mm/gup: Convert try_grab_page() to use a folio
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
1da177e4
LT
31
32struct mempolicy;
33struct anon_vma;
bf181b9f 34struct anon_vma_chain;
e8edc6e0 35struct user_struct;
bce617ed 36struct pt_regs;
1da177e4 37
5ef64cc8
LT
38extern int sysctl_page_lock_unfairness;
39
597b7305
MH
40void init_mm_internals(void);
41
a9ee6cf5 42#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 43extern unsigned long max_mapnr;
fccc9987
JL
44
45static inline void set_max_mapnr(unsigned long limit)
46{
47 max_mapnr = limit;
48}
49#else
50static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
51#endif
52
ca79b0c2
AK
53extern atomic_long_t _totalram_pages;
54static inline unsigned long totalram_pages(void)
55{
56 return (unsigned long)atomic_long_read(&_totalram_pages);
57}
58
59static inline void totalram_pages_inc(void)
60{
61 atomic_long_inc(&_totalram_pages);
62}
63
64static inline void totalram_pages_dec(void)
65{
66 atomic_long_dec(&_totalram_pages);
67}
68
69static inline void totalram_pages_add(long count)
70{
71 atomic_long_add(count, &_totalram_pages);
72}
73
1da177e4 74extern void * high_memory;
1da177e4
LT
75extern int page_cluster;
76
77#ifdef CONFIG_SYSCTL
78extern int sysctl_legacy_va_layout;
79#else
80#define sysctl_legacy_va_layout 0
81#endif
82
d07e2259
DC
83#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
84extern const int mmap_rnd_bits_min;
85extern const int mmap_rnd_bits_max;
86extern int mmap_rnd_bits __read_mostly;
87#endif
88#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
89extern const int mmap_rnd_compat_bits_min;
90extern const int mmap_rnd_compat_bits_max;
91extern int mmap_rnd_compat_bits __read_mostly;
92#endif
93
1da177e4 94#include <asm/page.h>
1da177e4 95#include <asm/processor.h>
1da177e4 96
d9344522
AK
97/*
98 * Architectures that support memory tagging (assigning tags to memory regions,
99 * embedding these tags into addresses that point to these memory regions, and
100 * checking that the memory and the pointer tags match on memory accesses)
101 * redefine this macro to strip tags from pointers.
f0953a1b 102 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
103 */
104#ifndef untagged_addr
105#define untagged_addr(addr) (addr)
106#endif
107
79442ed1
TC
108#ifndef __pa_symbol
109#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
110#endif
111
1dff8083
AB
112#ifndef page_to_virt
113#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
114#endif
115
568c5fe5
LA
116#ifndef lm_alias
117#define lm_alias(x) __va(__pa_symbol(x))
118#endif
119
593befa6
DD
120/*
121 * To prevent common memory management code establishing
122 * a zero page mapping on a read fault.
123 * This macro should be defined within <asm/pgtable.h>.
124 * s390 does this to prevent multiplexing of hardware bits
125 * related to the physical page in case of virtualization.
126 */
127#ifndef mm_forbids_zeropage
128#define mm_forbids_zeropage(X) (0)
129#endif
130
a4a3ede2
PT
131/*
132 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
133 * If an architecture decides to implement their own version of
134 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
135 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 136 */
5470dea4
AD
137#if BITS_PER_LONG == 64
138/* This function must be updated when the size of struct page grows above 80
139 * or reduces below 56. The idea that compiler optimizes out switch()
140 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 141 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
142 * this can result in several of the writes here being dropped.
143 */
144#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
145static inline void __mm_zero_struct_page(struct page *page)
146{
147 unsigned long *_pp = (void *)page;
148
149 /* Check that struct page is either 56, 64, 72, or 80 bytes */
150 BUILD_BUG_ON(sizeof(struct page) & 7);
151 BUILD_BUG_ON(sizeof(struct page) < 56);
152 BUILD_BUG_ON(sizeof(struct page) > 80);
153
154 switch (sizeof(struct page)) {
155 case 80:
df561f66
GS
156 _pp[9] = 0;
157 fallthrough;
5470dea4 158 case 72:
df561f66
GS
159 _pp[8] = 0;
160 fallthrough;
5470dea4 161 case 64:
df561f66
GS
162 _pp[7] = 0;
163 fallthrough;
5470dea4
AD
164 case 56:
165 _pp[6] = 0;
166 _pp[5] = 0;
167 _pp[4] = 0;
168 _pp[3] = 0;
169 _pp[2] = 0;
170 _pp[1] = 0;
171 _pp[0] = 0;
172 }
173}
174#else
a4a3ede2
PT
175#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
176#endif
177
ea606cf5
AR
178/*
179 * Default maximum number of active map areas, this limits the number of vmas
180 * per mm struct. Users can overwrite this number by sysctl but there is a
181 * problem.
182 *
183 * When a program's coredump is generated as ELF format, a section is created
184 * per a vma. In ELF, the number of sections is represented in unsigned short.
185 * This means the number of sections should be smaller than 65535 at coredump.
186 * Because the kernel adds some informative sections to a image of program at
187 * generating coredump, we need some margin. The number of extra sections is
188 * 1-3 now and depends on arch. We use "5" as safe margin, here.
189 *
190 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
191 * not a hard limit any more. Although some userspace tools can be surprised by
192 * that.
193 */
194#define MAPCOUNT_ELF_CORE_MARGIN (5)
195#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
196
197extern int sysctl_max_map_count;
198
c9b1d098 199extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 200extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 201
49f0ce5f
JM
202extern int sysctl_overcommit_memory;
203extern int sysctl_overcommit_ratio;
204extern unsigned long sysctl_overcommit_kbytes;
205
32927393
CH
206int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
207 loff_t *);
208int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
209 loff_t *);
56f3547b
FT
210int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
211 loff_t *);
49f0ce5f 212
1cfcee72 213#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 214#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
4c654229 215#define page_nth(head, tail) (page_to_pfn(tail) - page_to_pfn(head))
1cfcee72
MWO
216#else
217#define nth_page(page,n) ((page) + (n))
4c654229 218#define page_nth(head, tail) ((tail) - (head))
1cfcee72 219#endif
1da177e4 220
27ac792c
AR
221/* to align the pointer to the (next) page boundary */
222#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223
0fa73b86 224/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 225#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 226
f86196ea
NB
227#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
228
5748fbc5
KW
229void setup_initial_init_mm(void *start_code, void *end_code,
230 void *end_data, void *brk);
231
1da177e4
LT
232/*
233 * Linux kernel virtual memory manager primitives.
234 * The idea being to have a "virtual" mm in the same way
235 * we have a virtual fs - giving a cleaner interface to the
236 * mm details, and allowing different kinds of memory mappings
237 * (from shared memory to executable loading to arbitrary
238 * mmap() functions).
239 */
240
490fc053 241struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
242struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
243void vm_area_free(struct vm_area_struct *);
c43692e8 244
1da177e4 245#ifndef CONFIG_MMU
8feae131
DH
246extern struct rb_root nommu_region_tree;
247extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
248
249extern unsigned int kobjsize(const void *objp);
250#endif
251
252/*
605d9288 253 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 254 * When changing, update also include/trace/events/mmflags.h
1da177e4 255 */
cc2383ec
KK
256#define VM_NONE 0x00000000
257
1da177e4
LT
258#define VM_READ 0x00000001 /* currently active flags */
259#define VM_WRITE 0x00000002
260#define VM_EXEC 0x00000004
261#define VM_SHARED 0x00000008
262
7e2cff42 263/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
264#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
265#define VM_MAYWRITE 0x00000020
266#define VM_MAYEXEC 0x00000040
267#define VM_MAYSHARE 0x00000080
268
269#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 270#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 271#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 272#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 273
1da177e4
LT
274#define VM_LOCKED 0x00002000
275#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
276
277 /* Used by sys_madvise() */
278#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
279#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
280
281#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
282#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 283#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 284#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 285#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 286#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 287#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 288#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 289#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 290#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 291
d9104d1c
CG
292#ifdef CONFIG_MEM_SOFT_DIRTY
293# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
294#else
295# define VM_SOFTDIRTY 0
296#endif
297
b379d790 298#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
299#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
300#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 301#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 302
63c17fb8
DH
303#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
304#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
305#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
306#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
307#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 308#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
309#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
310#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
311#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
312#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 313#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
314#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
315
5212213a 316#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
317# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
318# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 319# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
320# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
321# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
322#ifdef CONFIG_PPC
323# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
324#else
325# define VM_PKEY_BIT4 0
8f62c883 326#endif
5212213a
RP
327#endif /* CONFIG_ARCH_HAS_PKEYS */
328
329#if defined(CONFIG_X86)
330# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
331#elif defined(CONFIG_PPC)
332# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
333#elif defined(CONFIG_PARISC)
334# define VM_GROWSUP VM_ARCH_1
335#elif defined(CONFIG_IA64)
336# define VM_GROWSUP VM_ARCH_1
74a04967
KA
337#elif defined(CONFIG_SPARC64)
338# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
339# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
340#elif defined(CONFIG_ARM64)
341# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
342# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
343#elif !defined(CONFIG_MMU)
344# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
345#endif
346
9f341931
CM
347#if defined(CONFIG_ARM64_MTE)
348# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
349# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
350#else
351# define VM_MTE VM_NONE
352# define VM_MTE_ALLOWED VM_NONE
353#endif
354
cc2383ec
KK
355#ifndef VM_GROWSUP
356# define VM_GROWSUP VM_NONE
357#endif
358
7677f7fd
AR
359#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
360# define VM_UFFD_MINOR_BIT 37
361# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
362#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
363# define VM_UFFD_MINOR VM_NONE
364#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
365
a8bef8ff
MG
366/* Bits set in the VMA until the stack is in its final location */
367#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
368
c62da0c3
AK
369#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
370
371/* Common data flag combinations */
372#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
373 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
374#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
375 VM_MAYWRITE | VM_MAYEXEC)
376#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
377 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
378
379#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
380#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
381#endif
382
1da177e4
LT
383#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
384#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
385#endif
386
387#ifdef CONFIG_STACK_GROWSUP
30bdbb78 388#define VM_STACK VM_GROWSUP
1da177e4 389#else
30bdbb78 390#define VM_STACK VM_GROWSDOWN
1da177e4
LT
391#endif
392
30bdbb78
KK
393#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
394
6cb4d9a2
AK
395/* VMA basic access permission flags */
396#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
397
398
b291f000 399/*
78f11a25 400 * Special vmas that are non-mergable, non-mlock()able.
b291f000 401 */
9050d7eb 402#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 403
b4443772
AK
404/* This mask prevents VMA from being scanned with khugepaged */
405#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
406
a0715cc2
AT
407/* This mask defines which mm->def_flags a process can inherit its parent */
408#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
409
de60f5f1
EM
410/* This mask is used to clear all the VMA flags used by mlock */
411#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
412
2c2d57b5
KA
413/* Arch-specific flags to clear when updating VM flags on protection change */
414#ifndef VM_ARCH_CLEAR
415# define VM_ARCH_CLEAR VM_NONE
416#endif
417#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
418
1da177e4
LT
419/*
420 * mapping from the currently active vm_flags protection bits (the
421 * low four bits) to a page protection mask..
422 */
423extern pgprot_t protection_map[16];
424
dde16072
PX
425/*
426 * The default fault flags that should be used by most of the
427 * arch-specific page fault handlers.
428 */
429#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
430 FAULT_FLAG_KILLABLE | \
431 FAULT_FLAG_INTERRUPTIBLE)
dde16072 432
4064b982
PX
433/**
434 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 435 * @flags: Fault flags.
4064b982
PX
436 *
437 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 438 * the mmap_lock for too long a time when waiting for another condition
4064b982 439 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
440 * mmap_lock in the first round to avoid potential starvation of other
441 * processes that would also want the mmap_lock.
4064b982
PX
442 *
443 * Return: true if the page fault allows retry and this is the first
444 * attempt of the fault handling; false otherwise.
445 */
da2f5eb3 446static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
447{
448 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
449 (!(flags & FAULT_FLAG_TRIED));
450}
451
282a8e03
RZ
452#define FAULT_FLAG_TRACE \
453 { FAULT_FLAG_WRITE, "WRITE" }, \
454 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
455 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
456 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
457 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
458 { FAULT_FLAG_TRIED, "TRIED" }, \
459 { FAULT_FLAG_USER, "USER" }, \
460 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
461 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
462 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 463
54cb8821 464/*
11192337 465 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
466 * ->fault function. The vma's ->fault is responsible for returning a bitmask
467 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 468 *
c20cd45e
MH
469 * MM layer fills up gfp_mask for page allocations but fault handler might
470 * alter it if its implementation requires a different allocation context.
