
623
a670468f 624 memset(vma, 0, sizeof(*vma));
027232da 625 vma->vm_mm = mm;
bfd40eaf 626 vma->vm_ops = &dummy_vm_ops;
027232da
KS
627 INIT_LIST_HEAD(&vma->anon_vma_chain);
628}
629
bfd40eaf
KS
630static inline void vma_set_anonymous(struct vm_area_struct *vma)
631{
632 vma->vm_ops = NULL;
633}
634
43675e6f
YS
635static inline bool vma_is_anonymous(struct vm_area_struct *vma)
636{
637 return !vma->vm_ops;
638}
639
222100ee
AK
640static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
641{
642 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
643
644 if (!maybe_stack)
645 return false;
646
647 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
648 VM_STACK_INCOMPLETE_SETUP)
649 return true;
650
651 return false;
652}
653
7969f226
AK
654static inline bool vma_is_foreign(struct vm_area_struct *vma)
655{
656 if (!current->mm)
657 return true;
658
659 if (current->mm != vma->vm_mm)
660 return true;
661
662 return false;
663}
3122e80e
AK
664
665static inline bool vma_is_accessible(struct vm_area_struct *vma)
666{
6cb4d9a2 667 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
668}
669
f39af059
MWO
670static inline
671struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
672{
673 return mas_find(&vmi->mas, max);
674}
675
676static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
677{
678 /*
679 * Uses vma_find() to get the first VMA when the iterator starts.
680 * Calling mas_next() could skip the first entry.
681 */
682 return vma_find(vmi, ULONG_MAX);
683}
684
685static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
686{
687 return mas_prev(&vmi->mas, 0);
688}
689
690static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
691{
692 return vmi->mas.index;
693}
694
695#define for_each_vma(__vmi, __vma) \
696 while (((__vma) = vma_next(&(__vmi))) != NULL)
697
698/* The MM code likes to work with exclusive end addresses */
699#define for_each_vma_range(__vmi, __vma, __end) \
700 while (((__vma) = vma_find(&(__vmi), (__end) - 1)) != NULL)
701
43675e6f
YS
702#ifdef CONFIG_SHMEM
703/*
704 * The vma_is_shmem is not inline because it is used only by slow
705 * paths in userfault.
706 */
707bool vma_is_shmem(struct vm_area_struct *vma);
d09e8ca6 708bool vma_is_anon_shmem(struct vm_area_struct *vma);
43675e6f
YS
709#else
710static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
d09e8ca6 711static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
43675e6f
YS
712#endif
713
714int vma_is_stack_for_current(struct vm_area_struct *vma);
715
8b11ec1b
LT
716/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
717#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
718
1da177e4
LT
719struct mmu_gather;
720struct inode;
721
5bf34d7c
MWO
722static inline unsigned int compound_order(struct page *page)
723{
724 if (!PageHead(page))
725 return 0;
726 return page[1].compound_order;
727}
728
729/**
730 * folio_order - The allocation order of a folio.
731 * @folio: The folio.
732 *
733 * A folio is composed of 2^order pages. See get_order() for the definition
734 * of order.
735 *
736 * Return: The order of the folio.
737 */
738static inline unsigned int folio_order(struct folio *folio)
739{
c3a15bff
MWO
740 if (!folio_test_large(folio))
741 return 0;
742 return folio->_folio_order;
5bf34d7c
MWO
743}
744
71e3aac0 745#include <linux/huge_mm.h>
1da177e4
LT
746
747/*
748 * Methods to modify the page usage count.
749 *
750 * What counts for a page usage:
751 * - cache mapping (page->mapping)
752 * - private data (page->private)
753 * - page mapped in a task's page tables, each mapping
754 * is counted separately
755 *
756 * Also, many kernel routines increase the page count before a critical
757 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
758 */
759
760/*
da6052f7 761 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 762 */
7c8ee9a8
NP
763static inline int put_page_testzero(struct page *page)
764{
fe896d18
JK
765 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
766 return page_ref_dec_and_test(page);
7c8ee9a8 767}
1da177e4 768
b620f633
MWO
769static inline int folio_put_testzero(struct folio *folio)
770{
771 return put_page_testzero(&folio->page);
772}
773
1da177e4 774/*
7c8ee9a8
NP
775 * Try to grab a ref unless the page has a refcount of zero, return false if
776 * that is the case.
8e0861fa
AK
777 * This can be called when MMU is off so it must not access
778 * any of the virtual mappings.
1da177e4 779 */
c2530328 780static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 781{
fe896d18 782 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 783}
1da177e4 784
53df8fdc 785extern int page_is_ram(unsigned long pfn);
124fe20d
DW
786
787enum {
788 REGION_INTERSECTS,
789 REGION_DISJOINT,
790 REGION_MIXED,
791};
792
1c29f25b
TK
793int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
794 unsigned long desc);
53df8fdc 795
48667e7a 796/* Support for virtually mapped pages */
b3bdda02
CL
797struct page *vmalloc_to_page(const void *addr);
798unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 799
0738c4bb
PM
800/*
801 * Determine if an address is within the vmalloc range
802 *
803 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
804 * is no special casing required.
805 */
9bd3bb67
AK
806
807#ifndef is_ioremap_addr
808#define is_ioremap_addr(x) is_vmalloc_addr(x)
809#endif
810
81ac3ad9 811#ifdef CONFIG_MMU
186525bd 812extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
813extern int is_vmalloc_or_module_addr(const void *x);
814#else
186525bd
IM
815static inline bool is_vmalloc_addr(const void *x)
816{
817 return false;
818}
934831d0 819static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
820{
821 return 0;
822}
823#endif
9e2779fa 824
74e8ee47
MWO
825/*
826 * How many times the entire folio is mapped as a single unit (eg by a
827 * PMD or PUD entry). This is probably not what you want, except for
cb67f428
HD
828 * debugging purposes - it does not include PTE-mapped sub-pages; look
829 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
74e8ee47
MWO
830 */
831static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 832{
74e8ee47
MWO
833 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
834 return atomic_read(folio_mapcount_ptr(folio)) + 1;
6dc5ea16
JH
835}
836
6988f31d
KK
837/*
838 * Mapcount of compound page as a whole, does not include mapped sub-pages.
cb67f428 839 * Must be called only on head of compound page.
6988f31d 840 */
cb67f428 841static inline int head_compound_mapcount(struct page *head)
53f9263b 842{
cb67f428
HD
843 return atomic_read(compound_mapcount_ptr(head)) + 1;
844}
845
4b51634c
HD
846/*
847 * If a 16GB hugetlb page were mapped by PTEs of all of its 4kB sub-pages,
848 * its subpages_mapcount would be 0x400000: choose the COMPOUND_MAPPED bit
849 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
850 * leaves subpages_mapcount at 0, but avoid surprise if it participates later.
6988f31d 851 */
4b51634c
HD
852#define COMPOUND_MAPPED 0x800000
853#define SUBPAGES_MAPPED (COMPOUND_MAPPED - 1)
854
cb67f428 855/*
be5ef2d9 856 * Number of sub-pages mapped by PTE, does not include compound mapcount.
cb67f428
HD
857 * Must be called only on head of compound page.
858 */
859static inline int head_subpages_mapcount(struct page *head)
53f9263b 860{
4b51634c 861 return atomic_read(subpages_mapcount_ptr(head)) & SUBPAGES_MAPPED;
53f9263b
KS
862}
863
70b50f94
AA
864/*
865 * The atomic page->_mapcount, starts from -1: so that transitions
866 * both from it and to it can be tracked, using atomic_inc_and_test
867 * and atomic_add_negative(-1).
868 */
22b751c3 869static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
870{
871 atomic_set(&(page)->_mapcount, -1);
872}
873
6988f31d
KK
874/*
875 * Mapcount of 0-order page; when compound sub-page, includes
cb67f428 876 * compound_mapcount of compound_head of page.
6988f31d
KK
877 *
878 * Result is undefined for pages which cannot be mapped into userspace.
879 * For example SLAB or special types of pages. See function page_has_type().
880 * They use this place in struct page differently.
881 */
70b50f94
AA
882static inline int page_mapcount(struct page *page)
883{
cb67f428 884 int mapcount = atomic_read(&page->_mapcount) + 1;
b20ce5e0 885
cb67f428
HD
886 if (likely(!PageCompound(page)))
887 return mapcount;
888 page = compound_head(page);
889 return head_compound_mapcount(page) + mapcount;
b20ce5e0
KS
890}
891
be5ef2d9 892int total_compound_mapcount(struct page *head);
4ba1119c 893
cb67f428
HD
894/**
895 * folio_mapcount() - Calculate the number of mappings of this folio.
896 * @folio: The folio.
897 *
898 * A large folio tracks both how many times the entire folio is mapped,
899 * and how many times each individual page in the folio is mapped.
900 * This function calculates the total number of times the folio is
901 * mapped.
902 *
903 * Return: The number of times this folio is mapped.
904 */
905static inline int folio_mapcount(struct folio *folio)
4ba1119c 906{
cb67f428
HD
907 if (likely(!folio_test_large(folio)))
908 return atomic_read(&folio->_mapcount) + 1;
be5ef2d9 909 return total_compound_mapcount(&folio->page);
4ba1119c
MWO
910}
911
b20ce5e0
KS
912static inline int total_mapcount(struct page *page)
913{
be5ef2d9
HD
914 if (likely(!PageCompound(page)))
915 return atomic_read(&page->_mapcount) + 1;
916 return total_compound_mapcount(compound_head(page));
917}
918
919static inline bool folio_large_is_mapped(struct folio *folio)
920{
4b51634c
HD
921 /*
922 * Reading folio_mapcount_ptr() below could be omitted if hugetlb
923 * participated in incrementing subpages_mapcount when compound mapped.
924 */
925 return atomic_read(folio_subpages_mapcount_ptr(folio)) > 0 ||
926 atomic_read(folio_mapcount_ptr(folio)) >= 0;
cb67f428
HD
927}
928
929/**
930 * folio_mapped - Is this folio mapped into userspace?
931 * @folio: The folio.
932 *
933 * Return: True if any page in this folio is referenced by user page tables.
934 */
935static inline bool folio_mapped(struct folio *folio)
936{
be5ef2d9
HD
937 if (likely(!folio_test_large(folio)))
938 return atomic_read(&folio->_mapcount) >= 0;
939 return folio_large_is_mapped(folio);
940}
941
942/*
943 * Return true if this page is mapped into pagetables.
944 * For compound page it returns true if any sub-page of compound page is mapped,
945 * even if this particular sub-page is not itself mapped by any PTE or PMD.
946 */
947static inline bool page_mapped(struct page *page)
948{
949 if (likely(!PageCompound(page)))
950 return atomic_read(&page->_mapcount) >= 0;
951 return folio_large_is_mapped(page_folio(page));
70b50f94
AA
952}
953
b49af68f
CL
954static inline struct page *virt_to_head_page(const void *x)
955{
956 struct page *page = virt_to_page(x);
ccaafd7f 957
1d798ca3 958 return compound_head(page);
b49af68f
CL
959}
960
7d4203c1
VB
961static inline struct folio *virt_to_folio(const void *x)
962{
963 struct page *page = virt_to_page(x);
964
965 return page_folio(page);
966}
967
8d29c703 968void __folio_put(struct folio *folio);
ddc58f27 969
1d7ea732 970void put_pages_list(struct list_head *pages);
1da177e4 971
8dfcc9ba 972void split_page(struct page *page, unsigned int order);
715cbfd6 973void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 974
a1554c00
ML
975unsigned long nr_free_buffer_pages(void);
976
33f2ef89
AW
977/*
978 * Compound pages have a destructor function. Provide a
979 * prototype for that function and accessor functions.
f1e61557 980 * These are _only_ valid on the head of a compound page.
