fsdax: introduce dax_lock_mapping_entry()
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
1da177e4
LT
32
33struct mempolicy;
34struct anon_vma;
bf181b9f 35struct anon_vma_chain;
e8edc6e0 36struct user_struct;
bce617ed 37struct pt_regs;
1da177e4 38
5ef64cc8
LT
39extern int sysctl_page_lock_unfairness;
40
597b7305
MH
41void init_mm_internals(void);
42
a9ee6cf5 43#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 44extern unsigned long max_mapnr;
fccc9987
JL
45
46static inline void set_max_mapnr(unsigned long limit)
47{
48 max_mapnr = limit;
49}
50#else
51static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
52#endif
53
ca79b0c2
AK
54extern atomic_long_t _totalram_pages;
55static inline unsigned long totalram_pages(void)
56{
57 return (unsigned long)atomic_long_read(&_totalram_pages);
58}
59
60static inline void totalram_pages_inc(void)
61{
62 atomic_long_inc(&_totalram_pages);
63}
64
65static inline void totalram_pages_dec(void)
66{
67 atomic_long_dec(&_totalram_pages);
68}
69
70static inline void totalram_pages_add(long count)
71{
72 atomic_long_add(count, &_totalram_pages);
73}
74
1da177e4 75extern void * high_memory;
1da177e4
LT
76extern int page_cluster;
77
78#ifdef CONFIG_SYSCTL
79extern int sysctl_legacy_va_layout;
80#else
81#define sysctl_legacy_va_layout 0
82#endif
83
d07e2259
DC
84#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
85extern const int mmap_rnd_bits_min;
86extern const int mmap_rnd_bits_max;
87extern int mmap_rnd_bits __read_mostly;
88#endif
89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
90extern const int mmap_rnd_compat_bits_min;
91extern const int mmap_rnd_compat_bits_max;
92extern int mmap_rnd_compat_bits __read_mostly;
93#endif
94
1da177e4 95#include <asm/page.h>
1da177e4 96#include <asm/processor.h>
1da177e4 97
d9344522
AK
98/*
99 * Architectures that support memory tagging (assigning tags to memory regions,
100 * embedding these tags into addresses that point to these memory regions, and
101 * checking that the memory and the pointer tags match on memory accesses)
102 * redefine this macro to strip tags from pointers.
f0953a1b 103 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
104 */
105#ifndef untagged_addr
106#define untagged_addr(addr) (addr)
107#endif
108
79442ed1
TC
109#ifndef __pa_symbol
110#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
111#endif
112
1dff8083
AB
113#ifndef page_to_virt
114#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
115#endif
116
568c5fe5
LA
117#ifndef lm_alias
118#define lm_alias(x) __va(__pa_symbol(x))
119#endif
120
593befa6
DD
121/*
122 * To prevent common memory management code establishing
123 * a zero page mapping on a read fault.
124 * This macro should be defined within <asm/pgtable.h>.
125 * s390 does this to prevent multiplexing of hardware bits
126 * related to the physical page in case of virtualization.
127 */
128#ifndef mm_forbids_zeropage
129#define mm_forbids_zeropage(X) (0)
130#endif
131
a4a3ede2
PT
132/*
133 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
134 * If an architecture decides to implement their own version of
135 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
136 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 137 */
5470dea4
AD
138#if BITS_PER_LONG == 64
139/* This function must be updated when the size of struct page grows above 80
140 * or reduces below 56. The idea that compiler optimizes out switch()
141 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 142 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
143 * this can result in several of the writes here being dropped.
144 */
145#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
146static inline void __mm_zero_struct_page(struct page *page)
147{
148 unsigned long *_pp = (void *)page;
149
150 /* Check that struct page is either 56, 64, 72, or 80 bytes */
151 BUILD_BUG_ON(sizeof(struct page) & 7);
152 BUILD_BUG_ON(sizeof(struct page) < 56);
153 BUILD_BUG_ON(sizeof(struct page) > 80);
154
155 switch (sizeof(struct page)) {
156 case 80:
df561f66
GS
157 _pp[9] = 0;
158 fallthrough;
5470dea4 159 case 72:
df561f66
GS
160 _pp[8] = 0;
161 fallthrough;
5470dea4 162 case 64:
df561f66
GS
163 _pp[7] = 0;
164 fallthrough;
5470dea4
AD
165 case 56:
166 _pp[6] = 0;
167 _pp[5] = 0;
168 _pp[4] = 0;
169 _pp[3] = 0;
170 _pp[2] = 0;
171 _pp[1] = 0;
172 _pp[0] = 0;
173 }
174}
175#else
a4a3ede2
PT
176#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
177#endif
178
ea606cf5
AR
179/*
180 * Default maximum number of active map areas, this limits the number of vmas
181 * per mm struct. Users can overwrite this number by sysctl but there is a
182 * problem.
183 *
184 * When a program's coredump is generated as ELF format, a section is created
185 * per a vma. In ELF, the number of sections is represented in unsigned short.
186 * This means the number of sections should be smaller than 65535 at coredump.
187 * Because the kernel adds some informative sections to a image of program at
188 * generating coredump, we need some margin. The number of extra sections is
189 * 1-3 now and depends on arch. We use "5" as safe margin, here.
190 *
191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192 * not a hard limit any more. Although some userspace tools can be surprised by
193 * that.
194 */
195#define MAPCOUNT_ELF_CORE_MARGIN (5)
196#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
197
198extern int sysctl_max_map_count;
199
c9b1d098 200extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 201extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 202
49f0ce5f
JM
203extern int sysctl_overcommit_memory;
204extern int sysctl_overcommit_ratio;
205extern unsigned long sysctl_overcommit_kbytes;
206
32927393
CH
207int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
209int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
56f3547b
FT
211int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
212 loff_t *);
49f0ce5f 213
1cfcee72 214#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 215#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 216#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
217#else
218#define nth_page(page,n) ((page) + (n))
659508f9 219#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 220#endif
1da177e4 221
27ac792c
AR
222/* to align the pointer to the (next) page boundary */
223#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224
0fa73b86 225/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 226#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 227
f86196ea 228#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
229static inline struct folio *lru_to_folio(struct list_head *head)
230{
231 return list_entry((head)->prev, struct folio, lru);
232}
f86196ea 233
5748fbc5
KW
234void setup_initial_init_mm(void *start_code, void *end_code,
235 void *end_data, void *brk);
236
1da177e4
LT
237/*
238 * Linux kernel virtual memory manager primitives.
239 * The idea being to have a "virtual" mm in the same way
240 * we have a virtual fs - giving a cleaner interface to the
241 * mm details, and allowing different kinds of memory mappings
242 * (from shared memory to executable loading to arbitrary
243 * mmap() functions).
244 */
245
490fc053 246struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
247struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
248void vm_area_free(struct vm_area_struct *);
c43692e8 249
1da177e4 250#ifndef CONFIG_MMU
8feae131
DH
251extern struct rb_root nommu_region_tree;
252extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
253
254extern unsigned int kobjsize(const void *objp);
255#endif
256
257/*
605d9288 258 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 259 * When changing, update also include/trace/events/mmflags.h
1da177e4 260 */
cc2383ec
KK
261#define VM_NONE 0x00000000
262
1da177e4
LT
263#define VM_READ 0x00000001 /* currently active flags */
264#define VM_WRITE 0x00000002
265#define VM_EXEC 0x00000004
266#define VM_SHARED 0x00000008
267
7e2cff42 268/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
269#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
270#define VM_MAYWRITE 0x00000020
271#define VM_MAYEXEC 0x00000040
272#define VM_MAYSHARE 0x00000080
273
274#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 275#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 276#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 277#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 278
1da177e4
LT
279#define VM_LOCKED 0x00002000
280#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
281
282 /* Used by sys_madvise() */
283#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
284#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
285
286#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
287#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 288#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 289#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 290#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 291#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 292#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 293#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 294#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 295#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 296
d9104d1c
CG
297#ifdef CONFIG_MEM_SOFT_DIRTY
298# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
299#else
300# define VM_SOFTDIRTY 0
301#endif
302
b379d790 303#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
304#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
305#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 306#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 307
63c17fb8
DH
308#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
309#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
310#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
311#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
312#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 313#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
314#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
315#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
316#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
317#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 318#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
319#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
320
5212213a 321#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
322# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
323# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 324# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
325# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
326# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
327#ifdef CONFIG_PPC
328# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
329#else
330# define VM_PKEY_BIT4 0
8f62c883 331#endif
5212213a
RP
332#endif /* CONFIG_ARCH_HAS_PKEYS */
333
334#if defined(CONFIG_X86)
335# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
336#elif defined(CONFIG_PPC)
337# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
338#elif defined(CONFIG_PARISC)
339# define VM_GROWSUP VM_ARCH_1
340#elif defined(CONFIG_IA64)
341# define VM_GROWSUP VM_ARCH_1
74a04967
KA
342#elif defined(CONFIG_SPARC64)
343# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
344# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
345#elif defined(CONFIG_ARM64)
346# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
347# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
348#elif !defined(CONFIG_MMU)
349# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
350#endif
351
9f341931
CM
352#if defined(CONFIG_ARM64_MTE)
353# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
354# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
355#else
356# define VM_MTE VM_NONE
357# define VM_MTE_ALLOWED VM_NONE
358#endif
359
cc2383ec
KK
360#ifndef VM_GROWSUP
361# define VM_GROWSUP VM_NONE
362#endif
363
7677f7fd
AR
364#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
365# define VM_UFFD_MINOR_BIT 37
366# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
367#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
368# define VM_UFFD_MINOR VM_NONE
369#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
370
a8bef8ff
MG
371/* Bits set in the VMA until the stack is in its final location */
372#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
373
c62da0c3
AK
374#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
375
376/* Common data flag combinations */
377#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
378 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
379#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
380 VM_MAYWRITE | VM_MAYEXEC)
381#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
382 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
383
384#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
385#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
386#endif
387
1da177e4
LT
388#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
389#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
390#endif
391
392#ifdef CONFIG_STACK_GROWSUP
30bdbb78 393#define VM_STACK VM_GROWSUP
1da177e4 394#else
30bdbb78 395#define VM_STACK VM_GROWSDOWN
1da177e4
LT
396#endif
397
30bdbb78
KK
398#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
399
6cb4d9a2
AK
400/* VMA basic access permission flags */
401#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
402
403
b291f000 404/*
78f11a25 405 * Special vmas that are non-mergable, non-mlock()able.
b291f000 406 */
9050d7eb 407#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 408
b4443772
AK
409/* This mask prevents VMA from being scanned with khugepaged */
410#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
411
a0715cc2
AT
412/* This mask defines which mm->def_flags a process can inherit its parent */
413#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
414
de60f5f1
EM
415/* This mask is used to clear all the VMA flags used by mlock */
416#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
417
2c2d57b5
KA
418/* Arch-specific flags to clear when updating VM flags on protection change */
419#ifndef VM_ARCH_CLEAR
420# define VM_ARCH_CLEAR VM_NONE
421#endif
422#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
423
1da177e4
LT
424/*
425 * mapping from the currently active vm_flags protection bits (the
426 * low four bits) to a page protection mask..
