mm: move free_devmap_managed_page to memremap.c
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
7b2d55d2 26#include <linux/memremap.h>
3b3b1a29 27#include <linux/overflow.h>
b5420237 28#include <linux/sizes.h>
7969f226 29#include <linux/sched.h>
65fddcfc 30#include <linux/pgtable.h>
34303244 31#include <linux/kasan.h>
1da177e4
LT
32
33struct mempolicy;
34struct anon_vma;
bf181b9f 35struct anon_vma_chain;
e8edc6e0 36struct user_struct;
bce617ed 37struct pt_regs;
1da177e4 38
5ef64cc8
LT
39extern int sysctl_page_lock_unfairness;
40
597b7305
MH
41void init_mm_internals(void);
42
a9ee6cf5 43#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 44extern unsigned long max_mapnr;
fccc9987
JL
45
46static inline void set_max_mapnr(unsigned long limit)
47{
48 max_mapnr = limit;
49}
50#else
51static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
52#endif
53
ca79b0c2
AK
54extern atomic_long_t _totalram_pages;
55static inline unsigned long totalram_pages(void)
56{
57 return (unsigned long)atomic_long_read(&_totalram_pages);
58}
59
60static inline void totalram_pages_inc(void)
61{
62 atomic_long_inc(&_totalram_pages);
63}
64
65static inline void totalram_pages_dec(void)
66{
67 atomic_long_dec(&_totalram_pages);
68}
69
70static inline void totalram_pages_add(long count)
71{
72 atomic_long_add(count, &_totalram_pages);
73}
74
1da177e4 75extern void * high_memory;
1da177e4
LT
76extern int page_cluster;
77
78#ifdef CONFIG_SYSCTL
79extern int sysctl_legacy_va_layout;
80#else
81#define sysctl_legacy_va_layout 0
82#endif
83
d07e2259
DC
84#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
85extern const int mmap_rnd_bits_min;
86extern const int mmap_rnd_bits_max;
87extern int mmap_rnd_bits __read_mostly;
88#endif
89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
90extern const int mmap_rnd_compat_bits_min;
91extern const int mmap_rnd_compat_bits_max;
92extern int mmap_rnd_compat_bits __read_mostly;
93#endif
94
1da177e4 95#include <asm/page.h>
1da177e4 96#include <asm/processor.h>
1da177e4 97
d9344522
AK
98/*
99 * Architectures that support memory tagging (assigning tags to memory regions,
100 * embedding these tags into addresses that point to these memory regions, and
101 * checking that the memory and the pointer tags match on memory accesses)
102 * redefine this macro to strip tags from pointers.
f0953a1b 103 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
104 */
105#ifndef untagged_addr
106#define untagged_addr(addr) (addr)
107#endif
108
79442ed1
TC
109#ifndef __pa_symbol
110#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
111#endif
112
1dff8083
AB
113#ifndef page_to_virt
114#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
115#endif
116
568c5fe5
LA
117#ifndef lm_alias
118#define lm_alias(x) __va(__pa_symbol(x))
119#endif
120
593befa6
DD
121/*
122 * To prevent common memory management code establishing
123 * a zero page mapping on a read fault.
124 * This macro should be defined within <asm/pgtable.h>.
125 * s390 does this to prevent multiplexing of hardware bits
126 * related to the physical page in case of virtualization.
127 */
128#ifndef mm_forbids_zeropage
129#define mm_forbids_zeropage(X) (0)
130#endif
131
a4a3ede2
PT
132/*
133 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
134 * If an architecture decides to implement their own version of
135 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
136 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 137 */
5470dea4
AD
138#if BITS_PER_LONG == 64
139/* This function must be updated when the size of struct page grows above 80
140 * or reduces below 56. The idea that compiler optimizes out switch()
141 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 142 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
143 * this can result in several of the writes here being dropped.
144 */
145#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
146static inline void __mm_zero_struct_page(struct page *page)
147{
148 unsigned long *_pp = (void *)page;
149
150 /* Check that struct page is either 56, 64, 72, or 80 bytes */
151 BUILD_BUG_ON(sizeof(struct page) & 7);
152 BUILD_BUG_ON(sizeof(struct page) < 56);
153 BUILD_BUG_ON(sizeof(struct page) > 80);
154
155 switch (sizeof(struct page)) {
156 case 80:
df561f66
GS
157 _pp[9] = 0;
158 fallthrough;
5470dea4 159 case 72:
df561f66
GS
160 _pp[8] = 0;
161 fallthrough;
5470dea4 162 case 64:
df561f66
GS
163 _pp[7] = 0;
164 fallthrough;
5470dea4
AD
165 case 56:
166 _pp[6] = 0;
167 _pp[5] = 0;
168 _pp[4] = 0;
169 _pp[3] = 0;
170 _pp[2] = 0;
171 _pp[1] = 0;
172 _pp[0] = 0;
173 }
174}
175#else
a4a3ede2
PT
176#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
177#endif
178
ea606cf5
AR
179/*
180 * Default maximum number of active map areas, this limits the number of vmas
181 * per mm struct. Users can overwrite this number by sysctl but there is a
182 * problem.
183 *
184 * When a program's coredump is generated as ELF format, a section is created
185 * per a vma. In ELF, the number of sections is represented in unsigned short.
186 * This means the number of sections should be smaller than 65535 at coredump.
187 * Because the kernel adds some informative sections to a image of program at
188 * generating coredump, we need some margin. The number of extra sections is
189 * 1-3 now and depends on arch. We use "5" as safe margin, here.
190 *
191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192 * not a hard limit any more. Although some userspace tools can be surprised by
193 * that.
194 */
195#define MAPCOUNT_ELF_CORE_MARGIN (5)
196#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
197
198extern int sysctl_max_map_count;
199
c9b1d098 200extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 201extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 202
49f0ce5f
JM
203extern int sysctl_overcommit_memory;
204extern int sysctl_overcommit_ratio;
205extern unsigned long sysctl_overcommit_kbytes;
206
32927393
CH
207int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
209int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
56f3547b
FT
211int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
212 loff_t *);
49f0ce5f 213
1cfcee72 214#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 215#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
1cfcee72
MWO
216#else
217#define nth_page(page,n) ((page) + (n))
218#endif
1da177e4 219
27ac792c
AR
220/* to align the pointer to the (next) page boundary */
221#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222
0fa73b86 223/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 224#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 225
f86196ea
NB
226#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
227
5748fbc5
KW
228void setup_initial_init_mm(void *start_code, void *end_code,
229 void *end_data, void *brk);
230
1da177e4
LT
231/*
232 * Linux kernel virtual memory manager primitives.
233 * The idea being to have a "virtual" mm in the same way
234 * we have a virtual fs - giving a cleaner interface to the
235 * mm details, and allowing different kinds of memory mappings
236 * (from shared memory to executable loading to arbitrary
237 * mmap() functions).
238 */
239
490fc053 240struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
241struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
242void vm_area_free(struct vm_area_struct *);
c43692e8 243
1da177e4 244#ifndef CONFIG_MMU
8feae131
DH
245extern struct rb_root nommu_region_tree;
246extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
247
248extern unsigned int kobjsize(const void *objp);
249#endif
250
251/*
605d9288 252 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 253 * When changing, update also include/trace/events/mmflags.h
1da177e4 254 */
cc2383ec
KK
255#define VM_NONE 0x00000000
256
1da177e4
LT
257#define VM_READ 0x00000001 /* currently active flags */
258#define VM_WRITE 0x00000002
259#define VM_EXEC 0x00000004
260#define VM_SHARED 0x00000008
261
7e2cff42 262/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
263#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
264#define VM_MAYWRITE 0x00000020
265#define VM_MAYEXEC 0x00000040
266#define VM_MAYSHARE 0x00000080
267
268#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 269#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 270#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 271#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 272
1da177e4
LT
273#define VM_LOCKED 0x00002000
274#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
275
276 /* Used by sys_madvise() */
277#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
278#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
279
280#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
281#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 282#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 283#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 284#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 285#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 286#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 287#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 288#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 289#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 290
d9104d1c
CG
291#ifdef CONFIG_MEM_SOFT_DIRTY
292# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
293#else
294# define VM_SOFTDIRTY 0
295#endif
296
b379d790 297#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
298#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
299#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 300#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 301
63c17fb8
DH
302#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
303#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
304#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
305#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
306#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 307#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
308#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
309#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
310#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
311#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 312#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
313#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
314
5212213a 315#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
316# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
317# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 318# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
319# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
320# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
321#ifdef CONFIG_PPC
322# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
323#else
324# define VM_PKEY_BIT4 0
8f62c883 325#endif
5212213a
RP
326#endif /* CONFIG_ARCH_HAS_PKEYS */
327
328#if defined(CONFIG_X86)
329# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
330#elif defined(CONFIG_PPC)
331# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
332#elif defined(CONFIG_PARISC)
333# define VM_GROWSUP VM_ARCH_1
334#elif defined(CONFIG_IA64)
335# define VM_GROWSUP VM_ARCH_1
74a04967
KA
336#elif defined(CONFIG_SPARC64)
337# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
338# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
339#elif defined(CONFIG_ARM64)
340# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
341# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
342#elif !defined(CONFIG_MMU)
343# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
344#endif
345
9f341931
CM
346#if defined(CONFIG_ARM64_MTE)
347# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
348# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
349#else
350# define VM_MTE VM_NONE
351# define VM_MTE_ALLOWED VM_NONE
352#endif
353
cc2383ec
KK
354#ifndef VM_GROWSUP
355# define VM_GROWSUP VM_NONE
356#endif
357
7677f7fd
AR
358#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
359# define VM_UFFD_MINOR_BIT 37
360# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
361#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
362# define VM_UFFD_MINOR VM_NONE
363#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
364
a8bef8ff
MG
365/* Bits set in the VMA until the stack is in its final location */
366#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
367
c62da0c3
AK
368#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
369
370/* Common data flag combinations */
371#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
372 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
373#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
374 VM_MAYWRITE | VM_MAYEXEC)
375#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
376 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
377
378#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
379#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
380#endif
381
1da177e4
LT
382#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
383#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
384#endif
385
386#ifdef CONFIG_STACK_GROWSUP
30bdbb78 387#define VM_STACK VM_GROWSUP
1da177e4 388#else
30bdbb78 389#define VM_STACK VM_GROWSDOWN
1da177e4
LT
390#endif
391
30bdbb78
KK
392#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
393
6cb4d9a2
AK
394/* VMA basic access permission flags */
395#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
396
397
b291f000 398/*
78f11a25 399 * Special vmas that are non-mergable, non-mlock()able.
b291f000 400 */
9050d7eb 401#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 402
b4443772
AK
403/* This mask prevents VMA from being scanned with khugepaged */
404#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
405
a0715cc2
AT
406/* This mask defines which mm->def_flags a process can inherit its parent */
407#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
408
de60f5f1
EM
409/* This mask is used to clear all the VMA flags used by mlock */
410#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
411
2c2d57b5
KA
412/* Arch-specific flags to clear when updating VM flags on protection change */
413#ifndef VM_ARCH_CLEAR
414# define VM_ARCH_CLEAR VM_NONE
415#endif
416#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
417
1da177e4
LT
418/*
419 * mapping from the currently active vm_flags protection bits (the
420 * low four bits) to a page protection mask..
421 */
422extern pgprot_t protection_map[16];
423
dde16072
PX
424/*
425 * The default fault flags that should be used by most of the
426 * arch-specific page fault handlers.
427 */
428#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
429 FAULT_FLAG_KILLABLE | \
430 FAULT_FLAG_INTERRUPTIBLE)
dde16072 431
4064b982
PX
432/**
433 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 434 * @flags: Fault flags.
4064b982
PX
435 *
436 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 437 * the mmap_lock for too long a time when waiting for another condition
4064b982 438 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
439 * mmap_lock in the first round to avoid potential starvation of other
440 * processes that would also want the mmap_lock.
4064b982
PX
441 *
442 * Return: true if the page fault allows retry and this is the first
443 * attempt of the fault handling; false otherwise.
444 */
da2f5eb3 445static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
446{
447 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
448 (!(flags & FAULT_FLAG_TRIED));
449}
450
282a8e03
RZ
451#define FAULT_FLAG_TRACE \
452 { FAULT_FLAG_WRITE, "WRITE" }, \
453 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
454 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
455 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
456 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
457 { FAULT_FLAG_TRIED, "TRIED" }, \
458 { FAULT_FLAG_USER, "USER" }, \
459 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
460 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
461 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 462
54cb8821 463/*
11192337 464 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
465 * ->fault function. The vma's ->fault is responsible for returning a bitmask
466 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 467 *
c20cd45e
MH
468 * MM layer fills up gfp_mask for page allocations but fault handler might
469 * alter it if its implementation requires a different allocation context.