33f2ef89 981 */
f1e61557
KS
982typedef void compound_page_dtor(struct page *);
983
984/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
985enum compound_dtor_id {
986 NULL_COMPOUND_DTOR,
987 COMPOUND_PAGE_DTOR,
988#ifdef CONFIG_HUGETLB_PAGE
989 HUGETLB_PAGE_DTOR,
9a982250
KS
990#endif
991#ifdef CONFIG_TRANSPARENT_HUGEPAGE
992 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
993#endif
994 NR_COMPOUND_DTORS,
995};
ae70eddd 996extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
997
998static inline void set_compound_page_dtor(struct page *page,
f1e61557 999 enum compound_dtor_id compound_dtor)
33f2ef89 1000{
f1e61557
KS
1001 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
1002 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
1003}
1004
9fd33058
SK
1005static inline void folio_set_compound_dtor(struct folio *folio,
1006 enum compound_dtor_id compound_dtor)
1007{
1008 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1009 folio->_folio_dtor = compound_dtor;
1010}
1011
5375336c 1012void destroy_large_folio(struct folio *folio);
33f2ef89 1013
bac3cf4d 1014static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
1015{
1016 return atomic_read(compound_pincount_ptr(head));
1017}
1018
f1e61557 1019static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 1020{
e4b294c2 1021 page[1].compound_order = order;
5232c63f 1022#ifdef CONFIG_64BIT
1378a5ee 1023 page[1].compound_nr = 1U << order;
5232c63f 1024#endif
d85f3385
CL
1025}
1026
d8c6546b
MWO
1027/* Returns the number of pages in this potentially compound page. */
1028static inline unsigned long compound_nr(struct page *page)
1029{
1378a5ee
MWO
1030 if (!PageHead(page))
1031 return 1;
5232c63f 1032#ifdef CONFIG_64BIT
1378a5ee 1033 return page[1].compound_nr;
5232c63f
MWO
1034#else
1035 return 1UL << compound_order(page);
1036#endif
d8c6546b
MWO
1037}
1038
a50b854e
MWO
1039/* Returns the number of bytes in this potentially compound page. */
1040static inline unsigned long page_size(struct page *page)
1041{
1042 return PAGE_SIZE << compound_order(page);
1043}
1044
94ad9338
MWO
1045/* Returns the number of bits needed for the number of bytes in a page */
1046static inline unsigned int page_shift(struct page *page)
1047{
1048 return PAGE_SHIFT + compound_order(page);
1049}
1050
18788cfa
MWO
1051/**
1052 * thp_order - Order of a transparent huge page.
1053 * @page: Head page of a transparent huge page.
1054 */
1055static inline unsigned int thp_order(struct page *page)
1056{
1057 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1058 return compound_order(page);
1059}
1060
1061/**
1062 * thp_nr_pages - The number of regular pages in this huge page.
1063 * @page: The head page of a huge page.
1064 */
1065static inline int thp_nr_pages(struct page *page)
1066{
1067 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1068 return compound_nr(page);
1069}
1070
1071/**
1072 * thp_size - Size of a transparent huge page.
1073 * @page: Head page of a transparent huge page.
1074 *
1075 * Return: Number of bytes in this page.
1076 */
1077static inline unsigned long thp_size(struct page *page)
1078{
1079 return PAGE_SIZE << thp_order(page);
1080}
1081
9a982250
KS
1082void free_compound_page(struct page *page);
1083
3dece370 1084#ifdef CONFIG_MMU
14fd403f
AA
1085/*
1086 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1087 * servicing faults for write access. In the normal case, do always want
1088 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1089 * that do not have writing enabled, when used by access_process_vm.
1090 */
1091static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1092{
1093 if (likely(vma->vm_flags & VM_WRITE))
1094 pte = pte_mkwrite(pte);
1095 return pte;
1096}
8c6e50b0 1097
f9ce0be7 1098vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1099void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1100
2b740303
SJ
1101vm_fault_t finish_fault(struct vm_fault *vmf);
1102vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1103#endif
14fd403f 1104
1da177e4
LT
1105/*
1106 * Multiple processes may "see" the same page. E.g. for untouched
1107 * mappings of /dev/null, all processes see the same page full of
1108 * zeroes, and text pages of executables and shared libraries have
1109 * only one copy in memory, at most, normally.
1110 *
1111 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1112 * page_count() == 0 means the page is free. page->lru is then used for
1113 * freelist management in the buddy allocator.
da6052f7 1114 * page_count() > 0 means the page has been allocated.
1da177e4 1115 *
da6052f7
NP
1116 * Pages are allocated by the slab allocator in order to provide memory
1117 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1118 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1119 * unless a particular usage is carefully commented. (the responsibility of
1120 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1121 *
da6052f7
NP
1122 * A page may be used by anyone else who does a __get_free_page().
1123 * In this case, page_count still tracks the references, and should only
1124 * be used through the normal accessor functions. The top bits of page->flags
1125 * and page->virtual store page management information, but all other fields
1126 * are unused and could be used privately, carefully. The management of this
1127 * page is the responsibility of the one who allocated it, and those who have
1128 * subsequently been given references to it.
1129 *
1130 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1131 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1132 * The following discussion applies only to them.
1133 *
da6052f7
NP
1134 * A pagecache page contains an opaque `private' member, which belongs to the
1135 * page's address_space. Usually, this is the address of a circular list of
1136 * the page's disk buffers. PG_private must be set to tell the VM to call
1137 * into the filesystem to release these pages.
1da177e4 1138 *
da6052f7
NP
1139 * A page may belong to an inode's memory mapping. In this case, page->mapping
1140 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1141 * in units of PAGE_SIZE.
1da177e4 1142 *
da6052f7
NP
1143 * If pagecache pages are not associated with an inode, they are said to be
1144 * anonymous pages. These may become associated with the swapcache, and in that
1145 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1146 *
da6052f7
NP
1147 * In either case (swapcache or inode backed), the pagecache itself holds one
1148 * reference to the page. Setting PG_private should also increment the
1149 * refcount. The each user mapping also has a reference to the page.
1da177e4 1150 *
da6052f7 1151 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1152 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1153 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1154 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1155 *
da6052f7 1156 * All pagecache pages may be subject to I/O:
1da177e4
LT
1157 * - inode pages may need to be read from disk,
1158 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1159 * to be written back to the inode on disk,
1160 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1161 * modified may need to be swapped out to swap space and (later) to be read
1162 * back into memory.
1da177e4
LT
1163 */
1164
27674ef6 1165#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1166DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1167
f4f451a1
MS
1168bool __put_devmap_managed_page_refs(struct page *page, int refs);
1169static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1170{
1171 if (!static_branch_unlikely(&devmap_managed_key))
1172 return false;
1173 if (!is_zone_device_page(page))
1174 return false;
f4f451a1 1175 return __put_devmap_managed_page_refs(page, refs);
e7638488 1176}
27674ef6 1177#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1178static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1179{
1180 return false;
1181}
27674ef6 1182#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1183
f4f451a1
MS
1184static inline bool put_devmap_managed_page(struct page *page)
1185{
1186 return put_devmap_managed_page_refs(page, 1);
1187}
1188
f958d7b5 1189/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1190#define folio_ref_zero_or_close_to_overflow(folio) \
1191 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1192
1193/**
1194 * folio_get - Increment the reference count on a folio.
1195 * @folio: The folio.
1196 *
1197 * Context: May be called in any context, as long as you know that
1198 * you have a refcount on the folio. If you do not already have one,
1199 * folio_try_get() may be the right interface for you to use.
1200 */
1201static inline void folio_get(struct folio *folio)
1202{
1203 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1204 folio_ref_inc(folio);
1205}
f958d7b5 1206
3565fce3
DW
1207static inline void get_page(struct page *page)
1208{
86d234cb 1209 folio_get(page_folio(page));
3565fce3
DW
1210}
1211
0f089235 1212int __must_check try_grab_page(struct page *page, unsigned int flags);
cd1adf1b
LT
1213
1214static inline __must_check bool try_get_page(struct page *page)
1215{
1216 page = compound_head(page);
1217 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1218 return false;
1219 page_ref_inc(page);
1220 return true;
1221}
3565fce3 1222
b620f633
MWO
1223/**
1224 * folio_put - Decrement the reference count on a folio.
1225 * @folio: The folio.
1226 *
1227 * If the folio's reference count reaches zero, the memory will be
1228 * released back to the page allocator and may be used by another
1229 * allocation immediately. Do not access the memory or the struct folio
1230 * after calling folio_put() unless you can be sure that it wasn't the
1231 * last reference.
1232 *
1233 * Context: May be called in process or interrupt context, but not in NMI
1234 * context. May be called while holding a spinlock.
1235 */
1236static inline void folio_put(struct folio *folio)
1237{
1238 if (folio_put_testzero(folio))
8d29c703 1239 __folio_put(folio);
b620f633
MWO
1240}
1241
3fe7fa58
MWO
1242/**
1243 * folio_put_refs - Reduce the reference count on a folio.
1244 * @folio: The folio.
1245 * @refs: The amount to subtract from the folio's reference count.
1246 *
1247 * If the folio's reference count reaches zero, the memory will be
1248 * released back to the page allocator and may be used by another
1249 * allocation immediately. Do not access the memory or the struct folio
1250 * after calling folio_put_refs() unless you can be sure that these weren't
1251 * the last references.
1252 *
1253 * Context: May be called in process or interrupt context, but not in NMI
1254 * context. May be called while holding a spinlock.
1255 */
1256static inline void folio_put_refs(struct folio *folio, int refs)
1257{
1258 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1259 __folio_put(folio);
3fe7fa58
MWO
1260}
1261
0411d6ee
SP
1262/*
1263 * union release_pages_arg - an array of pages or folios
449c7967 1264 *
0411d6ee 1265 * release_pages() releases a simple array of multiple pages, and
449c7967
LT
1266 * accepts various different forms of said page array: either
1267 * a regular old boring array of pages, an array of folios, or
1268 * an array of encoded page pointers.
1269 *
1270 * The transparent union syntax for this kind of "any of these
1271 * argument types" is all kinds of ugly, so look away.
1272 */
1273typedef union {
1274 struct page **pages;
1275 struct folio **folios;
1276 struct encoded_page **encoded_pages;
1277} release_pages_arg __attribute__ ((__transparent_union__));
1278
1279void release_pages(release_pages_arg, int nr);
e3c4cebf
MWO
1280
1281/**
1282 * folios_put - Decrement the reference count on an array of folios.
1283 * @folios: The folios.
1284 * @nr: How many folios there are.
1285 *
1286 * Like folio_put(), but for an array of folios. This is more efficient
1287 * than writing the loop yourself as it will optimise the locks which
1288 * need to be taken if the folios are freed.
1289 *
1290 * Context: May be called in process or interrupt context, but not in NMI
1291 * context. May be called while holding a spinlock.
1292 */
1293static inline void folios_put(struct folio **folios, unsigned int nr)
1294{
449c7967 1295 release_pages(folios, nr);
3fe7fa58
MWO
1296}
1297
3565fce3
DW
1298static inline void put_page(struct page *page)
1299{
b620f633 1300 struct folio *folio = page_folio(page);
3565fce3 1301
7b2d55d2 1302 /*
89574945
CH
1303 * For some devmap managed pages we need to catch refcount transition
1304 * from 2 to 1:
7b2d55d2 1305 */
89574945 1306 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1307 return;
b620f633 1308 folio_put(folio);
3565fce3
DW
1309}
1310
3faa52c0
JH
1311/*
1312 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1313 * the page's refcount so that two separate items are tracked: the original page
1314 * reference count, and also a new count of how many pin_user_pages() calls were
1315 * made against the page. ("gup-pinned" is another term for the latter).
