mm: Make large folios depend on THP
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
1da177e4
LT
31
32struct mempolicy;
33struct anon_vma;
bf181b9f 34struct anon_vma_chain;
e8edc6e0 35struct user_struct;
bce617ed 36struct pt_regs;
1da177e4 37
5ef64cc8
LT
38extern int sysctl_page_lock_unfairness;
39
597b7305
MH
40void init_mm_internals(void);
41
a9ee6cf5 42#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 43extern unsigned long max_mapnr;
fccc9987
JL
44
45static inline void set_max_mapnr(unsigned long limit)
46{
47 max_mapnr = limit;
48}
49#else
50static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
51#endif
52
ca79b0c2
AK
53extern atomic_long_t _totalram_pages;
54static inline unsigned long totalram_pages(void)
55{
56 return (unsigned long)atomic_long_read(&_totalram_pages);
57}
58
59static inline void totalram_pages_inc(void)
60{
61 atomic_long_inc(&_totalram_pages);
62}
63
64static inline void totalram_pages_dec(void)
65{
66 atomic_long_dec(&_totalram_pages);
67}
68
69static inline void totalram_pages_add(long count)
70{
71 atomic_long_add(count, &_totalram_pages);
72}
73
1da177e4 74extern void * high_memory;
1da177e4
LT
75extern int page_cluster;
76
77#ifdef CONFIG_SYSCTL
78extern int sysctl_legacy_va_layout;
79#else
80#define sysctl_legacy_va_layout 0
81#endif
82
d07e2259
DC
83#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
84extern const int mmap_rnd_bits_min;
85extern const int mmap_rnd_bits_max;
86extern int mmap_rnd_bits __read_mostly;
87#endif
88#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
89extern const int mmap_rnd_compat_bits_min;
90extern const int mmap_rnd_compat_bits_max;
91extern int mmap_rnd_compat_bits __read_mostly;
92#endif
93
1da177e4 94#include <asm/page.h>
1da177e4 95#include <asm/processor.h>
1da177e4 96
d9344522
AK
97/*
98 * Architectures that support memory tagging (assigning tags to memory regions,
99 * embedding these tags into addresses that point to these memory regions, and
100 * checking that the memory and the pointer tags match on memory accesses)
101 * redefine this macro to strip tags from pointers.
f0953a1b 102 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
103 */
104#ifndef untagged_addr
105#define untagged_addr(addr) (addr)
106#endif
107
79442ed1
TC
108#ifndef __pa_symbol
109#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
110#endif
111
1dff8083
AB
112#ifndef page_to_virt
113#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
114#endif
115
568c5fe5
LA
116#ifndef lm_alias
117#define lm_alias(x) __va(__pa_symbol(x))
118#endif
119
593befa6
DD
120/*
121 * To prevent common memory management code establishing
122 * a zero page mapping on a read fault.
123 * This macro should be defined within <asm/pgtable.h>.
124 * s390 does this to prevent multiplexing of hardware bits
125 * related to the physical page in case of virtualization.
126 */
127#ifndef mm_forbids_zeropage
128#define mm_forbids_zeropage(X) (0)
129#endif
130
a4a3ede2
PT
131/*
132 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
133 * If an architecture decides to implement their own version of
134 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
135 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 136 */
5470dea4
AD
137#if BITS_PER_LONG == 64
138/* This function must be updated when the size of struct page grows above 80
139 * or reduces below 56. The idea that compiler optimizes out switch()
140 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 141 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
142 * this can result in several of the writes here being dropped.
143 */
144#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
145static inline void __mm_zero_struct_page(struct page *page)
146{
147 unsigned long *_pp = (void *)page;
148
149 /* Check that struct page is either 56, 64, 72, or 80 bytes */
150 BUILD_BUG_ON(sizeof(struct page) & 7);
151 BUILD_BUG_ON(sizeof(struct page) < 56);
152 BUILD_BUG_ON(sizeof(struct page) > 80);
153
154 switch (sizeof(struct page)) {
155 case 80:
df561f66
GS
156 _pp[9] = 0;
157 fallthrough;
5470dea4 158 case 72:
df561f66
GS
159 _pp[8] = 0;
160 fallthrough;
5470dea4 161 case 64:
df561f66
GS
162 _pp[7] = 0;
163 fallthrough;
5470dea4
AD
164 case 56:
165 _pp[6] = 0;
166 _pp[5] = 0;
167 _pp[4] = 0;
168 _pp[3] = 0;
169 _pp[2] = 0;
170 _pp[1] = 0;
171 _pp[0] = 0;
172 }
173}
174#else
a4a3ede2
PT
175#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
176#endif
177
ea606cf5
AR
178/*
179 * Default maximum number of active map areas, this limits the number of vmas
180 * per mm struct. Users can overwrite this number by sysctl but there is a
181 * problem.
182 *
183 * When a program's coredump is generated as ELF format, a section is created
184 * per a vma. In ELF, the number of sections is represented in unsigned short.
185 * This means the number of sections should be smaller than 65535 at coredump.
186 * Because the kernel adds some informative sections to a image of program at
187 * generating coredump, we need some margin. The number of extra sections is
188 * 1-3 now and depends on arch. We use "5" as safe margin, here.
189 *
190 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
191 * not a hard limit any more. Although some userspace tools can be surprised by
192 * that.
193 */
194#define MAPCOUNT_ELF_CORE_MARGIN (5)
195#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
196
197extern int sysctl_max_map_count;
198
c9b1d098 199extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 200extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 201
49f0ce5f
JM
202extern int sysctl_overcommit_memory;
203extern int sysctl_overcommit_ratio;
204extern unsigned long sysctl_overcommit_kbytes;
205
32927393
CH
206int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
207 loff_t *);
208int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
209 loff_t *);
56f3547b
FT
210int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
211 loff_t *);
49f0ce5f 212
1cfcee72 213#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 214#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 215#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
216#else
217#define nth_page(page,n) ((page) + (n))
659508f9 218#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 219#endif
1da177e4 220
27ac792c
AR
221/* to align the pointer to the (next) page boundary */
222#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223
0fa73b86 224/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 225#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 226
f86196ea 227#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
228static inline struct folio *lru_to_folio(struct list_head *head)
229{
230 return list_entry((head)->prev, struct folio, lru);
231}
f86196ea 232
5748fbc5
KW
233void setup_initial_init_mm(void *start_code, void *end_code,
234 void *end_data, void *brk);
235
1da177e4
LT
236/*
237 * Linux kernel virtual memory manager primitives.
238 * The idea being to have a "virtual" mm in the same way
239 * we have a virtual fs - giving a cleaner interface to the
240 * mm details, and allowing different kinds of memory mappings
241 * (from shared memory to executable loading to arbitrary
242 * mmap() functions).
243 */
244
490fc053 245struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
246struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
247void vm_area_free(struct vm_area_struct *);
c43692e8 248
1da177e4 249#ifndef CONFIG_MMU
8feae131
DH
250extern struct rb_root nommu_region_tree;
251extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
252
253extern unsigned int kobjsize(const void *objp);
254#endif
255
256/*
605d9288 257 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 258 * When changing, update also include/trace/events/mmflags.h
1da177e4 259 */
cc2383ec
KK
260#define VM_NONE 0x00000000
261
1da177e4
LT
262#define VM_READ 0x00000001 /* currently active flags */
263#define VM_WRITE 0x00000002
264#define VM_EXEC 0x00000004
265#define VM_SHARED 0x00000008
266
7e2cff42 267/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
268#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
269#define VM_MAYWRITE 0x00000020
270#define VM_MAYEXEC 0x00000040
271#define VM_MAYSHARE 0x00000080
272
273#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 274#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 275#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 276#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 277
1da177e4
LT
278#define VM_LOCKED 0x00002000
279#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
280
281 /* Used by sys_madvise() */
282#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
283#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
284
285#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
286#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 287#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 288#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 289#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 290#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 291#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 292#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 293#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 294#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 295
d9104d1c
CG
296#ifdef CONFIG_MEM_SOFT_DIRTY
297# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
298#else
299# define VM_SOFTDIRTY 0
300#endif
301
b379d790 302#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
303#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
304#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 305#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 306
63c17fb8
DH
307#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
308#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
309#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
310#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
311#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 312#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
313#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
314#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
315#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
316#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 317#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
318#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
319
5212213a 320#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
321# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
322# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 323# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
324# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
325# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
326#ifdef CONFIG_PPC
327# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
328#else
329# define VM_PKEY_BIT4 0
8f62c883 330#endif
5212213a
RP
331#endif /* CONFIG_ARCH_HAS_PKEYS */
332
333#if defined(CONFIG_X86)
334# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
335#elif defined(CONFIG_PPC)
336# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
337#elif defined(CONFIG_PARISC)
338# define VM_GROWSUP VM_ARCH_1
339#elif defined(CONFIG_IA64)
340# define VM_GROWSUP VM_ARCH_1
74a04967
KA
341#elif defined(CONFIG_SPARC64)
342# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
343# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
344#elif defined(CONFIG_ARM64)
345# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
346# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
347#elif !defined(CONFIG_MMU)
348# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
349#endif
350
9f341931
CM
351#if defined(CONFIG_ARM64_MTE)
352# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
353# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
354#else
355# define VM_MTE VM_NONE
356# define VM_MTE_ALLOWED VM_NONE
357#endif
358
cc2383ec
KK
359#ifndef VM_GROWSUP
360# define VM_GROWSUP VM_NONE
361#endif
362
7677f7fd
AR
363#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
364# define VM_UFFD_MINOR_BIT 37
365# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
366#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
367# define VM_UFFD_MINOR VM_NONE
368#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
369
a8bef8ff
MG
370/* Bits set in the VMA until the stack is in its final location */
371#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
372
c62da0c3
AK
373#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
374
375/* Common data flag combinations */
376#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
377 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
378#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
379 VM_MAYWRITE | VM_MAYEXEC)
380#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
381 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
382
383#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
384#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
385#endif
386
1da177e4
LT
387#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
388#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
389#endif
390
391#ifdef CONFIG_STACK_GROWSUP
30bdbb78 392#define VM_STACK VM_GROWSUP
1da177e4 393#else
30bdbb78 394#define VM_STACK VM_GROWSDOWN
1da177e4
LT
395#endif
396
30bdbb78
KK
397#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
398
6cb4d9a2
AK
399/* VMA basic access permission flags */
400#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
401
402
b291f000 403/*
78f11a25 404 * Special vmas that are non-mergable, non-mlock()able.
b291f000 405 */
9050d7eb 406#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 407
b4443772
AK
408/* This mask prevents VMA from being scanned with khugepaged */
409#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
410
a0715cc2
AT
411/* This mask defines which mm->def_flags a process can inherit its parent */
412#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
413
de60f5f1
EM
414/* This mask is used to clear all the VMA flags used by mlock */
415#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
416
2c2d57b5
KA
417/* Arch-specific flags to clear when updating VM flags on protection change */
418#ifndef VM_ARCH_CLEAR
419# define VM_ARCH_CLEAR VM_NONE
420#endif
421#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
422
1da177e4
LT
423/*
424 * mapping from the currently active vm_flags protection bits (the
425 * low four bits) to a page protection mask..
426 */
427extern pgprot_t protection_map[16];
428
dde16072
PX
429/*
430 * The default fault flags that should be used by most of the
431 * arch-specific page fault handlers.
432 */
433#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
434 FAULT_FLAG_KILLABLE | \
435 FAULT_FLAG_INTERRUPTIBLE)
dde16072 436
4064b982
PX
437/**
438 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 439 * @flags: Fault flags.
4064b982
PX
440 *
441 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 442 * the mmap_lock for too long a time when waiting for another condition
4064b982 443 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
444 * mmap_lock in the first round to avoid potential starvation of other
445 * processes that would also want the mmap_lock.
4064b982
PX
446 *
447 * Return: true if the page fault allows retry and this is the first
448 * attempt of the fault handling; false otherwise.
449 */
da2f5eb3 450static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
451{
452 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
453 (!(flags & FAULT_FLAG_TRIED));
454}
455
282a8e03
RZ
456#define FAULT_FLAG_TRACE \
457 { FAULT_FLAG_WRITE, "WRITE" }, \
458 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
459 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
460 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
461 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
462 { FAULT_FLAG_TRIED, "TRIED" }, \
463 { FAULT_FLAG_USER, "USER" }, \
464 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
465 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
466 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 467
54cb8821 468/*
11192337 469 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
470 * ->fault function. The vma's ->fault is responsible for returning a bitmask
471 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 472 *
c20cd45e
MH
473 * MM layer fills up gfp_mask for page allocations but fault handler might
474 * alter it if its implementation requires a different allocation context.