427 */
428extern pgprot_t protection_map[16];
429
dde16072
PX
430/*
431 * The default fault flags that should be used by most of the
432 * arch-specific page fault handlers.
433 */
434#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
435 FAULT_FLAG_KILLABLE | \
436 FAULT_FLAG_INTERRUPTIBLE)
dde16072 437
4064b982
PX
438/**
439 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 440 * @flags: Fault flags.
4064b982
PX
441 *
442 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 443 * the mmap_lock for too long a time when waiting for another condition
4064b982 444 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
445 * mmap_lock in the first round to avoid potential starvation of other
446 * processes that would also want the mmap_lock.
4064b982
PX
447 *
448 * Return: true if the page fault allows retry and this is the first
449 * attempt of the fault handling; false otherwise.
450 */
da2f5eb3 451static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
452{
453 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
454 (!(flags & FAULT_FLAG_TRIED));
455}
456
282a8e03
RZ
457#define FAULT_FLAG_TRACE \
458 { FAULT_FLAG_WRITE, "WRITE" }, \
459 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
460 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
461 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
462 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
463 { FAULT_FLAG_TRIED, "TRIED" }, \
464 { FAULT_FLAG_USER, "USER" }, \
465 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
466 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
467 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 468
54cb8821 469/*
11192337 470 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
471 * ->fault function. The vma's ->fault is responsible for returning a bitmask
472 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 473 *
c20cd45e
MH
474 * MM layer fills up gfp_mask for page allocations but fault handler might
475 * alter it if its implementation requires a different allocation context.
476 *
9b4bdd2f 477 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 478 */
d0217ac0 479struct vm_fault {
5857c920 480 const struct {
742d3372
WD
481 struct vm_area_struct *vma; /* Target VMA */
482 gfp_t gfp_mask; /* gfp mask to be used for allocations */
483 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
484 unsigned long address; /* Faulting virtual address - masked */
485 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 486 };
da2f5eb3 487 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 488 * XXX: should really be 'const' */
82b0f8c3 489 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 490 * the 'address' */
a2d58167
DJ
491 pud_t *pud; /* Pointer to pud entry matching
492 * the 'address'
493 */
5db4f15c
YS
494 union {
495 pte_t orig_pte; /* Value of PTE at the time of fault */
496 pmd_t orig_pmd; /* Value of PMD at the time of fault,
497 * used by PMD fault only.
498 */
499 };
d0217ac0 500
3917048d 501 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 502 struct page *page; /* ->fault handlers should return a
83c54070 503 * page here, unless VM_FAULT_NOPAGE
d0217ac0 504 * is set (which is also implied by
83c54070 505 * VM_FAULT_ERROR).
d0217ac0 506 */
82b0f8c3 507 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
508 pte_t *pte; /* Pointer to pte entry matching
509 * the 'address'. NULL if the page
510 * table hasn't been allocated.
511 */
512 spinlock_t *ptl; /* Page table lock.
513 * Protects pte page table if 'pte'
514 * is not NULL, otherwise pmd.
515 */
7267ec00 516 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
517 * vm_ops->map_pages() sets up a page
518 * table from atomic context.
7267ec00
KS
519 * do_fault_around() pre-allocates
520 * page table to avoid allocation from
521 * atomic context.
522 */
54cb8821 523};
1da177e4 524
c791ace1
DJ
525/* page entry size for vm->huge_fault() */
526enum page_entry_size {
527 PE_SIZE_PTE = 0,
528 PE_SIZE_PMD,
529 PE_SIZE_PUD,
530};
531
1da177e4
LT
532/*
533 * These are the virtual MM functions - opening of an area, closing and
534 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 535 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
536 */
537struct vm_operations_struct {
538 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
539 /**
540 * @close: Called when the VMA is being removed from the MM.
541 * Context: User context. May sleep. Caller holds mmap_lock.
542 */
1da177e4 543 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
544 /* Called any time before splitting to check if it's allowed */
545 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 546 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
547 /*
548 * Called by mprotect() to make driver-specific permission
549 * checks before mprotect() is finalised. The VMA must not
550 * be modified. Returns 0 if eprotect() can proceed.
551 */
552 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
553 unsigned long end, unsigned long newflags);
1c8f4220
SJ
554 vm_fault_t (*fault)(struct vm_fault *vmf);
555 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
556 enum page_entry_size pe_size);
f9ce0be7 557 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 558 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 559 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
560
561 /* notification that a previously read-only page is about to become
562 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 563 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 564
dd906184 565 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 566 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 567
28b2ee20 568 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
569 * for use by special VMAs. See also generic_access_phys() for a generic
570 * implementation useful for any iomem mapping.
28b2ee20
RR
571 */
572 int (*access)(struct vm_area_struct *vma, unsigned long addr,
573 void *buf, int len, int write);
78d683e8
AL
574
575 /* Called by the /proc/PID/maps code to ask the vma whether it
576 * has a special name. Returning non-NULL will also cause this
577 * vma to be dumped unconditionally. */
578 const char *(*name)(struct vm_area_struct *vma);
579
1da177e4 580#ifdef CONFIG_NUMA
a6020ed7
LS
581 /*
582 * set_policy() op must add a reference to any non-NULL @new mempolicy
583 * to hold the policy upon return. Caller should pass NULL @new to
584 * remove a policy and fall back to surrounding context--i.e. do not
585 * install a MPOL_DEFAULT policy, nor the task or system default
586 * mempolicy.
587 */
1da177e4 588 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
589
590 /*
591 * get_policy() op must add reference [mpol_get()] to any policy at
592 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
593 * in mm/mempolicy.c will do this automatically.
594 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 595 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
596 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
597 * must return NULL--i.e., do not "fallback" to task or system default
598 * policy.
599 */
1da177e4
LT
600 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
601 unsigned long addr);
602#endif
667a0a06
DV
603 /*
604 * Called by vm_normal_page() for special PTEs to find the
605 * page for @addr. This is useful if the default behavior
606 * (using pte_page()) would not find the correct page.
607 */
608 struct page *(*find_special_page)(struct vm_area_struct *vma,
609 unsigned long addr);
1da177e4
LT
610};
611
027232da
KS
612static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
613{
bfd40eaf
KS
614 static const struct vm_operations_struct dummy_vm_ops = {};
615
a670468f 616 memset(vma, 0, sizeof(*vma));
027232da 617 vma->vm_mm = mm;
bfd40eaf 618 vma->vm_ops = &dummy_vm_ops;
027232da
KS
619 INIT_LIST_HEAD(&vma->anon_vma_chain);
620}
621
bfd40eaf
KS
622static inline void vma_set_anonymous(struct vm_area_struct *vma)
623{
624 vma->vm_ops = NULL;
625}
626
43675e6f
YS
627static inline bool vma_is_anonymous(struct vm_area_struct *vma)
628{
629 return !vma->vm_ops;
630}
631
222100ee
AK
632static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
633{
634 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
635
636 if (!maybe_stack)
637 return false;
638
639 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
640 VM_STACK_INCOMPLETE_SETUP)
641 return true;
642
643 return false;
644}
645
7969f226
AK
646static inline bool vma_is_foreign(struct vm_area_struct *vma)
647{
648 if (!current->mm)
649 return true;
650
651 if (current->mm != vma->vm_mm)
652 return true;
653
654 return false;
655}
3122e80e
AK
656
657static inline bool vma_is_accessible(struct vm_area_struct *vma)
658{
6cb4d9a2 659 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
660}
661
43675e6f
YS
662#ifdef CONFIG_SHMEM
663/*
664 * The vma_is_shmem is not inline because it is used only by slow
665 * paths in userfault.
666 */
667bool vma_is_shmem(struct vm_area_struct *vma);
668#else
669static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
670#endif
671
672int vma_is_stack_for_current(struct vm_area_struct *vma);
673
8b11ec1b
LT
674/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
675#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
676
1da177e4
LT
677struct mmu_gather;
678struct inode;
679
5bf34d7c
MWO
680static inline unsigned int compound_order(struct page *page)
681{
682 if (!PageHead(page))
683 return 0;
684 return page[1].compound_order;
685}
686
687/**
688 * folio_order - The allocation order of a folio.
689 * @folio: The folio.
690 *
691 * A folio is composed of 2^order pages. See get_order() for the definition
692 * of order.
693 *
694 * Return: The order of the folio.
695 */
696static inline unsigned int folio_order(struct folio *folio)
697{
698 return compound_order(&folio->page);
699}
700
71e3aac0 701#include <linux/huge_mm.h>
1da177e4
LT
702
703/*
704 * Methods to modify the page usage count.
705 *
706 * What counts for a page usage:
707 * - cache mapping (page->mapping)
708 * - private data (page->private)
709 * - page mapped in a task's page tables, each mapping
710 * is counted separately
711 *
712 * Also, many kernel routines increase the page count before a critical
713 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
714 */
715
716/*
da6052f7 717 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 718 */
7c8ee9a8
NP
719static inline int put_page_testzero(struct page *page)
720{
fe896d18
JK
721 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
722 return page_ref_dec_and_test(page);
7c8ee9a8 723}
1da177e4 724
b620f633
MWO
725static inline int folio_put_testzero(struct folio *folio)
726{
727 return put_page_testzero(&folio->page);
728}
729
1da177e4 730/*
7c8ee9a8
NP
731 * Try to grab a ref unless the page has a refcount of zero, return false if
732 * that is the case.
8e0861fa
AK
733 * This can be called when MMU is off so it must not access
734 * any of the virtual mappings.
1da177e4 735 */
c2530328 736static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 737{
fe896d18 738 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 739}
1da177e4 740
53df8fdc 741extern int page_is_ram(unsigned long pfn);
124fe20d
DW
742
743enum {
744 REGION_INTERSECTS,
745 REGION_DISJOINT,
746 REGION_MIXED,
747};
748
1c29f25b
TK
749int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
750 unsigned long desc);
53df8fdc 751
48667e7a 752/* Support for virtually mapped pages */
b3bdda02
CL
753struct page *vmalloc_to_page(const void *addr);
754unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 755
0738c4bb
PM
756/*
757 * Determine if an address is within the vmalloc range
758 *
759 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
760 * is no special casing required.
761 */
9bd3bb67
AK
762
763#ifndef is_ioremap_addr
764#define is_ioremap_addr(x) is_vmalloc_addr(x)
765#endif
766
81ac3ad9 767#ifdef CONFIG_MMU
186525bd 768extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
769extern int is_vmalloc_or_module_addr(const void *x);
770#else
186525bd
IM
771static inline bool is_vmalloc_addr(const void *x)
772{
773 return false;
774}
934831d0 775static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
776{
777 return 0;
778}
779#endif
9e2779fa 780
74e8ee47
MWO
781/*
782 * How many times the entire folio is mapped as a single unit (eg by a
783 * PMD or PUD entry). This is probably not what you want, except for
784 * debugging purposes; look at folio_mapcount() or page_mapcount()
785 * instead.
786 */
787static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 788{
74e8ee47
MWO
789 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
790 return atomic_read(folio_mapcount_ptr(folio)) + 1;
6dc5ea16
JH
791}
792
6988f31d
KK
793/*
794 * Mapcount of compound page as a whole, does not include mapped sub-pages.
