x86/sgx: Add SGX infrastructure to recover from poison
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
9740ca4e 18#include <linux/mmap_lock.h>
08677214 19#include <linux/range.h>
c6f6b596 20#include <linux/pfn.h>
3565fce3 21#include <linux/percpu-refcount.h>
e9da73d6 22#include <linux/bit_spinlock.h>
b0d40c92 23#include <linux/shrinker.h>
9c599024 24#include <linux/resource.h>
e30825f1 25#include <linux/page_ext.h>
8025e5dd 26#include <linux/err.h>
41901567 27#include <linux/page-flags.h>
fe896d18 28#include <linux/page_ref.h>
7b2d55d2 29#include <linux/memremap.h>
3b3b1a29 30#include <linux/overflow.h>
b5420237 31#include <linux/sizes.h>
7969f226 32#include <linux/sched.h>
65fddcfc 33#include <linux/pgtable.h>
34303244 34#include <linux/kasan.h>
1da177e4
LT
35
36struct mempolicy;
37struct anon_vma;
bf181b9f 38struct anon_vma_chain;
e8edc6e0 39struct user_struct;
bce617ed 40struct pt_regs;
1da177e4 41
5ef64cc8
LT
42extern int sysctl_page_lock_unfairness;
43
597b7305
MH
44void init_mm_internals(void);
45
a9ee6cf5 46#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 47extern unsigned long max_mapnr;
fccc9987
JL
48
49static inline void set_max_mapnr(unsigned long limit)
50{
51 max_mapnr = limit;
52}
53#else
54static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
55#endif
56
ca79b0c2
AK
57extern atomic_long_t _totalram_pages;
58static inline unsigned long totalram_pages(void)
59{
60 return (unsigned long)atomic_long_read(&_totalram_pages);
61}
62
63static inline void totalram_pages_inc(void)
64{
65 atomic_long_inc(&_totalram_pages);
66}
67
68static inline void totalram_pages_dec(void)
69{
70 atomic_long_dec(&_totalram_pages);
71}
72
73static inline void totalram_pages_add(long count)
74{
75 atomic_long_add(count, &_totalram_pages);
76}
77
1da177e4 78extern void * high_memory;
1da177e4
LT
79extern int page_cluster;
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
d07e2259
DC
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
1da177e4 98#include <asm/page.h>
1da177e4 99#include <asm/processor.h>
1da177e4 100
d9344522
AK
101/*
102 * Architectures that support memory tagging (assigning tags to memory regions,
103 * embedding these tags into addresses that point to these memory regions, and
104 * checking that the memory and the pointer tags match on memory accesses)
105 * redefine this macro to strip tags from pointers.
f0953a1b 106 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
107 */
108#ifndef untagged_addr
109#define untagged_addr(addr) (addr)
110#endif
111
79442ed1
TC
112#ifndef __pa_symbol
113#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
114#endif
115
1dff8083
AB
116#ifndef page_to_virt
117#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
118#endif
119
568c5fe5
LA
120#ifndef lm_alias
121#define lm_alias(x) __va(__pa_symbol(x))
122#endif
123
593befa6
DD
124/*
125 * To prevent common memory management code establishing
126 * a zero page mapping on a read fault.
127 * This macro should be defined within <asm/pgtable.h>.
128 * s390 does this to prevent multiplexing of hardware bits
129 * related to the physical page in case of virtualization.
130 */
131#ifndef mm_forbids_zeropage
132#define mm_forbids_zeropage(X) (0)
133#endif
134
a4a3ede2
PT
135/*
136 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
137 * If an architecture decides to implement their own version of
138 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
139 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 140 */
5470dea4
AD
141#if BITS_PER_LONG == 64
142/* This function must be updated when the size of struct page grows above 80
143 * or reduces below 56. The idea that compiler optimizes out switch()
144 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 145 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
146 * this can result in several of the writes here being dropped.
147 */
148#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
149static inline void __mm_zero_struct_page(struct page *page)
150{
151 unsigned long *_pp = (void *)page;
152
153 /* Check that struct page is either 56, 64, 72, or 80 bytes */
154 BUILD_BUG_ON(sizeof(struct page) & 7);
155 BUILD_BUG_ON(sizeof(struct page) < 56);
156 BUILD_BUG_ON(sizeof(struct page) > 80);
157
158 switch (sizeof(struct page)) {
159 case 80:
df561f66
GS
160 _pp[9] = 0;
161 fallthrough;
5470dea4 162 case 72:
df561f66
GS
163 _pp[8] = 0;
164 fallthrough;
5470dea4 165 case 64:
df561f66
GS
166 _pp[7] = 0;
167 fallthrough;
5470dea4
AD
168 case 56:
169 _pp[6] = 0;
170 _pp[5] = 0;
171 _pp[4] = 0;
172 _pp[3] = 0;
173 _pp[2] = 0;
174 _pp[1] = 0;
175 _pp[0] = 0;
176 }
177}
178#else
a4a3ede2
PT
179#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
180#endif
181
ea606cf5
AR
182/*
183 * Default maximum number of active map areas, this limits the number of vmas
184 * per mm struct. Users can overwrite this number by sysctl but there is a
185 * problem.
186 *
187 * When a program's coredump is generated as ELF format, a section is created
188 * per a vma. In ELF, the number of sections is represented in unsigned short.
189 * This means the number of sections should be smaller than 65535 at coredump.
190 * Because the kernel adds some informative sections to a image of program at
191 * generating coredump, we need some margin. The number of extra sections is
192 * 1-3 now and depends on arch. We use "5" as safe margin, here.
193 *
194 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
195 * not a hard limit any more. Although some userspace tools can be surprised by
196 * that.
197 */
198#define MAPCOUNT_ELF_CORE_MARGIN (5)
199#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
200
201extern int sysctl_max_map_count;
202
c9b1d098 203extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 204extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 205
49f0ce5f
JM
206extern int sysctl_overcommit_memory;
207extern int sysctl_overcommit_ratio;
208extern unsigned long sysctl_overcommit_kbytes;
209
32927393
CH
210int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
211 loff_t *);
212int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
213 loff_t *);
56f3547b
FT
214int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
215 loff_t *);
49f0ce5f 216
1cfcee72 217#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 218#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
1cfcee72
MWO
219#else
220#define nth_page(page,n) ((page) + (n))
221#endif
1da177e4 222
27ac792c
AR
223/* to align the pointer to the (next) page boundary */
224#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
225
0fa73b86 226/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 227#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 228
f86196ea
NB
229#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
230
5748fbc5
KW
231void setup_initial_init_mm(void *start_code, void *end_code,
232 void *end_data, void *brk);
233
1da177e4
LT
234/*
235 * Linux kernel virtual memory manager primitives.
236 * The idea being to have a "virtual" mm in the same way
237 * we have a virtual fs - giving a cleaner interface to the
238 * mm details, and allowing different kinds of memory mappings
239 * (from shared memory to executable loading to arbitrary
240 * mmap() functions).
241 */
242
490fc053 243struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
244struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
245void vm_area_free(struct vm_area_struct *);
c43692e8 246
1da177e4 247#ifndef CONFIG_MMU
8feae131
DH
248extern struct rb_root nommu_region_tree;
249extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
250
251extern unsigned int kobjsize(const void *objp);
252#endif
253
254/*
605d9288 255 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 256 * When changing, update also include/trace/events/mmflags.h
1da177e4 257 */
cc2383ec
KK
258#define VM_NONE 0x00000000
259
1da177e4
LT
260#define VM_READ 0x00000001 /* currently active flags */
261#define VM_WRITE 0x00000002
262#define VM_EXEC 0x00000004
263#define VM_SHARED 0x00000008
264
7e2cff42 265/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
266#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
267#define VM_MAYWRITE 0x00000020
268#define VM_MAYEXEC 0x00000040
269#define VM_MAYSHARE 0x00000080
270
271#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 272#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 273#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 274#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 275
1da177e4
LT
276#define VM_LOCKED 0x00002000
277#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
278
279 /* Used by sys_madvise() */
280#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
281#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
282
283#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
284#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 285#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 286#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 287#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 288#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 289#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 290#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 291#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 292#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 293
d9104d1c
CG
294#ifdef CONFIG_MEM_SOFT_DIRTY
295# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
296#else
297# define VM_SOFTDIRTY 0
298#endif
299
b379d790 300#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
301#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
302#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 303#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 304
63c17fb8
DH
305#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
306#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
307#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
308#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
309#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 310#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
311#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
312#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
313#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
314#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 315#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
316#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
317
5212213a 318#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
319# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
320# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 321# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
322# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
323# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
324#ifdef CONFIG_PPC
325# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
326#else
327# define VM_PKEY_BIT4 0
8f62c883 328#endif
5212213a
RP
329#endif /* CONFIG_ARCH_HAS_PKEYS */
330
331#if defined(CONFIG_X86)
332# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
333#elif defined(CONFIG_PPC)
334# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
335#elif defined(CONFIG_PARISC)
336# define VM_GROWSUP VM_ARCH_1
337#elif defined(CONFIG_IA64)
338# define VM_GROWSUP VM_ARCH_1
74a04967
KA
339#elif defined(CONFIG_SPARC64)
340# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
341# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
342#elif defined(CONFIG_ARM64)
343# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
344# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
345#elif !defined(CONFIG_MMU)
346# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
347#endif
348
9f341931
CM
349#if defined(CONFIG_ARM64_MTE)
350# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
351# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
352#else
353# define VM_MTE VM_NONE
354# define VM_MTE_ALLOWED VM_NONE
355#endif
356
cc2383ec
KK
357#ifndef VM_GROWSUP
358# define VM_GROWSUP VM_NONE
359#endif
360
7677f7fd
AR
361#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
362# define VM_UFFD_MINOR_BIT 37
363# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
364#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
365# define VM_UFFD_MINOR VM_NONE
366#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
367
a8bef8ff
MG
368/* Bits set in the VMA until the stack is in its final location */
369#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
370
c62da0c3
AK
371#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
372
373/* Common data flag combinations */
374#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
375 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
376#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
377 VM_MAYWRITE | VM_MAYEXEC)
378#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
379 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
380
381#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
382#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
383#endif
384
1da177e4
LT
385#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
386#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
387#endif
388
389#ifdef CONFIG_STACK_GROWSUP
30bdbb78 390#define VM_STACK VM_GROWSUP
1da177e4 391#else
30bdbb78 392#define VM_STACK VM_GROWSDOWN
1da177e4
LT
393#endif
394
30bdbb78
KK
395#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
396
6cb4d9a2
AK
397/* VMA basic access permission flags */
398#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
399
400
b291f000 401/*
78f11a25 402 * Special vmas that are non-mergable, non-mlock()able.
b291f000 403 */
9050d7eb 404#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 405
b4443772
AK
406/* This mask prevents VMA from being scanned with khugepaged */
407#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
408
a0715cc2
AT
409/* This mask defines which mm->def_flags a process can inherit its parent */
410#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
411
de60f5f1
EM
412/* This mask is used to clear all the VMA flags used by mlock */
413#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
414
2c2d57b5
KA
415/* Arch-specific flags to clear when updating VM flags on protection change */
416#ifndef VM_ARCH_CLEAR
417# define VM_ARCH_CLEAR VM_NONE
418#endif
419#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
420
1da177e4
LT
421/*
422 * mapping from the currently active vm_flags protection bits (the
423 * low four bits) to a page protection mask..
424 */
425extern pgprot_t protection_map[16];
426
c270a7ee 427/**
da2f5eb3 428 * enum fault_flag - Fault flag definitions.
c270a7ee
PX
429 * @FAULT_FLAG_WRITE: Fault was a write fault.
430 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
431 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
c1e8d7c6 432 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
c270a7ee
PX
433 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
434 * @FAULT_FLAG_TRIED: The fault has been tried once.
435 * @FAULT_FLAG_USER: The fault originated in userspace.
436 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
437 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
438 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
439 *
440 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
441 * whether we would allow page faults to retry by specifying these two
442 * fault flags correctly. Currently there can be three legal combinations:
443 *
444 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
445 * this is the first try
446 *
447 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
448 * we've already tried at least once
449 *
450 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
451 *
452 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
453 * be used. Note that page faults can be allowed to retry for multiple times,
454 * in which case we'll have an initial fault with flags (a) then later on
455 * continuous faults with flags (b). We should always try to detect pending
456 * signals before a retry to make sure the continuous page faults can still be
457 * interrupted if necessary.
c270a7ee 458 */
da2f5eb3
MWO
459enum fault_flag {
460 FAULT_FLAG_WRITE = 1 << 0,
461 FAULT_FLAG_MKWRITE = 1 << 1,
462 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
463 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
464 FAULT_FLAG_KILLABLE = 1 << 4,
465 FAULT_FLAG_TRIED = 1 << 5,
466 FAULT_FLAG_USER = 1 << 6,
467 FAULT_FLAG_REMOTE = 1 << 7,
468 FAULT_FLAG_INSTRUCTION = 1 << 8,
469 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
470};
d0217ac0 471
dde16072
PX
472/*
473 * The default fault flags that should be used by most of the
474 * arch-specific page fault handlers.