470 *
9b4bdd2f 471 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 472 */
d0217ac0 473struct vm_fault {
5857c920 474 const struct {
742d3372
WD
475 struct vm_area_struct *vma; /* Target VMA */
476 gfp_t gfp_mask; /* gfp mask to be used for allocations */
477 pgoff_t pgoff; /* Logical page offset based on vma */
478 unsigned long address; /* Faulting virtual address */
479 };
da2f5eb3 480 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 481 * XXX: should really be 'const' */
82b0f8c3 482 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 483 * the 'address' */
a2d58167
DJ
484 pud_t *pud; /* Pointer to pud entry matching
485 * the 'address'
486 */
5db4f15c
YS
487 union {
488 pte_t orig_pte; /* Value of PTE at the time of fault */
489 pmd_t orig_pmd; /* Value of PMD at the time of fault,
490 * used by PMD fault only.
491 */
492 };
d0217ac0 493
3917048d 494 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 495 struct page *page; /* ->fault handlers should return a
83c54070 496 * page here, unless VM_FAULT_NOPAGE
d0217ac0 497 * is set (which is also implied by
83c54070 498 * VM_FAULT_ERROR).
d0217ac0 499 */
82b0f8c3 500 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
501 pte_t *pte; /* Pointer to pte entry matching
502 * the 'address'. NULL if the page
503 * table hasn't been allocated.
504 */
505 spinlock_t *ptl; /* Page table lock.
506 * Protects pte page table if 'pte'
507 * is not NULL, otherwise pmd.
508 */
7267ec00 509 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
510 * vm_ops->map_pages() sets up a page
511 * table from atomic context.
7267ec00
KS
512 * do_fault_around() pre-allocates
513 * page table to avoid allocation from
514 * atomic context.
515 */
54cb8821 516};
1da177e4 517
c791ace1
DJ
518/* page entry size for vm->huge_fault() */
519enum page_entry_size {
520 PE_SIZE_PTE = 0,
521 PE_SIZE_PMD,
522 PE_SIZE_PUD,
523};
524
1da177e4
LT
525/*
526 * These are the virtual MM functions - opening of an area, closing and
527 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 528 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
529 */
530struct vm_operations_struct {
531 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
532 /**
533 * @close: Called when the VMA is being removed from the MM.
534 * Context: User context. May sleep. Caller holds mmap_lock.
535 */
1da177e4 536 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
537 /* Called any time before splitting to check if it's allowed */
538 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 539 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
540 /*
541 * Called by mprotect() to make driver-specific permission
542 * checks before mprotect() is finalised. The VMA must not
543 * be modified. Returns 0 if eprotect() can proceed.
544 */
545 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
546 unsigned long end, unsigned long newflags);
1c8f4220
SJ
547 vm_fault_t (*fault)(struct vm_fault *vmf);
548 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
549 enum page_entry_size pe_size);
f9ce0be7 550 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 551 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 552 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
553
554 /* notification that a previously read-only page is about to become
555 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 556 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 557
dd906184 558 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 559 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 560
28b2ee20 561 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
562 * for use by special VMAs. See also generic_access_phys() for a generic
563 * implementation useful for any iomem mapping.
28b2ee20
RR
564 */
565 int (*access)(struct vm_area_struct *vma, unsigned long addr,
566 void *buf, int len, int write);
78d683e8
AL
567
568 /* Called by the /proc/PID/maps code to ask the vma whether it
569 * has a special name. Returning non-NULL will also cause this
570 * vma to be dumped unconditionally. */
571 const char *(*name)(struct vm_area_struct *vma);
572
1da177e4 573#ifdef CONFIG_NUMA
a6020ed7
LS
574 /*
575 * set_policy() op must add a reference to any non-NULL @new mempolicy
576 * to hold the policy upon return. Caller should pass NULL @new to
577 * remove a policy and fall back to surrounding context--i.e. do not
578 * install a MPOL_DEFAULT policy, nor the task or system default
579 * mempolicy.
580 */
1da177e4 581 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
582
583 /*
584 * get_policy() op must add reference [mpol_get()] to any policy at
585 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
586 * in mm/mempolicy.c will do this automatically.
587 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 588 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
589 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
590 * must return NULL--i.e., do not "fallback" to task or system default
591 * policy.
592 */
1da177e4
LT
593 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
594 unsigned long addr);
595#endif
667a0a06
DV
596 /*
597 * Called by vm_normal_page() for special PTEs to find the
598 * page for @addr. This is useful if the default behavior
599 * (using pte_page()) would not find the correct page.
600 */
601 struct page *(*find_special_page)(struct vm_area_struct *vma,
602 unsigned long addr);
1da177e4
LT
603};
604
027232da
KS
605static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
606{
bfd40eaf
KS
607 static const struct vm_operations_struct dummy_vm_ops = {};
608
a670468f 609 memset(vma, 0, sizeof(*vma));
027232da 610 vma->vm_mm = mm;
bfd40eaf 611 vma->vm_ops = &dummy_vm_ops;
027232da
KS
612 INIT_LIST_HEAD(&vma->anon_vma_chain);
613}
614
bfd40eaf
KS
615static inline void vma_set_anonymous(struct vm_area_struct *vma)
616{
617 vma->vm_ops = NULL;
618}
619
43675e6f
YS
620static inline bool vma_is_anonymous(struct vm_area_struct *vma)
621{
622 return !vma->vm_ops;
623}
624
222100ee
AK
625static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
626{
627 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
628
629 if (!maybe_stack)
630 return false;
631
632 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
633 VM_STACK_INCOMPLETE_SETUP)
634 return true;
635
636 return false;
637}
638
7969f226
AK
639static inline bool vma_is_foreign(struct vm_area_struct *vma)
640{
641 if (!current->mm)
642 return true;
643
644 if (current->mm != vma->vm_mm)
645 return true;
646
647 return false;
648}
3122e80e
AK
649
650static inline bool vma_is_accessible(struct vm_area_struct *vma)
651{
6cb4d9a2 652 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
653}
654
43675e6f
YS
655#ifdef CONFIG_SHMEM
656/*
657 * The vma_is_shmem is not inline because it is used only by slow
658 * paths in userfault.
659 */
660bool vma_is_shmem(struct vm_area_struct *vma);
661#else
662static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
663#endif
664
665int vma_is_stack_for_current(struct vm_area_struct *vma);
666
8b11ec1b
LT
667/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
668#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
669
1da177e4
LT
670struct mmu_gather;
671struct inode;
672
5bf34d7c
MWO
673static inline unsigned int compound_order(struct page *page)
674{
675 if (!PageHead(page))
676 return 0;
677 return page[1].compound_order;
678}
679
680/**
681 * folio_order - The allocation order of a folio.
682 * @folio: The folio.
683 *
684 * A folio is composed of 2^order pages. See get_order() for the definition
685 * of order.
686 *
687 * Return: The order of the folio.
688 */
689static inline unsigned int folio_order(struct folio *folio)
690{
691 return compound_order(&folio->page);
692}
693
71e3aac0 694#include <linux/huge_mm.h>
1da177e4
LT
695
696/*
697 * Methods to modify the page usage count.
698 *
699 * What counts for a page usage:
700 * - cache mapping (page->mapping)
701 * - private data (page->private)
702 * - page mapped in a task's page tables, each mapping
703 * is counted separately
704 *
705 * Also, many kernel routines increase the page count before a critical
706 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
707 */
708
709/*
da6052f7 710 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 711 */
7c8ee9a8
NP
712static inline int put_page_testzero(struct page *page)
713{
fe896d18
JK
714 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
715 return page_ref_dec_and_test(page);
7c8ee9a8 716}
1da177e4 717
b620f633
MWO
718static inline int folio_put_testzero(struct folio *folio)
719{
720 return put_page_testzero(&folio->page);
721}
722
1da177e4 723/*
7c8ee9a8
NP
724 * Try to grab a ref unless the page has a refcount of zero, return false if
725 * that is the case.
8e0861fa
AK
726 * This can be called when MMU is off so it must not access
727 * any of the virtual mappings.
1da177e4 728 */
c2530328 729static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 730{
fe896d18 731 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 732}
1da177e4 733
53df8fdc 734extern int page_is_ram(unsigned long pfn);
124fe20d
DW
735
736enum {
737 REGION_INTERSECTS,
738 REGION_DISJOINT,
739 REGION_MIXED,
740};
741
1c29f25b
TK
742int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
743 unsigned long desc);
53df8fdc 744
48667e7a 745/* Support for virtually mapped pages */
b3bdda02
CL
746struct page *vmalloc_to_page(const void *addr);
747unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 748
0738c4bb
PM
749/*
750 * Determine if an address is within the vmalloc range
751 *
752 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
753 * is no special casing required.
754 */
9bd3bb67
AK
755
756#ifndef is_ioremap_addr
757#define is_ioremap_addr(x) is_vmalloc_addr(x)
758#endif
759
81ac3ad9 760#ifdef CONFIG_MMU
186525bd 761extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
762extern int is_vmalloc_or_module_addr(const void *x);
763#else
186525bd
IM
764static inline bool is_vmalloc_addr(const void *x)
765{
766 return false;
767}
934831d0 768static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
769{
770 return 0;
771}
772#endif
9e2779fa 773
bac3cf4d 774static inline int head_compound_mapcount(struct page *head)
6dc5ea16
JH
775{
776 return atomic_read(compound_mapcount_ptr(head)) + 1;
777}
778
6988f31d
KK
779/*
780 * Mapcount of compound page as a whole, does not include mapped sub-pages.
781 *
782 * Must be called only for compound pages or any their tail sub-pages.
783 */
53f9263b
KS
784static inline int compound_mapcount(struct page *page)
785{
5f527c2b 786 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 787 page = compound_head(page);
bac3cf4d 788 return head_compound_mapcount(page);
53f9263b
KS
789}
790
70b50f94
AA
791/*
792 * The atomic page->_mapcount, starts from -1: so that transitions
793 * both from it and to it can be tracked, using atomic_inc_and_test
794 * and atomic_add_negative(-1).
795 */
22b751c3 796static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
797{
798 atomic_set(&(page)->_mapcount, -1);
799}
800
b20ce5e0
KS
801int __page_mapcount(struct page *page);
802
6988f31d
KK
803/*
804 * Mapcount of 0-order page; when compound sub-page, includes
805 * compound_mapcount().
806 *
807 * Result is undefined for pages which cannot be mapped into userspace.
808 * For example SLAB or special types of pages. See function page_has_type().
809 * They use this place in struct page differently.
810 */
70b50f94
AA
811static inline int page_mapcount(struct page *page)
812{
b20ce5e0
KS
813 if (unlikely(PageCompound(page)))
814 return __page_mapcount(page);
815 return atomic_read(&page->_mapcount) + 1;
816}
817
818#ifdef CONFIG_TRANSPARENT_HUGEPAGE
819int total_mapcount(struct page *page);
d08d2b62 820int page_trans_huge_mapcount(struct page *page);
b20ce5e0
KS
821#else
822static inline int total_mapcount(struct page *page)
823{
824 return page_mapcount(page);
70b50f94 825}
d08d2b62 826static inline int page_trans_huge_mapcount(struct page *page)
6d0a07ed 827{
d08d2b62 828 return page_mapcount(page);
6d0a07ed 829}
b20ce5e0 830#endif
70b50f94 831
b49af68f
CL
832static inline struct page *virt_to_head_page(const void *x)
833{
834 struct page *page = virt_to_page(x);
ccaafd7f 835
1d798ca3 836 return compound_head(page);
b49af68f
CL
837}
838
7d4203c1
VB
839static inline struct folio *virt_to_folio(const void *x)
840{
841 struct page *page = virt_to_page(x);
842
843 return page_folio(page);
844}
845
ddc58f27
KS
846void __put_page(struct page *page);
847
1d7ea732 848void put_pages_list(struct list_head *pages);
1da177e4 849
8dfcc9ba 850void split_page(struct page *page, unsigned int order);
715cbfd6 851void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 852
a1554c00
ML
853unsigned long nr_free_buffer_pages(void);
854
33f2ef89
AW
855/*
856 * Compound pages have a destructor function. Provide a
857 * prototype for that function and accessor functions.
f1e61557 858 * These are _only_ valid on the head of a compound page.
