mm: Add folio_pincount_ptr()
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
1da177e4
LT
31
32struct mempolicy;
33struct anon_vma;
bf181b9f 34struct anon_vma_chain;
e8edc6e0 35struct user_struct;
bce617ed 36struct pt_regs;
1da177e4 37
5ef64cc8
LT
38extern int sysctl_page_lock_unfairness;
39
597b7305
MH
40void init_mm_internals(void);
41
a9ee6cf5 42#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 43extern unsigned long max_mapnr;
fccc9987
JL
44
45static inline void set_max_mapnr(unsigned long limit)
46{
47 max_mapnr = limit;
48}
49#else
50static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
51#endif
52
ca79b0c2
AK
53extern atomic_long_t _totalram_pages;
54static inline unsigned long totalram_pages(void)
55{
56 return (unsigned long)atomic_long_read(&_totalram_pages);
57}
58
59static inline void totalram_pages_inc(void)
60{
61 atomic_long_inc(&_totalram_pages);
62}
63
64static inline void totalram_pages_dec(void)
65{
66 atomic_long_dec(&_totalram_pages);
67}
68
69static inline void totalram_pages_add(long count)
70{
71 atomic_long_add(count, &_totalram_pages);
72}
73
1da177e4 74extern void * high_memory;
1da177e4
LT
75extern int page_cluster;
76
77#ifdef CONFIG_SYSCTL
78extern int sysctl_legacy_va_layout;
79#else
80#define sysctl_legacy_va_layout 0
81#endif
82
d07e2259
DC
83#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
84extern const int mmap_rnd_bits_min;
85extern const int mmap_rnd_bits_max;
86extern int mmap_rnd_bits __read_mostly;
87#endif
88#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
89extern const int mmap_rnd_compat_bits_min;
90extern const int mmap_rnd_compat_bits_max;
91extern int mmap_rnd_compat_bits __read_mostly;
92#endif
93
1da177e4 94#include <asm/page.h>
1da177e4 95#include <asm/processor.h>
1da177e4 96
d9344522
AK
97/*
98 * Architectures that support memory tagging (assigning tags to memory regions,
99 * embedding these tags into addresses that point to these memory regions, and
100 * checking that the memory and the pointer tags match on memory accesses)
101 * redefine this macro to strip tags from pointers.
f0953a1b 102 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
103 */
104#ifndef untagged_addr
105#define untagged_addr(addr) (addr)
106#endif
107
79442ed1
TC
108#ifndef __pa_symbol
109#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
110#endif
111
1dff8083
AB
112#ifndef page_to_virt
113#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
114#endif
115
568c5fe5
LA
116#ifndef lm_alias
117#define lm_alias(x) __va(__pa_symbol(x))
118#endif
119
593befa6
DD
120/*
121 * To prevent common memory management code establishing
122 * a zero page mapping on a read fault.
123 * This macro should be defined within <asm/pgtable.h>.
124 * s390 does this to prevent multiplexing of hardware bits
125 * related to the physical page in case of virtualization.
126 */
127#ifndef mm_forbids_zeropage
128#define mm_forbids_zeropage(X) (0)
129#endif
130
a4a3ede2
PT
131/*
132 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
133 * If an architecture decides to implement their own version of
134 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
135 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 136 */
5470dea4
AD
137#if BITS_PER_LONG == 64
138/* This function must be updated when the size of struct page grows above 80
139 * or reduces below 56. The idea that compiler optimizes out switch()
140 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 141 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
142 * this can result in several of the writes here being dropped.
143 */
144#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
145static inline void __mm_zero_struct_page(struct page *page)
146{
147 unsigned long *_pp = (void *)page;
148
149 /* Check that struct page is either 56, 64, 72, or 80 bytes */
150 BUILD_BUG_ON(sizeof(struct page) & 7);
151 BUILD_BUG_ON(sizeof(struct page) < 56);
152 BUILD_BUG_ON(sizeof(struct page) > 80);
153
154 switch (sizeof(struct page)) {
155 case 80:
df561f66
GS
156 _pp[9] = 0;
157 fallthrough;
5470dea4 158 case 72:
df561f66
GS
159 _pp[8] = 0;
160 fallthrough;
5470dea4 161 case 64:
df561f66
GS
162 _pp[7] = 0;
163 fallthrough;
5470dea4
AD
164 case 56:
165 _pp[6] = 0;
166 _pp[5] = 0;
167 _pp[4] = 0;
168 _pp[3] = 0;
169 _pp[2] = 0;
170 _pp[1] = 0;
171 _pp[0] = 0;
172 }
173}
174#else
a4a3ede2
PT
175#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
176#endif
177
ea606cf5
AR
178/*
179 * Default maximum number of active map areas, this limits the number of vmas
180 * per mm struct. Users can overwrite this number by sysctl but there is a
181 * problem.
182 *
183 * When a program's coredump is generated as ELF format, a section is created
184 * per a vma. In ELF, the number of sections is represented in unsigned short.
185 * This means the number of sections should be smaller than 65535 at coredump.
186 * Because the kernel adds some informative sections to a image of program at
187 * generating coredump, we need some margin. The number of extra sections is
188 * 1-3 now and depends on arch. We use "5" as safe margin, here.
189 *
190 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
191 * not a hard limit any more. Although some userspace tools can be surprised by
192 * that.
193 */
194#define MAPCOUNT_ELF_CORE_MARGIN (5)
195#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
196
197extern int sysctl_max_map_count;
198
c9b1d098 199extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 200extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 201
49f0ce5f
JM
202extern int sysctl_overcommit_memory;
203extern int sysctl_overcommit_ratio;
204extern unsigned long sysctl_overcommit_kbytes;
205
32927393
CH
206int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
207 loff_t *);
208int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
209 loff_t *);
56f3547b
FT
210int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
211 loff_t *);
49f0ce5f 212
1cfcee72 213#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 214#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
4c654229 215#define page_nth(head, tail) (page_to_pfn(tail) - page_to_pfn(head))
1cfcee72
MWO
216#else
217#define nth_page(page,n) ((page) + (n))
4c654229 218#define page_nth(head, tail) ((tail) - (head))
1cfcee72 219#endif
1da177e4 220
27ac792c
AR
221/* to align the pointer to the (next) page boundary */
222#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223
0fa73b86 224/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 225#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 226
f86196ea
NB
227#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
228
5748fbc5
KW
229void setup_initial_init_mm(void *start_code, void *end_code,
230 void *end_data, void *brk);
231
1da177e4
LT
232/*
233 * Linux kernel virtual memory manager primitives.
234 * The idea being to have a "virtual" mm in the same way
235 * we have a virtual fs - giving a cleaner interface to the
236 * mm details, and allowing different kinds of memory mappings
237 * (from shared memory to executable loading to arbitrary
238 * mmap() functions).
239 */
240
490fc053 241struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
242struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
243void vm_area_free(struct vm_area_struct *);
c43692e8 244
1da177e4 245#ifndef CONFIG_MMU
8feae131
DH
246extern struct rb_root nommu_region_tree;
247extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
248
249extern unsigned int kobjsize(const void *objp);
250#endif
251
252/*
605d9288 253 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 254 * When changing, update also include/trace/events/mmflags.h
1da177e4 255 */
cc2383ec
KK
256#define VM_NONE 0x00000000
257
1da177e4
LT
258#define VM_READ 0x00000001 /* currently active flags */
259#define VM_WRITE 0x00000002
260#define VM_EXEC 0x00000004
261#define VM_SHARED 0x00000008
262
7e2cff42 263/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
264#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
265#define VM_MAYWRITE 0x00000020
266#define VM_MAYEXEC 0x00000040
267#define VM_MAYSHARE 0x00000080
268
269#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 270#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 271#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 272#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 273
1da177e4
LT
274#define VM_LOCKED 0x00002000
275#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
276
277 /* Used by sys_madvise() */
278#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
279#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
280
281#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
282#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 283#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 284#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 285#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 286#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 287#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 288#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 289#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 290#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 291
d9104d1c
CG
292#ifdef CONFIG_MEM_SOFT_DIRTY
293# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
294#else
295# define VM_SOFTDIRTY 0
296#endif
297
b379d790 298#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
299#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
300#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 301#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 302
63c17fb8
DH
303#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
304#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
305#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
306#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
307#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 308#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
309#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
310#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
311#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
312#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 313#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
314#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
315
5212213a 316#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
317# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
318# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 319# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
320# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
321# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
322#ifdef CONFIG_PPC
323# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
324#else
325# define VM_PKEY_BIT4 0
8f62c883 326#endif
5212213a
RP
327#endif /* CONFIG_ARCH_HAS_PKEYS */
328
329#if defined(CONFIG_X86)
330# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
331#elif defined(CONFIG_PPC)
332# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
333#elif defined(CONFIG_PARISC)
334# define VM_GROWSUP VM_ARCH_1
335#elif defined(CONFIG_IA64)
336# define VM_GROWSUP VM_ARCH_1
74a04967
KA
337#elif defined(CONFIG_SPARC64)
338# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
339# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
340#elif defined(CONFIG_ARM64)
341# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
342# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
343#elif !defined(CONFIG_MMU)
344# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
345#endif
346
9f341931
CM
347#if defined(CONFIG_ARM64_MTE)
348# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
349# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
350#else
351# define VM_MTE VM_NONE
352# define VM_MTE_ALLOWED VM_NONE
353#endif
354
cc2383ec
KK
355#ifndef VM_GROWSUP
356# define VM_GROWSUP VM_NONE
357#endif
358
7677f7fd
AR
359#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
360# define VM_UFFD_MINOR_BIT 37
361# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
362#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
363# define VM_UFFD_MINOR VM_NONE
364#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
365
a8bef8ff
MG
366/* Bits set in the VMA until the stack is in its final location */
367#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
368
c62da0c3
AK
369#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
370
371/* Common data flag combinations */
372#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
373 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
374#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
375 VM_MAYWRITE | VM_MAYEXEC)
376#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
377 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
378
379#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
380#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
381#endif
382
1da177e4
LT
383#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
384#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
385#endif
386
387#ifdef CONFIG_STACK_GROWSUP
30bdbb78 388#define VM_STACK VM_GROWSUP
1da177e4 389#else
30bdbb78 390#define VM_STACK VM_GROWSDOWN
1da177e4
LT
391#endif
392
30bdbb78
KK
393#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
394
6cb4d9a2
AK
395/* VMA basic access permission flags */
396#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
397
398
b291f000 399/*
78f11a25 400 * Special vmas that are non-mergable, non-mlock()able.
b291f000 401 */
9050d7eb 402#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 403
b4443772
AK
404/* This mask prevents VMA from being scanned with khugepaged */
405#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
406
a0715cc2
AT
407/* This mask defines which mm->def_flags a process can inherit its parent */
408#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
409
de60f5f1
EM
410/* This mask is used to clear all the VMA flags used by mlock */
411#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
412
2c2d57b5
KA
413/* Arch-specific flags to clear when updating VM flags on protection change */
414#ifndef VM_ARCH_CLEAR
415# define VM_ARCH_CLEAR VM_NONE
416#endif
417#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
418
1da177e4
LT
419/*
420 * mapping from the currently active vm_flags protection bits (the
421 * low four bits) to a page protection mask..
422 */
423extern pgprot_t protection_map[16];
424
dde16072
PX
425/*
426 * The default fault flags that should be used by most of the
427 * arch-specific page fault handlers.
428 */
429#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
430 FAULT_FLAG_KILLABLE | \
431 FAULT_FLAG_INTERRUPTIBLE)
dde16072 432
4064b982
PX
433/**
434 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 435 * @flags: Fault flags.
4064b982
PX
436 *
437 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 438 * the mmap_lock for too long a time when waiting for another condition
4064b982 439 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
440 * mmap_lock in the first round to avoid potential starvation of other
441 * processes that would also want the mmap_lock.
4064b982
PX
442 *
443 * Return: true if the page fault allows retry and this is the first
444 * attempt of the fault handling; false otherwise.
445 */
da2f5eb3 446static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
447{
448 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
449 (!(flags & FAULT_FLAG_TRIED));
450}
451
282a8e03
RZ
452#define FAULT_FLAG_TRACE \
453 { FAULT_FLAG_WRITE, "WRITE" }, \
454 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
455 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
456 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
457 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
458 { FAULT_FLAG_TRIED, "TRIED" }, \
459 { FAULT_FLAG_USER, "USER" }, \
460 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
461 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
462 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 463
54cb8821 464/*
11192337 465 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
466 * ->fault function. The vma's ->fault is responsible for returning a bitmask
467 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 468 *
c20cd45e
MH
469 * MM layer fills up gfp_mask for page allocations but fault handler might
470 * alter it if its implementation requires a different allocation context.