475 */
476#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
477 FAULT_FLAG_KILLABLE | \
478 FAULT_FLAG_INTERRUPTIBLE)
dde16072 479
4064b982
PX
480/**
481 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 482 * @flags: Fault flags.
4064b982
PX
483 *
484 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 485 * the mmap_lock for too long a time when waiting for another condition
4064b982 486 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
487 * mmap_lock in the first round to avoid potential starvation of other
488 * processes that would also want the mmap_lock.
4064b982
PX
489 *
490 * Return: true if the page fault allows retry and this is the first
491 * attempt of the fault handling; false otherwise.
492 */
da2f5eb3 493static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
494{
495 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
496 (!(flags & FAULT_FLAG_TRIED));
497}
498
282a8e03
RZ
499#define FAULT_FLAG_TRACE \
500 { FAULT_FLAG_WRITE, "WRITE" }, \
501 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
502 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
503 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
504 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
505 { FAULT_FLAG_TRIED, "TRIED" }, \
506 { FAULT_FLAG_USER, "USER" }, \
507 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
508 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
509 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 510
54cb8821 511/*
11192337 512 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
513 * ->fault function. The vma's ->fault is responsible for returning a bitmask
514 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 515 *
c20cd45e
MH
516 * MM layer fills up gfp_mask for page allocations but fault handler might
517 * alter it if its implementation requires a different allocation context.
518 *
9b4bdd2f 519 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 520 */
d0217ac0 521struct vm_fault {
5857c920 522 const struct {
742d3372
WD
523 struct vm_area_struct *vma; /* Target VMA */
524 gfp_t gfp_mask; /* gfp mask to be used for allocations */
525 pgoff_t pgoff; /* Logical page offset based on vma */
526 unsigned long address; /* Faulting virtual address */
527 };
da2f5eb3 528 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 529 * XXX: should really be 'const' */
82b0f8c3 530 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 531 * the 'address' */
a2d58167
DJ
532 pud_t *pud; /* Pointer to pud entry matching
533 * the 'address'
534 */
5db4f15c
YS
535 union {
536 pte_t orig_pte; /* Value of PTE at the time of fault */
537 pmd_t orig_pmd; /* Value of PMD at the time of fault,
538 * used by PMD fault only.
539 */
540 };
d0217ac0 541
3917048d 542 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 543 struct page *page; /* ->fault handlers should return a
83c54070 544 * page here, unless VM_FAULT_NOPAGE
d0217ac0 545 * is set (which is also implied by
83c54070 546 * VM_FAULT_ERROR).
d0217ac0 547 */
82b0f8c3 548 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
549 pte_t *pte; /* Pointer to pte entry matching
550 * the 'address'. NULL if the page
551 * table hasn't been allocated.
552 */
553 spinlock_t *ptl; /* Page table lock.
554 * Protects pte page table if 'pte'
555 * is not NULL, otherwise pmd.
556 */
7267ec00 557 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
558 * vm_ops->map_pages() sets up a page
559 * table from atomic context.
7267ec00
KS
560 * do_fault_around() pre-allocates
561 * page table to avoid allocation from
562 * atomic context.
563 */
54cb8821 564};
1da177e4 565
c791ace1
DJ
566/* page entry size for vm->huge_fault() */
567enum page_entry_size {
568 PE_SIZE_PTE = 0,
569 PE_SIZE_PMD,
570 PE_SIZE_PUD,
571};
572
1da177e4
LT
573/*
574 * These are the virtual MM functions - opening of an area, closing and
575 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 576 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
577 */
578struct vm_operations_struct {
579 void (*open)(struct vm_area_struct * area);
580 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
581 /* Called any time before splitting to check if it's allowed */
582 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 583 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
584 /*
585 * Called by mprotect() to make driver-specific permission
586 * checks before mprotect() is finalised. The VMA must not
587 * be modified. Returns 0 if eprotect() can proceed.
588 */
589 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
590 unsigned long end, unsigned long newflags);
1c8f4220
SJ
591 vm_fault_t (*fault)(struct vm_fault *vmf);
592 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
593 enum page_entry_size pe_size);
f9ce0be7 594 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 595 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 596 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
597
598 /* notification that a previously read-only page is about to become
599 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 600 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 601
dd906184 602 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 603 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 604
28b2ee20 605 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
606 * for use by special VMAs. See also generic_access_phys() for a generic
607 * implementation useful for any iomem mapping.
28b2ee20
RR
608 */
609 int (*access)(struct vm_area_struct *vma, unsigned long addr,
610 void *buf, int len, int write);
78d683e8
AL
611
612 /* Called by the /proc/PID/maps code to ask the vma whether it
613 * has a special name. Returning non-NULL will also cause this
614 * vma to be dumped unconditionally. */
615 const char *(*name)(struct vm_area_struct *vma);
616
1da177e4 617#ifdef CONFIG_NUMA
a6020ed7
LS
618 /*
619 * set_policy() op must add a reference to any non-NULL @new mempolicy
620 * to hold the policy upon return. Caller should pass NULL @new to
621 * remove a policy and fall back to surrounding context--i.e. do not
622 * install a MPOL_DEFAULT policy, nor the task or system default
623 * mempolicy.
624 */
1da177e4 625 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
626
627 /*
628 * get_policy() op must add reference [mpol_get()] to any policy at
629 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
630 * in mm/mempolicy.c will do this automatically.
631 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 632 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
633 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
634 * must return NULL--i.e., do not "fallback" to task or system default
635 * policy.
636 */
1da177e4
LT
637 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
638 unsigned long addr);
639#endif
667a0a06
DV
640 /*
641 * Called by vm_normal_page() for special PTEs to find the
642 * page for @addr. This is useful if the default behavior
643 * (using pte_page()) would not find the correct page.
644 */
645 struct page *(*find_special_page)(struct vm_area_struct *vma,
646 unsigned long addr);
1da177e4
LT
647};
648
027232da
KS
649static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
650{
bfd40eaf
KS
651 static const struct vm_operations_struct dummy_vm_ops = {};
652
a670468f 653 memset(vma, 0, sizeof(*vma));
027232da 654 vma->vm_mm = mm;
bfd40eaf 655 vma->vm_ops = &dummy_vm_ops;
027232da
KS
656 INIT_LIST_HEAD(&vma->anon_vma_chain);
657}
658
bfd40eaf
KS
659static inline void vma_set_anonymous(struct vm_area_struct *vma)
660{
661 vma->vm_ops = NULL;
662}
663
43675e6f
YS
664static inline bool vma_is_anonymous(struct vm_area_struct *vma)
665{
666 return !vma->vm_ops;
667}
668
222100ee
AK
669static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
670{
671 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
672
673 if (!maybe_stack)
674 return false;
675
676 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
677 VM_STACK_INCOMPLETE_SETUP)
678 return true;
679
680 return false;
681}
682
7969f226
AK
683static inline bool vma_is_foreign(struct vm_area_struct *vma)
684{
685 if (!current->mm)
686 return true;
687
688 if (current->mm != vma->vm_mm)
689 return true;
690
691 return false;
692}
3122e80e
AK
693
694static inline bool vma_is_accessible(struct vm_area_struct *vma)
695{
6cb4d9a2 696 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
697}
698
43675e6f
YS
699#ifdef CONFIG_SHMEM
700/*
701 * The vma_is_shmem is not inline because it is used only by slow
702 * paths in userfault.
703 */
704bool vma_is_shmem(struct vm_area_struct *vma);
705#else
706static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
707#endif
708
709int vma_is_stack_for_current(struct vm_area_struct *vma);
710
8b11ec1b
LT
711/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
712#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
713
1da177e4
LT
714struct mmu_gather;
715struct inode;
716
71e3aac0 717#include <linux/huge_mm.h>
1da177e4
LT
718
719/*
720 * Methods to modify the page usage count.
721 *
722 * What counts for a page usage:
723 * - cache mapping (page->mapping)
724 * - private data (page->private)
725 * - page mapped in a task's page tables, each mapping
726 * is counted separately
727 *
728 * Also, many kernel routines increase the page count before a critical
729 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
730 */
731
732/*
da6052f7 733 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 734 */
7c8ee9a8
NP
735static inline int put_page_testzero(struct page *page)
736{
fe896d18
JK
737 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
738 return page_ref_dec_and_test(page);
7c8ee9a8 739}
1da177e4 740
b620f633
MWO
741static inline int folio_put_testzero(struct folio *folio)
742{
743 return put_page_testzero(&folio->page);
744}
745
1da177e4 746/*
7c8ee9a8
NP
747 * Try to grab a ref unless the page has a refcount of zero, return false if
748 * that is the case.
8e0861fa
AK
749 * This can be called when MMU is off so it must not access
750 * any of the virtual mappings.
1da177e4 751 */
c2530328 752static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 753{
fe896d18 754 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 755}
1da177e4 756
53df8fdc 757extern int page_is_ram(unsigned long pfn);
124fe20d
DW
758
759enum {
760 REGION_INTERSECTS,
761 REGION_DISJOINT,
762 REGION_MIXED,
763};
764
1c29f25b
TK
765int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
766 unsigned long desc);
53df8fdc 767
48667e7a 768/* Support for virtually mapped pages */
b3bdda02
CL
769struct page *vmalloc_to_page(const void *addr);
770unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 771
0738c4bb
PM
772/*
773 * Determine if an address is within the vmalloc range
774 *
775 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
776 * is no special casing required.
777 */
9bd3bb67
AK
778
779#ifndef is_ioremap_addr
780#define is_ioremap_addr(x) is_vmalloc_addr(x)
781#endif
782
81ac3ad9 783#ifdef CONFIG_MMU
186525bd 784extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
785extern int is_vmalloc_or_module_addr(const void *x);
786#else
186525bd
IM
787static inline bool is_vmalloc_addr(const void *x)
788{
789 return false;
790}
934831d0 791static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
792{
793 return 0;
794}
795#endif
9e2779fa 796
bac3cf4d 797static inline int head_compound_mapcount(struct page *head)
6dc5ea16
JH
798{
799 return atomic_read(compound_mapcount_ptr(head)) + 1;
800}
801
6988f31d
KK
802/*
803 * Mapcount of compound page as a whole, does not include mapped sub-pages.
804 *
805 * Must be called only for compound pages or any their tail sub-pages.
806 */
53f9263b
KS
807static inline int compound_mapcount(struct page *page)
808{
5f527c2b 809 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 810 page = compound_head(page);
bac3cf4d 811 return head_compound_mapcount(page);
53f9263b
KS
812}
813
70b50f94
AA
814/*
815 * The atomic page->_mapcount, starts from -1: so that transitions
816 * both from it and to it can be tracked, using atomic_inc_and_test
817 * and atomic_add_negative(-1).
818 */
22b751c3 819static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
820{
821 atomic_set(&(page)->_mapcount, -1);
822}
823
b20ce5e0
KS
824int __page_mapcount(struct page *page);
825
6988f31d
KK
826/*
827 * Mapcount of 0-order page; when compound sub-page, includes
828 * compound_mapcount().
829 *
830 * Result is undefined for pages which cannot be mapped into userspace.
831 * For example SLAB or special types of pages. See function page_has_type().
832 * They use this place in struct page differently.
833 */
70b50f94
AA
834static inline int page_mapcount(struct page *page)
835{
b20ce5e0
KS
836 if (unlikely(PageCompound(page)))
837 return __page_mapcount(page);
838 return atomic_read(&page->_mapcount) + 1;
839}
840
841#ifdef CONFIG_TRANSPARENT_HUGEPAGE
842int total_mapcount(struct page *page);
6d0a07ed 843int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
844#else
845static inline int total_mapcount(struct page *page)
846{
847 return page_mapcount(page);
70b50f94 848}
6d0a07ed
AA
849static inline int page_trans_huge_mapcount(struct page *page,
850 int *total_mapcount)
851{
852 int mapcount = page_mapcount(page);
853 if (total_mapcount)
854 *total_mapcount = mapcount;
855 return mapcount;
856}
b20ce5e0 857#endif
70b50f94 858
b49af68f
CL
859static inline struct page *virt_to_head_page(const void *x)
860{
861 struct page *page = virt_to_page(x);
ccaafd7f 862
1d798ca3 863 return compound_head(page);
b49af68f
CL
864}
865
ddc58f27
KS
866void __put_page(struct page *page);
867
1d7ea732 868void put_pages_list(struct list_head *pages);
1da177e4 869
8dfcc9ba 870void split_page(struct page *page, unsigned int order);
715cbfd6 871void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 872
a1554c00
ML
873unsigned long nr_free_buffer_pages(void);
874
33f2ef89
AW
875/*
876 * Compound pages have a destructor function. Provide a
877 * prototype for that function and accessor functions.
f1e61557 878 * These are _only_ valid on the head of a compound page.
