selftests/vm: cleanup hugetlb file after mremap test
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
9740ca4e 18#include <linux/mmap_lock.h>
08677214 19#include <linux/range.h>
c6f6b596 20#include <linux/pfn.h>
3565fce3 21#include <linux/percpu-refcount.h>
e9da73d6 22#include <linux/bit_spinlock.h>
b0d40c92 23#include <linux/shrinker.h>
9c599024 24#include <linux/resource.h>
e30825f1 25#include <linux/page_ext.h>
8025e5dd 26#include <linux/err.h>
41901567 27#include <linux/page-flags.h>
fe896d18 28#include <linux/page_ref.h>
7b2d55d2 29#include <linux/memremap.h>
3b3b1a29 30#include <linux/overflow.h>
b5420237 31#include <linux/sizes.h>
7969f226 32#include <linux/sched.h>
65fddcfc 33#include <linux/pgtable.h>
34303244 34#include <linux/kasan.h>
1da177e4
LT
35
36struct mempolicy;
37struct anon_vma;
bf181b9f 38struct anon_vma_chain;
e8edc6e0 39struct user_struct;
bce617ed 40struct pt_regs;
1da177e4 41
5ef64cc8
LT
42extern int sysctl_page_lock_unfairness;
43
597b7305
MH
44void init_mm_internals(void);
45
a9ee6cf5 46#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 47extern unsigned long max_mapnr;
fccc9987
JL
48
49static inline void set_max_mapnr(unsigned long limit)
50{
51 max_mapnr = limit;
52}
53#else
54static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
55#endif
56
ca79b0c2
AK
57extern atomic_long_t _totalram_pages;
58static inline unsigned long totalram_pages(void)
59{
60 return (unsigned long)atomic_long_read(&_totalram_pages);
61}
62
63static inline void totalram_pages_inc(void)
64{
65 atomic_long_inc(&_totalram_pages);
66}
67
68static inline void totalram_pages_dec(void)
69{
70 atomic_long_dec(&_totalram_pages);
71}
72
73static inline void totalram_pages_add(long count)
74{
75 atomic_long_add(count, &_totalram_pages);
76}
77
1da177e4 78extern void * high_memory;
1da177e4
LT
79extern int page_cluster;
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
d07e2259
DC
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
1da177e4 98#include <asm/page.h>
1da177e4 99#include <asm/processor.h>
1da177e4 100
d9344522
AK
101/*
102 * Architectures that support memory tagging (assigning tags to memory regions,
103 * embedding these tags into addresses that point to these memory regions, and
104 * checking that the memory and the pointer tags match on memory accesses)
105 * redefine this macro to strip tags from pointers.
f0953a1b 106 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
107 */
108#ifndef untagged_addr
109#define untagged_addr(addr) (addr)
110#endif
111
79442ed1
TC
112#ifndef __pa_symbol
113#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
114#endif
115
1dff8083
AB
116#ifndef page_to_virt
117#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
118#endif
119
568c5fe5
LA
120#ifndef lm_alias
121#define lm_alias(x) __va(__pa_symbol(x))
122#endif
123
593befa6
DD
124/*
125 * To prevent common memory management code establishing
126 * a zero page mapping on a read fault.
127 * This macro should be defined within <asm/pgtable.h>.
128 * s390 does this to prevent multiplexing of hardware bits
129 * related to the physical page in case of virtualization.
130 */
131#ifndef mm_forbids_zeropage
132#define mm_forbids_zeropage(X) (0)
133#endif
134
a4a3ede2
PT
135/*
136 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
137 * If an architecture decides to implement their own version of
138 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
139 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 140 */
5470dea4
AD
141#if BITS_PER_LONG == 64
142/* This function must be updated when the size of struct page grows above 80
143 * or reduces below 56. The idea that compiler optimizes out switch()
144 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 145 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
146 * this can result in several of the writes here being dropped.
147 */
148#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
149static inline void __mm_zero_struct_page(struct page *page)
150{
151 unsigned long *_pp = (void *)page;
152
153 /* Check that struct page is either 56, 64, 72, or 80 bytes */
154 BUILD_BUG_ON(sizeof(struct page) & 7);
155 BUILD_BUG_ON(sizeof(struct page) < 56);
156 BUILD_BUG_ON(sizeof(struct page) > 80);
157
158 switch (sizeof(struct page)) {
159 case 80:
df561f66
GS
160 _pp[9] = 0;
161 fallthrough;
5470dea4 162 case 72:
df561f66
GS
163 _pp[8] = 0;
164 fallthrough;
5470dea4 165 case 64:
df561f66
GS
166 _pp[7] = 0;
167 fallthrough;
5470dea4
AD
168 case 56:
169 _pp[6] = 0;
170 _pp[5] = 0;
171 _pp[4] = 0;
172 _pp[3] = 0;
173 _pp[2] = 0;
174 _pp[1] = 0;
175 _pp[0] = 0;
176 }
177}
178#else
a4a3ede2
PT
179#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
180#endif
181
ea606cf5
AR
182/*
183 * Default maximum number of active map areas, this limits the number of vmas
184 * per mm struct. Users can overwrite this number by sysctl but there is a
185 * problem.
186 *
187 * When a program's coredump is generated as ELF format, a section is created
188 * per a vma. In ELF, the number of sections is represented in unsigned short.
189 * This means the number of sections should be smaller than 65535 at coredump.
190 * Because the kernel adds some informative sections to a image of program at
191 * generating coredump, we need some margin. The number of extra sections is
192 * 1-3 now and depends on arch. We use "5" as safe margin, here.
193 *
194 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
195 * not a hard limit any more. Although some userspace tools can be surprised by
196 * that.
197 */
198#define MAPCOUNT_ELF_CORE_MARGIN (5)
199#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
200
201extern int sysctl_max_map_count;
202
c9b1d098 203extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 204extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 205
49f0ce5f
JM
206extern int sysctl_overcommit_memory;
207extern int sysctl_overcommit_ratio;
208extern unsigned long sysctl_overcommit_kbytes;
209
32927393
CH
210int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
211 loff_t *);
212int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
213 loff_t *);
56f3547b
FT
214int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
215 loff_t *);
49f0ce5f 216
1cfcee72 217#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 218#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
1cfcee72
MWO
219#else
220#define nth_page(page,n) ((page) + (n))
221#endif
1da177e4 222
27ac792c
AR
223/* to align the pointer to the (next) page boundary */
224#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
225
0fa73b86 226/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 227#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 228
f86196ea
NB
229#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
230
5748fbc5
KW
231void setup_initial_init_mm(void *start_code, void *end_code,
232 void *end_data, void *brk);
233
1da177e4
LT
234/*
235 * Linux kernel virtual memory manager primitives.
236 * The idea being to have a "virtual" mm in the same way
237 * we have a virtual fs - giving a cleaner interface to the
238 * mm details, and allowing different kinds of memory mappings
239 * (from shared memory to executable loading to arbitrary
240 * mmap() functions).
241 */
242
490fc053 243struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
244struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
245void vm_area_free(struct vm_area_struct *);
c43692e8 246
1da177e4 247#ifndef CONFIG_MMU
8feae131
DH
248extern struct rb_root nommu_region_tree;
249extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
250
251extern unsigned int kobjsize(const void *objp);
252#endif
253
254/*
605d9288 255 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 256 * When changing, update also include/trace/events/mmflags.h
1da177e4 257 */
cc2383ec
KK
258#define VM_NONE 0x00000000
259
1da177e4
LT
260#define VM_READ 0x00000001 /* currently active flags */
261#define VM_WRITE 0x00000002
262#define VM_EXEC 0x00000004
263#define VM_SHARED 0x00000008
264
7e2cff42 265/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
266#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
267#define VM_MAYWRITE 0x00000020
268#define VM_MAYEXEC 0x00000040
269#define VM_MAYSHARE 0x00000080
270
271#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 272#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 273#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 274#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 275
1da177e4
LT
276#define VM_LOCKED 0x00002000
277#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
278
279 /* Used by sys_madvise() */
280#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
281#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
282
283#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
284#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 285#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 286#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 287#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 288#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 289#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 290#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 291#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 292#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 293
d9104d1c
CG
294#ifdef CONFIG_MEM_SOFT_DIRTY
295# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
296#else
297# define VM_SOFTDIRTY 0
298#endif
299
b379d790 300#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
301#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
302#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 303#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 304
63c17fb8
DH
305#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
306#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
307#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
308#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
309#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 310#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
311#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
312#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
313#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
314#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 315#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
316#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
317
5212213a 318#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
319# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
320# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 321# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
322# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
323# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
324#ifdef CONFIG_PPC
325# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
326#else
327# define VM_PKEY_BIT4 0
8f62c883 328#endif
5212213a
RP
329#endif /* CONFIG_ARCH_HAS_PKEYS */
330
331#if defined(CONFIG_X86)
332# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
333#elif defined(CONFIG_PPC)
334# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
335#elif defined(CONFIG_PARISC)
336# define VM_GROWSUP VM_ARCH_1
337#elif defined(CONFIG_IA64)
338# define VM_GROWSUP VM_ARCH_1
74a04967
KA
339#elif defined(CONFIG_SPARC64)
340# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
341# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
342#elif defined(CONFIG_ARM64)
343# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
344# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
345#elif !defined(CONFIG_MMU)
346# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
347#endif
348
9f341931
CM
349#if defined(CONFIG_ARM64_MTE)
350# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
351# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
352#else
353# define VM_MTE VM_NONE
354# define VM_MTE_ALLOWED VM_NONE
355#endif
356
cc2383ec
KK
357#ifndef VM_GROWSUP
358# define VM_GROWSUP VM_NONE
359#endif
360
7677f7fd
AR
361#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
362# define VM_UFFD_MINOR_BIT 37
363# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
364#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
365# define VM_UFFD_MINOR VM_NONE
366#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
367
a8bef8ff
MG
368/* Bits set in the VMA until the stack is in its final location */
369#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
370
c62da0c3
AK
371#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
372
373/* Common data flag combinations */
374#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
375 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
376#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
377 VM_MAYWRITE | VM_MAYEXEC)
378#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
379 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
380
381#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
382#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
383#endif
384
1da177e4
LT
385#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
386#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
387#endif
388
389#ifdef CONFIG_STACK_GROWSUP
30bdbb78 390#define VM_STACK VM_GROWSUP
1da177e4 391#else
30bdbb78 392#define VM_STACK VM_GROWSDOWN
1da177e4
LT
393#endif
394
30bdbb78
KK
395#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
396
6cb4d9a2
AK
397/* VMA basic access permission flags */
398#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
399
400
b291f000 401/*
78f11a25 402 * Special vmas that are non-mergable, non-mlock()able.
b291f000 403 */
9050d7eb 404#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 405
b4443772
AK
406/* This mask prevents VMA from being scanned with khugepaged */
407#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
408
a0715cc2
AT
409/* This mask defines which mm->def_flags a process can inherit its parent */
410#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
411
de60f5f1
EM
412/* This mask is used to clear all the VMA flags used by mlock */
413#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
414
2c2d57b5
KA
415/* Arch-specific flags to clear when updating VM flags on protection change */
416#ifndef VM_ARCH_CLEAR
417# define VM_ARCH_CLEAR VM_NONE
418#endif
419#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
420
1da177e4
LT
421/*
422 * mapping from the currently active vm_flags protection bits (the
423 * low four bits) to a page protection mask..
424 */
425extern pgprot_t protection_map[16];
426
dde16072
PX
427/*
428 * The default fault flags that should be used by most of the
429 * arch-specific page fault handlers.
430 */
431#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
432 FAULT_FLAG_KILLABLE | \
433 FAULT_FLAG_INTERRUPTIBLE)
dde16072 434
4064b982
PX
435/**
436 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 437 * @flags: Fault flags.
4064b982
PX
438 *
439 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 440 * the mmap_lock for too long a time when waiting for another condition
4064b982 441 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
442 * mmap_lock in the first round to avoid potential starvation of other
443 * processes that would also want the mmap_lock.
4064b982
PX
444 *
445 * Return: true if the page fault allows retry and this is the first
446 * attempt of the fault handling; false otherwise.
447 */
da2f5eb3 448static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
449{
450 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
451 (!(flags & FAULT_FLAG_TRIED));
452}
453
282a8e03
RZ
454#define FAULT_FLAG_TRACE \
455 { FAULT_FLAG_WRITE, "WRITE" }, \
456 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
457 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
458 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
459 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
460 { FAULT_FLAG_TRIED, "TRIED" }, \
461 { FAULT_FLAG_USER, "USER" }, \
462 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
463 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
464 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 465
54cb8821 466/*
11192337 467 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
468 * ->fault function. The vma's ->fault is responsible for returning a bitmask
469 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 470 *
c20cd45e
MH
471 * MM layer fills up gfp_mask for page allocations but fault handler might
472 * alter it if its implementation requires a different allocation context.