471 *
9b4bdd2f 472 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 473 */
d0217ac0 474struct vm_fault {
5857c920 475 const struct {
742d3372
WD
476 struct vm_area_struct *vma; /* Target VMA */
477 gfp_t gfp_mask; /* gfp mask to be used for allocations */
478 pgoff_t pgoff; /* Logical page offset based on vma */
479 unsigned long address; /* Faulting virtual address */
480 };
da2f5eb3 481 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 482 * XXX: should really be 'const' */
82b0f8c3 483 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 484 * the 'address' */
a2d58167
DJ
485 pud_t *pud; /* Pointer to pud entry matching
486 * the 'address'
487 */
5db4f15c
YS
488 union {
489 pte_t orig_pte; /* Value of PTE at the time of fault */
490 pmd_t orig_pmd; /* Value of PMD at the time of fault,
491 * used by PMD fault only.
492 */
493 };
d0217ac0 494
3917048d 495 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 496 struct page *page; /* ->fault handlers should return a
83c54070 497 * page here, unless VM_FAULT_NOPAGE
d0217ac0 498 * is set (which is also implied by
83c54070 499 * VM_FAULT_ERROR).
d0217ac0 500 */
82b0f8c3 501 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
502 pte_t *pte; /* Pointer to pte entry matching
503 * the 'address'. NULL if the page
504 * table hasn't been allocated.
505 */
506 spinlock_t *ptl; /* Page table lock.
507 * Protects pte page table if 'pte'
508 * is not NULL, otherwise pmd.
509 */
7267ec00 510 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
511 * vm_ops->map_pages() sets up a page
512 * table from atomic context.
7267ec00
KS
513 * do_fault_around() pre-allocates
514 * page table to avoid allocation from
515 * atomic context.
516 */
54cb8821 517};
1da177e4 518
c791ace1
DJ
519/* page entry size for vm->huge_fault() */
520enum page_entry_size {
521 PE_SIZE_PTE = 0,
522 PE_SIZE_PMD,
523 PE_SIZE_PUD,
524};
525
1da177e4
LT
526/*
527 * These are the virtual MM functions - opening of an area, closing and
528 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 529 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
530 */
531struct vm_operations_struct {
532 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
533 /**
534 * @close: Called when the VMA is being removed from the MM.
535 * Context: User context. May sleep. Caller holds mmap_lock.
536 */
1da177e4 537 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
538 /* Called any time before splitting to check if it's allowed */
539 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 540 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
541 /*
542 * Called by mprotect() to make driver-specific permission
543 * checks before mprotect() is finalised. The VMA must not
544 * be modified. Returns 0 if eprotect() can proceed.
545 */
546 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
547 unsigned long end, unsigned long newflags);
1c8f4220
SJ
548 vm_fault_t (*fault)(struct vm_fault *vmf);
549 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
550 enum page_entry_size pe_size);
f9ce0be7 551 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 552 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 553 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
554
555 /* notification that a previously read-only page is about to become
556 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 557 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 558
dd906184 559 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 560 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 561
28b2ee20 562 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
563 * for use by special VMAs. See also generic_access_phys() for a generic
564 * implementation useful for any iomem mapping.
28b2ee20
RR
565 */
566 int (*access)(struct vm_area_struct *vma, unsigned long addr,
567 void *buf, int len, int write);
78d683e8
AL
568
569 /* Called by the /proc/PID/maps code to ask the vma whether it
570 * has a special name. Returning non-NULL will also cause this
571 * vma to be dumped unconditionally. */
572 const char *(*name)(struct vm_area_struct *vma);
573
1da177e4 574#ifdef CONFIG_NUMA
a6020ed7
LS
575 /*
576 * set_policy() op must add a reference to any non-NULL @new mempolicy
577 * to hold the policy upon return. Caller should pass NULL @new to
578 * remove a policy and fall back to surrounding context--i.e. do not
579 * install a MPOL_DEFAULT policy, nor the task or system default
580 * mempolicy.
581 */
1da177e4 582 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
583
584 /*
585 * get_policy() op must add reference [mpol_get()] to any policy at
586 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
587 * in mm/mempolicy.c will do this automatically.
588 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 589 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
590 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
591 * must return NULL--i.e., do not "fallback" to task or system default
592 * policy.
593 */
1da177e4
LT
594 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
595 unsigned long addr);
596#endif
667a0a06
DV
597 /*
598 * Called by vm_normal_page() for special PTEs to find the
599 * page for @addr. This is useful if the default behavior
600 * (using pte_page()) would not find the correct page.
601 */
602 struct page *(*find_special_page)(struct vm_area_struct *vma,
603 unsigned long addr);
1da177e4
LT
604};
605
027232da
KS
606static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
607{
bfd40eaf
KS
608 static const struct vm_operations_struct dummy_vm_ops = {};
609
a670468f 610 memset(vma, 0, sizeof(*vma));
027232da 611 vma->vm_mm = mm;
bfd40eaf 612 vma->vm_ops = &dummy_vm_ops;
027232da
KS
613 INIT_LIST_HEAD(&vma->anon_vma_chain);
614}
615
bfd40eaf
KS
616static inline void vma_set_anonymous(struct vm_area_struct *vma)
617{
618 vma->vm_ops = NULL;
619}
620
43675e6f
YS
621static inline bool vma_is_anonymous(struct vm_area_struct *vma)
622{
623 return !vma->vm_ops;
624}
625
222100ee
AK
626static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
627{
628 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
629
630 if (!maybe_stack)
631 return false;
632
633 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
634 VM_STACK_INCOMPLETE_SETUP)
635 return true;
636
637 return false;
638}
639
7969f226
AK
640static inline bool vma_is_foreign(struct vm_area_struct *vma)
641{
642 if (!current->mm)
643 return true;
644
645 if (current->mm != vma->vm_mm)
646 return true;
647
648 return false;
649}
3122e80e
AK
650
651static inline bool vma_is_accessible(struct vm_area_struct *vma)
652{
6cb4d9a2 653 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
654}
655
43675e6f
YS
656#ifdef CONFIG_SHMEM
657/*
658 * The vma_is_shmem is not inline because it is used only by slow
659 * paths in userfault.
660 */
661bool vma_is_shmem(struct vm_area_struct *vma);
662#else
663static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
664#endif
665
666int vma_is_stack_for_current(struct vm_area_struct *vma);
667
8b11ec1b
LT
668/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
669#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
670
1da177e4
LT
671struct mmu_gather;
672struct inode;
673
5bf34d7c
MWO
674static inline unsigned int compound_order(struct page *page)
675{
676 if (!PageHead(page))
677 return 0;
678 return page[1].compound_order;
679}
680
681/**
682 * folio_order - The allocation order of a folio.
683 * @folio: The folio.
684 *
685 * A folio is composed of 2^order pages. See get_order() for the definition
686 * of order.
687 *
688 * Return: The order of the folio.
689 */
690static inline unsigned int folio_order(struct folio *folio)
691{
692 return compound_order(&folio->page);
693}
694
71e3aac0 695#include <linux/huge_mm.h>
1da177e4
LT
696
697/*
698 * Methods to modify the page usage count.
699 *
700 * What counts for a page usage:
701 * - cache mapping (page->mapping)
702 * - private data (page->private)
703 * - page mapped in a task's page tables, each mapping
704 * is counted separately
705 *
706 * Also, many kernel routines increase the page count before a critical
707 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
708 */
709
710/*
da6052f7 711 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 712 */
7c8ee9a8
NP
713static inline int put_page_testzero(struct page *page)
714{
fe896d18
JK
715 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
716 return page_ref_dec_and_test(page);
7c8ee9a8 717}
1da177e4 718
b620f633
MWO
719static inline int folio_put_testzero(struct folio *folio)
720{
721 return put_page_testzero(&folio->page);
722}
723
1da177e4 724/*
7c8ee9a8
NP
725 * Try to grab a ref unless the page has a refcount of zero, return false if
726 * that is the case.
8e0861fa
AK
727 * This can be called when MMU is off so it must not access
728 * any of the virtual mappings.
1da177e4 729 */
c2530328 730static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 731{
fe896d18 732 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 733}
1da177e4 734
53df8fdc 735extern int page_is_ram(unsigned long pfn);
124fe20d
DW
736
737enum {
738 REGION_INTERSECTS,
739 REGION_DISJOINT,
740 REGION_MIXED,
741};
742
1c29f25b
TK
743int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
744 unsigned long desc);
53df8fdc 745
48667e7a 746/* Support for virtually mapped pages */
b3bdda02
CL
747struct page *vmalloc_to_page(const void *addr);
748unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 749
0738c4bb
PM
750/*
751 * Determine if an address is within the vmalloc range
752 *
753 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
754 * is no special casing required.
755 */
9bd3bb67
AK
756
757#ifndef is_ioremap_addr
758#define is_ioremap_addr(x) is_vmalloc_addr(x)
759#endif
760
81ac3ad9 761#ifdef CONFIG_MMU
186525bd 762extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
763extern int is_vmalloc_or_module_addr(const void *x);
764#else
186525bd
IM
765static inline bool is_vmalloc_addr(const void *x)
766{
767 return false;
768}
934831d0 769static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
770{
771 return 0;
772}
773#endif
9e2779fa 774
bac3cf4d 775static inline int head_compound_mapcount(struct page *head)
6dc5ea16
JH
776{
777 return atomic_read(compound_mapcount_ptr(head)) + 1;
778}
779
6988f31d
KK
780/*
781 * Mapcount of compound page as a whole, does not include mapped sub-pages.
782 *
783 * Must be called only for compound pages or any their tail sub-pages.
784 */
53f9263b
KS
785static inline int compound_mapcount(struct page *page)
786{
5f527c2b 787 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 788 page = compound_head(page);
bac3cf4d 789 return head_compound_mapcount(page);
53f9263b
KS
790}
791
70b50f94
AA
792/*
793 * The atomic page->_mapcount, starts from -1: so that transitions
794 * both from it and to it can be tracked, using atomic_inc_and_test
795 * and atomic_add_negative(-1).
796 */
22b751c3 797static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
798{
799 atomic_set(&(page)->_mapcount, -1);
800}
801
b20ce5e0
KS
802int __page_mapcount(struct page *page);
803
6988f31d
KK
804/*
805 * Mapcount of 0-order page; when compound sub-page, includes
806 * compound_mapcount().
807 *
808 * Result is undefined for pages which cannot be mapped into userspace.
809 * For example SLAB or special types of pages. See function page_has_type().
810 * They use this place in struct page differently.
811 */
70b50f94
AA
812static inline int page_mapcount(struct page *page)
813{
b20ce5e0
KS
814 if (unlikely(PageCompound(page)))
815 return __page_mapcount(page);
816 return atomic_read(&page->_mapcount) + 1;
817}
818
819#ifdef CONFIG_TRANSPARENT_HUGEPAGE
820int total_mapcount(struct page *page);
d08d2b62 821int page_trans_huge_mapcount(struct page *page);
b20ce5e0
KS
822#else
823static inline int total_mapcount(struct page *page)
824{
825 return page_mapcount(page);
70b50f94 826}
d08d2b62 827static inline int page_trans_huge_mapcount(struct page *page)
6d0a07ed 828{
d08d2b62 829 return page_mapcount(page);
6d0a07ed 830}
b20ce5e0 831#endif
70b50f94 832
b49af68f
CL
833static inline struct page *virt_to_head_page(const void *x)
834{
835 struct page *page = virt_to_page(x);
ccaafd7f 836
1d798ca3 837 return compound_head(page);
b49af68f
CL
838}
839
7d4203c1
VB
840static inline struct folio *virt_to_folio(const void *x)
841{
842 struct page *page = virt_to_page(x);
843
844 return page_folio(page);
845}
846
ddc58f27
KS
847void __put_page(struct page *page);
848
1d7ea732 849void put_pages_list(struct list_head *pages);
1da177e4 850
8dfcc9ba 851void split_page(struct page *page, unsigned int order);
715cbfd6 852void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 853
a1554c00
ML
854unsigned long nr_free_buffer_pages(void);
855
33f2ef89
AW
856/*
857 * Compound pages have a destructor function. Provide a
858 * prototype for that function and accessor functions.
f1e61557 859 * These are _only_ valid on the head of a compound page.