795 *
74e8ee47 796 * Must be called only for compound pages.
6988f31d 797 */
53f9263b
KS
798static inline int compound_mapcount(struct page *page)
799{
74e8ee47 800 return folio_entire_mapcount(page_folio(page));
53f9263b
KS
801}
802
70b50f94
AA
803/*
804 * The atomic page->_mapcount, starts from -1: so that transitions
805 * both from it and to it can be tracked, using atomic_inc_and_test
806 * and atomic_add_negative(-1).
807 */
22b751c3 808static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
809{
810 atomic_set(&(page)->_mapcount, -1);
811}
812
b20ce5e0
KS
813int __page_mapcount(struct page *page);
814
6988f31d
KK
815/*
816 * Mapcount of 0-order page; when compound sub-page, includes
817 * compound_mapcount().
818 *
819 * Result is undefined for pages which cannot be mapped into userspace.
820 * For example SLAB or special types of pages. See function page_has_type().
821 * They use this place in struct page differently.
822 */
70b50f94
AA
823static inline int page_mapcount(struct page *page)
824{
b20ce5e0
KS
825 if (unlikely(PageCompound(page)))
826 return __page_mapcount(page);
827 return atomic_read(&page->_mapcount) + 1;
828}
829
4ba1119c
MWO
830int folio_mapcount(struct folio *folio);
831
b20ce5e0 832#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4ba1119c
MWO
833static inline int total_mapcount(struct page *page)
834{
835 return folio_mapcount(page_folio(page));
836}
837
b20ce5e0
KS
838#else
839static inline int total_mapcount(struct page *page)
840{
841 return page_mapcount(page);
70b50f94 842}
b20ce5e0 843#endif
70b50f94 844
b49af68f
CL
845static inline struct page *virt_to_head_page(const void *x)
846{
847 struct page *page = virt_to_page(x);
ccaafd7f 848
1d798ca3 849 return compound_head(page);
b49af68f
CL
850}
851
7d4203c1
VB
852static inline struct folio *virt_to_folio(const void *x)
853{
854 struct page *page = virt_to_page(x);
855
856 return page_folio(page);
857}
858
8d29c703 859void __folio_put(struct folio *folio);
ddc58f27 860
1d7ea732 861void put_pages_list(struct list_head *pages);
1da177e4 862
8dfcc9ba 863void split_page(struct page *page, unsigned int order);
715cbfd6 864void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 865
a1554c00
ML
866unsigned long nr_free_buffer_pages(void);
867
33f2ef89
AW
868/*
869 * Compound pages have a destructor function. Provide a
870 * prototype for that function and accessor functions.
f1e61557 871 * These are _only_ valid on the head of a compound page.
33f2ef89 872 */
f1e61557
KS
873typedef void compound_page_dtor(struct page *);
874
875/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
876enum compound_dtor_id {
877 NULL_COMPOUND_DTOR,
878 COMPOUND_PAGE_DTOR,
879#ifdef CONFIG_HUGETLB_PAGE
880 HUGETLB_PAGE_DTOR,
9a982250
KS
881#endif
882#ifdef CONFIG_TRANSPARENT_HUGEPAGE
883 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
884#endif
885 NR_COMPOUND_DTORS,
886};
ae70eddd 887extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
888
889static inline void set_compound_page_dtor(struct page *page,
f1e61557 890 enum compound_dtor_id compound_dtor)
33f2ef89 891{
f1e61557
KS
892 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
893 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
894}
895
5375336c 896void destroy_large_folio(struct folio *folio);
33f2ef89 897
bac3cf4d 898static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
899{
900 return atomic_read(compound_pincount_ptr(head));
901}
902
f1e61557 903static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 904{
e4b294c2 905 page[1].compound_order = order;
5232c63f 906#ifdef CONFIG_64BIT
1378a5ee 907 page[1].compound_nr = 1U << order;
5232c63f 908#endif
d85f3385
CL
909}
910
d8c6546b
MWO
911/* Returns the number of pages in this potentially compound page. */
912static inline unsigned long compound_nr(struct page *page)
913{
1378a5ee
MWO
914 if (!PageHead(page))
915 return 1;
5232c63f 916#ifdef CONFIG_64BIT
1378a5ee 917 return page[1].compound_nr;
5232c63f
MWO
918#else
919 return 1UL << compound_order(page);
920#endif
d8c6546b
MWO
921}
922
a50b854e
MWO
923/* Returns the number of bytes in this potentially compound page. */
924static inline unsigned long page_size(struct page *page)
925{
926 return PAGE_SIZE << compound_order(page);
927}
928
94ad9338
MWO
929/* Returns the number of bits needed for the number of bytes in a page */
930static inline unsigned int page_shift(struct page *page)
931{
932 return PAGE_SHIFT + compound_order(page);
933}
934
18788cfa
MWO
935/**
936 * thp_order - Order of a transparent huge page.
937 * @page: Head page of a transparent huge page.
938 */
939static inline unsigned int thp_order(struct page *page)
940{
941 VM_BUG_ON_PGFLAGS(PageTail(page), page);
942 return compound_order(page);
943}
944
945/**
946 * thp_nr_pages - The number of regular pages in this huge page.
947 * @page: The head page of a huge page.
948 */
949static inline int thp_nr_pages(struct page *page)
950{
951 VM_BUG_ON_PGFLAGS(PageTail(page), page);
952 return compound_nr(page);
953}
954
955/**
956 * thp_size - Size of a transparent huge page.
957 * @page: Head page of a transparent huge page.
958 *
959 * Return: Number of bytes in this page.
960 */
961static inline unsigned long thp_size(struct page *page)
962{
963 return PAGE_SIZE << thp_order(page);
964}
965
9a982250
KS
966void free_compound_page(struct page *page);
967
3dece370 968#ifdef CONFIG_MMU
14fd403f
AA
969/*
970 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
971 * servicing faults for write access. In the normal case, do always want
972 * pte_mkwrite. But get_user_pages can cause write faults for mappings
973 * that do not have writing enabled, when used by access_process_vm.
974 */
975static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
976{
977 if (likely(vma->vm_flags & VM_WRITE))
978 pte = pte_mkwrite(pte);
979 return pte;
980}
8c6e50b0 981
f9ce0be7 982vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 983void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 984
2b740303
SJ
985vm_fault_t finish_fault(struct vm_fault *vmf);
986vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 987#endif
14fd403f 988
1da177e4
LT
989/*
990 * Multiple processes may "see" the same page. E.g. for untouched
991 * mappings of /dev/null, all processes see the same page full of
992 * zeroes, and text pages of executables and shared libraries have
993 * only one copy in memory, at most, normally.
994 *
995 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
996 * page_count() == 0 means the page is free. page->lru is then used for
997 * freelist management in the buddy allocator.
da6052f7 998 * page_count() > 0 means the page has been allocated.
1da177e4 999 *
da6052f7
NP
1000 * Pages are allocated by the slab allocator in order to provide memory
1001 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1002 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1003 * unless a particular usage is carefully commented. (the responsibility of
1004 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1005 *
da6052f7
NP
1006 * A page may be used by anyone else who does a __get_free_page().
1007 * In this case, page_count still tracks the references, and should only
1008 * be used through the normal accessor functions. The top bits of page->flags
1009 * and page->virtual store page management information, but all other fields
1010 * are unused and could be used privately, carefully. The management of this
1011 * page is the responsibility of the one who allocated it, and those who have
1012 * subsequently been given references to it.
1013 *
1014 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1015 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1016 * The following discussion applies only to them.
1017 *
da6052f7
NP
1018 * A pagecache page contains an opaque `private' member, which belongs to the
1019 * page's address_space. Usually, this is the address of a circular list of
1020 * the page's disk buffers. PG_private must be set to tell the VM to call
1021 * into the filesystem to release these pages.
1da177e4 1022 *
da6052f7
NP
1023 * A page may belong to an inode's memory mapping. In this case, page->mapping
1024 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1025 * in units of PAGE_SIZE.
1da177e4 1026 *
da6052f7
NP
1027 * If pagecache pages are not associated with an inode, they are said to be
1028 * anonymous pages. These may become associated with the swapcache, and in that
1029 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1030 *
da6052f7
NP
1031 * In either case (swapcache or inode backed), the pagecache itself holds one
1032 * reference to the page. Setting PG_private should also increment the
1033 * refcount. The each user mapping also has a reference to the page.
1da177e4 1034 *
da6052f7 1035 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1036 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1037 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1038 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1039 *
da6052f7 1040 * All pagecache pages may be subject to I/O:
1da177e4
LT
1041 * - inode pages may need to be read from disk,
1042 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1043 * to be written back to the inode on disk,
1044 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1045 * modified may need to be swapped out to swap space and (later) to be read
1046 * back into memory.
1da177e4
LT
1047 */
1048
27674ef6 1049#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1050DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1051
89574945
CH
1052bool __put_devmap_managed_page(struct page *page);
1053static inline bool put_devmap_managed_page(struct page *page)
e7638488
DW
1054{
1055 if (!static_branch_unlikely(&devmap_managed_key))
1056 return false;
1057 if (!is_zone_device_page(page))
1058 return false;
89574945 1059 return __put_devmap_managed_page(page);
e7638488
DW
1060}
1061
27674ef6 1062#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
89574945 1063static inline bool put_devmap_managed_page(struct page *page)
e7638488
DW
1064{
1065 return false;
1066}
27674ef6 1067#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1068
f958d7b5 1069/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1070#define folio_ref_zero_or_close_to_overflow(folio) \
1071 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1072
1073/**
1074 * folio_get - Increment the reference count on a folio.
1075 * @folio: The folio.
1076 *
1077 * Context: May be called in any context, as long as you know that
1078 * you have a refcount on the folio. If you do not already have one,
1079 * folio_try_get() may be the right interface for you to use.
1080 */
1081static inline void folio_get(struct folio *folio)
1082{
1083 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1084 folio_ref_inc(folio);
1085}
f958d7b5 1086
3565fce3
DW
1087static inline void get_page(struct page *page)
1088{
86d234cb 1089 folio_get(page_folio(page));
3565fce3
DW
1090}
1091
3faa52c0 1092bool __must_check try_grab_page(struct page *page, unsigned int flags);
cd1adf1b
LT
1093
1094static inline __must_check bool try_get_page(struct page *page)
1095{
1096 page = compound_head(page);
1097 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1098 return false;
1099 page_ref_inc(page);
1100 return true;
1101}
3565fce3 1102
b620f633
MWO
1103/**
1104 * folio_put - Decrement the reference count on a folio.
1105 * @folio: The folio.
1106 *
1107 * If the folio's reference count reaches zero, the memory will be
1108 * released back to the page allocator and may be used by another
1109 * allocation immediately. Do not access the memory or the struct folio
1110 * after calling folio_put() unless you can be sure that it wasn't the
1111 * last reference.
1112 *
1113 * Context: May be called in process or interrupt context, but not in NMI
1114 * context. May be called while holding a spinlock.
1115 */
1116static inline void folio_put(struct folio *folio)
1117{
1118 if (folio_put_testzero(folio))
8d29c703 1119 __folio_put(folio);
b620f633
MWO
1120}
1121
3fe7fa58
MWO
1122/**
1123 * folio_put_refs - Reduce the reference count on a folio.