473 *
9b4bdd2f 474 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 475 */
d0217ac0 476struct vm_fault {
5857c920 477 const struct {
742d3372
WD
478 struct vm_area_struct *vma; /* Target VMA */
479 gfp_t gfp_mask; /* gfp mask to be used for allocations */
480 pgoff_t pgoff; /* Logical page offset based on vma */
481 unsigned long address; /* Faulting virtual address */
482 };
da2f5eb3 483 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 484 * XXX: should really be 'const' */
82b0f8c3 485 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 486 * the 'address' */
a2d58167
DJ
487 pud_t *pud; /* Pointer to pud entry matching
488 * the 'address'
489 */
5db4f15c
YS
490 union {
491 pte_t orig_pte; /* Value of PTE at the time of fault */
492 pmd_t orig_pmd; /* Value of PMD at the time of fault,
493 * used by PMD fault only.
494 */
495 };
d0217ac0 496
3917048d 497 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 498 struct page *page; /* ->fault handlers should return a
83c54070 499 * page here, unless VM_FAULT_NOPAGE
d0217ac0 500 * is set (which is also implied by
83c54070 501 * VM_FAULT_ERROR).
d0217ac0 502 */
82b0f8c3 503 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
504 pte_t *pte; /* Pointer to pte entry matching
505 * the 'address'. NULL if the page
506 * table hasn't been allocated.
507 */
508 spinlock_t *ptl; /* Page table lock.
509 * Protects pte page table if 'pte'
510 * is not NULL, otherwise pmd.
511 */
7267ec00 512 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
513 * vm_ops->map_pages() sets up a page
514 * table from atomic context.
7267ec00
KS
515 * do_fault_around() pre-allocates
516 * page table to avoid allocation from
517 * atomic context.
518 */
54cb8821 519};
1da177e4 520
c791ace1
DJ
521/* page entry size for vm->huge_fault() */
522enum page_entry_size {
523 PE_SIZE_PTE = 0,
524 PE_SIZE_PMD,
525 PE_SIZE_PUD,
526};
527
1da177e4
LT
528/*
529 * These are the virtual MM functions - opening of an area, closing and
530 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 531 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
532 */
533struct vm_operations_struct {
534 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
535 /**
536 * @close: Called when the VMA is being removed from the MM.
537 * Context: User context. May sleep. Caller holds mmap_lock.
538 */
1da177e4 539 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
540 /* Called any time before splitting to check if it's allowed */
541 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 542 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
543 /*
544 * Called by mprotect() to make driver-specific permission
545 * checks before mprotect() is finalised. The VMA must not
546 * be modified. Returns 0 if eprotect() can proceed.
547 */
548 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
549 unsigned long end, unsigned long newflags);
1c8f4220
SJ
550 vm_fault_t (*fault)(struct vm_fault *vmf);
551 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
552 enum page_entry_size pe_size);
f9ce0be7 553 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 554 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 555 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
556
557 /* notification that a previously read-only page is about to become
558 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 559 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 560
dd906184 561 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 562 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 563
28b2ee20 564 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
565 * for use by special VMAs. See also generic_access_phys() for a generic
566 * implementation useful for any iomem mapping.
28b2ee20
RR
567 */
568 int (*access)(struct vm_area_struct *vma, unsigned long addr,
569 void *buf, int len, int write);
78d683e8
AL
570
571 /* Called by the /proc/PID/maps code to ask the vma whether it
572 * has a special name. Returning non-NULL will also cause this
573 * vma to be dumped unconditionally. */
574 const char *(*name)(struct vm_area_struct *vma);
575
1da177e4 576#ifdef CONFIG_NUMA
a6020ed7
LS
577 /*
578 * set_policy() op must add a reference to any non-NULL @new mempolicy
579 * to hold the policy upon return. Caller should pass NULL @new to
580 * remove a policy and fall back to surrounding context--i.e. do not
581 * install a MPOL_DEFAULT policy, nor the task or system default
582 * mempolicy.
583 */
1da177e4 584 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
585
586 /*
587 * get_policy() op must add reference [mpol_get()] to any policy at
588 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
589 * in mm/mempolicy.c will do this automatically.
590 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 591 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
592 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
593 * must return NULL--i.e., do not "fallback" to task or system default
594 * policy.
595 */
1da177e4
LT
596 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
597 unsigned long addr);
598#endif
667a0a06
DV
599 /*
600 * Called by vm_normal_page() for special PTEs to find the
601 * page for @addr. This is useful if the default behavior
602 * (using pte_page()) would not find the correct page.
603 */
604 struct page *(*find_special_page)(struct vm_area_struct *vma,
605 unsigned long addr);
1da177e4
LT
606};
607
027232da
KS
608static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
609{
bfd40eaf
KS
610 static const struct vm_operations_struct dummy_vm_ops = {};
611
a670468f 612 memset(vma, 0, sizeof(*vma));
027232da 613 vma->vm_mm = mm;
bfd40eaf 614 vma->vm_ops = &dummy_vm_ops;
027232da
KS
615 INIT_LIST_HEAD(&vma->anon_vma_chain);
616}
617
bfd40eaf
KS
618static inline void vma_set_anonymous(struct vm_area_struct *vma)
619{
620 vma->vm_ops = NULL;
621}
622
43675e6f
YS
623static inline bool vma_is_anonymous(struct vm_area_struct *vma)
624{
625 return !vma->vm_ops;
626}
627
222100ee
AK
628static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
629{
630 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
631
632 if (!maybe_stack)
633 return false;
634
635 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
636 VM_STACK_INCOMPLETE_SETUP)
637 return true;
638
639 return false;
640}
641
7969f226
AK
642static inline bool vma_is_foreign(struct vm_area_struct *vma)
643{
644 if (!current->mm)
645 return true;
646
647 if (current->mm != vma->vm_mm)
648 return true;
649
650 return false;
651}
3122e80e
AK
652
653static inline bool vma_is_accessible(struct vm_area_struct *vma)
654{
6cb4d9a2 655 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
656}
657
43675e6f
YS
658#ifdef CONFIG_SHMEM
659/*
660 * The vma_is_shmem is not inline because it is used only by slow
661 * paths in userfault.
662 */
663bool vma_is_shmem(struct vm_area_struct *vma);
664#else
665static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
666#endif
667
668int vma_is_stack_for_current(struct vm_area_struct *vma);
669
8b11ec1b
LT
670/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
671#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
672
1da177e4
LT
673struct mmu_gather;
674struct inode;
675
5bf34d7c
MWO
676static inline unsigned int compound_order(struct page *page)
677{
678 if (!PageHead(page))
679 return 0;
680 return page[1].compound_order;
681}
682
683/**
684 * folio_order - The allocation order of a folio.
685 * @folio: The folio.
686 *
687 * A folio is composed of 2^order pages. See get_order() for the definition
688 * of order.
689 *
690 * Return: The order of the folio.
691 */
692static inline unsigned int folio_order(struct folio *folio)
693{
694 return compound_order(&folio->page);
695}
696
71e3aac0 697#include <linux/huge_mm.h>
1da177e4
LT
698
699/*
700 * Methods to modify the page usage count.
701 *
702 * What counts for a page usage:
703 * - cache mapping (page->mapping)
704 * - private data (page->private)
705 * - page mapped in a task's page tables, each mapping
706 * is counted separately
707 *
708 * Also, many kernel routines increase the page count before a critical
709 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
710 */
711
712/*
da6052f7 713 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 714 */
7c8ee9a8
NP
715static inline int put_page_testzero(struct page *page)
716{
fe896d18
JK
717 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
718 return page_ref_dec_and_test(page);
7c8ee9a8 719}
1da177e4 720
b620f633
MWO
721static inline int folio_put_testzero(struct folio *folio)
722{
723 return put_page_testzero(&folio->page);
724}
725
1da177e4 726/*
7c8ee9a8
NP
727 * Try to grab a ref unless the page has a refcount of zero, return false if
728 * that is the case.
8e0861fa
AK
729 * This can be called when MMU is off so it must not access
730 * any of the virtual mappings.
1da177e4 731 */
c2530328 732static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 733{
fe896d18 734 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 735}
1da177e4 736
53df8fdc 737extern int page_is_ram(unsigned long pfn);
124fe20d
DW
738
739enum {
740 REGION_INTERSECTS,
741 REGION_DISJOINT,
742 REGION_MIXED,
743};
744
1c29f25b
TK
745int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
746 unsigned long desc);
53df8fdc 747
48667e7a 748/* Support for virtually mapped pages */
b3bdda02
CL
749struct page *vmalloc_to_page(const void *addr);
750unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 751
0738c4bb
PM
752/*
753 * Determine if an address is within the vmalloc range
754 *
755 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
756 * is no special casing required.
757 */
9bd3bb67
AK
758
759#ifndef is_ioremap_addr
760#define is_ioremap_addr(x) is_vmalloc_addr(x)
761#endif
762
81ac3ad9 763#ifdef CONFIG_MMU
186525bd 764extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
765extern int is_vmalloc_or_module_addr(const void *x);
766#else
186525bd
IM
767static inline bool is_vmalloc_addr(const void *x)
768{
769 return false;
770}
934831d0 771static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
772{
773 return 0;
774}
775#endif
9e2779fa 776
bac3cf4d 777static inline int head_compound_mapcount(struct page *head)
6dc5ea16
JH
778{
779 return atomic_read(compound_mapcount_ptr(head)) + 1;
780}
781
6988f31d
KK
782/*
783 * Mapcount of compound page as a whole, does not include mapped sub-pages.
784 *
785 * Must be called only for compound pages or any their tail sub-pages.
786 */
53f9263b
KS
787static inline int compound_mapcount(struct page *page)
788{
5f527c2b 789 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 790 page = compound_head(page);
bac3cf4d 791 return head_compound_mapcount(page);
53f9263b
KS
792}
793
70b50f94
AA
794/*
795 * The atomic page->_mapcount, starts from -1: so that transitions
796 * both from it and to it can be tracked, using atomic_inc_and_test
797 * and atomic_add_negative(-1).
798 */
22b751c3 799static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
800{
801 atomic_set(&(page)->_mapcount, -1);
802}
803
b20ce5e0
KS
804int __page_mapcount(struct page *page);
805
6988f31d
KK
806/*
807 * Mapcount of 0-order page; when compound sub-page, includes
808 * compound_mapcount().
809 *
810 * Result is undefined for pages which cannot be mapped into userspace.
811 * For example SLAB or special types of pages. See function page_has_type().
812 * They use this place in struct page differently.
813 */
70b50f94
AA
814static inline int page_mapcount(struct page *page)
815{
b20ce5e0
KS
816 if (unlikely(PageCompound(page)))
817 return __page_mapcount(page);
818 return atomic_read(&page->_mapcount) + 1;
819}
820
821#ifdef CONFIG_TRANSPARENT_HUGEPAGE
822int total_mapcount(struct page *page);
d08d2b62 823int page_trans_huge_mapcount(struct page *page);
b20ce5e0
KS
824#else
825static inline int total_mapcount(struct page *page)
826{
827 return page_mapcount(page);
70b50f94 828}
d08d2b62 829static inline int page_trans_huge_mapcount(struct page *page)
6d0a07ed 830{
d08d2b62 831 return page_mapcount(page);
6d0a07ed 832}
b20ce5e0 833#endif
70b50f94 834
b49af68f
CL
835static inline struct page *virt_to_head_page(const void *x)
836{
837 struct page *page = virt_to_page(x);
ccaafd7f 838
1d798ca3 839 return compound_head(page);
b49af68f
CL
840}
841
7d4203c1
VB
842static inline struct folio *virt_to_folio(const void *x)
843{
844 struct page *page = virt_to_page(x);
845
846 return page_folio(page);
847}
848
ddc58f27
KS
849void __put_page(struct page *page);
850
1d7ea732 851void put_pages_list(struct list_head *pages);
1da177e4 852
8dfcc9ba 853void split_page(struct page *page, unsigned int order);
715cbfd6 854void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 855
a1554c00
ML
856unsigned long nr_free_buffer_pages(void);
857
33f2ef89
AW
858/*
859 * Compound pages have a destructor function. Provide a
860 * prototype for that function and accessor functions.
f1e61557 861 * These are _only_ valid on the head of a compound page.