33f2ef89 879 */
f1e61557
KS
880typedef void compound_page_dtor(struct page *);
881
882/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
883enum compound_dtor_id {
884 NULL_COMPOUND_DTOR,
885 COMPOUND_PAGE_DTOR,
886#ifdef CONFIG_HUGETLB_PAGE
887 HUGETLB_PAGE_DTOR,
9a982250
KS
888#endif
889#ifdef CONFIG_TRANSPARENT_HUGEPAGE
890 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
891#endif
892 NR_COMPOUND_DTORS,
893};
ae70eddd 894extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
895
896static inline void set_compound_page_dtor(struct page *page,
f1e61557 897 enum compound_dtor_id compound_dtor)
33f2ef89 898{
f1e61557
KS
899 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
900 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
901}
902
ff45fc3c 903static inline void destroy_compound_page(struct page *page)
33f2ef89 904{
f1e61557 905 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 906 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
907}
908
d00181b9 909static inline unsigned int compound_order(struct page *page)
d85f3385 910{
6d777953 911 if (!PageHead(page))
d85f3385 912 return 0;
e4b294c2 913 return page[1].compound_order;
d85f3385
CL
914}
915
7b230db3
MWO
916/**
917 * folio_order - The allocation order of a folio.
918 * @folio: The folio.
919 *
920 * A folio is composed of 2^order pages. See get_order() for the definition
921 * of order.
922 *
923 * Return: The order of the folio.
924 */
925static inline unsigned int folio_order(struct folio *folio)
926{
927 return compound_order(&folio->page);
928}
929
47e29d32
JH
930static inline bool hpage_pincount_available(struct page *page)
931{
932 /*
933 * Can the page->hpage_pinned_refcount field be used? That field is in
934 * the 3rd page of the compound page, so the smallest (2-page) compound
935 * pages cannot support it.
936 */
937 page = compound_head(page);
938 return PageCompound(page) && compound_order(page) > 1;
939}
940
bac3cf4d 941static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
942{
943 return atomic_read(compound_pincount_ptr(head));
944}
945
47e29d32
JH
946static inline int compound_pincount(struct page *page)
947{
948 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
949 page = compound_head(page);
bac3cf4d 950 return head_compound_pincount(page);
47e29d32
JH
951}
952
f1e61557 953static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 954{
e4b294c2 955 page[1].compound_order = order;
1378a5ee 956 page[1].compound_nr = 1U << order;
d85f3385
CL
957}
958
d8c6546b
MWO
959/* Returns the number of pages in this potentially compound page. */
960static inline unsigned long compound_nr(struct page *page)
961{
1378a5ee
MWO
962 if (!PageHead(page))
963 return 1;
964 return page[1].compound_nr;
d8c6546b
MWO
965}
966
a50b854e
MWO
967/* Returns the number of bytes in this potentially compound page. */
968static inline unsigned long page_size(struct page *page)
969{
970 return PAGE_SIZE << compound_order(page);
971}
972
94ad9338
MWO
973/* Returns the number of bits needed for the number of bytes in a page */
974static inline unsigned int page_shift(struct page *page)
975{
976 return PAGE_SHIFT + compound_order(page);
977}
978
9a982250
KS
979void free_compound_page(struct page *page);
980
3dece370 981#ifdef CONFIG_MMU
14fd403f
AA
982/*
983 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
984 * servicing faults for write access. In the normal case, do always want
985 * pte_mkwrite. But get_user_pages can cause write faults for mappings
986 * that do not have writing enabled, when used by access_process_vm.
987 */
988static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
989{
990 if (likely(vma->vm_flags & VM_WRITE))
991 pte = pte_mkwrite(pte);
992 return pte;
993}
8c6e50b0 994
f9ce0be7 995vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 996void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 997
2b740303
SJ
998vm_fault_t finish_fault(struct vm_fault *vmf);
999vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1000#endif
14fd403f 1001
1da177e4
LT
1002/*
1003 * Multiple processes may "see" the same page. E.g. for untouched
1004 * mappings of /dev/null, all processes see the same page full of
1005 * zeroes, and text pages of executables and shared libraries have
1006 * only one copy in memory, at most, normally.
1007 *
1008 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1009 * page_count() == 0 means the page is free. page->lru is then used for
1010 * freelist management in the buddy allocator.
da6052f7 1011 * page_count() > 0 means the page has been allocated.
1da177e4 1012 *
da6052f7
NP
1013 * Pages are allocated by the slab allocator in order to provide memory
1014 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1015 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1016 * unless a particular usage is carefully commented. (the responsibility of
1017 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1018 *
da6052f7
NP
1019 * A page may be used by anyone else who does a __get_free_page().
1020 * In this case, page_count still tracks the references, and should only
1021 * be used through the normal accessor functions. The top bits of page->flags
1022 * and page->virtual store page management information, but all other fields
1023 * are unused and could be used privately, carefully. The management of this
1024 * page is the responsibility of the one who allocated it, and those who have
1025 * subsequently been given references to it.
1026 *
1027 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1028 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1029 * The following discussion applies only to them.
1030 *
da6052f7
NP
1031 * A pagecache page contains an opaque `private' member, which belongs to the
1032 * page's address_space. Usually, this is the address of a circular list of
1033 * the page's disk buffers. PG_private must be set to tell the VM to call
1034 * into the filesystem to release these pages.
1da177e4 1035 *
da6052f7
NP
1036 * A page may belong to an inode's memory mapping. In this case, page->mapping
1037 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1038 * in units of PAGE_SIZE.
1da177e4 1039 *
da6052f7
NP
1040 * If pagecache pages are not associated with an inode, they are said to be
1041 * anonymous pages. These may become associated with the swapcache, and in that
1042 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1043 *
da6052f7
NP
1044 * In either case (swapcache or inode backed), the pagecache itself holds one
1045 * reference to the page. Setting PG_private should also increment the
1046 * refcount. The each user mapping also has a reference to the page.
1da177e4 1047 *
da6052f7 1048 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1049 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1050 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1051 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1052 *
da6052f7 1053 * All pagecache pages may be subject to I/O:
1da177e4
LT
1054 * - inode pages may need to be read from disk,
1055 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1056 * to be written back to the inode on disk,
1057 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1058 * modified may need to be swapped out to swap space and (later) to be read
1059 * back into memory.
1da177e4
LT
1060 */
1061
1062/*
1063 * The zone field is never updated after free_area_init_core()
1064 * sets it, so none of the operations on it need to be atomic.
1da177e4 1065 */
348f8b6c 1066
90572890 1067/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1068#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1069#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1070#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1071#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1072#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1073
348f8b6c 1074/*
25985edc 1075 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1076 * sections we define the shift as 0; that plus a 0 mask ensures
1077 * the compiler will optimise away reference to them.
1078 */
d41dee36
AW
1079#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1080#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1081#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1082#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1083#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1084
bce54bbf
WD
1085/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1086#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1087#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1088#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1089 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1090#else
89689ae7 1091#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1092#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1093 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1094#endif
1095
bd8029b6 1096#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1097
d41dee36
AW
1098#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1099#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1100#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1101#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1102#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1103#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1104
33dd4e0e 1105static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1106{
c403f6a3 1107 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1108 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1109}
1da177e4 1110
32b8fc48
MWO
1111static inline enum zone_type folio_zonenum(const struct folio *folio)
1112{
1113 return page_zonenum(&folio->page);
1114}
1115
260ae3f7
DW
1116#ifdef CONFIG_ZONE_DEVICE
1117static inline bool is_zone_device_page(const struct page *page)
1118{
1119 return page_zonenum(page) == ZONE_DEVICE;
1120}
966cf44f
AD
1121extern void memmap_init_zone_device(struct zone *, unsigned long,
1122 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1123#else
1124static inline bool is_zone_device_page(const struct page *page)
1125{
1126 return false;
1127}
7b2d55d2 1128#endif
5042db43 1129
8e3560d9
PT
1130static inline bool is_zone_movable_page(const struct page *page)
1131{
1132 return page_zonenum(page) == ZONE_MOVABLE;
1133}
1134
e7638488 1135#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1136void free_devmap_managed_page(struct page *page);
e7638488 1137DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1138
1139static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1140{
1141 if (!static_branch_unlikely(&devmap_managed_key))
1142 return false;
1143 if (!is_zone_device_page(page))
1144 return false;
1145 switch (page->pgmap->type) {
1146 case MEMORY_DEVICE_PRIVATE:
e7638488 1147 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1148 return true;
1149 default:
1150 break;
1151 }
1152 return false;
1153}
1154
07d80269
JH
1155void put_devmap_managed_page(struct page *page);
1156
e7638488 1157#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1158static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1159{
1160 return false;
1161}
07d80269
JH
1162
1163static inline void put_devmap_managed_page(struct page *page)
1164{
1165}
7588adf8 1166#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1167
6b368cd4
JG
1168static inline bool is_device_private_page(const struct page *page)
1169{
7588adf8
RM
1170 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1171 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1172 is_zone_device_page(page) &&
1173 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1174}
e7638488 1175
52916982
LG
1176static inline bool is_pci_p2pdma_page(const struct page *page)
1177{
7588adf8
RM
1178 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1179 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1180 is_zone_device_page(page) &&
1181 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1182}
7b2d55d2 1183
f958d7b5 1184/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1185#define folio_ref_zero_or_close_to_overflow(folio) \
1186 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1187
1188/**
1189 * folio_get - Increment the reference count on a folio.
1190 * @folio: The folio.
1191 *
1192 * Context: May be called in any context, as long as you know that
1193 * you have a refcount on the folio. If you do not already have one,
1194 * folio_try_get() may be the right interface for you to use.
1195 */
1196static inline void folio_get(struct folio *folio)
1197{
1198 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1199 folio_ref_inc(folio);
1200}
f958d7b5 1201
3565fce3
DW
1202static inline void get_page(struct page *page)
1203{
86d234cb 1204 folio_get(page_folio(page));
3565fce3
DW
1205}
1206
3faa52c0 1207bool __must_check try_grab_page(struct page *page, unsigned int flags);
54d516b1
JH
1208struct page *try_grab_compound_head(struct page *page, int refs,
1209 unsigned int flags);
0fa5bc40 1210
cd1adf1b
LT
1211
1212static inline __must_check bool try_get_page(struct page *page)
1213{
1214 page = compound_head(page);
1215 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1216 return false;
1217 page_ref_inc(page);
1218 return true;
1219}
3565fce3 1220
b620f633
MWO
1221/**
1222 * folio_put - Decrement the reference count on a folio.
1223 * @folio: The folio.
1224 *
1225 * If the folio's reference count reaches zero, the memory will be
1226 * released back to the page allocator and may be used by another
1227 * allocation immediately. Do not access the memory or the struct folio
1228 * after calling folio_put() unless you can be sure that it wasn't the
1229 * last reference.
1230 *
1231 * Context: May be called in process or interrupt context, but not in NMI
1232 * context. May be called while holding a spinlock.
1233 */
1234static inline void folio_put(struct folio *folio)
1235{
1236 if (folio_put_testzero(folio))
1237 __put_page(&folio->page);
1238}
1239
3565fce3
DW
1240static inline void put_page(struct page *page)
1241{
b620f633 1242 struct folio *folio = page_folio(page);
3565fce3 1243
7b2d55d2 1244 /*
e7638488
DW
1245 * For devmap managed pages we need to catch refcount transition from
1246 * 2 to 1, when refcount reach one it means the page is free and we
1247 * need to inform the device driver through callback. See
7b2d55d2
JG
1248 * include/linux/memremap.h and HMM for details.
1249 */
b620f633
MWO
1250 if (page_is_devmap_managed(&folio->page)) {
1251 put_devmap_managed_page(&folio->page);
7b2d55d2 1252 return;
07d80269 1253 }
7b2d55d2 1254
b620f633 1255 folio_put(folio);
3565fce3
DW
1256}
1257
3faa52c0
JH
1258/*
1259 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1260 * the page's refcount so that two separate items are tracked: the original page
1261 * reference count, and also a new count of how many pin_user_pages() calls were
1262 * made against the page. ("gup-pinned" is another term for the latter).
1263 *
1264 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1265 * distinct from normal pages. As such, the unpin_user_page() call (and its
1266 * variants) must be used in order to release gup-pinned pages.