33f2ef89 859 */
f1e61557
KS
860typedef void compound_page_dtor(struct page *);
861
862/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
863enum compound_dtor_id {
864 NULL_COMPOUND_DTOR,
865 COMPOUND_PAGE_DTOR,
866#ifdef CONFIG_HUGETLB_PAGE
867 HUGETLB_PAGE_DTOR,
9a982250
KS
868#endif
869#ifdef CONFIG_TRANSPARENT_HUGEPAGE
870 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
871#endif
872 NR_COMPOUND_DTORS,
873};
ae70eddd 874extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
875
876static inline void set_compound_page_dtor(struct page *page,
f1e61557 877 enum compound_dtor_id compound_dtor)
33f2ef89 878{
f1e61557
KS
879 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
880 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
881}
882
ff45fc3c 883static inline void destroy_compound_page(struct page *page)
33f2ef89 884{
f1e61557 885 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 886 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
887}
888
47e29d32
JH
889static inline bool hpage_pincount_available(struct page *page)
890{
891 /*
892 * Can the page->hpage_pinned_refcount field be used? That field is in
893 * the 3rd page of the compound page, so the smallest (2-page) compound
894 * pages cannot support it.
895 */
896 page = compound_head(page);
897 return PageCompound(page) && compound_order(page) > 1;
898}
899
bac3cf4d 900static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
901{
902 return atomic_read(compound_pincount_ptr(head));
903}
904
47e29d32
JH
905static inline int compound_pincount(struct page *page)
906{
907 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
908 page = compound_head(page);
bac3cf4d 909 return head_compound_pincount(page);
47e29d32
JH
910}
911
f1e61557 912static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 913{
e4b294c2 914 page[1].compound_order = order;
1378a5ee 915 page[1].compound_nr = 1U << order;
d85f3385
CL
916}
917
d8c6546b
MWO
918/* Returns the number of pages in this potentially compound page. */
919static inline unsigned long compound_nr(struct page *page)
920{
1378a5ee
MWO
921 if (!PageHead(page))
922 return 1;
923 return page[1].compound_nr;
d8c6546b
MWO
924}
925
a50b854e
MWO
926/* Returns the number of bytes in this potentially compound page. */
927static inline unsigned long page_size(struct page *page)
928{
929 return PAGE_SIZE << compound_order(page);
930}
931
94ad9338
MWO
932/* Returns the number of bits needed for the number of bytes in a page */
933static inline unsigned int page_shift(struct page *page)
934{
935 return PAGE_SHIFT + compound_order(page);
936}
937
9a982250
KS
938void free_compound_page(struct page *page);
939
3dece370 940#ifdef CONFIG_MMU
14fd403f
AA
941/*
942 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
943 * servicing faults for write access. In the normal case, do always want
944 * pte_mkwrite. But get_user_pages can cause write faults for mappings
945 * that do not have writing enabled, when used by access_process_vm.
946 */
947static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
948{
949 if (likely(vma->vm_flags & VM_WRITE))
950 pte = pte_mkwrite(pte);
951 return pte;
952}
8c6e50b0 953
f9ce0be7 954vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 955void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 956
2b740303
SJ
957vm_fault_t finish_fault(struct vm_fault *vmf);
958vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 959#endif
14fd403f 960
1da177e4
LT
961/*
962 * Multiple processes may "see" the same page. E.g. for untouched
963 * mappings of /dev/null, all processes see the same page full of
964 * zeroes, and text pages of executables and shared libraries have
965 * only one copy in memory, at most, normally.
966 *
967 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
968 * page_count() == 0 means the page is free. page->lru is then used for
969 * freelist management in the buddy allocator.
da6052f7 970 * page_count() > 0 means the page has been allocated.
1da177e4 971 *
da6052f7
NP
972 * Pages are allocated by the slab allocator in order to provide memory
973 * to kmalloc and kmem_cache_alloc. In this case, the management of the
974 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
975 * unless a particular usage is carefully commented. (the responsibility of
976 * freeing the kmalloc memory is the caller's, of course).
1da177e4 977 *
da6052f7
NP
978 * A page may be used by anyone else who does a __get_free_page().
979 * In this case, page_count still tracks the references, and should only
980 * be used through the normal accessor functions. The top bits of page->flags
981 * and page->virtual store page management information, but all other fields
982 * are unused and could be used privately, carefully. The management of this
983 * page is the responsibility of the one who allocated it, and those who have
984 * subsequently been given references to it.
985 *
986 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
987 * managed by the Linux memory manager: I/O, buffers, swapping etc.
988 * The following discussion applies only to them.
989 *
da6052f7
NP
990 * A pagecache page contains an opaque `private' member, which belongs to the
991 * page's address_space. Usually, this is the address of a circular list of
992 * the page's disk buffers. PG_private must be set to tell the VM to call
993 * into the filesystem to release these pages.
1da177e4 994 *
da6052f7
NP
995 * A page may belong to an inode's memory mapping. In this case, page->mapping
996 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 997 * in units of PAGE_SIZE.
1da177e4 998 *
da6052f7
NP
999 * If pagecache pages are not associated with an inode, they are said to be
1000 * anonymous pages. These may become associated with the swapcache, and in that
1001 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1002 *
da6052f7
NP
1003 * In either case (swapcache or inode backed), the pagecache itself holds one
1004 * reference to the page. Setting PG_private should also increment the
1005 * refcount. The each user mapping also has a reference to the page.
1da177e4 1006 *
da6052f7 1007 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1008 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1009 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1010 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1011 *
da6052f7 1012 * All pagecache pages may be subject to I/O:
1da177e4
LT
1013 * - inode pages may need to be read from disk,
1014 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1015 * to be written back to the inode on disk,
1016 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1017 * modified may need to be swapped out to swap space and (later) to be read
1018 * back into memory.
1da177e4
LT
1019 */
1020
1021/*
1022 * The zone field is never updated after free_area_init_core()
1023 * sets it, so none of the operations on it need to be atomic.
1da177e4 1024 */
348f8b6c 1025
90572890 1026/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1027#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1028#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1029#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1030#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1031#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1032
348f8b6c 1033/*
25985edc 1034 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1035 * sections we define the shift as 0; that plus a 0 mask ensures
1036 * the compiler will optimise away reference to them.
1037 */
d41dee36
AW
1038#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1039#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1040#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1041#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1042#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1043
bce54bbf
WD
1044/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1045#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1046#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1047#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1048 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1049#else
89689ae7 1050#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1051#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1052 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1053#endif
1054
bd8029b6 1055#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1056
d41dee36
AW
1057#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1058#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1059#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1060#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1061#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1062#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1063
33dd4e0e 1064static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1065{
c403f6a3 1066 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1067 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1068}
1da177e4 1069
32b8fc48
MWO
1070static inline enum zone_type folio_zonenum(const struct folio *folio)
1071{
1072 return page_zonenum(&folio->page);
1073}
1074
260ae3f7
DW
1075#ifdef CONFIG_ZONE_DEVICE
1076static inline bool is_zone_device_page(const struct page *page)
1077{
1078 return page_zonenum(page) == ZONE_DEVICE;
1079}
966cf44f
AD
1080extern void memmap_init_zone_device(struct zone *, unsigned long,
1081 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1082#else
1083static inline bool is_zone_device_page(const struct page *page)
1084{
1085 return false;
1086}
7b2d55d2 1087#endif
5042db43 1088
8e3560d9
PT
1089static inline bool is_zone_movable_page(const struct page *page)
1090{
1091 return page_zonenum(page) == ZONE_MOVABLE;
1092}
1093
e7638488 1094#ifdef CONFIG_DEV_PAGEMAP_OPS
e7638488 1095DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1096
1097static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1098{
1099 if (!static_branch_unlikely(&devmap_managed_key))
1100 return false;
1101 if (!is_zone_device_page(page))
1102 return false;
1103 switch (page->pgmap->type) {
1104 case MEMORY_DEVICE_PRIVATE:
e7638488 1105 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1106 return true;
1107 default:
1108 break;
1109 }
1110 return false;
1111}
1112
07d80269
JH
1113void put_devmap_managed_page(struct page *page);
1114
e7638488 1115#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1116static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1117{
1118 return false;
1119}
07d80269
JH
1120
1121static inline void put_devmap_managed_page(struct page *page)
1122{
1123}
7588adf8 1124#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1125
6b368cd4
JG
1126static inline bool is_device_private_page(const struct page *page)
1127{
7588adf8
RM
1128 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1129 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1130 is_zone_device_page(page) &&
1131 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1132}
e7638488 1133
52916982
LG
1134static inline bool is_pci_p2pdma_page(const struct page *page)
1135{
7588adf8
RM
1136 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1137 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1138 is_zone_device_page(page) &&
1139 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1140}
7b2d55d2 1141
f958d7b5 1142/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1143#define folio_ref_zero_or_close_to_overflow(folio) \
1144 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1145
1146/**
1147 * folio_get - Increment the reference count on a folio.
1148 * @folio: The folio.
1149 *
1150 * Context: May be called in any context, as long as you know that
1151 * you have a refcount on the folio. If you do not already have one,
1152 * folio_try_get() may be the right interface for you to use.
1153 */
1154static inline void folio_get(struct folio *folio)
1155{
1156 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1157 folio_ref_inc(folio);
1158}
f958d7b5 1159
3565fce3
DW
1160static inline void get_page(struct page *page)
1161{
86d234cb 1162 folio_get(page_folio(page));
3565fce3
DW
1163}
1164
3faa52c0 1165bool __must_check try_grab_page(struct page *page, unsigned int flags);
54d516b1
JH
1166struct page *try_grab_compound_head(struct page *page, int refs,
1167 unsigned int flags);
0fa5bc40 1168
cd1adf1b
LT
1169
1170static inline __must_check bool try_get_page(struct page *page)
1171{
1172 page = compound_head(page);
1173 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1174 return false;
1175 page_ref_inc(page);
1176 return true;
1177}
3565fce3 1178
b620f633
MWO
1179/**
1180 * folio_put - Decrement the reference count on a folio.
1181 * @folio: The folio.
1182 *
1183 * If the folio's reference count reaches zero, the memory will be
1184 * released back to the page allocator and may be used by another
1185 * allocation immediately. Do not access the memory or the struct folio
1186 * after calling folio_put() unless you can be sure that it wasn't the
1187 * last reference.
1188 *
1189 * Context: May be called in process or interrupt context, but not in NMI
1190 * context. May be called while holding a spinlock.
1191 */
1192static inline void folio_put(struct folio *folio)
1193{
1194 if (folio_put_testzero(folio))
1195 __put_page(&folio->page);
1196}
1197
3fe7fa58
MWO
1198/**
1199 * folio_put_refs - Reduce the reference count on a folio.
1200 * @folio: The folio.
1201 * @refs: The amount to subtract from the folio's reference count.
1202 *
1203 * If the folio's reference count reaches zero, the memory will be
1204 * released back to the page allocator and may be used by another
1205 * allocation immediately. Do not access the memory or the struct folio
1206 * after calling folio_put_refs() unless you can be sure that these weren't
1207 * the last references.
1208 *
1209 * Context: May be called in process or interrupt context, but not in NMI
1210 * context. May be called while holding a spinlock.
1211 */
1212static inline void folio_put_refs(struct folio *folio, int refs)
1213{
1214 if (folio_ref_sub_and_test(folio, refs))
1215 __put_page(&folio->page);
1216}
1217
3565fce3
DW
1218static inline void put_page(struct page *page)
1219{
b620f633 1220 struct folio *folio = page_folio(page);
3565fce3 1221
7b2d55d2 1222 /*
e7638488
DW
1223 * For devmap managed pages we need to catch refcount transition from
1224 * 2 to 1, when refcount reach one it means the page is free and we
1225 * need to inform the device driver through callback. See
7b2d55d2
JG
1226 * include/linux/memremap.h and HMM for details.
1227 */
b620f633
MWO
1228 if (page_is_devmap_managed(&folio->page)) {
1229 put_devmap_managed_page(&folio->page);
7b2d55d2 1230 return;
07d80269 1231 }
7b2d55d2 1232
b620f633 1233 folio_put(folio);
3565fce3
DW
1234}
1235
3faa52c0
JH
1236/*
1237 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1238 * the page's refcount so that two separate items are tracked: the original page
1239 * reference count, and also a new count of how many pin_user_pages() calls were
1240 * made against the page. ("gup-pinned" is another term for the latter).
1241 *
1242 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1243 * distinct from normal pages. As such, the unpin_user_page() call (and its
1244 * variants) must be used in order to release gup-pinned pages.