471 *
9b4bdd2f 472 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 473 */
d0217ac0 474struct vm_fault {
5857c920 475 const struct {
742d3372
WD
476 struct vm_area_struct *vma; /* Target VMA */
477 gfp_t gfp_mask; /* gfp mask to be used for allocations */
478 pgoff_t pgoff; /* Logical page offset based on vma */
479 unsigned long address; /* Faulting virtual address */
480 };
da2f5eb3 481 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 482 * XXX: should really be 'const' */
82b0f8c3 483 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 484 * the 'address' */
a2d58167
DJ
485 pud_t *pud; /* Pointer to pud entry matching
486 * the 'address'
487 */
5db4f15c
YS
488 union {
489 pte_t orig_pte; /* Value of PTE at the time of fault */
490 pmd_t orig_pmd; /* Value of PMD at the time of fault,
491 * used by PMD fault only.
492 */
493 };
d0217ac0 494
3917048d 495 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 496 struct page *page; /* ->fault handlers should return a
83c54070 497 * page here, unless VM_FAULT_NOPAGE
d0217ac0 498 * is set (which is also implied by
83c54070 499 * VM_FAULT_ERROR).
d0217ac0 500 */
82b0f8c3 501 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
502 pte_t *pte; /* Pointer to pte entry matching
503 * the 'address'. NULL if the page
504 * table hasn't been allocated.
505 */
506 spinlock_t *ptl; /* Page table lock.
507 * Protects pte page table if 'pte'
508 * is not NULL, otherwise pmd.
509 */
7267ec00 510 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
511 * vm_ops->map_pages() sets up a page
512 * table from atomic context.
7267ec00
KS
513 * do_fault_around() pre-allocates
514 * page table to avoid allocation from
515 * atomic context.
516 */
54cb8821 517};
1da177e4 518
c791ace1
DJ
519/* page entry size for vm->huge_fault() */
520enum page_entry_size {
521 PE_SIZE_PTE = 0,
522 PE_SIZE_PMD,
523 PE_SIZE_PUD,
524};
525
1da177e4
LT
526/*
527 * These are the virtual MM functions - opening of an area, closing and
528 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 529 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
530 */
531struct vm_operations_struct {
532 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
533 /**
534 * @close: Called when the VMA is being removed from the MM.
535 * Context: User context. May sleep. Caller holds mmap_lock.
536 */
1da177e4 537 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
538 /* Called any time before splitting to check if it's allowed */
539 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 540 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
541 /*
542 * Called by mprotect() to make driver-specific permission
543 * checks before mprotect() is finalised. The VMA must not
544 * be modified. Returns 0 if eprotect() can proceed.
545 */
546 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
547 unsigned long end, unsigned long newflags);
1c8f4220
SJ
548 vm_fault_t (*fault)(struct vm_fault *vmf);
549 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
550 enum page_entry_size pe_size);
f9ce0be7 551 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 552 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 553 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
554
555 /* notification that a previously read-only page is about to become
556 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 557 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 558
dd906184 559 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 560 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 561
28b2ee20 562 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
563 * for use by special VMAs. See also generic_access_phys() for a generic
564 * implementation useful for any iomem mapping.
28b2ee20
RR
565 */
566 int (*access)(struct vm_area_struct *vma, unsigned long addr,
567 void *buf, int len, int write);
78d683e8
AL
568
569 /* Called by the /proc/PID/maps code to ask the vma whether it
570 * has a special name. Returning non-NULL will also cause this
571 * vma to be dumped unconditionally. */
572 const char *(*name)(struct vm_area_struct *vma);
573
1da177e4 574#ifdef CONFIG_NUMA
a6020ed7
LS
575 /*
576 * set_policy() op must add a reference to any non-NULL @new mempolicy
577 * to hold the policy upon return. Caller should pass NULL @new to
578 * remove a policy and fall back to surrounding context--i.e. do not
579 * install a MPOL_DEFAULT policy, nor the task or system default
580 * mempolicy.
581 */
1da177e4 582 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
583
584 /*
585 * get_policy() op must add reference [mpol_get()] to any policy at
586 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
587 * in mm/mempolicy.c will do this automatically.
588 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 589 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
590 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
591 * must return NULL--i.e., do not "fallback" to task or system default
592 * policy.
593 */
1da177e4
LT
594 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
595 unsigned long addr);
596#endif
667a0a06
DV
597 /*
598 * Called by vm_normal_page() for special PTEs to find the
599 * page for @addr. This is useful if the default behavior
600 * (using pte_page()) would not find the correct page.
601 */
602 struct page *(*find_special_page)(struct vm_area_struct *vma,
603 unsigned long addr);
1da177e4
LT
604};
605
027232da
KS
606static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
607{
bfd40eaf
KS
608 static const struct vm_operations_struct dummy_vm_ops = {};
609
a670468f 610 memset(vma, 0, sizeof(*vma));
027232da 611 vma->vm_mm = mm;
bfd40eaf 612 vma->vm_ops = &dummy_vm_ops;
027232da
KS
613 INIT_LIST_HEAD(&vma->anon_vma_chain);
614}
615
bfd40eaf
KS
616static inline void vma_set_anonymous(struct vm_area_struct *vma)
617{
618 vma->vm_ops = NULL;
619}
620
43675e6f
YS
621static inline bool vma_is_anonymous(struct vm_area_struct *vma)
622{
623 return !vma->vm_ops;
624}
625
222100ee
AK
626static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
627{
628 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
629
630 if (!maybe_stack)
631 return false;
632
633 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
634 VM_STACK_INCOMPLETE_SETUP)
635 return true;
636
637 return false;
638}
639
7969f226
AK
640static inline bool vma_is_foreign(struct vm_area_struct *vma)
641{
642 if (!current->mm)
643 return true;
644
645 if (current->mm != vma->vm_mm)
646 return true;
647
648 return false;
649}
3122e80e
AK
650
651static inline bool vma_is_accessible(struct vm_area_struct *vma)
652{
6cb4d9a2 653 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
654}
655
43675e6f
YS
656#ifdef CONFIG_SHMEM
657/*
658 * The vma_is_shmem is not inline because it is used only by slow
659 * paths in userfault.
660 */
661bool vma_is_shmem(struct vm_area_struct *vma);
662#else
663static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
664#endif
665
666int vma_is_stack_for_current(struct vm_area_struct *vma);
667
8b11ec1b
LT
668/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
669#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
670
1da177e4
LT
671struct mmu_gather;
672struct inode;
673
5bf34d7c
MWO
674static inline unsigned int compound_order(struct page *page)
675{
676 if (!PageHead(page))
677 return 0;
678 return page[1].compound_order;
679}
680
681/**
682 * folio_order - The allocation order of a folio.
683 * @folio: The folio.
684 *
685 * A folio is composed of 2^order pages. See get_order() for the definition
686 * of order.
687 *
688 * Return: The order of the folio.
689 */
690static inline unsigned int folio_order(struct folio *folio)
691{
692 return compound_order(&folio->page);
693}
694
71e3aac0 695#include <linux/huge_mm.h>
1da177e4
LT
696
697/*
698 * Methods to modify the page usage count.
699 *
700 * What counts for a page usage:
701 * - cache mapping (page->mapping)
702 * - private data (page->private)
703 * - page mapped in a task's page tables, each mapping
704 * is counted separately
705 *
706 * Also, many kernel routines increase the page count before a critical
707 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
708 */
709
710/*
da6052f7 711 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 712 */
7c8ee9a8
NP
713static inline int put_page_testzero(struct page *page)
714{
fe896d18
JK
715 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
716 return page_ref_dec_and_test(page);
7c8ee9a8 717}
1da177e4 718
b620f633
MWO
719static inline int folio_put_testzero(struct folio *folio)
720{
721 return put_page_testzero(&folio->page);
722}
723
1da177e4 724/*
7c8ee9a8
NP
725 * Try to grab a ref unless the page has a refcount of zero, return false if
726 * that is the case.
8e0861fa
AK
727 * This can be called when MMU is off so it must not access
728 * any of the virtual mappings.
1da177e4 729 */
c2530328 730static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 731{
fe896d18 732 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 733}
1da177e4 734
53df8fdc 735extern int page_is_ram(unsigned long pfn);
124fe20d
DW
736
737enum {
738 REGION_INTERSECTS,
739 REGION_DISJOINT,
740 REGION_MIXED,
741};
742
1c29f25b
TK
743int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
744 unsigned long desc);
53df8fdc 745
48667e7a 746/* Support for virtually mapped pages */
b3bdda02
CL
747struct page *vmalloc_to_page(const void *addr);
748unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 749
0738c4bb
PM
750/*
751 * Determine if an address is within the vmalloc range
752 *
753 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
754 * is no special casing required.
755 */
9bd3bb67
AK
756
757#ifndef is_ioremap_addr
758#define is_ioremap_addr(x) is_vmalloc_addr(x)
759#endif
760
81ac3ad9 761#ifdef CONFIG_MMU
186525bd 762extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
763extern int is_vmalloc_or_module_addr(const void *x);
764#else
186525bd
IM
765static inline bool is_vmalloc_addr(const void *x)
766{
767 return false;
768}
934831d0 769static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
770{
771 return 0;
772}
773#endif
9e2779fa 774
bac3cf4d 775static inline int head_compound_mapcount(struct page *head)
6dc5ea16
JH
776{
777 return atomic_read(compound_mapcount_ptr(head)) + 1;
778}
779
6988f31d
KK
780/*
781 * Mapcount of compound page as a whole, does not include mapped sub-pages.
782 *
783 * Must be called only for compound pages or any their tail sub-pages.
784 */
53f9263b
KS
785static inline int compound_mapcount(struct page *page)
786{
5f527c2b 787 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 788 page = compound_head(page);
bac3cf4d 789 return head_compound_mapcount(page);
53f9263b
KS
790}
791
70b50f94
AA
792/*
793 * The atomic page->_mapcount, starts from -1: so that transitions
794 * both from it and to it can be tracked, using atomic_inc_and_test
795 * and atomic_add_negative(-1).
796 */
22b751c3 797static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
798{
799 atomic_set(&(page)->_mapcount, -1);
800}
801
b20ce5e0
KS
802int __page_mapcount(struct page *page);
803
6988f31d
KK
804/*
805 * Mapcount of 0-order page; when compound sub-page, includes
806 * compound_mapcount().
807 *
808 * Result is undefined for pages which cannot be mapped into userspace.
809 * For example SLAB or special types of pages. See function page_has_type().
810 * They use this place in struct page differently.
811 */
70b50f94
AA
812static inline int page_mapcount(struct page *page)
813{
b20ce5e0
KS
814 if (unlikely(PageCompound(page)))
815 return __page_mapcount(page);
816 return atomic_read(&page->_mapcount) + 1;
817}
818
819#ifdef CONFIG_TRANSPARENT_HUGEPAGE
820int total_mapcount(struct page *page);
d08d2b62 821int page_trans_huge_mapcount(struct page *page);
b20ce5e0
KS
822#else
823static inline int total_mapcount(struct page *page)
824{
825 return page_mapcount(page);
70b50f94 826}
d08d2b62 827static inline int page_trans_huge_mapcount(struct page *page)
6d0a07ed 828{
d08d2b62 829 return page_mapcount(page);
6d0a07ed 830}
b20ce5e0 831#endif
70b50f94 832
b49af68f
CL
833static inline struct page *virt_to_head_page(const void *x)
834{
835 struct page *page = virt_to_page(x);
ccaafd7f 836
1d798ca3 837 return compound_head(page);
b49af68f
CL
838}
839
7d4203c1
VB
840static inline struct folio *virt_to_folio(const void *x)
841{
842 struct page *page = virt_to_page(x);
843
844 return page_folio(page);
845}
846
ddc58f27
KS
847void __put_page(struct page *page);
848
1d7ea732 849void put_pages_list(struct list_head *pages);
1da177e4 850
8dfcc9ba 851void split_page(struct page *page, unsigned int order);
715cbfd6 852void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 853
a1554c00
ML
854unsigned long nr_free_buffer_pages(void);
855
33f2ef89
AW
856/*
857 * Compound pages have a destructor function. Provide a
858 * prototype for that function and accessor functions.
f1e61557 859 * These are _only_ valid on the head of a compound page.