1316 *
1317 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1318 * distinct from normal pages. As such, the unpin_user_page() call (and its
1319 * variants) must be used in order to release gup-pinned pages.
1320 *
1321 * Choice of value:
1322 *
1323 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1324 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1325 * simpler, due to the fact that adding an even power of two to the page
1326 * refcount has the effect of using only the upper N bits, for the code that
1327 * counts up using the bias value. This means that the lower bits are left for
1328 * the exclusive use of the original code that increments and decrements by one
1329 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1330 *
3faa52c0
JH
1331 * Of course, once the lower bits overflow into the upper bits (and this is
1332 * OK, because subtraction recovers the original values), then visual inspection
1333 * no longer suffices to directly view the separate counts. However, for normal
1334 * applications that don't have huge page reference counts, this won't be an
1335 * issue.
fc1d8e7c 1336 *
40fcc7fc
MWO
1337 * Locking: the lockless algorithm described in folio_try_get_rcu()
1338 * provides safe operation for get_user_pages(), page_mkclean() and
1339 * other calls that race to set up page table entries.
fc1d8e7c 1340 */
3faa52c0 1341#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1342
3faa52c0 1343void unpin_user_page(struct page *page);
f1f6a7dd
JH
1344void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1345 bool make_dirty);
458a4f78
JM
1346void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1347 bool make_dirty);
f1f6a7dd 1348void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1349
97a7e473
PX
1350static inline bool is_cow_mapping(vm_flags_t flags)
1351{
1352 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1353}
1354
fc4f4be9
DH
1355#ifndef CONFIG_MMU
1356static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1357{
1358 /*
1359 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1360 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1361 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1362 * underlying memory if ptrace is active, so this is only possible if
1363 * ptrace does not apply. Note that there is no mprotect() to upgrade
1364 * write permissions later.
1365 */
b6b7a8fa 1366 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
fc4f4be9
DH
1367}
1368#endif
1369
9127ab4f
CS
1370#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1371#define SECTION_IN_PAGE_FLAGS
1372#endif
1373
89689ae7 1374/*
7a8010cd
VB
1375 * The identification function is mainly used by the buddy allocator for
1376 * determining if two pages could be buddies. We are not really identifying
1377 * the zone since we could be using the section number id if we do not have
1378 * node id available in page flags.
1379 * We only guarantee that it will return the same value for two combinable
1380 * pages in a zone.
89689ae7 1381 */
cb2b95e1
AW
1382static inline int page_zone_id(struct page *page)
1383{
89689ae7 1384 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1385}
1386
89689ae7 1387#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1388extern int page_to_nid(const struct page *page);
89689ae7 1389#else
33dd4e0e 1390static inline int page_to_nid(const struct page *page)
d41dee36 1391{
f165b378
PT
1392 struct page *p = (struct page *)page;
1393
1394 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1395}
89689ae7
CL
1396#endif
1397
874fd90c
MWO
1398static inline int folio_nid(const struct folio *folio)
1399{
1400 return page_to_nid(&folio->page);
1401}
1402
57e0a030 1403#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1404/* page access time bits needs to hold at least 4 seconds */
1405#define PAGE_ACCESS_TIME_MIN_BITS 12
1406#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1407#define PAGE_ACCESS_TIME_BUCKETS \
1408 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1409#else
1410#define PAGE_ACCESS_TIME_BUCKETS 0
1411#endif
1412
1413#define PAGE_ACCESS_TIME_MASK \
1414 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1415
90572890 1416static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1417{
90572890 1418 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1419}
1420
90572890 1421static inline int cpupid_to_pid(int cpupid)
57e0a030 1422{
90572890 1423 return cpupid & LAST__PID_MASK;
57e0a030 1424}
b795854b 1425
90572890 1426static inline int cpupid_to_cpu(int cpupid)
b795854b 1427{
90572890 1428 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1429}
1430
90572890 1431static inline int cpupid_to_nid(int cpupid)
b795854b 1432{
90572890 1433 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1434}
1435
90572890 1436static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1437{
90572890 1438 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1439}
1440
90572890 1441static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1442{
90572890 1443 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1444}
1445
8c8a743c
PZ
1446static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1447{
1448 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1449}
1450
1451#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1452#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1453static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1454{
1ae71d03 1455 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1456}
90572890
PZ
1457
1458static inline int page_cpupid_last(struct page *page)
1459{
1460 return page->_last_cpupid;
1461}
1462static inline void page_cpupid_reset_last(struct page *page)
b795854b 1463{
1ae71d03 1464 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1465}
1466#else
90572890 1467static inline int page_cpupid_last(struct page *page)
75980e97 1468{
90572890 1469 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1470}
1471
90572890 1472extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1473
90572890 1474static inline void page_cpupid_reset_last(struct page *page)
75980e97 1475{
09940a4f 1476 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1477}
90572890 1478#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536
HY
1479
1480static inline int xchg_page_access_time(struct page *page, int time)
1481{
1482 int last_time;
1483
1484 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1485 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1486}
90572890
PZ
1487#else /* !CONFIG_NUMA_BALANCING */
1488static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1489{
90572890 1490 return page_to_nid(page); /* XXX */
57e0a030
MG
1491}
1492
33024536
HY
1493static inline int xchg_page_access_time(struct page *page, int time)
1494{
1495 return 0;
1496}
1497
90572890 1498static inline int page_cpupid_last(struct page *page)
57e0a030 1499{
90572890 1500 return page_to_nid(page); /* XXX */
57e0a030
MG
1501}
1502
90572890 1503static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1504{
1505 return -1;
1506}
1507
90572890 1508static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1509{
1510 return -1;
1511}
1512
90572890 1513static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1514{
1515 return -1;
1516}
1517
90572890
PZ
1518static inline int cpu_pid_to_cpupid(int nid, int pid)
1519{
1520 return -1;
1521}
1522
1523static inline bool cpupid_pid_unset(int cpupid)
b795854b 1524{
2b787449 1525 return true;
b795854b
MG
1526}
1527
90572890 1528static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1529{
1530}
8c8a743c
PZ
1531
1532static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1533{
1534 return false;
1535}
90572890 1536#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1537
2e903b91 1538#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1539
cf10bd4c
AK
1540/*
1541 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1542 * setting tags for all pages to native kernel tag value 0xff, as the default
1543 * value 0x00 maps to 0xff.
1544 */
1545
2813b9c0
AK
1546static inline u8 page_kasan_tag(const struct page *page)
1547{
cf10bd4c
AK
1548 u8 tag = 0xff;
1549
1550 if (kasan_enabled()) {
1551 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1552 tag ^= 0xff;
1553 }
1554
1555 return tag;
2813b9c0
AK
1556}
1557
1558static inline void page_kasan_tag_set(struct page *page, u8 tag)
1559{
27fe7339
PC
1560 unsigned long old_flags, flags;
1561
1562 if (!kasan_enabled())
1563 return;
1564
1565 tag ^= 0xff;
1566 old_flags = READ_ONCE(page->flags);
1567 do {
1568 flags = old_flags;
1569 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1570 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1571 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1572}
1573
1574static inline void page_kasan_tag_reset(struct page *page)
1575{
34303244
AK
1576 if (kasan_enabled())
1577 page_kasan_tag_set(page, 0xff);
2813b9c0 1578}
34303244
AK
1579
1580#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1581
2813b9c0
AK
1582static inline u8 page_kasan_tag(const struct page *page)
1583{
1584 return 0xff;
1585}
1586
1587static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1588static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1589
1590#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1591
33dd4e0e 1592static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1593{
1594 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1595}
1596
75ef7184
MG
1597static inline pg_data_t *page_pgdat(const struct page *page)
1598{
1599 return NODE_DATA(page_to_nid(page));
1600}
1601
32b8fc48
MWO
1602static inline struct zone *folio_zone(const struct folio *folio)
1603{
1604 return page_zone(&folio->page);
1605}
1606
1607static inline pg_data_t *folio_pgdat(const struct folio *folio)
1608{
1609 return page_pgdat(&folio->page);
1610}
1611
9127ab4f 1612#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1613static inline void set_page_section(struct page *page, unsigned long section)
1614{
1615 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1616 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1617}
1618
aa462abe 1619static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1620{
1621 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1622}
308c05e3 1623#endif
d41dee36 1624
bf6bd276
MWO
1625/**
1626 * folio_pfn - Return the Page Frame Number of a folio.
1627 * @folio: The folio.
1628 *
1629 * A folio may contain multiple pages. The pages have consecutive
1630 * Page Frame Numbers.
1631 *
1632 * Return: The Page Frame Number of the first page in the folio.
1633 */
1634static inline unsigned long folio_pfn(struct folio *folio)
1635{
1636 return page_to_pfn(&folio->page);
1637}
1638
018ee47f
YZ
1639static inline struct folio *pfn_folio(unsigned long pfn)
1640{
1641 return page_folio(pfn_to_page(pfn));
1642}
1643
3d11b225
MWO
1644static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1645{
1646 return &folio_page(folio, 1)->compound_pincount;
1647}
1648
0b90ddae
MWO
1649/**
1650 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1651 * @folio: The folio.
1652 *
1653 * This function checks if a folio has been pinned via a call to
1654 * a function in the pin_user_pages() family.
1655 *
1656 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1657 * because it means "definitely not pinned for DMA", but true means "probably
1658 * pinned for DMA, but possibly a false positive due to having at least
1659 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1660 *
1661 * False positives are OK, because: a) it's unlikely for a folio to
1662 * get that many refcounts, and b) all the callers of this routine are
1663 * expected to be able to deal gracefully with a false positive.
1664 *
1665 * For large folios, the result will be exactly correct. That's because
1666 * we have more tracking data available: the compound_pincount is used
1667 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1668 *
1669 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1670 *
1671 * Return: True, if it is likely that the page has been "dma-pinned".
1672 * False, if the page is definitely not dma-pinned.
1673 */
1674static inline bool folio_maybe_dma_pinned(struct folio *folio)
1675{
1676 if (folio_test_large(folio))
1677 return atomic_read(folio_pincount_ptr(folio)) > 0;
1678
1679 /*
1680 * folio_ref_count() is signed. If that refcount overflows, then
1681 * folio_ref_count() returns a negative value, and callers will avoid
1682 * further incrementing the refcount.
1683 *
1684 * Here, for that overflow case, use the sign bit to count a little
1685 * bit higher via unsigned math, and thus still get an accurate result.