1245 *
1246 * Choice of value:
1247 *
1248 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1249 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1250 * simpler, due to the fact that adding an even power of two to the page
1251 * refcount has the effect of using only the upper N bits, for the code that
1252 * counts up using the bias value. This means that the lower bits are left for
1253 * the exclusive use of the original code that increments and decrements by one
1254 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1255 *
3faa52c0
JH
1256 * Of course, once the lower bits overflow into the upper bits (and this is
1257 * OK, because subtraction recovers the original values), then visual inspection
1258 * no longer suffices to directly view the separate counts. However, for normal
1259 * applications that don't have huge page reference counts, this won't be an
1260 * issue.
fc1d8e7c 1261 *
3faa52c0
JH
1262 * Locking: the lockless algorithm described in page_cache_get_speculative()
1263 * and page_cache_gup_pin_speculative() provides safe operation for
1264 * get_user_pages and page_mkclean and other calls that race to set up page
1265 * table entries.
fc1d8e7c 1266 */
3faa52c0 1267#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1268
3faa52c0 1269void unpin_user_page(struct page *page);
f1f6a7dd
JH
1270void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1271 bool make_dirty);
458a4f78
JM
1272void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1273 bool make_dirty);
f1f6a7dd 1274void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1275
3faa52c0 1276/**
136dfc99
MWO
1277 * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1278 * @page: The page.
3faa52c0
JH
1279 *
1280 * This function checks if a page has been pinned via a call to
136dfc99 1281 * a function in the pin_user_pages() family.
3faa52c0
JH
1282 *
1283 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1284 * because it means "definitely not pinned for DMA", but true means "probably
1285 * pinned for DMA, but possibly a false positive due to having at least
1286 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1287 *
1288 * False positives are OK, because: a) it's unlikely for a page to get that many
1289 * refcounts, and b) all the callers of this routine are expected to be able to
1290 * deal gracefully with a false positive.
1291 *
47e29d32
JH
1292 * For huge pages, the result will be exactly correct. That's because we have
1293 * more tracking data available: the 3rd struct page in the compound page is
1294 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1295 * scheme).
1296 *
72ef5e52 1297 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0 1298 *
136dfc99
MWO
1299 * Return: True, if it is likely that the page has been "dma-pinned".
1300 * False, if the page is definitely not dma-pinned.
3faa52c0
JH
1301 */
1302static inline bool page_maybe_dma_pinned(struct page *page)
1303{
47e29d32
JH
1304 if (hpage_pincount_available(page))
1305 return compound_pincount(page) > 0;
1306
3faa52c0
JH
1307 /*
1308 * page_ref_count() is signed. If that refcount overflows, then
1309 * page_ref_count() returns a negative value, and callers will avoid
1310 * further incrementing the refcount.
1311 *
1312 * Here, for that overflow case, use the signed bit to count a little
1313 * bit higher via unsigned math, and thus still get an accurate result.
1314 */
1315 return ((unsigned int)page_ref_count(compound_head(page))) >=
1316 GUP_PIN_COUNTING_BIAS;
1317}
1318
97a7e473
PX
1319static inline bool is_cow_mapping(vm_flags_t flags)
1320{
1321 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1322}
1323
1324/*
1325 * This should most likely only be called during fork() to see whether we
1326 * should break the cow immediately for a page on the src mm.
1327 */
1328static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1329 struct page *page)
1330{
1331 if (!is_cow_mapping(vma->vm_flags))
1332 return false;
1333
a458b76a 1334 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
97a7e473
PX
1335 return false;
1336
1337 return page_maybe_dma_pinned(page);
1338}
1339
9127ab4f
CS
1340#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1341#define SECTION_IN_PAGE_FLAGS
1342#endif
1343
89689ae7 1344/*
7a8010cd
VB
1345 * The identification function is mainly used by the buddy allocator for
1346 * determining if two pages could be buddies. We are not really identifying
1347 * the zone since we could be using the section number id if we do not have
1348 * node id available in page flags.
1349 * We only guarantee that it will return the same value for two combinable
1350 * pages in a zone.
89689ae7 1351 */
cb2b95e1
AW
1352static inline int page_zone_id(struct page *page)
1353{
89689ae7 1354 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1355}
1356
89689ae7 1357#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1358extern int page_to_nid(const struct page *page);
89689ae7 1359#else
33dd4e0e 1360static inline int page_to_nid(const struct page *page)
d41dee36 1361{
f165b378
PT
1362 struct page *p = (struct page *)page;
1363
1364 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1365}
89689ae7
CL
1366#endif
1367
874fd90c
MWO
1368static inline int folio_nid(const struct folio *folio)
1369{
1370 return page_to_nid(&folio->page);
1371}
1372
57e0a030 1373#ifdef CONFIG_NUMA_BALANCING
90572890 1374static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1375{
90572890 1376 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1377}
1378
90572890 1379static inline int cpupid_to_pid(int cpupid)
57e0a030 1380{
90572890 1381 return cpupid & LAST__PID_MASK;
57e0a030 1382}
b795854b 1383
90572890 1384static inline int cpupid_to_cpu(int cpupid)
b795854b 1385{
90572890 1386 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1387}
1388
90572890 1389static inline int cpupid_to_nid(int cpupid)
b795854b 1390{
90572890 1391 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1392}
1393
90572890 1394static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1395{
90572890 1396 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1397}
1398
90572890 1399static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1400{
90572890 1401 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1402}
1403
8c8a743c
PZ
1404static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1405{
1406 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1407}
1408
1409#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1410#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1411static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1412{
1ae71d03 1413 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1414}
90572890
PZ
1415
1416static inline int page_cpupid_last(struct page *page)
1417{
1418 return page->_last_cpupid;
1419}
1420static inline void page_cpupid_reset_last(struct page *page)
b795854b 1421{
1ae71d03 1422 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1423}
1424#else
90572890 1425static inline int page_cpupid_last(struct page *page)
75980e97 1426{
90572890 1427 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1428}
1429
90572890 1430extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1431
90572890 1432static inline void page_cpupid_reset_last(struct page *page)
75980e97 1433{
09940a4f 1434 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1435}
90572890
PZ
1436#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1437#else /* !CONFIG_NUMA_BALANCING */
1438static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1439{
90572890 1440 return page_to_nid(page); /* XXX */
57e0a030
MG
1441}
1442
90572890 1443static inline int page_cpupid_last(struct page *page)
57e0a030 1444{
90572890 1445 return page_to_nid(page); /* XXX */
57e0a030
MG
1446}
1447
90572890 1448static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1449{
1450 return -1;
1451}
1452
90572890 1453static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1454{
1455 return -1;
1456}
1457
90572890 1458static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1459{
1460 return -1;
1461}
1462
90572890
PZ
1463static inline int cpu_pid_to_cpupid(int nid, int pid)
1464{
1465 return -1;
1466}
1467
1468static inline bool cpupid_pid_unset(int cpupid)
b795854b 1469{
2b787449 1470 return true;
b795854b
MG
1471}
1472
90572890 1473static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1474{
1475}
8c8a743c
PZ
1476
1477static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1478{
1479 return false;
1480}
90572890 1481#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1482
2e903b91 1483#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1484
cf10bd4c
AK
1485/*
1486 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1487 * setting tags for all pages to native kernel tag value 0xff, as the default
1488 * value 0x00 maps to 0xff.
1489 */
1490
2813b9c0
AK
1491static inline u8 page_kasan_tag(const struct page *page)
1492{
cf10bd4c
AK
1493 u8 tag = 0xff;
1494
1495 if (kasan_enabled()) {
1496 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1497 tag ^= 0xff;
1498 }
1499
1500 return tag;
2813b9c0
AK
1501}
1502
1503static inline void page_kasan_tag_set(struct page *page, u8 tag)
1504{
27fe7339
PC
1505 unsigned long old_flags, flags;
1506
1507 if (!kasan_enabled())
1508 return;
1509
1510 tag ^= 0xff;
1511 old_flags = READ_ONCE(page->flags);
1512 do {
1513 flags = old_flags;
1514 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1515 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1516 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1517}
1518
1519static inline void page_kasan_tag_reset(struct page *page)
1520{
34303244
AK
1521 if (kasan_enabled())
1522 page_kasan_tag_set(page, 0xff);
2813b9c0 1523}
34303244
AK
1524
1525#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1526
2813b9c0
AK
1527static inline u8 page_kasan_tag(const struct page *page)
1528{
1529 return 0xff;
1530}
1531
1532static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1533static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1534
1535#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1536
33dd4e0e 1537static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1538{
1539 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1540}
1541
75ef7184
MG
1542static inline pg_data_t *page_pgdat(const struct page *page)
1543{
1544 return NODE_DATA(page_to_nid(page));
1545}
1546
32b8fc48
MWO
1547static inline struct zone *folio_zone(const struct folio *folio)
1548{
1549 return page_zone(&folio->page);
1550}
1551
1552static inline pg_data_t *folio_pgdat(const struct folio *folio)
1553{
1554 return page_pgdat(&folio->page);
1555}
1556
9127ab4f 1557#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1558static inline void set_page_section(struct page *page, unsigned long section)
1559{
1560 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1561 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1562}
1563
aa462abe 1564static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1565{
1566 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1567}
308c05e3 1568#endif
d41dee36 1569
bf6bd276
MWO
1570/**
1571 * folio_pfn - Return the Page Frame Number of a folio.
1572 * @folio: The folio.
1573 *
1574 * A folio may contain multiple pages. The pages have consecutive
1575 * Page Frame Numbers.
1576 *
1577 * Return: The Page Frame Number of the first page in the folio.
1578 */
1579static inline unsigned long folio_pfn(struct folio *folio)
1580{
1581 return page_to_pfn(&folio->page);
1582}
1583
8e3560d9
PT
1584/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1585#ifdef CONFIG_MIGRATION
1586static inline bool is_pinnable_page(struct page *page)
1587{
9afaf30f
PT
1588 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1589 is_zero_pfn(page_to_pfn(page));
8e3560d9
PT
1590}
1591#else
1592static inline bool is_pinnable_page(struct page *page)
1593{
1594 return true;
1595}
1596#endif
1597
2f1b6248 1598static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1599{
1600 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1601 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1602}
2f1b6248 1603
348f8b6c
DH
1604static inline void set_page_node(struct page *page, unsigned long node)
1605{
1606 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1607 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1608}
89689ae7 1609
2f1b6248 1610static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1611 unsigned long node, unsigned long pfn)
1da177e4 1612{
348f8b6c
DH
1613 set_page_zone(page, zone);
1614 set_page_node(page, node);
9127ab4f 1615#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1616 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1617#endif
1da177e4
LT
1618}
1619
7b230db3
MWO
1620/**
1621 * folio_nr_pages - The number of pages in the folio.
1622 * @folio: The folio.
1623 *
1624 * Return: A positive power of two.
1625 */
1626static inline long folio_nr_pages(struct folio *folio)
1627{
1628 return compound_nr(&folio->page);
1629}
1630
1631/**
1632 * folio_next - Move to the next physical folio.
1633 * @folio: The folio we're currently operating on.
1634 *
1635 * If you have physically contiguous memory which may span more than
1636 * one folio (eg a &struct bio_vec), use this function to move from one
1637 * folio to the next. Do not use it if the memory is only virtually
1638 * contiguous as the folios are almost certainly not adjacent to each
1639 * other. This is the folio equivalent to writing ``page++``.
1640 *
1641 * Context: We assume that the folios are refcounted and/or locked at a
1642 * higher level and do not adjust the reference counts.
1643 * Return: The next struct folio.
1644 */
1645static inline struct folio *folio_next(struct folio *folio)
1646{
1647 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1648}
1649
1650/**
1651 * folio_shift - The size of the memory described by this folio.
1652 * @folio: The folio.
1653 *
1654 * A folio represents a number of bytes which is a power-of-two in size.
1655 * This function tells you which power-of-two the folio is. See also
1656 * folio_size() and folio_order().
1657 *
1658 * Context: The caller should have a reference on the folio to prevent
1659 * it from being split. It is not necessary for the folio to be locked.
1660 * Return: The base-2 logarithm of the size of this folio.
1661 */
1662static inline unsigned int folio_shift(struct folio *folio)
1663{
1664 return PAGE_SHIFT + folio_order(folio);
1665}
1666
1667/**
1668 * folio_size - The number of bytes in a folio.
1669 * @folio: The folio.
1670 *
1671 * Context: The caller should have a reference on the folio to prevent
1672 * it from being split. It is not necessary for the folio to be locked.
1673 * Return: The number of bytes in this folio.