1124 * @folio: The folio.
1125 * @refs: The amount to subtract from the folio's reference count.
1126 *
1127 * If the folio's reference count reaches zero, the memory will be
1128 * released back to the page allocator and may be used by another
1129 * allocation immediately. Do not access the memory or the struct folio
1130 * after calling folio_put_refs() unless you can be sure that these weren't
1131 * the last references.
1132 *
1133 * Context: May be called in process or interrupt context, but not in NMI
1134 * context. May be called while holding a spinlock.
1135 */
1136static inline void folio_put_refs(struct folio *folio, int refs)
1137{
1138 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1139 __folio_put(folio);
3fe7fa58
MWO
1140}
1141
e3c4cebf
MWO
1142void release_pages(struct page **pages, int nr);
1143
1144/**
1145 * folios_put - Decrement the reference count on an array of folios.
1146 * @folios: The folios.
1147 * @nr: How many folios there are.
1148 *
1149 * Like folio_put(), but for an array of folios. This is more efficient
1150 * than writing the loop yourself as it will optimise the locks which
1151 * need to be taken if the folios are freed.
1152 *
1153 * Context: May be called in process or interrupt context, but not in NMI
1154 * context. May be called while holding a spinlock.
1155 */
1156static inline void folios_put(struct folio **folios, unsigned int nr)
1157{
1158 release_pages((struct page **)folios, nr);
1159}
1160
3565fce3
DW
1161static inline void put_page(struct page *page)
1162{
b620f633 1163 struct folio *folio = page_folio(page);
3565fce3 1164
7b2d55d2 1165 /*
89574945
CH
1166 * For some devmap managed pages we need to catch refcount transition
1167 * from 2 to 1:
7b2d55d2 1168 */
89574945 1169 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1170 return;
b620f633 1171 folio_put(folio);
3565fce3
DW
1172}
1173
3faa52c0
JH
1174/*
1175 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1176 * the page's refcount so that two separate items are tracked: the original page
1177 * reference count, and also a new count of how many pin_user_pages() calls were
1178 * made against the page. ("gup-pinned" is another term for the latter).
1179 *
1180 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1181 * distinct from normal pages. As such, the unpin_user_page() call (and its
1182 * variants) must be used in order to release gup-pinned pages.
1183 *
1184 * Choice of value:
1185 *
1186 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1187 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1188 * simpler, due to the fact that adding an even power of two to the page
1189 * refcount has the effect of using only the upper N bits, for the code that
1190 * counts up using the bias value. This means that the lower bits are left for
1191 * the exclusive use of the original code that increments and decrements by one
1192 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1193 *
3faa52c0
JH
1194 * Of course, once the lower bits overflow into the upper bits (and this is
1195 * OK, because subtraction recovers the original values), then visual inspection
1196 * no longer suffices to directly view the separate counts. However, for normal
1197 * applications that don't have huge page reference counts, this won't be an
1198 * issue.
fc1d8e7c 1199 *
40fcc7fc
MWO
1200 * Locking: the lockless algorithm described in folio_try_get_rcu()
1201 * provides safe operation for get_user_pages(), page_mkclean() and
1202 * other calls that race to set up page table entries.
fc1d8e7c 1203 */
3faa52c0 1204#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1205
3faa52c0 1206void unpin_user_page(struct page *page);
f1f6a7dd
JH
1207void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1208 bool make_dirty);
458a4f78
JM
1209void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1210 bool make_dirty);
f1f6a7dd 1211void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1212
97a7e473
PX
1213static inline bool is_cow_mapping(vm_flags_t flags)
1214{
1215 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1216}
1217
9127ab4f
CS
1218#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1219#define SECTION_IN_PAGE_FLAGS
1220#endif
1221
89689ae7 1222/*
7a8010cd
VB
1223 * The identification function is mainly used by the buddy allocator for
1224 * determining if two pages could be buddies. We are not really identifying
1225 * the zone since we could be using the section number id if we do not have
1226 * node id available in page flags.
1227 * We only guarantee that it will return the same value for two combinable
1228 * pages in a zone.
89689ae7 1229 */
cb2b95e1
AW
1230static inline int page_zone_id(struct page *page)
1231{
89689ae7 1232 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1233}
1234
89689ae7 1235#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1236extern int page_to_nid(const struct page *page);
89689ae7 1237#else
33dd4e0e 1238static inline int page_to_nid(const struct page *page)
d41dee36 1239{
f165b378
PT
1240 struct page *p = (struct page *)page;
1241
1242 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1243}
89689ae7
CL
1244#endif
1245
874fd90c
MWO
1246static inline int folio_nid(const struct folio *folio)
1247{
1248 return page_to_nid(&folio->page);
1249}
1250
57e0a030 1251#ifdef CONFIG_NUMA_BALANCING
90572890 1252static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1253{
90572890 1254 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1255}
1256
90572890 1257static inline int cpupid_to_pid(int cpupid)
57e0a030 1258{
90572890 1259 return cpupid & LAST__PID_MASK;
57e0a030 1260}
b795854b 1261
90572890 1262static inline int cpupid_to_cpu(int cpupid)
b795854b 1263{
90572890 1264 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1265}
1266
90572890 1267static inline int cpupid_to_nid(int cpupid)
b795854b 1268{
90572890 1269 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1270}
1271
90572890 1272static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1273{
90572890 1274 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1275}
1276
90572890 1277static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1278{
90572890 1279 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1280}
1281
8c8a743c
PZ
1282static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1283{
1284 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1285}
1286
1287#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1288#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1289static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1290{
1ae71d03 1291 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1292}
90572890
PZ
1293
1294static inline int page_cpupid_last(struct page *page)
1295{
1296 return page->_last_cpupid;
1297}
1298static inline void page_cpupid_reset_last(struct page *page)
b795854b 1299{
1ae71d03 1300 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1301}
1302#else
90572890 1303static inline int page_cpupid_last(struct page *page)
75980e97 1304{
90572890 1305 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1306}
1307
90572890 1308extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1309
90572890 1310static inline void page_cpupid_reset_last(struct page *page)
75980e97 1311{
09940a4f 1312 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1313}
90572890
PZ
1314#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1315#else /* !CONFIG_NUMA_BALANCING */
1316static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1317{
90572890 1318 return page_to_nid(page); /* XXX */
57e0a030
MG
1319}
1320
90572890 1321static inline int page_cpupid_last(struct page *page)
57e0a030 1322{
90572890 1323 return page_to_nid(page); /* XXX */
57e0a030
MG
1324}
1325
90572890 1326static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1327{
1328 return -1;
1329}
1330
90572890 1331static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1332{
1333 return -1;
1334}
1335
90572890 1336static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1337{
1338 return -1;
1339}
1340
90572890
PZ
1341static inline int cpu_pid_to_cpupid(int nid, int pid)
1342{
1343 return -1;
1344}
1345
1346static inline bool cpupid_pid_unset(int cpupid)
b795854b 1347{
2b787449 1348 return true;
b795854b
MG
1349}
1350
90572890 1351static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1352{
1353}
8c8a743c
PZ
1354
1355static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1356{
1357 return false;
1358}
90572890 1359#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1360
2e903b91 1361#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1362
cf10bd4c
AK
1363/*
1364 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1365 * setting tags for all pages to native kernel tag value 0xff, as the default
1366 * value 0x00 maps to 0xff.
1367 */
1368
2813b9c0
AK
1369static inline u8 page_kasan_tag(const struct page *page)
1370{
cf10bd4c
AK
1371 u8 tag = 0xff;
1372
1373 if (kasan_enabled()) {
1374 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1375 tag ^= 0xff;
1376 }
1377
1378 return tag;
2813b9c0
AK
1379}
1380
1381static inline void page_kasan_tag_set(struct page *page, u8 tag)
1382{
27fe7339
PC
1383 unsigned long old_flags, flags;
1384
1385 if (!kasan_enabled())
1386 return;
1387
1388 tag ^= 0xff;
1389 old_flags = READ_ONCE(page->flags);
1390 do {
1391 flags = old_flags;
1392 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1393 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1394 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1395}
1396
1397static inline void page_kasan_tag_reset(struct page *page)
1398{
34303244
AK
1399 if (kasan_enabled())
1400 page_kasan_tag_set(page, 0xff);
2813b9c0 1401}
34303244
AK
1402
1403#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1404
2813b9c0
AK
1405static inline u8 page_kasan_tag(const struct page *page)
1406{
1407 return 0xff;
1408}
1409
1410static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1411static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1412
1413#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1414
33dd4e0e 1415static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1416{
1417 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1418}
1419
75ef7184
MG
1420static inline pg_data_t *page_pgdat(const struct page *page)
1421{
1422 return NODE_DATA(page_to_nid(page));
1423}
1424
32b8fc48
MWO
1425static inline struct zone *folio_zone(const struct folio *folio)
1426{
1427 return page_zone(&folio->page);
1428}
1429
1430static inline pg_data_t *folio_pgdat(const struct folio *folio)
1431{
1432 return page_pgdat(&folio->page);
1433}
1434
9127ab4f 1435#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1436static inline void set_page_section(struct page *page, unsigned long section)
1437{
1438 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1439 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1440}
1441
aa462abe 1442static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1443{
1444 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1445}
308c05e3 1446#endif
d41dee36 1447
bf6bd276
MWO
1448/**
1449 * folio_pfn - Return the Page Frame Number of a folio.
1450 * @folio: The folio.
1451 *
1452 * A folio may contain multiple pages. The pages have consecutive
1453 * Page Frame Numbers.
1454 *
1455 * Return: The Page Frame Number of the first page in the folio.
1456 */
1457static inline unsigned long folio_pfn(struct folio *folio)
1458{
1459 return page_to_pfn(&folio->page);
1460}
1461
3d11b225
MWO
1462static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1463{
1464 return &folio_page(folio, 1)->compound_pincount;
1465}
1466
0b90ddae
MWO
1467/**
1468 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1469 * @folio: The folio.
1470 *
1471 * This function checks if a folio has been pinned via a call to
1472 * a function in the pin_user_pages() family.
1473 *
1474 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1475 * because it means "definitely not pinned for DMA", but true means "probably
1476 * pinned for DMA, but possibly a false positive due to having at least
1477 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1478 *
1479 * False positives are OK, because: a) it's unlikely for a folio to
1480 * get that many refcounts, and b) all the callers of this routine are
1481 * expected to be able to deal gracefully with a false positive.
1482 *
1483 * For large folios, the result will be exactly correct. That's because
1484 * we have more tracking data available: the compound_pincount is used
1485 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1486 *
1487 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1488 *
1489 * Return: True, if it is likely that the page has been "dma-pinned".
1490 * False, if the page is definitely not dma-pinned.
1491 */
1492static inline bool folio_maybe_dma_pinned(struct folio *folio)
1493{
1494 if (folio_test_large(folio))
1495 return atomic_read(folio_pincount_ptr(folio)) > 0;
1496
1497 /*
1498 * folio_ref_count() is signed. If that refcount overflows, then
1499 * folio_ref_count() returns a negative value, and callers will avoid
1500 * further incrementing the refcount.