33f2ef89 860 */
f1e61557
KS
861typedef void compound_page_dtor(struct page *);
862
863/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
864enum compound_dtor_id {
865 NULL_COMPOUND_DTOR,
866 COMPOUND_PAGE_DTOR,
867#ifdef CONFIG_HUGETLB_PAGE
868 HUGETLB_PAGE_DTOR,
9a982250
KS
869#endif
870#ifdef CONFIG_TRANSPARENT_HUGEPAGE
871 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
872#endif
873 NR_COMPOUND_DTORS,
874};
ae70eddd 875extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
876
877static inline void set_compound_page_dtor(struct page *page,
f1e61557 878 enum compound_dtor_id compound_dtor)
33f2ef89 879{
f1e61557
KS
880 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
881 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
882}
883
ff45fc3c 884static inline void destroy_compound_page(struct page *page)
33f2ef89 885{
f1e61557 886 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 887 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
888}
889
bac3cf4d 890static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
891{
892 return atomic_read(compound_pincount_ptr(head));
893}
894
47e29d32
JH
895static inline int compound_pincount(struct page *page)
896{
5232c63f 897 VM_BUG_ON_PAGE(!PageCompound(page), page);
47e29d32 898 page = compound_head(page);
bac3cf4d 899 return head_compound_pincount(page);
47e29d32
JH
900}
901
f1e61557 902static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 903{
e4b294c2 904 page[1].compound_order = order;
5232c63f 905#ifdef CONFIG_64BIT
1378a5ee 906 page[1].compound_nr = 1U << order;
5232c63f 907#endif
d85f3385
CL
908}
909
d8c6546b
MWO
910/* Returns the number of pages in this potentially compound page. */
911static inline unsigned long compound_nr(struct page *page)
912{
1378a5ee
MWO
913 if (!PageHead(page))
914 return 1;
5232c63f 915#ifdef CONFIG_64BIT
1378a5ee 916 return page[1].compound_nr;
5232c63f
MWO
917#else
918 return 1UL << compound_order(page);
919#endif
d8c6546b
MWO
920}
921
a50b854e
MWO
922/* Returns the number of bytes in this potentially compound page. */
923static inline unsigned long page_size(struct page *page)
924{
925 return PAGE_SIZE << compound_order(page);
926}
927
94ad9338
MWO
928/* Returns the number of bits needed for the number of bytes in a page */
929static inline unsigned int page_shift(struct page *page)
930{
931 return PAGE_SHIFT + compound_order(page);
932}
933
9a982250
KS
934void free_compound_page(struct page *page);
935
3dece370 936#ifdef CONFIG_MMU
14fd403f
AA
937/*
938 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
939 * servicing faults for write access. In the normal case, do always want
940 * pte_mkwrite. But get_user_pages can cause write faults for mappings
941 * that do not have writing enabled, when used by access_process_vm.
942 */
943static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
944{
945 if (likely(vma->vm_flags & VM_WRITE))
946 pte = pte_mkwrite(pte);
947 return pte;
948}
8c6e50b0 949
f9ce0be7 950vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 951void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 952
2b740303
SJ
953vm_fault_t finish_fault(struct vm_fault *vmf);
954vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 955#endif
14fd403f 956
1da177e4
LT
957/*
958 * Multiple processes may "see" the same page. E.g. for untouched
959 * mappings of /dev/null, all processes see the same page full of
960 * zeroes, and text pages of executables and shared libraries have
961 * only one copy in memory, at most, normally.
962 *
963 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
964 * page_count() == 0 means the page is free. page->lru is then used for
965 * freelist management in the buddy allocator.
da6052f7 966 * page_count() > 0 means the page has been allocated.
1da177e4 967 *
da6052f7
NP
968 * Pages are allocated by the slab allocator in order to provide memory
969 * to kmalloc and kmem_cache_alloc. In this case, the management of the
970 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
971 * unless a particular usage is carefully commented. (the responsibility of
972 * freeing the kmalloc memory is the caller's, of course).
1da177e4 973 *
da6052f7
NP
974 * A page may be used by anyone else who does a __get_free_page().
975 * In this case, page_count still tracks the references, and should only
976 * be used through the normal accessor functions. The top bits of page->flags
977 * and page->virtual store page management information, but all other fields
978 * are unused and could be used privately, carefully. The management of this
979 * page is the responsibility of the one who allocated it, and those who have
980 * subsequently been given references to it.
981 *
982 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
983 * managed by the Linux memory manager: I/O, buffers, swapping etc.
984 * The following discussion applies only to them.
985 *
da6052f7
NP
986 * A pagecache page contains an opaque `private' member, which belongs to the
987 * page's address_space. Usually, this is the address of a circular list of
988 * the page's disk buffers. PG_private must be set to tell the VM to call
989 * into the filesystem to release these pages.
1da177e4 990 *
da6052f7
NP
991 * A page may belong to an inode's memory mapping. In this case, page->mapping
992 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 993 * in units of PAGE_SIZE.
1da177e4 994 *
da6052f7
NP
995 * If pagecache pages are not associated with an inode, they are said to be
996 * anonymous pages. These may become associated with the swapcache, and in that
997 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 998 *
da6052f7
NP
999 * In either case (swapcache or inode backed), the pagecache itself holds one
1000 * reference to the page. Setting PG_private should also increment the
1001 * refcount. The each user mapping also has a reference to the page.
1da177e4 1002 *
da6052f7 1003 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1004 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1005 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1006 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1007 *
da6052f7 1008 * All pagecache pages may be subject to I/O:
1da177e4
LT
1009 * - inode pages may need to be read from disk,
1010 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1011 * to be written back to the inode on disk,
1012 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1013 * modified may need to be swapped out to swap space and (later) to be read
1014 * back into memory.
1da177e4
LT
1015 */
1016
1017/*
1018 * The zone field is never updated after free_area_init_core()
1019 * sets it, so none of the operations on it need to be atomic.
1da177e4 1020 */
348f8b6c 1021
90572890 1022/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1023#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1024#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1025#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1026#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1027#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1028
348f8b6c 1029/*
25985edc 1030 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1031 * sections we define the shift as 0; that plus a 0 mask ensures
1032 * the compiler will optimise away reference to them.
1033 */
d41dee36
AW
1034#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1035#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1036#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1037#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1038#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1039
bce54bbf
WD
1040/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1041#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1042#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1043#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1044 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1045#else
89689ae7 1046#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1047#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1048 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1049#endif
1050
bd8029b6 1051#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1052
d41dee36
AW
1053#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1054#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1055#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1056#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1057#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1058#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1059
33dd4e0e 1060static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1061{
c403f6a3 1062 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1063 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1064}
1da177e4 1065
32b8fc48
MWO
1066static inline enum zone_type folio_zonenum(const struct folio *folio)
1067{
1068 return page_zonenum(&folio->page);
1069}
1070
260ae3f7
DW
1071#ifdef CONFIG_ZONE_DEVICE
1072static inline bool is_zone_device_page(const struct page *page)
1073{
1074 return page_zonenum(page) == ZONE_DEVICE;
1075}
966cf44f
AD
1076extern void memmap_init_zone_device(struct zone *, unsigned long,
1077 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1078#else
1079static inline bool is_zone_device_page(const struct page *page)
1080{
1081 return false;
1082}
7b2d55d2 1083#endif
5042db43 1084
8e3560d9
PT
1085static inline bool is_zone_movable_page(const struct page *page)
1086{
1087 return page_zonenum(page) == ZONE_MOVABLE;
1088}
1089
27674ef6 1090#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1091DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1092
89574945
CH
1093bool __put_devmap_managed_page(struct page *page);
1094static inline bool put_devmap_managed_page(struct page *page)
e7638488
DW
1095{
1096 if (!static_branch_unlikely(&devmap_managed_key))
1097 return false;
1098 if (!is_zone_device_page(page))
1099 return false;
89574945 1100 return __put_devmap_managed_page(page);
e7638488
DW
1101}
1102
27674ef6 1103#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
89574945 1104static inline bool put_devmap_managed_page(struct page *page)
e7638488
DW
1105{
1106 return false;
1107}
27674ef6 1108#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
e7638488 1109
f958d7b5 1110/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1111#define folio_ref_zero_or_close_to_overflow(folio) \
1112 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1113
1114/**
1115 * folio_get - Increment the reference count on a folio.
1116 * @folio: The folio.
1117 *
1118 * Context: May be called in any context, as long as you know that
1119 * you have a refcount on the folio. If you do not already have one,
1120 * folio_try_get() may be the right interface for you to use.
1121 */
1122static inline void folio_get(struct folio *folio)
1123{
1124 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1125 folio_ref_inc(folio);
1126}
f958d7b5 1127
3565fce3
DW
1128static inline void get_page(struct page *page)
1129{
86d234cb 1130 folio_get(page_folio(page));
3565fce3
DW
1131}
1132
3faa52c0 1133bool __must_check try_grab_page(struct page *page, unsigned int flags);
54d516b1
JH
1134struct page *try_grab_compound_head(struct page *page, int refs,
1135 unsigned int flags);
0fa5bc40 1136
cd1adf1b
LT
1137
1138static inline __must_check bool try_get_page(struct page *page)
1139{
1140 page = compound_head(page);
1141 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1142 return false;
1143 page_ref_inc(page);
1144 return true;
1145}
3565fce3 1146
b620f633
MWO
1147/**
1148 * folio_put - Decrement the reference count on a folio.
1149 * @folio: The folio.
1150 *
1151 * If the folio's reference count reaches zero, the memory will be
1152 * released back to the page allocator and may be used by another
1153 * allocation immediately. Do not access the memory or the struct folio
1154 * after calling folio_put() unless you can be sure that it wasn't the
1155 * last reference.
1156 *
1157 * Context: May be called in process or interrupt context, but not in NMI
1158 * context. May be called while holding a spinlock.
1159 */
1160static inline void folio_put(struct folio *folio)
1161{
1162 if (folio_put_testzero(folio))
1163 __put_page(&folio->page);
1164}
1165
3fe7fa58
MWO
1166/**
1167 * folio_put_refs - Reduce the reference count on a folio.
1168 * @folio: The folio.
1169 * @refs: The amount to subtract from the folio's reference count.
1170 *
1171 * If the folio's reference count reaches zero, the memory will be
1172 * released back to the page allocator and may be used by another
1173 * allocation immediately. Do not access the memory or the struct folio
1174 * after calling folio_put_refs() unless you can be sure that these weren't
1175 * the last references.
1176 *
1177 * Context: May be called in process or interrupt context, but not in NMI
1178 * context. May be called while holding a spinlock.
1179 */
1180static inline void folio_put_refs(struct folio *folio, int refs)
1181{
1182 if (folio_ref_sub_and_test(folio, refs))
1183 __put_page(&folio->page);
1184}
1185
3565fce3
DW
1186static inline void put_page(struct page *page)
1187{
b620f633 1188 struct folio *folio = page_folio(page);
3565fce3 1189
7b2d55d2 1190 /*
89574945
CH
1191 * For some devmap managed pages we need to catch refcount transition
1192 * from 2 to 1:
7b2d55d2 1193 */
89574945 1194 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1195 return;
b620f633 1196 folio_put(folio);
3565fce3
DW
1197}
1198
3faa52c0
JH
1199/*
1200 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1201 * the page's refcount so that two separate items are tracked: the original page
1202 * reference count, and also a new count of how many pin_user_pages() calls were
1203 * made against the page. ("gup-pinned" is another term for the latter).
1204 *
1205 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1206 * distinct from normal pages. As such, the unpin_user_page() call (and its
1207 * variants) must be used in order to release gup-pinned pages.
1208 *
1209 * Choice of value:
1210 *
1211 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1212 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1213 * simpler, due to the fact that adding an even power of two to the page
1214 * refcount has the effect of using only the upper N bits, for the code that
1215 * counts up using the bias value. This means that the lower bits are left for
1216 * the exclusive use of the original code that increments and decrements by one
1217 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1218 *
3faa52c0
JH
1219 * Of course, once the lower bits overflow into the upper bits (and this is
1220 * OK, because subtraction recovers the original values), then visual inspection
1221 * no longer suffices to directly view the separate counts. However, for normal
1222 * applications that don't have huge page reference counts, this won't be an
1223 * issue.
fc1d8e7c 1224 *
3faa52c0
JH
1225 * Locking: the lockless algorithm described in page_cache_get_speculative()
1226 * and page_cache_gup_pin_speculative() provides safe operation for
1227 * get_user_pages and page_mkclean and other calls that race to set up page
1228 * table entries.
fc1d8e7c 1229 */
3faa52c0 1230#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1231
3faa52c0 1232void unpin_user_page(struct page *page);
f1f6a7dd
JH
1233void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1234 bool make_dirty);
458a4f78
JM
1235void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1236 bool make_dirty);
f1f6a7dd 1237void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1238
3faa52c0 1239/**
136dfc99
MWO
1240 * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1241 * @page: The page.