1674 */
1675static inline size_t folio_size(struct folio *folio)
1676{
1677 return PAGE_SIZE << folio_order(folio);
1678}
1679
b424de33
MWO
1680#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1681static inline int arch_make_page_accessible(struct page *page)
1682{
1683 return 0;
1684}
1685#endif
1686
1687#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1688static inline int arch_make_folio_accessible(struct folio *folio)
1689{
1690 int ret;
1691 long i, nr = folio_nr_pages(folio);
1692
1693 for (i = 0; i < nr; i++) {
1694 ret = arch_make_page_accessible(folio_page(folio, i));
1695 if (ret)
1696 break;
1697 }
1698
1699 return ret;
1700}
1701#endif
1702
f6ac2354
CL
1703/*
1704 * Some inline functions in vmstat.h depend on page_zone()
1705 */
1706#include <linux/vmstat.h>
1707
33dd4e0e 1708static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1709{
1dff8083 1710 return page_to_virt(page);
1da177e4
LT
1711}
1712
1713#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1714#define HASHED_PAGE_VIRTUAL
1715#endif
1716
1717#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1718static inline void *page_address(const struct page *page)
1719{
1720 return page->virtual;
1721}
1722static inline void set_page_address(struct page *page, void *address)
1723{
1724 page->virtual = address;
1725}
1da177e4
LT
1726#define page_address_init() do { } while(0)
1727#endif
1728
1729#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1730void *page_address(const struct page *page);
1da177e4
LT
1731void set_page_address(struct page *page, void *virtual);
1732void page_address_init(void);
1733#endif
1734
1735#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1736#define page_address(page) lowmem_page_address(page)
1737#define set_page_address(page, address) do { } while(0)
1738#define page_address_init() do { } while(0)
1739#endif
1740
7d4203c1
VB
1741static inline void *folio_address(const struct folio *folio)
1742{
1743 return page_address(&folio->page);
1744}
1745
e39155ea
KS
1746extern void *page_rmapping(struct page *page);
1747extern struct anon_vma *page_anon_vma(struct page *page);
f6ab1f7f
HY
1748extern pgoff_t __page_file_index(struct page *page);
1749
1da177e4
LT
1750/*
1751 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1752 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1753 */
1754static inline pgoff_t page_index(struct page *page)
1755{
1756 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1757 return __page_file_index(page);
1da177e4
LT
1758 return page->index;
1759}
1760
1aa8aea5 1761bool page_mapped(struct page *page);
dd10ab04 1762bool folio_mapped(struct folio *folio);
1da177e4 1763
2f064f34
MH
1764/*
1765 * Return true only if the page has been allocated with
1766 * ALLOC_NO_WATERMARKS and the low watermark was not
1767 * met implying that the system is under some pressure.
1768 */
1d7bab6a 1769static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1770{
1771 /*
c07aea3e
MC
1772 * lru.next has bit 1 set if the page is allocated from the
1773 * pfmemalloc reserves. Callers may simply overwrite it if
1774 * they do not need to preserve that information.
2f064f34 1775 */
c07aea3e 1776 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
1777}
1778
1779/*
1780 * Only to be called by the page allocator on a freshly allocated
1781 * page.
1782 */
1783static inline void set_page_pfmemalloc(struct page *page)
1784{
c07aea3e 1785 page->lru.next = (void *)BIT(1);
2f064f34
MH
1786}
1787
1788static inline void clear_page_pfmemalloc(struct page *page)
1789{
c07aea3e 1790 page->lru.next = NULL;
2f064f34
MH
1791}
1792
1c0fe6e3
NP
1793/*
1794 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1795 */
1796extern void pagefault_out_of_memory(void);
1797
1da177e4 1798#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1799#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 1800#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 1801
ddd588b5 1802/*
7bf02ea2 1803 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1804 * various contexts.
1805 */
4b59e6c4 1806#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1807
9af744d7 1808extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1809
710ec38b 1810#ifdef CONFIG_MMU
7f43add4 1811extern bool can_do_mlock(void);
710ec38b
AB
1812#else
1813static inline bool can_do_mlock(void) { return false; }
1814#endif
d7c9e99a
AG
1815extern int user_shm_lock(size_t, struct ucounts *);
1816extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 1817
25b2995a
CH
1818struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1819 pte_t pte);
28093f9f
GS
1820struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1821 pmd_t pmd);
7e675137 1822
27d036e3
LR
1823void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1824 unsigned long size);
14f5ff5d 1825void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1826 unsigned long size);
4f74d2c8
LT
1827void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1828 unsigned long start, unsigned long end);
e6473092 1829
ac46d4f3
JG
1830struct mmu_notifier_range;
1831
42b77728 1832void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1833 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1834int
1835copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
9fd6dad1
PB
1836int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1837 struct mmu_notifier_range *range, pte_t **ptepp,
1838 pmd_t **pmdpp, spinlock_t **ptlp);
ff5c19ed 1839int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 1840 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
1841int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1842 unsigned long *pfn);
d87fe660 1843int follow_phys(struct vm_area_struct *vma, unsigned long address,
1844 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1845int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1846 void *buf, int len, int write);
1da177e4 1847
7caef267 1848extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1849extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1850void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1851void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 1852int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1853int invalidate_inode_page(struct page *page);
1854
7ee1dd3f 1855#ifdef CONFIG_MMU
2b740303 1856extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1857 unsigned long address, unsigned int flags,
1858 struct pt_regs *regs);
64019a2e 1859extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1860 unsigned long address, unsigned int fault_flags,
1861 bool *unlocked);
977fbdcd
MW
1862void unmap_mapping_pages(struct address_space *mapping,
1863 pgoff_t start, pgoff_t nr, bool even_cows);
1864void unmap_mapping_range(struct address_space *mapping,
1865 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1866#else
2b740303 1867static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1868 unsigned long address, unsigned int flags,
1869 struct pt_regs *regs)
7ee1dd3f
DH
1870{
1871 /* should never happen if there's no MMU */
1872 BUG();
1873 return VM_FAULT_SIGBUS;
1874}
64019a2e 1875static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1876 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1877{
1878 /* should never happen if there's no MMU */
1879 BUG();
1880 return -EFAULT;
1881}
977fbdcd
MW
1882static inline void unmap_mapping_pages(struct address_space *mapping,
1883 pgoff_t start, pgoff_t nr, bool even_cows) { }
1884static inline void unmap_mapping_range(struct address_space *mapping,
1885 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1886#endif
f33ea7f4 1887
977fbdcd
MW
1888static inline void unmap_shared_mapping_range(struct address_space *mapping,
1889 loff_t const holebegin, loff_t const holelen)
1890{
1891 unmap_mapping_range(mapping, holebegin, holelen, 0);
1892}
1893
1894extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1895 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1896extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1897 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1898extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1899 void *buf, int len, unsigned int gup_flags);
1da177e4 1900
64019a2e 1901long get_user_pages_remote(struct mm_struct *mm,
1e987790 1902 unsigned long start, unsigned long nr_pages,
9beae1ea 1903 unsigned int gup_flags, struct page **pages,
5b56d49f 1904 struct vm_area_struct **vmas, int *locked);
64019a2e 1905long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1906 unsigned long start, unsigned long nr_pages,
1907 unsigned int gup_flags, struct page **pages,
1908 struct vm_area_struct **vmas, int *locked);
c12d2da5 1909long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1910 unsigned int gup_flags, struct page **pages,
cde70140 1911 struct vm_area_struct **vmas);
eddb1c22
JH
1912long pin_user_pages(unsigned long start, unsigned long nr_pages,
1913 unsigned int gup_flags, struct page **pages,
1914 struct vm_area_struct **vmas);
c12d2da5 1915long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1916 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1917long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1918 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1919long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1920 struct page **pages, unsigned int gup_flags);
91429023
JH
1921long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1922 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1923
73b0140b
IW
1924int get_user_pages_fast(unsigned long start, int nr_pages,
1925 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1926int pin_user_pages_fast(unsigned long start, int nr_pages,
1927 unsigned int gup_flags, struct page **pages);
8025e5dd 1928
79eb597c
DJ
1929int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1930int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1931 struct task_struct *task, bool bypass_rlim);
1932
18022c5d
MG
1933struct kvec;
1934int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1935 struct page **pages);
f3e8fccd 1936struct page *get_dump_page(unsigned long addr);
1da177e4 1937
d47992f8
LC
1938extern void do_invalidatepage(struct page *page, unsigned int offset,
1939 unsigned int length);
cf9a2ae8 1940
b5e84594
MWO
1941bool folio_mark_dirty(struct folio *folio);
1942bool set_page_dirty(struct page *page);
1da177e4 1943int set_page_dirty_lock(struct page *page);
b9ea2515 1944
a9090253 1945int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1946
b6a2fea3
OW
1947extern unsigned long move_page_tables(struct vm_area_struct *vma,
1948 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1949 unsigned long new_addr, unsigned long len,
1950 bool need_rmap_locks);
58705444
PX
1951
1952/*
1953 * Flags used by change_protection(). For now we make it a bitmap so
1954 * that we can pass in multiple flags just like parameters. However
1955 * for now all the callers are only use one of the flags at the same
1956 * time.
1957 */
1958/* Whether we should allow dirty bit accounting */
1959#define MM_CP_DIRTY_ACCT (1UL << 0)
1960/* Whether this protection change is for NUMA hints */
1961#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1962/* Whether this change is for write protecting */
1963#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1964#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1965#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1966 MM_CP_UFFD_WP_RESOLVE)
58705444 1967
7da4d641
PZ
1968extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1969 unsigned long end, pgprot_t newprot,
58705444 1970 unsigned long cp_flags);
b6a2fea3
OW
1971extern int mprotect_fixup(struct vm_area_struct *vma,
1972 struct vm_area_struct **pprev, unsigned long start,
1973 unsigned long end, unsigned long newflags);
1da177e4 1974
465a454f
PZ
1975/*
1976 * doesn't attempt to fault and will return short.
1977 */
dadbb612
SJ
1978int get_user_pages_fast_only(unsigned long start, int nr_pages,
1979 unsigned int gup_flags, struct page **pages);
104acc32
JH
1980int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1981 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1982
1983static inline bool get_user_page_fast_only(unsigned long addr,
1984 unsigned int gup_flags, struct page **pagep)
1985{
1986 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1987}
d559db08
KH
1988/*
1989 * per-process(per-mm_struct) statistics.
1990 */
d559db08
KH
1991static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1992{
69c97823
KK
1993 long val = atomic_long_read(&mm->rss_stat.count[member]);
1994
1995#ifdef SPLIT_RSS_COUNTING
1996 /*
1997 * counter is updated in asynchronous manner and may go to minus.
1998 * But it's never be expected number for users.