33f2ef89 860 */
f1e61557
KS
861typedef void compound_page_dtor(struct page *);
862
863/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
864enum compound_dtor_id {
865 NULL_COMPOUND_DTOR,
866 COMPOUND_PAGE_DTOR,
867#ifdef CONFIG_HUGETLB_PAGE
868 HUGETLB_PAGE_DTOR,
9a982250
KS
869#endif
870#ifdef CONFIG_TRANSPARENT_HUGEPAGE
871 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
872#endif
873 NR_COMPOUND_DTORS,
874};
ae70eddd 875extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
876
877static inline void set_compound_page_dtor(struct page *page,
f1e61557 878 enum compound_dtor_id compound_dtor)
33f2ef89 879{
f1e61557
KS
880 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
881 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
882}
883
ff45fc3c 884static inline void destroy_compound_page(struct page *page)
33f2ef89 885{
f1e61557 886 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 887 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
888}
889
bac3cf4d 890static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
891{
892 return atomic_read(compound_pincount_ptr(head));
893}
894
f1e61557 895static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 896{
e4b294c2 897 page[1].compound_order = order;
5232c63f 898#ifdef CONFIG_64BIT
1378a5ee 899 page[1].compound_nr = 1U << order;
5232c63f 900#endif
d85f3385
CL
901}
902
d8c6546b
MWO
903/* Returns the number of pages in this potentially compound page. */
904static inline unsigned long compound_nr(struct page *page)
905{
1378a5ee
MWO
906 if (!PageHead(page))
907 return 1;
5232c63f 908#ifdef CONFIG_64BIT
1378a5ee 909 return page[1].compound_nr;
5232c63f
MWO
910#else
911 return 1UL << compound_order(page);
912#endif
d8c6546b
MWO
913}
914
a50b854e
MWO
915/* Returns the number of bytes in this potentially compound page. */
916static inline unsigned long page_size(struct page *page)
917{
918 return PAGE_SIZE << compound_order(page);
919}
920
94ad9338
MWO
921/* Returns the number of bits needed for the number of bytes in a page */
922static inline unsigned int page_shift(struct page *page)
923{
924 return PAGE_SHIFT + compound_order(page);
925}
926
9a982250
KS
927void free_compound_page(struct page *page);
928
3dece370 929#ifdef CONFIG_MMU
14fd403f
AA
930/*
931 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
932 * servicing faults for write access. In the normal case, do always want
933 * pte_mkwrite. But get_user_pages can cause write faults for mappings
934 * that do not have writing enabled, when used by access_process_vm.
935 */
936static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
937{
938 if (likely(vma->vm_flags & VM_WRITE))
939 pte = pte_mkwrite(pte);
940 return pte;
941}
8c6e50b0 942
f9ce0be7 943vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 944void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 945
2b740303
SJ
946vm_fault_t finish_fault(struct vm_fault *vmf);
947vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 948#endif
14fd403f 949
1da177e4
LT
950/*
951 * Multiple processes may "see" the same page. E.g. for untouched
952 * mappings of /dev/null, all processes see the same page full of
953 * zeroes, and text pages of executables and shared libraries have
954 * only one copy in memory, at most, normally.
955 *
956 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
957 * page_count() == 0 means the page is free. page->lru is then used for
958 * freelist management in the buddy allocator.
da6052f7 959 * page_count() > 0 means the page has been allocated.
1da177e4 960 *
da6052f7
NP
961 * Pages are allocated by the slab allocator in order to provide memory
962 * to kmalloc and kmem_cache_alloc. In this case, the management of the
963 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
964 * unless a particular usage is carefully commented. (the responsibility of
965 * freeing the kmalloc memory is the caller's, of course).
1da177e4 966 *
da6052f7
NP
967 * A page may be used by anyone else who does a __get_free_page().
968 * In this case, page_count still tracks the references, and should only
969 * be used through the normal accessor functions. The top bits of page->flags
970 * and page->virtual store page management information, but all other fields
971 * are unused and could be used privately, carefully. The management of this
972 * page is the responsibility of the one who allocated it, and those who have
973 * subsequently been given references to it.
974 *
975 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
976 * managed by the Linux memory manager: I/O, buffers, swapping etc.
977 * The following discussion applies only to them.
978 *
da6052f7
NP
979 * A pagecache page contains an opaque `private' member, which belongs to the
980 * page's address_space. Usually, this is the address of a circular list of
981 * the page's disk buffers. PG_private must be set to tell the VM to call
982 * into the filesystem to release these pages.
1da177e4 983 *
da6052f7
NP
984 * A page may belong to an inode's memory mapping. In this case, page->mapping
985 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 986 * in units of PAGE_SIZE.
1da177e4 987 *
da6052f7
NP
988 * If pagecache pages are not associated with an inode, they are said to be
989 * anonymous pages. These may become associated with the swapcache, and in that
990 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 991 *
da6052f7
NP
992 * In either case (swapcache or inode backed), the pagecache itself holds one
993 * reference to the page. Setting PG_private should also increment the
994 * refcount. The each user mapping also has a reference to the page.
1da177e4 995 *
da6052f7 996 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 997 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
998 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
999 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1000 *
da6052f7 1001 * All pagecache pages may be subject to I/O:
1da177e4
LT
1002 * - inode pages may need to be read from disk,
1003 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1004 * to be written back to the inode on disk,
1005 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1006 * modified may need to be swapped out to swap space and (later) to be read
1007 * back into memory.
1da177e4
LT
1008 */
1009
1010/*
1011 * The zone field is never updated after free_area_init_core()
1012 * sets it, so none of the operations on it need to be atomic.
1da177e4 1013 */
348f8b6c 1014
90572890 1015/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1016#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1017#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1018#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1019#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1020#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1021
348f8b6c 1022/*
25985edc 1023 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1024 * sections we define the shift as 0; that plus a 0 mask ensures
1025 * the compiler will optimise away reference to them.
1026 */
d41dee36
AW
1027#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1028#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1029#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1030#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1031#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1032
bce54bbf
WD
1033/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1034#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1035#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1036#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1037 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1038#else
89689ae7 1039#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1040#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1041 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1042#endif
1043
bd8029b6 1044#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1045
d41dee36
AW
1046#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1047#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1048#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1049#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1050#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1051#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1052
33dd4e0e 1053static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1054{
c403f6a3 1055 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1056 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1057}
1da177e4 1058
32b8fc48
MWO
1059static inline enum zone_type folio_zonenum(const struct folio *folio)
1060{
1061 return page_zonenum(&folio->page);
1062}
1063
260ae3f7
DW
1064#ifdef CONFIG_ZONE_DEVICE
1065static inline bool is_zone_device_page(const struct page *page)
1066{
1067 return page_zonenum(page) == ZONE_DEVICE;
1068}
966cf44f
AD
1069extern void memmap_init_zone_device(struct zone *, unsigned long,
1070 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1071#else
1072static inline bool is_zone_device_page(const struct page *page)
1073{
1074 return false;
1075}
7b2d55d2 1076#endif
5042db43 1077
8e3560d9
PT
1078static inline bool is_zone_movable_page(const struct page *page)
1079{
1080 return page_zonenum(page) == ZONE_MOVABLE;
1081}
1082
27674ef6 1083#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1084DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1085
89574945
CH
1086bool __put_devmap_managed_page(struct page *page);
1087static inline bool put_devmap_managed_page(struct page *page)
e7638488
DW
1088{
1089 if (!static_branch_unlikely(&devmap_managed_key))
1090 return false;
1091 if (!is_zone_device_page(page))
1092 return false;
89574945 1093 return __put_devmap_managed_page(page);
e7638488
DW
1094}
1095
27674ef6 1096#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
89574945 1097static inline bool put_devmap_managed_page(struct page *page)
e7638488
DW
1098{
1099 return false;
1100}
27674ef6 1101#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
e7638488 1102
f958d7b5 1103/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1104#define folio_ref_zero_or_close_to_overflow(folio) \
1105 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1106
1107/**
1108 * folio_get - Increment the reference count on a folio.
1109 * @folio: The folio.
1110 *
1111 * Context: May be called in any context, as long as you know that
1112 * you have a refcount on the folio. If you do not already have one,
1113 * folio_try_get() may be the right interface for you to use.
1114 */
1115static inline void folio_get(struct folio *folio)
1116{
1117 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1118 folio_ref_inc(folio);
1119}
f958d7b5 1120
3565fce3
DW
1121static inline void get_page(struct page *page)
1122{
86d234cb 1123 folio_get(page_folio(page));
3565fce3
DW
1124}
1125
3faa52c0 1126bool __must_check try_grab_page(struct page *page, unsigned int flags);
54d516b1
JH
1127struct page *try_grab_compound_head(struct page *page, int refs,
1128 unsigned int flags);
0fa5bc40 1129
cd1adf1b
LT
1130
1131static inline __must_check bool try_get_page(struct page *page)
1132{
1133 page = compound_head(page);
1134 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1135 return false;
1136 page_ref_inc(page);
1137 return true;
1138}
3565fce3 1139
b620f633
MWO
1140/**
1141 * folio_put - Decrement the reference count on a folio.
1142 * @folio: The folio.
1143 *
1144 * If the folio's reference count reaches zero, the memory will be
1145 * released back to the page allocator and may be used by another
1146 * allocation immediately. Do not access the memory or the struct folio
1147 * after calling folio_put() unless you can be sure that it wasn't the
1148 * last reference.
1149 *
1150 * Context: May be called in process or interrupt context, but not in NMI
1151 * context. May be called while holding a spinlock.
1152 */
1153static inline void folio_put(struct folio *folio)
1154{
1155 if (folio_put_testzero(folio))
1156 __put_page(&folio->page);
1157}
1158
3fe7fa58
MWO
1159/**
1160 * folio_put_refs - Reduce the reference count on a folio.
1161 * @folio: The folio.
1162 * @refs: The amount to subtract from the folio's reference count.
1163 *
1164 * If the folio's reference count reaches zero, the memory will be
1165 * released back to the page allocator and may be used by another
1166 * allocation immediately. Do not access the memory or the struct folio
1167 * after calling folio_put_refs() unless you can be sure that these weren't
1168 * the last references.
1169 *
1170 * Context: May be called in process or interrupt context, but not in NMI
1171 * context. May be called while holding a spinlock.
1172 */
1173static inline void folio_put_refs(struct folio *folio, int refs)
1174{
1175 if (folio_ref_sub_and_test(folio, refs))
1176 __put_page(&folio->page);
1177}
1178
3565fce3
DW
1179static inline void put_page(struct page *page)
1180{
b620f633 1181 struct folio *folio = page_folio(page);
3565fce3 1182
7b2d55d2 1183 /*
89574945
CH
1184 * For some devmap managed pages we need to catch refcount transition
1185 * from 2 to 1:
7b2d55d2 1186 */
89574945 1187 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1188 return;
b620f633 1189 folio_put(folio);
3565fce3
DW
1190}
1191
3faa52c0
JH
1192/*
1193 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1194 * the page's refcount so that two separate items are tracked: the original page
1195 * reference count, and also a new count of how many pin_user_pages() calls were
1196 * made against the page. ("gup-pinned" is another term for the latter).
1197 *
1198 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1199 * distinct from normal pages. As such, the unpin_user_page() call (and its
1200 * variants) must be used in order to release gup-pinned pages.
1201 *
1202 * Choice of value:
1203 *
1204 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1205 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1206 * simpler, due to the fact that adding an even power of two to the page
1207 * refcount has the effect of using only the upper N bits, for the code that
1208 * counts up using the bias value. This means that the lower bits are left for
1209 * the exclusive use of the original code that increments and decrements by one
1210 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1211 *
3faa52c0
JH
1212 * Of course, once the lower bits overflow into the upper bits (and this is
1213 * OK, because subtraction recovers the original values), then visual inspection
1214 * no longer suffices to directly view the separate counts. However, for normal
1215 * applications that don't have huge page reference counts, this won't be an
1216 * issue.
fc1d8e7c 1217 *
3faa52c0
JH
1218 * Locking: the lockless algorithm described in page_cache_get_speculative()
1219 * and page_cache_gup_pin_speculative() provides safe operation for
1220 * get_user_pages and page_mkclean and other calls that race to set up page
1221 * table entries.
fc1d8e7c 1222 */
3faa52c0 1223#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1224
3faa52c0 1225void unpin_user_page(struct page *page);
f1f6a7dd
JH
1226void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1227 bool make_dirty);
458a4f78
JM
1228void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1229 bool make_dirty);
f1f6a7dd 1230void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1231
97a7e473
PX
1232static inline bool is_cow_mapping(vm_flags_t flags)
1233{
1234 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1235}
1236
9127ab4f
CS
1237#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1238#define SECTION_IN_PAGE_FLAGS
1239#endif
1240
89689ae7 1241/*
7a8010cd
VB
1242 * The identification function is mainly used by the buddy allocator for
1243 * determining if two pages could be buddies. We are not really identifying
1244 * the zone since we could be using the section number id if we do not have
1245 * node id available in page flags.