1686 */
1687 return ((unsigned int)folio_ref_count(folio)) >=
1688 GUP_PIN_COUNTING_BIAS;
1689}
1690
1691static inline bool page_maybe_dma_pinned(struct page *page)
1692{
1693 return folio_maybe_dma_pinned(page_folio(page));
1694}
1695
1696/*
1697 * This should most likely only be called during fork() to see whether we
fb3d824d 1698 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1699 *
1700 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1701 */
1702static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1703 struct page *page)
1704{
623a1ddf 1705 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1706
1707 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1708 return false;
1709
1710 return page_maybe_dma_pinned(page);
1711}
1712
8e3560d9
PT
1713/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1714#ifdef CONFIG_MIGRATION
6077c943 1715static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9 1716{
1c563432
MK
1717#ifdef CONFIG_CMA
1718 int mt = get_pageblock_migratetype(page);
1719
1720 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1721 return false;
1722#endif
fcab34b4
AW
1723 /* The zero page may always be pinned */
1724 if (is_zero_pfn(page_to_pfn(page)))
1725 return true;
1726
1727 /* Coherent device memory must always allow eviction. */
1728 if (is_device_coherent_page(page))
1729 return false;
1730
1731 /* Otherwise, non-movable zone pages can be pinned. */
1732 return !is_zone_movable_page(page);
8e3560d9
PT
1733}
1734#else
6077c943 1735static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9
PT
1736{
1737 return true;
1738}
1739#endif
1740
6077c943 1741static inline bool folio_is_longterm_pinnable(struct folio *folio)
536939ff 1742{
6077c943 1743 return is_longterm_pinnable_page(&folio->page);
536939ff
MWO
1744}
1745
2f1b6248 1746static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1747{
1748 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1749 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1750}
2f1b6248 1751
348f8b6c
DH
1752static inline void set_page_node(struct page *page, unsigned long node)
1753{
1754 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1755 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1756}
89689ae7 1757
2f1b6248 1758static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1759 unsigned long node, unsigned long pfn)
1da177e4 1760{
348f8b6c
DH
1761 set_page_zone(page, zone);
1762 set_page_node(page, node);
9127ab4f 1763#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1764 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1765#endif
1da177e4
LT
1766}
1767
7b230db3
MWO
1768/**
1769 * folio_nr_pages - The number of pages in the folio.
1770 * @folio: The folio.
1771 *
1772 * Return: A positive power of two.
1773 */
1774static inline long folio_nr_pages(struct folio *folio)
1775{
c3a15bff
MWO
1776 if (!folio_test_large(folio))
1777 return 1;
1778#ifdef CONFIG_64BIT
1779 return folio->_folio_nr_pages;
1780#else
1781 return 1L << folio->_folio_order;
1782#endif
7b230db3
MWO
1783}
1784
1785/**
1786 * folio_next - Move to the next physical folio.
1787 * @folio: The folio we're currently operating on.
1788 *
1789 * If you have physically contiguous memory which may span more than
1790 * one folio (eg a &struct bio_vec), use this function to move from one
1791 * folio to the next. Do not use it if the memory is only virtually
1792 * contiguous as the folios are almost certainly not adjacent to each
1793 * other. This is the folio equivalent to writing ``page++``.
1794 *
1795 * Context: We assume that the folios are refcounted and/or locked at a
1796 * higher level and do not adjust the reference counts.
1797 * Return: The next struct folio.
1798 */
1799static inline struct folio *folio_next(struct folio *folio)
1800{
1801 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1802}
1803
1804/**
1805 * folio_shift - The size of the memory described by this folio.
1806 * @folio: The folio.
1807 *
1808 * A folio represents a number of bytes which is a power-of-two in size.
1809 * This function tells you which power-of-two the folio is. See also
1810 * folio_size() and folio_order().
1811 *
1812 * Context: The caller should have a reference on the folio to prevent
1813 * it from being split. It is not necessary for the folio to be locked.
1814 * Return: The base-2 logarithm of the size of this folio.
1815 */
1816static inline unsigned int folio_shift(struct folio *folio)
1817{
1818 return PAGE_SHIFT + folio_order(folio);
1819}
1820
1821/**
1822 * folio_size - The number of bytes in a folio.
1823 * @folio: The folio.
1824 *
1825 * Context: The caller should have a reference on the folio to prevent
1826 * it from being split. It is not necessary for the folio to be locked.
1827 * Return: The number of bytes in this folio.
1828 */
1829static inline size_t folio_size(struct folio *folio)
1830{
1831 return PAGE_SIZE << folio_order(folio);
1832}
1833
b424de33
MWO
1834#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1835static inline int arch_make_page_accessible(struct page *page)
1836{
1837 return 0;
1838}
1839#endif
1840
1841#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1842static inline int arch_make_folio_accessible(struct folio *folio)
1843{
1844 int ret;
1845 long i, nr = folio_nr_pages(folio);
1846
1847 for (i = 0; i < nr; i++) {
1848 ret = arch_make_page_accessible(folio_page(folio, i));
1849 if (ret)
1850 break;
1851 }
1852
1853 return ret;
1854}
1855#endif
1856
f6ac2354
CL
1857/*
1858 * Some inline functions in vmstat.h depend on page_zone()
1859 */
1860#include <linux/vmstat.h>
1861
33dd4e0e 1862static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1863{
1dff8083 1864 return page_to_virt(page);
1da177e4
LT
1865}
1866
1867#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1868#define HASHED_PAGE_VIRTUAL
1869#endif
1870
1871#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1872static inline void *page_address(const struct page *page)
1873{
1874 return page->virtual;
1875}
1876static inline void set_page_address(struct page *page, void *address)
1877{
1878 page->virtual = address;
1879}
1da177e4
LT
1880#define page_address_init() do { } while(0)
1881#endif
1882
1883#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1884void *page_address(const struct page *page);
1da177e4
LT
1885void set_page_address(struct page *page, void *virtual);
1886void page_address_init(void);
1887#endif
1888
1889#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1890#define page_address(page) lowmem_page_address(page)
1891#define set_page_address(page, address) do { } while(0)
1892#define page_address_init() do { } while(0)
1893#endif
1894
7d4203c1
VB
1895static inline void *folio_address(const struct folio *folio)
1896{
1897 return page_address(&folio->page);
1898}
1899
e39155ea 1900extern void *page_rmapping(struct page *page);
f6ab1f7f
HY
1901extern pgoff_t __page_file_index(struct page *page);
1902
1da177e4
LT
1903/*
1904 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1905 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1906 */
1907static inline pgoff_t page_index(struct page *page)
1908{
1909 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1910 return __page_file_index(page);
1da177e4
LT
1911 return page->index;
1912}
1913
2f064f34
MH
1914/*
1915 * Return true only if the page has been allocated with
1916 * ALLOC_NO_WATERMARKS and the low watermark was not
1917 * met implying that the system is under some pressure.
1918 */
1d7bab6a 1919static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1920{
1921 /*
c07aea3e
MC
1922 * lru.next has bit 1 set if the page is allocated from the
1923 * pfmemalloc reserves. Callers may simply overwrite it if
1924 * they do not need to preserve that information.
2f064f34 1925 */
c07aea3e 1926 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
1927}
1928
1929/*
1930 * Only to be called by the page allocator on a freshly allocated
1931 * page.
1932 */
1933static inline void set_page_pfmemalloc(struct page *page)
1934{
c07aea3e 1935 page->lru.next = (void *)BIT(1);
2f064f34
MH
1936}
1937
1938static inline void clear_page_pfmemalloc(struct page *page)
1939{
c07aea3e 1940 page->lru.next = NULL;
2f064f34
MH
1941}
1942
1c0fe6e3
NP
1943/*
1944 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1945 */
1946extern void pagefault_out_of_memory(void);
1947
1da177e4 1948#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1949#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 1950#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 1951
ddd588b5 1952/*
7bf02ea2 1953 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1954 * various contexts.
1955 */
4b59e6c4 1956#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1957
974f4367
MH
1958extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
1959static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
1960{
1961 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
1962}
1da177e4 1963
21b85b09
MK
1964/*
1965 * Parameter block passed down to zap_pte_range in exceptional cases.
1966 */
1967struct zap_details {
1968 struct folio *single_folio; /* Locked folio to be unmapped */
1969 bool even_cows; /* Zap COWed private pages too? */
1970 zap_flags_t zap_flags; /* Extra flags for zapping */
1971};
1972
1973/*
1974 * Whether to drop the pte markers, for example, the uffd-wp information for
1975 * file-backed memory. This should only be specified when we will completely
1976 * drop the page in the mm, either by truncation or unmapping of the vma. By
1977 * default, the flag is not set.
1978 */
1979#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
04ada095
MK
1980/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
1981#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
21b85b09 1982
710ec38b 1983#ifdef CONFIG_MMU
7f43add4 1984extern bool can_do_mlock(void);
710ec38b
AB
1985#else
1986static inline bool can_do_mlock(void) { return false; }
1987#endif
d7c9e99a
AG
1988extern int user_shm_lock(size_t, struct ucounts *);
1989extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 1990
318e9342
VMO
1991struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
1992 pte_t pte);
25b2995a
CH
1993struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1994 pte_t pte);
28093f9f
GS
1995struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1996 pmd_t pmd);
7e675137 1997
27d036e3
LR
1998void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1999 unsigned long size);
21b85b09
MK
2000void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2001 unsigned long size, struct zap_details *details);
e9adcfec
MK
2002static inline void zap_vma_pages(struct vm_area_struct *vma)
2003{
2004 zap_page_range_single(vma, vma->vm_start,
2005 vma->vm_end - vma->vm_start, NULL);
2006}
763ecb03
LH
2007void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2008 struct vm_area_struct *start_vma, unsigned long start,
2009 unsigned long end);
e6473092 2010
ac46d4f3
JG
2011struct mmu_notifier_range;
2012
42b77728 2013void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 2014 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
2015int
2016copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 2017int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 2018 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
2019int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2020 unsigned long *pfn);
d87fe660 2021int follow_phys(struct vm_area_struct *vma, unsigned long address,
2022 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
2023int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2024 void *buf, int len, int write);
1da177e4 2025
7caef267 2026extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 2027extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 2028void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 2029void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 2030int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 2031
7ee1dd3f 2032#ifdef CONFIG_MMU
2b740303 2033extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2034 unsigned long address, unsigned int flags,
2035 struct pt_regs *regs);
64019a2e 2036extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
2037 unsigned long address, unsigned int fault_flags,
2038 bool *unlocked);
977fbdcd
MW
2039void unmap_mapping_pages(struct address_space *mapping,
2040 pgoff_t start, pgoff_t nr, bool even_cows);
2041void unmap_mapping_range(struct address_space *mapping,
2042 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 2043#else
2b740303 2044static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2045 unsigned long address, unsigned int flags,
2046 struct pt_regs *regs)
7ee1dd3f
DH
2047{
2048 /* should never happen if there's no MMU */
2049 BUG();
2050 return VM_FAULT_SIGBUS;
2051}
64019a2e 2052static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 2053 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
2054{
2055 /* should never happen if there's no MMU */
2056 BUG();
2057 return -EFAULT;
2058}
977fbdcd
MW
2059static inline void unmap_mapping_pages(struct address_space *mapping,
2060 pgoff_t start, pgoff_t nr, bool even_cows) { }
2061static inline void unmap_mapping_range(struct address_space *mapping,
2062 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 2063#endif
f33ea7f4 2064
977fbdcd
MW
2065static inline void unmap_shared_mapping_range(struct address_space *mapping,
2066 loff_t const holebegin, loff_t const holelen)
2067{
2068 unmap_mapping_range(mapping, holebegin, holelen, 0);
2069}
2070
2071extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2072 void *buf, int len, unsigned int gup_flags);
5ddd36b9 2073extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 2074 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
2075extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2076 void *buf, int len, unsigned int gup_flags);
1da177e4 2077
64019a2e 2078long get_user_pages_remote(struct mm_struct *mm,
1e987790 2079 unsigned long start, unsigned long nr_pages,
9beae1ea 2080 unsigned int gup_flags, struct page **pages,
5b56d49f 2081 struct vm_area_struct **vmas, int *locked);
64019a2e 2082long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2083 unsigned long start, unsigned long nr_pages,
2084 unsigned int gup_flags, struct page **pages,
2085 struct vm_area_struct **vmas, int *locked);
c12d2da5 2086long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 2087 unsigned int gup_flags, struct page **pages,
cde70140 2088 struct vm_area_struct **vmas);
eddb1c22
JH
2089long pin_user_pages(unsigned long start, unsigned long nr_pages,
2090 unsigned int gup_flags, struct page **pages,
2091 struct vm_area_struct **vmas);
c12d2da5 2092long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 2093 struct page **pages, unsigned int gup_flags);
91429023
JH
2094long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2095 struct page **pages, unsigned int gup_flags);
9a4e9f3b 2096
73b0140b
IW
2097int get_user_pages_fast(unsigned long start, int nr_pages,
2098 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
2099int pin_user_pages_fast(unsigned long start, int nr_pages,
2100 unsigned int gup_flags, struct page **pages);
8025e5dd 2101
79eb597c
DJ
2102int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2103int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2104 struct task_struct *task, bool bypass_rlim);
2105
18022c5d
MG
2106struct kvec;
2107int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
2108 struct page **pages);
f3e8fccd 2109struct page *get_dump_page(unsigned long addr);
1da177e4 2110
b5e84594
MWO
2111bool folio_mark_dirty(struct folio *folio);
2112bool set_page_dirty(struct page *page);
1da177e4 2113int set_page_dirty_lock(struct page *page);
b9ea2515 2114
a9090253 2115int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 2116
b6a2fea3
OW
2117extern unsigned long move_page_tables(struct vm_area_struct *vma,
2118 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
2119 unsigned long new_addr, unsigned long len,
2120 bool need_rmap_locks);
58705444
PX
2121
2122/*
2123 * Flags used by change_protection(). For now we make it a bitmap so
2124 * that we can pass in multiple flags just like parameters. However
2125 * for now all the callers are only use one of the flags at the same
2126 * time.