33f2ef89 862 */
f1e61557
KS
863typedef void compound_page_dtor(struct page *);
864
865/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
866enum compound_dtor_id {
867 NULL_COMPOUND_DTOR,
868 COMPOUND_PAGE_DTOR,
869#ifdef CONFIG_HUGETLB_PAGE
870 HUGETLB_PAGE_DTOR,
9a982250
KS
871#endif
872#ifdef CONFIG_TRANSPARENT_HUGEPAGE
873 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
874#endif
875 NR_COMPOUND_DTORS,
876};
ae70eddd 877extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
878
879static inline void set_compound_page_dtor(struct page *page,
f1e61557 880 enum compound_dtor_id compound_dtor)
33f2ef89 881{
f1e61557
KS
882 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
883 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
884}
885
ff45fc3c 886static inline void destroy_compound_page(struct page *page)
33f2ef89 887{
f1e61557 888 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 889 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
890}
891
47e29d32
JH
892static inline bool hpage_pincount_available(struct page *page)
893{
894 /*
895 * Can the page->hpage_pinned_refcount field be used? That field is in
896 * the 3rd page of the compound page, so the smallest (2-page) compound
897 * pages cannot support it.
898 */
899 page = compound_head(page);
900 return PageCompound(page) && compound_order(page) > 1;
901}
902
bac3cf4d 903static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
904{
905 return atomic_read(compound_pincount_ptr(head));
906}
907
47e29d32
JH
908static inline int compound_pincount(struct page *page)
909{
910 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
911 page = compound_head(page);
bac3cf4d 912 return head_compound_pincount(page);
47e29d32
JH
913}
914
f1e61557 915static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 916{
e4b294c2 917 page[1].compound_order = order;
1378a5ee 918 page[1].compound_nr = 1U << order;
d85f3385
CL
919}
920
d8c6546b
MWO
921/* Returns the number of pages in this potentially compound page. */
922static inline unsigned long compound_nr(struct page *page)
923{
1378a5ee
MWO
924 if (!PageHead(page))
925 return 1;
926 return page[1].compound_nr;
d8c6546b
MWO
927}
928
a50b854e
MWO
929/* Returns the number of bytes in this potentially compound page. */
930static inline unsigned long page_size(struct page *page)
931{
932 return PAGE_SIZE << compound_order(page);
933}
934
94ad9338
MWO
935/* Returns the number of bits needed for the number of bytes in a page */
936static inline unsigned int page_shift(struct page *page)
937{
938 return PAGE_SHIFT + compound_order(page);
939}
940
9a982250
KS
941void free_compound_page(struct page *page);
942
3dece370 943#ifdef CONFIG_MMU
14fd403f
AA
944/*
945 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
946 * servicing faults for write access. In the normal case, do always want
947 * pte_mkwrite. But get_user_pages can cause write faults for mappings
948 * that do not have writing enabled, when used by access_process_vm.
949 */
950static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
951{
952 if (likely(vma->vm_flags & VM_WRITE))
953 pte = pte_mkwrite(pte);
954 return pte;
955}
8c6e50b0 956
f9ce0be7 957vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 958void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 959
2b740303
SJ
960vm_fault_t finish_fault(struct vm_fault *vmf);
961vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 962#endif
14fd403f 963
1da177e4
LT
964/*
965 * Multiple processes may "see" the same page. E.g. for untouched
966 * mappings of /dev/null, all processes see the same page full of
967 * zeroes, and text pages of executables and shared libraries have
968 * only one copy in memory, at most, normally.
969 *
970 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
971 * page_count() == 0 means the page is free. page->lru is then used for
972 * freelist management in the buddy allocator.
da6052f7 973 * page_count() > 0 means the page has been allocated.
1da177e4 974 *
da6052f7
NP
975 * Pages are allocated by the slab allocator in order to provide memory
976 * to kmalloc and kmem_cache_alloc. In this case, the management of the
977 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
978 * unless a particular usage is carefully commented. (the responsibility of
979 * freeing the kmalloc memory is the caller's, of course).
1da177e4 980 *
da6052f7
NP
981 * A page may be used by anyone else who does a __get_free_page().
982 * In this case, page_count still tracks the references, and should only
983 * be used through the normal accessor functions. The top bits of page->flags
984 * and page->virtual store page management information, but all other fields
985 * are unused and could be used privately, carefully. The management of this
986 * page is the responsibility of the one who allocated it, and those who have
987 * subsequently been given references to it.
988 *
989 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
990 * managed by the Linux memory manager: I/O, buffers, swapping etc.
991 * The following discussion applies only to them.
992 *
da6052f7
NP
993 * A pagecache page contains an opaque `private' member, which belongs to the
994 * page's address_space. Usually, this is the address of a circular list of
995 * the page's disk buffers. PG_private must be set to tell the VM to call
996 * into the filesystem to release these pages.
1da177e4 997 *
da6052f7
NP
998 * A page may belong to an inode's memory mapping. In this case, page->mapping
999 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1000 * in units of PAGE_SIZE.
1da177e4 1001 *
da6052f7
NP
1002 * If pagecache pages are not associated with an inode, they are said to be
1003 * anonymous pages. These may become associated with the swapcache, and in that
1004 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1005 *
da6052f7
NP
1006 * In either case (swapcache or inode backed), the pagecache itself holds one
1007 * reference to the page. Setting PG_private should also increment the
1008 * refcount. The each user mapping also has a reference to the page.
1da177e4 1009 *
da6052f7 1010 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1011 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1012 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1013 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1014 *
da6052f7 1015 * All pagecache pages may be subject to I/O:
1da177e4
LT
1016 * - inode pages may need to be read from disk,
1017 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1018 * to be written back to the inode on disk,
1019 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1020 * modified may need to be swapped out to swap space and (later) to be read
1021 * back into memory.
1da177e4
LT
1022 */
1023
1024/*
1025 * The zone field is never updated after free_area_init_core()
1026 * sets it, so none of the operations on it need to be atomic.
1da177e4 1027 */
348f8b6c 1028
90572890 1029/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1030#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1031#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1032#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1033#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1034#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1035
348f8b6c 1036/*
25985edc 1037 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1038 * sections we define the shift as 0; that plus a 0 mask ensures
1039 * the compiler will optimise away reference to them.
1040 */
d41dee36
AW
1041#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1042#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1043#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1044#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1045#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1046
bce54bbf
WD
1047/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1048#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1049#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1050#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1051 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1052#else
89689ae7 1053#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1054#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1055 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1056#endif
1057
bd8029b6 1058#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1059
d41dee36
AW
1060#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1061#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1062#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1063#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1064#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1065#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1066
33dd4e0e 1067static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1068{
c403f6a3 1069 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1070 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1071}
1da177e4 1072
32b8fc48
MWO
1073static inline enum zone_type folio_zonenum(const struct folio *folio)
1074{
1075 return page_zonenum(&folio->page);
1076}
1077
260ae3f7
DW
1078#ifdef CONFIG_ZONE_DEVICE
1079static inline bool is_zone_device_page(const struct page *page)
1080{
1081 return page_zonenum(page) == ZONE_DEVICE;
1082}
966cf44f
AD
1083extern void memmap_init_zone_device(struct zone *, unsigned long,
1084 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1085#else
1086static inline bool is_zone_device_page(const struct page *page)
1087{
1088 return false;
1089}
7b2d55d2 1090#endif
5042db43 1091
8e3560d9
PT
1092static inline bool is_zone_movable_page(const struct page *page)
1093{
1094 return page_zonenum(page) == ZONE_MOVABLE;
1095}
1096
e7638488 1097#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1098void free_devmap_managed_page(struct page *page);
e7638488 1099DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1100
1101static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1102{
1103 if (!static_branch_unlikely(&devmap_managed_key))
1104 return false;
1105 if (!is_zone_device_page(page))
1106 return false;
1107 switch (page->pgmap->type) {
1108 case MEMORY_DEVICE_PRIVATE:
e7638488 1109 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1110 return true;
1111 default:
1112 break;
1113 }
1114 return false;
1115}
1116
07d80269
JH
1117void put_devmap_managed_page(struct page *page);
1118
e7638488 1119#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1120static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1121{
1122 return false;
1123}
07d80269
JH
1124
1125static inline void put_devmap_managed_page(struct page *page)
1126{
1127}
7588adf8 1128#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1129
6b368cd4
JG
1130static inline bool is_device_private_page(const struct page *page)
1131{
7588adf8
RM
1132 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1133 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1134 is_zone_device_page(page) &&
1135 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1136}
e7638488 1137
52916982
LG
1138static inline bool is_pci_p2pdma_page(const struct page *page)
1139{
7588adf8
RM
1140 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1141 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1142 is_zone_device_page(page) &&
1143 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1144}
7b2d55d2 1145
f958d7b5 1146/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1147#define folio_ref_zero_or_close_to_overflow(folio) \
1148 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1149
1150/**
1151 * folio_get - Increment the reference count on a folio.
1152 * @folio: The folio.
1153 *
1154 * Context: May be called in any context, as long as you know that
1155 * you have a refcount on the folio. If you do not already have one,
1156 * folio_try_get() may be the right interface for you to use.
1157 */
1158static inline void folio_get(struct folio *folio)
1159{
1160 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1161 folio_ref_inc(folio);
1162}
f958d7b5 1163
3565fce3
DW
1164static inline void get_page(struct page *page)
1165{
86d234cb 1166 folio_get(page_folio(page));
3565fce3
DW
1167}
1168
3faa52c0 1169bool __must_check try_grab_page(struct page *page, unsigned int flags);
54d516b1
JH
1170struct page *try_grab_compound_head(struct page *page, int refs,
1171 unsigned int flags);
0fa5bc40 1172
cd1adf1b
LT
1173
1174static inline __must_check bool try_get_page(struct page *page)
1175{
1176 page = compound_head(page);
1177 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1178 return false;
1179 page_ref_inc(page);
1180 return true;
1181}
3565fce3 1182
b620f633
MWO
1183/**
1184 * folio_put - Decrement the reference count on a folio.
1185 * @folio: The folio.
1186 *
1187 * If the folio's reference count reaches zero, the memory will be
1188 * released back to the page allocator and may be used by another
1189 * allocation immediately. Do not access the memory or the struct folio
1190 * after calling folio_put() unless you can be sure that it wasn't the
1191 * last reference.
1192 *
1193 * Context: May be called in process or interrupt context, but not in NMI
1194 * context. May be called while holding a spinlock.
1195 */
1196static inline void folio_put(struct folio *folio)
1197{
1198 if (folio_put_testzero(folio))
1199 __put_page(&folio->page);
1200}
1201
3fe7fa58
MWO
1202/**
1203 * folio_put_refs - Reduce the reference count on a folio.
1204 * @folio: The folio.
1205 * @refs: The amount to subtract from the folio's reference count.
1206 *
1207 * If the folio's reference count reaches zero, the memory will be
1208 * released back to the page allocator and may be used by another
1209 * allocation immediately. Do not access the memory or the struct folio
1210 * after calling folio_put_refs() unless you can be sure that these weren't
1211 * the last references.
1212 *
1213 * Context: May be called in process or interrupt context, but not in NMI
1214 * context. May be called while holding a spinlock.
1215 */
1216static inline void folio_put_refs(struct folio *folio, int refs)
1217{
1218 if (folio_ref_sub_and_test(folio, refs))
1219 __put_page(&folio->page);
1220}
1221
3565fce3
DW
1222static inline void put_page(struct page *page)
1223{
b620f633 1224 struct folio *folio = page_folio(page);
3565fce3 1225
7b2d55d2 1226 /*
e7638488
DW
1227 * For devmap managed pages we need to catch refcount transition from
1228 * 2 to 1, when refcount reach one it means the page is free and we
1229 * need to inform the device driver through callback. See
7b2d55d2
JG
1230 * include/linux/memremap.h and HMM for details.
1231 */
b620f633
MWO
1232 if (page_is_devmap_managed(&folio->page)) {
1233 put_devmap_managed_page(&folio->page);
7b2d55d2 1234 return;
07d80269 1235 }
7b2d55d2 1236
b620f633 1237 folio_put(folio);
3565fce3
DW
1238}
1239
3faa52c0
JH
1240/*
1241 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1242 * the page's refcount so that two separate items are tracked: the original page
1243 * reference count, and also a new count of how many pin_user_pages() calls were
1244 * made against the page. ("gup-pinned" is another term for the latter).
1245 *
1246 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1247 * distinct from normal pages. As such, the unpin_user_page() call (and its
1248 * variants) must be used in order to release gup-pinned pages.