1501 *
1502 * Here, for that overflow case, use the sign bit to count a little
1503 * bit higher via unsigned math, and thus still get an accurate result.
1504 */
1505 return ((unsigned int)folio_ref_count(folio)) >=
1506 GUP_PIN_COUNTING_BIAS;
1507}
1508
1509static inline bool page_maybe_dma_pinned(struct page *page)
1510{
1511 return folio_maybe_dma_pinned(page_folio(page));
1512}
1513
1514/*
1515 * This should most likely only be called during fork() to see whether we
fb3d824d 1516 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1517 *
1518 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1519 */
1520static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1521 struct page *page)
1522{
623a1ddf 1523 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1524
1525 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1526 return false;
1527
1528 return page_maybe_dma_pinned(page);
1529}
1530
8e3560d9
PT
1531/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1532#ifdef CONFIG_MIGRATION
6077c943 1533static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9 1534{
1c563432
MK
1535#ifdef CONFIG_CMA
1536 int mt = get_pageblock_migratetype(page);
1537
1538 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1539 return false;
1540#endif
f25cbb7a
AS
1541 return !(is_device_coherent_page(page) ||
1542 is_zone_movable_page(page) ||
1543 is_zero_pfn(page_to_pfn(page)));
8e3560d9
PT
1544}
1545#else
6077c943 1546static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9
PT
1547{
1548 return true;
1549}
1550#endif
1551
6077c943 1552static inline bool folio_is_longterm_pinnable(struct folio *folio)
536939ff 1553{
6077c943 1554 return is_longterm_pinnable_page(&folio->page);
536939ff
MWO
1555}
1556
2f1b6248 1557static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1558{
1559 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1560 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1561}
2f1b6248 1562
348f8b6c
DH
1563static inline void set_page_node(struct page *page, unsigned long node)
1564{
1565 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1566 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1567}
89689ae7 1568
2f1b6248 1569static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1570 unsigned long node, unsigned long pfn)
1da177e4 1571{
348f8b6c
DH
1572 set_page_zone(page, zone);
1573 set_page_node(page, node);
9127ab4f 1574#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1575 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1576#endif
1da177e4
LT
1577}
1578
7b230db3
MWO
1579/**
1580 * folio_nr_pages - The number of pages in the folio.
1581 * @folio: The folio.
1582 *
1583 * Return: A positive power of two.
1584 */
1585static inline long folio_nr_pages(struct folio *folio)
1586{
1587 return compound_nr(&folio->page);
1588}
1589
1590/**
1591 * folio_next - Move to the next physical folio.
1592 * @folio: The folio we're currently operating on.
1593 *
1594 * If you have physically contiguous memory which may span more than
1595 * one folio (eg a &struct bio_vec), use this function to move from one
1596 * folio to the next. Do not use it if the memory is only virtually
1597 * contiguous as the folios are almost certainly not adjacent to each
1598 * other. This is the folio equivalent to writing ``page++``.
1599 *
1600 * Context: We assume that the folios are refcounted and/or locked at a
1601 * higher level and do not adjust the reference counts.
1602 * Return: The next struct folio.
1603 */
1604static inline struct folio *folio_next(struct folio *folio)
1605{
1606 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1607}
1608
1609/**
1610 * folio_shift - The size of the memory described by this folio.
1611 * @folio: The folio.
1612 *
1613 * A folio represents a number of bytes which is a power-of-two in size.
1614 * This function tells you which power-of-two the folio is. See also
1615 * folio_size() and folio_order().
1616 *
1617 * Context: The caller should have a reference on the folio to prevent
1618 * it from being split. It is not necessary for the folio to be locked.
1619 * Return: The base-2 logarithm of the size of this folio.
1620 */
1621static inline unsigned int folio_shift(struct folio *folio)
1622{
1623 return PAGE_SHIFT + folio_order(folio);
1624}
1625
1626/**
1627 * folio_size - The number of bytes in a folio.
1628 * @folio: The folio.
1629 *
1630 * Context: The caller should have a reference on the folio to prevent
1631 * it from being split. It is not necessary for the folio to be locked.
1632 * Return: The number of bytes in this folio.
1633 */
1634static inline size_t folio_size(struct folio *folio)
1635{
1636 return PAGE_SIZE << folio_order(folio);
1637}
1638
b424de33
MWO
1639#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1640static inline int arch_make_page_accessible(struct page *page)
1641{
1642 return 0;
1643}
1644#endif
1645
1646#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1647static inline int arch_make_folio_accessible(struct folio *folio)
1648{
1649 int ret;
1650 long i, nr = folio_nr_pages(folio);
1651
1652 for (i = 0; i < nr; i++) {
1653 ret = arch_make_page_accessible(folio_page(folio, i));
1654 if (ret)
1655 break;
1656 }
1657
1658 return ret;
1659}
1660#endif
1661
f6ac2354
CL
1662/*
1663 * Some inline functions in vmstat.h depend on page_zone()
1664 */
1665#include <linux/vmstat.h>
1666
33dd4e0e 1667static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1668{
1dff8083 1669 return page_to_virt(page);
1da177e4
LT
1670}
1671
1672#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1673#define HASHED_PAGE_VIRTUAL
1674#endif
1675
1676#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1677static inline void *page_address(const struct page *page)
1678{
1679 return page->virtual;
1680}
1681static inline void set_page_address(struct page *page, void *address)
1682{
1683 page->virtual = address;
1684}
1da177e4
LT
1685#define page_address_init() do { } while(0)
1686#endif
1687
1688#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1689void *page_address(const struct page *page);
1da177e4
LT
1690void set_page_address(struct page *page, void *virtual);
1691void page_address_init(void);
1692#endif
1693
1694#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1695#define page_address(page) lowmem_page_address(page)
1696#define set_page_address(page, address) do { } while(0)
1697#define page_address_init() do { } while(0)
1698#endif
1699
7d4203c1
VB
1700static inline void *folio_address(const struct folio *folio)
1701{
1702 return page_address(&folio->page);
1703}
1704
e39155ea 1705extern void *page_rmapping(struct page *page);
f6ab1f7f
HY
1706extern pgoff_t __page_file_index(struct page *page);
1707
1da177e4
LT
1708/*
1709 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1710 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1711 */
1712static inline pgoff_t page_index(struct page *page)
1713{
1714 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1715 return __page_file_index(page);
1da177e4
LT
1716 return page->index;
1717}
1718
1aa8aea5 1719bool page_mapped(struct page *page);
dd10ab04 1720bool folio_mapped(struct folio *folio);
1da177e4 1721
2f064f34
MH
1722/*
1723 * Return true only if the page has been allocated with
1724 * ALLOC_NO_WATERMARKS and the low watermark was not
1725 * met implying that the system is under some pressure.
1726 */
1d7bab6a 1727static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1728{
1729 /*
c07aea3e
MC
1730 * lru.next has bit 1 set if the page is allocated from the
1731 * pfmemalloc reserves. Callers may simply overwrite it if
1732 * they do not need to preserve that information.
2f064f34 1733 */
c07aea3e 1734 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
1735}
1736
1737/*
1738 * Only to be called by the page allocator on a freshly allocated
1739 * page.
1740 */
1741static inline void set_page_pfmemalloc(struct page *page)
1742{
c07aea3e 1743 page->lru.next = (void *)BIT(1);
2f064f34
MH
1744}
1745
1746static inline void clear_page_pfmemalloc(struct page *page)
1747{
c07aea3e 1748 page->lru.next = NULL;
2f064f34
MH
1749}
1750
1c0fe6e3
NP
1751/*
1752 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1753 */
1754extern void pagefault_out_of_memory(void);
1755
1da177e4 1756#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1757#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 1758#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 1759
ddd588b5 1760/*
7bf02ea2 1761 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1762 * various contexts.
1763 */
4b59e6c4 1764#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1765
9af744d7 1766extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1767
710ec38b 1768#ifdef CONFIG_MMU
7f43add4 1769extern bool can_do_mlock(void);
710ec38b
AB
1770#else
1771static inline bool can_do_mlock(void) { return false; }
1772#endif
d7c9e99a
AG
1773extern int user_shm_lock(size_t, struct ucounts *);
1774extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 1775
25b2995a
CH
1776struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1777 pte_t pte);
28093f9f
GS
1778struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1779 pmd_t pmd);
7e675137 1780
27d036e3
LR
1781void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1782 unsigned long size);
14f5ff5d 1783void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1784 unsigned long size);
4f74d2c8
LT
1785void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1786 unsigned long start, unsigned long end);
e6473092 1787
ac46d4f3
JG
1788struct mmu_notifier_range;
1789
42b77728 1790void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1791 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1792int
1793copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 1794int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 1795 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
1796int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1797 unsigned long *pfn);
d87fe660 1798int follow_phys(struct vm_area_struct *vma, unsigned long address,
1799 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1800int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1801 void *buf, int len, int write);
1da177e4 1802
7caef267 1803extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1804extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1805void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1806void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 1807int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 1808
7ee1dd3f 1809#ifdef CONFIG_MMU
2b740303 1810extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1811 unsigned long address, unsigned int flags,
1812 struct pt_regs *regs);
64019a2e 1813extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1814 unsigned long address, unsigned int fault_flags,
1815 bool *unlocked);
977fbdcd
MW
1816void unmap_mapping_pages(struct address_space *mapping,
1817 pgoff_t start, pgoff_t nr, bool even_cows);
1818void unmap_mapping_range(struct address_space *mapping,
1819 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1820#else
2b740303 1821static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1822 unsigned long address, unsigned int flags,
1823 struct pt_regs *regs)
7ee1dd3f
DH
1824{
1825 /* should never happen if there's no MMU */
1826 BUG();
1827 return VM_FAULT_SIGBUS;
1828}
64019a2e 1829static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1830 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1831{
1832 /* should never happen if there's no MMU */
1833 BUG();
1834 return -EFAULT;
1835}
977fbdcd
MW
1836static inline void unmap_mapping_pages(struct address_space *mapping,
1837 pgoff_t start, pgoff_t nr, bool even_cows) { }
1838static inline void unmap_mapping_range(struct address_space *mapping,
1839 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1840#endif
f33ea7f4 1841
977fbdcd
MW
1842static inline void unmap_shared_mapping_range(struct address_space *mapping,
1843 loff_t const holebegin, loff_t const holelen)
1844{
1845 unmap_mapping_range(mapping, holebegin, holelen, 0);
1846}
1847
1848extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1849 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1850extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1851 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1852extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1853 void *buf, int len, unsigned int gup_flags);
1da177e4 1854
64019a2e 1855long get_user_pages_remote(struct mm_struct *mm,
1e987790 1856 unsigned long start, unsigned long nr_pages,
9beae1ea 1857 unsigned int gup_flags, struct page **pages,
5b56d49f 1858 struct vm_area_struct **vmas, int *locked);
64019a2e 1859long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1860 unsigned long start, unsigned long nr_pages,
1861 unsigned int gup_flags, struct page **pages,
1862 struct vm_area_struct **vmas, int *locked);
c12d2da5 1863long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1864 unsigned int gup_flags, struct page **pages,
cde70140 1865 struct vm_area_struct **vmas);
eddb1c22
JH
1866long pin_user_pages(unsigned long start, unsigned long nr_pages,
1867 unsigned int gup_flags, struct page **pages,
1868 struct vm_area_struct **vmas);
c12d2da5 1869long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1870 struct page **pages, unsigned int gup_flags);
91429023
JH
1871long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1872 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1873
73b0140b
IW
1874int get_user_pages_fast(unsigned long start, int nr_pages,
1875 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1876int pin_user_pages_fast(unsigned long start, int nr_pages,
1877 unsigned int gup_flags, struct page **pages);
8025e5dd 1878
79eb597c
DJ
1879int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1880int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1881 struct task_struct *task, bool bypass_rlim);
1882
18022c5d
MG
1883struct kvec;
1884int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1885 struct page **pages);
f3e8fccd 1886struct page *get_dump_page(unsigned long addr);
1da177e4 1887
b5e84594
MWO
1888bool folio_mark_dirty(struct folio *folio);
1889bool set_page_dirty(struct page *page);
1da177e4 1890int set_page_dirty_lock(struct page *page);
b9ea2515 1891
a9090253 1892int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1893
b6a2fea3
OW
1894extern unsigned long move_page_tables(struct vm_area_struct *vma,
1895 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1896 unsigned long new_addr, unsigned long len,
1897 bool need_rmap_locks);
58705444
PX
1898
1899/*
1900 * Flags used by change_protection(). For now we make it a bitmap so
1901 * that we can pass in multiple flags just like parameters. However
1902 * for now all the callers are only use one of the flags at the same
1903 * time.