3faa52c0
JH
1242 *
1243 * This function checks if a page has been pinned via a call to
136dfc99 1244 * a function in the pin_user_pages() family.
3faa52c0
JH
1245 *
1246 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1247 * because it means "definitely not pinned for DMA", but true means "probably
1248 * pinned for DMA, but possibly a false positive due to having at least
1249 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1250 *
1251 * False positives are OK, because: a) it's unlikely for a page to get that many
1252 * refcounts, and b) all the callers of this routine are expected to be able to
1253 * deal gracefully with a false positive.
1254 *
47e29d32
JH
1255 * For huge pages, the result will be exactly correct. That's because we have
1256 * more tracking data available: the 3rd struct page in the compound page is
1257 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1258 * scheme).
1259 *
72ef5e52 1260 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0 1261 *
136dfc99
MWO
1262 * Return: True, if it is likely that the page has been "dma-pinned".
1263 * False, if the page is definitely not dma-pinned.
3faa52c0
JH
1264 */
1265static inline bool page_maybe_dma_pinned(struct page *page)
1266{
5232c63f 1267 if (PageCompound(page))
47e29d32
JH
1268 return compound_pincount(page) > 0;
1269
3faa52c0
JH
1270 /*
1271 * page_ref_count() is signed. If that refcount overflows, then
1272 * page_ref_count() returns a negative value, and callers will avoid
1273 * further incrementing the refcount.
1274 *
1275 * Here, for that overflow case, use the signed bit to count a little
1276 * bit higher via unsigned math, and thus still get an accurate result.
1277 */
1278 return ((unsigned int)page_ref_count(compound_head(page))) >=
1279 GUP_PIN_COUNTING_BIAS;
1280}
1281
97a7e473
PX
1282static inline bool is_cow_mapping(vm_flags_t flags)
1283{
1284 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1285}
1286
1287/*
1288 * This should most likely only be called during fork() to see whether we
1289 * should break the cow immediately for a page on the src mm.
1290 */
1291static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1292 struct page *page)
1293{
1294 if (!is_cow_mapping(vma->vm_flags))
1295 return false;
1296
a458b76a 1297 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
97a7e473
PX
1298 return false;
1299
1300 return page_maybe_dma_pinned(page);
1301}
1302
9127ab4f
CS
1303#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1304#define SECTION_IN_PAGE_FLAGS
1305#endif
1306
89689ae7 1307/*
7a8010cd
VB
1308 * The identification function is mainly used by the buddy allocator for
1309 * determining if two pages could be buddies. We are not really identifying
1310 * the zone since we could be using the section number id if we do not have
1311 * node id available in page flags.
1312 * We only guarantee that it will return the same value for two combinable
1313 * pages in a zone.
89689ae7 1314 */
cb2b95e1
AW
1315static inline int page_zone_id(struct page *page)
1316{
89689ae7 1317 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1318}
1319
89689ae7 1320#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1321extern int page_to_nid(const struct page *page);
89689ae7 1322#else
33dd4e0e 1323static inline int page_to_nid(const struct page *page)
d41dee36 1324{
f165b378
PT
1325 struct page *p = (struct page *)page;
1326
1327 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1328}
89689ae7
CL
1329#endif
1330
874fd90c
MWO
1331static inline int folio_nid(const struct folio *folio)
1332{
1333 return page_to_nid(&folio->page);
1334}
1335
57e0a030 1336#ifdef CONFIG_NUMA_BALANCING
90572890 1337static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1338{
90572890 1339 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1340}
1341
90572890 1342static inline int cpupid_to_pid(int cpupid)
57e0a030 1343{
90572890 1344 return cpupid & LAST__PID_MASK;
57e0a030 1345}
b795854b 1346
90572890 1347static inline int cpupid_to_cpu(int cpupid)
b795854b 1348{
90572890 1349 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1350}
1351
90572890 1352static inline int cpupid_to_nid(int cpupid)
b795854b 1353{
90572890 1354 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1355}
1356
90572890 1357static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1358{
90572890 1359 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1360}
1361
90572890 1362static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1363{
90572890 1364 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1365}
1366
8c8a743c
PZ
1367static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1368{
1369 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1370}
1371
1372#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1373#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1374static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1375{
1ae71d03 1376 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1377}
90572890
PZ
1378
1379static inline int page_cpupid_last(struct page *page)
1380{
1381 return page->_last_cpupid;
1382}
1383static inline void page_cpupid_reset_last(struct page *page)
b795854b 1384{
1ae71d03 1385 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1386}
1387#else
90572890 1388static inline int page_cpupid_last(struct page *page)
75980e97 1389{
90572890 1390 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1391}
1392
90572890 1393extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1394
90572890 1395static inline void page_cpupid_reset_last(struct page *page)
75980e97 1396{
09940a4f 1397 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1398}
90572890
PZ
1399#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1400#else /* !CONFIG_NUMA_BALANCING */
1401static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1402{
90572890 1403 return page_to_nid(page); /* XXX */
57e0a030
MG
1404}
1405
90572890 1406static inline int page_cpupid_last(struct page *page)
57e0a030 1407{
90572890 1408 return page_to_nid(page); /* XXX */
57e0a030
MG
1409}
1410
90572890 1411static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1412{
1413 return -1;
1414}
1415
90572890 1416static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1417{
1418 return -1;
1419}
1420
90572890 1421static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1422{
1423 return -1;
1424}
1425
90572890
PZ
1426static inline int cpu_pid_to_cpupid(int nid, int pid)
1427{
1428 return -1;
1429}
1430
1431static inline bool cpupid_pid_unset(int cpupid)
b795854b 1432{
2b787449 1433 return true;
b795854b
MG
1434}
1435
90572890 1436static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1437{
1438}
8c8a743c
PZ
1439
1440static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1441{
1442 return false;
1443}
90572890 1444#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1445
2e903b91 1446#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1447
cf10bd4c
AK
1448/*
1449 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1450 * setting tags for all pages to native kernel tag value 0xff, as the default
1451 * value 0x00 maps to 0xff.
1452 */
1453
2813b9c0
AK
1454static inline u8 page_kasan_tag(const struct page *page)
1455{
cf10bd4c
AK
1456 u8 tag = 0xff;
1457
1458 if (kasan_enabled()) {
1459 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1460 tag ^= 0xff;
1461 }
1462
1463 return tag;
2813b9c0
AK
1464}
1465
1466static inline void page_kasan_tag_set(struct page *page, u8 tag)
1467{
27fe7339
PC
1468 unsigned long old_flags, flags;
1469
1470 if (!kasan_enabled())
1471 return;
1472
1473 tag ^= 0xff;
1474 old_flags = READ_ONCE(page->flags);
1475 do {
1476 flags = old_flags;
1477 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1478 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1479 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1480}
1481
1482static inline void page_kasan_tag_reset(struct page *page)
1483{
34303244
AK
1484 if (kasan_enabled())
1485 page_kasan_tag_set(page, 0xff);
2813b9c0 1486}
34303244
AK
1487
1488#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1489
2813b9c0
AK
1490static inline u8 page_kasan_tag(const struct page *page)
1491{
1492 return 0xff;
1493}
1494
1495static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1496static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1497
1498#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1499
33dd4e0e 1500static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1501{
1502 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1503}
1504
75ef7184
MG
1505static inline pg_data_t *page_pgdat(const struct page *page)
1506{
1507 return NODE_DATA(page_to_nid(page));
1508}
1509
32b8fc48
MWO
1510static inline struct zone *folio_zone(const struct folio *folio)
1511{
1512 return page_zone(&folio->page);
1513}
1514
1515static inline pg_data_t *folio_pgdat(const struct folio *folio)
1516{
1517 return page_pgdat(&folio->page);
1518}
1519
9127ab4f 1520#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1521static inline void set_page_section(struct page *page, unsigned long section)
1522{
1523 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1524 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1525}
1526
aa462abe 1527static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1528{
1529 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1530}
308c05e3 1531#endif
d41dee36 1532
bf6bd276
MWO
1533/**
1534 * folio_pfn - Return the Page Frame Number of a folio.
1535 * @folio: The folio.
1536 *
1537 * A folio may contain multiple pages. The pages have consecutive
1538 * Page Frame Numbers.
1539 *
1540 * Return: The Page Frame Number of the first page in the folio.
1541 */
1542static inline unsigned long folio_pfn(struct folio *folio)
1543{
1544 return page_to_pfn(&folio->page);
1545}
1546
3d11b225
MWO
1547static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1548{
1549 return &folio_page(folio, 1)->compound_pincount;
1550}
1551
8e3560d9
PT
1552/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1553#ifdef CONFIG_MIGRATION
1554static inline bool is_pinnable_page(struct page *page)
1555{
9afaf30f
PT
1556 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1557 is_zero_pfn(page_to_pfn(page));
8e3560d9
PT
1558}
1559#else
1560static inline bool is_pinnable_page(struct page *page)
1561{
1562 return true;
1563}
1564#endif
1565
2f1b6248 1566static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1567{
1568 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1569 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1570}
2f1b6248 1571
348f8b6c
DH
1572static inline void set_page_node(struct page *page, unsigned long node)
1573{
1574 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1575 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1576}
89689ae7 1577
2f1b6248 1578static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1579 unsigned long node, unsigned long pfn)
1da177e4 1580{
348f8b6c
DH
1581 set_page_zone(page, zone);
1582 set_page_node(page, node);
9127ab4f 1583#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1584 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1585#endif
1da177e4
LT
1586}
1587
7b230db3
MWO
1588/**
1589 * folio_nr_pages - The number of pages in the folio.
1590 * @folio: The folio.
1591 *
1592 * Return: A positive power of two.
1593 */
1594static inline long folio_nr_pages(struct folio *folio)
1595{
1596 return compound_nr(&folio->page);
1597}
1598
1599/**
1600 * folio_next - Move to the next physical folio.
1601 * @folio: The folio we're currently operating on.
1602 *
1603 * If you have physically contiguous memory which may span more than
1604 * one folio (eg a &struct bio_vec), use this function to move from one
1605 * folio to the next. Do not use it if the memory is only virtually
1606 * contiguous as the folios are almost certainly not adjacent to each
1607 * other. This is the folio equivalent to writing ``page++``.
1608 *
1609 * Context: We assume that the folios are refcounted and/or locked at a
1610 * higher level and do not adjust the reference counts.
1611 * Return: The next struct folio.
1612 */
1613static inline struct folio *folio_next(struct folio *folio)
1614{
1615 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1616}
1617
1618/**
1619 * folio_shift - The size of the memory described by this folio.
1620 * @folio: The folio.
1621 *
1622 * A folio represents a number of bytes which is a power-of-two in size.
1623 * This function tells you which power-of-two the folio is. See also
1624 * folio_size() and folio_order().
1625 *
1626 * Context: The caller should have a reference on the folio to prevent
1627 * it from being split. It is not necessary for the folio to be locked.
1628 * Return: The base-2 logarithm of the size of this folio.
1629 */
1630static inline unsigned int folio_shift(struct folio *folio)
1631{
1632 return PAGE_SHIFT + folio_order(folio);
1633}
1634
1635/**
1636 * folio_size - The number of bytes in a folio.
1637 * @folio: The folio.
1638 *
1639 * Context: The caller should have a reference on the folio to prevent
1640 * it from being split. It is not necessary for the folio to be locked.
1641 * Return: The number of bytes in this folio.