1246 * We only guarantee that it will return the same value for two combinable
1247 * pages in a zone.
89689ae7 1248 */
cb2b95e1
AW
1249static inline int page_zone_id(struct page *page)
1250{
89689ae7 1251 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1252}
1253
89689ae7 1254#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1255extern int page_to_nid(const struct page *page);
89689ae7 1256#else
33dd4e0e 1257static inline int page_to_nid(const struct page *page)
d41dee36 1258{
f165b378
PT
1259 struct page *p = (struct page *)page;
1260
1261 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1262}
89689ae7
CL
1263#endif
1264
874fd90c
MWO
1265static inline int folio_nid(const struct folio *folio)
1266{
1267 return page_to_nid(&folio->page);
1268}
1269
57e0a030 1270#ifdef CONFIG_NUMA_BALANCING
90572890 1271static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1272{
90572890 1273 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1274}
1275
90572890 1276static inline int cpupid_to_pid(int cpupid)
57e0a030 1277{
90572890 1278 return cpupid & LAST__PID_MASK;
57e0a030 1279}
b795854b 1280
90572890 1281static inline int cpupid_to_cpu(int cpupid)
b795854b 1282{
90572890 1283 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1284}
1285
90572890 1286static inline int cpupid_to_nid(int cpupid)
b795854b 1287{
90572890 1288 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1289}
1290
90572890 1291static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1292{
90572890 1293 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1294}
1295
90572890 1296static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1297{
90572890 1298 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1299}
1300
8c8a743c
PZ
1301static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1302{
1303 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1304}
1305
1306#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1307#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1308static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1309{
1ae71d03 1310 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1311}
90572890
PZ
1312
1313static inline int page_cpupid_last(struct page *page)
1314{
1315 return page->_last_cpupid;
1316}
1317static inline void page_cpupid_reset_last(struct page *page)
b795854b 1318{
1ae71d03 1319 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1320}
1321#else
90572890 1322static inline int page_cpupid_last(struct page *page)
75980e97 1323{
90572890 1324 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1325}
1326
90572890 1327extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1328
90572890 1329static inline void page_cpupid_reset_last(struct page *page)
75980e97 1330{
09940a4f 1331 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1332}
90572890
PZ
1333#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1334#else /* !CONFIG_NUMA_BALANCING */
1335static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1336{
90572890 1337 return page_to_nid(page); /* XXX */
57e0a030
MG
1338}
1339
90572890 1340static inline int page_cpupid_last(struct page *page)
57e0a030 1341{
90572890 1342 return page_to_nid(page); /* XXX */
57e0a030
MG
1343}
1344
90572890 1345static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1346{
1347 return -1;
1348}
1349
90572890 1350static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1351{
1352 return -1;
1353}
1354
90572890 1355static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1356{
1357 return -1;
1358}
1359
90572890
PZ
1360static inline int cpu_pid_to_cpupid(int nid, int pid)
1361{
1362 return -1;
1363}
1364
1365static inline bool cpupid_pid_unset(int cpupid)
b795854b 1366{
2b787449 1367 return true;
b795854b
MG
1368}
1369
90572890 1370static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1371{
1372}
8c8a743c
PZ
1373
1374static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1375{
1376 return false;
1377}
90572890 1378#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1379
2e903b91 1380#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1381
cf10bd4c
AK
1382/*
1383 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1384 * setting tags for all pages to native kernel tag value 0xff, as the default
1385 * value 0x00 maps to 0xff.
1386 */
1387
2813b9c0
AK
1388static inline u8 page_kasan_tag(const struct page *page)
1389{
cf10bd4c
AK
1390 u8 tag = 0xff;
1391
1392 if (kasan_enabled()) {
1393 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1394 tag ^= 0xff;
1395 }
1396
1397 return tag;
2813b9c0
AK
1398}
1399
1400static inline void page_kasan_tag_set(struct page *page, u8 tag)
1401{
27fe7339
PC
1402 unsigned long old_flags, flags;
1403
1404 if (!kasan_enabled())
1405 return;
1406
1407 tag ^= 0xff;
1408 old_flags = READ_ONCE(page->flags);
1409 do {
1410 flags = old_flags;
1411 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1412 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1413 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1414}
1415
1416static inline void page_kasan_tag_reset(struct page *page)
1417{
34303244
AK
1418 if (kasan_enabled())
1419 page_kasan_tag_set(page, 0xff);
2813b9c0 1420}
34303244
AK
1421
1422#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1423
2813b9c0
AK
1424static inline u8 page_kasan_tag(const struct page *page)
1425{
1426 return 0xff;
1427}
1428
1429static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1430static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1431
1432#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1433
33dd4e0e 1434static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1435{
1436 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1437}
1438
75ef7184
MG
1439static inline pg_data_t *page_pgdat(const struct page *page)
1440{
1441 return NODE_DATA(page_to_nid(page));
1442}
1443
32b8fc48
MWO
1444static inline struct zone *folio_zone(const struct folio *folio)
1445{
1446 return page_zone(&folio->page);
1447}
1448
1449static inline pg_data_t *folio_pgdat(const struct folio *folio)
1450{
1451 return page_pgdat(&folio->page);
1452}
1453
9127ab4f 1454#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1455static inline void set_page_section(struct page *page, unsigned long section)
1456{
1457 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1458 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1459}
1460
aa462abe 1461static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1462{
1463 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1464}
308c05e3 1465#endif
d41dee36 1466
bf6bd276
MWO
1467/**
1468 * folio_pfn - Return the Page Frame Number of a folio.
1469 * @folio: The folio.
1470 *
1471 * A folio may contain multiple pages. The pages have consecutive
1472 * Page Frame Numbers.
1473 *
1474 * Return: The Page Frame Number of the first page in the folio.
1475 */
1476static inline unsigned long folio_pfn(struct folio *folio)
1477{
1478 return page_to_pfn(&folio->page);
1479}
1480
3d11b225
MWO
1481static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1482{
1483 return &folio_page(folio, 1)->compound_pincount;
1484}
1485
0b90ddae
MWO
1486/**
1487 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1488 * @folio: The folio.
1489 *
1490 * This function checks if a folio has been pinned via a call to
1491 * a function in the pin_user_pages() family.
1492 *
1493 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1494 * because it means "definitely not pinned for DMA", but true means "probably
1495 * pinned for DMA, but possibly a false positive due to having at least
1496 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1497 *
1498 * False positives are OK, because: a) it's unlikely for a folio to
1499 * get that many refcounts, and b) all the callers of this routine are
1500 * expected to be able to deal gracefully with a false positive.
1501 *
1502 * For large folios, the result will be exactly correct. That's because
1503 * we have more tracking data available: the compound_pincount is used
1504 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1505 *
1506 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1507 *
1508 * Return: True, if it is likely that the page has been "dma-pinned".
1509 * False, if the page is definitely not dma-pinned.
1510 */
1511static inline bool folio_maybe_dma_pinned(struct folio *folio)
1512{
1513 if (folio_test_large(folio))
1514 return atomic_read(folio_pincount_ptr(folio)) > 0;
1515
1516 /*
1517 * folio_ref_count() is signed. If that refcount overflows, then
1518 * folio_ref_count() returns a negative value, and callers will avoid
1519 * further incrementing the refcount.
1520 *
1521 * Here, for that overflow case, use the sign bit to count a little
1522 * bit higher via unsigned math, and thus still get an accurate result.
1523 */
1524 return ((unsigned int)folio_ref_count(folio)) >=
1525 GUP_PIN_COUNTING_BIAS;
1526}
1527
1528static inline bool page_maybe_dma_pinned(struct page *page)
1529{
1530 return folio_maybe_dma_pinned(page_folio(page));
1531}
1532
1533/*
1534 * This should most likely only be called during fork() to see whether we
1535 * should break the cow immediately for a page on the src mm.
1536 */
1537static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1538 struct page *page)
1539{
1540 if (!is_cow_mapping(vma->vm_flags))
1541 return false;
1542
1543 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1544 return false;
1545
1546 return page_maybe_dma_pinned(page);
1547}
1548
8e3560d9
PT
1549/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1550#ifdef CONFIG_MIGRATION
1551static inline bool is_pinnable_page(struct page *page)
1552{
9afaf30f
PT
1553 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1554 is_zero_pfn(page_to_pfn(page));
8e3560d9
PT
1555}
1556#else
1557static inline bool is_pinnable_page(struct page *page)
1558{
1559 return true;
1560}
1561#endif
1562
2f1b6248 1563static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1564{
1565 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1566 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1567}
2f1b6248 1568
348f8b6c
DH
1569static inline void set_page_node(struct page *page, unsigned long node)
1570{
1571 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1572 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1573}
89689ae7 1574
2f1b6248 1575static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1576 unsigned long node, unsigned long pfn)
1da177e4 1577{
348f8b6c
DH
1578 set_page_zone(page, zone);
1579 set_page_node(page, node);
9127ab4f 1580#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1581 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1582#endif
1da177e4
LT
1583}
1584
7b230db3
MWO
1585/**
1586 * folio_nr_pages - The number of pages in the folio.
1587 * @folio: The folio.
1588 *
1589 * Return: A positive power of two.
1590 */
1591static inline long folio_nr_pages(struct folio *folio)
1592{
1593 return compound_nr(&folio->page);
1594}
1595
1596/**
1597 * folio_next - Move to the next physical folio.
1598 * @folio: The folio we're currently operating on.
1599 *
1600 * If you have physically contiguous memory which may span more than
1601 * one folio (eg a &struct bio_vec), use this function to move from one
1602 * folio to the next. Do not use it if the memory is only virtually
1603 * contiguous as the folios are almost certainly not adjacent to each
1604 * other. This is the folio equivalent to writing ``page++``.
1605 *
1606 * Context: We assume that the folios are refcounted and/or locked at a
1607 * higher level and do not adjust the reference counts.
1608 * Return: The next struct folio.
1609 */
1610static inline struct folio *folio_next(struct folio *folio)
1611{
1612 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1613}
1614
1615/**
1616 * folio_shift - The size of the memory described by this folio.
1617 * @folio: The folio.
1618 *
1619 * A folio represents a number of bytes which is a power-of-two in size.
1620 * This function tells you which power-of-two the folio is. See also
1621 * folio_size() and folio_order().
1622 *
1623 * Context: The caller should have a reference on the folio to prevent
1624 * it from being split. It is not necessary for the folio to be locked.
1625 * Return: The base-2 logarithm of the size of this folio.
1626 */
1627static inline unsigned int folio_shift(struct folio *folio)
1628{
1629 return PAGE_SHIFT + folio_order(folio);
1630}
1631
1632/**
1633 * folio_size - The number of bytes in a folio.
1634 * @folio: The folio.
1635 *
1636 * Context: The caller should have a reference on the folio to prevent
1637 * it from being split. It is not necessary for the folio to be locked.
1638 * Return: The number of bytes in this folio.