1249 *
1250 * Choice of value:
1251 *
1252 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1253 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1254 * simpler, due to the fact that adding an even power of two to the page
1255 * refcount has the effect of using only the upper N bits, for the code that
1256 * counts up using the bias value. This means that the lower bits are left for
1257 * the exclusive use of the original code that increments and decrements by one
1258 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1259 *
3faa52c0
JH
1260 * Of course, once the lower bits overflow into the upper bits (and this is
1261 * OK, because subtraction recovers the original values), then visual inspection
1262 * no longer suffices to directly view the separate counts. However, for normal
1263 * applications that don't have huge page reference counts, this won't be an
1264 * issue.
fc1d8e7c 1265 *
3faa52c0
JH
1266 * Locking: the lockless algorithm described in page_cache_get_speculative()
1267 * and page_cache_gup_pin_speculative() provides safe operation for
1268 * get_user_pages and page_mkclean and other calls that race to set up page
1269 * table entries.
fc1d8e7c 1270 */
3faa52c0 1271#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1272
3faa52c0 1273void unpin_user_page(struct page *page);
f1f6a7dd
JH
1274void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1275 bool make_dirty);
458a4f78
JM
1276void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1277 bool make_dirty);
f1f6a7dd 1278void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1279
3faa52c0 1280/**
136dfc99
MWO
1281 * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1282 * @page: The page.
3faa52c0
JH
1283 *
1284 * This function checks if a page has been pinned via a call to
136dfc99 1285 * a function in the pin_user_pages() family.
3faa52c0
JH
1286 *
1287 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1288 * because it means "definitely not pinned for DMA", but true means "probably
1289 * pinned for DMA, but possibly a false positive due to having at least
1290 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1291 *
1292 * False positives are OK, because: a) it's unlikely for a page to get that many
1293 * refcounts, and b) all the callers of this routine are expected to be able to
1294 * deal gracefully with a false positive.
1295 *
47e29d32
JH
1296 * For huge pages, the result will be exactly correct. That's because we have
1297 * more tracking data available: the 3rd struct page in the compound page is
1298 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1299 * scheme).
1300 *
72ef5e52 1301 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0 1302 *
136dfc99
MWO
1303 * Return: True, if it is likely that the page has been "dma-pinned".
1304 * False, if the page is definitely not dma-pinned.
3faa52c0
JH
1305 */
1306static inline bool page_maybe_dma_pinned(struct page *page)
1307{
47e29d32
JH
1308 if (hpage_pincount_available(page))
1309 return compound_pincount(page) > 0;
1310
3faa52c0
JH
1311 /*
1312 * page_ref_count() is signed. If that refcount overflows, then
1313 * page_ref_count() returns a negative value, and callers will avoid
1314 * further incrementing the refcount.
1315 *
1316 * Here, for that overflow case, use the signed bit to count a little
1317 * bit higher via unsigned math, and thus still get an accurate result.
1318 */
1319 return ((unsigned int)page_ref_count(compound_head(page))) >=
1320 GUP_PIN_COUNTING_BIAS;
1321}
1322
97a7e473
PX
1323static inline bool is_cow_mapping(vm_flags_t flags)
1324{
1325 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1326}
1327
1328/*
1329 * This should most likely only be called during fork() to see whether we
1330 * should break the cow immediately for a page on the src mm.
1331 */
1332static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1333 struct page *page)
1334{
1335 if (!is_cow_mapping(vma->vm_flags))
1336 return false;
1337
a458b76a 1338 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
97a7e473
PX
1339 return false;
1340
1341 return page_maybe_dma_pinned(page);
1342}
1343
9127ab4f
CS
1344#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1345#define SECTION_IN_PAGE_FLAGS
1346#endif
1347
89689ae7 1348/*
7a8010cd
VB
1349 * The identification function is mainly used by the buddy allocator for
1350 * determining if two pages could be buddies. We are not really identifying
1351 * the zone since we could be using the section number id if we do not have
1352 * node id available in page flags.
1353 * We only guarantee that it will return the same value for two combinable
1354 * pages in a zone.
89689ae7 1355 */
cb2b95e1
AW
1356static inline int page_zone_id(struct page *page)
1357{
89689ae7 1358 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1359}
1360
89689ae7 1361#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1362extern int page_to_nid(const struct page *page);
89689ae7 1363#else
33dd4e0e 1364static inline int page_to_nid(const struct page *page)
d41dee36 1365{
f165b378
PT
1366 struct page *p = (struct page *)page;
1367
1368 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1369}
89689ae7
CL
1370#endif
1371
874fd90c
MWO
1372static inline int folio_nid(const struct folio *folio)
1373{
1374 return page_to_nid(&folio->page);
1375}
1376
57e0a030 1377#ifdef CONFIG_NUMA_BALANCING
90572890 1378static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1379{
90572890 1380 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1381}
1382
90572890 1383static inline int cpupid_to_pid(int cpupid)
57e0a030 1384{
90572890 1385 return cpupid & LAST__PID_MASK;
57e0a030 1386}
b795854b 1387
90572890 1388static inline int cpupid_to_cpu(int cpupid)
b795854b 1389{
90572890 1390 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1391}
1392
90572890 1393static inline int cpupid_to_nid(int cpupid)
b795854b 1394{
90572890 1395 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1396}
1397
90572890 1398static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1399{
90572890 1400 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1401}
1402
90572890 1403static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1404{
90572890 1405 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1406}
1407
8c8a743c
PZ
1408static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1409{
1410 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1411}
1412
1413#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1414#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1415static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1416{
1ae71d03 1417 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1418}
90572890
PZ
1419
1420static inline int page_cpupid_last(struct page *page)
1421{
1422 return page->_last_cpupid;
1423}
1424static inline void page_cpupid_reset_last(struct page *page)
b795854b 1425{
1ae71d03 1426 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1427}
1428#else
90572890 1429static inline int page_cpupid_last(struct page *page)
75980e97 1430{
90572890 1431 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1432}
1433
90572890 1434extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1435
90572890 1436static inline void page_cpupid_reset_last(struct page *page)
75980e97 1437{
09940a4f 1438 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1439}
90572890
PZ
1440#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1441#else /* !CONFIG_NUMA_BALANCING */
1442static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1443{
90572890 1444 return page_to_nid(page); /* XXX */
57e0a030
MG
1445}
1446
90572890 1447static inline int page_cpupid_last(struct page *page)
57e0a030 1448{
90572890 1449 return page_to_nid(page); /* XXX */
57e0a030
MG
1450}
1451
90572890 1452static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1453{
1454 return -1;
1455}
1456
90572890 1457static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1458{
1459 return -1;
1460}
1461
90572890 1462static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1463{
1464 return -1;
1465}
1466
90572890
PZ
1467static inline int cpu_pid_to_cpupid(int nid, int pid)
1468{
1469 return -1;
1470}
1471
1472static inline bool cpupid_pid_unset(int cpupid)
b795854b 1473{
2b787449 1474 return true;
b795854b
MG
1475}
1476
90572890 1477static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1478{
1479}
8c8a743c
PZ
1480
1481static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1482{
1483 return false;
1484}
90572890 1485#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1486
2e903b91 1487#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1488
cf10bd4c
AK
1489/*
1490 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1491 * setting tags for all pages to native kernel tag value 0xff, as the default
1492 * value 0x00 maps to 0xff.
1493 */
1494
2813b9c0
AK
1495static inline u8 page_kasan_tag(const struct page *page)
1496{
cf10bd4c
AK
1497 u8 tag = 0xff;
1498
1499 if (kasan_enabled()) {
1500 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1501 tag ^= 0xff;
1502 }
1503
1504 return tag;
2813b9c0
AK
1505}
1506
1507static inline void page_kasan_tag_set(struct page *page, u8 tag)
1508{
27fe7339
PC
1509 unsigned long old_flags, flags;
1510
1511 if (!kasan_enabled())
1512 return;
1513
1514 tag ^= 0xff;
1515 old_flags = READ_ONCE(page->flags);
1516 do {
1517 flags = old_flags;
1518 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1519 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1520 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1521}
1522
1523static inline void page_kasan_tag_reset(struct page *page)
1524{
34303244
AK
1525 if (kasan_enabled())
1526 page_kasan_tag_set(page, 0xff);
2813b9c0 1527}
34303244
AK
1528
1529#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1530
2813b9c0
AK
1531static inline u8 page_kasan_tag(const struct page *page)
1532{
1533 return 0xff;
1534}
1535
1536static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1537static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1538
1539#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1540
33dd4e0e 1541static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1542{
1543 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1544}
1545
75ef7184
MG
1546static inline pg_data_t *page_pgdat(const struct page *page)
1547{
1548 return NODE_DATA(page_to_nid(page));
1549}
1550
32b8fc48
MWO
1551static inline struct zone *folio_zone(const struct folio *folio)
1552{
1553 return page_zone(&folio->page);
1554}
1555
1556static inline pg_data_t *folio_pgdat(const struct folio *folio)
1557{
1558 return page_pgdat(&folio->page);
1559}
1560
9127ab4f 1561#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1562static inline void set_page_section(struct page *page, unsigned long section)
1563{
1564 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1565 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1566}
1567
aa462abe 1568static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1569{
1570 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1571}
308c05e3 1572#endif
d41dee36 1573
bf6bd276
MWO
1574/**
1575 * folio_pfn - Return the Page Frame Number of a folio.
1576 * @folio: The folio.
1577 *
1578 * A folio may contain multiple pages. The pages have consecutive
1579 * Page Frame Numbers.
1580 *
1581 * Return: The Page Frame Number of the first page in the folio.
1582 */
1583static inline unsigned long folio_pfn(struct folio *folio)
1584{
1585 return page_to_pfn(&folio->page);
1586}
1587
8e3560d9
PT
1588/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1589#ifdef CONFIG_MIGRATION
1590static inline bool is_pinnable_page(struct page *page)
1591{
9afaf30f
PT
1592 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1593 is_zero_pfn(page_to_pfn(page));
8e3560d9
PT
1594}
1595#else
1596static inline bool is_pinnable_page(struct page *page)
1597{
1598 return true;
1599}
1600#endif
1601
2f1b6248 1602static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1603{
1604 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1605 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1606}
2f1b6248 1607
348f8b6c
DH
1608static inline void set_page_node(struct page *page, unsigned long node)
1609{
1610 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1611 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1612}
89689ae7 1613
2f1b6248 1614static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1615 unsigned long node, unsigned long pfn)
1da177e4 1616{
348f8b6c
DH
1617 set_page_zone(page, zone);
1618 set_page_node(page, node);
9127ab4f 1619#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1620 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1621#endif
1da177e4
LT
1622}
1623
7b230db3
MWO
1624/**
1625 * folio_nr_pages - The number of pages in the folio.
1626 * @folio: The folio.
1627 *
1628 * Return: A positive power of two.
1629 */
1630static inline long folio_nr_pages(struct folio *folio)
1631{
1632 return compound_nr(&folio->page);
1633}
1634
1635/**
1636 * folio_next - Move to the next physical folio.
1637 * @folio: The folio we're currently operating on.
1638 *
1639 * If you have physically contiguous memory which may span more than
1640 * one folio (eg a &struct bio_vec), use this function to move from one
1641 * folio to the next. Do not use it if the memory is only virtually
1642 * contiguous as the folios are almost certainly not adjacent to each
1643 * other. This is the folio equivalent to writing ``page++``.
1644 *
1645 * Context: We assume that the folios are refcounted and/or locked at a
1646 * higher level and do not adjust the reference counts.
1647 * Return: The next struct folio.
1648 */
1649static inline struct folio *folio_next(struct folio *folio)
1650{
1651 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1652}
1653
1654/**
1655 * folio_shift - The size of the memory described by this folio.
1656 * @folio: The folio.
1657 *
1658 * A folio represents a number of bytes which is a power-of-two in size.
1659 * This function tells you which power-of-two the folio is. See also
1660 * folio_size() and folio_order().
1661 *
1662 * Context: The caller should have a reference on the folio to prevent
1663 * it from being split. It is not necessary for the folio to be locked.
1664 * Return: The base-2 logarithm of the size of this folio.
1665 */
1666static inline unsigned int folio_shift(struct folio *folio)
1667{
1668 return PAGE_SHIFT + folio_order(folio);
1669}
1670
1671/**
1672 * folio_size - The number of bytes in a folio.
1673 * @folio: The folio.
1674 *
1675 * Context: The caller should have a reference on the folio to prevent
1676 * it from being split. It is not necessary for the folio to be locked.
1677 * Return: The number of bytes in this folio.