1904 */
64fe24a3
DH
1905/*
1906 * Whether we should manually check if we can map individual PTEs writable,
1907 * because something (e.g., COW, uffd-wp) blocks that from happening for all
1908 * PTEs automatically in a writable mapping.
1909 */
1910#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
1911/* Whether this protection change is for NUMA hints */
1912#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1913/* Whether this change is for write protecting */
1914#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1915#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1916#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1917 MM_CP_UFFD_WP_RESOLVE)
58705444 1918
4a18419f
NA
1919extern unsigned long change_protection(struct mmu_gather *tlb,
1920 struct vm_area_struct *vma, unsigned long start,
7da4d641 1921 unsigned long end, pgprot_t newprot,
58705444 1922 unsigned long cp_flags);
4a18419f 1923extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
b6a2fea3
OW
1924 struct vm_area_struct **pprev, unsigned long start,
1925 unsigned long end, unsigned long newflags);
1da177e4 1926
465a454f
PZ
1927/*
1928 * doesn't attempt to fault and will return short.
1929 */
dadbb612
SJ
1930int get_user_pages_fast_only(unsigned long start, int nr_pages,
1931 unsigned int gup_flags, struct page **pages);
104acc32
JH
1932int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1933 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1934
1935static inline bool get_user_page_fast_only(unsigned long addr,
1936 unsigned int gup_flags, struct page **pagep)
1937{
1938 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1939}
d559db08
KH
1940/*
1941 * per-process(per-mm_struct) statistics.
1942 */
d559db08
KH
1943static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1944{
69c97823
KK
1945 long val = atomic_long_read(&mm->rss_stat.count[member]);
1946
1947#ifdef SPLIT_RSS_COUNTING
1948 /*
1949 * counter is updated in asynchronous manner and may go to minus.
1950 * But it's never be expected number for users.
1951 */
1952 if (val < 0)
1953 val = 0;
172703b0 1954#endif
69c97823
KK
1955 return (unsigned long)val;
1956}
d559db08 1957
e4dcad20 1958void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1959
d559db08
KH
1960static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1961{
b3d1411b
JFG
1962 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1963
e4dcad20 1964 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1965}
1966
1967static inline void inc_mm_counter(struct mm_struct *mm, int member)
1968{
b3d1411b
JFG
1969 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1970
e4dcad20 1971 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1972}
1973
1974static inline void dec_mm_counter(struct mm_struct *mm, int member)
1975{
b3d1411b
JFG
1976 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1977
e4dcad20 1978 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1979}
1980
eca56ff9
JM
1981/* Optimized variant when page is already known not to be PageAnon */
1982static inline int mm_counter_file(struct page *page)
1983{
1984 if (PageSwapBacked(page))
1985 return MM_SHMEMPAGES;
1986 return MM_FILEPAGES;
1987}
1988
1989static inline int mm_counter(struct page *page)
1990{
1991 if (PageAnon(page))
1992 return MM_ANONPAGES;
1993 return mm_counter_file(page);
1994}
1995
d559db08
KH
1996static inline unsigned long get_mm_rss(struct mm_struct *mm)
1997{
1998 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1999 get_mm_counter(mm, MM_ANONPAGES) +
2000 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2001}
2002
2003static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2004{
2005 return max(mm->hiwater_rss, get_mm_rss(mm));
2006}
2007
2008static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2009{
2010 return max(mm->hiwater_vm, mm->total_vm);
2011}
2012
2013static inline void update_hiwater_rss(struct mm_struct *mm)
2014{
2015 unsigned long _rss = get_mm_rss(mm);
2016
2017 if ((mm)->hiwater_rss < _rss)
2018 (mm)->hiwater_rss = _rss;
2019}
2020
2021static inline void update_hiwater_vm(struct mm_struct *mm)
2022{
2023 if (mm->hiwater_vm < mm->total_vm)
2024 mm->hiwater_vm = mm->total_vm;
2025}
2026
695f0559
PC
2027static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2028{
2029 mm->hiwater_rss = get_mm_rss(mm);
2030}
2031
d559db08
KH
2032static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2033 struct mm_struct *mm)
2034{
2035 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2036
2037 if (*maxrss < hiwater_rss)
2038 *maxrss = hiwater_rss;
2039}
2040
53bddb4e 2041#if defined(SPLIT_RSS_COUNTING)
05af2e10 2042void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2043#else
05af2e10 2044static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2045{
2046}
2047#endif
465a454f 2048
78e7c5af
AK
2049#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2050static inline int pte_special(pte_t pte)
2051{
2052 return 0;
2053}
2054
2055static inline pte_t pte_mkspecial(pte_t pte)
2056{
2057 return pte;
2058}
2059#endif
2060
17596731 2061#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2062static inline int pte_devmap(pte_t pte)
2063{
2064 return 0;
2065}
2066#endif
2067
6d2329f8 2068int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 2069
25ca1d6c
NK
2070extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2071 spinlock_t **ptl);
2072static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2073 spinlock_t **ptl)
2074{
2075 pte_t *ptep;
2076 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2077 return ptep;
2078}
c9cfcddf 2079
c2febafc
KS
2080#ifdef __PAGETABLE_P4D_FOLDED
2081static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2082 unsigned long address)
2083{
2084 return 0;
2085}
2086#else
2087int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2088#endif
2089
b4e98d9a 2090#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2091static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2092 unsigned long address)
2093{
2094 return 0;
2095}
b4e98d9a
KS
2096static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2097static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2098
5f22df00 2099#else
c2febafc 2100int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2101
b4e98d9a
KS
2102static inline void mm_inc_nr_puds(struct mm_struct *mm)
2103{
6d212db1
MS
2104 if (mm_pud_folded(mm))
2105 return;
af5b0f6a 2106 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2107}
2108
2109static inline void mm_dec_nr_puds(struct mm_struct *mm)
2110{
6d212db1
MS
2111 if (mm_pud_folded(mm))
2112 return;
af5b0f6a 2113 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2114}
5f22df00
NP
2115#endif
2116
2d2f5119 2117#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2118static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2119 unsigned long address)
2120{
2121 return 0;
2122}
dc6c9a35 2123
dc6c9a35
KS
2124static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2125static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2126
5f22df00 2127#else
1bb3630e 2128int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2129
dc6c9a35
KS
2130static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2131{
6d212db1
MS
2132 if (mm_pmd_folded(mm))
2133 return;
af5b0f6a 2134 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2135}
2136
2137static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2138{
6d212db1
MS
2139 if (mm_pmd_folded(mm))
2140 return;
af5b0f6a 2141 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2142}
5f22df00
NP
2143#endif
2144
c4812909 2145#ifdef CONFIG_MMU
af5b0f6a 2146static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2147{
af5b0f6a 2148 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2149}
2150
af5b0f6a 2151static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2152{
af5b0f6a 2153 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2154}
2155
2156static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2157{
af5b0f6a 2158 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2159}
2160
2161static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2162{
af5b0f6a 2163 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2164}
2165#else
c4812909 2166
af5b0f6a
KS
2167static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2168static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2169{
2170 return 0;
2171}
2172
2173static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2174static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2175#endif
2176
4cf58924
JFG
2177int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2178int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2179
f949286c
MR
2180#if defined(CONFIG_MMU)
2181
c2febafc
KS
2182static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2183 unsigned long address)
2184{
2185 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2186 NULL : p4d_offset(pgd, address);
2187}
2188
2189static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2190 unsigned long address)
1da177e4 2191{
c2febafc
KS
2192 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2193 NULL : pud_offset(p4d, address);
1da177e4 2194}
d8626138 2195
1da177e4
LT
2196static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2197{
1bb3630e
HD
2198 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2199 NULL: pmd_offset(pud, address);
1da177e4 2200}
f949286c 2201#endif /* CONFIG_MMU */
1bb3630e 2202
57c1ffce 2203#if USE_SPLIT_PTE_PTLOCKS
597d795a 2204#if ALLOC_SPLIT_PTLOCKS
b35f1819 2205void __init ptlock_cache_init(void);
539edb58
PZ
2206extern bool ptlock_alloc(struct page *page);
2207extern void ptlock_free(struct page *page);
2208
2209static inline spinlock_t *ptlock_ptr(struct page *page)
2210{
2211 return page->ptl;
2212}
597d795a 2213#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2214static inline void ptlock_cache_init(void)
2215{
2216}
2217
49076ec2
KS
2218static inline bool ptlock_alloc(struct page *page)
2219{
49076ec2
KS
2220 return true;
2221}
539edb58 2222
49076ec2
KS
2223static inline void ptlock_free(struct page *page)
2224{
49076ec2
KS
2225}
2226
2227static inline spinlock_t *ptlock_ptr(struct page *page)
2228{
539edb58 2229 return &page->ptl;
49076ec2 2230}
597d795a 2231#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2232
2233static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2234{
2235 return ptlock_ptr(pmd_page(*pmd));
2236}
2237
2238static inline bool ptlock_init(struct page *page)
2239{
2240 /*
2241 * prep_new_page() initialize page->private (and therefore page->ptl)
2242 * with 0. Make sure nobody took it in use in between.