1642 */
1643static inline size_t folio_size(struct folio *folio)
1644{
1645 return PAGE_SIZE << folio_order(folio);
1646}
1647
b424de33
MWO
1648#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1649static inline int arch_make_page_accessible(struct page *page)
1650{
1651 return 0;
1652}
1653#endif
1654
1655#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1656static inline int arch_make_folio_accessible(struct folio *folio)
1657{
1658 int ret;
1659 long i, nr = folio_nr_pages(folio);
1660
1661 for (i = 0; i < nr; i++) {
1662 ret = arch_make_page_accessible(folio_page(folio, i));
1663 if (ret)
1664 break;
1665 }
1666
1667 return ret;
1668}
1669#endif
1670
f6ac2354
CL
1671/*
1672 * Some inline functions in vmstat.h depend on page_zone()
1673 */
1674#include <linux/vmstat.h>
1675
33dd4e0e 1676static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1677{
1dff8083 1678 return page_to_virt(page);
1da177e4
LT
1679}
1680
1681#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1682#define HASHED_PAGE_VIRTUAL
1683#endif
1684
1685#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1686static inline void *page_address(const struct page *page)
1687{
1688 return page->virtual;
1689}
1690static inline void set_page_address(struct page *page, void *address)
1691{
1692 page->virtual = address;
1693}
1da177e4
LT
1694#define page_address_init() do { } while(0)
1695#endif
1696
1697#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1698void *page_address(const struct page *page);
1da177e4
LT
1699void set_page_address(struct page *page, void *virtual);
1700void page_address_init(void);
1701#endif
1702
1703#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1704#define page_address(page) lowmem_page_address(page)
1705#define set_page_address(page, address) do { } while(0)
1706#define page_address_init() do { } while(0)
1707#endif
1708
7d4203c1
VB
1709static inline void *folio_address(const struct folio *folio)
1710{
1711 return page_address(&folio->page);
1712}
1713
e39155ea
KS
1714extern void *page_rmapping(struct page *page);
1715extern struct anon_vma *page_anon_vma(struct page *page);
f6ab1f7f
HY
1716extern pgoff_t __page_file_index(struct page *page);
1717
1da177e4
LT
1718/*
1719 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1720 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1721 */
1722static inline pgoff_t page_index(struct page *page)
1723{
1724 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1725 return __page_file_index(page);
1da177e4
LT
1726 return page->index;
1727}
1728
1aa8aea5 1729bool page_mapped(struct page *page);
dd10ab04 1730bool folio_mapped(struct folio *folio);
1da177e4 1731
2f064f34
MH
1732/*
1733 * Return true only if the page has been allocated with
1734 * ALLOC_NO_WATERMARKS and the low watermark was not
1735 * met implying that the system is under some pressure.
1736 */
1d7bab6a 1737static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1738{
1739 /*
c07aea3e
MC
1740 * lru.next has bit 1 set if the page is allocated from the
1741 * pfmemalloc reserves. Callers may simply overwrite it if
1742 * they do not need to preserve that information.
2f064f34 1743 */
c07aea3e 1744 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
1745}
1746
1747/*
1748 * Only to be called by the page allocator on a freshly allocated
1749 * page.
1750 */
1751static inline void set_page_pfmemalloc(struct page *page)
1752{
c07aea3e 1753 page->lru.next = (void *)BIT(1);
2f064f34
MH
1754}
1755
1756static inline void clear_page_pfmemalloc(struct page *page)
1757{
c07aea3e 1758 page->lru.next = NULL;
2f064f34
MH
1759}
1760
1c0fe6e3
NP
1761/*
1762 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1763 */
1764extern void pagefault_out_of_memory(void);
1765
1da177e4 1766#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1767#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 1768#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 1769
ddd588b5 1770/*
7bf02ea2 1771 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1772 * various contexts.
1773 */
4b59e6c4 1774#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1775
9af744d7 1776extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1777
710ec38b 1778#ifdef CONFIG_MMU
7f43add4 1779extern bool can_do_mlock(void);
710ec38b
AB
1780#else
1781static inline bool can_do_mlock(void) { return false; }
1782#endif
d7c9e99a
AG
1783extern int user_shm_lock(size_t, struct ucounts *);
1784extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 1785
25b2995a
CH
1786struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1787 pte_t pte);
28093f9f
GS
1788struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1789 pmd_t pmd);
7e675137 1790
27d036e3
LR
1791void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1792 unsigned long size);
14f5ff5d 1793void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1794 unsigned long size);
4f74d2c8
LT
1795void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1796 unsigned long start, unsigned long end);
e6473092 1797
ac46d4f3
JG
1798struct mmu_notifier_range;
1799
42b77728 1800void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1801 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1802int
1803copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
9fd6dad1
PB
1804int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1805 struct mmu_notifier_range *range, pte_t **ptepp,
1806 pmd_t **pmdpp, spinlock_t **ptlp);
ff5c19ed 1807int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 1808 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
1809int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1810 unsigned long *pfn);
d87fe660 1811int follow_phys(struct vm_area_struct *vma, unsigned long address,
1812 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1813int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1814 void *buf, int len, int write);
1da177e4 1815
7caef267 1816extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1817extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1818void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1819void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 1820int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1821int invalidate_inode_page(struct page *page);
1822
7ee1dd3f 1823#ifdef CONFIG_MMU
2b740303 1824extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1825 unsigned long address, unsigned int flags,
1826 struct pt_regs *regs);
64019a2e 1827extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1828 unsigned long address, unsigned int fault_flags,
1829 bool *unlocked);
977fbdcd
MW
1830void unmap_mapping_pages(struct address_space *mapping,
1831 pgoff_t start, pgoff_t nr, bool even_cows);
1832void unmap_mapping_range(struct address_space *mapping,
1833 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1834#else
2b740303 1835static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1836 unsigned long address, unsigned int flags,
1837 struct pt_regs *regs)
7ee1dd3f
DH
1838{
1839 /* should never happen if there's no MMU */
1840 BUG();
1841 return VM_FAULT_SIGBUS;
1842}
64019a2e 1843static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1844 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1845{
1846 /* should never happen if there's no MMU */
1847 BUG();
1848 return -EFAULT;
1849}
977fbdcd
MW
1850static inline void unmap_mapping_pages(struct address_space *mapping,
1851 pgoff_t start, pgoff_t nr, bool even_cows) { }
1852static inline void unmap_mapping_range(struct address_space *mapping,
1853 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1854#endif
f33ea7f4 1855
977fbdcd
MW
1856static inline void unmap_shared_mapping_range(struct address_space *mapping,
1857 loff_t const holebegin, loff_t const holelen)
1858{
1859 unmap_mapping_range(mapping, holebegin, holelen, 0);
1860}
1861
1862extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1863 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1864extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1865 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1866extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1867 void *buf, int len, unsigned int gup_flags);
1da177e4 1868
64019a2e 1869long get_user_pages_remote(struct mm_struct *mm,
1e987790 1870 unsigned long start, unsigned long nr_pages,
9beae1ea 1871 unsigned int gup_flags, struct page **pages,
5b56d49f 1872 struct vm_area_struct **vmas, int *locked);
64019a2e 1873long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1874 unsigned long start, unsigned long nr_pages,
1875 unsigned int gup_flags, struct page **pages,
1876 struct vm_area_struct **vmas, int *locked);
c12d2da5 1877long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1878 unsigned int gup_flags, struct page **pages,
cde70140 1879 struct vm_area_struct **vmas);
eddb1c22
JH
1880long pin_user_pages(unsigned long start, unsigned long nr_pages,
1881 unsigned int gup_flags, struct page **pages,
1882 struct vm_area_struct **vmas);
c12d2da5 1883long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1884 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1885long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1886 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1887long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1888 struct page **pages, unsigned int gup_flags);
91429023
JH
1889long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1890 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1891
73b0140b
IW
1892int get_user_pages_fast(unsigned long start, int nr_pages,
1893 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1894int pin_user_pages_fast(unsigned long start, int nr_pages,
1895 unsigned int gup_flags, struct page **pages);
8025e5dd 1896
79eb597c
DJ
1897int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1898int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1899 struct task_struct *task, bool bypass_rlim);
1900
18022c5d
MG
1901struct kvec;
1902int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1903 struct page **pages);
f3e8fccd 1904struct page *get_dump_page(unsigned long addr);
1da177e4 1905
d47992f8
LC
1906extern void do_invalidatepage(struct page *page, unsigned int offset,
1907 unsigned int length);
cf9a2ae8 1908
b5e84594
MWO
1909bool folio_mark_dirty(struct folio *folio);
1910bool set_page_dirty(struct page *page);
1da177e4 1911int set_page_dirty_lock(struct page *page);
b9ea2515 1912
a9090253 1913int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1914
b6a2fea3
OW
1915extern unsigned long move_page_tables(struct vm_area_struct *vma,
1916 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1917 unsigned long new_addr, unsigned long len,
1918 bool need_rmap_locks);
58705444
PX
1919
1920/*
1921 * Flags used by change_protection(). For now we make it a bitmap so
1922 * that we can pass in multiple flags just like parameters. However
1923 * for now all the callers are only use one of the flags at the same
1924 * time.
1925 */
1926/* Whether we should allow dirty bit accounting */
1927#define MM_CP_DIRTY_ACCT (1UL << 0)
1928/* Whether this protection change is for NUMA hints */
1929#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1930/* Whether this change is for write protecting */
1931#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1932#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1933#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1934 MM_CP_UFFD_WP_RESOLVE)
58705444 1935
7da4d641
PZ
1936extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1937 unsigned long end, pgprot_t newprot,
58705444 1938 unsigned long cp_flags);
b6a2fea3
OW
1939extern int mprotect_fixup(struct vm_area_struct *vma,
1940 struct vm_area_struct **pprev, unsigned long start,
1941 unsigned long end, unsigned long newflags);
1da177e4 1942
465a454f
PZ
1943/*
1944 * doesn't attempt to fault and will return short.
1945 */
dadbb612
SJ
1946int get_user_pages_fast_only(unsigned long start, int nr_pages,
1947 unsigned int gup_flags, struct page **pages);
104acc32
JH
1948int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1949 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1950
1951static inline bool get_user_page_fast_only(unsigned long addr,
1952 unsigned int gup_flags, struct page **pagep)
1953{
1954 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1955}
d559db08
KH
1956/*
1957 * per-process(per-mm_struct) statistics.
1958 */
d559db08
KH
1959static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1960{
69c97823
KK
1961 long val = atomic_long_read(&mm->rss_stat.count[member]);
1962
1963#ifdef SPLIT_RSS_COUNTING
1964 /*
1965 * counter is updated in asynchronous manner and may go to minus.
1966 * But it's never be expected number for users.