1678 */
1679static inline size_t folio_size(struct folio *folio)
1680{
1681 return PAGE_SIZE << folio_order(folio);
1682}
1683
b424de33
MWO
1684#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1685static inline int arch_make_page_accessible(struct page *page)
1686{
1687 return 0;
1688}
1689#endif
1690
1691#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1692static inline int arch_make_folio_accessible(struct folio *folio)
1693{
1694 int ret;
1695 long i, nr = folio_nr_pages(folio);
1696
1697 for (i = 0; i < nr; i++) {
1698 ret = arch_make_page_accessible(folio_page(folio, i));
1699 if (ret)
1700 break;
1701 }
1702
1703 return ret;
1704}
1705#endif
1706
f6ac2354
CL
1707/*
1708 * Some inline functions in vmstat.h depend on page_zone()
1709 */
1710#include <linux/vmstat.h>
1711
33dd4e0e 1712static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1713{
1dff8083 1714 return page_to_virt(page);
1da177e4
LT
1715}
1716
1717#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1718#define HASHED_PAGE_VIRTUAL
1719#endif
1720
1721#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1722static inline void *page_address(const struct page *page)
1723{
1724 return page->virtual;
1725}
1726static inline void set_page_address(struct page *page, void *address)
1727{
1728 page->virtual = address;
1729}
1da177e4
LT
1730#define page_address_init() do { } while(0)
1731#endif
1732
1733#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1734void *page_address(const struct page *page);
1da177e4
LT
1735void set_page_address(struct page *page, void *virtual);
1736void page_address_init(void);
1737#endif
1738
1739#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1740#define page_address(page) lowmem_page_address(page)
1741#define set_page_address(page, address) do { } while(0)
1742#define page_address_init() do { } while(0)
1743#endif
1744
7d4203c1
VB
1745static inline void *folio_address(const struct folio *folio)
1746{
1747 return page_address(&folio->page);
1748}
1749
e39155ea
KS
1750extern void *page_rmapping(struct page *page);
1751extern struct anon_vma *page_anon_vma(struct page *page);
f6ab1f7f
HY
1752extern pgoff_t __page_file_index(struct page *page);
1753
1da177e4
LT
1754/*
1755 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1756 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1757 */
1758static inline pgoff_t page_index(struct page *page)
1759{
1760 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1761 return __page_file_index(page);
1da177e4
LT
1762 return page->index;
1763}
1764
1aa8aea5 1765bool page_mapped(struct page *page);
dd10ab04 1766bool folio_mapped(struct folio *folio);
1da177e4 1767
2f064f34
MH
1768/*
1769 * Return true only if the page has been allocated with
1770 * ALLOC_NO_WATERMARKS and the low watermark was not
1771 * met implying that the system is under some pressure.
1772 */
1d7bab6a 1773static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1774{
1775 /*
c07aea3e
MC
1776 * lru.next has bit 1 set if the page is allocated from the
1777 * pfmemalloc reserves. Callers may simply overwrite it if
1778 * they do not need to preserve that information.
2f064f34 1779 */
c07aea3e 1780 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
1781}
1782
1783/*
1784 * Only to be called by the page allocator on a freshly allocated
1785 * page.
1786 */
1787static inline void set_page_pfmemalloc(struct page *page)
1788{
c07aea3e 1789 page->lru.next = (void *)BIT(1);
2f064f34
MH
1790}
1791
1792static inline void clear_page_pfmemalloc(struct page *page)
1793{
c07aea3e 1794 page->lru.next = NULL;
2f064f34
MH
1795}
1796
1c0fe6e3
NP
1797/*
1798 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1799 */
1800extern void pagefault_out_of_memory(void);
1801
1da177e4 1802#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1803#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 1804#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 1805
ddd588b5 1806/*
7bf02ea2 1807 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1808 * various contexts.
1809 */
4b59e6c4 1810#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1811
9af744d7 1812extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1813
710ec38b 1814#ifdef CONFIG_MMU
7f43add4 1815extern bool can_do_mlock(void);
710ec38b
AB
1816#else
1817static inline bool can_do_mlock(void) { return false; }
1818#endif
d7c9e99a
AG
1819extern int user_shm_lock(size_t, struct ucounts *);
1820extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 1821
25b2995a
CH
1822struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1823 pte_t pte);
28093f9f
GS
1824struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1825 pmd_t pmd);
7e675137 1826
27d036e3
LR
1827void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1828 unsigned long size);
14f5ff5d 1829void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1830 unsigned long size);
4f74d2c8
LT
1831void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1832 unsigned long start, unsigned long end);
e6473092 1833
ac46d4f3
JG
1834struct mmu_notifier_range;
1835
42b77728 1836void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1837 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1838int
1839copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
9fd6dad1
PB
1840int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1841 struct mmu_notifier_range *range, pte_t **ptepp,
1842 pmd_t **pmdpp, spinlock_t **ptlp);
ff5c19ed 1843int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 1844 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
1845int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1846 unsigned long *pfn);
d87fe660 1847int follow_phys(struct vm_area_struct *vma, unsigned long address,
1848 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1849int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1850 void *buf, int len, int write);
1da177e4 1851
7caef267 1852extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1853extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1854void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1855void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 1856int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1857int invalidate_inode_page(struct page *page);
1858
7ee1dd3f 1859#ifdef CONFIG_MMU
2b740303 1860extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1861 unsigned long address, unsigned int flags,
1862 struct pt_regs *regs);
64019a2e 1863extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1864 unsigned long address, unsigned int fault_flags,
1865 bool *unlocked);
977fbdcd
MW
1866void unmap_mapping_pages(struct address_space *mapping,
1867 pgoff_t start, pgoff_t nr, bool even_cows);
1868void unmap_mapping_range(struct address_space *mapping,
1869 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1870#else
2b740303 1871static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1872 unsigned long address, unsigned int flags,
1873 struct pt_regs *regs)
7ee1dd3f
DH
1874{
1875 /* should never happen if there's no MMU */
1876 BUG();
1877 return VM_FAULT_SIGBUS;
1878}
64019a2e 1879static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1880 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1881{
1882 /* should never happen if there's no MMU */
1883 BUG();
1884 return -EFAULT;
1885}
977fbdcd
MW
1886static inline void unmap_mapping_pages(struct address_space *mapping,
1887 pgoff_t start, pgoff_t nr, bool even_cows) { }
1888static inline void unmap_mapping_range(struct address_space *mapping,
1889 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1890#endif
f33ea7f4 1891
977fbdcd
MW
1892static inline void unmap_shared_mapping_range(struct address_space *mapping,
1893 loff_t const holebegin, loff_t const holelen)
1894{
1895 unmap_mapping_range(mapping, holebegin, holelen, 0);
1896}
1897
1898extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1899 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1900extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1901 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1902extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1903 void *buf, int len, unsigned int gup_flags);
1da177e4 1904
64019a2e 1905long get_user_pages_remote(struct mm_struct *mm,
1e987790 1906 unsigned long start, unsigned long nr_pages,
9beae1ea 1907 unsigned int gup_flags, struct page **pages,
5b56d49f 1908 struct vm_area_struct **vmas, int *locked);
64019a2e 1909long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1910 unsigned long start, unsigned long nr_pages,
1911 unsigned int gup_flags, struct page **pages,
1912 struct vm_area_struct **vmas, int *locked);
c12d2da5 1913long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1914 unsigned int gup_flags, struct page **pages,
cde70140 1915 struct vm_area_struct **vmas);
eddb1c22
JH
1916long pin_user_pages(unsigned long start, unsigned long nr_pages,
1917 unsigned int gup_flags, struct page **pages,
1918 struct vm_area_struct **vmas);
c12d2da5 1919long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1920 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1921long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1922 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1923long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1924 struct page **pages, unsigned int gup_flags);
91429023
JH
1925long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1926 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1927
73b0140b
IW
1928int get_user_pages_fast(unsigned long start, int nr_pages,
1929 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1930int pin_user_pages_fast(unsigned long start, int nr_pages,
1931 unsigned int gup_flags, struct page **pages);
8025e5dd 1932
79eb597c
DJ
1933int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1934int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1935 struct task_struct *task, bool bypass_rlim);
1936
18022c5d
MG
1937struct kvec;
1938int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1939 struct page **pages);
f3e8fccd 1940struct page *get_dump_page(unsigned long addr);
1da177e4 1941
d47992f8
LC
1942extern void do_invalidatepage(struct page *page, unsigned int offset,
1943 unsigned int length);
cf9a2ae8 1944
b5e84594
MWO
1945bool folio_mark_dirty(struct folio *folio);
1946bool set_page_dirty(struct page *page);
1da177e4 1947int set_page_dirty_lock(struct page *page);
b9ea2515 1948
a9090253 1949int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1950
b6a2fea3
OW
1951extern unsigned long move_page_tables(struct vm_area_struct *vma,
1952 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1953 unsigned long new_addr, unsigned long len,
1954 bool need_rmap_locks);
58705444
PX
1955
1956/*
1957 * Flags used by change_protection(). For now we make it a bitmap so
1958 * that we can pass in multiple flags just like parameters. However
1959 * for now all the callers are only use one of the flags at the same
1960 * time.
1961 */
1962/* Whether we should allow dirty bit accounting */
1963#define MM_CP_DIRTY_ACCT (1UL << 0)
1964/* Whether this protection change is for NUMA hints */
1965#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1966/* Whether this change is for write protecting */
1967#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1968#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1969#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1970 MM_CP_UFFD_WP_RESOLVE)
58705444 1971
7da4d641
PZ
1972extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1973 unsigned long end, pgprot_t newprot,
58705444 1974 unsigned long cp_flags);
b6a2fea3
OW
1975extern int mprotect_fixup(struct vm_area_struct *vma,
1976 struct vm_area_struct **pprev, unsigned long start,
1977 unsigned long end, unsigned long newflags);
1da177e4 1978
465a454f
PZ
1979/*
1980 * doesn't attempt to fault and will return short.
1981 */
dadbb612
SJ
1982int get_user_pages_fast_only(unsigned long start, int nr_pages,
1983 unsigned int gup_flags, struct page **pages);
104acc32
JH
1984int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1985 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1986
1987static inline bool get_user_page_fast_only(unsigned long addr,
1988 unsigned int gup_flags, struct page **pagep)
1989{
1990 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1991}
d559db08
KH
1992/*
1993 * per-process(per-mm_struct) statistics.
1994 */
d559db08
KH
1995static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1996{
69c97823
KK
1997 long val = atomic_long_read(&mm->rss_stat.count[member]);
1998
1999#ifdef SPLIT_RSS_COUNTING
2000 /*
2001 * counter is updated in asynchronous manner and may go to minus.
2002 * But it's never be expected number for users.