475 *
9b4bdd2f 476 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 477 */
d0217ac0 478struct vm_fault {
5857c920 479 const struct {
742d3372
WD
480 struct vm_area_struct *vma; /* Target VMA */
481 gfp_t gfp_mask; /* gfp mask to be used for allocations */
482 pgoff_t pgoff; /* Logical page offset based on vma */
483 unsigned long address; /* Faulting virtual address */
484 };
da2f5eb3 485 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 486 * XXX: should really be 'const' */
82b0f8c3 487 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 488 * the 'address' */
a2d58167
DJ
489 pud_t *pud; /* Pointer to pud entry matching
490 * the 'address'
491 */
5db4f15c
YS
492 union {
493 pte_t orig_pte; /* Value of PTE at the time of fault */
494 pmd_t orig_pmd; /* Value of PMD at the time of fault,
495 * used by PMD fault only.
496 */
497 };
d0217ac0 498
3917048d 499 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 500 struct page *page; /* ->fault handlers should return a
83c54070 501 * page here, unless VM_FAULT_NOPAGE
d0217ac0 502 * is set (which is also implied by
83c54070 503 * VM_FAULT_ERROR).
d0217ac0 504 */
82b0f8c3 505 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
506 pte_t *pte; /* Pointer to pte entry matching
507 * the 'address'. NULL if the page
508 * table hasn't been allocated.
509 */
510 spinlock_t *ptl; /* Page table lock.
511 * Protects pte page table if 'pte'
512 * is not NULL, otherwise pmd.
513 */
7267ec00 514 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
515 * vm_ops->map_pages() sets up a page
516 * table from atomic context.
7267ec00
KS
517 * do_fault_around() pre-allocates
518 * page table to avoid allocation from
519 * atomic context.
520 */
54cb8821 521};
1da177e4 522
c791ace1
DJ
523/* page entry size for vm->huge_fault() */
524enum page_entry_size {
525 PE_SIZE_PTE = 0,
526 PE_SIZE_PMD,
527 PE_SIZE_PUD,
528};
529
1da177e4
LT
530/*
531 * These are the virtual MM functions - opening of an area, closing and
532 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 533 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
534 */
535struct vm_operations_struct {
536 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
537 /**
538 * @close: Called when the VMA is being removed from the MM.
539 * Context: User context. May sleep. Caller holds mmap_lock.
540 */
1da177e4 541 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
542 /* Called any time before splitting to check if it's allowed */
543 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 544 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
545 /*
546 * Called by mprotect() to make driver-specific permission
547 * checks before mprotect() is finalised. The VMA must not
548 * be modified. Returns 0 if eprotect() can proceed.
549 */
550 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
551 unsigned long end, unsigned long newflags);
1c8f4220
SJ
552 vm_fault_t (*fault)(struct vm_fault *vmf);
553 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
554 enum page_entry_size pe_size);
f9ce0be7 555 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 556 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 557 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
558
559 /* notification that a previously read-only page is about to become
560 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 561 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 562
dd906184 563 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 564 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 565
28b2ee20 566 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
567 * for use by special VMAs. See also generic_access_phys() for a generic
568 * implementation useful for any iomem mapping.
28b2ee20
RR
569 */
570 int (*access)(struct vm_area_struct *vma, unsigned long addr,
571 void *buf, int len, int write);
78d683e8
AL
572
573 /* Called by the /proc/PID/maps code to ask the vma whether it
574 * has a special name. Returning non-NULL will also cause this
575 * vma to be dumped unconditionally. */
576 const char *(*name)(struct vm_area_struct *vma);
577
1da177e4 578#ifdef CONFIG_NUMA
a6020ed7
LS
579 /*
580 * set_policy() op must add a reference to any non-NULL @new mempolicy
581 * to hold the policy upon return. Caller should pass NULL @new to
582 * remove a policy and fall back to surrounding context--i.e. do not
583 * install a MPOL_DEFAULT policy, nor the task or system default
584 * mempolicy.
585 */
1da177e4 586 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
587
588 /*
589 * get_policy() op must add reference [mpol_get()] to any policy at
590 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
591 * in mm/mempolicy.c will do this automatically.
592 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 593 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
594 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
595 * must return NULL--i.e., do not "fallback" to task or system default
596 * policy.
597 */
1da177e4
LT
598 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
599 unsigned long addr);
600#endif
667a0a06
DV
601 /*
602 * Called by vm_normal_page() for special PTEs to find the
603 * page for @addr. This is useful if the default behavior
604 * (using pte_page()) would not find the correct page.
605 */
606 struct page *(*find_special_page)(struct vm_area_struct *vma,
607 unsigned long addr);
1da177e4
LT
608};
609
027232da
KS
610static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
611{
bfd40eaf
KS
612 static const struct vm_operations_struct dummy_vm_ops = {};
613
a670468f 614 memset(vma, 0, sizeof(*vma));
027232da 615 vma->vm_mm = mm;
bfd40eaf 616 vma->vm_ops = &dummy_vm_ops;
027232da
KS
617 INIT_LIST_HEAD(&vma->anon_vma_chain);
618}
619
bfd40eaf
KS
620static inline void vma_set_anonymous(struct vm_area_struct *vma)
621{
622 vma->vm_ops = NULL;
623}
624
43675e6f
YS
625static inline bool vma_is_anonymous(struct vm_area_struct *vma)
626{
627 return !vma->vm_ops;
628}
629
222100ee
AK
630static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
631{
632 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
633
634 if (!maybe_stack)
635 return false;
636
637 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
638 VM_STACK_INCOMPLETE_SETUP)
639 return true;
640
641 return false;
642}
643
7969f226
AK
644static inline bool vma_is_foreign(struct vm_area_struct *vma)
645{
646 if (!current->mm)
647 return true;
648
649 if (current->mm != vma->vm_mm)
650 return true;
651
652 return false;
653}
3122e80e
AK
654
655static inline bool vma_is_accessible(struct vm_area_struct *vma)
656{
6cb4d9a2 657 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
658}
659
43675e6f
YS
660#ifdef CONFIG_SHMEM
661/*
662 * The vma_is_shmem is not inline because it is used only by slow
663 * paths in userfault.
664 */
665bool vma_is_shmem(struct vm_area_struct *vma);
666#else
667static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
668#endif
669
670int vma_is_stack_for_current(struct vm_area_struct *vma);
671
8b11ec1b
LT
672/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
673#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
674
1da177e4
LT
675struct mmu_gather;
676struct inode;
677
5bf34d7c
MWO
678static inline unsigned int compound_order(struct page *page)
679{
680 if (!PageHead(page))
681 return 0;
682 return page[1].compound_order;
683}
684
685/**
686 * folio_order - The allocation order of a folio.
687 * @folio: The folio.
688 *
689 * A folio is composed of 2^order pages. See get_order() for the definition
690 * of order.
691 *
692 * Return: The order of the folio.
693 */
694static inline unsigned int folio_order(struct folio *folio)
695{
696 return compound_order(&folio->page);
697}
698
71e3aac0 699#include <linux/huge_mm.h>
1da177e4
LT
700
701/*
702 * Methods to modify the page usage count.
703 *
704 * What counts for a page usage:
705 * - cache mapping (page->mapping)
706 * - private data (page->private)
707 * - page mapped in a task's page tables, each mapping
708 * is counted separately
709 *
710 * Also, many kernel routines increase the page count before a critical
711 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
712 */
713
714/*
da6052f7 715 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 716 */
7c8ee9a8
NP
717static inline int put_page_testzero(struct page *page)
718{
fe896d18
JK
719 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
720 return page_ref_dec_and_test(page);
7c8ee9a8 721}
1da177e4 722
b620f633
MWO
723static inline int folio_put_testzero(struct folio *folio)
724{
725 return put_page_testzero(&folio->page);
726}
727
1da177e4 728/*
7c8ee9a8
NP
729 * Try to grab a ref unless the page has a refcount of zero, return false if
730 * that is the case.
8e0861fa
AK
731 * This can be called when MMU is off so it must not access
732 * any of the virtual mappings.
1da177e4 733 */
c2530328 734static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 735{
fe896d18 736 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 737}
1da177e4 738
53df8fdc 739extern int page_is_ram(unsigned long pfn);
124fe20d
DW
740
741enum {
742 REGION_INTERSECTS,
743 REGION_DISJOINT,
744 REGION_MIXED,
745};
746
1c29f25b
TK
747int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
748 unsigned long desc);
53df8fdc 749
48667e7a 750/* Support for virtually mapped pages */
b3bdda02
CL
751struct page *vmalloc_to_page(const void *addr);
752unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 753
0738c4bb
PM
754/*
755 * Determine if an address is within the vmalloc range
756 *
757 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
758 * is no special casing required.
759 */
9bd3bb67
AK
760
761#ifndef is_ioremap_addr
762#define is_ioremap_addr(x) is_vmalloc_addr(x)
763#endif
764
81ac3ad9 765#ifdef CONFIG_MMU
186525bd 766extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
767extern int is_vmalloc_or_module_addr(const void *x);
768#else
186525bd
IM
769static inline bool is_vmalloc_addr(const void *x)
770{
771 return false;
772}
934831d0 773static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
774{
775 return 0;
776}
777#endif
9e2779fa 778
74e8ee47
MWO
779/*
780 * How many times the entire folio is mapped as a single unit (eg by a
781 * PMD or PUD entry). This is probably not what you want, except for
782 * debugging purposes; look at folio_mapcount() or page_mapcount()
783 * instead.
784 */
785static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 786{
74e8ee47
MWO
787 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
788 return atomic_read(folio_mapcount_ptr(folio)) + 1;
6dc5ea16
JH
789}
790
6988f31d
KK
791/*
792 * Mapcount of compound page as a whole, does not include mapped sub-pages.
793 *
74e8ee47 794 * Must be called only for compound pages.
6988f31d 795 */
53f9263b
KS
796static inline int compound_mapcount(struct page *page)
797{
74e8ee47 798 return folio_entire_mapcount(page_folio(page));
53f9263b
KS
799}
800
70b50f94
AA
801/*
802 * The atomic page->_mapcount, starts from -1: so that transitions
803 * both from it and to it can be tracked, using atomic_inc_and_test
804 * and atomic_add_negative(-1).
805 */
22b751c3 806static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
807{
808 atomic_set(&(page)->_mapcount, -1);
809}
810
b20ce5e0
KS
811int __page_mapcount(struct page *page);
812
6988f31d
KK
813/*
814 * Mapcount of 0-order page; when compound sub-page, includes
815 * compound_mapcount().
816 *
817 * Result is undefined for pages which cannot be mapped into userspace.
818 * For example SLAB or special types of pages. See function page_has_type().
819 * They use this place in struct page differently.
820 */
70b50f94
AA
821static inline int page_mapcount(struct page *page)
822{
b20ce5e0
KS
823 if (unlikely(PageCompound(page)))
824 return __page_mapcount(page);
825 return atomic_read(&page->_mapcount) + 1;
826}
827
4ba1119c
MWO
828int folio_mapcount(struct folio *folio);
829
b20ce5e0 830#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4ba1119c
MWO
831static inline int total_mapcount(struct page *page)
832{
833 return folio_mapcount(page_folio(page));
834}
835
d08d2b62 836int page_trans_huge_mapcount(struct page *page);
b20ce5e0
KS
837#else
838static inline int total_mapcount(struct page *page)
839{
840 return page_mapcount(page);
70b50f94 841}
d08d2b62 842static inline int page_trans_huge_mapcount(struct page *page)
6d0a07ed 843{
d08d2b62 844 return page_mapcount(page);
6d0a07ed 845}
b20ce5e0 846#endif
70b50f94 847
b49af68f
CL
848static inline struct page *virt_to_head_page(const void *x)
849{
850 struct page *page = virt_to_page(x);
ccaafd7f 851
1d798ca3 852 return compound_head(page);
b49af68f
CL
853}
854
7d4203c1
VB
855static inline struct folio *virt_to_folio(const void *x)
856{
857 struct page *page = virt_to_page(x);
858
859 return page_folio(page);
860}
861
ddc58f27
KS
862void __put_page(struct page *page);
863
1d7ea732 864void put_pages_list(struct list_head *pages);
1da177e4 865
8dfcc9ba 866void split_page(struct page *page, unsigned int order);
715cbfd6 867void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 868
a1554c00
ML
869unsigned long nr_free_buffer_pages(void);
870
33f2ef89
AW
871/*
872 * Compound pages have a destructor function. Provide a
873 * prototype for that function and accessor functions.
f1e61557 874 * These are _only_ valid on the head of a compound page.