1967 */
1968 if (val < 0)
1969 val = 0;
172703b0 1970#endif
69c97823
KK
1971 return (unsigned long)val;
1972}
d559db08 1973
e4dcad20 1974void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1975
d559db08
KH
1976static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1977{
b3d1411b
JFG
1978 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1979
e4dcad20 1980 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1981}
1982
1983static inline void inc_mm_counter(struct mm_struct *mm, int member)
1984{
b3d1411b
JFG
1985 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1986
e4dcad20 1987 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1988}
1989
1990static inline void dec_mm_counter(struct mm_struct *mm, int member)
1991{
b3d1411b
JFG
1992 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1993
e4dcad20 1994 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1995}
1996
eca56ff9
JM
1997/* Optimized variant when page is already known not to be PageAnon */
1998static inline int mm_counter_file(struct page *page)
1999{
2000 if (PageSwapBacked(page))
2001 return MM_SHMEMPAGES;
2002 return MM_FILEPAGES;
2003}
2004
2005static inline int mm_counter(struct page *page)
2006{
2007 if (PageAnon(page))
2008 return MM_ANONPAGES;
2009 return mm_counter_file(page);
2010}
2011
d559db08
KH
2012static inline unsigned long get_mm_rss(struct mm_struct *mm)
2013{
2014 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2015 get_mm_counter(mm, MM_ANONPAGES) +
2016 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2017}
2018
2019static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2020{
2021 return max(mm->hiwater_rss, get_mm_rss(mm));
2022}
2023
2024static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2025{
2026 return max(mm->hiwater_vm, mm->total_vm);
2027}
2028
2029static inline void update_hiwater_rss(struct mm_struct *mm)
2030{
2031 unsigned long _rss = get_mm_rss(mm);
2032
2033 if ((mm)->hiwater_rss < _rss)
2034 (mm)->hiwater_rss = _rss;
2035}
2036
2037static inline void update_hiwater_vm(struct mm_struct *mm)
2038{
2039 if (mm->hiwater_vm < mm->total_vm)
2040 mm->hiwater_vm = mm->total_vm;
2041}
2042
695f0559
PC
2043static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2044{
2045 mm->hiwater_rss = get_mm_rss(mm);
2046}
2047
d559db08
KH
2048static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2049 struct mm_struct *mm)
2050{
2051 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2052
2053 if (*maxrss < hiwater_rss)
2054 *maxrss = hiwater_rss;
2055}
2056
53bddb4e 2057#if defined(SPLIT_RSS_COUNTING)
05af2e10 2058void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2059#else
05af2e10 2060static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2061{
2062}
2063#endif
465a454f 2064
78e7c5af
AK
2065#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2066static inline int pte_special(pte_t pte)
2067{
2068 return 0;
2069}
2070
2071static inline pte_t pte_mkspecial(pte_t pte)
2072{
2073 return pte;
2074}
2075#endif
2076
17596731 2077#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2078static inline int pte_devmap(pte_t pte)
2079{
2080 return 0;
2081}
2082#endif
2083
6d2329f8 2084int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 2085
25ca1d6c
NK
2086extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2087 spinlock_t **ptl);
2088static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2089 spinlock_t **ptl)
2090{
2091 pte_t *ptep;
2092 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2093 return ptep;
2094}
c9cfcddf 2095
c2febafc
KS
2096#ifdef __PAGETABLE_P4D_FOLDED
2097static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2098 unsigned long address)
2099{
2100 return 0;
2101}
2102#else
2103int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2104#endif
2105
b4e98d9a 2106#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2107static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2108 unsigned long address)
2109{
2110 return 0;
2111}
b4e98d9a
KS
2112static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2113static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2114
5f22df00 2115#else
c2febafc 2116int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2117
b4e98d9a
KS
2118static inline void mm_inc_nr_puds(struct mm_struct *mm)
2119{
6d212db1
MS
2120 if (mm_pud_folded(mm))
2121 return;
af5b0f6a 2122 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2123}
2124
2125static inline void mm_dec_nr_puds(struct mm_struct *mm)
2126{
6d212db1
MS
2127 if (mm_pud_folded(mm))
2128 return;
af5b0f6a 2129 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2130}
5f22df00
NP
2131#endif
2132
2d2f5119 2133#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2134static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2135 unsigned long address)
2136{
2137 return 0;
2138}
dc6c9a35 2139
dc6c9a35
KS
2140static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2141static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2142
5f22df00 2143#else
1bb3630e 2144int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2145
dc6c9a35
KS
2146static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2147{
6d212db1
MS
2148 if (mm_pmd_folded(mm))
2149 return;
af5b0f6a 2150 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2151}
2152
2153static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2154{
6d212db1
MS
2155 if (mm_pmd_folded(mm))
2156 return;
af5b0f6a 2157 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2158}
5f22df00
NP
2159#endif
2160
c4812909 2161#ifdef CONFIG_MMU
af5b0f6a 2162static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2163{
af5b0f6a 2164 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2165}
2166
af5b0f6a 2167static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2168{
af5b0f6a 2169 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2170}
2171
2172static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2173{
af5b0f6a 2174 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2175}
2176
2177static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2178{
af5b0f6a 2179 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2180}
2181#else
c4812909 2182
af5b0f6a
KS
2183static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2184static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2185{
2186 return 0;
2187}
2188
2189static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2190static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2191#endif
2192
4cf58924
JFG
2193int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2194int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2195
f949286c
MR
2196#if defined(CONFIG_MMU)
2197
c2febafc
KS
2198static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2199 unsigned long address)
2200{
2201 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2202 NULL : p4d_offset(pgd, address);
2203}
2204
2205static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2206 unsigned long address)
1da177e4 2207{
c2febafc
KS
2208 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2209 NULL : pud_offset(p4d, address);
1da177e4 2210}
d8626138 2211
1da177e4
LT
2212static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2213{
1bb3630e
HD
2214 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2215 NULL: pmd_offset(pud, address);
1da177e4 2216}
f949286c 2217#endif /* CONFIG_MMU */
1bb3630e 2218
57c1ffce 2219#if USE_SPLIT_PTE_PTLOCKS
597d795a 2220#if ALLOC_SPLIT_PTLOCKS
b35f1819 2221void __init ptlock_cache_init(void);
539edb58
PZ
2222extern bool ptlock_alloc(struct page *page);
2223extern void ptlock_free(struct page *page);
2224
2225static inline spinlock_t *ptlock_ptr(struct page *page)
2226{
2227 return page->ptl;
2228}
597d795a 2229#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2230static inline void ptlock_cache_init(void)
2231{
2232}
2233
49076ec2
KS
2234static inline bool ptlock_alloc(struct page *page)
2235{
49076ec2
KS
2236 return true;
2237}
539edb58 2238
49076ec2
KS
2239static inline void ptlock_free(struct page *page)
2240{
49076ec2
KS
2241}
2242
2243static inline spinlock_t *ptlock_ptr(struct page *page)
2244{
539edb58 2245 return &page->ptl;
49076ec2 2246}
597d795a 2247#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2248
2249static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2250{
2251 return ptlock_ptr(pmd_page(*pmd));
2252}
2253
2254static inline bool ptlock_init(struct page *page)
2255{
2256 /*
2257 * prep_new_page() initialize page->private (and therefore page->ptl)
2258 * with 0. Make sure nobody took it in use in between.
2259 *
2260 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2261 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2262 */
309381fe 2263 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2264 if (!ptlock_alloc(page))
2265 return false;
2266 spin_lock_init(ptlock_ptr(page));
2267 return true;
2268}
2269
57c1ffce 2270#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2271/*
2272 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2273 */
49076ec2
KS
2274static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2275{
2276 return &mm->page_table_lock;
2277}
b35f1819 2278static inline void ptlock_cache_init(void) {}
49076ec2 2279static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2280static inline void ptlock_free(struct page *page) {}
57c1ffce 2281#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2282
b35f1819
KS
2283static inline void pgtable_init(void)
2284{
2285 ptlock_cache_init();
2286 pgtable_cache_init();
2287}
2288
b4ed71f5 2289static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2290{
706874e9
VD
2291 if (!ptlock_init(page))
2292 return false;
1d40a5ea 2293 __SetPageTable(page);
f0c0c115 2294 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2295 return true;
2f569afd
MS
2296}
2297
b4ed71f5 2298static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2299{
9e247bab 2300 ptlock_free(page);
1d40a5ea 2301 __ClearPageTable(page);
f0c0c115 2302 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2303}
2304
c74df32c
HD
2305#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2306({ \
4c21e2f2 2307 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2308 pte_t *__pte = pte_offset_map(pmd, address); \
2309 *(ptlp) = __ptl; \
2310 spin_lock(__ptl); \
2311 __pte; \
2312})
2313
2314#define pte_unmap_unlock(pte, ptl) do { \
2315 spin_unlock(ptl); \
2316 pte_unmap(pte); \
2317} while (0)
2318
4cf58924 2319#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2320
2321#define pte_alloc_map(mm, pmd, address) \
4cf58924 2322 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2323
c74df32c 2324#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2325 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2326 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2327
1bb3630e 2328#define pte_alloc_kernel(pmd, address) \
4cf58924 2329 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2330 NULL: pte_offset_kernel(pmd, address))
1da177e4 2331
e009bb30
KS
2332#if USE_SPLIT_PMD_PTLOCKS
2333
634391ac
MS
2334static struct page *pmd_to_page(pmd_t *pmd)
2335{
2336 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2337 return virt_to_page((void *)((unsigned long) pmd & mask));
2338}
2339
e009bb30
KS
2340static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2341{
634391ac 2342 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2343}
2344
b2b29d6d 2345static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2346{
e009bb30
KS
2347#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2348 page->pmd_huge_pte = NULL;
2349#endif
49076ec2 2350 return ptlock_init(page);
e009bb30
KS
2351}
2352
b2b29d6d 2353static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2354{
2355#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2356 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2357#endif
49076ec2 2358 ptlock_free(page);
e009bb30
KS
2359}
2360
634391ac 2361#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2362
2363#else
2364
9a86cb7b
KS
2365static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2366{
2367 return &mm->page_table_lock;
2368}
2369
b2b29d6d
MW
2370static inline bool pmd_ptlock_init(struct page *page) { return true; }
2371static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2372
c389a250 2373#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2374
e009bb30
KS
2375#endif
2376
9a86cb7b
KS
2377static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2378{
2379 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2380 spin_lock(ptl);
2381 return ptl;
2382}
2383
b2b29d6d
MW
2384static inline bool pgtable_pmd_page_ctor(struct page *page)
2385{
2386 if (!pmd_ptlock_init(page))
2387 return false;
2388 __SetPageTable(page);
f0c0c115 2389 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2390 return true;
2391}
2392
2393static inline void pgtable_pmd_page_dtor(struct page *page)
2394{
2395 pmd_ptlock_free(page);
2396 __ClearPageTable(page);
f0c0c115 2397 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2398}
2399
a00cc7d9
MW
2400/*
2401 * No scalability reason to split PUD locks yet, but follow the same pattern
2402 * as the PMD locks to make it easier if we decide to. The VM should not be
2403 * considered ready to switch to split PUD locks yet; there may be places
2404 * which need to be converted from page_table_lock.
2405 */
2406static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2407{
2408 return &mm->page_table_lock;
2409}
2410
2411static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2412{
2413 spinlock_t *ptl = pud_lockptr(mm, pud);
2414
2415 spin_lock(ptl);
2416 return ptl;
2417}
62906027 2418
a00cc7d9 2419extern void __init pagecache_init(void);
bc9331a1 2420extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2421extern void free_initmem(void);
2422
69afade7
JL
2423/*
2424 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2425 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2426 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2427 * Return pages freed into the buddy system.
2428 */
11199692 2429extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2430 int poison, const char *s);
c3d5f5f0 2431
c3d5f5f0 2432extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2433extern void mem_init_print_info(void);
69afade7 2434
4b50bcc7 2435extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2436
69afade7 2437/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2438static inline void free_reserved_page(struct page *page)
69afade7
JL
2439{
2440 ClearPageReserved(page);
2441 init_page_count(page);
2442 __free_page(page);
69afade7
JL
2443 adjust_managed_page_count(page, 1);
2444}
a0cd7a7c 2445#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2446
2447static inline void mark_page_reserved(struct page *page)
2448{
2449 SetPageReserved(page);
2450 adjust_managed_page_count(page, -1);
2451}
2452
2453/*
2454 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2455 * The freed pages will be poisoned with pattern "poison" if it's within
2456 * range [0, UCHAR_MAX].
2457 * Return pages freed into the buddy system.
69afade7
JL
2458 */
2459static inline unsigned long free_initmem_default(int poison)
2460{
2461 extern char __init_begin[], __init_end[];
2462
11199692 2463 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2464 poison, "unused kernel image (initmem)");
69afade7
JL
2465}
2466
7ee3d4e8
JL
2467static inline unsigned long get_num_physpages(void)
2468{
2469 int nid;
2470 unsigned long phys_pages = 0;
2471
2472 for_each_online_node(nid)
2473 phys_pages += node_present_pages(nid);
2474
2475 return phys_pages;
2476}
2477
c713216d 2478/*
3f08a302 2479 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2480 * zones, allocate the backing mem_map and account for memory holes in an
2481 * architecture independent manner.