1639 */
1640static inline size_t folio_size(struct folio *folio)
1641{
1642 return PAGE_SIZE << folio_order(folio);
1643}
1644
b424de33
MWO
1645#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1646static inline int arch_make_page_accessible(struct page *page)
1647{
1648 return 0;
1649}
1650#endif
1651
1652#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1653static inline int arch_make_folio_accessible(struct folio *folio)
1654{
1655 int ret;
1656 long i, nr = folio_nr_pages(folio);
1657
1658 for (i = 0; i < nr; i++) {
1659 ret = arch_make_page_accessible(folio_page(folio, i));
1660 if (ret)
1661 break;
1662 }
1663
1664 return ret;
1665}
1666#endif
1667
f6ac2354
CL
1668/*
1669 * Some inline functions in vmstat.h depend on page_zone()
1670 */
1671#include <linux/vmstat.h>
1672
33dd4e0e 1673static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1674{
1dff8083 1675 return page_to_virt(page);
1da177e4
LT
1676}
1677
1678#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1679#define HASHED_PAGE_VIRTUAL
1680#endif
1681
1682#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1683static inline void *page_address(const struct page *page)
1684{
1685 return page->virtual;
1686}
1687static inline void set_page_address(struct page *page, void *address)
1688{
1689 page->virtual = address;
1690}
1da177e4
LT
1691#define page_address_init() do { } while(0)
1692#endif
1693
1694#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1695void *page_address(const struct page *page);
1da177e4
LT
1696void set_page_address(struct page *page, void *virtual);
1697void page_address_init(void);
1698#endif
1699
1700#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1701#define page_address(page) lowmem_page_address(page)
1702#define set_page_address(page, address) do { } while(0)
1703#define page_address_init() do { } while(0)
1704#endif
1705
7d4203c1
VB
1706static inline void *folio_address(const struct folio *folio)
1707{
1708 return page_address(&folio->page);
1709}
1710
e39155ea
KS
1711extern void *page_rmapping(struct page *page);
1712extern struct anon_vma *page_anon_vma(struct page *page);
f6ab1f7f
HY
1713extern pgoff_t __page_file_index(struct page *page);
1714
1da177e4
LT
1715/*
1716 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1717 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1718 */
1719static inline pgoff_t page_index(struct page *page)
1720{
1721 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1722 return __page_file_index(page);
1da177e4
LT
1723 return page->index;
1724}
1725
1aa8aea5 1726bool page_mapped(struct page *page);
dd10ab04 1727bool folio_mapped(struct folio *folio);
1da177e4 1728
2f064f34
MH
1729/*
1730 * Return true only if the page has been allocated with
1731 * ALLOC_NO_WATERMARKS and the low watermark was not
1732 * met implying that the system is under some pressure.
1733 */
1d7bab6a 1734static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1735{
1736 /*
c07aea3e
MC
1737 * lru.next has bit 1 set if the page is allocated from the
1738 * pfmemalloc reserves. Callers may simply overwrite it if
1739 * they do not need to preserve that information.
2f064f34 1740 */
c07aea3e 1741 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
1742}
1743
1744/*
1745 * Only to be called by the page allocator on a freshly allocated
1746 * page.
1747 */
1748static inline void set_page_pfmemalloc(struct page *page)
1749{
c07aea3e 1750 page->lru.next = (void *)BIT(1);
2f064f34
MH
1751}
1752
1753static inline void clear_page_pfmemalloc(struct page *page)
1754{
c07aea3e 1755 page->lru.next = NULL;
2f064f34
MH
1756}
1757
1c0fe6e3
NP
1758/*
1759 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1760 */
1761extern void pagefault_out_of_memory(void);
1762
1da177e4 1763#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1764#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 1765#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 1766
ddd588b5 1767/*
7bf02ea2 1768 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1769 * various contexts.
1770 */
4b59e6c4 1771#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1772
9af744d7 1773extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1774
710ec38b 1775#ifdef CONFIG_MMU
7f43add4 1776extern bool can_do_mlock(void);
710ec38b
AB
1777#else
1778static inline bool can_do_mlock(void) { return false; }
1779#endif
d7c9e99a
AG
1780extern int user_shm_lock(size_t, struct ucounts *);
1781extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 1782
25b2995a
CH
1783struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1784 pte_t pte);
28093f9f
GS
1785struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1786 pmd_t pmd);
7e675137 1787
27d036e3
LR
1788void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1789 unsigned long size);
14f5ff5d 1790void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1791 unsigned long size);
4f74d2c8
LT
1792void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1793 unsigned long start, unsigned long end);
e6473092 1794
ac46d4f3
JG
1795struct mmu_notifier_range;
1796
42b77728 1797void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1798 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1799int
1800copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
9fd6dad1
PB
1801int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1802 struct mmu_notifier_range *range, pte_t **ptepp,
1803 pmd_t **pmdpp, spinlock_t **ptlp);
ff5c19ed 1804int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 1805 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
1806int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1807 unsigned long *pfn);
d87fe660 1808int follow_phys(struct vm_area_struct *vma, unsigned long address,
1809 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1810int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1811 void *buf, int len, int write);
1da177e4 1812
7caef267 1813extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1814extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1815void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1816void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 1817int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1818int invalidate_inode_page(struct page *page);
1819
7ee1dd3f 1820#ifdef CONFIG_MMU
2b740303 1821extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1822 unsigned long address, unsigned int flags,
1823 struct pt_regs *regs);
64019a2e 1824extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1825 unsigned long address, unsigned int fault_flags,
1826 bool *unlocked);
977fbdcd
MW
1827void unmap_mapping_pages(struct address_space *mapping,
1828 pgoff_t start, pgoff_t nr, bool even_cows);
1829void unmap_mapping_range(struct address_space *mapping,
1830 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1831#else
2b740303 1832static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1833 unsigned long address, unsigned int flags,
1834 struct pt_regs *regs)
7ee1dd3f
DH
1835{
1836 /* should never happen if there's no MMU */
1837 BUG();
1838 return VM_FAULT_SIGBUS;
1839}
64019a2e 1840static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1841 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1842{
1843 /* should never happen if there's no MMU */
1844 BUG();
1845 return -EFAULT;
1846}
977fbdcd
MW
1847static inline void unmap_mapping_pages(struct address_space *mapping,
1848 pgoff_t start, pgoff_t nr, bool even_cows) { }
1849static inline void unmap_mapping_range(struct address_space *mapping,
1850 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1851#endif
f33ea7f4 1852
977fbdcd
MW
1853static inline void unmap_shared_mapping_range(struct address_space *mapping,
1854 loff_t const holebegin, loff_t const holelen)
1855{
1856 unmap_mapping_range(mapping, holebegin, holelen, 0);
1857}
1858
1859extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1860 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1861extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1862 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1863extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1864 void *buf, int len, unsigned int gup_flags);
1da177e4 1865
64019a2e 1866long get_user_pages_remote(struct mm_struct *mm,
1e987790 1867 unsigned long start, unsigned long nr_pages,
9beae1ea 1868 unsigned int gup_flags, struct page **pages,
5b56d49f 1869 struct vm_area_struct **vmas, int *locked);
64019a2e 1870long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1871 unsigned long start, unsigned long nr_pages,
1872 unsigned int gup_flags, struct page **pages,
1873 struct vm_area_struct **vmas, int *locked);
c12d2da5 1874long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1875 unsigned int gup_flags, struct page **pages,
cde70140 1876 struct vm_area_struct **vmas);
eddb1c22
JH
1877long pin_user_pages(unsigned long start, unsigned long nr_pages,
1878 unsigned int gup_flags, struct page **pages,
1879 struct vm_area_struct **vmas);
c12d2da5 1880long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1881 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1882long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1883 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1884long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1885 struct page **pages, unsigned int gup_flags);
91429023
JH
1886long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1887 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1888
73b0140b
IW
1889int get_user_pages_fast(unsigned long start, int nr_pages,
1890 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1891int pin_user_pages_fast(unsigned long start, int nr_pages,
1892 unsigned int gup_flags, struct page **pages);
8025e5dd 1893
79eb597c
DJ
1894int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1895int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1896 struct task_struct *task, bool bypass_rlim);
1897
18022c5d
MG
1898struct kvec;
1899int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1900 struct page **pages);
f3e8fccd 1901struct page *get_dump_page(unsigned long addr);
1da177e4 1902
d47992f8
LC
1903extern void do_invalidatepage(struct page *page, unsigned int offset,
1904 unsigned int length);
cf9a2ae8 1905
b5e84594
MWO
1906bool folio_mark_dirty(struct folio *folio);
1907bool set_page_dirty(struct page *page);
1da177e4 1908int set_page_dirty_lock(struct page *page);
b9ea2515 1909
a9090253 1910int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1911
b6a2fea3
OW
1912extern unsigned long move_page_tables(struct vm_area_struct *vma,
1913 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1914 unsigned long new_addr, unsigned long len,
1915 bool need_rmap_locks);
58705444
PX
1916
1917/*
1918 * Flags used by change_protection(). For now we make it a bitmap so
1919 * that we can pass in multiple flags just like parameters. However
1920 * for now all the callers are only use one of the flags at the same
1921 * time.
1922 */
1923/* Whether we should allow dirty bit accounting */
1924#define MM_CP_DIRTY_ACCT (1UL << 0)
1925/* Whether this protection change is for NUMA hints */
1926#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1927/* Whether this change is for write protecting */
1928#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1929#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1930#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1931 MM_CP_UFFD_WP_RESOLVE)
58705444 1932
7da4d641
PZ
1933extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1934 unsigned long end, pgprot_t newprot,
58705444 1935 unsigned long cp_flags);
b6a2fea3
OW
1936extern int mprotect_fixup(struct vm_area_struct *vma,
1937 struct vm_area_struct **pprev, unsigned long start,
1938 unsigned long end, unsigned long newflags);
1da177e4 1939
465a454f
PZ
1940/*
1941 * doesn't attempt to fault and will return short.
1942 */
dadbb612
SJ
1943int get_user_pages_fast_only(unsigned long start, int nr_pages,
1944 unsigned int gup_flags, struct page **pages);
104acc32
JH
1945int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1946 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1947
1948static inline bool get_user_page_fast_only(unsigned long addr,
1949 unsigned int gup_flags, struct page **pagep)
1950{
1951 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1952}
d559db08
KH
1953/*
1954 * per-process(per-mm_struct) statistics.
1955 */
d559db08
KH
1956static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1957{
69c97823
KK
1958 long val = atomic_long_read(&mm->rss_stat.count[member]);
1959
1960#ifdef SPLIT_RSS_COUNTING
1961 /*
1962 * counter is updated in asynchronous manner and may go to minus.
1963 * But it's never be expected number for users.