1267 *
1268 * Choice of value:
1269 *
1270 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1271 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1272 * simpler, due to the fact that adding an even power of two to the page
1273 * refcount has the effect of using only the upper N bits, for the code that
1274 * counts up using the bias value. This means that the lower bits are left for
1275 * the exclusive use of the original code that increments and decrements by one
1276 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1277 *
3faa52c0
JH
1278 * Of course, once the lower bits overflow into the upper bits (and this is
1279 * OK, because subtraction recovers the original values), then visual inspection
1280 * no longer suffices to directly view the separate counts. However, for normal
1281 * applications that don't have huge page reference counts, this won't be an
1282 * issue.
fc1d8e7c 1283 *
3faa52c0
JH
1284 * Locking: the lockless algorithm described in page_cache_get_speculative()
1285 * and page_cache_gup_pin_speculative() provides safe operation for
1286 * get_user_pages and page_mkclean and other calls that race to set up page
1287 * table entries.
fc1d8e7c 1288 */
3faa52c0 1289#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1290
3faa52c0 1291void unpin_user_page(struct page *page);
f1f6a7dd
JH
1292void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1293 bool make_dirty);
458a4f78
JM
1294void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1295 bool make_dirty);
f1f6a7dd 1296void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1297
3faa52c0 1298/**
136dfc99
MWO
1299 * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1300 * @page: The page.
3faa52c0
JH
1301 *
1302 * This function checks if a page has been pinned via a call to
136dfc99 1303 * a function in the pin_user_pages() family.
3faa52c0
JH
1304 *
1305 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1306 * because it means "definitely not pinned for DMA", but true means "probably
1307 * pinned for DMA, but possibly a false positive due to having at least
1308 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1309 *
1310 * False positives are OK, because: a) it's unlikely for a page to get that many
1311 * refcounts, and b) all the callers of this routine are expected to be able to
1312 * deal gracefully with a false positive.
1313 *
47e29d32
JH
1314 * For huge pages, the result will be exactly correct. That's because we have
1315 * more tracking data available: the 3rd struct page in the compound page is
1316 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1317 * scheme).
1318 *
72ef5e52 1319 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0 1320 *
136dfc99
MWO
1321 * Return: True, if it is likely that the page has been "dma-pinned".
1322 * False, if the page is definitely not dma-pinned.
3faa52c0
JH
1323 */
1324static inline bool page_maybe_dma_pinned(struct page *page)
1325{
47e29d32
JH
1326 if (hpage_pincount_available(page))
1327 return compound_pincount(page) > 0;
1328
3faa52c0
JH
1329 /*
1330 * page_ref_count() is signed. If that refcount overflows, then
1331 * page_ref_count() returns a negative value, and callers will avoid
1332 * further incrementing the refcount.
1333 *
1334 * Here, for that overflow case, use the signed bit to count a little
1335 * bit higher via unsigned math, and thus still get an accurate result.
1336 */
1337 return ((unsigned int)page_ref_count(compound_head(page))) >=
1338 GUP_PIN_COUNTING_BIAS;
1339}
1340
97a7e473
PX
1341static inline bool is_cow_mapping(vm_flags_t flags)
1342{
1343 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1344}
1345
1346/*
1347 * This should most likely only be called during fork() to see whether we
1348 * should break the cow immediately for a page on the src mm.
1349 */
1350static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1351 struct page *page)
1352{
1353 if (!is_cow_mapping(vma->vm_flags))
1354 return false;
1355
a458b76a 1356 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
97a7e473
PX
1357 return false;
1358
1359 return page_maybe_dma_pinned(page);
1360}
1361
9127ab4f
CS
1362#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1363#define SECTION_IN_PAGE_FLAGS
1364#endif
1365
89689ae7 1366/*
7a8010cd
VB
1367 * The identification function is mainly used by the buddy allocator for
1368 * determining if two pages could be buddies. We are not really identifying
1369 * the zone since we could be using the section number id if we do not have
1370 * node id available in page flags.
1371 * We only guarantee that it will return the same value for two combinable
1372 * pages in a zone.
89689ae7 1373 */
cb2b95e1
AW
1374static inline int page_zone_id(struct page *page)
1375{
89689ae7 1376 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1377}
1378
89689ae7 1379#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1380extern int page_to_nid(const struct page *page);
89689ae7 1381#else
33dd4e0e 1382static inline int page_to_nid(const struct page *page)
d41dee36 1383{
f165b378
PT
1384 struct page *p = (struct page *)page;
1385
1386 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1387}
89689ae7
CL
1388#endif
1389
874fd90c
MWO
1390static inline int folio_nid(const struct folio *folio)
1391{
1392 return page_to_nid(&folio->page);
1393}
1394
57e0a030 1395#ifdef CONFIG_NUMA_BALANCING
90572890 1396static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1397{
90572890 1398 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1399}
1400
90572890 1401static inline int cpupid_to_pid(int cpupid)
57e0a030 1402{
90572890 1403 return cpupid & LAST__PID_MASK;
57e0a030 1404}
b795854b 1405
90572890 1406static inline int cpupid_to_cpu(int cpupid)
b795854b 1407{
90572890 1408 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1409}
1410
90572890 1411static inline int cpupid_to_nid(int cpupid)
b795854b 1412{
90572890 1413 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1414}
1415
90572890 1416static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1417{
90572890 1418 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1419}
1420
90572890 1421static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1422{
90572890 1423 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1424}
1425
8c8a743c
PZ
1426static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1427{
1428 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1429}
1430
1431#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1432#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1433static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1434{
1ae71d03 1435 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1436}
90572890
PZ
1437
1438static inline int page_cpupid_last(struct page *page)
1439{
1440 return page->_last_cpupid;
1441}
1442static inline void page_cpupid_reset_last(struct page *page)
b795854b 1443{
1ae71d03 1444 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1445}
1446#else
90572890 1447static inline int page_cpupid_last(struct page *page)
75980e97 1448{
90572890 1449 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1450}
1451
90572890 1452extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1453
90572890 1454static inline void page_cpupid_reset_last(struct page *page)
75980e97 1455{
09940a4f 1456 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1457}
90572890
PZ
1458#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1459#else /* !CONFIG_NUMA_BALANCING */
1460static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1461{
90572890 1462 return page_to_nid(page); /* XXX */
57e0a030
MG
1463}
1464
90572890 1465static inline int page_cpupid_last(struct page *page)
57e0a030 1466{
90572890 1467 return page_to_nid(page); /* XXX */
57e0a030
MG
1468}
1469
90572890 1470static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1471{
1472 return -1;
1473}
1474
90572890 1475static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1476{
1477 return -1;
1478}
1479
90572890 1480static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1481{
1482 return -1;
1483}
1484
90572890
PZ
1485static inline int cpu_pid_to_cpupid(int nid, int pid)
1486{
1487 return -1;
1488}
1489
1490static inline bool cpupid_pid_unset(int cpupid)
b795854b 1491{
2b787449 1492 return true;
b795854b
MG
1493}
1494
90572890 1495static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1496{
1497}
8c8a743c
PZ
1498
1499static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1500{
1501 return false;
1502}
90572890 1503#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1504
2e903b91 1505#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1506
cf10bd4c
AK
1507/*
1508 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1509 * setting tags for all pages to native kernel tag value 0xff, as the default
1510 * value 0x00 maps to 0xff.
1511 */
1512
2813b9c0
AK
1513static inline u8 page_kasan_tag(const struct page *page)
1514{
cf10bd4c
AK
1515 u8 tag = 0xff;
1516
1517 if (kasan_enabled()) {
1518 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1519 tag ^= 0xff;
1520 }
1521
1522 return tag;
2813b9c0
AK
1523}
1524
1525static inline void page_kasan_tag_set(struct page *page, u8 tag)
1526{
34303244 1527 if (kasan_enabled()) {
cf10bd4c 1528 tag ^= 0xff;
34303244
AK
1529 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1530 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1531 }
2813b9c0
AK
1532}
1533
1534static inline void page_kasan_tag_reset(struct page *page)
1535{
34303244
AK
1536 if (kasan_enabled())
1537 page_kasan_tag_set(page, 0xff);
2813b9c0 1538}
34303244
AK
1539
1540#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1541
2813b9c0
AK
1542static inline u8 page_kasan_tag(const struct page *page)
1543{
1544 return 0xff;
1545}
1546
1547static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1548static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1549
1550#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1551
33dd4e0e 1552static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1553{
1554 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1555}
1556
75ef7184
MG
1557static inline pg_data_t *page_pgdat(const struct page *page)
1558{
1559 return NODE_DATA(page_to_nid(page));
1560}
1561
32b8fc48
MWO
1562static inline struct zone *folio_zone(const struct folio *folio)
1563{
1564 return page_zone(&folio->page);
1565}
1566
1567static inline pg_data_t *folio_pgdat(const struct folio *folio)
1568{
1569 return page_pgdat(&folio->page);
1570}
1571
9127ab4f 1572#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1573static inline void set_page_section(struct page *page, unsigned long section)
1574{
1575 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1576 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1577}
1578
aa462abe 1579static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1580{
1581 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1582}
308c05e3 1583#endif
d41dee36 1584
bf6bd276
MWO
1585/**
1586 * folio_pfn - Return the Page Frame Number of a folio.
1587 * @folio: The folio.
1588 *
1589 * A folio may contain multiple pages. The pages have consecutive
1590 * Page Frame Numbers.
1591 *
1592 * Return: The Page Frame Number of the first page in the folio.
1593 */
1594static inline unsigned long folio_pfn(struct folio *folio)
1595{
1596 return page_to_pfn(&folio->page);
1597}
1598
8e3560d9
PT
1599/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1600#ifdef CONFIG_MIGRATION
1601static inline bool is_pinnable_page(struct page *page)
1602{
9afaf30f
PT
1603 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1604 is_zero_pfn(page_to_pfn(page));
8e3560d9
PT
1605}
1606#else
1607static inline bool is_pinnable_page(struct page *page)
1608{
1609 return true;
1610}
1611#endif
1612
2f1b6248 1613static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1614{
1615 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1616 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1617}
2f1b6248 1618
348f8b6c
DH
1619static inline void set_page_node(struct page *page, unsigned long node)
1620{
1621 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1622 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1623}
89689ae7 1624
2f1b6248 1625static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1626 unsigned long node, unsigned long pfn)
1da177e4 1627{
348f8b6c
DH
1628 set_page_zone(page, zone);
1629 set_page_node(page, node);
9127ab4f 1630#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1631 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1632#endif
1da177e4
LT
1633}
1634
7b230db3
MWO
1635/**
1636 * folio_nr_pages - The number of pages in the folio.
1637 * @folio: The folio.
1638 *
1639 * Return: A positive power of two.
1640 */
1641static inline long folio_nr_pages(struct folio *folio)
1642{
1643 return compound_nr(&folio->page);
1644}
1645
1646/**
1647 * folio_next - Move to the next physical folio.
1648 * @folio: The folio we're currently operating on.
1649 *
1650 * If you have physically contiguous memory which may span more than
1651 * one folio (eg a &struct bio_vec), use this function to move from one
1652 * folio to the next. Do not use it if the memory is only virtually
1653 * contiguous as the folios are almost certainly not adjacent to each
1654 * other. This is the folio equivalent to writing ``page++``.
1655 *
1656 * Context: We assume that the folios are refcounted and/or locked at a
1657 * higher level and do not adjust the reference counts.
1658 * Return: The next struct folio.
1659 */
1660static inline struct folio *folio_next(struct folio *folio)
1661{
1662 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1663}
1664
1665/**
1666 * folio_shift - The size of the memory described by this folio.
1667 * @folio: The folio.
1668 *
1669 * A folio represents a number of bytes which is a power-of-two in size.
1670 * This function tells you which power-of-two the folio is. See also
1671 * folio_size() and folio_order().
1672 *
1673 * Context: The caller should have a reference on the folio to prevent
1674 * it from being split. It is not necessary for the folio to be locked.
1675 * Return: The base-2 logarithm of the size of this folio.
1676 */
1677static inline unsigned int folio_shift(struct folio *folio)
1678{
1679 return PAGE_SHIFT + folio_order(folio);
1680}
1681
1682/**
1683 * folio_size - The number of bytes in a folio.
1684 * @folio: The folio.
1685 *
1686 * Context: The caller should have a reference on the folio to prevent
1687 * it from being split. It is not necessary for the folio to be locked.
1688 * Return: The number of bytes in this folio.