1999 */
2000 if (val < 0)
2001 val = 0;
172703b0 2002#endif
69c97823
KK
2003 return (unsigned long)val;
2004}
d559db08 2005
e4dcad20 2006void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 2007
d559db08
KH
2008static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2009{
b3d1411b
JFG
2010 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
2011
e4dcad20 2012 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2013}
2014
2015static inline void inc_mm_counter(struct mm_struct *mm, int member)
2016{
b3d1411b
JFG
2017 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
2018
e4dcad20 2019 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2020}
2021
2022static inline void dec_mm_counter(struct mm_struct *mm, int member)
2023{
b3d1411b
JFG
2024 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2025
e4dcad20 2026 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2027}
2028
eca56ff9
JM
2029/* Optimized variant when page is already known not to be PageAnon */
2030static inline int mm_counter_file(struct page *page)
2031{
2032 if (PageSwapBacked(page))
2033 return MM_SHMEMPAGES;
2034 return MM_FILEPAGES;
2035}
2036
2037static inline int mm_counter(struct page *page)
2038{
2039 if (PageAnon(page))
2040 return MM_ANONPAGES;
2041 return mm_counter_file(page);
2042}
2043
d559db08
KH
2044static inline unsigned long get_mm_rss(struct mm_struct *mm)
2045{
2046 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2047 get_mm_counter(mm, MM_ANONPAGES) +
2048 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2049}
2050
2051static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2052{
2053 return max(mm->hiwater_rss, get_mm_rss(mm));
2054}
2055
2056static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2057{
2058 return max(mm->hiwater_vm, mm->total_vm);
2059}
2060
2061static inline void update_hiwater_rss(struct mm_struct *mm)
2062{
2063 unsigned long _rss = get_mm_rss(mm);
2064
2065 if ((mm)->hiwater_rss < _rss)
2066 (mm)->hiwater_rss = _rss;
2067}
2068
2069static inline void update_hiwater_vm(struct mm_struct *mm)
2070{
2071 if (mm->hiwater_vm < mm->total_vm)
2072 mm->hiwater_vm = mm->total_vm;
2073}
2074
695f0559
PC
2075static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2076{
2077 mm->hiwater_rss = get_mm_rss(mm);
2078}
2079
d559db08
KH
2080static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2081 struct mm_struct *mm)
2082{
2083 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2084
2085 if (*maxrss < hiwater_rss)
2086 *maxrss = hiwater_rss;
2087}
2088
53bddb4e 2089#if defined(SPLIT_RSS_COUNTING)
05af2e10 2090void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2091#else
05af2e10 2092static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2093{
2094}
2095#endif
465a454f 2096
78e7c5af
AK
2097#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2098static inline int pte_special(pte_t pte)
2099{
2100 return 0;
2101}
2102
2103static inline pte_t pte_mkspecial(pte_t pte)
2104{
2105 return pte;
2106}
2107#endif
2108
17596731 2109#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2110static inline int pte_devmap(pte_t pte)
2111{
2112 return 0;
2113}
2114#endif
2115
6d2329f8 2116int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 2117
25ca1d6c
NK
2118extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2119 spinlock_t **ptl);
2120static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2121 spinlock_t **ptl)
2122{
2123 pte_t *ptep;
2124 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2125 return ptep;
2126}
c9cfcddf 2127
c2febafc
KS
2128#ifdef __PAGETABLE_P4D_FOLDED
2129static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2130 unsigned long address)
2131{
2132 return 0;
2133}
2134#else
2135int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2136#endif
2137
b4e98d9a 2138#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2139static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2140 unsigned long address)
2141{
2142 return 0;
2143}
b4e98d9a
KS
2144static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2145static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2146
5f22df00 2147#else
c2febafc 2148int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2149
b4e98d9a
KS
2150static inline void mm_inc_nr_puds(struct mm_struct *mm)
2151{
6d212db1
MS
2152 if (mm_pud_folded(mm))
2153 return;
af5b0f6a 2154 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2155}
2156
2157static inline void mm_dec_nr_puds(struct mm_struct *mm)
2158{
6d212db1
MS
2159 if (mm_pud_folded(mm))
2160 return;
af5b0f6a 2161 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2162}
5f22df00
NP
2163#endif
2164
2d2f5119 2165#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2166static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2167 unsigned long address)
2168{
2169 return 0;
2170}
dc6c9a35 2171
dc6c9a35
KS
2172static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2173static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2174
5f22df00 2175#else
1bb3630e 2176int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2177
dc6c9a35
KS
2178static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2179{
6d212db1
MS
2180 if (mm_pmd_folded(mm))
2181 return;
af5b0f6a 2182 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2183}
2184
2185static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2186{
6d212db1
MS
2187 if (mm_pmd_folded(mm))
2188 return;
af5b0f6a 2189 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2190}
5f22df00
NP
2191#endif
2192
c4812909 2193#ifdef CONFIG_MMU
af5b0f6a 2194static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2195{
af5b0f6a 2196 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2197}
2198
af5b0f6a 2199static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2200{
af5b0f6a 2201 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2202}
2203
2204static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2205{
af5b0f6a 2206 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2207}
2208
2209static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2210{
af5b0f6a 2211 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2212}
2213#else
c4812909 2214
af5b0f6a
KS
2215static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2216static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2217{
2218 return 0;
2219}
2220
2221static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2222static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2223#endif
2224
4cf58924
JFG
2225int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2226int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2227
f949286c
MR
2228#if defined(CONFIG_MMU)
2229
c2febafc
KS
2230static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2231 unsigned long address)
2232{
2233 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2234 NULL : p4d_offset(pgd, address);
2235}
2236
2237static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2238 unsigned long address)
1da177e4 2239{
c2febafc
KS
2240 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2241 NULL : pud_offset(p4d, address);
1da177e4 2242}
d8626138 2243
1da177e4
LT
2244static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2245{
1bb3630e
HD
2246 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2247 NULL: pmd_offset(pud, address);
1da177e4 2248}
f949286c 2249#endif /* CONFIG_MMU */
1bb3630e 2250
57c1ffce 2251#if USE_SPLIT_PTE_PTLOCKS
597d795a 2252#if ALLOC_SPLIT_PTLOCKS
b35f1819 2253void __init ptlock_cache_init(void);
539edb58
PZ
2254extern bool ptlock_alloc(struct page *page);
2255extern void ptlock_free(struct page *page);
2256
2257static inline spinlock_t *ptlock_ptr(struct page *page)
2258{
2259 return page->ptl;
2260}
597d795a 2261#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2262static inline void ptlock_cache_init(void)
2263{
2264}
2265
49076ec2
KS
2266static inline bool ptlock_alloc(struct page *page)
2267{
49076ec2
KS
2268 return true;
2269}
539edb58 2270
49076ec2
KS
2271static inline void ptlock_free(struct page *page)
2272{
49076ec2
KS
2273}
2274
2275static inline spinlock_t *ptlock_ptr(struct page *page)
2276{
539edb58 2277 return &page->ptl;
49076ec2 2278}
597d795a 2279#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2280
2281static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2282{
2283 return ptlock_ptr(pmd_page(*pmd));
2284}
2285
2286static inline bool ptlock_init(struct page *page)
2287{
2288 /*
2289 * prep_new_page() initialize page->private (and therefore page->ptl)
2290 * with 0. Make sure nobody took it in use in between.
2291 *
2292 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2293 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2294 */
309381fe 2295 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2296 if (!ptlock_alloc(page))
2297 return false;
2298 spin_lock_init(ptlock_ptr(page));
2299 return true;
2300}
2301
57c1ffce 2302#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2303/*
2304 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2305 */
49076ec2
KS
2306static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2307{
2308 return &mm->page_table_lock;
2309}
b35f1819 2310static inline void ptlock_cache_init(void) {}
49076ec2 2311static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2312static inline void ptlock_free(struct page *page) {}
57c1ffce 2313#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2314
b35f1819
KS
2315static inline void pgtable_init(void)
2316{
2317 ptlock_cache_init();
2318 pgtable_cache_init();
2319}
2320
b4ed71f5 2321static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2322{
706874e9
VD
2323 if (!ptlock_init(page))
2324 return false;
1d40a5ea 2325 __SetPageTable(page);
f0c0c115 2326 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2327 return true;
2f569afd
MS
2328}
2329
b4ed71f5 2330static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2331{
9e247bab 2332 ptlock_free(page);
1d40a5ea 2333 __ClearPageTable(page);
f0c0c115 2334 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2335}
2336
c74df32c
HD
2337#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2338({ \
4c21e2f2 2339 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2340 pte_t *__pte = pte_offset_map(pmd, address); \
2341 *(ptlp) = __ptl; \
2342 spin_lock(__ptl); \
2343 __pte; \
2344})
2345
2346#define pte_unmap_unlock(pte, ptl) do { \
2347 spin_unlock(ptl); \
2348 pte_unmap(pte); \
2349} while (0)
2350
4cf58924 2351#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2352
2353#define pte_alloc_map(mm, pmd, address) \
4cf58924 2354 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2355
c74df32c 2356#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2357 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2358 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2359
1bb3630e 2360#define pte_alloc_kernel(pmd, address) \
4cf58924 2361 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2362 NULL: pte_offset_kernel(pmd, address))
1da177e4 2363
e009bb30
KS
2364#if USE_SPLIT_PMD_PTLOCKS
2365
634391ac
MS
2366static struct page *pmd_to_page(pmd_t *pmd)
2367{
2368 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2369 return virt_to_page((void *)((unsigned long) pmd & mask));
2370}
2371
e009bb30
KS
2372static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2373{
634391ac 2374 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2375}
2376
b2b29d6d 2377static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2378{
e009bb30
KS
2379#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2380 page->pmd_huge_pte = NULL;
2381#endif
49076ec2 2382 return ptlock_init(page);
e009bb30
KS
2383}
2384
b2b29d6d 2385static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2386{
2387#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2388 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2389#endif
49076ec2 2390 ptlock_free(page);
e009bb30
KS
2391}
2392
634391ac 2393#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2394
2395#else
2396
9a86cb7b
KS
2397static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2398{
2399 return &mm->page_table_lock;
2400}
2401
b2b29d6d
MW
2402static inline bool pmd_ptlock_init(struct page *page) { return true; }
2403static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2404
c389a250 2405#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2406
e009bb30
KS
2407#endif
2408
9a86cb7b
KS
2409static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2410{
2411 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2412 spin_lock(ptl);
2413 return ptl;
2414}
2415
b2b29d6d
MW
2416static inline bool pgtable_pmd_page_ctor(struct page *page)
2417{
2418 if (!pmd_ptlock_init(page))
2419 return false;
2420 __SetPageTable(page);
f0c0c115 2421 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2422 return true;
2423}
2424
2425static inline void pgtable_pmd_page_dtor(struct page *page)
2426{
2427 pmd_ptlock_free(page);
2428 __ClearPageTable(page);
f0c0c115 2429 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2430}
2431
a00cc7d9
MW
2432/*
2433 * No scalability reason to split PUD locks yet, but follow the same pattern
2434 * as the PMD locks to make it easier if we decide to. The VM should not be
2435 * considered ready to switch to split PUD locks yet; there may be places
2436 * which need to be converted from page_table_lock.
2437 */
2438static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2439{
2440 return &mm->page_table_lock;
2441}
2442
2443static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2444{
2445 spinlock_t *ptl = pud_lockptr(mm, pud);
2446
2447 spin_lock(ptl);
2448 return ptl;
2449}
62906027 2450
a00cc7d9 2451extern void __init pagecache_init(void);
bc9331a1 2452extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2453extern void free_initmem(void);
2454
69afade7
JL
2455/*
2456 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2457 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2458 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2459 * Return pages freed into the buddy system.
2460 */
11199692 2461extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2462 int poison, const char *s);
c3d5f5f0 2463
c3d5f5f0 2464extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2465extern void mem_init_print_info(void);
69afade7 2466
4b50bcc7 2467extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2468
69afade7 2469/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2470static inline void free_reserved_page(struct page *page)
69afade7
JL
2471{
2472 ClearPageReserved(page);
2473 init_page_count(page);
2474 __free_page(page);
69afade7
JL
2475 adjust_managed_page_count(page, 1);
2476}
a0cd7a7c 2477#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2478
2479static inline void mark_page_reserved(struct page *page)
2480{
2481 SetPageReserved(page);
2482 adjust_managed_page_count(page, -1);
2483}
2484
2485/*
2486 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2487 * The freed pages will be poisoned with pattern "poison" if it's within
2488 * range [0, UCHAR_MAX].
2489 * Return pages freed into the buddy system.
69afade7
JL
2490 */
2491static inline unsigned long free_initmem_default(int poison)
2492{
2493 extern char __init_begin[], __init_end[];
2494
11199692 2495 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2496 poison, "unused kernel image (initmem)");
69afade7
JL
2497}
2498
7ee3d4e8
JL
2499static inline unsigned long get_num_physpages(void)
2500{
2501 int nid;
2502 unsigned long phys_pages = 0;
2503
2504 for_each_online_node(nid)
2505 phys_pages += node_present_pages(nid);
2506
2507 return phys_pages;
2508}
2509
c713216d 2510/*
3f08a302 2511 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2512 * zones, allocate the backing mem_map and account for memory holes in an
2513 * architecture independent manner.