c713216d
MG
2482 *
2483 * An architecture is expected to register range of page frames backed by
0ee332c1 2484 * physical memory with memblock_add[_node]() before calling
9691a071 2485 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2486 * usage, an architecture is expected to do something like
2487 *
2488 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2489 * max_highmem_pfn};
2490 * for_each_valid_physical_page_range()
952eea9b 2491 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2492 * free_area_init(max_zone_pfns);
c713216d 2493 */
9691a071 2494void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2495unsigned long node_map_pfn_alignment(void);
32996250
YL
2496unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2497 unsigned long end_pfn);
c713216d
MG
2498extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2499 unsigned long end_pfn);
2500extern void get_pfn_range_for_nid(unsigned int nid,
2501 unsigned long *start_pfn, unsigned long *end_pfn);
2502extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2503
a9ee6cf5 2504#ifndef CONFIG_NUMA
6f24fbd3 2505static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2506{
2507 return 0;
2508}
2509#else
2510/* please see mm/page_alloc.c */
2511extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2512#endif
2513
0e0b864e 2514extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2515extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2516 unsigned long, unsigned long, enum meminit_context,
2517 struct vmem_altmap *, int migratetype);
bc75d33f 2518extern void setup_per_zone_wmarks(void);
bd3400ea 2519extern void calculate_min_free_kbytes(void);
1b79acc9 2520extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2521extern void mem_init(void);
8feae131 2522extern void __init mmap_init(void);
9af744d7 2523extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2524extern long si_mem_available(void);
1da177e4
LT
2525extern void si_meminfo(struct sysinfo * val);
2526extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2527#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2528extern unsigned long arch_reserved_kernel_pages(void);
2529#endif
1da177e4 2530
a8e99259
MH
2531extern __printf(3, 4)
2532void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2533
e7c8d5c9 2534extern void setup_per_cpu_pageset(void);
e7c8d5c9 2535
75f7ad8e
PS
2536/* page_alloc.c */
2537extern int min_free_kbytes;
1c30844d 2538extern int watermark_boost_factor;
795ae7a0 2539extern int watermark_scale_factor;
51930df5 2540extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2541
8feae131 2542/* nommu.c */
33e5d769 2543extern atomic_long_t mmap_pages_allocated;
7e660872 2544extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2545
6b2dbba8 2546/* interval_tree.c */
6b2dbba8 2547void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2548 struct rb_root_cached *root);
9826a516
ML
2549void vma_interval_tree_insert_after(struct vm_area_struct *node,
2550 struct vm_area_struct *prev,
f808c13f 2551 struct rb_root_cached *root);
6b2dbba8 2552void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2553 struct rb_root_cached *root);
2554struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2555 unsigned long start, unsigned long last);
2556struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2557 unsigned long start, unsigned long last);
2558
2559#define vma_interval_tree_foreach(vma, root, start, last) \
2560 for (vma = vma_interval_tree_iter_first(root, start, last); \
2561 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2562
bf181b9f 2563void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2564 struct rb_root_cached *root);
bf181b9f 2565void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2566 struct rb_root_cached *root);
2567struct anon_vma_chain *
2568anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2569 unsigned long start, unsigned long last);
bf181b9f
ML
2570struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2571 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2572#ifdef CONFIG_DEBUG_VM_RB
2573void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2574#endif
bf181b9f
ML
2575
2576#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2577 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2578 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2579
1da177e4 2580/* mmap.c */
34b4e4aa 2581extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2582extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2583 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2584 struct vm_area_struct *expand);
2585static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2586 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2587{
2588 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2589}
1da177e4
LT
2590extern struct vm_area_struct *vma_merge(struct mm_struct *,
2591 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2592 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
9a10064f 2593 struct mempolicy *, struct vm_userfaultfd_ctx, const char *);
1da177e4 2594extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2595extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2596 unsigned long addr, int new_below);
2597extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2598 unsigned long addr, int new_below);
1da177e4
LT
2599extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2600extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2601 struct rb_node **, struct rb_node *);
a8fb5618 2602extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2603extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2604 unsigned long addr, unsigned long len, pgoff_t pgoff,
2605 bool *need_rmap_locks);
1da177e4 2606extern void exit_mmap(struct mm_struct *);
925d1c40 2607
9c599024
CG
2608static inline int check_data_rlimit(unsigned long rlim,
2609 unsigned long new,
2610 unsigned long start,
2611 unsigned long end_data,
2612 unsigned long start_data)
2613{
2614 if (rlim < RLIM_INFINITY) {
2615 if (((new - start) + (end_data - start_data)) > rlim)
2616 return -ENOSPC;
2617 }
2618
2619 return 0;
2620}
2621
7906d00c
AA
2622extern int mm_take_all_locks(struct mm_struct *mm);
2623extern void mm_drop_all_locks(struct mm_struct *mm);
2624
fe69d560 2625extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 2626extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 2627extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2628extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2629
84638335
KK
2630extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2631extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2632
2eefd878
DS
2633extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2634 const struct vm_special_mapping *sm);
3935ed6a
SS
2635extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2636 unsigned long addr, unsigned long len,
a62c34bd
AL
2637 unsigned long flags,
2638 const struct vm_special_mapping *spec);
2639/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2640extern int install_special_mapping(struct mm_struct *mm,
2641 unsigned long addr, unsigned long len,
2642 unsigned long flags, struct page **pages);
1da177e4 2643
649775be
AG
2644unsigned long randomize_stack_top(unsigned long stack_top);
2645
1da177e4
LT
2646extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2647
0165ab44 2648extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2649 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2650 struct list_head *uf);
1fcfd8db 2651extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2652 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2653 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2654extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2655 struct list_head *uf, bool downgrade);
897ab3e0
MR
2656extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2657 struct list_head *uf);
0726b01e 2658extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2659
bebeb3d6
ML
2660#ifdef CONFIG_MMU
2661extern int __mm_populate(unsigned long addr, unsigned long len,
2662 int ignore_errors);
2663static inline void mm_populate(unsigned long addr, unsigned long len)
2664{
2665 /* Ignore errors */
2666 (void) __mm_populate(addr, len, 1);
2667}
2668#else
2669static inline void mm_populate(unsigned long addr, unsigned long len) {}
2670#endif
2671
e4eb1ff6 2672/* These take the mm semaphore themselves */
5d22fc25 2673extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2674extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2675extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2676extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2677 unsigned long, unsigned long,
2678 unsigned long, unsigned long);
1da177e4 2679
db4fbfb9
ML
2680struct vm_unmapped_area_info {
2681#define VM_UNMAPPED_AREA_TOPDOWN 1
2682 unsigned long flags;
2683 unsigned long length;
2684 unsigned long low_limit;
2685 unsigned long high_limit;
2686 unsigned long align_mask;
2687 unsigned long align_offset;
2688};
2689
baceaf1c 2690extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2691
85821aab 2692/* truncate.c */
1da177e4 2693extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2694extern void truncate_inode_pages_range(struct address_space *,
2695 loff_t lstart, loff_t lend);
91b0abe3 2696extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2697
2698/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2699extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2700extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2701 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2702extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 2703
1be7107f 2704extern unsigned long stack_guard_gap;
d05f3169 2705/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2706extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2707
11192337 2708/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2709extern int expand_downwards(struct vm_area_struct *vma,
2710 unsigned long address);
8ca3eb08 2711#if VM_GROWSUP
46dea3d0 2712extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2713#else
fee7e49d 2714 #define expand_upwards(vma, address) (0)
9ab88515 2715#endif
1da177e4
LT
2716
2717/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2718extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2719extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2720 struct vm_area_struct **pprev);
2721
ce6d42f2
LH
2722/**
2723 * find_vma_intersection() - Look up the first VMA which intersects the interval
2724 * @mm: The process address space.
2725 * @start_addr: The inclusive start user address.
2726 * @end_addr: The exclusive end user address.
2727 *
2728 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2729 * start_addr < end_addr.
2730 */
2731static inline
2732struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2733 unsigned long start_addr,
2734 unsigned long end_addr)
1da177e4 2735{
ce6d42f2 2736 struct vm_area_struct *vma = find_vma(mm, start_addr);
1da177e4
LT
2737
2738 if (vma && end_addr <= vma->vm_start)
2739 vma = NULL;
2740 return vma;
2741}
2742
ce6d42f2
LH
2743/**
2744 * vma_lookup() - Find a VMA at a specific address
2745 * @mm: The process address space.
2746 * @addr: The user address.
2747 *
2748 * Return: The vm_area_struct at the given address, %NULL otherwise.
2749 */
2750static inline
2751struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2752{
2753 struct vm_area_struct *vma = find_vma(mm, addr);
2754
2755 if (vma && addr < vma->vm_start)
2756 vma = NULL;
2757
2758 return vma;
2759}
2760
1be7107f
HD
2761static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2762{
2763 unsigned long vm_start = vma->vm_start;
2764
2765 if (vma->vm_flags & VM_GROWSDOWN) {
2766 vm_start -= stack_guard_gap;
2767 if (vm_start > vma->vm_start)
2768 vm_start = 0;
2769 }
2770 return vm_start;
2771}
2772
2773static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2774{
2775 unsigned long vm_end = vma->vm_end;
2776
2777 if (vma->vm_flags & VM_GROWSUP) {
2778 vm_end += stack_guard_gap;
2779 if (vm_end < vma->vm_end)
2780 vm_end = -PAGE_SIZE;
2781 }
2782 return vm_end;
2783}
2784
1da177e4
LT
2785static inline unsigned long vma_pages(struct vm_area_struct *vma)
2786{
2787 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2788}
2789
640708a2
PE
2790/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2791static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2792 unsigned long vm_start, unsigned long vm_end)
2793{
2794 struct vm_area_struct *vma = find_vma(mm, vm_start);
2795
2796 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2797 vma = NULL;
2798
2799 return vma;
2800}
2801
017b1660
MK
2802static inline bool range_in_vma(struct vm_area_struct *vma,
2803 unsigned long start, unsigned long end)
2804{
2805 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2806}
2807
bad849b3 2808#ifdef CONFIG_MMU
804af2cf 2809pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2810void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2811#else
2812static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2813{
2814 return __pgprot(0);
2815}
64e45507
PF
2816static inline void vma_set_page_prot(struct vm_area_struct *vma)
2817{
2818 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2819}
bad849b3
DH
2820#endif
2821
295992fb
CK
2822void vma_set_file(struct vm_area_struct *vma, struct file *file);
2823
5877231f 2824#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2825unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2826 unsigned long start, unsigned long end);
2827#endif
2828
deceb6cd 2829struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2830int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2831 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
2832int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2833 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 2834int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2835int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2836 struct page **pages, unsigned long *num);
a667d745
SJ
2837int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2838 unsigned long num);
2839int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2840 unsigned long num);
ae2b01f3 2841vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2842 unsigned long pfn);
f5e6d1d5
MW
2843vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2844 unsigned long pfn, pgprot_t pgprot);
5d747637 2845vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2846 pfn_t pfn);
574c5b3d
TH
2847vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2848 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2849vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2850 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2851int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2852
1c8f4220
SJ
2853static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2854 unsigned long addr, struct page *page)
2855{
2856 int err = vm_insert_page(vma, addr, page);
2857
2858 if (err == -ENOMEM)
2859 return VM_FAULT_OOM;
2860 if (err < 0 && err != -EBUSY)
2861 return VM_FAULT_SIGBUS;
2862
2863 return VM_FAULT_NOPAGE;
2864}
2865
f8f6ae5d
JG
2866#ifndef io_remap_pfn_range
2867static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2868 unsigned long addr, unsigned long pfn,
2869 unsigned long size, pgprot_t prot)
2870{
2871 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2872}
2873#endif
2874
d97baf94
SJ
2875static inline vm_fault_t vmf_error(int err)
2876{
2877 if (err == -ENOMEM)
2878 return VM_FAULT_OOM;
2879 return VM_FAULT_SIGBUS;
2880}
2881
df06b37f
KB
2882struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2883 unsigned int foll_flags);
240aadee 2884
deceb6cd
HD
2885#define FOLL_WRITE 0x01 /* check pte is writable */
2886#define FOLL_TOUCH 0x02 /* mark page accessed */
2887#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2888#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2889#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2890#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2891 * and return without waiting upon it */
55b8fe70 2892#define FOLL_NOFAULT 0x80 /* do not fault in pages */
69ebb83e 2893#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2894#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2895#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2896#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1e987790 2897#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2898#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2899#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2900#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2901#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2902#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2903#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2904
2905/*
eddb1c22
JH
2906 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2907 * other. Here is what they mean, and how to use them:
932f4a63
IW
2908 *
2909 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2910 * period _often_ under userspace control. This is in contrast to
2911 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2912 *
2913 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2914 * lifetime enforced by the filesystem and we need guarantees that longterm
2915 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2916 * the filesystem. Ideas for this coordination include revoking the longterm
2917 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2918 * added after the problem with filesystems was found FS DAX VMAs are
2919 * specifically failed. Filesystem pages are still subject to bugs and use of
2920 * FOLL_LONGTERM should be avoided on those pages.
2921 *
2922 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2923 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2924 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2925 * is due to an incompatibility with the FS DAX check and
eddb1c22 2926 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2927 *
eddb1c22
JH
2928 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2929 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2930 * FOLL_LONGTERM is specified.
eddb1c22
JH
2931 *
2932 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2933 * but an additional pin counting system) will be invoked. This is intended for
2934 * anything that gets a page reference and then touches page data (for example,
2935 * Direct IO). This lets the filesystem know that some non-file-system entity is
2936 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2937 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2938 * a call to unpin_user_page().
eddb1c22
JH
2939 *
2940 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2941 * and separate refcounting mechanisms, however, and that means that each has
2942 * its own acquire and release mechanisms:
2943 *
2944 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2945 *
f1f6a7dd 2946 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2947 *
2948 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2949 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2950 * calls applied to them, and that's perfectly OK. This is a constraint on the
2951 * callers, not on the pages.)