2127 */
64fe24a3
DH
2128/*
2129 * Whether we should manually check if we can map individual PTEs writable,
2130 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2131 * PTEs automatically in a writable mapping.
2132 */
2133#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
2134/* Whether this protection change is for NUMA hints */
2135#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2136/* Whether this change is for write protecting */
2137#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2138#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2139#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2140 MM_CP_UFFD_WP_RESOLVE)
58705444 2141
eb309ec8
DH
2142int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2143static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2144{
2145 /*
2146 * We want to check manually if we can change individual PTEs writable
2147 * if we can't do that automatically for all PTEs in a mapping. For
2148 * private mappings, that's always the case when we have write
2149 * permissions as we properly have to handle COW.
2150 */
2151 if (vma->vm_flags & VM_SHARED)
2152 return vma_wants_writenotify(vma, vma->vm_page_prot);
2153 return !!(vma->vm_flags & VM_WRITE);
2154
2155}
6a56ccbc
DH
2156bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2157 pte_t pte);
a79390f5 2158extern long change_protection(struct mmu_gather *tlb,
4a18419f 2159 struct vm_area_struct *vma, unsigned long start,
1ef488ed 2160 unsigned long end, unsigned long cp_flags);
4a18419f 2161extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
b6a2fea3
OW
2162 struct vm_area_struct **pprev, unsigned long start,
2163 unsigned long end, unsigned long newflags);
1da177e4 2164
465a454f
PZ
2165/*
2166 * doesn't attempt to fault and will return short.
2167 */
dadbb612
SJ
2168int get_user_pages_fast_only(unsigned long start, int nr_pages,
2169 unsigned int gup_flags, struct page **pages);
104acc32
JH
2170int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2171 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2172
2173static inline bool get_user_page_fast_only(unsigned long addr,
2174 unsigned int gup_flags, struct page **pagep)
2175{
2176 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2177}
d559db08
KH
2178/*
2179 * per-process(per-mm_struct) statistics.
2180 */
d559db08
KH
2181static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2182{
f1a79412 2183 return percpu_counter_read_positive(&mm->rss_stat[member]);
69c97823 2184}
d559db08 2185
f1a79412 2186void mm_trace_rss_stat(struct mm_struct *mm, int member);
b3d1411b 2187
d559db08
KH
2188static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2189{
f1a79412 2190 percpu_counter_add(&mm->rss_stat[member], value);
b3d1411b 2191
f1a79412 2192 mm_trace_rss_stat(mm, member);
d559db08
KH
2193}
2194
2195static inline void inc_mm_counter(struct mm_struct *mm, int member)
2196{
f1a79412 2197 percpu_counter_inc(&mm->rss_stat[member]);
b3d1411b 2198
f1a79412 2199 mm_trace_rss_stat(mm, member);
d559db08
KH
2200}
2201
2202static inline void dec_mm_counter(struct mm_struct *mm, int member)
2203{
f1a79412 2204 percpu_counter_dec(&mm->rss_stat[member]);
b3d1411b 2205
f1a79412 2206 mm_trace_rss_stat(mm, member);
d559db08
KH
2207}
2208
eca56ff9
JM
2209/* Optimized variant when page is already known not to be PageAnon */
2210static inline int mm_counter_file(struct page *page)
2211{
2212 if (PageSwapBacked(page))
2213 return MM_SHMEMPAGES;
2214 return MM_FILEPAGES;
2215}
2216
2217static inline int mm_counter(struct page *page)
2218{
2219 if (PageAnon(page))
2220 return MM_ANONPAGES;
2221 return mm_counter_file(page);
2222}
2223
d559db08
KH
2224static inline unsigned long get_mm_rss(struct mm_struct *mm)
2225{
2226 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2227 get_mm_counter(mm, MM_ANONPAGES) +
2228 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2229}
2230
2231static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2232{
2233 return max(mm->hiwater_rss, get_mm_rss(mm));
2234}
2235
2236static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2237{
2238 return max(mm->hiwater_vm, mm->total_vm);
2239}
2240
2241static inline void update_hiwater_rss(struct mm_struct *mm)
2242{
2243 unsigned long _rss = get_mm_rss(mm);
2244
2245 if ((mm)->hiwater_rss < _rss)
2246 (mm)->hiwater_rss = _rss;
2247}
2248
2249static inline void update_hiwater_vm(struct mm_struct *mm)
2250{
2251 if (mm->hiwater_vm < mm->total_vm)
2252 mm->hiwater_vm = mm->total_vm;
2253}
2254
695f0559
PC
2255static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2256{
2257 mm->hiwater_rss = get_mm_rss(mm);
2258}
2259
d559db08
KH
2260static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2261 struct mm_struct *mm)
2262{
2263 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2264
2265 if (*maxrss < hiwater_rss)
2266 *maxrss = hiwater_rss;
2267}
2268
53bddb4e 2269#if defined(SPLIT_RSS_COUNTING)
05af2e10 2270void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2271#else
05af2e10 2272static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2273{
2274}
2275#endif
465a454f 2276
78e7c5af
AK
2277#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2278static inline int pte_special(pte_t pte)
2279{
2280 return 0;
2281}
2282
2283static inline pte_t pte_mkspecial(pte_t pte)
2284{
2285 return pte;
2286}
2287#endif
2288
17596731 2289#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2290static inline int pte_devmap(pte_t pte)
2291{
2292 return 0;
2293}
2294#endif
2295
25ca1d6c
NK
2296extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2297 spinlock_t **ptl);
2298static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2299 spinlock_t **ptl)
2300{
2301 pte_t *ptep;
2302 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2303 return ptep;
2304}
c9cfcddf 2305
c2febafc
KS
2306#ifdef __PAGETABLE_P4D_FOLDED
2307static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2308 unsigned long address)
2309{
2310 return 0;
2311}
2312#else
2313int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2314#endif
2315
b4e98d9a 2316#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2317static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2318 unsigned long address)
2319{
2320 return 0;
2321}
b4e98d9a
KS
2322static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2323static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2324
5f22df00 2325#else
c2febafc 2326int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2327
b4e98d9a
KS
2328static inline void mm_inc_nr_puds(struct mm_struct *mm)
2329{
6d212db1
MS
2330 if (mm_pud_folded(mm))
2331 return;
af5b0f6a 2332 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2333}
2334
2335static inline void mm_dec_nr_puds(struct mm_struct *mm)
2336{
6d212db1
MS
2337 if (mm_pud_folded(mm))
2338 return;
af5b0f6a 2339 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2340}
5f22df00
NP
2341#endif
2342
2d2f5119 2343#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2344static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2345 unsigned long address)
2346{
2347 return 0;
2348}
dc6c9a35 2349
dc6c9a35
KS
2350static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2351static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2352
5f22df00 2353#else
1bb3630e 2354int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2355
dc6c9a35
KS
2356static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2357{
6d212db1
MS
2358 if (mm_pmd_folded(mm))
2359 return;
af5b0f6a 2360 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2361}
2362
2363static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2364{
6d212db1
MS
2365 if (mm_pmd_folded(mm))
2366 return;
af5b0f6a 2367 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2368}
5f22df00
NP
2369#endif
2370
c4812909 2371#ifdef CONFIG_MMU
af5b0f6a 2372static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2373{
af5b0f6a 2374 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2375}
2376
af5b0f6a 2377static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2378{
af5b0f6a 2379 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2380}
2381
2382static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2383{
af5b0f6a 2384 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2385}
2386
2387static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2388{
af5b0f6a 2389 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2390}
2391#else
c4812909 2392
af5b0f6a
KS
2393static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2394static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2395{
2396 return 0;
2397}
2398
2399static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2400static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2401#endif
2402
4cf58924
JFG
2403int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2404int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2405
f949286c
MR
2406#if defined(CONFIG_MMU)
2407
c2febafc
KS
2408static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2409 unsigned long address)
2410{
2411 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2412 NULL : p4d_offset(pgd, address);
2413}
2414
2415static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2416 unsigned long address)
1da177e4 2417{
c2febafc
KS
2418 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2419 NULL : pud_offset(p4d, address);
1da177e4 2420}
d8626138 2421
1da177e4
LT
2422static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2423{
1bb3630e
HD
2424 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2425 NULL: pmd_offset(pud, address);
1da177e4 2426}
f949286c 2427#endif /* CONFIG_MMU */
1bb3630e 2428
57c1ffce 2429#if USE_SPLIT_PTE_PTLOCKS
597d795a 2430#if ALLOC_SPLIT_PTLOCKS
b35f1819 2431void __init ptlock_cache_init(void);
539edb58
PZ
2432extern bool ptlock_alloc(struct page *page);
2433extern void ptlock_free(struct page *page);
2434
2435static inline spinlock_t *ptlock_ptr(struct page *page)
2436{
2437 return page->ptl;
2438}
597d795a 2439#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2440static inline void ptlock_cache_init(void)
2441{
2442}
2443
49076ec2
KS
2444static inline bool ptlock_alloc(struct page *page)
2445{
49076ec2
KS
2446 return true;
2447}
539edb58 2448
49076ec2
KS
2449static inline void ptlock_free(struct page *page)
2450{
49076ec2
KS
2451}
2452
2453static inline spinlock_t *ptlock_ptr(struct page *page)
2454{
539edb58 2455 return &page->ptl;
49076ec2 2456}
597d795a 2457#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2458
2459static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2460{
2461 return ptlock_ptr(pmd_page(*pmd));
2462}
2463
2464static inline bool ptlock_init(struct page *page)
2465{
2466 /*
2467 * prep_new_page() initialize page->private (and therefore page->ptl)
2468 * with 0. Make sure nobody took it in use in between.