c713216d
MG
2514 *
2515 * An architecture is expected to register range of page frames backed by
0ee332c1 2516 * physical memory with memblock_add[_node]() before calling
9691a071 2517 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2518 * usage, an architecture is expected to do something like
2519 *
2520 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2521 * max_highmem_pfn};
2522 * for_each_valid_physical_page_range()
952eea9b 2523 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2524 * free_area_init(max_zone_pfns);
c713216d 2525 */
9691a071 2526void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2527unsigned long node_map_pfn_alignment(void);
32996250
YL
2528unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2529 unsigned long end_pfn);
c713216d
MG
2530extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2531 unsigned long end_pfn);
2532extern void get_pfn_range_for_nid(unsigned int nid,
2533 unsigned long *start_pfn, unsigned long *end_pfn);
2534extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2535
a9ee6cf5 2536#ifndef CONFIG_NUMA
6f24fbd3 2537static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2538{
2539 return 0;
2540}
2541#else
2542/* please see mm/page_alloc.c */
2543extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2544#endif
2545
0e0b864e 2546extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2547extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2548 unsigned long, unsigned long, enum meminit_context,
2549 struct vmem_altmap *, int migratetype);
bc75d33f 2550extern void setup_per_zone_wmarks(void);
bd3400ea 2551extern void calculate_min_free_kbytes(void);
1b79acc9 2552extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2553extern void mem_init(void);
8feae131 2554extern void __init mmap_init(void);
9af744d7 2555extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2556extern long si_mem_available(void);
1da177e4
LT
2557extern void si_meminfo(struct sysinfo * val);
2558extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2559#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2560extern unsigned long arch_reserved_kernel_pages(void);
2561#endif
1da177e4 2562
a8e99259
MH
2563extern __printf(3, 4)
2564void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2565
e7c8d5c9 2566extern void setup_per_cpu_pageset(void);
e7c8d5c9 2567
75f7ad8e
PS
2568/* page_alloc.c */
2569extern int min_free_kbytes;
1c30844d 2570extern int watermark_boost_factor;
795ae7a0 2571extern int watermark_scale_factor;
51930df5 2572extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2573
8feae131 2574/* nommu.c */
33e5d769 2575extern atomic_long_t mmap_pages_allocated;
7e660872 2576extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2577
6b2dbba8 2578/* interval_tree.c */
6b2dbba8 2579void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2580 struct rb_root_cached *root);
9826a516
ML
2581void vma_interval_tree_insert_after(struct vm_area_struct *node,
2582 struct vm_area_struct *prev,
f808c13f 2583 struct rb_root_cached *root);
6b2dbba8 2584void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2585 struct rb_root_cached *root);
2586struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2587 unsigned long start, unsigned long last);
2588struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2589 unsigned long start, unsigned long last);
2590
2591#define vma_interval_tree_foreach(vma, root, start, last) \
2592 for (vma = vma_interval_tree_iter_first(root, start, last); \
2593 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2594
bf181b9f 2595void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2596 struct rb_root_cached *root);
bf181b9f 2597void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2598 struct rb_root_cached *root);
2599struct anon_vma_chain *
2600anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2601 unsigned long start, unsigned long last);
bf181b9f
ML
2602struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2603 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2604#ifdef CONFIG_DEBUG_VM_RB
2605void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2606#endif
bf181b9f
ML
2607
2608#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2609 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2610 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2611
1da177e4 2612/* mmap.c */
34b4e4aa 2613extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2614extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2615 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2616 struct vm_area_struct *expand);
2617static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2618 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2619{
2620 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2621}
1da177e4
LT
2622extern struct vm_area_struct *vma_merge(struct mm_struct *,
2623 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2624 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
9a10064f 2625 struct mempolicy *, struct vm_userfaultfd_ctx, const char *);
1da177e4 2626extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2627extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2628 unsigned long addr, int new_below);
2629extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2630 unsigned long addr, int new_below);
1da177e4
LT
2631extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2632extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2633 struct rb_node **, struct rb_node *);
a8fb5618 2634extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2635extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2636 unsigned long addr, unsigned long len, pgoff_t pgoff,
2637 bool *need_rmap_locks);
1da177e4 2638extern void exit_mmap(struct mm_struct *);
925d1c40 2639
9c599024
CG
2640static inline int check_data_rlimit(unsigned long rlim,
2641 unsigned long new,
2642 unsigned long start,
2643 unsigned long end_data,
2644 unsigned long start_data)
2645{
2646 if (rlim < RLIM_INFINITY) {
2647 if (((new - start) + (end_data - start_data)) > rlim)
2648 return -ENOSPC;
2649 }
2650
2651 return 0;
2652}
2653
7906d00c
AA
2654extern int mm_take_all_locks(struct mm_struct *mm);
2655extern void mm_drop_all_locks(struct mm_struct *mm);
2656
fe69d560 2657extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 2658extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 2659extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2660extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2661
84638335
KK
2662extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2663extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2664
2eefd878
DS
2665extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2666 const struct vm_special_mapping *sm);
3935ed6a
SS
2667extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2668 unsigned long addr, unsigned long len,
a62c34bd
AL
2669 unsigned long flags,
2670 const struct vm_special_mapping *spec);
2671/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2672extern int install_special_mapping(struct mm_struct *mm,
2673 unsigned long addr, unsigned long len,
2674 unsigned long flags, struct page **pages);
1da177e4 2675
649775be
AG
2676unsigned long randomize_stack_top(unsigned long stack_top);
2677
1da177e4
LT
2678extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2679
0165ab44 2680extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2681 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2682 struct list_head *uf);
1fcfd8db 2683extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2684 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2685 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2686extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2687 struct list_head *uf, bool downgrade);
897ab3e0
MR
2688extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2689 struct list_head *uf);
0726b01e 2690extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2691
bebeb3d6
ML
2692#ifdef CONFIG_MMU
2693extern int __mm_populate(unsigned long addr, unsigned long len,
2694 int ignore_errors);
2695static inline void mm_populate(unsigned long addr, unsigned long len)
2696{
2697 /* Ignore errors */
2698 (void) __mm_populate(addr, len, 1);
2699}
2700#else
2701static inline void mm_populate(unsigned long addr, unsigned long len) {}
2702#endif
2703
e4eb1ff6 2704/* These take the mm semaphore themselves */
5d22fc25 2705extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2706extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2707extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2708extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2709 unsigned long, unsigned long,
2710 unsigned long, unsigned long);
1da177e4 2711
db4fbfb9
ML
2712struct vm_unmapped_area_info {
2713#define VM_UNMAPPED_AREA_TOPDOWN 1
2714 unsigned long flags;
2715 unsigned long length;
2716 unsigned long low_limit;
2717 unsigned long high_limit;
2718 unsigned long align_mask;
2719 unsigned long align_offset;
2720};
2721
baceaf1c 2722extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2723
85821aab 2724/* truncate.c */
1da177e4 2725extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2726extern void truncate_inode_pages_range(struct address_space *,
2727 loff_t lstart, loff_t lend);
91b0abe3 2728extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2729
2730/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2731extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2732extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2733 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2734extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 2735
1be7107f 2736extern unsigned long stack_guard_gap;
d05f3169 2737/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2738extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2739
11192337 2740/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2741extern int expand_downwards(struct vm_area_struct *vma,
2742 unsigned long address);
8ca3eb08 2743#if VM_GROWSUP
46dea3d0 2744extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2745#else
fee7e49d 2746 #define expand_upwards(vma, address) (0)
9ab88515 2747#endif
1da177e4
LT
2748
2749/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2750extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2751extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2752 struct vm_area_struct **pprev);
2753
ce6d42f2
LH
2754/**
2755 * find_vma_intersection() - Look up the first VMA which intersects the interval
2756 * @mm: The process address space.
2757 * @start_addr: The inclusive start user address.
2758 * @end_addr: The exclusive end user address.
2759 *
2760 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2761 * start_addr < end_addr.
2762 */
2763static inline
2764struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2765 unsigned long start_addr,
2766 unsigned long end_addr)
1da177e4 2767{
ce6d42f2 2768 struct vm_area_struct *vma = find_vma(mm, start_addr);
1da177e4
LT
2769
2770 if (vma && end_addr <= vma->vm_start)
2771 vma = NULL;
2772 return vma;
2773}
2774
ce6d42f2
LH
2775/**
2776 * vma_lookup() - Find a VMA at a specific address
2777 * @mm: The process address space.
2778 * @addr: The user address.
2779 *
2780 * Return: The vm_area_struct at the given address, %NULL otherwise.
2781 */
2782static inline
2783struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2784{
2785 struct vm_area_struct *vma = find_vma(mm, addr);
2786
2787 if (vma && addr < vma->vm_start)
2788 vma = NULL;
2789
2790 return vma;
2791}
2792
1be7107f
HD
2793static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2794{
2795 unsigned long vm_start = vma->vm_start;
2796
2797 if (vma->vm_flags & VM_GROWSDOWN) {
2798 vm_start -= stack_guard_gap;
2799 if (vm_start > vma->vm_start)
2800 vm_start = 0;
2801 }
2802 return vm_start;
2803}
2804
2805static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2806{
2807 unsigned long vm_end = vma->vm_end;
2808
2809 if (vma->vm_flags & VM_GROWSUP) {
2810 vm_end += stack_guard_gap;
2811 if (vm_end < vma->vm_end)
2812 vm_end = -PAGE_SIZE;
2813 }
2814 return vm_end;
2815}
2816
1da177e4
LT
2817static inline unsigned long vma_pages(struct vm_area_struct *vma)
2818{
2819 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2820}
2821
640708a2
PE
2822/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2823static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2824 unsigned long vm_start, unsigned long vm_end)
2825{
2826 struct vm_area_struct *vma = find_vma(mm, vm_start);
2827
2828 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2829 vma = NULL;
2830
2831 return vma;
2832}
2833
017b1660
MK
2834static inline bool range_in_vma(struct vm_area_struct *vma,
2835 unsigned long start, unsigned long end)
2836{
2837 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2838}
2839
bad849b3 2840#ifdef CONFIG_MMU
804af2cf 2841pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2842void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2843#else
2844static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2845{
2846 return __pgprot(0);
2847}
64e45507
PF
2848static inline void vma_set_page_prot(struct vm_area_struct *vma)
2849{
2850 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2851}
bad849b3
DH
2852#endif
2853
295992fb
CK
2854void vma_set_file(struct vm_area_struct *vma, struct file *file);
2855
5877231f 2856#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2857unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2858 unsigned long start, unsigned long end);
2859#endif
2860
deceb6cd 2861struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2862int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2863 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
2864int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2865 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 2866int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2867int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2868 struct page **pages, unsigned long *num);
a667d745
SJ
2869int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2870 unsigned long num);
2871int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2872 unsigned long num);
ae2b01f3 2873vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2874 unsigned long pfn);
f5e6d1d5
MW
2875vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2876 unsigned long pfn, pgprot_t pgprot);
5d747637 2877vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2878 pfn_t pfn);
574c5b3d
TH
2879vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2880 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2881vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2882 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2883int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2884
1c8f4220
SJ
2885static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2886 unsigned long addr, struct page *page)
2887{
2888 int err = vm_insert_page(vma, addr, page);
2889
2890 if (err == -ENOMEM)
2891 return VM_FAULT_OOM;
2892 if (err < 0 && err != -EBUSY)
2893 return VM_FAULT_SIGBUS;
2894
2895 return VM_FAULT_NOPAGE;
2896}
2897
f8f6ae5d
JG
2898#ifndef io_remap_pfn_range
2899static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2900 unsigned long addr, unsigned long pfn,
2901 unsigned long size, pgprot_t prot)
2902{
2903 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2904}
2905#endif
2906
d97baf94
SJ
2907static inline vm_fault_t vmf_error(int err)
2908{
2909 if (err == -ENOMEM)
2910 return VM_FAULT_OOM;
2911 return VM_FAULT_SIGBUS;
2912}
2913
df06b37f
KB
2914struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2915 unsigned int foll_flags);
240aadee 2916
deceb6cd
HD
2917#define FOLL_WRITE 0x01 /* check pte is writable */
2918#define FOLL_TOUCH 0x02 /* mark page accessed */
2919#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2920#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2921#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2922#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2923 * and return without waiting upon it */
55b8fe70 2924#define FOLL_NOFAULT 0x80 /* do not fault in pages */
69ebb83e 2925#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2926#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2927#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2928#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1e987790 2929#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2930#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2931#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2932#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2933#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2934#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2935#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2936
2937/*
eddb1c22
JH
2938 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2939 * other. Here is what they mean, and how to use them:
932f4a63
IW
2940 *
2941 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2942 * period _often_ under userspace control. This is in contrast to
2943 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2944 *
2945 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2946 * lifetime enforced by the filesystem and we need guarantees that longterm
2947 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2948 * the filesystem. Ideas for this coordination include revoking the longterm
2949 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2950 * added after the problem with filesystems was found FS DAX VMAs are
2951 * specifically failed. Filesystem pages are still subject to bugs and use of
2952 * FOLL_LONGTERM should be avoided on those pages.
2953 *
2954 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2955 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2956 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2957 * is due to an incompatibility with the FS DAX check and
eddb1c22 2958 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2959 *
eddb1c22
JH
2960 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2961 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2962 * FOLL_LONGTERM is specified.
eddb1c22
JH
2963 *
2964 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2965 * but an additional pin counting system) will be invoked. This is intended for
2966 * anything that gets a page reference and then touches page data (for example,
2967 * Direct IO). This lets the filesystem know that some non-file-system entity is
2968 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2969 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2970 * a call to unpin_user_page().
eddb1c22
JH
2971 *
2972 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2973 * and separate refcounting mechanisms, however, and that means that each has
2974 * its own acquire and release mechanisms:
2975 *
2976 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2977 *
f1f6a7dd 2978 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2979 *
2980 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2981 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2982 * calls applied to them, and that's perfectly OK. This is a constraint on the
2983 * callers, not on the pages.)