2003 */
2004 if (val < 0)
2005 val = 0;
172703b0 2006#endif
69c97823
KK
2007 return (unsigned long)val;
2008}
d559db08 2009
e4dcad20 2010void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 2011
d559db08
KH
2012static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2013{
b3d1411b
JFG
2014 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
2015
e4dcad20 2016 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2017}
2018
2019static inline void inc_mm_counter(struct mm_struct *mm, int member)
2020{
b3d1411b
JFG
2021 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
2022
e4dcad20 2023 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2024}
2025
2026static inline void dec_mm_counter(struct mm_struct *mm, int member)
2027{
b3d1411b
JFG
2028 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2029
e4dcad20 2030 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2031}
2032
eca56ff9
JM
2033/* Optimized variant when page is already known not to be PageAnon */
2034static inline int mm_counter_file(struct page *page)
2035{
2036 if (PageSwapBacked(page))
2037 return MM_SHMEMPAGES;
2038 return MM_FILEPAGES;
2039}
2040
2041static inline int mm_counter(struct page *page)
2042{
2043 if (PageAnon(page))
2044 return MM_ANONPAGES;
2045 return mm_counter_file(page);
2046}
2047
d559db08
KH
2048static inline unsigned long get_mm_rss(struct mm_struct *mm)
2049{
2050 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2051 get_mm_counter(mm, MM_ANONPAGES) +
2052 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2053}
2054
2055static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2056{
2057 return max(mm->hiwater_rss, get_mm_rss(mm));
2058}
2059
2060static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2061{
2062 return max(mm->hiwater_vm, mm->total_vm);
2063}
2064
2065static inline void update_hiwater_rss(struct mm_struct *mm)
2066{
2067 unsigned long _rss = get_mm_rss(mm);
2068
2069 if ((mm)->hiwater_rss < _rss)
2070 (mm)->hiwater_rss = _rss;
2071}
2072
2073static inline void update_hiwater_vm(struct mm_struct *mm)
2074{
2075 if (mm->hiwater_vm < mm->total_vm)
2076 mm->hiwater_vm = mm->total_vm;
2077}
2078
695f0559
PC
2079static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2080{
2081 mm->hiwater_rss = get_mm_rss(mm);
2082}
2083
d559db08
KH
2084static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2085 struct mm_struct *mm)
2086{
2087 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2088
2089 if (*maxrss < hiwater_rss)
2090 *maxrss = hiwater_rss;
2091}
2092
53bddb4e 2093#if defined(SPLIT_RSS_COUNTING)
05af2e10 2094void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2095#else
05af2e10 2096static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2097{
2098}
2099#endif
465a454f 2100
78e7c5af
AK
2101#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2102static inline int pte_special(pte_t pte)
2103{
2104 return 0;
2105}
2106
2107static inline pte_t pte_mkspecial(pte_t pte)
2108{
2109 return pte;
2110}
2111#endif
2112
17596731 2113#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2114static inline int pte_devmap(pte_t pte)
2115{
2116 return 0;
2117}
2118#endif
2119
6d2329f8 2120int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 2121
25ca1d6c
NK
2122extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2123 spinlock_t **ptl);
2124static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2125 spinlock_t **ptl)
2126{
2127 pte_t *ptep;
2128 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2129 return ptep;
2130}
c9cfcddf 2131
c2febafc
KS
2132#ifdef __PAGETABLE_P4D_FOLDED
2133static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2134 unsigned long address)
2135{
2136 return 0;
2137}
2138#else
2139int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2140#endif
2141
b4e98d9a 2142#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2143static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2144 unsigned long address)
2145{
2146 return 0;
2147}
b4e98d9a
KS
2148static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2149static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2150
5f22df00 2151#else
c2febafc 2152int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2153
b4e98d9a
KS
2154static inline void mm_inc_nr_puds(struct mm_struct *mm)
2155{
6d212db1
MS
2156 if (mm_pud_folded(mm))
2157 return;
af5b0f6a 2158 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2159}
2160
2161static inline void mm_dec_nr_puds(struct mm_struct *mm)
2162{
6d212db1
MS
2163 if (mm_pud_folded(mm))
2164 return;
af5b0f6a 2165 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2166}
5f22df00
NP
2167#endif
2168
2d2f5119 2169#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2170static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2171 unsigned long address)
2172{
2173 return 0;
2174}
dc6c9a35 2175
dc6c9a35
KS
2176static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2177static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2178
5f22df00 2179#else
1bb3630e 2180int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2181
dc6c9a35
KS
2182static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2183{
6d212db1
MS
2184 if (mm_pmd_folded(mm))
2185 return;
af5b0f6a 2186 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2187}
2188
2189static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2190{
6d212db1
MS
2191 if (mm_pmd_folded(mm))
2192 return;
af5b0f6a 2193 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2194}
5f22df00
NP
2195#endif
2196
c4812909 2197#ifdef CONFIG_MMU
af5b0f6a 2198static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2199{
af5b0f6a 2200 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2201}
2202
af5b0f6a 2203static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2204{
af5b0f6a 2205 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2206}
2207
2208static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2209{
af5b0f6a 2210 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2211}
2212
2213static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2214{
af5b0f6a 2215 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2216}
2217#else
c4812909 2218
af5b0f6a
KS
2219static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2220static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2221{
2222 return 0;
2223}
2224
2225static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2226static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2227#endif
2228
4cf58924
JFG
2229int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2230int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2231
f949286c
MR
2232#if defined(CONFIG_MMU)
2233
c2febafc
KS
2234static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2235 unsigned long address)
2236{
2237 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2238 NULL : p4d_offset(pgd, address);
2239}
2240
2241static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2242 unsigned long address)
1da177e4 2243{
c2febafc
KS
2244 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2245 NULL : pud_offset(p4d, address);
1da177e4 2246}
d8626138 2247
1da177e4
LT
2248static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2249{
1bb3630e
HD
2250 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2251 NULL: pmd_offset(pud, address);
1da177e4 2252}
f949286c 2253#endif /* CONFIG_MMU */
1bb3630e 2254
57c1ffce 2255#if USE_SPLIT_PTE_PTLOCKS
597d795a 2256#if ALLOC_SPLIT_PTLOCKS
b35f1819 2257void __init ptlock_cache_init(void);
539edb58
PZ
2258extern bool ptlock_alloc(struct page *page);
2259extern void ptlock_free(struct page *page);
2260
2261static inline spinlock_t *ptlock_ptr(struct page *page)
2262{
2263 return page->ptl;
2264}
597d795a 2265#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2266static inline void ptlock_cache_init(void)
2267{
2268}
2269
49076ec2
KS
2270static inline bool ptlock_alloc(struct page *page)
2271{
49076ec2
KS
2272 return true;
2273}
539edb58 2274
49076ec2
KS
2275static inline void ptlock_free(struct page *page)
2276{
49076ec2
KS
2277}
2278
2279static inline spinlock_t *ptlock_ptr(struct page *page)
2280{
539edb58 2281 return &page->ptl;
49076ec2 2282}
597d795a 2283#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2284
2285static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2286{
2287 return ptlock_ptr(pmd_page(*pmd));
2288}
2289
2290static inline bool ptlock_init(struct page *page)
2291{
2292 /*
2293 * prep_new_page() initialize page->private (and therefore page->ptl)
2294 * with 0. Make sure nobody took it in use in between.
2295 *
2296 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2297 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2298 */
309381fe 2299 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2300 if (!ptlock_alloc(page))
2301 return false;
2302 spin_lock_init(ptlock_ptr(page));
2303 return true;
2304}
2305
57c1ffce 2306#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2307/*
2308 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2309 */
49076ec2
KS
2310static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2311{
2312 return &mm->page_table_lock;
2313}
b35f1819 2314static inline void ptlock_cache_init(void) {}
49076ec2 2315static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2316static inline void ptlock_free(struct page *page) {}
57c1ffce 2317#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2318
b35f1819
KS
2319static inline void pgtable_init(void)
2320{
2321 ptlock_cache_init();
2322 pgtable_cache_init();
2323}
2324
b4ed71f5 2325static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2326{
706874e9
VD
2327 if (!ptlock_init(page))
2328 return false;
1d40a5ea 2329 __SetPageTable(page);
f0c0c115 2330 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2331 return true;
2f569afd
MS
2332}
2333
b4ed71f5 2334static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2335{
9e247bab 2336 ptlock_free(page);
1d40a5ea 2337 __ClearPageTable(page);
f0c0c115 2338 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2339}
2340
c74df32c
HD
2341#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2342({ \
4c21e2f2 2343 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2344 pte_t *__pte = pte_offset_map(pmd, address); \
2345 *(ptlp) = __ptl; \
2346 spin_lock(__ptl); \
2347 __pte; \
2348})
2349
2350#define pte_unmap_unlock(pte, ptl) do { \
2351 spin_unlock(ptl); \
2352 pte_unmap(pte); \
2353} while (0)
2354
4cf58924 2355#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2356
2357#define pte_alloc_map(mm, pmd, address) \
4cf58924 2358 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2359
c74df32c 2360#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2361 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2362 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2363
1bb3630e 2364#define pte_alloc_kernel(pmd, address) \
4cf58924 2365 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2366 NULL: pte_offset_kernel(pmd, address))
1da177e4 2367
e009bb30
KS
2368#if USE_SPLIT_PMD_PTLOCKS
2369
634391ac
MS
2370static struct page *pmd_to_page(pmd_t *pmd)
2371{
2372 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2373 return virt_to_page((void *)((unsigned long) pmd & mask));
2374}
2375
e009bb30
KS
2376static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2377{
634391ac 2378 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2379}
2380
b2b29d6d 2381static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2382{
e009bb30
KS
2383#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2384 page->pmd_huge_pte = NULL;
2385#endif
49076ec2 2386 return ptlock_init(page);
e009bb30
KS
2387}
2388
b2b29d6d 2389static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2390{
2391#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2392 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2393#endif
49076ec2 2394 ptlock_free(page);
e009bb30
KS
2395}
2396
634391ac 2397#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2398
2399#else
2400
9a86cb7b
KS
2401static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2402{
2403 return &mm->page_table_lock;
2404}
2405
b2b29d6d
MW
2406static inline bool pmd_ptlock_init(struct page *page) { return true; }
2407static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2408
c389a250 2409#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2410
e009bb30
KS
2411#endif
2412
9a86cb7b
KS
2413static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2414{
2415 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2416 spin_lock(ptl);
2417 return ptl;
2418}
2419
b2b29d6d
MW
2420static inline bool pgtable_pmd_page_ctor(struct page *page)
2421{
2422 if (!pmd_ptlock_init(page))
2423 return false;
2424 __SetPageTable(page);
f0c0c115 2425 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2426 return true;
2427}
2428
2429static inline void pgtable_pmd_page_dtor(struct page *page)
2430{
2431 pmd_ptlock_free(page);
2432 __ClearPageTable(page);
f0c0c115 2433 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2434}
2435
a00cc7d9
MW
2436/*
2437 * No scalability reason to split PUD locks yet, but follow the same pattern
2438 * as the PMD locks to make it easier if we decide to. The VM should not be
2439 * considered ready to switch to split PUD locks yet; there may be places
2440 * which need to be converted from page_table_lock.
2441 */
2442static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2443{
2444 return &mm->page_table_lock;
2445}
2446
2447static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2448{
2449 spinlock_t *ptl = pud_lockptr(mm, pud);
2450
2451 spin_lock(ptl);
2452 return ptl;
2453}
62906027 2454
a00cc7d9 2455extern void __init pagecache_init(void);
bc9331a1 2456extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2457extern void free_initmem(void);
2458
69afade7
JL
2459/*
2460 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2461 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2462 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2463 * Return pages freed into the buddy system.
2464 */
11199692 2465extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2466 int poison, const char *s);
c3d5f5f0 2467
c3d5f5f0 2468extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2469extern void mem_init_print_info(void);
69afade7 2470
4b50bcc7 2471extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2472
69afade7 2473/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2474static inline void free_reserved_page(struct page *page)
69afade7
JL
2475{
2476 ClearPageReserved(page);
2477 init_page_count(page);
2478 __free_page(page);
69afade7
JL
2479 adjust_managed_page_count(page, 1);
2480}
a0cd7a7c 2481#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2482
2483static inline void mark_page_reserved(struct page *page)
2484{
2485 SetPageReserved(page);
2486 adjust_managed_page_count(page, -1);
2487}
2488
2489/*
2490 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2491 * The freed pages will be poisoned with pattern "poison" if it's within
2492 * range [0, UCHAR_MAX].
2493 * Return pages freed into the buddy system.
69afade7
JL
2494 */
2495static inline unsigned long free_initmem_default(int poison)
2496{
2497 extern char __init_begin[], __init_end[];
2498
11199692 2499 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2500 poison, "unused kernel image (initmem)");
69afade7
JL
2501}
2502
7ee3d4e8
JL
2503static inline unsigned long get_num_physpages(void)
2504{
2505 int nid;
2506 unsigned long phys_pages = 0;
2507
2508 for_each_online_node(nid)
2509 phys_pages += node_present_pages(nid);
2510
2511 return phys_pages;
2512}
2513
c713216d 2514/*
3f08a302 2515 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2516 * zones, allocate the backing mem_map and account for memory holes in an
2517 * architecture independent manner.