2469 *
2470 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2471 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2472 */
309381fe 2473 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2474 if (!ptlock_alloc(page))
2475 return false;
2476 spin_lock_init(ptlock_ptr(page));
2477 return true;
2478}
2479
57c1ffce 2480#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2481/*
2482 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2483 */
49076ec2
KS
2484static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2485{
2486 return &mm->page_table_lock;
2487}
b35f1819 2488static inline void ptlock_cache_init(void) {}
49076ec2 2489static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2490static inline void ptlock_free(struct page *page) {}
57c1ffce 2491#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2492
b35f1819
KS
2493static inline void pgtable_init(void)
2494{
2495 ptlock_cache_init();
2496 pgtable_cache_init();
2497}
2498
b4ed71f5 2499static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2500{
706874e9
VD
2501 if (!ptlock_init(page))
2502 return false;
1d40a5ea 2503 __SetPageTable(page);
f0c0c115 2504 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2505 return true;
2f569afd
MS
2506}
2507
b4ed71f5 2508static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2509{
9e247bab 2510 ptlock_free(page);
1d40a5ea 2511 __ClearPageTable(page);
f0c0c115 2512 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2513}
2514
c74df32c
HD
2515#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2516({ \
4c21e2f2 2517 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2518 pte_t *__pte = pte_offset_map(pmd, address); \
2519 *(ptlp) = __ptl; \
2520 spin_lock(__ptl); \
2521 __pte; \
2522})
2523
2524#define pte_unmap_unlock(pte, ptl) do { \
2525 spin_unlock(ptl); \
2526 pte_unmap(pte); \
2527} while (0)
2528
4cf58924 2529#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2530
2531#define pte_alloc_map(mm, pmd, address) \
4cf58924 2532 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2533
c74df32c 2534#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2535 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2536 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2537
1bb3630e 2538#define pte_alloc_kernel(pmd, address) \
4cf58924 2539 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2540 NULL: pte_offset_kernel(pmd, address))
1da177e4 2541
e009bb30
KS
2542#if USE_SPLIT_PMD_PTLOCKS
2543
7e25de77 2544static inline struct page *pmd_pgtable_page(pmd_t *pmd)
634391ac
MS
2545{
2546 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2547 return virt_to_page((void *)((unsigned long) pmd & mask));
2548}
2549
e009bb30
KS
2550static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2551{
373dfda2 2552 return ptlock_ptr(pmd_pgtable_page(pmd));
e009bb30
KS
2553}
2554
b2b29d6d 2555static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2556{
e009bb30
KS
2557#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2558 page->pmd_huge_pte = NULL;
2559#endif
49076ec2 2560 return ptlock_init(page);
e009bb30
KS
2561}
2562
b2b29d6d 2563static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2564{
2565#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2566 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2567#endif
49076ec2 2568 ptlock_free(page);
e009bb30
KS
2569}
2570
373dfda2 2571#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
e009bb30
KS
2572
2573#else
2574
9a86cb7b
KS
2575static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2576{
2577 return &mm->page_table_lock;
2578}
2579
b2b29d6d
MW
2580static inline bool pmd_ptlock_init(struct page *page) { return true; }
2581static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2582
c389a250 2583#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2584
e009bb30
KS
2585#endif
2586
9a86cb7b
KS
2587static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2588{
2589 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2590 spin_lock(ptl);
2591 return ptl;
2592}
2593
b2b29d6d
MW
2594static inline bool pgtable_pmd_page_ctor(struct page *page)
2595{
2596 if (!pmd_ptlock_init(page))
2597 return false;
2598 __SetPageTable(page);
f0c0c115 2599 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2600 return true;
2601}
2602
2603static inline void pgtable_pmd_page_dtor(struct page *page)
2604{
2605 pmd_ptlock_free(page);
2606 __ClearPageTable(page);
f0c0c115 2607 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2608}
2609
a00cc7d9
MW
2610/*
2611 * No scalability reason to split PUD locks yet, but follow the same pattern
2612 * as the PMD locks to make it easier if we decide to. The VM should not be
2613 * considered ready to switch to split PUD locks yet; there may be places
2614 * which need to be converted from page_table_lock.
2615 */
2616static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2617{
2618 return &mm->page_table_lock;
2619}
2620
2621static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2622{
2623 spinlock_t *ptl = pud_lockptr(mm, pud);
2624
2625 spin_lock(ptl);
2626 return ptl;
2627}
62906027 2628
a00cc7d9 2629extern void __init pagecache_init(void);
49a7f04a
DH
2630extern void free_initmem(void);
2631
69afade7
JL
2632/*
2633 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2634 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2635 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2636 * Return pages freed into the buddy system.
2637 */
11199692 2638extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2639 int poison, const char *s);
c3d5f5f0 2640
c3d5f5f0 2641extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2642extern void mem_init_print_info(void);
69afade7 2643
4b50bcc7 2644extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2645
69afade7 2646/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2647static inline void free_reserved_page(struct page *page)
69afade7
JL
2648{
2649 ClearPageReserved(page);
2650 init_page_count(page);
2651 __free_page(page);
69afade7
JL
2652 adjust_managed_page_count(page, 1);
2653}
a0cd7a7c 2654#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2655
2656static inline void mark_page_reserved(struct page *page)
2657{
2658 SetPageReserved(page);
2659 adjust_managed_page_count(page, -1);
2660}
2661
2662/*
2663 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2664 * The freed pages will be poisoned with pattern "poison" if it's within
2665 * range [0, UCHAR_MAX].
2666 * Return pages freed into the buddy system.
69afade7
JL
2667 */
2668static inline unsigned long free_initmem_default(int poison)
2669{
2670 extern char __init_begin[], __init_end[];
2671
11199692 2672 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2673 poison, "unused kernel image (initmem)");
69afade7
JL
2674}
2675
7ee3d4e8
JL
2676static inline unsigned long get_num_physpages(void)
2677{
2678 int nid;
2679 unsigned long phys_pages = 0;
2680
2681 for_each_online_node(nid)
2682 phys_pages += node_present_pages(nid);
2683
2684 return phys_pages;
2685}
2686
c713216d 2687/*
3f08a302 2688 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2689 * zones, allocate the backing mem_map and account for memory holes in an
2690 * architecture independent manner.
c713216d
MG
2691 *
2692 * An architecture is expected to register range of page frames backed by
0ee332c1 2693 * physical memory with memblock_add[_node]() before calling
9691a071 2694 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2695 * usage, an architecture is expected to do something like
2696 *
2697 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2698 * max_highmem_pfn};
2699 * for_each_valid_physical_page_range()
952eea9b 2700 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2701 * free_area_init(max_zone_pfns);
c713216d 2702 */
9691a071 2703void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2704unsigned long node_map_pfn_alignment(void);
32996250
YL
2705unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2706 unsigned long end_pfn);
c713216d
MG
2707extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2708 unsigned long end_pfn);
2709extern void get_pfn_range_for_nid(unsigned int nid,
2710 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 2711
a9ee6cf5 2712#ifndef CONFIG_NUMA
6f24fbd3 2713static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2714{
2715 return 0;
2716}
2717#else
2718/* please see mm/page_alloc.c */
2719extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2720#endif
2721
0e0b864e 2722extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2723extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2724 unsigned long, unsigned long, enum meminit_context,
2725 struct vmem_altmap *, int migratetype);
bc75d33f 2726extern void setup_per_zone_wmarks(void);
bd3400ea 2727extern void calculate_min_free_kbytes(void);
1b79acc9 2728extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2729extern void mem_init(void);
8feae131 2730extern void __init mmap_init(void);
974f4367
MH
2731
2732extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2733static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
2734{
2735 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
2736}
d02bd27b 2737extern long si_mem_available(void);
1da177e4
LT
2738extern void si_meminfo(struct sysinfo * val);
2739extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2740#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2741extern unsigned long arch_reserved_kernel_pages(void);
2742#endif
1da177e4 2743
a8e99259
MH
2744extern __printf(3, 4)
2745void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2746
e7c8d5c9 2747extern void setup_per_cpu_pageset(void);
e7c8d5c9 2748
75f7ad8e
PS
2749/* page_alloc.c */
2750extern int min_free_kbytes;
1c30844d 2751extern int watermark_boost_factor;
795ae7a0 2752extern int watermark_scale_factor;
51930df5 2753extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2754
8feae131 2755/* nommu.c */
33e5d769 2756extern atomic_long_t mmap_pages_allocated;
7e660872 2757extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2758
6b2dbba8 2759/* interval_tree.c */
6b2dbba8 2760void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2761 struct rb_root_cached *root);
9826a516
ML
2762void vma_interval_tree_insert_after(struct vm_area_struct *node,
2763 struct vm_area_struct *prev,
f808c13f 2764 struct rb_root_cached *root);
6b2dbba8 2765void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2766 struct rb_root_cached *root);
2767struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2768 unsigned long start, unsigned long last);
2769struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2770 unsigned long start, unsigned long last);
2771
2772#define vma_interval_tree_foreach(vma, root, start, last) \
2773 for (vma = vma_interval_tree_iter_first(root, start, last); \
2774 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2775
bf181b9f 2776void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2777 struct rb_root_cached *root);
bf181b9f 2778void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2779 struct rb_root_cached *root);
2780struct anon_vma_chain *
2781anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2782 unsigned long start, unsigned long last);
bf181b9f
ML
2783struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2784 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2785#ifdef CONFIG_DEBUG_VM_RB
2786void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2787#endif
bf181b9f
ML
2788
2789#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2790 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2791 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2792
1da177e4 2793/* mmap.c */
34b4e4aa 2794extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2795extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2796 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2797 struct vm_area_struct *expand);
2798static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2799 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2800{
2801 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2802}
1da177e4
LT
2803extern struct vm_area_struct *vma_merge(struct mm_struct *,
2804 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2805 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
5c26f6ac 2806 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
1da177e4 2807extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2808extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2809 unsigned long addr, int new_below);
2810extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2811 unsigned long addr, int new_below);
1da177e4 2812extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 2813extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2814extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2815 unsigned long addr, unsigned long len, pgoff_t pgoff,
2816 bool *need_rmap_locks);
1da177e4 2817extern void exit_mmap(struct mm_struct *);
925d1c40 2818
d4af56c5
LH
2819void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas);
2820void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas);
2821
9c599024
CG
2822static inline int check_data_rlimit(unsigned long rlim,
2823 unsigned long new,
2824 unsigned long start,
2825 unsigned long end_data,
2826 unsigned long start_data)
2827{
2828 if (rlim < RLIM_INFINITY) {
2829 if (((new - start) + (end_data - start_data)) > rlim)
2830 return -ENOSPC;
2831 }
2832
2833 return 0;
2834}
2835
7906d00c
AA
2836extern int mm_take_all_locks(struct mm_struct *mm);
2837extern void mm_drop_all_locks(struct mm_struct *mm);
2838
fe69d560 2839extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 2840extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 2841extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2842extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2843
84638335
KK
2844extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2845extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2846
2eefd878
DS
2847extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2848 const struct vm_special_mapping *sm);
3935ed6a
SS
2849extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2850 unsigned long addr, unsigned long len,
a62c34bd
AL
2851 unsigned long flags,
2852 const struct vm_special_mapping *spec);
2853/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2854extern int install_special_mapping(struct mm_struct *mm,
2855 unsigned long addr, unsigned long len,
2856 unsigned long flags, struct page **pages);
1da177e4 2857
649775be 2858unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 2859unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 2860
1da177e4
LT
2861extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2862
0165ab44 2863extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2864 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2865 struct list_head *uf);
1fcfd8db 2866extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2867 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2868 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
11f9a21a
LH
2869extern int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm,
2870 unsigned long start, size_t len, struct list_head *uf,
2871 bool downgrade);
897ab3e0
MR
2872extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2873 struct list_head *uf);
0726b01e 2874extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2875
bebeb3d6
ML
2876#ifdef CONFIG_MMU
2877extern int __mm_populate(unsigned long addr, unsigned long len,
2878 int ignore_errors);
2879static inline void mm_populate(unsigned long addr, unsigned long len)
2880{
2881 /* Ignore errors */
2882 (void) __mm_populate(addr, len, 1);
2883}
2884#else
2885static inline void mm_populate(unsigned long addr, unsigned long len) {}
2886#endif
2887
e4eb1ff6 2888/* These take the mm semaphore themselves */
5d22fc25 2889extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2890extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2891extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2892extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2893 unsigned long, unsigned long,
2894 unsigned long, unsigned long);
1da177e4 2895
db4fbfb9
ML
2896struct vm_unmapped_area_info {
2897#define VM_UNMAPPED_AREA_TOPDOWN 1
2898 unsigned long flags;
2899 unsigned long length;
2900 unsigned long low_limit;
2901 unsigned long high_limit;
2902 unsigned long align_mask;
2903 unsigned long align_offset;
2904};
2905
baceaf1c 2906extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2907
85821aab 2908/* truncate.c */
1da177e4 2909extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2910extern void truncate_inode_pages_range(struct address_space *,
2911 loff_t lstart, loff_t lend);
91b0abe3 2912extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2913
2914/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2915extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2916extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2917 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2918extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 2919
1be7107f 2920extern unsigned long stack_guard_gap;
d05f3169 2921/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2922extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2923
11192337 2924/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2925extern int expand_downwards(struct vm_area_struct *vma,
2926 unsigned long address);
8ca3eb08 2927#if VM_GROWSUP
46dea3d0 2928extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2929#else
fee7e49d 2930 #define expand_upwards(vma, address) (0)
9ab88515 2931#endif
1da177e4
LT
2932
2933/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2934extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2935extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2936 struct vm_area_struct **pprev);
2937
abdba2dd
LH
2938/*
2939 * Look up the first VMA which intersects the interval [start_addr, end_addr)
2940 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 2941 */
ce6d42f2 2942struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 2943 unsigned long start_addr, unsigned long end_addr);
1da177e4 2944
ce6d42f2
LH
2945/**
2946 * vma_lookup() - Find a VMA at a specific address
2947 * @mm: The process address space.