2243 *
2244 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2245 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2246 */
309381fe 2247 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2248 if (!ptlock_alloc(page))
2249 return false;
2250 spin_lock_init(ptlock_ptr(page));
2251 return true;
2252}
2253
57c1ffce 2254#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2255/*
2256 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2257 */
49076ec2
KS
2258static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2259{
2260 return &mm->page_table_lock;
2261}
b35f1819 2262static inline void ptlock_cache_init(void) {}
49076ec2 2263static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2264static inline void ptlock_free(struct page *page) {}
57c1ffce 2265#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2266
b35f1819
KS
2267static inline void pgtable_init(void)
2268{
2269 ptlock_cache_init();
2270 pgtable_cache_init();
2271}
2272
b4ed71f5 2273static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2274{
706874e9
VD
2275 if (!ptlock_init(page))
2276 return false;
1d40a5ea 2277 __SetPageTable(page);
f0c0c115 2278 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2279 return true;
2f569afd
MS
2280}
2281
b4ed71f5 2282static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2283{
9e247bab 2284 ptlock_free(page);
1d40a5ea 2285 __ClearPageTable(page);
f0c0c115 2286 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2287}
2288
c74df32c
HD
2289#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2290({ \
4c21e2f2 2291 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2292 pte_t *__pte = pte_offset_map(pmd, address); \
2293 *(ptlp) = __ptl; \
2294 spin_lock(__ptl); \
2295 __pte; \
2296})
2297
2298#define pte_unmap_unlock(pte, ptl) do { \
2299 spin_unlock(ptl); \
2300 pte_unmap(pte); \
2301} while (0)
2302
4cf58924 2303#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2304
2305#define pte_alloc_map(mm, pmd, address) \
4cf58924 2306 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2307
c74df32c 2308#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2309 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2310 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2311
1bb3630e 2312#define pte_alloc_kernel(pmd, address) \
4cf58924 2313 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2314 NULL: pte_offset_kernel(pmd, address))
1da177e4 2315
e009bb30
KS
2316#if USE_SPLIT_PMD_PTLOCKS
2317
634391ac
MS
2318static struct page *pmd_to_page(pmd_t *pmd)
2319{
2320 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2321 return virt_to_page((void *)((unsigned long) pmd & mask));
2322}
2323
e009bb30
KS
2324static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2325{
634391ac 2326 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2327}
2328
b2b29d6d 2329static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2330{
e009bb30
KS
2331#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2332 page->pmd_huge_pte = NULL;
2333#endif
49076ec2 2334 return ptlock_init(page);
e009bb30
KS
2335}
2336
b2b29d6d 2337static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2338{
2339#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2340 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2341#endif
49076ec2 2342 ptlock_free(page);
e009bb30
KS
2343}
2344
634391ac 2345#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2346
2347#else
2348
9a86cb7b
KS
2349static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2350{
2351 return &mm->page_table_lock;
2352}
2353
b2b29d6d
MW
2354static inline bool pmd_ptlock_init(struct page *page) { return true; }
2355static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2356
c389a250 2357#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2358
e009bb30
KS
2359#endif
2360
9a86cb7b
KS
2361static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2362{
2363 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2364 spin_lock(ptl);
2365 return ptl;
2366}
2367
b2b29d6d
MW
2368static inline bool pgtable_pmd_page_ctor(struct page *page)
2369{
2370 if (!pmd_ptlock_init(page))
2371 return false;
2372 __SetPageTable(page);
f0c0c115 2373 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2374 return true;
2375}
2376
2377static inline void pgtable_pmd_page_dtor(struct page *page)
2378{
2379 pmd_ptlock_free(page);
2380 __ClearPageTable(page);
f0c0c115 2381 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2382}
2383
a00cc7d9
MW
2384/*
2385 * No scalability reason to split PUD locks yet, but follow the same pattern
2386 * as the PMD locks to make it easier if we decide to. The VM should not be
2387 * considered ready to switch to split PUD locks yet; there may be places
2388 * which need to be converted from page_table_lock.
2389 */
2390static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2391{
2392 return &mm->page_table_lock;
2393}
2394
2395static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2396{
2397 spinlock_t *ptl = pud_lockptr(mm, pud);
2398
2399 spin_lock(ptl);
2400 return ptl;
2401}
62906027 2402
a00cc7d9 2403extern void __init pagecache_init(void);
49a7f04a
DH
2404extern void free_initmem(void);
2405
69afade7
JL
2406/*
2407 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2408 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2409 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2410 * Return pages freed into the buddy system.
2411 */
11199692 2412extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2413 int poison, const char *s);
c3d5f5f0 2414
c3d5f5f0 2415extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2416extern void mem_init_print_info(void);
69afade7 2417
4b50bcc7 2418extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2419
69afade7 2420/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2421static inline void free_reserved_page(struct page *page)
69afade7
JL
2422{
2423 ClearPageReserved(page);
2424 init_page_count(page);
2425 __free_page(page);
69afade7
JL
2426 adjust_managed_page_count(page, 1);
2427}
a0cd7a7c 2428#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2429
2430static inline void mark_page_reserved(struct page *page)
2431{
2432 SetPageReserved(page);
2433 adjust_managed_page_count(page, -1);
2434}
2435
2436/*
2437 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2438 * The freed pages will be poisoned with pattern "poison" if it's within
2439 * range [0, UCHAR_MAX].
2440 * Return pages freed into the buddy system.
69afade7
JL
2441 */
2442static inline unsigned long free_initmem_default(int poison)
2443{
2444 extern char __init_begin[], __init_end[];
2445
11199692 2446 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2447 poison, "unused kernel image (initmem)");
69afade7
JL
2448}
2449
7ee3d4e8
JL
2450static inline unsigned long get_num_physpages(void)
2451{
2452 int nid;
2453 unsigned long phys_pages = 0;
2454
2455 for_each_online_node(nid)
2456 phys_pages += node_present_pages(nid);
2457
2458 return phys_pages;
2459}
2460
c713216d 2461/*
3f08a302 2462 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2463 * zones, allocate the backing mem_map and account for memory holes in an
2464 * architecture independent manner.
c713216d
MG
2465 *
2466 * An architecture is expected to register range of page frames backed by
0ee332c1 2467 * physical memory with memblock_add[_node]() before calling
9691a071 2468 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2469 * usage, an architecture is expected to do something like
2470 *
2471 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2472 * max_highmem_pfn};
2473 * for_each_valid_physical_page_range()
952eea9b 2474 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2475 * free_area_init(max_zone_pfns);
c713216d 2476 */
9691a071 2477void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2478unsigned long node_map_pfn_alignment(void);
32996250
YL
2479unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2480 unsigned long end_pfn);
c713216d
MG
2481extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2482 unsigned long end_pfn);
2483extern void get_pfn_range_for_nid(unsigned int nid,
2484 unsigned long *start_pfn, unsigned long *end_pfn);
2485extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2486
a9ee6cf5 2487#ifndef CONFIG_NUMA
6f24fbd3 2488static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2489{
2490 return 0;
2491}
2492#else
2493/* please see mm/page_alloc.c */
2494extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2495#endif
2496
0e0b864e 2497extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2498extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2499 unsigned long, unsigned long, enum meminit_context,
2500 struct vmem_altmap *, int migratetype);
bc75d33f 2501extern void setup_per_zone_wmarks(void);
bd3400ea 2502extern void calculate_min_free_kbytes(void);
1b79acc9 2503extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2504extern void mem_init(void);
8feae131 2505extern void __init mmap_init(void);
9af744d7 2506extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2507extern long si_mem_available(void);
1da177e4
LT
2508extern void si_meminfo(struct sysinfo * val);
2509extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2510#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2511extern unsigned long arch_reserved_kernel_pages(void);
2512#endif
1da177e4 2513
a8e99259
MH
2514extern __printf(3, 4)
2515void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2516
e7c8d5c9 2517extern void setup_per_cpu_pageset(void);
e7c8d5c9 2518
75f7ad8e
PS
2519/* page_alloc.c */
2520extern int min_free_kbytes;
1c30844d 2521extern int watermark_boost_factor;
795ae7a0 2522extern int watermark_scale_factor;
51930df5 2523extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2524
8feae131 2525/* nommu.c */
33e5d769 2526extern atomic_long_t mmap_pages_allocated;
7e660872 2527extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2528
6b2dbba8 2529/* interval_tree.c */
6b2dbba8 2530void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2531 struct rb_root_cached *root);
9826a516
ML
2532void vma_interval_tree_insert_after(struct vm_area_struct *node,
2533 struct vm_area_struct *prev,
f808c13f 2534 struct rb_root_cached *root);
6b2dbba8 2535void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2536 struct rb_root_cached *root);
2537struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2538 unsigned long start, unsigned long last);
2539struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2540 unsigned long start, unsigned long last);
2541
2542#define vma_interval_tree_foreach(vma, root, start, last) \
2543 for (vma = vma_interval_tree_iter_first(root, start, last); \
2544 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2545
bf181b9f 2546void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2547 struct rb_root_cached *root);
bf181b9f 2548void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2549 struct rb_root_cached *root);
2550struct anon_vma_chain *
2551anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2552 unsigned long start, unsigned long last);
bf181b9f
ML
2553struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2554 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2555#ifdef CONFIG_DEBUG_VM_RB
2556void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2557#endif
bf181b9f
ML
2558
2559#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2560 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2561 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2562
1da177e4 2563/* mmap.c */
34b4e4aa 2564extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2565extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2566 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2567 struct vm_area_struct *expand);
2568static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2569 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2570{
2571 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2572}
1da177e4
LT
2573extern struct vm_area_struct *vma_merge(struct mm_struct *,
2574 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2575 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
5c26f6ac 2576 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
1da177e4 2577extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2578extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2579 unsigned long addr, int new_below);
2580extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2581 unsigned long addr, int new_below);
1da177e4
LT
2582extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2583extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2584 struct rb_node **, struct rb_node *);
a8fb5618 2585extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2586extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2587 unsigned long addr, unsigned long len, pgoff_t pgoff,
2588 bool *need_rmap_locks);
1da177e4 2589extern void exit_mmap(struct mm_struct *);
925d1c40 2590
9c599024
CG
2591static inline int check_data_rlimit(unsigned long rlim,
2592 unsigned long new,
2593 unsigned long start,
2594 unsigned long end_data,
2595 unsigned long start_data)
2596{
2597 if (rlim < RLIM_INFINITY) {
2598 if (((new - start) + (end_data - start_data)) > rlim)
2599 return -ENOSPC;
2600 }
2601
2602 return 0;
2603}
2604
7906d00c
AA
2605extern int mm_take_all_locks(struct mm_struct *mm);
2606extern void mm_drop_all_locks(struct mm_struct *mm);
2607
fe69d560 2608extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 2609extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 2610extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2611extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2612
84638335
KK
2613extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2614extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2615
2eefd878
DS
2616extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2617 const struct vm_special_mapping *sm);
3935ed6a
SS
2618extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2619 unsigned long addr, unsigned long len,
a62c34bd
AL
2620 unsigned long flags,
2621 const struct vm_special_mapping *spec);
2622/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2623extern int install_special_mapping(struct mm_struct *mm,
2624 unsigned long addr, unsigned long len,
2625 unsigned long flags, struct page **pages);
1da177e4 2626
649775be 2627unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 2628unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 2629
1da177e4
LT
2630extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2631
0165ab44 2632extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2633 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2634 struct list_head *uf);
1fcfd8db 2635extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2636 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2637 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2638extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2639 struct list_head *uf, bool downgrade);
897ab3e0
MR
2640extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2641 struct list_head *uf);
0726b01e 2642extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2643
bebeb3d6
ML
2644#ifdef CONFIG_MMU
2645extern int __mm_populate(unsigned long addr, unsigned long len,
2646 int ignore_errors);
2647static inline void mm_populate(unsigned long addr, unsigned long len)
2648{
2649 /* Ignore errors */
2650 (void) __mm_populate(addr, len, 1);
2651}
2652#else
2653static inline void mm_populate(unsigned long addr, unsigned long len) {}
2654#endif
2655
e4eb1ff6 2656/* These take the mm semaphore themselves */
5d22fc25 2657extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2658extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2659extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2660extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2661 unsigned long, unsigned long,
2662 unsigned long, unsigned long);
1da177e4 2663
db4fbfb9
ML
2664struct vm_unmapped_area_info {
2665#define VM_UNMAPPED_AREA_TOPDOWN 1
2666 unsigned long flags;
2667 unsigned long length;
2668 unsigned long low_limit;
2669 unsigned long high_limit;
2670 unsigned long align_mask;
2671 unsigned long align_offset;
2672};
2673
baceaf1c 2674extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2675
85821aab 2676/* truncate.c */
1da177e4 2677extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2678extern void truncate_inode_pages_range(struct address_space *,
2679 loff_t lstart, loff_t lend);
91b0abe3 2680extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2681
2682/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2683extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2684extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2685 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2686extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 2687
1be7107f 2688extern unsigned long stack_guard_gap;
d05f3169 2689/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2690extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2691
11192337 2692/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2693extern int expand_downwards(struct vm_area_struct *vma,
2694 unsigned long address);
8ca3eb08 2695#if VM_GROWSUP
46dea3d0 2696extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2697#else
fee7e49d 2698 #define expand_upwards(vma, address) (0)
9ab88515 2699#endif
1da177e4
LT
2700
2701/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2702extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2703extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2704 struct vm_area_struct **pprev);
2705
ce6d42f2
LH
2706/**
2707 * find_vma_intersection() - Look up the first VMA which intersects the interval
2708 * @mm: The process address space.