33f2ef89 875 */
f1e61557
KS
876typedef void compound_page_dtor(struct page *);
877
878/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
879enum compound_dtor_id {
880 NULL_COMPOUND_DTOR,
881 COMPOUND_PAGE_DTOR,
882#ifdef CONFIG_HUGETLB_PAGE
883 HUGETLB_PAGE_DTOR,
9a982250
KS
884#endif
885#ifdef CONFIG_TRANSPARENT_HUGEPAGE
886 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
887#endif
888 NR_COMPOUND_DTORS,
889};
ae70eddd 890extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
891
892static inline void set_compound_page_dtor(struct page *page,
f1e61557 893 enum compound_dtor_id compound_dtor)
33f2ef89 894{
f1e61557
KS
895 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
896 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
897}
898
ff45fc3c 899static inline void destroy_compound_page(struct page *page)
33f2ef89 900{
f1e61557 901 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 902 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
903}
904
bac3cf4d 905static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
906{
907 return atomic_read(compound_pincount_ptr(head));
908}
909
f1e61557 910static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 911{
e4b294c2 912 page[1].compound_order = order;
5232c63f 913#ifdef CONFIG_64BIT
1378a5ee 914 page[1].compound_nr = 1U << order;
5232c63f 915#endif
d85f3385
CL
916}
917
d8c6546b
MWO
918/* Returns the number of pages in this potentially compound page. */
919static inline unsigned long compound_nr(struct page *page)
920{
1378a5ee
MWO
921 if (!PageHead(page))
922 return 1;
5232c63f 923#ifdef CONFIG_64BIT
1378a5ee 924 return page[1].compound_nr;
5232c63f
MWO
925#else
926 return 1UL << compound_order(page);
927#endif
d8c6546b
MWO
928}
929
a50b854e
MWO
930/* Returns the number of bytes in this potentially compound page. */
931static inline unsigned long page_size(struct page *page)
932{
933 return PAGE_SIZE << compound_order(page);
934}
935
94ad9338
MWO
936/* Returns the number of bits needed for the number of bytes in a page */
937static inline unsigned int page_shift(struct page *page)
938{
939 return PAGE_SHIFT + compound_order(page);
940}
941
9a982250
KS
942void free_compound_page(struct page *page);
943
3dece370 944#ifdef CONFIG_MMU
14fd403f
AA
945/*
946 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
947 * servicing faults for write access. In the normal case, do always want
948 * pte_mkwrite. But get_user_pages can cause write faults for mappings
949 * that do not have writing enabled, when used by access_process_vm.
950 */
951static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
952{
953 if (likely(vma->vm_flags & VM_WRITE))
954 pte = pte_mkwrite(pte);
955 return pte;
956}
8c6e50b0 957
f9ce0be7 958vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 959void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 960
2b740303
SJ
961vm_fault_t finish_fault(struct vm_fault *vmf);
962vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 963#endif
14fd403f 964
1da177e4
LT
965/*
966 * Multiple processes may "see" the same page. E.g. for untouched
967 * mappings of /dev/null, all processes see the same page full of
968 * zeroes, and text pages of executables and shared libraries have
969 * only one copy in memory, at most, normally.
970 *
971 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
972 * page_count() == 0 means the page is free. page->lru is then used for
973 * freelist management in the buddy allocator.
da6052f7 974 * page_count() > 0 means the page has been allocated.
1da177e4 975 *
da6052f7
NP
976 * Pages are allocated by the slab allocator in order to provide memory
977 * to kmalloc and kmem_cache_alloc. In this case, the management of the
978 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
979 * unless a particular usage is carefully commented. (the responsibility of
980 * freeing the kmalloc memory is the caller's, of course).
1da177e4 981 *
da6052f7
NP
982 * A page may be used by anyone else who does a __get_free_page().
983 * In this case, page_count still tracks the references, and should only
984 * be used through the normal accessor functions. The top bits of page->flags
985 * and page->virtual store page management information, but all other fields
986 * are unused and could be used privately, carefully. The management of this
987 * page is the responsibility of the one who allocated it, and those who have
988 * subsequently been given references to it.
989 *
990 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
991 * managed by the Linux memory manager: I/O, buffers, swapping etc.
992 * The following discussion applies only to them.
993 *
da6052f7
NP
994 * A pagecache page contains an opaque `private' member, which belongs to the
995 * page's address_space. Usually, this is the address of a circular list of
996 * the page's disk buffers. PG_private must be set to tell the VM to call
997 * into the filesystem to release these pages.
1da177e4 998 *
da6052f7
NP
999 * A page may belong to an inode's memory mapping. In this case, page->mapping
1000 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1001 * in units of PAGE_SIZE.
1da177e4 1002 *
da6052f7
NP
1003 * If pagecache pages are not associated with an inode, they are said to be
1004 * anonymous pages. These may become associated with the swapcache, and in that
1005 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1006 *
da6052f7
NP
1007 * In either case (swapcache or inode backed), the pagecache itself holds one
1008 * reference to the page. Setting PG_private should also increment the
1009 * refcount. The each user mapping also has a reference to the page.
1da177e4 1010 *
da6052f7 1011 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1012 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1013 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1014 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1015 *
da6052f7 1016 * All pagecache pages may be subject to I/O:
1da177e4
LT
1017 * - inode pages may need to be read from disk,
1018 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1019 * to be written back to the inode on disk,
1020 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1021 * modified may need to be swapped out to swap space and (later) to be read
1022 * back into memory.
1da177e4
LT
1023 */
1024
1025/*
1026 * The zone field is never updated after free_area_init_core()
1027 * sets it, so none of the operations on it need to be atomic.
1da177e4 1028 */
348f8b6c 1029
90572890 1030/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1031#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1032#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1033#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1034#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1035#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1036
348f8b6c 1037/*
25985edc 1038 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1039 * sections we define the shift as 0; that plus a 0 mask ensures
1040 * the compiler will optimise away reference to them.
1041 */
d41dee36
AW
1042#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1043#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1044#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1045#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1046#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1047
bce54bbf
WD
1048/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1049#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1050#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1051#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1052 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1053#else
89689ae7 1054#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1055#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1056 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1057#endif
1058
bd8029b6 1059#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1060
d41dee36
AW
1061#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1062#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1063#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1064#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1065#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1066#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1067
33dd4e0e 1068static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1069{
c403f6a3 1070 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1071 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1072}
1da177e4 1073
32b8fc48
MWO
1074static inline enum zone_type folio_zonenum(const struct folio *folio)
1075{
1076 return page_zonenum(&folio->page);
1077}
1078
260ae3f7
DW
1079#ifdef CONFIG_ZONE_DEVICE
1080static inline bool is_zone_device_page(const struct page *page)
1081{
1082 return page_zonenum(page) == ZONE_DEVICE;
1083}
966cf44f
AD
1084extern void memmap_init_zone_device(struct zone *, unsigned long,
1085 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1086#else
1087static inline bool is_zone_device_page(const struct page *page)
1088{
1089 return false;
1090}
7b2d55d2 1091#endif
5042db43 1092
536939ff
MWO
1093static inline bool folio_is_zone_device(const struct folio *folio)
1094{
1095 return is_zone_device_page(&folio->page);
1096}
1097
8e3560d9
PT
1098static inline bool is_zone_movable_page(const struct page *page)
1099{
1100 return page_zonenum(page) == ZONE_MOVABLE;
1101}
1102
27674ef6 1103#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1104DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1105
89574945
CH
1106bool __put_devmap_managed_page(struct page *page);
1107static inline bool put_devmap_managed_page(struct page *page)
e7638488
DW
1108{
1109 if (!static_branch_unlikely(&devmap_managed_key))
1110 return false;
1111 if (!is_zone_device_page(page))
1112 return false;
89574945 1113 return __put_devmap_managed_page(page);
e7638488
DW
1114}
1115
27674ef6 1116#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
89574945 1117static inline bool put_devmap_managed_page(struct page *page)
e7638488
DW
1118{
1119 return false;
1120}
27674ef6 1121#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
e7638488 1122
f958d7b5 1123/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1124#define folio_ref_zero_or_close_to_overflow(folio) \
1125 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1126
1127/**
1128 * folio_get - Increment the reference count on a folio.
1129 * @folio: The folio.
1130 *
1131 * Context: May be called in any context, as long as you know that
1132 * you have a refcount on the folio. If you do not already have one,
1133 * folio_try_get() may be the right interface for you to use.
1134 */
1135static inline void folio_get(struct folio *folio)
1136{
1137 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1138 folio_ref_inc(folio);
1139}
f958d7b5 1140
3565fce3
DW
1141static inline void get_page(struct page *page)
1142{
86d234cb 1143 folio_get(page_folio(page));
3565fce3
DW
1144}
1145
3faa52c0 1146bool __must_check try_grab_page(struct page *page, unsigned int flags);
cd1adf1b
LT
1147
1148static inline __must_check bool try_get_page(struct page *page)
1149{
1150 page = compound_head(page);
1151 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1152 return false;
1153 page_ref_inc(page);
1154 return true;
1155}
3565fce3 1156
b620f633
MWO
1157/**
1158 * folio_put - Decrement the reference count on a folio.
1159 * @folio: The folio.
1160 *
1161 * If the folio's reference count reaches zero, the memory will be
1162 * released back to the page allocator and may be used by another
1163 * allocation immediately. Do not access the memory or the struct folio
1164 * after calling folio_put() unless you can be sure that it wasn't the
1165 * last reference.
1166 *
1167 * Context: May be called in process or interrupt context, but not in NMI
1168 * context. May be called while holding a spinlock.
1169 */
1170static inline void folio_put(struct folio *folio)
1171{
1172 if (folio_put_testzero(folio))
1173 __put_page(&folio->page);
1174}
1175
3fe7fa58
MWO
1176/**
1177 * folio_put_refs - Reduce the reference count on a folio.
1178 * @folio: The folio.
1179 * @refs: The amount to subtract from the folio's reference count.
1180 *
1181 * If the folio's reference count reaches zero, the memory will be
1182 * released back to the page allocator and may be used by another
1183 * allocation immediately. Do not access the memory or the struct folio
1184 * after calling folio_put_refs() unless you can be sure that these weren't
1185 * the last references.
1186 *
1187 * Context: May be called in process or interrupt context, but not in NMI
1188 * context. May be called while holding a spinlock.
1189 */
1190static inline void folio_put_refs(struct folio *folio, int refs)
1191{
1192 if (folio_ref_sub_and_test(folio, refs))
1193 __put_page(&folio->page);
1194}
1195
3565fce3
DW
1196static inline void put_page(struct page *page)
1197{
b620f633 1198 struct folio *folio = page_folio(page);
3565fce3 1199
7b2d55d2 1200 /*
89574945
CH
1201 * For some devmap managed pages we need to catch refcount transition
1202 * from 2 to 1:
7b2d55d2 1203 */
89574945 1204 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1205 return;
b620f633 1206 folio_put(folio);
3565fce3
DW
1207}
1208
3faa52c0
JH
1209/*
1210 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1211 * the page's refcount so that two separate items are tracked: the original page
1212 * reference count, and also a new count of how many pin_user_pages() calls were
1213 * made against the page. ("gup-pinned" is another term for the latter).
1214 *
1215 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1216 * distinct from normal pages. As such, the unpin_user_page() call (and its
1217 * variants) must be used in order to release gup-pinned pages.
1218 *
1219 * Choice of value:
1220 *
1221 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1222 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1223 * simpler, due to the fact that adding an even power of two to the page
1224 * refcount has the effect of using only the upper N bits, for the code that
1225 * counts up using the bias value. This means that the lower bits are left for
1226 * the exclusive use of the original code that increments and decrements by one
1227 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1228 *
3faa52c0
JH
1229 * Of course, once the lower bits overflow into the upper bits (and this is
1230 * OK, because subtraction recovers the original values), then visual inspection
1231 * no longer suffices to directly view the separate counts. However, for normal
1232 * applications that don't have huge page reference counts, this won't be an
1233 * issue.
fc1d8e7c 1234 *
40fcc7fc
MWO
1235 * Locking: the lockless algorithm described in folio_try_get_rcu()
1236 * provides safe operation for get_user_pages(), page_mkclean() and
1237 * other calls that race to set up page table entries.
fc1d8e7c 1238 */
3faa52c0 1239#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1240
3faa52c0 1241void unpin_user_page(struct page *page);
f1f6a7dd
JH
1242void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1243 bool make_dirty);
458a4f78
JM
1244void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1245 bool make_dirty);
f1f6a7dd 1246void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1247
97a7e473
PX
1248static inline bool is_cow_mapping(vm_flags_t flags)
1249{
1250 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1251}
1252
9127ab4f
CS
1253#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1254#define SECTION_IN_PAGE_FLAGS
1255#endif
1256
89689ae7 1257/*
7a8010cd
VB
1258 * The identification function is mainly used by the buddy allocator for
1259 * determining if two pages could be buddies. We are not really identifying
1260 * the zone since we could be using the section number id if we do not have
1261 * node id available in page flags.