2948 * @addr: The user address.
2949 *
2950 * Return: The vm_area_struct at the given address, %NULL otherwise.
2951 */
2952static inline
2953struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2954{
d7c62295 2955 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
2956}
2957
1be7107f
HD
2958static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2959{
2960 unsigned long vm_start = vma->vm_start;
2961
2962 if (vma->vm_flags & VM_GROWSDOWN) {
2963 vm_start -= stack_guard_gap;
2964 if (vm_start > vma->vm_start)
2965 vm_start = 0;
2966 }
2967 return vm_start;
2968}
2969
2970static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2971{
2972 unsigned long vm_end = vma->vm_end;
2973
2974 if (vma->vm_flags & VM_GROWSUP) {
2975 vm_end += stack_guard_gap;
2976 if (vm_end < vma->vm_end)
2977 vm_end = -PAGE_SIZE;
2978 }
2979 return vm_end;
2980}
2981
1da177e4
LT
2982static inline unsigned long vma_pages(struct vm_area_struct *vma)
2983{
2984 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2985}
2986
640708a2
PE
2987/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2988static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2989 unsigned long vm_start, unsigned long vm_end)
2990{
dc8635b2 2991 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
2992
2993 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2994 vma = NULL;
2995
2996 return vma;
2997}
2998
017b1660
MK
2999static inline bool range_in_vma(struct vm_area_struct *vma,
3000 unsigned long start, unsigned long end)
3001{
3002 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3003}
3004
bad849b3 3005#ifdef CONFIG_MMU
804af2cf 3006pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 3007void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
3008#else
3009static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3010{
3011 return __pgprot(0);
3012}
64e45507
PF
3013static inline void vma_set_page_prot(struct vm_area_struct *vma)
3014{
3015 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3016}
bad849b3
DH
3017#endif
3018
295992fb
CK
3019void vma_set_file(struct vm_area_struct *vma, struct file *file);
3020
5877231f 3021#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 3022unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
3023 unsigned long start, unsigned long end);
3024#endif
3025
deceb6cd 3026struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
3027int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3028 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
3029int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3030 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 3031int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
3032int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3033 struct page **pages, unsigned long *num);
a667d745
SJ
3034int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3035 unsigned long num);
3036int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3037 unsigned long num);
ae2b01f3 3038vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 3039 unsigned long pfn);
f5e6d1d5
MW
3040vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3041 unsigned long pfn, pgprot_t pgprot);
5d747637 3042vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 3043 pfn_t pfn);
574c5b3d
TH
3044vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
3045 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
3046vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3047 unsigned long addr, pfn_t pfn);
b4cbb197
LT
3048int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3049
1c8f4220
SJ
3050static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3051 unsigned long addr, struct page *page)
3052{
3053 int err = vm_insert_page(vma, addr, page);
3054
3055 if (err == -ENOMEM)
3056 return VM_FAULT_OOM;
3057 if (err < 0 && err != -EBUSY)
3058 return VM_FAULT_SIGBUS;
3059
3060 return VM_FAULT_NOPAGE;
3061}
3062
f8f6ae5d
JG
3063#ifndef io_remap_pfn_range
3064static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3065 unsigned long addr, unsigned long pfn,
3066 unsigned long size, pgprot_t prot)
3067{
3068 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3069}
3070#endif
3071
d97baf94
SJ
3072static inline vm_fault_t vmf_error(int err)
3073{
3074 if (err == -ENOMEM)
3075 return VM_FAULT_OOM;
3076 return VM_FAULT_SIGBUS;
3077}
3078
df06b37f
KB
3079struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3080 unsigned int foll_flags);
240aadee 3081
2b740303 3082static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3083{
3084 if (vm_fault & VM_FAULT_OOM)
3085 return -ENOMEM;
3086 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3087 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3088 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3089 return -EFAULT;
3090 return 0;
3091}
3092
a7f22660
DH
3093/*
3094 * Indicates for which pages that are write-protected in the page table,
3095 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
3096 * GUP pin will remain consistent with the pages mapped into the page tables
3097 * of the MM.
3098 *
3099 * Temporary unmapping of PageAnonExclusive() pages or clearing of
3100 * PageAnonExclusive() has to protect against concurrent GUP:
3101 * * Ordinary GUP: Using the PT lock
3102 * * GUP-fast and fork(): mm->write_protect_seq
088b8aa5
DH
3103 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
3104 * page_try_share_anon_rmap()
a7f22660
DH
3105 *
3106 * Must be called with the (sub)page that's actually referenced via the
3107 * page table entry, which might not necessarily be the head page for a
3108 * PTE-mapped THP.
84209e87
DH
3109 *
3110 * If the vma is NULL, we're coming from the GUP-fast path and might have
3111 * to fallback to the slow path just to lookup the vma.
a7f22660 3112 */
84209e87
DH
3113static inline bool gup_must_unshare(struct vm_area_struct *vma,
3114 unsigned int flags, struct page *page)
a7f22660
DH
3115{
3116 /*
3117 * FOLL_WRITE is implicitly handled correctly as the page table entry
3118 * has to be writable -- and if it references (part of) an anonymous
3119 * folio, that part is required to be marked exclusive.
3120 */
3121 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
3122 return false;
3123 /*
3124 * Note: PageAnon(page) is stable until the page is actually getting
3125 * freed.
3126 */
84209e87
DH
3127 if (!PageAnon(page)) {
3128 /*
3129 * We only care about R/O long-term pining: R/O short-term
3130 * pinning does not have the semantics to observe successive
3131 * changes through the process page tables.
3132 */
3133 if (!(flags & FOLL_LONGTERM))
3134 return false;
3135
3136 /* We really need the vma ... */
3137 if (!vma)
3138 return true;
3139
3140 /*
3141 * ... because we only care about writable private ("COW")
3142 * mappings where we have to break COW early.
3143 */
3144 return is_cow_mapping(vma->vm_flags);
3145 }
088b8aa5
DH
3146
3147 /* Paired with a memory barrier in page_try_share_anon_rmap(). */
3148 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
3149 smp_rmb();
3150
a7f22660
DH
3151 /*
3152 * Note that PageKsm() pages cannot be exclusive, and consequently,
3153 * cannot get pinned.
3154 */
3155 return !PageAnonExclusive(page);
3156}
3157
474098ed
DH
3158/*
3159 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3160 * a (NUMA hinting) fault is required.
3161 */
3162static inline bool gup_can_follow_protnone(unsigned int flags)
3163{
3164 /*
3165 * FOLL_FORCE has to be able to make progress even if the VMA is
3166 * inaccessible. Further, FOLL_FORCE access usually does not represent
3167 * application behaviour and we should avoid triggering NUMA hinting
3168 * faults.
3169 */
3170 return flags & FOLL_FORCE;
3171}
3172
8b1e0f81 3173typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3174extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3175 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3176extern int apply_to_existing_page_range(struct mm_struct *mm,
3177 unsigned long address, unsigned long size,
3178 pte_fn_t fn, void *data);
aee16b3c 3179
5749fcc5 3180extern void __init init_mem_debugging_and_hardening(void);
8823b1db 3181#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3182extern void __kernel_poison_pages(struct page *page, int numpages);
3183extern void __kernel_unpoison_pages(struct page *page, int numpages);
3184extern bool _page_poisoning_enabled_early;
3185DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3186static inline bool page_poisoning_enabled(void)
3187{
3188 return _page_poisoning_enabled_early;
3189}
3190/*
3191 * For use in fast paths after init_mem_debugging() has run, or when a
3192 * false negative result is not harmful when called too early.
3193 */
3194static inline bool page_poisoning_enabled_static(void)
3195{
3196 return static_branch_unlikely(&_page_poisoning_enabled);
3197}
3198static inline void kernel_poison_pages(struct page *page, int numpages)
3199{
3200 if (page_poisoning_enabled_static())
3201 __kernel_poison_pages(page, numpages);
3202}
3203static inline void kernel_unpoison_pages(struct page *page, int numpages)
3204{
3205 if (page_poisoning_enabled_static())
3206 __kernel_unpoison_pages(page, numpages);
3207}
8823b1db
LA
3208#else
3209static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3210static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3211static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3212static inline void kernel_poison_pages(struct page *page, int numpages) { }
3213static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3214#endif
3215
51cba1eb 3216DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3217static inline bool want_init_on_alloc(gfp_t flags)
3218{
51cba1eb
KC
3219 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3220 &init_on_alloc))
6471384a
AP
3221 return true;
3222 return flags & __GFP_ZERO;
3223}
3224
51cba1eb 3225DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3226static inline bool want_init_on_free(void)
3227{
51cba1eb
KC
3228 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3229 &init_on_free);
6471384a
AP
3230}
3231
8e57f8ac
VB
3232extern bool _debug_pagealloc_enabled_early;
3233DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3234
3235static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3236{
3237 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3238 _debug_pagealloc_enabled_early;
3239}
3240
3241/*
3242 * For use in fast paths after init_debug_pagealloc() has run, or when a
3243 * false negative result is not harmful when called too early.