1689 */
1690static inline size_t folio_size(struct folio *folio)
1691{
1692 return PAGE_SIZE << folio_order(folio);
1693}
1694
b424de33
MWO
1695#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1696static inline int arch_make_page_accessible(struct page *page)
1697{
1698 return 0;
1699}
1700#endif
1701
1702#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1703static inline int arch_make_folio_accessible(struct folio *folio)
1704{
1705 int ret;
1706 long i, nr = folio_nr_pages(folio);
1707
1708 for (i = 0; i < nr; i++) {
1709 ret = arch_make_page_accessible(folio_page(folio, i));
1710 if (ret)
1711 break;
1712 }
1713
1714 return ret;
1715}
1716#endif
1717
f6ac2354
CL
1718/*
1719 * Some inline functions in vmstat.h depend on page_zone()
1720 */
1721#include <linux/vmstat.h>
1722
33dd4e0e 1723static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1724{
1dff8083 1725 return page_to_virt(page);
1da177e4
LT
1726}
1727
1728#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1729#define HASHED_PAGE_VIRTUAL
1730#endif
1731
1732#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1733static inline void *page_address(const struct page *page)
1734{
1735 return page->virtual;
1736}
1737static inline void set_page_address(struct page *page, void *address)
1738{
1739 page->virtual = address;
1740}
1da177e4
LT
1741#define page_address_init() do { } while(0)
1742#endif
1743
1744#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1745void *page_address(const struct page *page);
1da177e4
LT
1746void set_page_address(struct page *page, void *virtual);
1747void page_address_init(void);
1748#endif
1749
1750#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1751#define page_address(page) lowmem_page_address(page)
1752#define set_page_address(page, address) do { } while(0)
1753#define page_address_init() do { } while(0)
1754#endif
1755
e39155ea
KS
1756extern void *page_rmapping(struct page *page);
1757extern struct anon_vma *page_anon_vma(struct page *page);
f6ab1f7f
HY
1758extern pgoff_t __page_file_index(struct page *page);
1759
1da177e4
LT
1760/*
1761 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1762 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1763 */
1764static inline pgoff_t page_index(struct page *page)
1765{
1766 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1767 return __page_file_index(page);
1da177e4
LT
1768 return page->index;
1769}
1770
1aa8aea5 1771bool page_mapped(struct page *page);
dd10ab04 1772bool folio_mapped(struct folio *folio);
1da177e4 1773
2f064f34
MH
1774/*
1775 * Return true only if the page has been allocated with
1776 * ALLOC_NO_WATERMARKS and the low watermark was not
1777 * met implying that the system is under some pressure.
1778 */
1d7bab6a 1779static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1780{
1781 /*
c07aea3e
MC
1782 * lru.next has bit 1 set if the page is allocated from the
1783 * pfmemalloc reserves. Callers may simply overwrite it if
1784 * they do not need to preserve that information.
2f064f34 1785 */
c07aea3e 1786 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
1787}
1788
1789/*
1790 * Only to be called by the page allocator on a freshly allocated
1791 * page.
1792 */
1793static inline void set_page_pfmemalloc(struct page *page)
1794{
c07aea3e 1795 page->lru.next = (void *)BIT(1);
2f064f34
MH
1796}
1797
1798static inline void clear_page_pfmemalloc(struct page *page)
1799{
c07aea3e 1800 page->lru.next = NULL;
2f064f34
MH
1801}
1802
1c0fe6e3
NP
1803/*
1804 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1805 */
1806extern void pagefault_out_of_memory(void);
1807
1da177e4 1808#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1809#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 1810#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 1811
ddd588b5 1812/*
7bf02ea2 1813 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1814 * various contexts.
1815 */
4b59e6c4 1816#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1817
9af744d7 1818extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1819
710ec38b 1820#ifdef CONFIG_MMU
7f43add4 1821extern bool can_do_mlock(void);
710ec38b
AB
1822#else
1823static inline bool can_do_mlock(void) { return false; }
1824#endif
d7c9e99a
AG
1825extern int user_shm_lock(size_t, struct ucounts *);
1826extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4
LT
1827
1828/*
1829 * Parameter block passed down to zap_pte_range in exceptional cases.
1830 */
1831struct zap_details {
91b61ef3 1832 struct address_space *zap_mapping; /* Check page->mapping if set */
22061a1f 1833 struct page *single_page; /* Locked page to be unmapped */
1da177e4
LT
1834};
1835
91b61ef3
PX
1836/*
1837 * We set details->zap_mappings when we want to unmap shared but keep private
1838 * pages. Return true if skip zapping this page, false otherwise.
1839 */
1840static inline bool
1841zap_skip_check_mapping(struct zap_details *details, struct page *page)
1842{
1843 if (!details || !page)
1844 return false;
1845
1846 return details->zap_mapping &&
1847 (details->zap_mapping != page_rmapping(page));
1848}
1849
25b2995a
CH
1850struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1851 pte_t pte);
28093f9f
GS
1852struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1853 pmd_t pmd);
7e675137 1854
27d036e3
LR
1855void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1856 unsigned long size);
14f5ff5d 1857void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1858 unsigned long size);
4f74d2c8
LT
1859void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1860 unsigned long start, unsigned long end);
e6473092 1861
ac46d4f3
JG
1862struct mmu_notifier_range;
1863
42b77728 1864void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1865 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1866int
1867copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
9fd6dad1
PB
1868int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1869 struct mmu_notifier_range *range, pte_t **ptepp,
1870 pmd_t **pmdpp, spinlock_t **ptlp);
ff5c19ed 1871int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 1872 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
1873int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1874 unsigned long *pfn);
d87fe660 1875int follow_phys(struct vm_area_struct *vma, unsigned long address,
1876 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1877int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1878 void *buf, int len, int write);
1da177e4 1879
7caef267 1880extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1881extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1882void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1883void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1884int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1885int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1886int invalidate_inode_page(struct page *page);
1887
7ee1dd3f 1888#ifdef CONFIG_MMU
2b740303 1889extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1890 unsigned long address, unsigned int flags,
1891 struct pt_regs *regs);
64019a2e 1892extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1893 unsigned long address, unsigned int fault_flags,
1894 bool *unlocked);
22061a1f 1895void unmap_mapping_page(struct page *page);
977fbdcd
MW
1896void unmap_mapping_pages(struct address_space *mapping,
1897 pgoff_t start, pgoff_t nr, bool even_cows);
1898void unmap_mapping_range(struct address_space *mapping,
1899 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1900#else
2b740303 1901static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1902 unsigned long address, unsigned int flags,
1903 struct pt_regs *regs)
7ee1dd3f
DH
1904{
1905 /* should never happen if there's no MMU */
1906 BUG();
1907 return VM_FAULT_SIGBUS;
1908}
64019a2e 1909static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1910 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1911{
1912 /* should never happen if there's no MMU */
1913 BUG();
1914 return -EFAULT;
1915}
22061a1f 1916static inline void unmap_mapping_page(struct page *page) { }
977fbdcd
MW
1917static inline void unmap_mapping_pages(struct address_space *mapping,
1918 pgoff_t start, pgoff_t nr, bool even_cows) { }
1919static inline void unmap_mapping_range(struct address_space *mapping,
1920 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1921#endif
f33ea7f4 1922
977fbdcd
MW
1923static inline void unmap_shared_mapping_range(struct address_space *mapping,
1924 loff_t const holebegin, loff_t const holelen)
1925{
1926 unmap_mapping_range(mapping, holebegin, holelen, 0);
1927}
1928
1929extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1930 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1931extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1932 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1933extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1934 void *buf, int len, unsigned int gup_flags);
1da177e4 1935
64019a2e 1936long get_user_pages_remote(struct mm_struct *mm,
1e987790 1937 unsigned long start, unsigned long nr_pages,
9beae1ea 1938 unsigned int gup_flags, struct page **pages,
5b56d49f 1939 struct vm_area_struct **vmas, int *locked);
64019a2e 1940long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1941 unsigned long start, unsigned long nr_pages,
1942 unsigned int gup_flags, struct page **pages,
1943 struct vm_area_struct **vmas, int *locked);
c12d2da5 1944long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1945 unsigned int gup_flags, struct page **pages,
cde70140 1946 struct vm_area_struct **vmas);
eddb1c22
JH
1947long pin_user_pages(unsigned long start, unsigned long nr_pages,
1948 unsigned int gup_flags, struct page **pages,
1949 struct vm_area_struct **vmas);
c12d2da5 1950long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1951 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1952long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1953 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1954long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1955 struct page **pages, unsigned int gup_flags);
91429023
JH
1956long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1957 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1958
73b0140b
IW
1959int get_user_pages_fast(unsigned long start, int nr_pages,
1960 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1961int pin_user_pages_fast(unsigned long start, int nr_pages,
1962 unsigned int gup_flags, struct page **pages);
8025e5dd 1963
79eb597c
DJ
1964int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1965int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1966 struct task_struct *task, bool bypass_rlim);
1967
18022c5d
MG
1968struct kvec;
1969int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1970 struct page **pages);
f3e8fccd 1971struct page *get_dump_page(unsigned long addr);
1da177e4 1972
cf9a2ae8 1973extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1974extern void do_invalidatepage(struct page *page, unsigned int offset,
1975 unsigned int length);
cf9a2ae8 1976
b5e84594
MWO
1977bool folio_mark_dirty(struct folio *folio);
1978bool set_page_dirty(struct page *page);
1da177e4 1979int set_page_dirty_lock(struct page *page);
b9ea2515 1980
a9090253 1981int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1982
b6a2fea3
OW
1983extern unsigned long move_page_tables(struct vm_area_struct *vma,
1984 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1985 unsigned long new_addr, unsigned long len,
1986 bool need_rmap_locks);
58705444
PX
1987
1988/*
1989 * Flags used by change_protection(). For now we make it a bitmap so
1990 * that we can pass in multiple flags just like parameters. However
1991 * for now all the callers are only use one of the flags at the same
1992 * time.
1993 */
1994/* Whether we should allow dirty bit accounting */
1995#define MM_CP_DIRTY_ACCT (1UL << 0)
1996/* Whether this protection change is for NUMA hints */
1997#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1998/* Whether this change is for write protecting */
1999#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2000#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2001#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2002 MM_CP_UFFD_WP_RESOLVE)
58705444 2003
7da4d641
PZ
2004extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
2005 unsigned long end, pgprot_t newprot,
58705444 2006 unsigned long cp_flags);
b6a2fea3
OW
2007extern int mprotect_fixup(struct vm_area_struct *vma,
2008 struct vm_area_struct **pprev, unsigned long start,
2009 unsigned long end, unsigned long newflags);
1da177e4 2010
465a454f
PZ
2011/*
2012 * doesn't attempt to fault and will return short.
2013 */
dadbb612
SJ
2014int get_user_pages_fast_only(unsigned long start, int nr_pages,
2015 unsigned int gup_flags, struct page **pages);
104acc32
JH
2016int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2017 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2018
2019static inline bool get_user_page_fast_only(unsigned long addr,
2020 unsigned int gup_flags, struct page **pagep)
2021{
2022 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2023}
d559db08
KH
2024/*
2025 * per-process(per-mm_struct) statistics.
2026 */
d559db08
KH
2027static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2028{
69c97823
KK
2029 long val = atomic_long_read(&mm->rss_stat.count[member]);
2030
2031#ifdef SPLIT_RSS_COUNTING
2032 /*
2033 * counter is updated in asynchronous manner and may go to minus.
2034 * But it's never be expected number for users.