1262 * We only guarantee that it will return the same value for two combinable
1263 * pages in a zone.
89689ae7 1264 */
cb2b95e1
AW
1265static inline int page_zone_id(struct page *page)
1266{
89689ae7 1267 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1268}
1269
89689ae7 1270#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1271extern int page_to_nid(const struct page *page);
89689ae7 1272#else
33dd4e0e 1273static inline int page_to_nid(const struct page *page)
d41dee36 1274{
f165b378
PT
1275 struct page *p = (struct page *)page;
1276
1277 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1278}
89689ae7
CL
1279#endif
1280
874fd90c
MWO
1281static inline int folio_nid(const struct folio *folio)
1282{
1283 return page_to_nid(&folio->page);
1284}
1285
57e0a030 1286#ifdef CONFIG_NUMA_BALANCING
90572890 1287static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1288{
90572890 1289 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1290}
1291
90572890 1292static inline int cpupid_to_pid(int cpupid)
57e0a030 1293{
90572890 1294 return cpupid & LAST__PID_MASK;
57e0a030 1295}
b795854b 1296
90572890 1297static inline int cpupid_to_cpu(int cpupid)
b795854b 1298{
90572890 1299 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1300}
1301
90572890 1302static inline int cpupid_to_nid(int cpupid)
b795854b 1303{
90572890 1304 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1305}
1306
90572890 1307static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1308{
90572890 1309 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1310}
1311
90572890 1312static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1313{
90572890 1314 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1315}
1316
8c8a743c
PZ
1317static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1318{
1319 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1320}
1321
1322#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1323#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1324static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1325{
1ae71d03 1326 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1327}
90572890
PZ
1328
1329static inline int page_cpupid_last(struct page *page)
1330{
1331 return page->_last_cpupid;
1332}
1333static inline void page_cpupid_reset_last(struct page *page)
b795854b 1334{
1ae71d03 1335 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1336}
1337#else
90572890 1338static inline int page_cpupid_last(struct page *page)
75980e97 1339{
90572890 1340 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1341}
1342
90572890 1343extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1344
90572890 1345static inline void page_cpupid_reset_last(struct page *page)
75980e97 1346{
09940a4f 1347 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1348}
90572890
PZ
1349#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1350#else /* !CONFIG_NUMA_BALANCING */
1351static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1352{
90572890 1353 return page_to_nid(page); /* XXX */
57e0a030
MG
1354}
1355
90572890 1356static inline int page_cpupid_last(struct page *page)
57e0a030 1357{
90572890 1358 return page_to_nid(page); /* XXX */
57e0a030
MG
1359}
1360
90572890 1361static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1362{
1363 return -1;
1364}
1365
90572890 1366static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1367{
1368 return -1;
1369}
1370
90572890 1371static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1372{
1373 return -1;
1374}
1375
90572890
PZ
1376static inline int cpu_pid_to_cpupid(int nid, int pid)
1377{
1378 return -1;
1379}
1380
1381static inline bool cpupid_pid_unset(int cpupid)
b795854b 1382{
2b787449 1383 return true;
b795854b
MG
1384}
1385
90572890 1386static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1387{
1388}
8c8a743c
PZ
1389
1390static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1391{
1392 return false;
1393}
90572890 1394#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1395
2e903b91 1396#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1397
cf10bd4c
AK
1398/*
1399 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1400 * setting tags for all pages to native kernel tag value 0xff, as the default
1401 * value 0x00 maps to 0xff.
1402 */
1403
2813b9c0
AK
1404static inline u8 page_kasan_tag(const struct page *page)
1405{
cf10bd4c
AK
1406 u8 tag = 0xff;
1407
1408 if (kasan_enabled()) {
1409 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1410 tag ^= 0xff;
1411 }
1412
1413 return tag;
2813b9c0
AK
1414}
1415
1416static inline void page_kasan_tag_set(struct page *page, u8 tag)
1417{
27fe7339
PC
1418 unsigned long old_flags, flags;
1419
1420 if (!kasan_enabled())
1421 return;
1422
1423 tag ^= 0xff;
1424 old_flags = READ_ONCE(page->flags);
1425 do {
1426 flags = old_flags;
1427 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1428 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1429 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1430}
1431
1432static inline void page_kasan_tag_reset(struct page *page)
1433{
34303244
AK
1434 if (kasan_enabled())
1435 page_kasan_tag_set(page, 0xff);
2813b9c0 1436}
34303244
AK
1437
1438#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1439
2813b9c0
AK
1440static inline u8 page_kasan_tag(const struct page *page)
1441{
1442 return 0xff;
1443}
1444
1445static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1446static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1447
1448#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1449
33dd4e0e 1450static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1451{
1452 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1453}
1454
75ef7184
MG
1455static inline pg_data_t *page_pgdat(const struct page *page)
1456{
1457 return NODE_DATA(page_to_nid(page));
1458}
1459
32b8fc48
MWO
1460static inline struct zone *folio_zone(const struct folio *folio)
1461{
1462 return page_zone(&folio->page);
1463}
1464
1465static inline pg_data_t *folio_pgdat(const struct folio *folio)
1466{
1467 return page_pgdat(&folio->page);
1468}
1469
9127ab4f 1470#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1471static inline void set_page_section(struct page *page, unsigned long section)
1472{
1473 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1474 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1475}
1476
aa462abe 1477static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1478{
1479 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1480}
308c05e3 1481#endif
d41dee36 1482
bf6bd276
MWO
1483/**
1484 * folio_pfn - Return the Page Frame Number of a folio.
1485 * @folio: The folio.
1486 *
1487 * A folio may contain multiple pages. The pages have consecutive
1488 * Page Frame Numbers.
1489 *
1490 * Return: The Page Frame Number of the first page in the folio.
1491 */
1492static inline unsigned long folio_pfn(struct folio *folio)
1493{
1494 return page_to_pfn(&folio->page);
1495}
1496
3d11b225
MWO
1497static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1498{
1499 return &folio_page(folio, 1)->compound_pincount;
1500}
1501
0b90ddae
MWO
1502/**
1503 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1504 * @folio: The folio.
1505 *
1506 * This function checks if a folio has been pinned via a call to
1507 * a function in the pin_user_pages() family.
1508 *
1509 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1510 * because it means "definitely not pinned for DMA", but true means "probably
1511 * pinned for DMA, but possibly a false positive due to having at least
1512 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1513 *
1514 * False positives are OK, because: a) it's unlikely for a folio to
1515 * get that many refcounts, and b) all the callers of this routine are
1516 * expected to be able to deal gracefully with a false positive.
1517 *
1518 * For large folios, the result will be exactly correct. That's because
1519 * we have more tracking data available: the compound_pincount is used
1520 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1521 *
1522 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1523 *
1524 * Return: True, if it is likely that the page has been "dma-pinned".
1525 * False, if the page is definitely not dma-pinned.
1526 */
1527static inline bool folio_maybe_dma_pinned(struct folio *folio)
1528{
1529 if (folio_test_large(folio))
1530 return atomic_read(folio_pincount_ptr(folio)) > 0;
1531
1532 /*
1533 * folio_ref_count() is signed. If that refcount overflows, then
1534 * folio_ref_count() returns a negative value, and callers will avoid
1535 * further incrementing the refcount.
1536 *
1537 * Here, for that overflow case, use the sign bit to count a little
1538 * bit higher via unsigned math, and thus still get an accurate result.
1539 */
1540 return ((unsigned int)folio_ref_count(folio)) >=
1541 GUP_PIN_COUNTING_BIAS;
1542}
1543
1544static inline bool page_maybe_dma_pinned(struct page *page)
1545{
1546 return folio_maybe_dma_pinned(page_folio(page));
1547}
1548
1549/*
1550 * This should most likely only be called during fork() to see whether we
1551 * should break the cow immediately for a page on the src mm.
1552 */
1553static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1554 struct page *page)
1555{
1556 if (!is_cow_mapping(vma->vm_flags))
1557 return false;
1558
1559 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1560 return false;
1561
1562 return page_maybe_dma_pinned(page);
1563}
1564
8e3560d9
PT
1565/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1566#ifdef CONFIG_MIGRATION
1567static inline bool is_pinnable_page(struct page *page)
1568{
9afaf30f
PT
1569 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1570 is_zero_pfn(page_to_pfn(page));
8e3560d9
PT
1571}
1572#else
1573static inline bool is_pinnable_page(struct page *page)
1574{
1575 return true;
1576}
1577#endif
1578
536939ff
MWO
1579static inline bool folio_is_pinnable(struct folio *folio)
1580{
1581 return is_pinnable_page(&folio->page);
1582}
1583
2f1b6248 1584static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1585{
1586 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1587 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1588}
2f1b6248 1589
348f8b6c
DH
1590static inline void set_page_node(struct page *page, unsigned long node)
1591{
1592 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1593 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1594}
89689ae7 1595
2f1b6248 1596static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1597 unsigned long node, unsigned long pfn)
1da177e4 1598{
348f8b6c
DH
1599 set_page_zone(page, zone);
1600 set_page_node(page, node);
9127ab4f 1601#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1602 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1603#endif
1da177e4
LT
1604}
1605
7b230db3
MWO
1606/**
1607 * folio_nr_pages - The number of pages in the folio.
1608 * @folio: The folio.
1609 *
1610 * Return: A positive power of two.
1611 */
1612static inline long folio_nr_pages(struct folio *folio)
1613{
1614 return compound_nr(&folio->page);
1615}
1616
1617/**
1618 * folio_next - Move to the next physical folio.
1619 * @folio: The folio we're currently operating on.
1620 *
1621 * If you have physically contiguous memory which may span more than
1622 * one folio (eg a &struct bio_vec), use this function to move from one
1623 * folio to the next. Do not use it if the memory is only virtually
1624 * contiguous as the folios are almost certainly not adjacent to each
1625 * other. This is the folio equivalent to writing ``page++``.
1626 *
1627 * Context: We assume that the folios are refcounted and/or locked at a
1628 * higher level and do not adjust the reference counts.
1629 * Return: The next struct folio.
1630 */
1631static inline struct folio *folio_next(struct folio *folio)
1632{
1633 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1634}
1635
1636/**
1637 * folio_shift - The size of the memory described by this folio.
1638 * @folio: The folio.
1639 *
1640 * A folio represents a number of bytes which is a power-of-two in size.
1641 * This function tells you which power-of-two the folio is. See also
1642 * folio_size() and folio_order().
1643 *
1644 * Context: The caller should have a reference on the folio to prevent
1645 * it from being split. It is not necessary for the folio to be locked.
1646 * Return: The base-2 logarithm of the size of this folio.
1647 */
1648static inline unsigned int folio_shift(struct folio *folio)
1649{
1650 return PAGE_SHIFT + folio_order(folio);
1651}
1652
1653/**
1654 * folio_size - The number of bytes in a folio.
1655 * @folio: The folio.
1656 *
1657 * Context: The caller should have a reference on the folio to prevent
1658 * it from being split. It is not necessary for the folio to be locked.
1659 * Return: The number of bytes in this folio.