3244 */
3245static inline bool debug_pagealloc_enabled_static(void)
031bc574 3246{
96a2b03f
VB
3247 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3248 return false;
3249
3250 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3251}
3252
5d6ad668 3253#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3254/*
5d6ad668
MR
3255 * To support DEBUG_PAGEALLOC architecture must ensure that
3256 * __kernel_map_pages() never fails
c87cbc1f 3257 */
d6332692
RE
3258extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3259
77bc7fd6
MR
3260static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3261{
3262 if (debug_pagealloc_enabled_static())
3263 __kernel_map_pages(page, numpages, 1);
3264}
3265
3266static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3267{
3268 if (debug_pagealloc_enabled_static())
3269 __kernel_map_pages(page, numpages, 0);
3270}
5d6ad668 3271#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3272static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3273static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3274#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3275
a6c19dfe 3276#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3277extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3278extern int in_gate_area_no_mm(unsigned long addr);
3279extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3280#else
a6c19dfe
AL
3281static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3282{
3283 return NULL;
3284}
3285static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3286static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3287{
3288 return 0;
3289}
1da177e4
LT
3290#endif /* __HAVE_ARCH_GATE_AREA */
3291
44a70ade
MH
3292extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3293
146732ce
JT
3294#ifdef CONFIG_SYSCTL
3295extern int sysctl_drop_caches;
32927393
CH
3296int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3297 loff_t *);
146732ce
JT
3298#endif
3299
cb731d6c 3300void drop_slab(void);
9d0243bc 3301
7a9166e3
LY
3302#ifndef CONFIG_MMU
3303#define randomize_va_space 0
3304#else
a62eaf15 3305extern int randomize_va_space;
7a9166e3 3306#endif
a62eaf15 3307
045e72ac 3308const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3309#ifdef CONFIG_MMU
03252919 3310void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3311#else
3312static inline void print_vma_addr(char *prefix, unsigned long rip)
3313{
3314}
3315#endif
e6e5494c 3316
35fd1eb1 3317void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3318struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3319 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3320 struct dev_pagemap *pgmap);
7b09f5af
FC
3321void pmd_init(void *addr);
3322void pud_init(void *addr);
29c71111 3323pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3324p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3325pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3326pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3327pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3328 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3329void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3330struct vmem_altmap;
56993b4e
AK
3331void *vmemmap_alloc_block_buf(unsigned long size, int node,
3332 struct vmem_altmap *altmap);
8f6aac41 3333void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2045a3b8
FC
3334void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3335 unsigned long addr, unsigned long next);
3336int vmemmap_check_pmd(pmd_t *pmd, int node,
3337 unsigned long addr, unsigned long next);
0aad818b 3338int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3339 int node, struct vmem_altmap *altmap);
2045a3b8
FC
3340int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3341 int node, struct vmem_altmap *altmap);
7b73d978
CH
3342int vmemmap_populate(unsigned long start, unsigned long end, int node,
3343 struct vmem_altmap *altmap);
c2b91e2e 3344void vmemmap_populate_print_last(void);
0197518c 3345#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3346void vmemmap_free(unsigned long start, unsigned long end,
3347 struct vmem_altmap *altmap);
0197518c 3348#endif
46723bfa 3349void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3350 unsigned long nr_pages);
6a46079c 3351
82ba011b
AK
3352enum mf_flags {
3353 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3354 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3355 MF_MUST_KILL = 1 << 2,
cf870c70 3356 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3357 MF_UNPOISON = 1 << 4,
67f22ba7 3358 MF_SW_SIMULATED = 1 << 5,
38f6d293 3359 MF_NO_RETRY = 1 << 6,
82ba011b 3360};
c36e2024
SR
3361int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3362 unsigned long count, int mf_flags);
83b57531 3363extern int memory_failure(unsigned long pfn, int flags);
06202231 3364extern void memory_failure_queue_kick(int cpu);
847ce401 3365extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3366extern int sysctl_memory_failure_early_kill;
3367extern int sysctl_memory_failure_recovery;
d0505e9f 3368extern void shake_page(struct page *p);
5844a486 3369extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3370extern int soft_offline_page(unsigned long pfn, int flags);
405ce051 3371#ifdef CONFIG_MEMORY_FAILURE
d302c239 3372extern void memory_failure_queue(unsigned long pfn, int flags);
e591ef7d
NH
3373extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3374 bool *migratable_cleared);
5033091d
NH
3375void num_poisoned_pages_inc(unsigned long pfn);
3376void num_poisoned_pages_sub(unsigned long pfn, long i);
405ce051 3377#else
d302c239
TL
3378static inline void memory_failure_queue(unsigned long pfn, int flags)
3379{
3380}
3381
e591ef7d
NH
3382static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3383 bool *migratable_cleared)
405ce051
NH
3384{
3385 return 0;
3386}
d027122d 3387
a46c9304 3388static inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
3389{
3390}
5033091d
NH
3391
3392static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3393{
3394}
3395#endif
3396
3397#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3398extern void memblk_nr_poison_inc(unsigned long pfn);
3399extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3400#else
3401static inline void memblk_nr_poison_inc(unsigned long pfn)
3402{
3403}
3404
3405static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3406{
3407}
405ce051 3408#endif
6a46079c 3409
03b122da
TL
3410#ifndef arch_memory_failure
3411static inline int arch_memory_failure(unsigned long pfn, int flags)
3412{
3413 return -ENXIO;
3414}
3415#endif
3416
3417#ifndef arch_is_platform_page
3418static inline bool arch_is_platform_page(u64 paddr)
3419{
3420 return false;
3421}
3422#endif
cc637b17
XX
3423
3424/*
3425 * Error handlers for various types of pages.
3426 */
cc3e2af4 3427enum mf_result {
cc637b17
XX
3428 MF_IGNORED, /* Error: cannot be handled */
3429 MF_FAILED, /* Error: handling failed */
3430 MF_DELAYED, /* Will be handled later */
3431 MF_RECOVERED, /* Successfully recovered */
3432};
3433
3434enum mf_action_page_type {
3435 MF_MSG_KERNEL,
3436 MF_MSG_KERNEL_HIGH_ORDER,
3437 MF_MSG_SLAB,
3438 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3439 MF_MSG_HUGE,
3440 MF_MSG_FREE_HUGE,
3441 MF_MSG_UNMAP_FAILED,
3442 MF_MSG_DIRTY_SWAPCACHE,
3443 MF_MSG_CLEAN_SWAPCACHE,
3444 MF_MSG_DIRTY_MLOCKED_LRU,
3445 MF_MSG_CLEAN_MLOCKED_LRU,
3446 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3447 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3448 MF_MSG_DIRTY_LRU,
3449 MF_MSG_CLEAN_LRU,
3450 MF_MSG_TRUNCATED_LRU,
3451 MF_MSG_BUDDY,
6100e34b 3452 MF_MSG_DAX,
5d1fd5dc 3453 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3454 MF_MSG_UNKNOWN,
3455};
3456
47ad8475
AA
3457#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3458extern void clear_huge_page(struct page *page,
c79b57e4 3459 unsigned long addr_hint,
47ad8475
AA
3460 unsigned int pages_per_huge_page);
3461extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3462 unsigned long addr_hint,
3463 struct vm_area_struct *vma,
47ad8475 3464 unsigned int pages_per_huge_page);
fa4d75c1
MK
3465extern long copy_huge_page_from_user(struct page *dst_page,
3466 const void __user *usr_src,
810a56b9
MK
3467 unsigned int pages_per_huge_page,
3468 bool allow_pagefault);
2484ca9b
THV
3469
3470/**
3471 * vma_is_special_huge - Are transhuge page-table entries considered special?
3472 * @vma: Pointer to the struct vm_area_struct to consider
3473 *
3474 * Whether transhuge page-table entries are considered "special" following
3475 * the definition in vm_normal_page().
3476 *
3477 * Return: true if transhuge page-table entries should be considered special,
3478 * false otherwise.
3479 */
3480static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3481{
3482 return vma_is_dax(vma) || (vma->vm_file &&
3483 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3484}
3485
47ad8475
AA
3486#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3487
c0a32fc5
SG
3488#ifdef CONFIG_DEBUG_PAGEALLOC
3489extern unsigned int _debug_guardpage_minorder;
96a2b03f 3490DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3491
3492static inline unsigned int debug_guardpage_minorder(void)
3493{
3494 return _debug_guardpage_minorder;
3495}
3496
e30825f1
JK
3497static inline bool debug_guardpage_enabled(void)
3498{
96a2b03f 3499 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3500}
3501
c0a32fc5
SG
3502static inline bool page_is_guard(struct page *page)
3503{
e30825f1
JK
3504 if (!debug_guardpage_enabled())
3505 return false;
3506
3972f6bb 3507 return PageGuard(page);
c0a32fc5
SG
3508}
3509#else
3510static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3511static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3512static inline bool page_is_guard(struct page *page) { return false; }
3513#endif /* CONFIG_DEBUG_PAGEALLOC */
3514
f9872caf
CS
3515#if MAX_NUMNODES > 1
3516void __init setup_nr_node_ids(void);
3517#else
3518static inline void setup_nr_node_ids(void) {}
3519#endif
3520
010c164a
SL
3521extern int memcmp_pages(struct page *page1, struct page *page2);
3522
3523static inline int pages_identical(struct page *page1, struct page *page2)
3524{
3525 return !memcmp_pages(page1, page2);
3526}
3527
c5acad84
TH
3528#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3529unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3530 pgoff_t first_index, pgoff_t nr,
3531 pgoff_t bitmap_pgoff,
3532 unsigned long *bitmap,
3533 pgoff_t *start,
3534 pgoff_t *end);
3535
3536unsigned long wp_shared_mapping_range(struct address_space *mapping,
3537 pgoff_t first_index, pgoff_t nr);
3538#endif
3539
2374c09b
CH
3540extern int sysctl_nr_trim_pages;
3541
5bb1bb35 3542#ifdef CONFIG_PRINTK
8e7f37f2 3543void mem_dump_obj(void *object);
5bb1bb35
PM
3544#else
3545static inline void mem_dump_obj(void *object) {}
3546#endif
8e7f37f2 3547
22247efd
PX
3548/**
3549 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3550 * @seals: the seals to check
3551 * @vma: the vma to operate on
3552 *
3553 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3554 * the vma flags. Return 0 if check pass, or <0 for errors.
3555 */
3556static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3557{
3558 if (seals & F_SEAL_FUTURE_WRITE) {
3559 /*
3560 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3561 * "future write" seal active.
3562 */
3563 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3564 return -EPERM;
3565
3566 /*
3567 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3568 * MAP_SHARED and read-only, take care to not allow mprotect to
3569 * revert protections on such mappings. Do this only for shared
3570 * mappings. For private mappings, don't need to mask
3571 * VM_MAYWRITE as we still want them to be COW-writable.
3572 */
3573 if (vma->vm_flags & VM_SHARED)
3574 vma->vm_flags &= ~(VM_MAYWRITE);
3575 }
3576
3577 return 0;
3578}
3579
9a10064f
CC
3580#ifdef CONFIG_ANON_VMA_NAME
3581int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
3582 unsigned long len_in,
3583 struct anon_vma_name *anon_name);
9a10064f
CC
3584#else
3585static inline int
3586madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 3587 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
3588 return 0;
3589}
3590#endif
3591
1da177e4 3592#endif /* _LINUX_MM_H */