2035 */
2036 if (val < 0)
2037 val = 0;
172703b0 2038#endif
69c97823
KK
2039 return (unsigned long)val;
2040}
d559db08 2041
e4dcad20 2042void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 2043
d559db08
KH
2044static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2045{
b3d1411b
JFG
2046 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
2047
e4dcad20 2048 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2049}
2050
2051static inline void inc_mm_counter(struct mm_struct *mm, int member)
2052{
b3d1411b
JFG
2053 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
2054
e4dcad20 2055 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2056}
2057
2058static inline void dec_mm_counter(struct mm_struct *mm, int member)
2059{
b3d1411b
JFG
2060 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2061
e4dcad20 2062 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2063}
2064
eca56ff9
JM
2065/* Optimized variant when page is already known not to be PageAnon */
2066static inline int mm_counter_file(struct page *page)
2067{
2068 if (PageSwapBacked(page))
2069 return MM_SHMEMPAGES;
2070 return MM_FILEPAGES;
2071}
2072
2073static inline int mm_counter(struct page *page)
2074{
2075 if (PageAnon(page))
2076 return MM_ANONPAGES;
2077 return mm_counter_file(page);
2078}
2079
d559db08
KH
2080static inline unsigned long get_mm_rss(struct mm_struct *mm)
2081{
2082 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2083 get_mm_counter(mm, MM_ANONPAGES) +
2084 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2085}
2086
2087static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2088{
2089 return max(mm->hiwater_rss, get_mm_rss(mm));
2090}
2091
2092static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2093{
2094 return max(mm->hiwater_vm, mm->total_vm);
2095}
2096
2097static inline void update_hiwater_rss(struct mm_struct *mm)
2098{
2099 unsigned long _rss = get_mm_rss(mm);
2100
2101 if ((mm)->hiwater_rss < _rss)
2102 (mm)->hiwater_rss = _rss;
2103}
2104
2105static inline void update_hiwater_vm(struct mm_struct *mm)
2106{
2107 if (mm->hiwater_vm < mm->total_vm)
2108 mm->hiwater_vm = mm->total_vm;
2109}
2110
695f0559
PC
2111static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2112{
2113 mm->hiwater_rss = get_mm_rss(mm);
2114}
2115
d559db08
KH
2116static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2117 struct mm_struct *mm)
2118{
2119 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2120
2121 if (*maxrss < hiwater_rss)
2122 *maxrss = hiwater_rss;
2123}
2124
53bddb4e 2125#if defined(SPLIT_RSS_COUNTING)
05af2e10 2126void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2127#else
05af2e10 2128static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2129{
2130}
2131#endif
465a454f 2132
78e7c5af
AK
2133#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2134static inline int pte_special(pte_t pte)
2135{
2136 return 0;
2137}
2138
2139static inline pte_t pte_mkspecial(pte_t pte)
2140{
2141 return pte;
2142}
2143#endif
2144
17596731 2145#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2146static inline int pte_devmap(pte_t pte)
2147{
2148 return 0;
2149}
2150#endif
2151
6d2329f8 2152int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 2153
25ca1d6c
NK
2154extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2155 spinlock_t **ptl);
2156static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2157 spinlock_t **ptl)
2158{
2159 pte_t *ptep;
2160 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2161 return ptep;
2162}
c9cfcddf 2163
c2febafc
KS
2164#ifdef __PAGETABLE_P4D_FOLDED
2165static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2166 unsigned long address)
2167{
2168 return 0;
2169}
2170#else
2171int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2172#endif
2173
b4e98d9a 2174#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2175static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2176 unsigned long address)
2177{
2178 return 0;
2179}
b4e98d9a
KS
2180static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2181static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2182
5f22df00 2183#else
c2febafc 2184int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2185
b4e98d9a
KS
2186static inline void mm_inc_nr_puds(struct mm_struct *mm)
2187{
6d212db1
MS
2188 if (mm_pud_folded(mm))
2189 return;
af5b0f6a 2190 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2191}
2192
2193static inline void mm_dec_nr_puds(struct mm_struct *mm)
2194{
6d212db1
MS
2195 if (mm_pud_folded(mm))
2196 return;
af5b0f6a 2197 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2198}
5f22df00
NP
2199#endif
2200
2d2f5119 2201#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2202static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2203 unsigned long address)
2204{
2205 return 0;
2206}
dc6c9a35 2207
dc6c9a35
KS
2208static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2209static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2210
5f22df00 2211#else
1bb3630e 2212int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2213
dc6c9a35
KS
2214static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2215{
6d212db1
MS
2216 if (mm_pmd_folded(mm))
2217 return;
af5b0f6a 2218 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2219}
2220
2221static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2222{
6d212db1
MS
2223 if (mm_pmd_folded(mm))
2224 return;
af5b0f6a 2225 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2226}
5f22df00
NP
2227#endif
2228
c4812909 2229#ifdef CONFIG_MMU
af5b0f6a 2230static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2231{
af5b0f6a 2232 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2233}
2234
af5b0f6a 2235static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2236{
af5b0f6a 2237 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2238}
2239
2240static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2241{
af5b0f6a 2242 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2243}
2244
2245static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2246{
af5b0f6a 2247 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2248}
2249#else
c4812909 2250
af5b0f6a
KS
2251static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2252static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2253{
2254 return 0;
2255}
2256
2257static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2258static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2259#endif
2260
4cf58924
JFG
2261int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2262int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2263
f949286c
MR
2264#if defined(CONFIG_MMU)
2265
c2febafc
KS
2266static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2267 unsigned long address)
2268{
2269 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2270 NULL : p4d_offset(pgd, address);
2271}
2272
2273static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2274 unsigned long address)
1da177e4 2275{
c2febafc
KS
2276 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2277 NULL : pud_offset(p4d, address);
1da177e4 2278}
d8626138 2279
1da177e4
LT
2280static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2281{
1bb3630e
HD
2282 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2283 NULL: pmd_offset(pud, address);
1da177e4 2284}
f949286c 2285#endif /* CONFIG_MMU */
1bb3630e 2286
57c1ffce 2287#if USE_SPLIT_PTE_PTLOCKS
597d795a 2288#if ALLOC_SPLIT_PTLOCKS
b35f1819 2289void __init ptlock_cache_init(void);
539edb58
PZ
2290extern bool ptlock_alloc(struct page *page);
2291extern void ptlock_free(struct page *page);
2292
2293static inline spinlock_t *ptlock_ptr(struct page *page)
2294{
2295 return page->ptl;
2296}
597d795a 2297#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2298static inline void ptlock_cache_init(void)
2299{
2300}
2301
49076ec2
KS
2302static inline bool ptlock_alloc(struct page *page)
2303{
49076ec2
KS
2304 return true;
2305}
539edb58 2306
49076ec2
KS
2307static inline void ptlock_free(struct page *page)
2308{
49076ec2
KS
2309}
2310
2311static inline spinlock_t *ptlock_ptr(struct page *page)
2312{
539edb58 2313 return &page->ptl;
49076ec2 2314}
597d795a 2315#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2316
2317static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2318{
2319 return ptlock_ptr(pmd_page(*pmd));
2320}
2321
2322static inline bool ptlock_init(struct page *page)
2323{
2324 /*
2325 * prep_new_page() initialize page->private (and therefore page->ptl)
2326 * with 0. Make sure nobody took it in use in between.
2327 *
2328 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2329 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2330 */
309381fe 2331 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2332 if (!ptlock_alloc(page))
2333 return false;
2334 spin_lock_init(ptlock_ptr(page));
2335 return true;
2336}
2337
57c1ffce 2338#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2339/*
2340 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2341 */
49076ec2
KS
2342static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2343{
2344 return &mm->page_table_lock;
2345}
b35f1819 2346static inline void ptlock_cache_init(void) {}
49076ec2 2347static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2348static inline void ptlock_free(struct page *page) {}
57c1ffce 2349#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2350
b35f1819
KS
2351static inline void pgtable_init(void)
2352{
2353 ptlock_cache_init();
2354 pgtable_cache_init();
2355}
2356
b4ed71f5 2357static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2358{
706874e9
VD
2359 if (!ptlock_init(page))
2360 return false;
1d40a5ea 2361 __SetPageTable(page);
f0c0c115 2362 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2363 return true;
2f569afd
MS
2364}
2365
b4ed71f5 2366static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2367{
9e247bab 2368 ptlock_free(page);
1d40a5ea 2369 __ClearPageTable(page);
f0c0c115 2370 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2371}
2372
c74df32c
HD
2373#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2374({ \
4c21e2f2 2375 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2376 pte_t *__pte = pte_offset_map(pmd, address); \
2377 *(ptlp) = __ptl; \
2378 spin_lock(__ptl); \
2379 __pte; \
2380})
2381
2382#define pte_unmap_unlock(pte, ptl) do { \
2383 spin_unlock(ptl); \
2384 pte_unmap(pte); \
2385} while (0)
2386
4cf58924 2387#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2388
2389#define pte_alloc_map(mm, pmd, address) \
4cf58924 2390 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2391
c74df32c 2392#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2393 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2394 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2395
1bb3630e 2396#define pte_alloc_kernel(pmd, address) \
4cf58924 2397 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2398 NULL: pte_offset_kernel(pmd, address))
1da177e4 2399
e009bb30
KS
2400#if USE_SPLIT_PMD_PTLOCKS
2401
634391ac
MS
2402static struct page *pmd_to_page(pmd_t *pmd)
2403{
2404 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2405 return virt_to_page((void *)((unsigned long) pmd & mask));
2406}
2407
e009bb30
KS
2408static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2409{
634391ac 2410 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2411}
2412
b2b29d6d 2413static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2414{
e009bb30
KS
2415#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2416 page->pmd_huge_pte = NULL;
2417#endif
49076ec2 2418 return ptlock_init(page);
e009bb30
KS
2419}
2420
b2b29d6d 2421static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2422{
2423#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2424 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2425#endif
49076ec2 2426 ptlock_free(page);
e009bb30
KS
2427}
2428
634391ac 2429#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2430
2431#else
2432
9a86cb7b
KS
2433static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2434{
2435 return &mm->page_table_lock;
2436}
2437
b2b29d6d
MW
2438static inline bool pmd_ptlock_init(struct page *page) { return true; }
2439static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2440
c389a250 2441#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2442
e009bb30
KS
2443#endif
2444
9a86cb7b
KS
2445static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2446{
2447 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2448 spin_lock(ptl);
2449 return ptl;
2450}
2451
b2b29d6d
MW
2452static inline bool pgtable_pmd_page_ctor(struct page *page)
2453{
2454 if (!pmd_ptlock_init(page))
2455 return false;
2456 __SetPageTable(page);
f0c0c115 2457 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2458 return true;
2459}
2460
2461static inline void pgtable_pmd_page_dtor(struct page *page)
2462{
2463 pmd_ptlock_free(page);
2464 __ClearPageTable(page);
f0c0c115 2465 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2466}
2467
a00cc7d9
MW
2468/*
2469 * No scalability reason to split PUD locks yet, but follow the same pattern
2470 * as the PMD locks to make it easier if we decide to. The VM should not be
2471 * considered ready to switch to split PUD locks yet; there may be places
2472 * which need to be converted from page_table_lock.
2473 */
2474static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2475{
2476 return &mm->page_table_lock;
2477}
2478
2479static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2480{
2481 spinlock_t *ptl = pud_lockptr(mm, pud);
2482
2483 spin_lock(ptl);
2484 return ptl;
2485}
62906027 2486
a00cc7d9 2487extern void __init pagecache_init(void);
bc9331a1 2488extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2489extern void free_initmem(void);
2490
69afade7
JL
2491/*
2492 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2493 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2494 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2495 * Return pages freed into the buddy system.
2496 */
11199692 2497extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2498 int poison, const char *s);
c3d5f5f0 2499
c3d5f5f0 2500extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2501extern void mem_init_print_info(void);
69afade7 2502
4b50bcc7 2503extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2504
69afade7 2505/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2506static inline void free_reserved_page(struct page *page)
69afade7
JL
2507{
2508 ClearPageReserved(page);
2509 init_page_count(page);
2510 __free_page(page);
69afade7
JL
2511 adjust_managed_page_count(page, 1);
2512}
a0cd7a7c 2513#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2514
2515static inline void mark_page_reserved(struct page *page)
2516{
2517 SetPageReserved(page);
2518 adjust_managed_page_count(page, -1);
2519}
2520
2521/*
2522 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2523 * The freed pages will be poisoned with pattern "poison" if it's within
2524 * range [0, UCHAR_MAX].
2525 * Return pages freed into the buddy system.