1660 */
1661static inline size_t folio_size(struct folio *folio)
1662{
1663 return PAGE_SIZE << folio_order(folio);
1664}
1665
b424de33
MWO
1666#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1667static inline int arch_make_page_accessible(struct page *page)
1668{
1669 return 0;
1670}
1671#endif
1672
1673#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1674static inline int arch_make_folio_accessible(struct folio *folio)
1675{
1676 int ret;
1677 long i, nr = folio_nr_pages(folio);
1678
1679 for (i = 0; i < nr; i++) {
1680 ret = arch_make_page_accessible(folio_page(folio, i));
1681 if (ret)
1682 break;
1683 }
1684
1685 return ret;
1686}
1687#endif
1688
f6ac2354
CL
1689/*
1690 * Some inline functions in vmstat.h depend on page_zone()
1691 */
1692#include <linux/vmstat.h>
1693
33dd4e0e 1694static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1695{
1dff8083 1696 return page_to_virt(page);
1da177e4
LT
1697}
1698
1699#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1700#define HASHED_PAGE_VIRTUAL
1701#endif
1702
1703#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1704static inline void *page_address(const struct page *page)
1705{
1706 return page->virtual;
1707}
1708static inline void set_page_address(struct page *page, void *address)
1709{
1710 page->virtual = address;
1711}
1da177e4
LT
1712#define page_address_init() do { } while(0)
1713#endif
1714
1715#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1716void *page_address(const struct page *page);
1da177e4
LT
1717void set_page_address(struct page *page, void *virtual);
1718void page_address_init(void);
1719#endif
1720
1721#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1722#define page_address(page) lowmem_page_address(page)
1723#define set_page_address(page, address) do { } while(0)
1724#define page_address_init() do { } while(0)
1725#endif
1726
7d4203c1
VB
1727static inline void *folio_address(const struct folio *folio)
1728{
1729 return page_address(&folio->page);
1730}
1731
e39155ea 1732extern void *page_rmapping(struct page *page);
f6ab1f7f
HY
1733extern pgoff_t __page_file_index(struct page *page);
1734
1da177e4
LT
1735/*
1736 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1737 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1738 */
1739static inline pgoff_t page_index(struct page *page)
1740{
1741 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1742 return __page_file_index(page);
1da177e4
LT
1743 return page->index;
1744}
1745
1aa8aea5 1746bool page_mapped(struct page *page);
dd10ab04 1747bool folio_mapped(struct folio *folio);
1da177e4 1748
2f064f34
MH
1749/*
1750 * Return true only if the page has been allocated with
1751 * ALLOC_NO_WATERMARKS and the low watermark was not
1752 * met implying that the system is under some pressure.
1753 */
1d7bab6a 1754static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1755{
1756 /*
c07aea3e
MC
1757 * lru.next has bit 1 set if the page is allocated from the
1758 * pfmemalloc reserves. Callers may simply overwrite it if
1759 * they do not need to preserve that information.
2f064f34 1760 */
c07aea3e 1761 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
1762}
1763
1764/*
1765 * Only to be called by the page allocator on a freshly allocated
1766 * page.
1767 */
1768static inline void set_page_pfmemalloc(struct page *page)
1769{
c07aea3e 1770 page->lru.next = (void *)BIT(1);
2f064f34
MH
1771}
1772
1773static inline void clear_page_pfmemalloc(struct page *page)
1774{
c07aea3e 1775 page->lru.next = NULL;
2f064f34
MH
1776}
1777
1c0fe6e3
NP
1778/*
1779 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1780 */
1781extern void pagefault_out_of_memory(void);
1782
1da177e4 1783#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1784#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 1785#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 1786
ddd588b5 1787/*
7bf02ea2 1788 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1789 * various contexts.
1790 */
4b59e6c4 1791#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1792
9af744d7 1793extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1794
710ec38b 1795#ifdef CONFIG_MMU
7f43add4 1796extern bool can_do_mlock(void);
710ec38b
AB
1797#else
1798static inline bool can_do_mlock(void) { return false; }
1799#endif
d7c9e99a
AG
1800extern int user_shm_lock(size_t, struct ucounts *);
1801extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 1802
25b2995a
CH
1803struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1804 pte_t pte);
28093f9f
GS
1805struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1806 pmd_t pmd);
7e675137 1807
27d036e3
LR
1808void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1809 unsigned long size);
14f5ff5d 1810void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1811 unsigned long size);
4f74d2c8
LT
1812void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1813 unsigned long start, unsigned long end);
e6473092 1814
ac46d4f3
JG
1815struct mmu_notifier_range;
1816
42b77728 1817void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1818 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1819int
1820copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
9fd6dad1
PB
1821int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1822 struct mmu_notifier_range *range, pte_t **ptepp,
1823 pmd_t **pmdpp, spinlock_t **ptlp);
ff5c19ed 1824int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 1825 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
1826int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1827 unsigned long *pfn);
d87fe660 1828int follow_phys(struct vm_area_struct *vma, unsigned long address,
1829 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1830int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1831 void *buf, int len, int write);
1da177e4 1832
7caef267 1833extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1834extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1835void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1836void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 1837int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 1838
7ee1dd3f 1839#ifdef CONFIG_MMU
2b740303 1840extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1841 unsigned long address, unsigned int flags,
1842 struct pt_regs *regs);
64019a2e 1843extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1844 unsigned long address, unsigned int fault_flags,
1845 bool *unlocked);
977fbdcd
MW
1846void unmap_mapping_pages(struct address_space *mapping,
1847 pgoff_t start, pgoff_t nr, bool even_cows);
1848void unmap_mapping_range(struct address_space *mapping,
1849 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1850#else
2b740303 1851static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1852 unsigned long address, unsigned int flags,
1853 struct pt_regs *regs)
7ee1dd3f
DH
1854{
1855 /* should never happen if there's no MMU */
1856 BUG();
1857 return VM_FAULT_SIGBUS;
1858}
64019a2e 1859static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1860 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1861{
1862 /* should never happen if there's no MMU */
1863 BUG();
1864 return -EFAULT;
1865}
977fbdcd
MW
1866static inline void unmap_mapping_pages(struct address_space *mapping,
1867 pgoff_t start, pgoff_t nr, bool even_cows) { }
1868static inline void unmap_mapping_range(struct address_space *mapping,
1869 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1870#endif
f33ea7f4 1871
977fbdcd
MW
1872static inline void unmap_shared_mapping_range(struct address_space *mapping,
1873 loff_t const holebegin, loff_t const holelen)
1874{
1875 unmap_mapping_range(mapping, holebegin, holelen, 0);
1876}
1877
1878extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1879 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1880extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1881 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1882extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1883 void *buf, int len, unsigned int gup_flags);
1da177e4 1884
64019a2e 1885long get_user_pages_remote(struct mm_struct *mm,
1e987790 1886 unsigned long start, unsigned long nr_pages,
9beae1ea 1887 unsigned int gup_flags, struct page **pages,
5b56d49f 1888 struct vm_area_struct **vmas, int *locked);
64019a2e 1889long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1890 unsigned long start, unsigned long nr_pages,
1891 unsigned int gup_flags, struct page **pages,
1892 struct vm_area_struct **vmas, int *locked);
c12d2da5 1893long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1894 unsigned int gup_flags, struct page **pages,
cde70140 1895 struct vm_area_struct **vmas);
eddb1c22
JH
1896long pin_user_pages(unsigned long start, unsigned long nr_pages,
1897 unsigned int gup_flags, struct page **pages,
1898 struct vm_area_struct **vmas);
c12d2da5 1899long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1900 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1901long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1902 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1903long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1904 struct page **pages, unsigned int gup_flags);
91429023
JH
1905long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1906 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1907
73b0140b
IW
1908int get_user_pages_fast(unsigned long start, int nr_pages,
1909 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1910int pin_user_pages_fast(unsigned long start, int nr_pages,
1911 unsigned int gup_flags, struct page **pages);
8025e5dd 1912
79eb597c
DJ
1913int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1914int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1915 struct task_struct *task, bool bypass_rlim);
1916
18022c5d
MG
1917struct kvec;
1918int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1919 struct page **pages);
f3e8fccd 1920struct page *get_dump_page(unsigned long addr);
1da177e4 1921
d47992f8
LC
1922extern void do_invalidatepage(struct page *page, unsigned int offset,
1923 unsigned int length);
cf9a2ae8 1924
b5e84594
MWO
1925bool folio_mark_dirty(struct folio *folio);
1926bool set_page_dirty(struct page *page);
1da177e4 1927int set_page_dirty_lock(struct page *page);
b9ea2515 1928
a9090253 1929int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1930
b6a2fea3
OW
1931extern unsigned long move_page_tables(struct vm_area_struct *vma,
1932 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1933 unsigned long new_addr, unsigned long len,
1934 bool need_rmap_locks);
58705444
PX
1935
1936/*
1937 * Flags used by change_protection(). For now we make it a bitmap so
1938 * that we can pass in multiple flags just like parameters. However
1939 * for now all the callers are only use one of the flags at the same
1940 * time.
1941 */
1942/* Whether we should allow dirty bit accounting */
1943#define MM_CP_DIRTY_ACCT (1UL << 0)
1944/* Whether this protection change is for NUMA hints */
1945#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1946/* Whether this change is for write protecting */
1947#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1948#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1949#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1950 MM_CP_UFFD_WP_RESOLVE)
58705444 1951
7da4d641
PZ
1952extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1953 unsigned long end, pgprot_t newprot,
58705444 1954 unsigned long cp_flags);
b6a2fea3
OW
1955extern int mprotect_fixup(struct vm_area_struct *vma,
1956 struct vm_area_struct **pprev, unsigned long start,
1957 unsigned long end, unsigned long newflags);
1da177e4 1958
465a454f
PZ
1959/*
1960 * doesn't attempt to fault and will return short.
1961 */
dadbb612
SJ
1962int get_user_pages_fast_only(unsigned long start, int nr_pages,
1963 unsigned int gup_flags, struct page **pages);
104acc32
JH
1964int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1965 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1966
1967static inline bool get_user_page_fast_only(unsigned long addr,
1968 unsigned int gup_flags, struct page **pagep)
1969{
1970 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1971}
d559db08
KH
1972/*
1973 * per-process(per-mm_struct) statistics.
1974 */
d559db08
KH
1975static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1976{
69c97823
KK
1977 long val = atomic_long_read(&mm->rss_stat.count[member]);
1978
1979#ifdef SPLIT_RSS_COUNTING
1980 /*
1981 * counter is updated in asynchronous manner and may go to minus.
1982 * But it's never be expected number for users.