1964 */
1965 if (val < 0)
1966 val = 0;
172703b0 1967#endif
69c97823
KK
1968 return (unsigned long)val;
1969}
d559db08 1970
e4dcad20 1971void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1972
d559db08
KH
1973static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1974{
b3d1411b
JFG
1975 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1976
e4dcad20 1977 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1978}
1979
1980static inline void inc_mm_counter(struct mm_struct *mm, int member)
1981{
b3d1411b
JFG
1982 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1983
e4dcad20 1984 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1985}
1986
1987static inline void dec_mm_counter(struct mm_struct *mm, int member)
1988{
b3d1411b
JFG
1989 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1990
e4dcad20 1991 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1992}
1993
eca56ff9
JM
1994/* Optimized variant when page is already known not to be PageAnon */
1995static inline int mm_counter_file(struct page *page)
1996{
1997 if (PageSwapBacked(page))
1998 return MM_SHMEMPAGES;
1999 return MM_FILEPAGES;
2000}
2001
2002static inline int mm_counter(struct page *page)
2003{
2004 if (PageAnon(page))
2005 return MM_ANONPAGES;
2006 return mm_counter_file(page);
2007}
2008
d559db08
KH
2009static inline unsigned long get_mm_rss(struct mm_struct *mm)
2010{
2011 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2012 get_mm_counter(mm, MM_ANONPAGES) +
2013 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2014}
2015
2016static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2017{
2018 return max(mm->hiwater_rss, get_mm_rss(mm));
2019}
2020
2021static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2022{
2023 return max(mm->hiwater_vm, mm->total_vm);
2024}
2025
2026static inline void update_hiwater_rss(struct mm_struct *mm)
2027{
2028 unsigned long _rss = get_mm_rss(mm);
2029
2030 if ((mm)->hiwater_rss < _rss)
2031 (mm)->hiwater_rss = _rss;
2032}
2033
2034static inline void update_hiwater_vm(struct mm_struct *mm)
2035{
2036 if (mm->hiwater_vm < mm->total_vm)
2037 mm->hiwater_vm = mm->total_vm;
2038}
2039
695f0559
PC
2040static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2041{
2042 mm->hiwater_rss = get_mm_rss(mm);
2043}
2044
d559db08
KH
2045static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2046 struct mm_struct *mm)
2047{
2048 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2049
2050 if (*maxrss < hiwater_rss)
2051 *maxrss = hiwater_rss;
2052}
2053
53bddb4e 2054#if defined(SPLIT_RSS_COUNTING)
05af2e10 2055void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2056#else
05af2e10 2057static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2058{
2059}
2060#endif
465a454f 2061
78e7c5af
AK
2062#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2063static inline int pte_special(pte_t pte)
2064{
2065 return 0;
2066}
2067
2068static inline pte_t pte_mkspecial(pte_t pte)
2069{
2070 return pte;
2071}
2072#endif
2073
17596731 2074#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2075static inline int pte_devmap(pte_t pte)
2076{
2077 return 0;
2078}
2079#endif
2080
6d2329f8 2081int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 2082
25ca1d6c
NK
2083extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2084 spinlock_t **ptl);
2085static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2086 spinlock_t **ptl)
2087{
2088 pte_t *ptep;
2089 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2090 return ptep;
2091}
c9cfcddf 2092
c2febafc
KS
2093#ifdef __PAGETABLE_P4D_FOLDED
2094static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2095 unsigned long address)
2096{
2097 return 0;
2098}
2099#else
2100int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2101#endif
2102
b4e98d9a 2103#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2104static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2105 unsigned long address)
2106{
2107 return 0;
2108}
b4e98d9a
KS
2109static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2110static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2111
5f22df00 2112#else
c2febafc 2113int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2114
b4e98d9a
KS
2115static inline void mm_inc_nr_puds(struct mm_struct *mm)
2116{
6d212db1
MS
2117 if (mm_pud_folded(mm))
2118 return;
af5b0f6a 2119 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2120}
2121
2122static inline void mm_dec_nr_puds(struct mm_struct *mm)
2123{
6d212db1
MS
2124 if (mm_pud_folded(mm))
2125 return;
af5b0f6a 2126 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2127}
5f22df00
NP
2128#endif
2129
2d2f5119 2130#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2131static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2132 unsigned long address)
2133{
2134 return 0;
2135}
dc6c9a35 2136
dc6c9a35
KS
2137static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2138static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2139
5f22df00 2140#else
1bb3630e 2141int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2142
dc6c9a35
KS
2143static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2144{
6d212db1
MS
2145 if (mm_pmd_folded(mm))
2146 return;
af5b0f6a 2147 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2148}
2149
2150static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2151{
6d212db1
MS
2152 if (mm_pmd_folded(mm))
2153 return;
af5b0f6a 2154 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2155}
5f22df00
NP
2156#endif
2157
c4812909 2158#ifdef CONFIG_MMU
af5b0f6a 2159static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2160{
af5b0f6a 2161 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2162}
2163
af5b0f6a 2164static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2165{
af5b0f6a 2166 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2167}
2168
2169static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2170{
af5b0f6a 2171 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2172}
2173
2174static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2175{
af5b0f6a 2176 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2177}
2178#else
c4812909 2179
af5b0f6a
KS
2180static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2181static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2182{
2183 return 0;
2184}
2185
2186static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2187static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2188#endif
2189
4cf58924
JFG
2190int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2191int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2192
f949286c
MR
2193#if defined(CONFIG_MMU)
2194
c2febafc
KS
2195static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2196 unsigned long address)
2197{
2198 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2199 NULL : p4d_offset(pgd, address);
2200}
2201
2202static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2203 unsigned long address)
1da177e4 2204{
c2febafc
KS
2205 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2206 NULL : pud_offset(p4d, address);
1da177e4 2207}
d8626138 2208
1da177e4
LT
2209static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2210{
1bb3630e
HD
2211 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2212 NULL: pmd_offset(pud, address);
1da177e4 2213}
f949286c 2214#endif /* CONFIG_MMU */
1bb3630e 2215
57c1ffce 2216#if USE_SPLIT_PTE_PTLOCKS
597d795a 2217#if ALLOC_SPLIT_PTLOCKS
b35f1819 2218void __init ptlock_cache_init(void);
539edb58
PZ
2219extern bool ptlock_alloc(struct page *page);
2220extern void ptlock_free(struct page *page);
2221
2222static inline spinlock_t *ptlock_ptr(struct page *page)
2223{
2224 return page->ptl;
2225}
597d795a 2226#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2227static inline void ptlock_cache_init(void)
2228{
2229}
2230
49076ec2
KS
2231static inline bool ptlock_alloc(struct page *page)
2232{
49076ec2
KS
2233 return true;
2234}
539edb58 2235
49076ec2
KS
2236static inline void ptlock_free(struct page *page)
2237{
49076ec2
KS
2238}
2239
2240static inline spinlock_t *ptlock_ptr(struct page *page)
2241{
539edb58 2242 return &page->ptl;
49076ec2 2243}
597d795a 2244#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2245
2246static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2247{
2248 return ptlock_ptr(pmd_page(*pmd));
2249}
2250
2251static inline bool ptlock_init(struct page *page)
2252{
2253 /*
2254 * prep_new_page() initialize page->private (and therefore page->ptl)
2255 * with 0. Make sure nobody took it in use in between.
2256 *
2257 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2258 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2259 */
309381fe 2260 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2261 if (!ptlock_alloc(page))
2262 return false;
2263 spin_lock_init(ptlock_ptr(page));
2264 return true;
2265}
2266
57c1ffce 2267#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2268/*
2269 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2270 */
49076ec2
KS
2271static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2272{
2273 return &mm->page_table_lock;
2274}
b35f1819 2275static inline void ptlock_cache_init(void) {}
49076ec2 2276static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2277static inline void ptlock_free(struct page *page) {}
57c1ffce 2278#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2279
b35f1819
KS
2280static inline void pgtable_init(void)
2281{
2282 ptlock_cache_init();
2283 pgtable_cache_init();
2284}
2285
b4ed71f5 2286static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2287{
706874e9
VD
2288 if (!ptlock_init(page))
2289 return false;
1d40a5ea 2290 __SetPageTable(page);
f0c0c115 2291 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2292 return true;
2f569afd
MS
2293}
2294
b4ed71f5 2295static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2296{
9e247bab 2297 ptlock_free(page);
1d40a5ea 2298 __ClearPageTable(page);
f0c0c115 2299 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2300}
2301
c74df32c
HD
2302#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2303({ \
4c21e2f2 2304 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2305 pte_t *__pte = pte_offset_map(pmd, address); \
2306 *(ptlp) = __ptl; \
2307 spin_lock(__ptl); \
2308 __pte; \
2309})
2310
2311#define pte_unmap_unlock(pte, ptl) do { \
2312 spin_unlock(ptl); \
2313 pte_unmap(pte); \
2314} while (0)
2315
4cf58924 2316#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2317
2318#define pte_alloc_map(mm, pmd, address) \
4cf58924 2319 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2320
c74df32c 2321#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2322 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2323 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2324
1bb3630e 2325#define pte_alloc_kernel(pmd, address) \
4cf58924 2326 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2327 NULL: pte_offset_kernel(pmd, address))
1da177e4 2328
e009bb30
KS
2329#if USE_SPLIT_PMD_PTLOCKS
2330
634391ac
MS
2331static struct page *pmd_to_page(pmd_t *pmd)
2332{
2333 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2334 return virt_to_page((void *)((unsigned long) pmd & mask));
2335}
2336
e009bb30
KS
2337static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2338{
634391ac 2339 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2340}
2341
b2b29d6d 2342static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2343{
e009bb30
KS
2344#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2345 page->pmd_huge_pte = NULL;
2346#endif
49076ec2 2347 return ptlock_init(page);
e009bb30
KS
2348}
2349
b2b29d6d 2350static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2351{
2352#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2353 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2354#endif
49076ec2 2355 ptlock_free(page);
e009bb30
KS
2356}
2357
634391ac 2358#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2359
2360#else
2361
9a86cb7b
KS
2362static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2363{
2364 return &mm->page_table_lock;
2365}
2366
b2b29d6d
MW
2367static inline bool pmd_ptlock_init(struct page *page) { return true; }
2368static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2369
c389a250 2370#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2371
e009bb30
KS
2372#endif
2373
9a86cb7b
KS
2374static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2375{
2376 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2377 spin_lock(ptl);
2378 return ptl;
2379}
2380
b2b29d6d
MW
2381static inline bool pgtable_pmd_page_ctor(struct page *page)
2382{
2383 if (!pmd_ptlock_init(page))
2384 return false;
2385 __SetPageTable(page);
f0c0c115 2386 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2387 return true;
2388}
2389
2390static inline void pgtable_pmd_page_dtor(struct page *page)
2391{
2392 pmd_ptlock_free(page);
2393 __ClearPageTable(page);
f0c0c115 2394 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2395}
2396
a00cc7d9
MW
2397/*
2398 * No scalability reason to split PUD locks yet, but follow the same pattern
2399 * as the PMD locks to make it easier if we decide to. The VM should not be
2400 * considered ready to switch to split PUD locks yet; there may be places
2401 * which need to be converted from page_table_lock.
2402 */
2403static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2404{
2405 return &mm->page_table_lock;
2406}
2407
2408static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2409{
2410 spinlock_t *ptl = pud_lockptr(mm, pud);
2411
2412 spin_lock(ptl);
2413 return ptl;
2414}
62906027 2415
a00cc7d9 2416extern void __init pagecache_init(void);
bc9331a1 2417extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2418extern void free_initmem(void);
2419
69afade7
JL
2420/*
2421 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2422 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2423 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2424 * Return pages freed into the buddy system.
2425 */
11199692 2426extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2427 int poison, const char *s);
c3d5f5f0 2428
c3d5f5f0 2429extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2430extern void mem_init_print_info(void);
69afade7 2431
4b50bcc7 2432extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2433
69afade7 2434/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2435static inline void free_reserved_page(struct page *page)
69afade7
JL
2436{
2437 ClearPageReserved(page);
2438 init_page_count(page);
2439 __free_page(page);
69afade7
JL
2440 adjust_managed_page_count(page, 1);
2441}
a0cd7a7c 2442#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2443
2444static inline void mark_page_reserved(struct page *page)
2445{
2446 SetPageReserved(page);
2447 adjust_managed_page_count(page, -1);
2448}
2449
2450/*
2451 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2452 * The freed pages will be poisoned with pattern "poison" if it's within
2453 * range [0, UCHAR_MAX].
2454 * Return pages freed into the buddy system.
69afade7
JL
2455 */
2456static inline unsigned long free_initmem_default(int poison)
2457{
2458 extern char __init_begin[], __init_end[];
2459
11199692 2460 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2461 poison, "unused kernel image (initmem)");
69afade7
JL
2462}
2463
7ee3d4e8
JL
2464static inline unsigned long get_num_physpages(void)
2465{
2466 int nid;
2467 unsigned long phys_pages = 0;
2468
2469 for_each_online_node(nid)
2470 phys_pages += node_present_pages(nid);
2471
2472 return phys_pages;
2473}
2474
c713216d 2475/*
3f08a302 2476 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2477 * zones, allocate the backing mem_map and account for memory holes in an
2478 * architecture independent manner.