2984 *
2985 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2986 * directly by the caller. That's in order to help avoid mismatches when
2987 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2988 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2989 *
72ef5e52 2990 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2991 */
1da177e4 2992
2b740303 2993static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2994{
2995 if (vm_fault & VM_FAULT_OOM)
2996 return -ENOMEM;
2997 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2998 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2999 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3000 return -EFAULT;
3001 return 0;
3002}
3003
8b1e0f81 3004typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3005extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3006 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3007extern int apply_to_existing_page_range(struct mm_struct *mm,
3008 unsigned long address, unsigned long size,
3009 pte_fn_t fn, void *data);
aee16b3c 3010
04013513 3011extern void init_mem_debugging_and_hardening(void);
8823b1db 3012#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3013extern void __kernel_poison_pages(struct page *page, int numpages);
3014extern void __kernel_unpoison_pages(struct page *page, int numpages);
3015extern bool _page_poisoning_enabled_early;
3016DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3017static inline bool page_poisoning_enabled(void)
3018{
3019 return _page_poisoning_enabled_early;
3020}
3021/*
3022 * For use in fast paths after init_mem_debugging() has run, or when a
3023 * false negative result is not harmful when called too early.
3024 */
3025static inline bool page_poisoning_enabled_static(void)
3026{
3027 return static_branch_unlikely(&_page_poisoning_enabled);
3028}
3029static inline void kernel_poison_pages(struct page *page, int numpages)
3030{
3031 if (page_poisoning_enabled_static())
3032 __kernel_poison_pages(page, numpages);
3033}
3034static inline void kernel_unpoison_pages(struct page *page, int numpages)
3035{
3036 if (page_poisoning_enabled_static())
3037 __kernel_unpoison_pages(page, numpages);
3038}
8823b1db
LA
3039#else
3040static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3041static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3042static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3043static inline void kernel_poison_pages(struct page *page, int numpages) { }
3044static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3045#endif
3046
51cba1eb 3047DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3048static inline bool want_init_on_alloc(gfp_t flags)
3049{
51cba1eb
KC
3050 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3051 &init_on_alloc))
6471384a
AP
3052 return true;
3053 return flags & __GFP_ZERO;
3054}
3055
51cba1eb 3056DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3057static inline bool want_init_on_free(void)
3058{
51cba1eb
KC
3059 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3060 &init_on_free);
6471384a
AP
3061}
3062
8e57f8ac
VB
3063extern bool _debug_pagealloc_enabled_early;
3064DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3065
3066static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3067{
3068 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3069 _debug_pagealloc_enabled_early;
3070}
3071
3072/*
3073 * For use in fast paths after init_debug_pagealloc() has run, or when a
3074 * false negative result is not harmful when called too early.
3075 */
3076static inline bool debug_pagealloc_enabled_static(void)
031bc574 3077{
96a2b03f
VB
3078 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3079 return false;
3080
3081 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3082}
3083
5d6ad668 3084#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3085/*
5d6ad668
MR
3086 * To support DEBUG_PAGEALLOC architecture must ensure that
3087 * __kernel_map_pages() never fails
c87cbc1f 3088 */
d6332692
RE
3089extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3090
77bc7fd6
MR
3091static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3092{
3093 if (debug_pagealloc_enabled_static())
3094 __kernel_map_pages(page, numpages, 1);
3095}
3096
3097static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3098{
3099 if (debug_pagealloc_enabled_static())
3100 __kernel_map_pages(page, numpages, 0);
3101}
5d6ad668 3102#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3103static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3104static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3105#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3106
a6c19dfe 3107#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3108extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3109extern int in_gate_area_no_mm(unsigned long addr);
3110extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3111#else
a6c19dfe
AL
3112static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3113{
3114 return NULL;
3115}
3116static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3117static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3118{
3119 return 0;
3120}
1da177e4
LT
3121#endif /* __HAVE_ARCH_GATE_AREA */
3122
44a70ade
MH
3123extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3124
146732ce
JT
3125#ifdef CONFIG_SYSCTL
3126extern int sysctl_drop_caches;
32927393
CH
3127int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3128 loff_t *);
146732ce
JT
3129#endif
3130
cb731d6c 3131void drop_slab(void);
9d0243bc 3132
7a9166e3
LY
3133#ifndef CONFIG_MMU
3134#define randomize_va_space 0
3135#else
a62eaf15 3136extern int randomize_va_space;
7a9166e3 3137#endif
a62eaf15 3138
045e72ac 3139const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3140#ifdef CONFIG_MMU
03252919 3141void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3142#else
3143static inline void print_vma_addr(char *prefix, unsigned long rip)
3144{
3145}
3146#endif
e6e5494c 3147
3bc2b6a7
MS
3148int vmemmap_remap_free(unsigned long start, unsigned long end,
3149 unsigned long reuse);
ad2fa371
MS
3150int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3151 unsigned long reuse, gfp_t gfp_mask);
f41f2ed4 3152
35fd1eb1 3153void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
3154struct page * __populate_section_memmap(unsigned long pfn,
3155 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3156pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3157p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3158pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3159pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
3160pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3161 struct vmem_altmap *altmap);
8f6aac41 3162void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3163struct vmem_altmap;
56993b4e
AK
3164void *vmemmap_alloc_block_buf(unsigned long size, int node,
3165 struct vmem_altmap *altmap);
8f6aac41 3166void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3167int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3168 int node, struct vmem_altmap *altmap);
7b73d978
CH
3169int vmemmap_populate(unsigned long start, unsigned long end, int node,
3170 struct vmem_altmap *altmap);
c2b91e2e 3171void vmemmap_populate_print_last(void);
0197518c 3172#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3173void vmemmap_free(unsigned long start, unsigned long end,
3174 struct vmem_altmap *altmap);
0197518c 3175#endif
46723bfa 3176void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3177 unsigned long nr_pages);
6a46079c 3178
82ba011b
AK
3179enum mf_flags {
3180 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3181 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3182 MF_MUST_KILL = 1 << 2,
cf870c70 3183 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3184 MF_UNPOISON = 1 << 4,
82ba011b 3185};
83b57531
EB
3186extern int memory_failure(unsigned long pfn, int flags);
3187extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3188extern void memory_failure_queue_kick(int cpu);
847ce401 3189extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3190extern int sysctl_memory_failure_early_kill;
3191extern int sysctl_memory_failure_recovery;
d0505e9f 3192extern void shake_page(struct page *p);
5844a486 3193extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3194extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3195
03b122da
TL
3196#ifndef arch_memory_failure
3197static inline int arch_memory_failure(unsigned long pfn, int flags)
3198{
3199 return -ENXIO;
3200}
3201#endif
3202
3203#ifndef arch_is_platform_page
3204static inline bool arch_is_platform_page(u64 paddr)
3205{
3206 return false;
3207}
3208#endif
cc637b17
XX
3209
3210/*
3211 * Error handlers for various types of pages.
3212 */
cc3e2af4 3213enum mf_result {
cc637b17
XX
3214 MF_IGNORED, /* Error: cannot be handled */
3215 MF_FAILED, /* Error: handling failed */
3216 MF_DELAYED, /* Will be handled later */
3217 MF_RECOVERED, /* Successfully recovered */
3218};
3219
3220enum mf_action_page_type {
3221 MF_MSG_KERNEL,
3222 MF_MSG_KERNEL_HIGH_ORDER,
3223 MF_MSG_SLAB,
3224 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3225 MF_MSG_HUGE,
3226 MF_MSG_FREE_HUGE,
31286a84 3227 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3228 MF_MSG_UNMAP_FAILED,
3229 MF_MSG_DIRTY_SWAPCACHE,
3230 MF_MSG_CLEAN_SWAPCACHE,
3231 MF_MSG_DIRTY_MLOCKED_LRU,
3232 MF_MSG_CLEAN_MLOCKED_LRU,
3233 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3234 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3235 MF_MSG_DIRTY_LRU,
3236 MF_MSG_CLEAN_LRU,
3237 MF_MSG_TRUNCATED_LRU,
3238 MF_MSG_BUDDY,
6100e34b 3239 MF_MSG_DAX,
5d1fd5dc 3240 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3241 MF_MSG_UNKNOWN,
3242};
3243
47ad8475
AA
3244#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3245extern void clear_huge_page(struct page *page,
c79b57e4 3246 unsigned long addr_hint,
47ad8475
AA
3247 unsigned int pages_per_huge_page);
3248extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3249 unsigned long addr_hint,
3250 struct vm_area_struct *vma,
47ad8475 3251 unsigned int pages_per_huge_page);
fa4d75c1
MK
3252extern long copy_huge_page_from_user(struct page *dst_page,
3253 const void __user *usr_src,
810a56b9
MK
3254 unsigned int pages_per_huge_page,
3255 bool allow_pagefault);
2484ca9b
THV
3256
3257/**
3258 * vma_is_special_huge - Are transhuge page-table entries considered special?
3259 * @vma: Pointer to the struct vm_area_struct to consider
3260 *
3261 * Whether transhuge page-table entries are considered "special" following
3262 * the definition in vm_normal_page().
3263 *
3264 * Return: true if transhuge page-table entries should be considered special,
3265 * false otherwise.
3266 */
3267static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3268{
3269 return vma_is_dax(vma) || (vma->vm_file &&
3270 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3271}
3272
47ad8475
AA
3273#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3274
c0a32fc5
SG
3275#ifdef CONFIG_DEBUG_PAGEALLOC
3276extern unsigned int _debug_guardpage_minorder;
96a2b03f 3277DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3278
3279static inline unsigned int debug_guardpage_minorder(void)
3280{
3281 return _debug_guardpage_minorder;
3282}
3283
e30825f1
JK
3284static inline bool debug_guardpage_enabled(void)
3285{
96a2b03f 3286 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3287}
3288
c0a32fc5
SG
3289static inline bool page_is_guard(struct page *page)
3290{
e30825f1
JK
3291 if (!debug_guardpage_enabled())
3292 return false;
3293
3972f6bb 3294 return PageGuard(page);
c0a32fc5
SG
3295}
3296#else
3297static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3298static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3299static inline bool page_is_guard(struct page *page) { return false; }
3300#endif /* CONFIG_DEBUG_PAGEALLOC */
3301
f9872caf
CS
3302#if MAX_NUMNODES > 1
3303void __init setup_nr_node_ids(void);
3304#else
3305static inline void setup_nr_node_ids(void) {}
3306#endif
3307
010c164a
SL
3308extern int memcmp_pages(struct page *page1, struct page *page2);
3309
3310static inline int pages_identical(struct page *page1, struct page *page2)
3311{
3312 return !memcmp_pages(page1, page2);
3313}
3314
c5acad84
TH
3315#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3316unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3317 pgoff_t first_index, pgoff_t nr,
3318 pgoff_t bitmap_pgoff,
3319 unsigned long *bitmap,
3320 pgoff_t *start,
3321 pgoff_t *end);
3322
3323unsigned long wp_shared_mapping_range(struct address_space *mapping,
3324 pgoff_t first_index, pgoff_t nr);
3325#endif
3326
2374c09b
CH
3327extern int sysctl_nr_trim_pages;
3328
5bb1bb35 3329#ifdef CONFIG_PRINTK
8e7f37f2 3330void mem_dump_obj(void *object);
5bb1bb35
PM
3331#else
3332static inline void mem_dump_obj(void *object) {}
3333#endif
8e7f37f2 3334
22247efd
PX
3335/**
3336 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3337 * @seals: the seals to check
3338 * @vma: the vma to operate on
3339 *
3340 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3341 * the vma flags. Return 0 if check pass, or <0 for errors.
3342 */
3343static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3344{
3345 if (seals & F_SEAL_FUTURE_WRITE) {
3346 /*
3347 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3348 * "future write" seal active.
3349 */
3350 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3351 return -EPERM;
3352
3353 /*
3354 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3355 * MAP_SHARED and read-only, take care to not allow mprotect to
3356 * revert protections on such mappings. Do this only for shared
3357 * mappings. For private mappings, don't need to mask
3358 * VM_MAYWRITE as we still want them to be COW-writable.
3359 */
3360 if (vma->vm_flags & VM_SHARED)
3361 vma->vm_flags &= ~(VM_MAYWRITE);
3362 }
3363
3364 return 0;
3365}
3366
9a10064f
CC
3367#ifdef CONFIG_ANON_VMA_NAME
3368int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3369 unsigned long len_in, const char *name);
3370#else
3371static inline int
3372madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3373 unsigned long len_in, const char *name) {
3374 return 0;
3375}
3376#endif
3377
1da177e4 3378#endif /* _LINUX_MM_H */