69afade7
JL
2526 */
2527static inline unsigned long free_initmem_default(int poison)
2528{
2529 extern char __init_begin[], __init_end[];
2530
11199692 2531 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2532 poison, "unused kernel image (initmem)");
69afade7
JL
2533}
2534
7ee3d4e8
JL
2535static inline unsigned long get_num_physpages(void)
2536{
2537 int nid;
2538 unsigned long phys_pages = 0;
2539
2540 for_each_online_node(nid)
2541 phys_pages += node_present_pages(nid);
2542
2543 return phys_pages;
2544}
2545
c713216d 2546/*
3f08a302 2547 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2548 * zones, allocate the backing mem_map and account for memory holes in an
2549 * architecture independent manner.
c713216d
MG
2550 *
2551 * An architecture is expected to register range of page frames backed by
0ee332c1 2552 * physical memory with memblock_add[_node]() before calling
9691a071 2553 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2554 * usage, an architecture is expected to do something like
2555 *
2556 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2557 * max_highmem_pfn};
2558 * for_each_valid_physical_page_range()
952eea9b 2559 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2560 * free_area_init(max_zone_pfns);
c713216d 2561 */
9691a071 2562void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2563unsigned long node_map_pfn_alignment(void);
32996250
YL
2564unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2565 unsigned long end_pfn);
c713216d
MG
2566extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2567 unsigned long end_pfn);
2568extern void get_pfn_range_for_nid(unsigned int nid,
2569 unsigned long *start_pfn, unsigned long *end_pfn);
2570extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2571
a9ee6cf5 2572#ifndef CONFIG_NUMA
6f24fbd3 2573static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2574{
2575 return 0;
2576}
2577#else
2578/* please see mm/page_alloc.c */
2579extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2580#endif
2581
0e0b864e 2582extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2583extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2584 unsigned long, unsigned long, enum meminit_context,
2585 struct vmem_altmap *, int migratetype);
bc75d33f 2586extern void setup_per_zone_wmarks(void);
bd3400ea 2587extern void calculate_min_free_kbytes(void);
1b79acc9 2588extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2589extern void mem_init(void);
8feae131 2590extern void __init mmap_init(void);
9af744d7 2591extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2592extern long si_mem_available(void);
1da177e4
LT
2593extern void si_meminfo(struct sysinfo * val);
2594extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2595#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2596extern unsigned long arch_reserved_kernel_pages(void);
2597#endif
1da177e4 2598
a8e99259
MH
2599extern __printf(3, 4)
2600void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2601
e7c8d5c9 2602extern void setup_per_cpu_pageset(void);
e7c8d5c9 2603
75f7ad8e
PS
2604/* page_alloc.c */
2605extern int min_free_kbytes;
1c30844d 2606extern int watermark_boost_factor;
795ae7a0 2607extern int watermark_scale_factor;
51930df5 2608extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2609
8feae131 2610/* nommu.c */
33e5d769 2611extern atomic_long_t mmap_pages_allocated;
7e660872 2612extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2613
6b2dbba8 2614/* interval_tree.c */
6b2dbba8 2615void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2616 struct rb_root_cached *root);
9826a516
ML
2617void vma_interval_tree_insert_after(struct vm_area_struct *node,
2618 struct vm_area_struct *prev,
f808c13f 2619 struct rb_root_cached *root);
6b2dbba8 2620void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2621 struct rb_root_cached *root);
2622struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2623 unsigned long start, unsigned long last);
2624struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2625 unsigned long start, unsigned long last);
2626
2627#define vma_interval_tree_foreach(vma, root, start, last) \
2628 for (vma = vma_interval_tree_iter_first(root, start, last); \
2629 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2630
bf181b9f 2631void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2632 struct rb_root_cached *root);
bf181b9f 2633void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2634 struct rb_root_cached *root);
2635struct anon_vma_chain *
2636anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2637 unsigned long start, unsigned long last);
bf181b9f
ML
2638struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2639 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2640#ifdef CONFIG_DEBUG_VM_RB
2641void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2642#endif
bf181b9f
ML
2643
2644#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2645 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2646 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2647
1da177e4 2648/* mmap.c */
34b4e4aa 2649extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2650extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2651 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2652 struct vm_area_struct *expand);
2653static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2654 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2655{
2656 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2657}
1da177e4
LT
2658extern struct vm_area_struct *vma_merge(struct mm_struct *,
2659 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2660 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2661 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2662extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2663extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2664 unsigned long addr, int new_below);
2665extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2666 unsigned long addr, int new_below);
1da177e4
LT
2667extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2668extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2669 struct rb_node **, struct rb_node *);
a8fb5618 2670extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2671extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2672 unsigned long addr, unsigned long len, pgoff_t pgoff,
2673 bool *need_rmap_locks);
1da177e4 2674extern void exit_mmap(struct mm_struct *);
925d1c40 2675
9c599024
CG
2676static inline int check_data_rlimit(unsigned long rlim,
2677 unsigned long new,
2678 unsigned long start,
2679 unsigned long end_data,
2680 unsigned long start_data)
2681{
2682 if (rlim < RLIM_INFINITY) {
2683 if (((new - start) + (end_data - start_data)) > rlim)
2684 return -ENOSPC;
2685 }
2686
2687 return 0;
2688}
2689
7906d00c
AA
2690extern int mm_take_all_locks(struct mm_struct *mm);
2691extern void mm_drop_all_locks(struct mm_struct *mm);
2692
fe69d560 2693extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 2694extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 2695extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2696extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2697
84638335
KK
2698extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2699extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2700
2eefd878
DS
2701extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2702 const struct vm_special_mapping *sm);
3935ed6a
SS
2703extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2704 unsigned long addr, unsigned long len,
a62c34bd
AL
2705 unsigned long flags,
2706 const struct vm_special_mapping *spec);
2707/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2708extern int install_special_mapping(struct mm_struct *mm,
2709 unsigned long addr, unsigned long len,
2710 unsigned long flags, struct page **pages);
1da177e4 2711
649775be
AG
2712unsigned long randomize_stack_top(unsigned long stack_top);
2713
1da177e4
LT
2714extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2715
0165ab44 2716extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2717 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2718 struct list_head *uf);
1fcfd8db 2719extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2720 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2721 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2722extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2723 struct list_head *uf, bool downgrade);
897ab3e0
MR
2724extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2725 struct list_head *uf);
0726b01e 2726extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2727
bebeb3d6
ML
2728#ifdef CONFIG_MMU
2729extern int __mm_populate(unsigned long addr, unsigned long len,
2730 int ignore_errors);
2731static inline void mm_populate(unsigned long addr, unsigned long len)
2732{
2733 /* Ignore errors */
2734 (void) __mm_populate(addr, len, 1);
2735}
2736#else
2737static inline void mm_populate(unsigned long addr, unsigned long len) {}
2738#endif
2739
e4eb1ff6 2740/* These take the mm semaphore themselves */
5d22fc25 2741extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2742extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2743extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2744extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2745 unsigned long, unsigned long,
2746 unsigned long, unsigned long);
1da177e4 2747
db4fbfb9
ML
2748struct vm_unmapped_area_info {
2749#define VM_UNMAPPED_AREA_TOPDOWN 1
2750 unsigned long flags;
2751 unsigned long length;
2752 unsigned long low_limit;
2753 unsigned long high_limit;
2754 unsigned long align_mask;
2755 unsigned long align_offset;
2756};
2757
baceaf1c 2758extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2759
85821aab 2760/* truncate.c */
1da177e4 2761extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2762extern void truncate_inode_pages_range(struct address_space *,
2763 loff_t lstart, loff_t lend);
91b0abe3 2764extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2765
2766/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2767extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2768extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2769 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2770extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 2771
1be7107f 2772extern unsigned long stack_guard_gap;
d05f3169 2773/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2774extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2775
11192337 2776/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2777extern int expand_downwards(struct vm_area_struct *vma,
2778 unsigned long address);
8ca3eb08 2779#if VM_GROWSUP
46dea3d0 2780extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2781#else
fee7e49d 2782 #define expand_upwards(vma, address) (0)
9ab88515 2783#endif
1da177e4
LT
2784
2785/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2786extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2787extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2788 struct vm_area_struct **pprev);
2789
ce6d42f2
LH
2790/**
2791 * find_vma_intersection() - Look up the first VMA which intersects the interval
2792 * @mm: The process address space.
2793 * @start_addr: The inclusive start user address.
2794 * @end_addr: The exclusive end user address.
2795 *
2796 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2797 * start_addr < end_addr.
2798 */
2799static inline
2800struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2801 unsigned long start_addr,
2802 unsigned long end_addr)
1da177e4 2803{
ce6d42f2 2804 struct vm_area_struct *vma = find_vma(mm, start_addr);
1da177e4
LT
2805
2806 if (vma && end_addr <= vma->vm_start)
2807 vma = NULL;
2808 return vma;
2809}
2810
ce6d42f2
LH
2811/**
2812 * vma_lookup() - Find a VMA at a specific address
2813 * @mm: The process address space.
2814 * @addr: The user address.
2815 *
2816 * Return: The vm_area_struct at the given address, %NULL otherwise.
2817 */
2818static inline
2819struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2820{
2821 struct vm_area_struct *vma = find_vma(mm, addr);
2822
2823 if (vma && addr < vma->vm_start)
2824 vma = NULL;
2825
2826 return vma;
2827}
2828
1be7107f
HD
2829static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2830{
2831 unsigned long vm_start = vma->vm_start;
2832
2833 if (vma->vm_flags & VM_GROWSDOWN) {
2834 vm_start -= stack_guard_gap;
2835 if (vm_start > vma->vm_start)
2836 vm_start = 0;
2837 }
2838 return vm_start;
2839}
2840
2841static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2842{
2843 unsigned long vm_end = vma->vm_end;
2844
2845 if (vma->vm_flags & VM_GROWSUP) {
2846 vm_end += stack_guard_gap;
2847 if (vm_end < vma->vm_end)
2848 vm_end = -PAGE_SIZE;
2849 }
2850 return vm_end;
2851}
2852
1da177e4
LT
2853static inline unsigned long vma_pages(struct vm_area_struct *vma)
2854{
2855 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2856}
2857
640708a2
PE
2858/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2859static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2860 unsigned long vm_start, unsigned long vm_end)
2861{
2862 struct vm_area_struct *vma = find_vma(mm, vm_start);
2863
2864 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2865 vma = NULL;
2866
2867 return vma;
2868}
2869
017b1660
MK
2870static inline bool range_in_vma(struct vm_area_struct *vma,
2871 unsigned long start, unsigned long end)
2872{
2873 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2874}
2875
bad849b3 2876#ifdef CONFIG_MMU
804af2cf 2877pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2878void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2879#else
2880static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2881{
2882 return __pgprot(0);
2883}
64e45507
PF
2884static inline void vma_set_page_prot(struct vm_area_struct *vma)
2885{
2886 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2887}
bad849b3
DH
2888#endif
2889
295992fb
CK
2890void vma_set_file(struct vm_area_struct *vma, struct file *file);
2891
5877231f 2892#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2893unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2894 unsigned long start, unsigned long end);
2895#endif
2896
deceb6cd 2897struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2898int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2899 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
2900int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2901 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 2902int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2903int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2904 struct page **pages, unsigned long *num);
a667d745
SJ
2905int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2906 unsigned long num);
2907int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2908 unsigned long num);
ae2b01f3 2909vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2910 unsigned long pfn);
f5e6d1d5
MW
2911vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2912 unsigned long pfn, pgprot_t pgprot);
5d747637 2913vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2914 pfn_t pfn);
574c5b3d
TH
2915vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2916 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2917vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2918 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2919int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2920
1c8f4220
SJ
2921static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2922 unsigned long addr, struct page *page)
2923{
2924 int err = vm_insert_page(vma, addr, page);
2925
2926 if (err == -ENOMEM)
2927 return VM_FAULT_OOM;
2928 if (err < 0 && err != -EBUSY)
2929 return VM_FAULT_SIGBUS;
2930
2931 return VM_FAULT_NOPAGE;
2932}
2933
f8f6ae5d
JG
2934#ifndef io_remap_pfn_range
2935static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2936 unsigned long addr, unsigned long pfn,
2937 unsigned long size, pgprot_t prot)
2938{
2939 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2940}
2941#endif
2942
d97baf94
SJ
2943static inline vm_fault_t vmf_error(int err)
2944{
2945 if (err == -ENOMEM)
2946 return VM_FAULT_OOM;
2947 return VM_FAULT_SIGBUS;
2948}
2949
df06b37f
KB
2950struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2951 unsigned int foll_flags);
240aadee 2952
deceb6cd
HD
2953#define FOLL_WRITE 0x01 /* check pte is writable */
2954#define FOLL_TOUCH 0x02 /* mark page accessed */
2955#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2956#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2957#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2958#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2959 * and return without waiting upon it */
55b8fe70
AG
2960#define FOLL_POPULATE 0x40 /* fault in pages (with FOLL_MLOCK) */
2961#define FOLL_NOFAULT 0x80 /* do not fault in pages */
69ebb83e 2962#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2963#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2964#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2965#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2966#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2967#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2968#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2969#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2970#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2971#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2972#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2973#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2974
2975/*
eddb1c22
JH
2976 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2977 * other. Here is what they mean, and how to use them:
932f4a63
IW
2978 *
2979 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2980 * period _often_ under userspace control. This is in contrast to
2981 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2982 *
2983 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2984 * lifetime enforced by the filesystem and we need guarantees that longterm
2985 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2986 * the filesystem. Ideas for this coordination include revoking the longterm
2987 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2988 * added after the problem with filesystems was found FS DAX VMAs are
2989 * specifically failed. Filesystem pages are still subject to bugs and use of
2990 * FOLL_LONGTERM should be avoided on those pages.