c713216d
MG
2479 *
2480 * An architecture is expected to register range of page frames backed by
0ee332c1 2481 * physical memory with memblock_add[_node]() before calling
9691a071 2482 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2483 * usage, an architecture is expected to do something like
2484 *
2485 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2486 * max_highmem_pfn};
2487 * for_each_valid_physical_page_range()
952eea9b 2488 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2489 * free_area_init(max_zone_pfns);
c713216d 2490 */
9691a071 2491void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2492unsigned long node_map_pfn_alignment(void);
32996250
YL
2493unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2494 unsigned long end_pfn);
c713216d
MG
2495extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2496 unsigned long end_pfn);
2497extern void get_pfn_range_for_nid(unsigned int nid,
2498 unsigned long *start_pfn, unsigned long *end_pfn);
2499extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2500
a9ee6cf5 2501#ifndef CONFIG_NUMA
6f24fbd3 2502static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2503{
2504 return 0;
2505}
2506#else
2507/* please see mm/page_alloc.c */
2508extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2509#endif
2510
0e0b864e 2511extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2512extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2513 unsigned long, unsigned long, enum meminit_context,
2514 struct vmem_altmap *, int migratetype);
bc75d33f 2515extern void setup_per_zone_wmarks(void);
bd3400ea 2516extern void calculate_min_free_kbytes(void);
1b79acc9 2517extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2518extern void mem_init(void);
8feae131 2519extern void __init mmap_init(void);
9af744d7 2520extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2521extern long si_mem_available(void);
1da177e4
LT
2522extern void si_meminfo(struct sysinfo * val);
2523extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2524#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2525extern unsigned long arch_reserved_kernel_pages(void);
2526#endif
1da177e4 2527
a8e99259
MH
2528extern __printf(3, 4)
2529void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2530
e7c8d5c9 2531extern void setup_per_cpu_pageset(void);
e7c8d5c9 2532
75f7ad8e
PS
2533/* page_alloc.c */
2534extern int min_free_kbytes;
1c30844d 2535extern int watermark_boost_factor;
795ae7a0 2536extern int watermark_scale_factor;
51930df5 2537extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2538
8feae131 2539/* nommu.c */
33e5d769 2540extern atomic_long_t mmap_pages_allocated;
7e660872 2541extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2542
6b2dbba8 2543/* interval_tree.c */
6b2dbba8 2544void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2545 struct rb_root_cached *root);
9826a516
ML
2546void vma_interval_tree_insert_after(struct vm_area_struct *node,
2547 struct vm_area_struct *prev,
f808c13f 2548 struct rb_root_cached *root);
6b2dbba8 2549void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2550 struct rb_root_cached *root);
2551struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2552 unsigned long start, unsigned long last);
2553struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2554 unsigned long start, unsigned long last);
2555
2556#define vma_interval_tree_foreach(vma, root, start, last) \
2557 for (vma = vma_interval_tree_iter_first(root, start, last); \
2558 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2559
bf181b9f 2560void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2561 struct rb_root_cached *root);
bf181b9f 2562void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2563 struct rb_root_cached *root);
2564struct anon_vma_chain *
2565anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2566 unsigned long start, unsigned long last);
bf181b9f
ML
2567struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2568 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2569#ifdef CONFIG_DEBUG_VM_RB
2570void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2571#endif
bf181b9f
ML
2572
2573#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2574 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2575 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2576
1da177e4 2577/* mmap.c */
34b4e4aa 2578extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2579extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2580 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2581 struct vm_area_struct *expand);
2582static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2583 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2584{
2585 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2586}
1da177e4
LT
2587extern struct vm_area_struct *vma_merge(struct mm_struct *,
2588 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2589 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
9a10064f 2590 struct mempolicy *, struct vm_userfaultfd_ctx, const char *);
1da177e4 2591extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2592extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2593 unsigned long addr, int new_below);
2594extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2595 unsigned long addr, int new_below);
1da177e4
LT
2596extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2597extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2598 struct rb_node **, struct rb_node *);
a8fb5618 2599extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2600extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2601 unsigned long addr, unsigned long len, pgoff_t pgoff,
2602 bool *need_rmap_locks);
1da177e4 2603extern void exit_mmap(struct mm_struct *);
925d1c40 2604
9c599024
CG
2605static inline int check_data_rlimit(unsigned long rlim,
2606 unsigned long new,
2607 unsigned long start,
2608 unsigned long end_data,
2609 unsigned long start_data)
2610{
2611 if (rlim < RLIM_INFINITY) {
2612 if (((new - start) + (end_data - start_data)) > rlim)
2613 return -ENOSPC;
2614 }
2615
2616 return 0;
2617}
2618
7906d00c
AA
2619extern int mm_take_all_locks(struct mm_struct *mm);
2620extern void mm_drop_all_locks(struct mm_struct *mm);
2621
fe69d560 2622extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 2623extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 2624extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2625extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2626
84638335
KK
2627extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2628extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2629
2eefd878
DS
2630extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2631 const struct vm_special_mapping *sm);
3935ed6a
SS
2632extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2633 unsigned long addr, unsigned long len,
a62c34bd
AL
2634 unsigned long flags,
2635 const struct vm_special_mapping *spec);
2636/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2637extern int install_special_mapping(struct mm_struct *mm,
2638 unsigned long addr, unsigned long len,
2639 unsigned long flags, struct page **pages);
1da177e4 2640
649775be
AG
2641unsigned long randomize_stack_top(unsigned long stack_top);
2642
1da177e4
LT
2643extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2644
0165ab44 2645extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2646 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2647 struct list_head *uf);
1fcfd8db 2648extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2649 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2650 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2651extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2652 struct list_head *uf, bool downgrade);
897ab3e0
MR
2653extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2654 struct list_head *uf);
0726b01e 2655extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2656
bebeb3d6
ML
2657#ifdef CONFIG_MMU
2658extern int __mm_populate(unsigned long addr, unsigned long len,
2659 int ignore_errors);
2660static inline void mm_populate(unsigned long addr, unsigned long len)
2661{
2662 /* Ignore errors */
2663 (void) __mm_populate(addr, len, 1);
2664}
2665#else
2666static inline void mm_populate(unsigned long addr, unsigned long len) {}
2667#endif
2668
e4eb1ff6 2669/* These take the mm semaphore themselves */
5d22fc25 2670extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2671extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2672extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2673extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2674 unsigned long, unsigned long,
2675 unsigned long, unsigned long);
1da177e4 2676
db4fbfb9
ML
2677struct vm_unmapped_area_info {
2678#define VM_UNMAPPED_AREA_TOPDOWN 1
2679 unsigned long flags;
2680 unsigned long length;
2681 unsigned long low_limit;
2682 unsigned long high_limit;
2683 unsigned long align_mask;
2684 unsigned long align_offset;
2685};
2686
baceaf1c 2687extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2688
85821aab 2689/* truncate.c */
1da177e4 2690extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2691extern void truncate_inode_pages_range(struct address_space *,
2692 loff_t lstart, loff_t lend);
91b0abe3 2693extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2694
2695/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2696extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2697extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2698 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2699extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 2700
1be7107f 2701extern unsigned long stack_guard_gap;
d05f3169 2702/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2703extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2704
11192337 2705/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2706extern int expand_downwards(struct vm_area_struct *vma,
2707 unsigned long address);
8ca3eb08 2708#if VM_GROWSUP
46dea3d0 2709extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2710#else
fee7e49d 2711 #define expand_upwards(vma, address) (0)
9ab88515 2712#endif
1da177e4
LT
2713
2714/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2715extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2716extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2717 struct vm_area_struct **pprev);
2718
ce6d42f2
LH
2719/**
2720 * find_vma_intersection() - Look up the first VMA which intersects the interval
2721 * @mm: The process address space.
2722 * @start_addr: The inclusive start user address.
2723 * @end_addr: The exclusive end user address.
2724 *
2725 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2726 * start_addr < end_addr.
2727 */
2728static inline
2729struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2730 unsigned long start_addr,
2731 unsigned long end_addr)
1da177e4 2732{
ce6d42f2 2733 struct vm_area_struct *vma = find_vma(mm, start_addr);
1da177e4
LT
2734
2735 if (vma && end_addr <= vma->vm_start)
2736 vma = NULL;
2737 return vma;
2738}
2739
ce6d42f2
LH
2740/**
2741 * vma_lookup() - Find a VMA at a specific address
2742 * @mm: The process address space.
2743 * @addr: The user address.
2744 *
2745 * Return: The vm_area_struct at the given address, %NULL otherwise.
2746 */
2747static inline
2748struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2749{
2750 struct vm_area_struct *vma = find_vma(mm, addr);
2751
2752 if (vma && addr < vma->vm_start)
2753 vma = NULL;
2754
2755 return vma;
2756}
2757
1be7107f
HD
2758static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2759{
2760 unsigned long vm_start = vma->vm_start;
2761
2762 if (vma->vm_flags & VM_GROWSDOWN) {
2763 vm_start -= stack_guard_gap;
2764 if (vm_start > vma->vm_start)
2765 vm_start = 0;
2766 }
2767 return vm_start;
2768}
2769
2770static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2771{
2772 unsigned long vm_end = vma->vm_end;
2773
2774 if (vma->vm_flags & VM_GROWSUP) {
2775 vm_end += stack_guard_gap;
2776 if (vm_end < vma->vm_end)
2777 vm_end = -PAGE_SIZE;
2778 }
2779 return vm_end;
2780}
2781
1da177e4
LT
2782static inline unsigned long vma_pages(struct vm_area_struct *vma)
2783{
2784 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2785}
2786
640708a2
PE
2787/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2788static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2789 unsigned long vm_start, unsigned long vm_end)
2790{
2791 struct vm_area_struct *vma = find_vma(mm, vm_start);
2792
2793 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2794 vma = NULL;
2795
2796 return vma;
2797}
2798
017b1660
MK
2799static inline bool range_in_vma(struct vm_area_struct *vma,
2800 unsigned long start, unsigned long end)
2801{
2802 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2803}
2804
bad849b3 2805#ifdef CONFIG_MMU
804af2cf 2806pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2807void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2808#else
2809static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2810{
2811 return __pgprot(0);
2812}
64e45507
PF
2813static inline void vma_set_page_prot(struct vm_area_struct *vma)
2814{
2815 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2816}
bad849b3
DH
2817#endif
2818
295992fb
CK
2819void vma_set_file(struct vm_area_struct *vma, struct file *file);
2820
5877231f 2821#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2822unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2823 unsigned long start, unsigned long end);
2824#endif
2825
deceb6cd 2826struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2827int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2828 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
2829int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2830 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 2831int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2832int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2833 struct page **pages, unsigned long *num);
a667d745
SJ
2834int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2835 unsigned long num);
2836int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2837 unsigned long num);
ae2b01f3 2838vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2839 unsigned long pfn);
f5e6d1d5
MW
2840vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2841 unsigned long pfn, pgprot_t pgprot);
5d747637 2842vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2843 pfn_t pfn);
574c5b3d
TH
2844vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2845 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2846vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2847 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2848int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2849
1c8f4220
SJ
2850static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2851 unsigned long addr, struct page *page)
2852{
2853 int err = vm_insert_page(vma, addr, page);
2854
2855 if (err == -ENOMEM)
2856 return VM_FAULT_OOM;
2857 if (err < 0 && err != -EBUSY)
2858 return VM_FAULT_SIGBUS;
2859
2860 return VM_FAULT_NOPAGE;
2861}
2862
f8f6ae5d
JG
2863#ifndef io_remap_pfn_range
2864static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2865 unsigned long addr, unsigned long pfn,
2866 unsigned long size, pgprot_t prot)
2867{
2868 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2869}
2870#endif
2871
d97baf94
SJ
2872static inline vm_fault_t vmf_error(int err)
2873{
2874 if (err == -ENOMEM)
2875 return VM_FAULT_OOM;
2876 return VM_FAULT_SIGBUS;
2877}
2878
df06b37f
KB
2879struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2880 unsigned int foll_flags);
240aadee 2881
deceb6cd
HD
2882#define FOLL_WRITE 0x01 /* check pte is writable */
2883#define FOLL_TOUCH 0x02 /* mark page accessed */
2884#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2885#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2886#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2887#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2888 * and return without waiting upon it */
55b8fe70 2889#define FOLL_NOFAULT 0x80 /* do not fault in pages */
69ebb83e 2890#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2891#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2892#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2893#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1e987790 2894#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2895#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2896#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2897#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2898#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2899#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2900#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2901
2902/*
eddb1c22
JH
2903 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2904 * other. Here is what they mean, and how to use them:
932f4a63
IW
2905 *
2906 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2907 * period _often_ under userspace control. This is in contrast to
2908 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2909 *
2910 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2911 * lifetime enforced by the filesystem and we need guarantees that longterm
2912 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2913 * the filesystem. Ideas for this coordination include revoking the longterm
2914 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2915 * added after the problem with filesystems was found FS DAX VMAs are
2916 * specifically failed. Filesystem pages are still subject to bugs and use of
2917 * FOLL_LONGTERM should be avoided on those pages.
2918 *
2919 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2920 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2921 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2922 * is due to an incompatibility with the FS DAX check and
eddb1c22 2923 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2924 *
eddb1c22
JH
2925 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2926 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2927 * FOLL_LONGTERM is specified.
eddb1c22
JH
2928 *
2929 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2930 * but an additional pin counting system) will be invoked. This is intended for
2931 * anything that gets a page reference and then touches page data (for example,
2932 * Direct IO). This lets the filesystem know that some non-file-system entity is
2933 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2934 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2935 * a call to unpin_user_page().
eddb1c22
JH
2936 *
2937 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2938 * and separate refcounting mechanisms, however, and that means that each has
2939 * its own acquire and release mechanisms:
2940 *
2941 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2942 *
f1f6a7dd 2943 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2944 *
2945 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2946 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2947 * calls applied to them, and that's perfectly OK. This is a constraint on the
2948 * callers, not on the pages.)