c713216d
MG
2518 *
2519 * An architecture is expected to register range of page frames backed by
0ee332c1 2520 * physical memory with memblock_add[_node]() before calling
9691a071 2521 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2522 * usage, an architecture is expected to do something like
2523 *
2524 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2525 * max_highmem_pfn};
2526 * for_each_valid_physical_page_range()
952eea9b 2527 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2528 * free_area_init(max_zone_pfns);
c713216d 2529 */
9691a071 2530void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2531unsigned long node_map_pfn_alignment(void);
32996250
YL
2532unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2533 unsigned long end_pfn);
c713216d
MG
2534extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2535 unsigned long end_pfn);
2536extern void get_pfn_range_for_nid(unsigned int nid,
2537 unsigned long *start_pfn, unsigned long *end_pfn);
2538extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2539
a9ee6cf5 2540#ifndef CONFIG_NUMA
6f24fbd3 2541static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2542{
2543 return 0;
2544}
2545#else
2546/* please see mm/page_alloc.c */
2547extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2548#endif
2549
0e0b864e 2550extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2551extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2552 unsigned long, unsigned long, enum meminit_context,
2553 struct vmem_altmap *, int migratetype);
bc75d33f 2554extern void setup_per_zone_wmarks(void);
bd3400ea 2555extern void calculate_min_free_kbytes(void);
1b79acc9 2556extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2557extern void mem_init(void);
8feae131 2558extern void __init mmap_init(void);
9af744d7 2559extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2560extern long si_mem_available(void);
1da177e4
LT
2561extern void si_meminfo(struct sysinfo * val);
2562extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2563#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2564extern unsigned long arch_reserved_kernel_pages(void);
2565#endif
1da177e4 2566
a8e99259
MH
2567extern __printf(3, 4)
2568void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2569
e7c8d5c9 2570extern void setup_per_cpu_pageset(void);
e7c8d5c9 2571
75f7ad8e
PS
2572/* page_alloc.c */
2573extern int min_free_kbytes;
1c30844d 2574extern int watermark_boost_factor;
795ae7a0 2575extern int watermark_scale_factor;
51930df5 2576extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2577
8feae131 2578/* nommu.c */
33e5d769 2579extern atomic_long_t mmap_pages_allocated;
7e660872 2580extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2581
6b2dbba8 2582/* interval_tree.c */
6b2dbba8 2583void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2584 struct rb_root_cached *root);
9826a516
ML
2585void vma_interval_tree_insert_after(struct vm_area_struct *node,
2586 struct vm_area_struct *prev,
f808c13f 2587 struct rb_root_cached *root);
6b2dbba8 2588void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2589 struct rb_root_cached *root);
2590struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2591 unsigned long start, unsigned long last);
2592struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2593 unsigned long start, unsigned long last);
2594
2595#define vma_interval_tree_foreach(vma, root, start, last) \
2596 for (vma = vma_interval_tree_iter_first(root, start, last); \
2597 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2598
bf181b9f 2599void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2600 struct rb_root_cached *root);
bf181b9f 2601void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2602 struct rb_root_cached *root);
2603struct anon_vma_chain *
2604anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2605 unsigned long start, unsigned long last);
bf181b9f
ML
2606struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2607 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2608#ifdef CONFIG_DEBUG_VM_RB
2609void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2610#endif
bf181b9f
ML
2611
2612#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2613 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2614 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2615
1da177e4 2616/* mmap.c */
34b4e4aa 2617extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2618extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2619 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2620 struct vm_area_struct *expand);
2621static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2622 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2623{
2624 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2625}
1da177e4
LT
2626extern struct vm_area_struct *vma_merge(struct mm_struct *,
2627 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2628 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
9a10064f 2629 struct mempolicy *, struct vm_userfaultfd_ctx, const char *);
1da177e4 2630extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2631extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2632 unsigned long addr, int new_below);
2633extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2634 unsigned long addr, int new_below);
1da177e4
LT
2635extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2636extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2637 struct rb_node **, struct rb_node *);
a8fb5618 2638extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2639extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2640 unsigned long addr, unsigned long len, pgoff_t pgoff,
2641 bool *need_rmap_locks);
1da177e4 2642extern void exit_mmap(struct mm_struct *);
925d1c40 2643
9c599024
CG
2644static inline int check_data_rlimit(unsigned long rlim,
2645 unsigned long new,
2646 unsigned long start,
2647 unsigned long end_data,
2648 unsigned long start_data)
2649{
2650 if (rlim < RLIM_INFINITY) {
2651 if (((new - start) + (end_data - start_data)) > rlim)
2652 return -ENOSPC;
2653 }
2654
2655 return 0;
2656}
2657
7906d00c
AA
2658extern int mm_take_all_locks(struct mm_struct *mm);
2659extern void mm_drop_all_locks(struct mm_struct *mm);
2660
fe69d560 2661extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 2662extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 2663extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2664extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2665
84638335
KK
2666extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2667extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2668
2eefd878
DS
2669extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2670 const struct vm_special_mapping *sm);
3935ed6a
SS
2671extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2672 unsigned long addr, unsigned long len,
a62c34bd
AL
2673 unsigned long flags,
2674 const struct vm_special_mapping *spec);
2675/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2676extern int install_special_mapping(struct mm_struct *mm,
2677 unsigned long addr, unsigned long len,
2678 unsigned long flags, struct page **pages);
1da177e4 2679
649775be
AG
2680unsigned long randomize_stack_top(unsigned long stack_top);
2681
1da177e4
LT
2682extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2683
0165ab44 2684extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2685 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2686 struct list_head *uf);
1fcfd8db 2687extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2688 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2689 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2690extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2691 struct list_head *uf, bool downgrade);
897ab3e0
MR
2692extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2693 struct list_head *uf);
0726b01e 2694extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2695
bebeb3d6
ML
2696#ifdef CONFIG_MMU
2697extern int __mm_populate(unsigned long addr, unsigned long len,
2698 int ignore_errors);
2699static inline void mm_populate(unsigned long addr, unsigned long len)
2700{
2701 /* Ignore errors */
2702 (void) __mm_populate(addr, len, 1);
2703}
2704#else
2705static inline void mm_populate(unsigned long addr, unsigned long len) {}
2706#endif
2707
e4eb1ff6 2708/* These take the mm semaphore themselves */
5d22fc25 2709extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2710extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2711extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2712extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2713 unsigned long, unsigned long,
2714 unsigned long, unsigned long);
1da177e4 2715
db4fbfb9
ML
2716struct vm_unmapped_area_info {
2717#define VM_UNMAPPED_AREA_TOPDOWN 1
2718 unsigned long flags;
2719 unsigned long length;
2720 unsigned long low_limit;
2721 unsigned long high_limit;
2722 unsigned long align_mask;
2723 unsigned long align_offset;
2724};
2725
baceaf1c 2726extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2727
85821aab 2728/* truncate.c */
1da177e4 2729extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2730extern void truncate_inode_pages_range(struct address_space *,
2731 loff_t lstart, loff_t lend);
91b0abe3 2732extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2733
2734/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2735extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2736extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2737 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2738extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 2739
1be7107f 2740extern unsigned long stack_guard_gap;
d05f3169 2741/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2742extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2743
11192337 2744/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2745extern int expand_downwards(struct vm_area_struct *vma,
2746 unsigned long address);
8ca3eb08 2747#if VM_GROWSUP
46dea3d0 2748extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2749#else
fee7e49d 2750 #define expand_upwards(vma, address) (0)
9ab88515 2751#endif
1da177e4
LT
2752
2753/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2754extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2755extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2756 struct vm_area_struct **pprev);
2757
ce6d42f2
LH
2758/**
2759 * find_vma_intersection() - Look up the first VMA which intersects the interval
2760 * @mm: The process address space.
2761 * @start_addr: The inclusive start user address.
2762 * @end_addr: The exclusive end user address.
2763 *
2764 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2765 * start_addr < end_addr.
2766 */
2767static inline
2768struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2769 unsigned long start_addr,
2770 unsigned long end_addr)
1da177e4 2771{
ce6d42f2 2772 struct vm_area_struct *vma = find_vma(mm, start_addr);
1da177e4
LT
2773
2774 if (vma && end_addr <= vma->vm_start)
2775 vma = NULL;
2776 return vma;
2777}
2778
ce6d42f2
LH
2779/**
2780 * vma_lookup() - Find a VMA at a specific address
2781 * @mm: The process address space.
2782 * @addr: The user address.
2783 *
2784 * Return: The vm_area_struct at the given address, %NULL otherwise.
2785 */
2786static inline
2787struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2788{
2789 struct vm_area_struct *vma = find_vma(mm, addr);
2790
2791 if (vma && addr < vma->vm_start)
2792 vma = NULL;
2793
2794 return vma;
2795}
2796
1be7107f
HD
2797static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2798{
2799 unsigned long vm_start = vma->vm_start;
2800
2801 if (vma->vm_flags & VM_GROWSDOWN) {
2802 vm_start -= stack_guard_gap;
2803 if (vm_start > vma->vm_start)
2804 vm_start = 0;
2805 }
2806 return vm_start;
2807}
2808
2809static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2810{
2811 unsigned long vm_end = vma->vm_end;
2812
2813 if (vma->vm_flags & VM_GROWSUP) {
2814 vm_end += stack_guard_gap;
2815 if (vm_end < vma->vm_end)
2816 vm_end = -PAGE_SIZE;
2817 }
2818 return vm_end;
2819}
2820
1da177e4
LT
2821static inline unsigned long vma_pages(struct vm_area_struct *vma)
2822{
2823 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2824}
2825
640708a2
PE
2826/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2827static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2828 unsigned long vm_start, unsigned long vm_end)
2829{
2830 struct vm_area_struct *vma = find_vma(mm, vm_start);
2831
2832 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2833 vma = NULL;
2834
2835 return vma;
2836}
2837
017b1660
MK
2838static inline bool range_in_vma(struct vm_area_struct *vma,
2839 unsigned long start, unsigned long end)
2840{
2841 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2842}
2843
bad849b3 2844#ifdef CONFIG_MMU
804af2cf 2845pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2846void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2847#else
2848static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2849{
2850 return __pgprot(0);
2851}
64e45507
PF
2852static inline void vma_set_page_prot(struct vm_area_struct *vma)
2853{
2854 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2855}
bad849b3
DH
2856#endif
2857
295992fb
CK
2858void vma_set_file(struct vm_area_struct *vma, struct file *file);
2859
5877231f 2860#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2861unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2862 unsigned long start, unsigned long end);
2863#endif
2864
deceb6cd 2865struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2866int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2867 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
2868int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2869 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 2870int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2871int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2872 struct page **pages, unsigned long *num);
a667d745
SJ
2873int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2874 unsigned long num);
2875int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2876 unsigned long num);
ae2b01f3 2877vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2878 unsigned long pfn);
f5e6d1d5
MW
2879vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2880 unsigned long pfn, pgprot_t pgprot);
5d747637 2881vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2882 pfn_t pfn);
574c5b3d
TH
2883vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2884 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2885vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2886 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2887int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2888
1c8f4220
SJ
2889static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2890 unsigned long addr, struct page *page)
2891{
2892 int err = vm_insert_page(vma, addr, page);
2893
2894 if (err == -ENOMEM)
2895 return VM_FAULT_OOM;
2896 if (err < 0 && err != -EBUSY)
2897 return VM_FAULT_SIGBUS;
2898
2899 return VM_FAULT_NOPAGE;
2900}
2901
f8f6ae5d
JG
2902#ifndef io_remap_pfn_range
2903static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2904 unsigned long addr, unsigned long pfn,
2905 unsigned long size, pgprot_t prot)
2906{
2907 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2908}
2909#endif
2910
d97baf94
SJ
2911static inline vm_fault_t vmf_error(int err)
2912{
2913 if (err == -ENOMEM)
2914 return VM_FAULT_OOM;
2915 return VM_FAULT_SIGBUS;
2916}
2917
df06b37f
KB
2918struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2919 unsigned int foll_flags);
240aadee 2920
deceb6cd
HD
2921#define FOLL_WRITE 0x01 /* check pte is writable */
2922#define FOLL_TOUCH 0x02 /* mark page accessed */
2923#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2924#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2925#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2926#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2927 * and return without waiting upon it */
55b8fe70
AG
2928#define FOLL_POPULATE 0x40 /* fault in pages (with FOLL_MLOCK) */
2929#define FOLL_NOFAULT 0x80 /* do not fault in pages */
69ebb83e 2930#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2931#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2932#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2933#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2934#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2935#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2936#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2937#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2938#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2939#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2940#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2941#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2942
2943/*
eddb1c22
JH
2944 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2945 * other. Here is what they mean, and how to use them:
932f4a63
IW
2946 *
2947 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2948 * period _often_ under userspace control. This is in contrast to
2949 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2950 *
2951 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2952 * lifetime enforced by the filesystem and we need guarantees that longterm
2953 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2954 * the filesystem. Ideas for this coordination include revoking the longterm
2955 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2956 * added after the problem with filesystems was found FS DAX VMAs are
2957 * specifically failed. Filesystem pages are still subject to bugs and use of
2958 * FOLL_LONGTERM should be avoided on those pages.
2959 *
2960 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2961 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2962 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2963 * is due to an incompatibility with the FS DAX check and
eddb1c22 2964 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2965 *
eddb1c22
JH
2966 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2967 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2968 * FOLL_LONGTERM is specified.
eddb1c22
JH
2969 *
2970 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2971 * but an additional pin counting system) will be invoked. This is intended for
2972 * anything that gets a page reference and then touches page data (for example,
2973 * Direct IO). This lets the filesystem know that some non-file-system entity is
2974 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2975 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2976 * a call to unpin_user_page().
eddb1c22
JH
2977 *
2978 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2979 * and separate refcounting mechanisms, however, and that means that each has
2980 * its own acquire and release mechanisms:
2981 *
2982 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2983 *
f1f6a7dd 2984 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2985 *
2986 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2987 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2988 * calls applied to them, and that's perfectly OK. This is a constraint on the
2989 * callers, not on the pages.)