1983 */
1984 if (val < 0)
1985 val = 0;
172703b0 1986#endif
69c97823
KK
1987 return (unsigned long)val;
1988}
d559db08 1989
e4dcad20 1990void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1991
d559db08
KH
1992static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1993{
b3d1411b
JFG
1994 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1995
e4dcad20 1996 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1997}
1998
1999static inline void inc_mm_counter(struct mm_struct *mm, int member)
2000{
b3d1411b
JFG
2001 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
2002
e4dcad20 2003 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2004}
2005
2006static inline void dec_mm_counter(struct mm_struct *mm, int member)
2007{
b3d1411b
JFG
2008 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2009
e4dcad20 2010 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2011}
2012
eca56ff9
JM
2013/* Optimized variant when page is already known not to be PageAnon */
2014static inline int mm_counter_file(struct page *page)
2015{
2016 if (PageSwapBacked(page))
2017 return MM_SHMEMPAGES;
2018 return MM_FILEPAGES;
2019}
2020
2021static inline int mm_counter(struct page *page)
2022{
2023 if (PageAnon(page))
2024 return MM_ANONPAGES;
2025 return mm_counter_file(page);
2026}
2027
d559db08
KH
2028static inline unsigned long get_mm_rss(struct mm_struct *mm)
2029{
2030 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2031 get_mm_counter(mm, MM_ANONPAGES) +
2032 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2033}
2034
2035static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2036{
2037 return max(mm->hiwater_rss, get_mm_rss(mm));
2038}
2039
2040static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2041{
2042 return max(mm->hiwater_vm, mm->total_vm);
2043}
2044
2045static inline void update_hiwater_rss(struct mm_struct *mm)
2046{
2047 unsigned long _rss = get_mm_rss(mm);
2048
2049 if ((mm)->hiwater_rss < _rss)
2050 (mm)->hiwater_rss = _rss;
2051}
2052
2053static inline void update_hiwater_vm(struct mm_struct *mm)
2054{
2055 if (mm->hiwater_vm < mm->total_vm)
2056 mm->hiwater_vm = mm->total_vm;
2057}
2058
695f0559
PC
2059static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2060{
2061 mm->hiwater_rss = get_mm_rss(mm);
2062}
2063
d559db08
KH
2064static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2065 struct mm_struct *mm)
2066{
2067 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2068
2069 if (*maxrss < hiwater_rss)
2070 *maxrss = hiwater_rss;
2071}
2072
53bddb4e 2073#if defined(SPLIT_RSS_COUNTING)
05af2e10 2074void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2075#else
05af2e10 2076static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2077{
2078}
2079#endif
465a454f 2080
78e7c5af
AK
2081#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2082static inline int pte_special(pte_t pte)
2083{
2084 return 0;
2085}
2086
2087static inline pte_t pte_mkspecial(pte_t pte)
2088{
2089 return pte;
2090}
2091#endif
2092
17596731 2093#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2094static inline int pte_devmap(pte_t pte)
2095{
2096 return 0;
2097}
2098#endif
2099
6d2329f8 2100int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 2101
25ca1d6c
NK
2102extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2103 spinlock_t **ptl);
2104static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2105 spinlock_t **ptl)
2106{
2107 pte_t *ptep;
2108 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2109 return ptep;
2110}
c9cfcddf 2111
c2febafc
KS
2112#ifdef __PAGETABLE_P4D_FOLDED
2113static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2114 unsigned long address)
2115{
2116 return 0;
2117}
2118#else
2119int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2120#endif
2121
b4e98d9a 2122#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2123static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2124 unsigned long address)
2125{
2126 return 0;
2127}
b4e98d9a
KS
2128static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2129static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2130
5f22df00 2131#else
c2febafc 2132int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2133
b4e98d9a
KS
2134static inline void mm_inc_nr_puds(struct mm_struct *mm)
2135{
6d212db1
MS
2136 if (mm_pud_folded(mm))
2137 return;
af5b0f6a 2138 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2139}
2140
2141static inline void mm_dec_nr_puds(struct mm_struct *mm)
2142{
6d212db1
MS
2143 if (mm_pud_folded(mm))
2144 return;
af5b0f6a 2145 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2146}
5f22df00
NP
2147#endif
2148
2d2f5119 2149#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2150static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2151 unsigned long address)
2152{
2153 return 0;
2154}
dc6c9a35 2155
dc6c9a35
KS
2156static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2157static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2158
5f22df00 2159#else
1bb3630e 2160int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2161
dc6c9a35
KS
2162static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2163{
6d212db1
MS
2164 if (mm_pmd_folded(mm))
2165 return;
af5b0f6a 2166 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2167}
2168
2169static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2170{
6d212db1
MS
2171 if (mm_pmd_folded(mm))
2172 return;
af5b0f6a 2173 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2174}
5f22df00
NP
2175#endif
2176
c4812909 2177#ifdef CONFIG_MMU
af5b0f6a 2178static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2179{
af5b0f6a 2180 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2181}
2182
af5b0f6a 2183static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2184{
af5b0f6a 2185 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2186}
2187
2188static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2189{
af5b0f6a 2190 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2191}
2192
2193static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2194{
af5b0f6a 2195 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2196}
2197#else
c4812909 2198
af5b0f6a
KS
2199static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2200static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2201{
2202 return 0;
2203}
2204
2205static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2206static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2207#endif
2208
4cf58924
JFG
2209int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2210int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2211
f949286c
MR
2212#if defined(CONFIG_MMU)
2213
c2febafc
KS
2214static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2215 unsigned long address)
2216{
2217 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2218 NULL : p4d_offset(pgd, address);
2219}
2220
2221static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2222 unsigned long address)
1da177e4 2223{
c2febafc
KS
2224 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2225 NULL : pud_offset(p4d, address);
1da177e4 2226}
d8626138 2227
1da177e4
LT
2228static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2229{
1bb3630e
HD
2230 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2231 NULL: pmd_offset(pud, address);
1da177e4 2232}
f949286c 2233#endif /* CONFIG_MMU */
1bb3630e 2234
57c1ffce 2235#if USE_SPLIT_PTE_PTLOCKS
597d795a 2236#if ALLOC_SPLIT_PTLOCKS
b35f1819 2237void __init ptlock_cache_init(void);
539edb58
PZ
2238extern bool ptlock_alloc(struct page *page);
2239extern void ptlock_free(struct page *page);
2240
2241static inline spinlock_t *ptlock_ptr(struct page *page)
2242{
2243 return page->ptl;
2244}
597d795a 2245#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2246static inline void ptlock_cache_init(void)
2247{
2248}
2249
49076ec2
KS
2250static inline bool ptlock_alloc(struct page *page)
2251{
49076ec2
KS
2252 return true;
2253}
539edb58 2254
49076ec2
KS
2255static inline void ptlock_free(struct page *page)
2256{
49076ec2
KS
2257}
2258
2259static inline spinlock_t *ptlock_ptr(struct page *page)
2260{
539edb58 2261 return &page->ptl;
49076ec2 2262}
597d795a 2263#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2264
2265static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2266{
2267 return ptlock_ptr(pmd_page(*pmd));
2268}
2269
2270static inline bool ptlock_init(struct page *page)
2271{
2272 /*
2273 * prep_new_page() initialize page->private (and therefore page->ptl)
2274 * with 0. Make sure nobody took it in use in between.
2275 *
2276 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2277 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2278 */
309381fe 2279 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2280 if (!ptlock_alloc(page))
2281 return false;
2282 spin_lock_init(ptlock_ptr(page));
2283 return true;
2284}
2285
57c1ffce 2286#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2287/*
2288 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2289 */
49076ec2
KS
2290static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2291{
2292 return &mm->page_table_lock;
2293}
b35f1819 2294static inline void ptlock_cache_init(void) {}
49076ec2 2295static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2296static inline void ptlock_free(struct page *page) {}
57c1ffce 2297#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2298
b35f1819
KS
2299static inline void pgtable_init(void)
2300{
2301 ptlock_cache_init();
2302 pgtable_cache_init();
2303}
2304
b4ed71f5 2305static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2306{
706874e9
VD
2307 if (!ptlock_init(page))
2308 return false;
1d40a5ea 2309 __SetPageTable(page);
f0c0c115 2310 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2311 return true;
2f569afd
MS
2312}
2313
b4ed71f5 2314static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2315{
9e247bab 2316 ptlock_free(page);
1d40a5ea 2317 __ClearPageTable(page);
f0c0c115 2318 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2319}
2320
c74df32c
HD
2321#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2322({ \
4c21e2f2 2323 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2324 pte_t *__pte = pte_offset_map(pmd, address); \
2325 *(ptlp) = __ptl; \
2326 spin_lock(__ptl); \
2327 __pte; \
2328})
2329
2330#define pte_unmap_unlock(pte, ptl) do { \
2331 spin_unlock(ptl); \
2332 pte_unmap(pte); \
2333} while (0)
2334
4cf58924 2335#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2336
2337#define pte_alloc_map(mm, pmd, address) \
4cf58924 2338 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2339
c74df32c 2340#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2341 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2342 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2343
1bb3630e 2344#define pte_alloc_kernel(pmd, address) \
4cf58924 2345 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2346 NULL: pte_offset_kernel(pmd, address))
1da177e4 2347
e009bb30
KS
2348#if USE_SPLIT_PMD_PTLOCKS
2349
634391ac
MS
2350static struct page *pmd_to_page(pmd_t *pmd)
2351{
2352 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2353 return virt_to_page((void *)((unsigned long) pmd & mask));
2354}
2355
e009bb30
KS
2356static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2357{
634391ac 2358 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2359}
2360
b2b29d6d 2361static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2362{
e009bb30
KS
2363#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2364 page->pmd_huge_pte = NULL;
2365#endif
49076ec2 2366 return ptlock_init(page);
e009bb30
KS
2367}
2368
b2b29d6d 2369static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2370{
2371#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2372 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2373#endif
49076ec2 2374 ptlock_free(page);
e009bb30
KS
2375}
2376
634391ac 2377#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2378
2379#else
2380
9a86cb7b
KS
2381static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2382{
2383 return &mm->page_table_lock;
2384}
2385
b2b29d6d
MW
2386static inline bool pmd_ptlock_init(struct page *page) { return true; }
2387static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2388
c389a250 2389#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2390
e009bb30
KS
2391#endif
2392
9a86cb7b
KS
2393static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2394{
2395 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2396 spin_lock(ptl);
2397 return ptl;
2398}
2399
b2b29d6d
MW
2400static inline bool pgtable_pmd_page_ctor(struct page *page)
2401{
2402 if (!pmd_ptlock_init(page))
2403 return false;
2404 __SetPageTable(page);
f0c0c115 2405 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2406 return true;
2407}
2408
2409static inline void pgtable_pmd_page_dtor(struct page *page)
2410{
2411 pmd_ptlock_free(page);
2412 __ClearPageTable(page);
f0c0c115 2413 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2414}
2415
a00cc7d9
MW
2416/*
2417 * No scalability reason to split PUD locks yet, but follow the same pattern
2418 * as the PMD locks to make it easier if we decide to. The VM should not be
2419 * considered ready to switch to split PUD locks yet; there may be places
2420 * which need to be converted from page_table_lock.
2421 */
2422static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2423{
2424 return &mm->page_table_lock;
2425}
2426
2427static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2428{
2429 spinlock_t *ptl = pud_lockptr(mm, pud);
2430
2431 spin_lock(ptl);
2432 return ptl;
2433}
62906027 2434
a00cc7d9 2435extern void __init pagecache_init(void);
bc9331a1 2436extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2437extern void free_initmem(void);
2438
69afade7
JL
2439/*
2440 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2441 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2442 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2443 * Return pages freed into the buddy system.
2444 */
11199692 2445extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2446 int poison, const char *s);
c3d5f5f0 2447
c3d5f5f0 2448extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2449extern void mem_init_print_info(void);
69afade7 2450
4b50bcc7 2451extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2452
69afade7 2453/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2454static inline void free_reserved_page(struct page *page)
69afade7
JL
2455{
2456 ClearPageReserved(page);
2457 init_page_count(page);
2458 __free_page(page);
69afade7
JL
2459 adjust_managed_page_count(page, 1);
2460}
a0cd7a7c 2461#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2462
2463static inline void mark_page_reserved(struct page *page)
2464{
2465 SetPageReserved(page);
2466 adjust_managed_page_count(page, -1);
2467}
2468
2469/*
2470 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2471 * The freed pages will be poisoned with pattern "poison" if it's within
2472 * range [0, UCHAR_MAX].
2473 * Return pages freed into the buddy system.
69afade7
JL
2474 */
2475static inline unsigned long free_initmem_default(int poison)
2476{
2477 extern char __init_begin[], __init_end[];
2478
11199692 2479 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2480 poison, "unused kernel image (initmem)");
69afade7
JL
2481}
2482
7ee3d4e8
JL
2483static inline unsigned long get_num_physpages(void)
2484{
2485 int nid;
2486 unsigned long phys_pages = 0;
2487
2488 for_each_online_node(nid)
2489 phys_pages += node_present_pages(nid);
2490
2491 return phys_pages;
2492}
2493
c713216d 2494/*
3f08a302 2495 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2496 * zones, allocate the backing mem_map and account for memory holes in an
2497 * architecture independent manner.