2991 *
2992 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2993 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2994 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2995 * is due to an incompatibility with the FS DAX check and
eddb1c22 2996 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2997 *
eddb1c22
JH
2998 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2999 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 3000 * FOLL_LONGTERM is specified.
eddb1c22
JH
3001 *
3002 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
3003 * but an additional pin counting system) will be invoked. This is intended for
3004 * anything that gets a page reference and then touches page data (for example,
3005 * Direct IO). This lets the filesystem know that some non-file-system entity is
3006 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
3007 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 3008 * a call to unpin_user_page().
eddb1c22
JH
3009 *
3010 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
3011 * and separate refcounting mechanisms, however, and that means that each has
3012 * its own acquire and release mechanisms:
3013 *
3014 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
3015 *
f1f6a7dd 3016 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
3017 *
3018 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
3019 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
3020 * calls applied to them, and that's perfectly OK. This is a constraint on the
3021 * callers, not on the pages.)
3022 *
3023 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
3024 * directly by the caller. That's in order to help avoid mismatches when
3025 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 3026 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 3027 *
72ef5e52 3028 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 3029 */
1da177e4 3030
2b740303 3031static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3032{
3033 if (vm_fault & VM_FAULT_OOM)
3034 return -ENOMEM;
3035 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3036 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3037 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3038 return -EFAULT;
3039 return 0;
3040}
3041
8b1e0f81 3042typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3043extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3044 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3045extern int apply_to_existing_page_range(struct mm_struct *mm,
3046 unsigned long address, unsigned long size,
3047 pte_fn_t fn, void *data);
aee16b3c 3048
04013513 3049extern void init_mem_debugging_and_hardening(void);
8823b1db 3050#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3051extern void __kernel_poison_pages(struct page *page, int numpages);
3052extern void __kernel_unpoison_pages(struct page *page, int numpages);
3053extern bool _page_poisoning_enabled_early;
3054DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3055static inline bool page_poisoning_enabled(void)
3056{
3057 return _page_poisoning_enabled_early;
3058}
3059/*
3060 * For use in fast paths after init_mem_debugging() has run, or when a
3061 * false negative result is not harmful when called too early.
3062 */
3063static inline bool page_poisoning_enabled_static(void)
3064{
3065 return static_branch_unlikely(&_page_poisoning_enabled);
3066}
3067static inline void kernel_poison_pages(struct page *page, int numpages)
3068{
3069 if (page_poisoning_enabled_static())
3070 __kernel_poison_pages(page, numpages);
3071}
3072static inline void kernel_unpoison_pages(struct page *page, int numpages)
3073{
3074 if (page_poisoning_enabled_static())
3075 __kernel_unpoison_pages(page, numpages);
3076}
8823b1db
LA
3077#else
3078static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3079static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3080static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3081static inline void kernel_poison_pages(struct page *page, int numpages) { }
3082static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3083#endif
3084
51cba1eb 3085DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3086static inline bool want_init_on_alloc(gfp_t flags)
3087{
51cba1eb
KC
3088 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3089 &init_on_alloc))
6471384a
AP
3090 return true;
3091 return flags & __GFP_ZERO;
3092}
3093
51cba1eb 3094DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3095static inline bool want_init_on_free(void)
3096{
51cba1eb
KC
3097 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3098 &init_on_free);
6471384a
AP
3099}
3100
8e57f8ac
VB
3101extern bool _debug_pagealloc_enabled_early;
3102DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3103
3104static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3105{
3106 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3107 _debug_pagealloc_enabled_early;
3108}
3109
3110/*
3111 * For use in fast paths after init_debug_pagealloc() has run, or when a
3112 * false negative result is not harmful when called too early.
3113 */
3114static inline bool debug_pagealloc_enabled_static(void)
031bc574 3115{
96a2b03f
VB
3116 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3117 return false;
3118
3119 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3120}
3121
5d6ad668 3122#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3123/*
5d6ad668
MR
3124 * To support DEBUG_PAGEALLOC architecture must ensure that
3125 * __kernel_map_pages() never fails
c87cbc1f 3126 */
d6332692
RE
3127extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3128
77bc7fd6
MR
3129static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3130{
3131 if (debug_pagealloc_enabled_static())
3132 __kernel_map_pages(page, numpages, 1);
3133}
3134
3135static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3136{
3137 if (debug_pagealloc_enabled_static())
3138 __kernel_map_pages(page, numpages, 0);
3139}
5d6ad668 3140#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3141static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3142static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3143#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3144
a6c19dfe 3145#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3146extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3147extern int in_gate_area_no_mm(unsigned long addr);
3148extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3149#else
a6c19dfe
AL
3150static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3151{
3152 return NULL;
3153}
3154static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3155static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3156{
3157 return 0;
3158}
1da177e4
LT
3159#endif /* __HAVE_ARCH_GATE_AREA */
3160
44a70ade
MH
3161extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3162
146732ce
JT
3163#ifdef CONFIG_SYSCTL
3164extern int sysctl_drop_caches;
32927393
CH
3165int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3166 loff_t *);
146732ce
JT
3167#endif
3168
cb731d6c
VD
3169void drop_slab(void);
3170void drop_slab_node(int nid);
9d0243bc 3171
7a9166e3
LY
3172#ifndef CONFIG_MMU
3173#define randomize_va_space 0
3174#else
a62eaf15 3175extern int randomize_va_space;
7a9166e3 3176#endif
a62eaf15 3177
045e72ac 3178const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3179#ifdef CONFIG_MMU
03252919 3180void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3181#else
3182static inline void print_vma_addr(char *prefix, unsigned long rip)
3183{
3184}
3185#endif
e6e5494c 3186
3bc2b6a7
MS
3187int vmemmap_remap_free(unsigned long start, unsigned long end,
3188 unsigned long reuse);
ad2fa371
MS
3189int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3190 unsigned long reuse, gfp_t gfp_mask);
f41f2ed4 3191
35fd1eb1 3192void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
3193struct page * __populate_section_memmap(unsigned long pfn,
3194 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3195pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3196p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3197pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3198pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
3199pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3200 struct vmem_altmap *altmap);
8f6aac41 3201void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3202struct vmem_altmap;
56993b4e
AK
3203void *vmemmap_alloc_block_buf(unsigned long size, int node,
3204 struct vmem_altmap *altmap);
8f6aac41 3205void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3206int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3207 int node, struct vmem_altmap *altmap);
7b73d978
CH
3208int vmemmap_populate(unsigned long start, unsigned long end, int node,
3209 struct vmem_altmap *altmap);
c2b91e2e 3210void vmemmap_populate_print_last(void);
0197518c 3211#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3212void vmemmap_free(unsigned long start, unsigned long end,
3213 struct vmem_altmap *altmap);
0197518c 3214#endif
46723bfa 3215void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3216 unsigned long nr_pages);
6a46079c 3217
82ba011b
AK
3218enum mf_flags {
3219 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3220 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3221 MF_MUST_KILL = 1 << 2,
cf870c70 3222 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3223};
83b57531
EB
3224extern int memory_failure(unsigned long pfn, int flags);
3225extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3226extern void memory_failure_queue_kick(int cpu);
847ce401 3227extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3228extern int sysctl_memory_failure_early_kill;
3229extern int sysctl_memory_failure_recovery;
d0505e9f 3230extern void shake_page(struct page *p);
5844a486 3231extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3232extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3233
cc637b17
XX
3234
3235/*
3236 * Error handlers for various types of pages.
3237 */
cc3e2af4 3238enum mf_result {
cc637b17
XX
3239 MF_IGNORED, /* Error: cannot be handled */
3240 MF_FAILED, /* Error: handling failed */
3241 MF_DELAYED, /* Will be handled later */
3242 MF_RECOVERED, /* Successfully recovered */
3243};
3244
3245enum mf_action_page_type {
3246 MF_MSG_KERNEL,
3247 MF_MSG_KERNEL_HIGH_ORDER,
3248 MF_MSG_SLAB,
3249 MF_MSG_DIFFERENT_COMPOUND,
3250 MF_MSG_POISONED_HUGE,
3251 MF_MSG_HUGE,
3252 MF_MSG_FREE_HUGE,
31286a84 3253 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3254 MF_MSG_UNMAP_FAILED,
3255 MF_MSG_DIRTY_SWAPCACHE,
3256 MF_MSG_CLEAN_SWAPCACHE,
3257 MF_MSG_DIRTY_MLOCKED_LRU,
3258 MF_MSG_CLEAN_MLOCKED_LRU,
3259 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3260 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3261 MF_MSG_DIRTY_LRU,
3262 MF_MSG_CLEAN_LRU,
3263 MF_MSG_TRUNCATED_LRU,
3264 MF_MSG_BUDDY,
3265 MF_MSG_BUDDY_2ND,
6100e34b 3266 MF_MSG_DAX,
5d1fd5dc 3267 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3268 MF_MSG_UNKNOWN,
3269};
3270
47ad8475
AA
3271#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3272extern void clear_huge_page(struct page *page,
c79b57e4 3273 unsigned long addr_hint,
47ad8475
AA
3274 unsigned int pages_per_huge_page);
3275extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3276 unsigned long addr_hint,
3277 struct vm_area_struct *vma,
47ad8475 3278 unsigned int pages_per_huge_page);
fa4d75c1
MK
3279extern long copy_huge_page_from_user(struct page *dst_page,
3280 const void __user *usr_src,
810a56b9
MK
3281 unsigned int pages_per_huge_page,
3282 bool allow_pagefault);
2484ca9b
THV
3283
3284/**
3285 * vma_is_special_huge - Are transhuge page-table entries considered special?
3286 * @vma: Pointer to the struct vm_area_struct to consider
3287 *
3288 * Whether transhuge page-table entries are considered "special" following
3289 * the definition in vm_normal_page().
3290 *
3291 * Return: true if transhuge page-table entries should be considered special,
3292 * false otherwise.
3293 */
3294static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3295{
3296 return vma_is_dax(vma) || (vma->vm_file &&
3297 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3298}
3299
47ad8475
AA
3300#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3301
c0a32fc5
SG
3302#ifdef CONFIG_DEBUG_PAGEALLOC
3303extern unsigned int _debug_guardpage_minorder;
96a2b03f 3304DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3305
3306static inline unsigned int debug_guardpage_minorder(void)
3307{
3308 return _debug_guardpage_minorder;
3309}
3310
e30825f1
JK
3311static inline bool debug_guardpage_enabled(void)
3312{
96a2b03f 3313 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3314}
3315
c0a32fc5
SG
3316static inline bool page_is_guard(struct page *page)
3317{
e30825f1
JK
3318 if (!debug_guardpage_enabled())
3319 return false;
3320
3972f6bb 3321 return PageGuard(page);
c0a32fc5
SG
3322}
3323#else
3324static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3325static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3326static inline bool page_is_guard(struct page *page) { return false; }
3327#endif /* CONFIG_DEBUG_PAGEALLOC */
3328
f9872caf
CS
3329#if MAX_NUMNODES > 1
3330void __init setup_nr_node_ids(void);
3331#else
3332static inline void setup_nr_node_ids(void) {}
3333#endif
3334
010c164a
SL
3335extern int memcmp_pages(struct page *page1, struct page *page2);
3336
3337static inline int pages_identical(struct page *page1, struct page *page2)
3338{
3339 return !memcmp_pages(page1, page2);
3340}
3341
c5acad84
TH
3342#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3343unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3344 pgoff_t first_index, pgoff_t nr,
3345 pgoff_t bitmap_pgoff,
3346 unsigned long *bitmap,
3347 pgoff_t *start,
3348 pgoff_t *end);
3349
3350unsigned long wp_shared_mapping_range(struct address_space *mapping,
3351 pgoff_t first_index, pgoff_t nr);
3352#endif
3353
2374c09b
CH
3354extern int sysctl_nr_trim_pages;
3355
5bb1bb35 3356#ifdef CONFIG_PRINTK
8e7f37f2 3357void mem_dump_obj(void *object);
5bb1bb35
PM
3358#else
3359static inline void mem_dump_obj(void *object) {}
3360#endif
8e7f37f2 3361
22247efd
PX
3362/**
3363 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3364 * @seals: the seals to check
3365 * @vma: the vma to operate on
3366 *
3367 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3368 * the vma flags. Return 0 if check pass, or <0 for errors.
3369 */
3370static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3371{
3372 if (seals & F_SEAL_FUTURE_WRITE) {
3373 /*
3374 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3375 * "future write" seal active.
3376 */
3377 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3378 return -EPERM;
3379
3380 /*
3381 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3382 * MAP_SHARED and read-only, take care to not allow mprotect to
3383 * revert protections on such mappings. Do this only for shared
3384 * mappings. For private mappings, don't need to mask
3385 * VM_MAYWRITE as we still want them to be COW-writable.
3386 */
3387 if (vma->vm_flags & VM_SHARED)
3388 vma->vm_flags &= ~(VM_MAYWRITE);
3389 }
3390
3391 return 0;
3392}
3393
1da177e4
LT
3394#endif /* __KERNEL__ */
3395#endif /* _LINUX_MM_H */