2990 *
2991 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2992 * directly by the caller. That's in order to help avoid mismatches when
2993 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2994 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2995 *
72ef5e52 2996 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2997 */
1da177e4 2998
2b740303 2999static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3000{
3001 if (vm_fault & VM_FAULT_OOM)
3002 return -ENOMEM;
3003 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3004 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3005 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3006 return -EFAULT;
3007 return 0;
3008}
3009
8b1e0f81 3010typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3011extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3012 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3013extern int apply_to_existing_page_range(struct mm_struct *mm,
3014 unsigned long address, unsigned long size,
3015 pte_fn_t fn, void *data);
aee16b3c 3016
04013513 3017extern void init_mem_debugging_and_hardening(void);
8823b1db 3018#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3019extern void __kernel_poison_pages(struct page *page, int numpages);
3020extern void __kernel_unpoison_pages(struct page *page, int numpages);
3021extern bool _page_poisoning_enabled_early;
3022DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3023static inline bool page_poisoning_enabled(void)
3024{
3025 return _page_poisoning_enabled_early;
3026}
3027/*
3028 * For use in fast paths after init_mem_debugging() has run, or when a
3029 * false negative result is not harmful when called too early.
3030 */
3031static inline bool page_poisoning_enabled_static(void)
3032{
3033 return static_branch_unlikely(&_page_poisoning_enabled);
3034}
3035static inline void kernel_poison_pages(struct page *page, int numpages)
3036{
3037 if (page_poisoning_enabled_static())
3038 __kernel_poison_pages(page, numpages);
3039}
3040static inline void kernel_unpoison_pages(struct page *page, int numpages)
3041{
3042 if (page_poisoning_enabled_static())
3043 __kernel_unpoison_pages(page, numpages);
3044}
8823b1db
LA
3045#else
3046static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3047static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3048static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3049static inline void kernel_poison_pages(struct page *page, int numpages) { }
3050static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3051#endif
3052
51cba1eb 3053DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3054static inline bool want_init_on_alloc(gfp_t flags)
3055{
51cba1eb
KC
3056 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3057 &init_on_alloc))
6471384a
AP
3058 return true;
3059 return flags & __GFP_ZERO;
3060}
3061
51cba1eb 3062DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3063static inline bool want_init_on_free(void)
3064{
51cba1eb
KC
3065 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3066 &init_on_free);
6471384a
AP
3067}
3068
8e57f8ac
VB
3069extern bool _debug_pagealloc_enabled_early;
3070DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3071
3072static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3073{
3074 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3075 _debug_pagealloc_enabled_early;
3076}
3077
3078/*
3079 * For use in fast paths after init_debug_pagealloc() has run, or when a
3080 * false negative result is not harmful when called too early.
3081 */
3082static inline bool debug_pagealloc_enabled_static(void)
031bc574 3083{
96a2b03f
VB
3084 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3085 return false;
3086
3087 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3088}
3089
5d6ad668 3090#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3091/*
5d6ad668
MR
3092 * To support DEBUG_PAGEALLOC architecture must ensure that
3093 * __kernel_map_pages() never fails
c87cbc1f 3094 */
d6332692
RE
3095extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3096
77bc7fd6
MR
3097static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3098{
3099 if (debug_pagealloc_enabled_static())
3100 __kernel_map_pages(page, numpages, 1);
3101}
3102
3103static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3104{
3105 if (debug_pagealloc_enabled_static())
3106 __kernel_map_pages(page, numpages, 0);
3107}
5d6ad668 3108#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3109static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3110static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3111#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3112
a6c19dfe 3113#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3114extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3115extern int in_gate_area_no_mm(unsigned long addr);
3116extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3117#else
a6c19dfe
AL
3118static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3119{
3120 return NULL;
3121}
3122static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3123static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3124{
3125 return 0;
3126}
1da177e4
LT
3127#endif /* __HAVE_ARCH_GATE_AREA */
3128
44a70ade
MH
3129extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3130
146732ce
JT
3131#ifdef CONFIG_SYSCTL
3132extern int sysctl_drop_caches;
32927393
CH
3133int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3134 loff_t *);
146732ce
JT
3135#endif
3136
cb731d6c 3137void drop_slab(void);
9d0243bc 3138
7a9166e3
LY
3139#ifndef CONFIG_MMU
3140#define randomize_va_space 0
3141#else
a62eaf15 3142extern int randomize_va_space;
7a9166e3 3143#endif
a62eaf15 3144
045e72ac 3145const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3146#ifdef CONFIG_MMU
03252919 3147void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3148#else
3149static inline void print_vma_addr(char *prefix, unsigned long rip)
3150{
3151}
3152#endif
e6e5494c 3153
3bc2b6a7
MS
3154int vmemmap_remap_free(unsigned long start, unsigned long end,
3155 unsigned long reuse);
ad2fa371
MS
3156int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3157 unsigned long reuse, gfp_t gfp_mask);
f41f2ed4 3158
35fd1eb1 3159void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
3160struct page * __populate_section_memmap(unsigned long pfn,
3161 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3162pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3163p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3164pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3165pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
3166pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3167 struct vmem_altmap *altmap);
8f6aac41 3168void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3169struct vmem_altmap;
56993b4e
AK
3170void *vmemmap_alloc_block_buf(unsigned long size, int node,
3171 struct vmem_altmap *altmap);
8f6aac41 3172void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3173int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3174 int node, struct vmem_altmap *altmap);
7b73d978
CH
3175int vmemmap_populate(unsigned long start, unsigned long end, int node,
3176 struct vmem_altmap *altmap);
c2b91e2e 3177void vmemmap_populate_print_last(void);
0197518c 3178#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3179void vmemmap_free(unsigned long start, unsigned long end,
3180 struct vmem_altmap *altmap);
0197518c 3181#endif
46723bfa 3182void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3183 unsigned long nr_pages);
6a46079c 3184
82ba011b
AK
3185enum mf_flags {
3186 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3187 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3188 MF_MUST_KILL = 1 << 2,
cf870c70 3189 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3190 MF_UNPOISON = 1 << 4,
82ba011b 3191};
83b57531
EB
3192extern int memory_failure(unsigned long pfn, int flags);
3193extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3194extern void memory_failure_queue_kick(int cpu);
847ce401 3195extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3196extern int sysctl_memory_failure_early_kill;
3197extern int sysctl_memory_failure_recovery;
d0505e9f 3198extern void shake_page(struct page *p);
5844a486 3199extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3200extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3201
03b122da
TL
3202#ifndef arch_memory_failure
3203static inline int arch_memory_failure(unsigned long pfn, int flags)
3204{
3205 return -ENXIO;
3206}
3207#endif
3208
3209#ifndef arch_is_platform_page
3210static inline bool arch_is_platform_page(u64 paddr)
3211{
3212 return false;
3213}
3214#endif
cc637b17
XX
3215
3216/*
3217 * Error handlers for various types of pages.
3218 */
cc3e2af4 3219enum mf_result {
cc637b17
XX
3220 MF_IGNORED, /* Error: cannot be handled */
3221 MF_FAILED, /* Error: handling failed */
3222 MF_DELAYED, /* Will be handled later */
3223 MF_RECOVERED, /* Successfully recovered */
3224};
3225
3226enum mf_action_page_type {
3227 MF_MSG_KERNEL,
3228 MF_MSG_KERNEL_HIGH_ORDER,
3229 MF_MSG_SLAB,
3230 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3231 MF_MSG_HUGE,
3232 MF_MSG_FREE_HUGE,
31286a84 3233 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3234 MF_MSG_UNMAP_FAILED,
3235 MF_MSG_DIRTY_SWAPCACHE,
3236 MF_MSG_CLEAN_SWAPCACHE,
3237 MF_MSG_DIRTY_MLOCKED_LRU,
3238 MF_MSG_CLEAN_MLOCKED_LRU,
3239 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3240 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3241 MF_MSG_DIRTY_LRU,
3242 MF_MSG_CLEAN_LRU,
3243 MF_MSG_TRUNCATED_LRU,
3244 MF_MSG_BUDDY,
6100e34b 3245 MF_MSG_DAX,
5d1fd5dc 3246 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3247 MF_MSG_UNKNOWN,
3248};
3249
47ad8475
AA
3250#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3251extern void clear_huge_page(struct page *page,
c79b57e4 3252 unsigned long addr_hint,
47ad8475
AA
3253 unsigned int pages_per_huge_page);
3254extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3255 unsigned long addr_hint,
3256 struct vm_area_struct *vma,
47ad8475 3257 unsigned int pages_per_huge_page);
fa4d75c1
MK
3258extern long copy_huge_page_from_user(struct page *dst_page,
3259 const void __user *usr_src,
810a56b9
MK
3260 unsigned int pages_per_huge_page,
3261 bool allow_pagefault);
2484ca9b
THV
3262
3263/**
3264 * vma_is_special_huge - Are transhuge page-table entries considered special?
3265 * @vma: Pointer to the struct vm_area_struct to consider
3266 *
3267 * Whether transhuge page-table entries are considered "special" following
3268 * the definition in vm_normal_page().
3269 *
3270 * Return: true if transhuge page-table entries should be considered special,
3271 * false otherwise.
3272 */
3273static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3274{
3275 return vma_is_dax(vma) || (vma->vm_file &&
3276 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3277}
3278
47ad8475
AA
3279#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3280
c0a32fc5
SG
3281#ifdef CONFIG_DEBUG_PAGEALLOC
3282extern unsigned int _debug_guardpage_minorder;
96a2b03f 3283DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3284
3285static inline unsigned int debug_guardpage_minorder(void)
3286{
3287 return _debug_guardpage_minorder;
3288}
3289
e30825f1
JK
3290static inline bool debug_guardpage_enabled(void)
3291{
96a2b03f 3292 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3293}
3294
c0a32fc5
SG
3295static inline bool page_is_guard(struct page *page)
3296{
e30825f1
JK
3297 if (!debug_guardpage_enabled())
3298 return false;
3299
3972f6bb 3300 return PageGuard(page);
c0a32fc5
SG
3301}
3302#else
3303static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3304static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3305static inline bool page_is_guard(struct page *page) { return false; }
3306#endif /* CONFIG_DEBUG_PAGEALLOC */
3307
f9872caf
CS
3308#if MAX_NUMNODES > 1
3309void __init setup_nr_node_ids(void);
3310#else
3311static inline void setup_nr_node_ids(void) {}
3312#endif
3313
010c164a
SL
3314extern int memcmp_pages(struct page *page1, struct page *page2);
3315
3316static inline int pages_identical(struct page *page1, struct page *page2)
3317{
3318 return !memcmp_pages(page1, page2);
3319}
3320
c5acad84
TH
3321#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3322unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3323 pgoff_t first_index, pgoff_t nr,
3324 pgoff_t bitmap_pgoff,
3325 unsigned long *bitmap,
3326 pgoff_t *start,
3327 pgoff_t *end);
3328
3329unsigned long wp_shared_mapping_range(struct address_space *mapping,
3330 pgoff_t first_index, pgoff_t nr);
3331#endif
3332
2374c09b
CH
3333extern int sysctl_nr_trim_pages;
3334
5bb1bb35 3335#ifdef CONFIG_PRINTK
8e7f37f2 3336void mem_dump_obj(void *object);
5bb1bb35
PM
3337#else
3338static inline void mem_dump_obj(void *object) {}
3339#endif
8e7f37f2 3340
22247efd
PX
3341/**
3342 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3343 * @seals: the seals to check
3344 * @vma: the vma to operate on
3345 *
3346 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3347 * the vma flags. Return 0 if check pass, or <0 for errors.
3348 */
3349static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3350{
3351 if (seals & F_SEAL_FUTURE_WRITE) {
3352 /*
3353 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3354 * "future write" seal active.
3355 */
3356 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3357 return -EPERM;
3358
3359 /*
3360 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3361 * MAP_SHARED and read-only, take care to not allow mprotect to
3362 * revert protections on such mappings. Do this only for shared
3363 * mappings. For private mappings, don't need to mask
3364 * VM_MAYWRITE as we still want them to be COW-writable.
3365 */
3366 if (vma->vm_flags & VM_SHARED)
3367 vma->vm_flags &= ~(VM_MAYWRITE);
3368 }
3369
3370 return 0;
3371}
3372
9a10064f
CC
3373#ifdef CONFIG_ANON_VMA_NAME
3374int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3375 unsigned long len_in, const char *name);
3376#else
3377static inline int
3378madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3379 unsigned long len_in, const char *name) {
3380 return 0;
3381}
3382#endif
3383
1da177e4
LT
3384#endif /* __KERNEL__ */
3385#endif /* _LINUX_MM_H */