2952 *
2953 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2954 * directly by the caller. That's in order to help avoid mismatches when
2955 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2956 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2957 *
72ef5e52 2958 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2959 */
1da177e4 2960
2b740303 2961static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2962{
2963 if (vm_fault & VM_FAULT_OOM)
2964 return -ENOMEM;
2965 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2966 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2967 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2968 return -EFAULT;
2969 return 0;
2970}
2971
8b1e0f81 2972typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2973extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2974 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2975extern int apply_to_existing_page_range(struct mm_struct *mm,
2976 unsigned long address, unsigned long size,
2977 pte_fn_t fn, void *data);
aee16b3c 2978
04013513 2979extern void init_mem_debugging_and_hardening(void);
8823b1db 2980#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
2981extern void __kernel_poison_pages(struct page *page, int numpages);
2982extern void __kernel_unpoison_pages(struct page *page, int numpages);
2983extern bool _page_poisoning_enabled_early;
2984DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2985static inline bool page_poisoning_enabled(void)
2986{
2987 return _page_poisoning_enabled_early;
2988}
2989/*
2990 * For use in fast paths after init_mem_debugging() has run, or when a
2991 * false negative result is not harmful when called too early.
2992 */
2993static inline bool page_poisoning_enabled_static(void)
2994{
2995 return static_branch_unlikely(&_page_poisoning_enabled);
2996}
2997static inline void kernel_poison_pages(struct page *page, int numpages)
2998{
2999 if (page_poisoning_enabled_static())
3000 __kernel_poison_pages(page, numpages);
3001}
3002static inline void kernel_unpoison_pages(struct page *page, int numpages)
3003{
3004 if (page_poisoning_enabled_static())
3005 __kernel_unpoison_pages(page, numpages);
3006}
8823b1db
LA
3007#else
3008static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3009static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3010static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3011static inline void kernel_poison_pages(struct page *page, int numpages) { }
3012static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3013#endif
3014
51cba1eb 3015DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3016static inline bool want_init_on_alloc(gfp_t flags)
3017{
51cba1eb
KC
3018 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3019 &init_on_alloc))
6471384a
AP
3020 return true;
3021 return flags & __GFP_ZERO;
3022}
3023
51cba1eb 3024DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3025static inline bool want_init_on_free(void)
3026{
51cba1eb
KC
3027 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3028 &init_on_free);
6471384a
AP
3029}
3030
8e57f8ac
VB
3031extern bool _debug_pagealloc_enabled_early;
3032DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3033
3034static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3035{
3036 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3037 _debug_pagealloc_enabled_early;
3038}
3039
3040/*
3041 * For use in fast paths after init_debug_pagealloc() has run, or when a
3042 * false negative result is not harmful when called too early.
3043 */
3044static inline bool debug_pagealloc_enabled_static(void)
031bc574 3045{
96a2b03f
VB
3046 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3047 return false;
3048
3049 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3050}
3051
5d6ad668 3052#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3053/*
5d6ad668
MR
3054 * To support DEBUG_PAGEALLOC architecture must ensure that
3055 * __kernel_map_pages() never fails
c87cbc1f 3056 */
d6332692
RE
3057extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3058
77bc7fd6
MR
3059static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3060{
3061 if (debug_pagealloc_enabled_static())
3062 __kernel_map_pages(page, numpages, 1);
3063}
3064
3065static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3066{
3067 if (debug_pagealloc_enabled_static())
3068 __kernel_map_pages(page, numpages, 0);
3069}
5d6ad668 3070#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3071static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3072static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3073#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3074
a6c19dfe 3075#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3076extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3077extern int in_gate_area_no_mm(unsigned long addr);
3078extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3079#else
a6c19dfe
AL
3080static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3081{
3082 return NULL;
3083}
3084static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3085static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3086{
3087 return 0;
3088}
1da177e4
LT
3089#endif /* __HAVE_ARCH_GATE_AREA */
3090
44a70ade
MH
3091extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3092
146732ce
JT
3093#ifdef CONFIG_SYSCTL
3094extern int sysctl_drop_caches;
32927393
CH
3095int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3096 loff_t *);
146732ce
JT
3097#endif
3098
cb731d6c 3099void drop_slab(void);
9d0243bc 3100
7a9166e3
LY
3101#ifndef CONFIG_MMU
3102#define randomize_va_space 0
3103#else
a62eaf15 3104extern int randomize_va_space;
7a9166e3 3105#endif
a62eaf15 3106
045e72ac 3107const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3108#ifdef CONFIG_MMU
03252919 3109void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3110#else
3111static inline void print_vma_addr(char *prefix, unsigned long rip)
3112{
3113}
3114#endif
e6e5494c 3115
3bc2b6a7
MS
3116int vmemmap_remap_free(unsigned long start, unsigned long end,
3117 unsigned long reuse);
ad2fa371
MS
3118int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3119 unsigned long reuse, gfp_t gfp_mask);
f41f2ed4 3120
35fd1eb1 3121void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
3122struct page * __populate_section_memmap(unsigned long pfn,
3123 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3124pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3125p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3126pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3127pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
3128pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3129 struct vmem_altmap *altmap);
8f6aac41 3130void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3131struct vmem_altmap;
56993b4e
AK
3132void *vmemmap_alloc_block_buf(unsigned long size, int node,
3133 struct vmem_altmap *altmap);
8f6aac41 3134void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3135int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3136 int node, struct vmem_altmap *altmap);
7b73d978
CH
3137int vmemmap_populate(unsigned long start, unsigned long end, int node,
3138 struct vmem_altmap *altmap);
c2b91e2e 3139void vmemmap_populate_print_last(void);
0197518c 3140#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3141void vmemmap_free(unsigned long start, unsigned long end,
3142 struct vmem_altmap *altmap);
0197518c 3143#endif
46723bfa 3144void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3145 unsigned long nr_pages);
6a46079c 3146
82ba011b
AK
3147enum mf_flags {
3148 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3149 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3150 MF_MUST_KILL = 1 << 2,
cf870c70 3151 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3152 MF_UNPOISON = 1 << 4,
82ba011b 3153};
83b57531
EB
3154extern int memory_failure(unsigned long pfn, int flags);
3155extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3156extern void memory_failure_queue_kick(int cpu);
847ce401 3157extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3158extern int sysctl_memory_failure_early_kill;
3159extern int sysctl_memory_failure_recovery;
d0505e9f 3160extern void shake_page(struct page *p);
5844a486 3161extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3162extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3163
03b122da
TL
3164#ifndef arch_memory_failure
3165static inline int arch_memory_failure(unsigned long pfn, int flags)
3166{
3167 return -ENXIO;
3168}
3169#endif
3170
3171#ifndef arch_is_platform_page
3172static inline bool arch_is_platform_page(u64 paddr)
3173{
3174 return false;
3175}
3176#endif
cc637b17
XX
3177
3178/*
3179 * Error handlers for various types of pages.
3180 */
cc3e2af4 3181enum mf_result {
cc637b17
XX
3182 MF_IGNORED, /* Error: cannot be handled */
3183 MF_FAILED, /* Error: handling failed */
3184 MF_DELAYED, /* Will be handled later */
3185 MF_RECOVERED, /* Successfully recovered */
3186};
3187
3188enum mf_action_page_type {
3189 MF_MSG_KERNEL,
3190 MF_MSG_KERNEL_HIGH_ORDER,
3191 MF_MSG_SLAB,
3192 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3193 MF_MSG_HUGE,
3194 MF_MSG_FREE_HUGE,
31286a84 3195 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3196 MF_MSG_UNMAP_FAILED,
3197 MF_MSG_DIRTY_SWAPCACHE,
3198 MF_MSG_CLEAN_SWAPCACHE,
3199 MF_MSG_DIRTY_MLOCKED_LRU,
3200 MF_MSG_CLEAN_MLOCKED_LRU,
3201 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3202 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3203 MF_MSG_DIRTY_LRU,
3204 MF_MSG_CLEAN_LRU,
3205 MF_MSG_TRUNCATED_LRU,
3206 MF_MSG_BUDDY,
6100e34b 3207 MF_MSG_DAX,
5d1fd5dc 3208 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3209 MF_MSG_UNKNOWN,
3210};
3211
47ad8475
AA
3212#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3213extern void clear_huge_page(struct page *page,
c79b57e4 3214 unsigned long addr_hint,
47ad8475
AA
3215 unsigned int pages_per_huge_page);
3216extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3217 unsigned long addr_hint,
3218 struct vm_area_struct *vma,
47ad8475 3219 unsigned int pages_per_huge_page);
fa4d75c1
MK
3220extern long copy_huge_page_from_user(struct page *dst_page,
3221 const void __user *usr_src,
810a56b9
MK
3222 unsigned int pages_per_huge_page,
3223 bool allow_pagefault);
2484ca9b
THV
3224
3225/**
3226 * vma_is_special_huge - Are transhuge page-table entries considered special?
3227 * @vma: Pointer to the struct vm_area_struct to consider
3228 *
3229 * Whether transhuge page-table entries are considered "special" following
3230 * the definition in vm_normal_page().
3231 *
3232 * Return: true if transhuge page-table entries should be considered special,
3233 * false otherwise.
3234 */
3235static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3236{
3237 return vma_is_dax(vma) || (vma->vm_file &&
3238 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3239}
3240
47ad8475
AA
3241#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3242
c0a32fc5
SG
3243#ifdef CONFIG_DEBUG_PAGEALLOC
3244extern unsigned int _debug_guardpage_minorder;
96a2b03f 3245DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3246
3247static inline unsigned int debug_guardpage_minorder(void)
3248{
3249 return _debug_guardpage_minorder;
3250}
3251
e30825f1
JK
3252static inline bool debug_guardpage_enabled(void)
3253{
96a2b03f 3254 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3255}
3256
c0a32fc5
SG
3257static inline bool page_is_guard(struct page *page)
3258{
e30825f1
JK
3259 if (!debug_guardpage_enabled())
3260 return false;
3261
3972f6bb 3262 return PageGuard(page);
c0a32fc5
SG
3263}
3264#else
3265static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3266static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3267static inline bool page_is_guard(struct page *page) { return false; }
3268#endif /* CONFIG_DEBUG_PAGEALLOC */
3269
f9872caf
CS
3270#if MAX_NUMNODES > 1
3271void __init setup_nr_node_ids(void);
3272#else
3273static inline void setup_nr_node_ids(void) {}
3274#endif
3275
010c164a
SL
3276extern int memcmp_pages(struct page *page1, struct page *page2);
3277
3278static inline int pages_identical(struct page *page1, struct page *page2)
3279{
3280 return !memcmp_pages(page1, page2);
3281}
3282
c5acad84
TH
3283#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3284unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3285 pgoff_t first_index, pgoff_t nr,
3286 pgoff_t bitmap_pgoff,
3287 unsigned long *bitmap,
3288 pgoff_t *start,
3289 pgoff_t *end);
3290
3291unsigned long wp_shared_mapping_range(struct address_space *mapping,
3292 pgoff_t first_index, pgoff_t nr);
3293#endif
3294
2374c09b
CH
3295extern int sysctl_nr_trim_pages;
3296
5bb1bb35 3297#ifdef CONFIG_PRINTK
8e7f37f2 3298void mem_dump_obj(void *object);
5bb1bb35
PM
3299#else
3300static inline void mem_dump_obj(void *object) {}
3301#endif
8e7f37f2 3302
22247efd
PX
3303/**
3304 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3305 * @seals: the seals to check
3306 * @vma: the vma to operate on
3307 *
3308 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3309 * the vma flags. Return 0 if check pass, or <0 for errors.
3310 */
3311static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3312{
3313 if (seals & F_SEAL_FUTURE_WRITE) {
3314 /*
3315 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3316 * "future write" seal active.
3317 */
3318 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3319 return -EPERM;
3320
3321 /*
3322 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3323 * MAP_SHARED and read-only, take care to not allow mprotect to
3324 * revert protections on such mappings. Do this only for shared
3325 * mappings. For private mappings, don't need to mask
3326 * VM_MAYWRITE as we still want them to be COW-writable.
3327 */
3328 if (vma->vm_flags & VM_SHARED)
3329 vma->vm_flags &= ~(VM_MAYWRITE);
3330 }
3331
3332 return 0;
3333}
3334
9a10064f
CC
3335#ifdef CONFIG_ANON_VMA_NAME
3336int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3337 unsigned long len_in, const char *name);
3338#else
3339static inline int
3340madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3341 unsigned long len_in, const char *name) {
3342 return 0;
3343}
3344#endif
3345
1da177e4 3346#endif /* _LINUX_MM_H */