c713216d
MG
2498 *
2499 * An architecture is expected to register range of page frames backed by
0ee332c1 2500 * physical memory with memblock_add[_node]() before calling
9691a071 2501 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2502 * usage, an architecture is expected to do something like
2503 *
2504 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2505 * max_highmem_pfn};
2506 * for_each_valid_physical_page_range()
952eea9b 2507 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2508 * free_area_init(max_zone_pfns);
c713216d 2509 */
9691a071 2510void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2511unsigned long node_map_pfn_alignment(void);
32996250
YL
2512unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2513 unsigned long end_pfn);
c713216d
MG
2514extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2515 unsigned long end_pfn);
2516extern void get_pfn_range_for_nid(unsigned int nid,
2517 unsigned long *start_pfn, unsigned long *end_pfn);
2518extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2519
a9ee6cf5 2520#ifndef CONFIG_NUMA
6f24fbd3 2521static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2522{
2523 return 0;
2524}
2525#else
2526/* please see mm/page_alloc.c */
2527extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2528#endif
2529
0e0b864e 2530extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2531extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2532 unsigned long, unsigned long, enum meminit_context,
2533 struct vmem_altmap *, int migratetype);
bc75d33f 2534extern void setup_per_zone_wmarks(void);
bd3400ea 2535extern void calculate_min_free_kbytes(void);
1b79acc9 2536extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2537extern void mem_init(void);
8feae131 2538extern void __init mmap_init(void);
9af744d7 2539extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2540extern long si_mem_available(void);
1da177e4
LT
2541extern void si_meminfo(struct sysinfo * val);
2542extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2543#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2544extern unsigned long arch_reserved_kernel_pages(void);
2545#endif
1da177e4 2546
a8e99259
MH
2547extern __printf(3, 4)
2548void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2549
e7c8d5c9 2550extern void setup_per_cpu_pageset(void);
e7c8d5c9 2551
75f7ad8e
PS
2552/* page_alloc.c */
2553extern int min_free_kbytes;
1c30844d 2554extern int watermark_boost_factor;
795ae7a0 2555extern int watermark_scale_factor;
51930df5 2556extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2557
8feae131 2558/* nommu.c */
33e5d769 2559extern atomic_long_t mmap_pages_allocated;
7e660872 2560extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2561
6b2dbba8 2562/* interval_tree.c */
6b2dbba8 2563void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2564 struct rb_root_cached *root);
9826a516
ML
2565void vma_interval_tree_insert_after(struct vm_area_struct *node,
2566 struct vm_area_struct *prev,
f808c13f 2567 struct rb_root_cached *root);
6b2dbba8 2568void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2569 struct rb_root_cached *root);
2570struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2571 unsigned long start, unsigned long last);
2572struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2573 unsigned long start, unsigned long last);
2574
2575#define vma_interval_tree_foreach(vma, root, start, last) \
2576 for (vma = vma_interval_tree_iter_first(root, start, last); \
2577 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2578
bf181b9f 2579void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2580 struct rb_root_cached *root);
bf181b9f 2581void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2582 struct rb_root_cached *root);
2583struct anon_vma_chain *
2584anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2585 unsigned long start, unsigned long last);
bf181b9f
ML
2586struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2587 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2588#ifdef CONFIG_DEBUG_VM_RB
2589void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2590#endif
bf181b9f
ML
2591
2592#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2593 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2594 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2595
1da177e4 2596/* mmap.c */
34b4e4aa 2597extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2598extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2599 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2600 struct vm_area_struct *expand);
2601static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2602 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2603{
2604 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2605}
1da177e4
LT
2606extern struct vm_area_struct *vma_merge(struct mm_struct *,
2607 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2608 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
9a10064f 2609 struct mempolicy *, struct vm_userfaultfd_ctx, const char *);
1da177e4 2610extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2611extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2612 unsigned long addr, int new_below);
2613extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2614 unsigned long addr, int new_below);
1da177e4
LT
2615extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2616extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2617 struct rb_node **, struct rb_node *);
a8fb5618 2618extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2619extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2620 unsigned long addr, unsigned long len, pgoff_t pgoff,
2621 bool *need_rmap_locks);
1da177e4 2622extern void exit_mmap(struct mm_struct *);
925d1c40 2623
9c599024
CG
2624static inline int check_data_rlimit(unsigned long rlim,
2625 unsigned long new,
2626 unsigned long start,
2627 unsigned long end_data,
2628 unsigned long start_data)
2629{
2630 if (rlim < RLIM_INFINITY) {
2631 if (((new - start) + (end_data - start_data)) > rlim)
2632 return -ENOSPC;
2633 }
2634
2635 return 0;
2636}
2637
7906d00c
AA
2638extern int mm_take_all_locks(struct mm_struct *mm);
2639extern void mm_drop_all_locks(struct mm_struct *mm);
2640
fe69d560 2641extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 2642extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 2643extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2644extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2645
84638335
KK
2646extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2647extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2648
2eefd878
DS
2649extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2650 const struct vm_special_mapping *sm);
3935ed6a
SS
2651extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2652 unsigned long addr, unsigned long len,
a62c34bd
AL
2653 unsigned long flags,
2654 const struct vm_special_mapping *spec);
2655/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2656extern int install_special_mapping(struct mm_struct *mm,
2657 unsigned long addr, unsigned long len,
2658 unsigned long flags, struct page **pages);
1da177e4 2659
649775be
AG
2660unsigned long randomize_stack_top(unsigned long stack_top);
2661
1da177e4
LT
2662extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2663
0165ab44 2664extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2665 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2666 struct list_head *uf);
1fcfd8db 2667extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2668 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2669 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2670extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2671 struct list_head *uf, bool downgrade);
897ab3e0
MR
2672extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2673 struct list_head *uf);
0726b01e 2674extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2675
bebeb3d6
ML
2676#ifdef CONFIG_MMU
2677extern int __mm_populate(unsigned long addr, unsigned long len,
2678 int ignore_errors);
2679static inline void mm_populate(unsigned long addr, unsigned long len)
2680{
2681 /* Ignore errors */
2682 (void) __mm_populate(addr, len, 1);
2683}
2684#else
2685static inline void mm_populate(unsigned long addr, unsigned long len) {}
2686#endif
2687
e4eb1ff6 2688/* These take the mm semaphore themselves */
5d22fc25 2689extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2690extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2691extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2692extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2693 unsigned long, unsigned long,
2694 unsigned long, unsigned long);
1da177e4 2695
db4fbfb9
ML
2696struct vm_unmapped_area_info {
2697#define VM_UNMAPPED_AREA_TOPDOWN 1
2698 unsigned long flags;
2699 unsigned long length;
2700 unsigned long low_limit;
2701 unsigned long high_limit;
2702 unsigned long align_mask;
2703 unsigned long align_offset;
2704};
2705
baceaf1c 2706extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2707
85821aab 2708/* truncate.c */
1da177e4 2709extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2710extern void truncate_inode_pages_range(struct address_space *,
2711 loff_t lstart, loff_t lend);
91b0abe3 2712extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2713
2714/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2715extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2716extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2717 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2718extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 2719
1be7107f 2720extern unsigned long stack_guard_gap;
d05f3169 2721/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2722extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2723
11192337 2724/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2725extern int expand_downwards(struct vm_area_struct *vma,
2726 unsigned long address);
8ca3eb08 2727#if VM_GROWSUP
46dea3d0 2728extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2729#else
fee7e49d 2730 #define expand_upwards(vma, address) (0)
9ab88515 2731#endif
1da177e4
LT
2732
2733/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2734extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2735extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2736 struct vm_area_struct **pprev);
2737
ce6d42f2
LH
2738/**
2739 * find_vma_intersection() - Look up the first VMA which intersects the interval
2740 * @mm: The process address space.
2741 * @start_addr: The inclusive start user address.
2742 * @end_addr: The exclusive end user address.
2743 *
2744 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2745 * start_addr < end_addr.
2746 */
2747static inline
2748struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2749 unsigned long start_addr,
2750 unsigned long end_addr)
1da177e4 2751{
ce6d42f2 2752 struct vm_area_struct *vma = find_vma(mm, start_addr);
1da177e4
LT
2753
2754 if (vma && end_addr <= vma->vm_start)
2755 vma = NULL;
2756 return vma;
2757}
2758
ce6d42f2
LH
2759/**
2760 * vma_lookup() - Find a VMA at a specific address
2761 * @mm: The process address space.
2762 * @addr: The user address.
2763 *
2764 * Return: The vm_area_struct at the given address, %NULL otherwise.
2765 */
2766static inline
2767struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2768{
2769 struct vm_area_struct *vma = find_vma(mm, addr);
2770
2771 if (vma && addr < vma->vm_start)
2772 vma = NULL;
2773
2774 return vma;
2775}
2776
1be7107f
HD
2777static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2778{
2779 unsigned long vm_start = vma->vm_start;
2780
2781 if (vma->vm_flags & VM_GROWSDOWN) {
2782 vm_start -= stack_guard_gap;
2783 if (vm_start > vma->vm_start)
2784 vm_start = 0;
2785 }
2786 return vm_start;
2787}
2788
2789static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2790{
2791 unsigned long vm_end = vma->vm_end;
2792
2793 if (vma->vm_flags & VM_GROWSUP) {
2794 vm_end += stack_guard_gap;
2795 if (vm_end < vma->vm_end)
2796 vm_end = -PAGE_SIZE;
2797 }
2798 return vm_end;
2799}
2800
1da177e4
LT
2801static inline unsigned long vma_pages(struct vm_area_struct *vma)
2802{
2803 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2804}
2805
640708a2
PE
2806/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2807static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2808 unsigned long vm_start, unsigned long vm_end)
2809{
2810 struct vm_area_struct *vma = find_vma(mm, vm_start);
2811
2812 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2813 vma = NULL;
2814
2815 return vma;
2816}
2817
017b1660
MK
2818static inline bool range_in_vma(struct vm_area_struct *vma,
2819 unsigned long start, unsigned long end)
2820{
2821 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2822}
2823
bad849b3 2824#ifdef CONFIG_MMU
804af2cf 2825pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2826void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2827#else
2828static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2829{
2830 return __pgprot(0);
2831}
64e45507
PF
2832static inline void vma_set_page_prot(struct vm_area_struct *vma)
2833{
2834 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2835}
bad849b3
DH
2836#endif
2837
295992fb
CK
2838void vma_set_file(struct vm_area_struct *vma, struct file *file);
2839
5877231f 2840#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2841unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2842 unsigned long start, unsigned long end);
2843#endif
2844
deceb6cd 2845struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2846int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2847 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
2848int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2849 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 2850int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2851int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2852 struct page **pages, unsigned long *num);
a667d745
SJ
2853int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2854 unsigned long num);
2855int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2856 unsigned long num);
ae2b01f3 2857vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2858 unsigned long pfn);
f5e6d1d5
MW
2859vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2860 unsigned long pfn, pgprot_t pgprot);
5d747637 2861vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2862 pfn_t pfn);
574c5b3d
TH
2863vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2864 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2865vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2866 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2867int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2868
1c8f4220
SJ
2869static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2870 unsigned long addr, struct page *page)
2871{
2872 int err = vm_insert_page(vma, addr, page);
2873
2874 if (err == -ENOMEM)
2875 return VM_FAULT_OOM;
2876 if (err < 0 && err != -EBUSY)
2877 return VM_FAULT_SIGBUS;
2878
2879 return VM_FAULT_NOPAGE;
2880}
2881
f8f6ae5d
JG
2882#ifndef io_remap_pfn_range
2883static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2884 unsigned long addr, unsigned long pfn,
2885 unsigned long size, pgprot_t prot)
2886{
2887 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2888}
2889#endif
2890
d97baf94
SJ
2891static inline vm_fault_t vmf_error(int err)
2892{
2893 if (err == -ENOMEM)
2894 return VM_FAULT_OOM;
2895 return VM_FAULT_SIGBUS;
2896}
2897
df06b37f
KB
2898struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2899 unsigned int foll_flags);
240aadee 2900
deceb6cd
HD
2901#define FOLL_WRITE 0x01 /* check pte is writable */
2902#define FOLL_TOUCH 0x02 /* mark page accessed */
2903#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2904#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2905#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2906#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2907 * and return without waiting upon it */
55b8fe70 2908#define FOLL_NOFAULT 0x80 /* do not fault in pages */
69ebb83e 2909#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2910#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2911#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2912#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1e987790 2913#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2914#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2915#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2916#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2917#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2918#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2919#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2920
2921/*
eddb1c22
JH
2922 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2923 * other. Here is what they mean, and how to use them:
932f4a63
IW
2924 *
2925 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2926 * period _often_ under userspace control. This is in contrast to
2927 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2928 *
2929 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2930 * lifetime enforced by the filesystem and we need guarantees that longterm
2931 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2932 * the filesystem. Ideas for this coordination include revoking the longterm
2933 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2934 * added after the problem with filesystems was found FS DAX VMAs are
2935 * specifically failed. Filesystem pages are still subject to bugs and use of
2936 * FOLL_LONGTERM should be avoided on those pages.
2937 *
2938 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2939 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2940 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2941 * is due to an incompatibility with the FS DAX check and
eddb1c22 2942 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2943 *
eddb1c22
JH
2944 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2945 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2946 * FOLL_LONGTERM is specified.
eddb1c22
JH
2947 *
2948 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2949 * but an additional pin counting system) will be invoked. This is intended for
2950 * anything that gets a page reference and then touches page data (for example,
2951 * Direct IO). This lets the filesystem know that some non-file-system entity is
2952 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2953 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2954 * a call to unpin_user_page().
eddb1c22
JH
2955 *
2956 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2957 * and separate refcounting mechanisms, however, and that means that each has
2958 * its own acquire and release mechanisms:
2959 *
2960 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2961 *
f1f6a7dd 2962 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2963 *
2964 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2965 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2966 * calls applied to them, and that's perfectly OK. This is a constraint on the
2967 * callers, not on the pages.)