2949 *
2950 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2951 * directly by the caller. That's in order to help avoid mismatches when
2952 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2953 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2954 *
72ef5e52 2955 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2956 */
1da177e4 2957
2b740303 2958static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2959{
2960 if (vm_fault & VM_FAULT_OOM)
2961 return -ENOMEM;
2962 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2963 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2964 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2965 return -EFAULT;
2966 return 0;
2967}
2968
8b1e0f81 2969typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2970extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2971 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2972extern int apply_to_existing_page_range(struct mm_struct *mm,
2973 unsigned long address, unsigned long size,
2974 pte_fn_t fn, void *data);
aee16b3c 2975
04013513 2976extern void init_mem_debugging_and_hardening(void);
8823b1db 2977#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
2978extern void __kernel_poison_pages(struct page *page, int numpages);
2979extern void __kernel_unpoison_pages(struct page *page, int numpages);
2980extern bool _page_poisoning_enabled_early;
2981DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2982static inline bool page_poisoning_enabled(void)
2983{
2984 return _page_poisoning_enabled_early;
2985}
2986/*
2987 * For use in fast paths after init_mem_debugging() has run, or when a
2988 * false negative result is not harmful when called too early.
2989 */
2990static inline bool page_poisoning_enabled_static(void)
2991{
2992 return static_branch_unlikely(&_page_poisoning_enabled);
2993}
2994static inline void kernel_poison_pages(struct page *page, int numpages)
2995{
2996 if (page_poisoning_enabled_static())
2997 __kernel_poison_pages(page, numpages);
2998}
2999static inline void kernel_unpoison_pages(struct page *page, int numpages)
3000{
3001 if (page_poisoning_enabled_static())
3002 __kernel_unpoison_pages(page, numpages);
3003}
8823b1db
LA
3004#else
3005static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3006static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3007static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3008static inline void kernel_poison_pages(struct page *page, int numpages) { }
3009static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3010#endif
3011
51cba1eb 3012DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3013static inline bool want_init_on_alloc(gfp_t flags)
3014{
51cba1eb
KC
3015 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3016 &init_on_alloc))
6471384a
AP
3017 return true;
3018 return flags & __GFP_ZERO;
3019}
3020
51cba1eb 3021DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3022static inline bool want_init_on_free(void)
3023{
51cba1eb
KC
3024 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3025 &init_on_free);
6471384a
AP
3026}
3027
8e57f8ac
VB
3028extern bool _debug_pagealloc_enabled_early;
3029DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3030
3031static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3032{
3033 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3034 _debug_pagealloc_enabled_early;
3035}
3036
3037/*
3038 * For use in fast paths after init_debug_pagealloc() has run, or when a
3039 * false negative result is not harmful when called too early.
3040 */
3041static inline bool debug_pagealloc_enabled_static(void)
031bc574 3042{
96a2b03f
VB
3043 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3044 return false;
3045
3046 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3047}
3048
5d6ad668 3049#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3050/*
5d6ad668
MR
3051 * To support DEBUG_PAGEALLOC architecture must ensure that
3052 * __kernel_map_pages() never fails
c87cbc1f 3053 */
d6332692
RE
3054extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3055
77bc7fd6
MR
3056static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3057{
3058 if (debug_pagealloc_enabled_static())
3059 __kernel_map_pages(page, numpages, 1);
3060}
3061
3062static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3063{
3064 if (debug_pagealloc_enabled_static())
3065 __kernel_map_pages(page, numpages, 0);
3066}
5d6ad668 3067#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3068static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3069static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3070#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3071
a6c19dfe 3072#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3073extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3074extern int in_gate_area_no_mm(unsigned long addr);
3075extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3076#else
a6c19dfe
AL
3077static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3078{
3079 return NULL;
3080}
3081static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3082static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3083{
3084 return 0;
3085}
1da177e4
LT
3086#endif /* __HAVE_ARCH_GATE_AREA */
3087
44a70ade
MH
3088extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3089
146732ce
JT
3090#ifdef CONFIG_SYSCTL
3091extern int sysctl_drop_caches;
32927393
CH
3092int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3093 loff_t *);
146732ce
JT
3094#endif
3095
cb731d6c 3096void drop_slab(void);
9d0243bc 3097
7a9166e3
LY
3098#ifndef CONFIG_MMU
3099#define randomize_va_space 0
3100#else
a62eaf15 3101extern int randomize_va_space;
7a9166e3 3102#endif
a62eaf15 3103
045e72ac 3104const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3105#ifdef CONFIG_MMU
03252919 3106void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3107#else
3108static inline void print_vma_addr(char *prefix, unsigned long rip)
3109{
3110}
3111#endif
e6e5494c 3112
3bc2b6a7
MS
3113int vmemmap_remap_free(unsigned long start, unsigned long end,
3114 unsigned long reuse);
ad2fa371
MS
3115int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3116 unsigned long reuse, gfp_t gfp_mask);
f41f2ed4 3117
35fd1eb1 3118void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
3119struct page * __populate_section_memmap(unsigned long pfn,
3120 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3121pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3122p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3123pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3124pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
3125pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3126 struct vmem_altmap *altmap);
8f6aac41 3127void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3128struct vmem_altmap;
56993b4e
AK
3129void *vmemmap_alloc_block_buf(unsigned long size, int node,
3130 struct vmem_altmap *altmap);
8f6aac41 3131void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3132int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3133 int node, struct vmem_altmap *altmap);
7b73d978
CH
3134int vmemmap_populate(unsigned long start, unsigned long end, int node,
3135 struct vmem_altmap *altmap);
c2b91e2e 3136void vmemmap_populate_print_last(void);
0197518c 3137#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3138void vmemmap_free(unsigned long start, unsigned long end,
3139 struct vmem_altmap *altmap);
0197518c 3140#endif
46723bfa 3141void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3142 unsigned long nr_pages);
6a46079c 3143
82ba011b
AK
3144enum mf_flags {
3145 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3146 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3147 MF_MUST_KILL = 1 << 2,
cf870c70 3148 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3149 MF_UNPOISON = 1 << 4,
82ba011b 3150};
83b57531
EB
3151extern int memory_failure(unsigned long pfn, int flags);
3152extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3153extern void memory_failure_queue_kick(int cpu);
847ce401 3154extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3155extern int sysctl_memory_failure_early_kill;
3156extern int sysctl_memory_failure_recovery;
d0505e9f 3157extern void shake_page(struct page *p);
5844a486 3158extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3159extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3160
03b122da
TL
3161#ifndef arch_memory_failure
3162static inline int arch_memory_failure(unsigned long pfn, int flags)
3163{
3164 return -ENXIO;
3165}
3166#endif
3167
3168#ifndef arch_is_platform_page
3169static inline bool arch_is_platform_page(u64 paddr)
3170{
3171 return false;
3172}
3173#endif
cc637b17
XX
3174
3175/*
3176 * Error handlers for various types of pages.
3177 */
cc3e2af4 3178enum mf_result {
cc637b17
XX
3179 MF_IGNORED, /* Error: cannot be handled */
3180 MF_FAILED, /* Error: handling failed */
3181 MF_DELAYED, /* Will be handled later */
3182 MF_RECOVERED, /* Successfully recovered */
3183};
3184
3185enum mf_action_page_type {
3186 MF_MSG_KERNEL,
3187 MF_MSG_KERNEL_HIGH_ORDER,
3188 MF_MSG_SLAB,
3189 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3190 MF_MSG_HUGE,
3191 MF_MSG_FREE_HUGE,
31286a84 3192 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3193 MF_MSG_UNMAP_FAILED,
3194 MF_MSG_DIRTY_SWAPCACHE,
3195 MF_MSG_CLEAN_SWAPCACHE,
3196 MF_MSG_DIRTY_MLOCKED_LRU,
3197 MF_MSG_CLEAN_MLOCKED_LRU,
3198 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3199 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3200 MF_MSG_DIRTY_LRU,
3201 MF_MSG_CLEAN_LRU,
3202 MF_MSG_TRUNCATED_LRU,
3203 MF_MSG_BUDDY,
6100e34b 3204 MF_MSG_DAX,
5d1fd5dc 3205 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3206 MF_MSG_UNKNOWN,
3207};
3208
47ad8475
AA
3209#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3210extern void clear_huge_page(struct page *page,
c79b57e4 3211 unsigned long addr_hint,
47ad8475
AA
3212 unsigned int pages_per_huge_page);
3213extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3214 unsigned long addr_hint,
3215 struct vm_area_struct *vma,
47ad8475 3216 unsigned int pages_per_huge_page);
fa4d75c1
MK
3217extern long copy_huge_page_from_user(struct page *dst_page,
3218 const void __user *usr_src,
810a56b9
MK
3219 unsigned int pages_per_huge_page,
3220 bool allow_pagefault);
2484ca9b
THV
3221
3222/**
3223 * vma_is_special_huge - Are transhuge page-table entries considered special?
3224 * @vma: Pointer to the struct vm_area_struct to consider
3225 *
3226 * Whether transhuge page-table entries are considered "special" following
3227 * the definition in vm_normal_page().
3228 *
3229 * Return: true if transhuge page-table entries should be considered special,
3230 * false otherwise.
3231 */
3232static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3233{
3234 return vma_is_dax(vma) || (vma->vm_file &&
3235 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3236}
3237
47ad8475
AA
3238#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3239
c0a32fc5
SG
3240#ifdef CONFIG_DEBUG_PAGEALLOC
3241extern unsigned int _debug_guardpage_minorder;
96a2b03f 3242DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3243
3244static inline unsigned int debug_guardpage_minorder(void)
3245{
3246 return _debug_guardpage_minorder;
3247}
3248
e30825f1
JK
3249static inline bool debug_guardpage_enabled(void)
3250{
96a2b03f 3251 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3252}
3253
c0a32fc5
SG
3254static inline bool page_is_guard(struct page *page)
3255{
e30825f1
JK
3256 if (!debug_guardpage_enabled())
3257 return false;
3258
3972f6bb 3259 return PageGuard(page);
c0a32fc5
SG
3260}
3261#else
3262static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3263static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3264static inline bool page_is_guard(struct page *page) { return false; }
3265#endif /* CONFIG_DEBUG_PAGEALLOC */
3266
f9872caf
CS
3267#if MAX_NUMNODES > 1
3268void __init setup_nr_node_ids(void);
3269#else
3270static inline void setup_nr_node_ids(void) {}
3271#endif
3272
010c164a
SL
3273extern int memcmp_pages(struct page *page1, struct page *page2);
3274
3275static inline int pages_identical(struct page *page1, struct page *page2)
3276{
3277 return !memcmp_pages(page1, page2);
3278}
3279
c5acad84
TH
3280#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3281unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3282 pgoff_t first_index, pgoff_t nr,
3283 pgoff_t bitmap_pgoff,
3284 unsigned long *bitmap,
3285 pgoff_t *start,
3286 pgoff_t *end);
3287
3288unsigned long wp_shared_mapping_range(struct address_space *mapping,
3289 pgoff_t first_index, pgoff_t nr);
3290#endif
3291
2374c09b
CH
3292extern int sysctl_nr_trim_pages;
3293
5bb1bb35 3294#ifdef CONFIG_PRINTK
8e7f37f2 3295void mem_dump_obj(void *object);
5bb1bb35
PM
3296#else
3297static inline void mem_dump_obj(void *object) {}
3298#endif
8e7f37f2 3299
22247efd
PX
3300/**
3301 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3302 * @seals: the seals to check
3303 * @vma: the vma to operate on
3304 *
3305 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3306 * the vma flags. Return 0 if check pass, or <0 for errors.
3307 */
3308static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3309{
3310 if (seals & F_SEAL_FUTURE_WRITE) {
3311 /*
3312 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3313 * "future write" seal active.
3314 */
3315 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3316 return -EPERM;
3317
3318 /*
3319 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3320 * MAP_SHARED and read-only, take care to not allow mprotect to
3321 * revert protections on such mappings. Do this only for shared
3322 * mappings. For private mappings, don't need to mask
3323 * VM_MAYWRITE as we still want them to be COW-writable.
3324 */
3325 if (vma->vm_flags & VM_SHARED)
3326 vma->vm_flags &= ~(VM_MAYWRITE);
3327 }
3328
3329 return 0;
3330}
3331
9a10064f
CC
3332#ifdef CONFIG_ANON_VMA_NAME
3333int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3334 unsigned long len_in, const char *name);
3335#else
3336static inline int
3337madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3338 unsigned long len_in, const char *name) {
3339 return 0;
3340}
3341#endif
3342
1da177e4 3343#endif /* _LINUX_MM_H */