2968 *
2969 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2970 * directly by the caller. That's in order to help avoid mismatches when
2971 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2972 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2973 *
72ef5e52 2974 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2975 */
1da177e4 2976
2b740303 2977static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2978{
2979 if (vm_fault & VM_FAULT_OOM)
2980 return -ENOMEM;
2981 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2982 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2983 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2984 return -EFAULT;
2985 return 0;
2986}
2987
8b1e0f81 2988typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2989extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2990 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2991extern int apply_to_existing_page_range(struct mm_struct *mm,
2992 unsigned long address, unsigned long size,
2993 pte_fn_t fn, void *data);
aee16b3c 2994
04013513 2995extern void init_mem_debugging_and_hardening(void);
8823b1db 2996#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
2997extern void __kernel_poison_pages(struct page *page, int numpages);
2998extern void __kernel_unpoison_pages(struct page *page, int numpages);
2999extern bool _page_poisoning_enabled_early;
3000DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3001static inline bool page_poisoning_enabled(void)
3002{
3003 return _page_poisoning_enabled_early;
3004}
3005/*
3006 * For use in fast paths after init_mem_debugging() has run, or when a
3007 * false negative result is not harmful when called too early.
3008 */
3009static inline bool page_poisoning_enabled_static(void)
3010{
3011 return static_branch_unlikely(&_page_poisoning_enabled);
3012}
3013static inline void kernel_poison_pages(struct page *page, int numpages)
3014{
3015 if (page_poisoning_enabled_static())
3016 __kernel_poison_pages(page, numpages);
3017}
3018static inline void kernel_unpoison_pages(struct page *page, int numpages)
3019{
3020 if (page_poisoning_enabled_static())
3021 __kernel_unpoison_pages(page, numpages);
3022}
8823b1db
LA
3023#else
3024static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3025static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3026static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3027static inline void kernel_poison_pages(struct page *page, int numpages) { }
3028static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3029#endif
3030
51cba1eb 3031DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3032static inline bool want_init_on_alloc(gfp_t flags)
3033{
51cba1eb
KC
3034 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3035 &init_on_alloc))
6471384a
AP
3036 return true;
3037 return flags & __GFP_ZERO;
3038}
3039
51cba1eb 3040DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3041static inline bool want_init_on_free(void)
3042{
51cba1eb
KC
3043 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3044 &init_on_free);
6471384a
AP
3045}
3046
8e57f8ac
VB
3047extern bool _debug_pagealloc_enabled_early;
3048DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3049
3050static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3051{
3052 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3053 _debug_pagealloc_enabled_early;
3054}
3055
3056/*
3057 * For use in fast paths after init_debug_pagealloc() has run, or when a
3058 * false negative result is not harmful when called too early.
3059 */
3060static inline bool debug_pagealloc_enabled_static(void)
031bc574 3061{
96a2b03f
VB
3062 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3063 return false;
3064
3065 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3066}
3067
5d6ad668 3068#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3069/*
5d6ad668
MR
3070 * To support DEBUG_PAGEALLOC architecture must ensure that
3071 * __kernel_map_pages() never fails
c87cbc1f 3072 */
d6332692
RE
3073extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3074
77bc7fd6
MR
3075static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3076{
3077 if (debug_pagealloc_enabled_static())
3078 __kernel_map_pages(page, numpages, 1);
3079}
3080
3081static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3082{
3083 if (debug_pagealloc_enabled_static())
3084 __kernel_map_pages(page, numpages, 0);
3085}
5d6ad668 3086#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3087static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3088static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3089#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3090
a6c19dfe 3091#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3092extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3093extern int in_gate_area_no_mm(unsigned long addr);
3094extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3095#else
a6c19dfe
AL
3096static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3097{
3098 return NULL;
3099}
3100static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3101static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3102{
3103 return 0;
3104}
1da177e4
LT
3105#endif /* __HAVE_ARCH_GATE_AREA */
3106
44a70ade
MH
3107extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3108
146732ce
JT
3109#ifdef CONFIG_SYSCTL
3110extern int sysctl_drop_caches;
32927393
CH
3111int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3112 loff_t *);
146732ce
JT
3113#endif
3114
cb731d6c 3115void drop_slab(void);
9d0243bc 3116
7a9166e3
LY
3117#ifndef CONFIG_MMU
3118#define randomize_va_space 0
3119#else
a62eaf15 3120extern int randomize_va_space;
7a9166e3 3121#endif
a62eaf15 3122
045e72ac 3123const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3124#ifdef CONFIG_MMU
03252919 3125void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3126#else
3127static inline void print_vma_addr(char *prefix, unsigned long rip)
3128{
3129}
3130#endif
e6e5494c 3131
3bc2b6a7
MS
3132int vmemmap_remap_free(unsigned long start, unsigned long end,
3133 unsigned long reuse);
ad2fa371
MS
3134int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3135 unsigned long reuse, gfp_t gfp_mask);
f41f2ed4 3136
35fd1eb1 3137void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
3138struct page * __populate_section_memmap(unsigned long pfn,
3139 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3140pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3141p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3142pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3143pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
3144pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3145 struct vmem_altmap *altmap);
8f6aac41 3146void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3147struct vmem_altmap;
56993b4e
AK
3148void *vmemmap_alloc_block_buf(unsigned long size, int node,
3149 struct vmem_altmap *altmap);
8f6aac41 3150void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3151int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3152 int node, struct vmem_altmap *altmap);
7b73d978
CH
3153int vmemmap_populate(unsigned long start, unsigned long end, int node,
3154 struct vmem_altmap *altmap);
c2b91e2e 3155void vmemmap_populate_print_last(void);
0197518c 3156#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3157void vmemmap_free(unsigned long start, unsigned long end,
3158 struct vmem_altmap *altmap);
0197518c 3159#endif
46723bfa 3160void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3161 unsigned long nr_pages);
6a46079c 3162
82ba011b
AK
3163enum mf_flags {
3164 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3165 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3166 MF_MUST_KILL = 1 << 2,
cf870c70 3167 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3168 MF_UNPOISON = 1 << 4,
82ba011b 3169};
83b57531
EB
3170extern int memory_failure(unsigned long pfn, int flags);
3171extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3172extern void memory_failure_queue_kick(int cpu);
847ce401 3173extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3174extern int sysctl_memory_failure_early_kill;
3175extern int sysctl_memory_failure_recovery;
d0505e9f 3176extern void shake_page(struct page *p);
5844a486 3177extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3178extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3179
03b122da
TL
3180#ifndef arch_memory_failure
3181static inline int arch_memory_failure(unsigned long pfn, int flags)
3182{
3183 return -ENXIO;
3184}
3185#endif
3186
3187#ifndef arch_is_platform_page
3188static inline bool arch_is_platform_page(u64 paddr)
3189{
3190 return false;
3191}
3192#endif
cc637b17
XX
3193
3194/*
3195 * Error handlers for various types of pages.
3196 */
cc3e2af4 3197enum mf_result {
cc637b17
XX
3198 MF_IGNORED, /* Error: cannot be handled */
3199 MF_FAILED, /* Error: handling failed */
3200 MF_DELAYED, /* Will be handled later */
3201 MF_RECOVERED, /* Successfully recovered */
3202};
3203
3204enum mf_action_page_type {
3205 MF_MSG_KERNEL,
3206 MF_MSG_KERNEL_HIGH_ORDER,
3207 MF_MSG_SLAB,
3208 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3209 MF_MSG_HUGE,
3210 MF_MSG_FREE_HUGE,
31286a84 3211 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3212 MF_MSG_UNMAP_FAILED,
3213 MF_MSG_DIRTY_SWAPCACHE,
3214 MF_MSG_CLEAN_SWAPCACHE,
3215 MF_MSG_DIRTY_MLOCKED_LRU,
3216 MF_MSG_CLEAN_MLOCKED_LRU,
3217 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3218 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3219 MF_MSG_DIRTY_LRU,
3220 MF_MSG_CLEAN_LRU,
3221 MF_MSG_TRUNCATED_LRU,
3222 MF_MSG_BUDDY,
6100e34b 3223 MF_MSG_DAX,
5d1fd5dc 3224 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3225 MF_MSG_UNKNOWN,
3226};
3227
47ad8475
AA
3228#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3229extern void clear_huge_page(struct page *page,
c79b57e4 3230 unsigned long addr_hint,
47ad8475
AA
3231 unsigned int pages_per_huge_page);
3232extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3233 unsigned long addr_hint,
3234 struct vm_area_struct *vma,
47ad8475 3235 unsigned int pages_per_huge_page);
fa4d75c1
MK
3236extern long copy_huge_page_from_user(struct page *dst_page,
3237 const void __user *usr_src,
810a56b9
MK
3238 unsigned int pages_per_huge_page,
3239 bool allow_pagefault);
2484ca9b
THV
3240
3241/**
3242 * vma_is_special_huge - Are transhuge page-table entries considered special?
3243 * @vma: Pointer to the struct vm_area_struct to consider
3244 *
3245 * Whether transhuge page-table entries are considered "special" following
3246 * the definition in vm_normal_page().
3247 *
3248 * Return: true if transhuge page-table entries should be considered special,
3249 * false otherwise.
3250 */
3251static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3252{
3253 return vma_is_dax(vma) || (vma->vm_file &&
3254 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3255}
3256
47ad8475
AA
3257#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3258
c0a32fc5
SG
3259#ifdef CONFIG_DEBUG_PAGEALLOC
3260extern unsigned int _debug_guardpage_minorder;
96a2b03f 3261DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3262
3263static inline unsigned int debug_guardpage_minorder(void)
3264{
3265 return _debug_guardpage_minorder;
3266}
3267
e30825f1
JK
3268static inline bool debug_guardpage_enabled(void)
3269{
96a2b03f 3270 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3271}
3272
c0a32fc5
SG
3273static inline bool page_is_guard(struct page *page)
3274{
e30825f1
JK
3275 if (!debug_guardpage_enabled())
3276 return false;
3277
3972f6bb 3278 return PageGuard(page);
c0a32fc5
SG
3279}
3280#else
3281static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3282static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3283static inline bool page_is_guard(struct page *page) { return false; }
3284#endif /* CONFIG_DEBUG_PAGEALLOC */
3285
f9872caf
CS
3286#if MAX_NUMNODES > 1
3287void __init setup_nr_node_ids(void);
3288#else
3289static inline void setup_nr_node_ids(void) {}
3290#endif
3291
010c164a
SL
3292extern int memcmp_pages(struct page *page1, struct page *page2);
3293
3294static inline int pages_identical(struct page *page1, struct page *page2)
3295{
3296 return !memcmp_pages(page1, page2);
3297}
3298
c5acad84
TH
3299#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3300unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3301 pgoff_t first_index, pgoff_t nr,
3302 pgoff_t bitmap_pgoff,
3303 unsigned long *bitmap,
3304 pgoff_t *start,
3305 pgoff_t *end);
3306
3307unsigned long wp_shared_mapping_range(struct address_space *mapping,
3308 pgoff_t first_index, pgoff_t nr);
3309#endif
3310
2374c09b
CH
3311extern int sysctl_nr_trim_pages;
3312
5bb1bb35 3313#ifdef CONFIG_PRINTK
8e7f37f2 3314void mem_dump_obj(void *object);
5bb1bb35
PM
3315#else
3316static inline void mem_dump_obj(void *object) {}
3317#endif
8e7f37f2 3318
22247efd
PX
3319/**
3320 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3321 * @seals: the seals to check
3322 * @vma: the vma to operate on
3323 *
3324 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3325 * the vma flags. Return 0 if check pass, or <0 for errors.
3326 */
3327static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3328{
3329 if (seals & F_SEAL_FUTURE_WRITE) {
3330 /*
3331 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3332 * "future write" seal active.
3333 */
3334 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3335 return -EPERM;
3336
3337 /*
3338 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3339 * MAP_SHARED and read-only, take care to not allow mprotect to
3340 * revert protections on such mappings. Do this only for shared
3341 * mappings. For private mappings, don't need to mask
3342 * VM_MAYWRITE as we still want them to be COW-writable.
3343 */
3344 if (vma->vm_flags & VM_SHARED)
3345 vma->vm_flags &= ~(VM_MAYWRITE);
3346 }
3347
3348 return 0;
3349}
3350
9a10064f
CC
3351#ifdef CONFIG_ANON_VMA_NAME
3352int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3353 unsigned long len_in, const char *name);
3354#else
3355static inline int
3356madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3357 unsigned long len_in, const char *name) {
3358 return 0;
3359}
3360#endif
3361
1da177e4 3362#endif /* _LINUX_MM_H */