2709 * @start_addr: The inclusive start user address.
2710 * @end_addr: The exclusive end user address.
2711 *
2712 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2713 * start_addr < end_addr.
2714 */
2715static inline
2716struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2717 unsigned long start_addr,
2718 unsigned long end_addr)
1da177e4 2719{
ce6d42f2 2720 struct vm_area_struct *vma = find_vma(mm, start_addr);
1da177e4
LT
2721
2722 if (vma && end_addr <= vma->vm_start)
2723 vma = NULL;
2724 return vma;
2725}
2726
ce6d42f2
LH
2727/**
2728 * vma_lookup() - Find a VMA at a specific address
2729 * @mm: The process address space.
2730 * @addr: The user address.
2731 *
2732 * Return: The vm_area_struct at the given address, %NULL otherwise.
2733 */
2734static inline
2735struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2736{
2737 struct vm_area_struct *vma = find_vma(mm, addr);
2738
2739 if (vma && addr < vma->vm_start)
2740 vma = NULL;
2741
2742 return vma;
2743}
2744
1be7107f
HD
2745static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2746{
2747 unsigned long vm_start = vma->vm_start;
2748
2749 if (vma->vm_flags & VM_GROWSDOWN) {
2750 vm_start -= stack_guard_gap;
2751 if (vm_start > vma->vm_start)
2752 vm_start = 0;
2753 }
2754 return vm_start;
2755}
2756
2757static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2758{
2759 unsigned long vm_end = vma->vm_end;
2760
2761 if (vma->vm_flags & VM_GROWSUP) {
2762 vm_end += stack_guard_gap;
2763 if (vm_end < vma->vm_end)
2764 vm_end = -PAGE_SIZE;
2765 }
2766 return vm_end;
2767}
2768
1da177e4
LT
2769static inline unsigned long vma_pages(struct vm_area_struct *vma)
2770{
2771 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2772}
2773
640708a2
PE
2774/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2775static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2776 unsigned long vm_start, unsigned long vm_end)
2777{
2778 struct vm_area_struct *vma = find_vma(mm, vm_start);
2779
2780 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2781 vma = NULL;
2782
2783 return vma;
2784}
2785
017b1660
MK
2786static inline bool range_in_vma(struct vm_area_struct *vma,
2787 unsigned long start, unsigned long end)
2788{
2789 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2790}
2791
bad849b3 2792#ifdef CONFIG_MMU
804af2cf 2793pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2794void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2795#else
2796static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2797{
2798 return __pgprot(0);
2799}
64e45507
PF
2800static inline void vma_set_page_prot(struct vm_area_struct *vma)
2801{
2802 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2803}
bad849b3
DH
2804#endif
2805
295992fb
CK
2806void vma_set_file(struct vm_area_struct *vma, struct file *file);
2807
5877231f 2808#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2809unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2810 unsigned long start, unsigned long end);
2811#endif
2812
deceb6cd 2813struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2814int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2815 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
2816int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2817 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 2818int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2819int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2820 struct page **pages, unsigned long *num);
a667d745
SJ
2821int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2822 unsigned long num);
2823int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2824 unsigned long num);
ae2b01f3 2825vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2826 unsigned long pfn);
f5e6d1d5
MW
2827vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2828 unsigned long pfn, pgprot_t pgprot);
5d747637 2829vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2830 pfn_t pfn);
574c5b3d
TH
2831vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2832 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2833vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2834 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2835int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2836
1c8f4220
SJ
2837static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2838 unsigned long addr, struct page *page)
2839{
2840 int err = vm_insert_page(vma, addr, page);
2841
2842 if (err == -ENOMEM)
2843 return VM_FAULT_OOM;
2844 if (err < 0 && err != -EBUSY)
2845 return VM_FAULT_SIGBUS;
2846
2847 return VM_FAULT_NOPAGE;
2848}
2849
f8f6ae5d
JG
2850#ifndef io_remap_pfn_range
2851static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2852 unsigned long addr, unsigned long pfn,
2853 unsigned long size, pgprot_t prot)
2854{
2855 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2856}
2857#endif
2858
d97baf94
SJ
2859static inline vm_fault_t vmf_error(int err)
2860{
2861 if (err == -ENOMEM)
2862 return VM_FAULT_OOM;
2863 return VM_FAULT_SIGBUS;
2864}
2865
df06b37f
KB
2866struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2867 unsigned int foll_flags);
240aadee 2868
deceb6cd
HD
2869#define FOLL_WRITE 0x01 /* check pte is writable */
2870#define FOLL_TOUCH 0x02 /* mark page accessed */
2871#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2872#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2873#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2874#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2875 * and return without waiting upon it */
55b8fe70 2876#define FOLL_NOFAULT 0x80 /* do not fault in pages */
69ebb83e 2877#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2878#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2879#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2880#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1e987790 2881#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2882#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2883#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2884#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2885#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2886#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2887#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2888
2889/*
eddb1c22
JH
2890 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2891 * other. Here is what they mean, and how to use them:
932f4a63
IW
2892 *
2893 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2894 * period _often_ under userspace control. This is in contrast to
2895 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2896 *
2897 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2898 * lifetime enforced by the filesystem and we need guarantees that longterm
2899 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2900 * the filesystem. Ideas for this coordination include revoking the longterm
2901 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2902 * added after the problem with filesystems was found FS DAX VMAs are
2903 * specifically failed. Filesystem pages are still subject to bugs and use of
2904 * FOLL_LONGTERM should be avoided on those pages.
2905 *
2906 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2907 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2908 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2909 * is due to an incompatibility with the FS DAX check and
eddb1c22 2910 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2911 *
eddb1c22
JH
2912 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2913 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2914 * FOLL_LONGTERM is specified.
eddb1c22
JH
2915 *
2916 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2917 * but an additional pin counting system) will be invoked. This is intended for
2918 * anything that gets a page reference and then touches page data (for example,
2919 * Direct IO). This lets the filesystem know that some non-file-system entity is
2920 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2921 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2922 * a call to unpin_user_page().
eddb1c22
JH
2923 *
2924 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2925 * and separate refcounting mechanisms, however, and that means that each has
2926 * its own acquire and release mechanisms:
2927 *
2928 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2929 *
f1f6a7dd 2930 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2931 *
2932 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2933 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2934 * calls applied to them, and that's perfectly OK. This is a constraint on the
2935 * callers, not on the pages.)
2936 *
2937 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2938 * directly by the caller. That's in order to help avoid mismatches when
2939 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2940 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2941 *
72ef5e52 2942 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2943 */
1da177e4 2944
2b740303 2945static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2946{
2947 if (vm_fault & VM_FAULT_OOM)
2948 return -ENOMEM;
2949 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2950 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2951 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2952 return -EFAULT;
2953 return 0;
2954}
2955
a7f22660
DH
2956/*
2957 * Indicates for which pages that are write-protected in the page table,
2958 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
2959 * GUP pin will remain consistent with the pages mapped into the page tables
2960 * of the MM.
2961 *
2962 * Temporary unmapping of PageAnonExclusive() pages or clearing of
2963 * PageAnonExclusive() has to protect against concurrent GUP:
2964 * * Ordinary GUP: Using the PT lock
2965 * * GUP-fast and fork(): mm->write_protect_seq
2966 * * GUP-fast and KSM or temporary unmapping (swap, migration):
2967 * clear/invalidate+flush of the page table entry
2968 *
2969 * Must be called with the (sub)page that's actually referenced via the
2970 * page table entry, which might not necessarily be the head page for a
2971 * PTE-mapped THP.
2972 */
2973static inline bool gup_must_unshare(unsigned int flags, struct page *page)
2974{
2975 /*
2976 * FOLL_WRITE is implicitly handled correctly as the page table entry
2977 * has to be writable -- and if it references (part of) an anonymous
2978 * folio, that part is required to be marked exclusive.
2979 */
2980 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
2981 return false;
2982 /*
2983 * Note: PageAnon(page) is stable until the page is actually getting
2984 * freed.
2985 */
2986 if (!PageAnon(page))
2987 return false;
2988 /*
2989 * Note that PageKsm() pages cannot be exclusive, and consequently,
2990 * cannot get pinned.
2991 */
2992 return !PageAnonExclusive(page);
2993}
2994
8b1e0f81 2995typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2996extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2997 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2998extern int apply_to_existing_page_range(struct mm_struct *mm,
2999 unsigned long address, unsigned long size,
3000 pte_fn_t fn, void *data);
aee16b3c 3001
04013513 3002extern void init_mem_debugging_and_hardening(void);
8823b1db 3003#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3004extern void __kernel_poison_pages(struct page *page, int numpages);
3005extern void __kernel_unpoison_pages(struct page *page, int numpages);
3006extern bool _page_poisoning_enabled_early;
3007DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3008static inline bool page_poisoning_enabled(void)
3009{
3010 return _page_poisoning_enabled_early;
3011}
3012/*
3013 * For use in fast paths after init_mem_debugging() has run, or when a
3014 * false negative result is not harmful when called too early.
3015 */
3016static inline bool page_poisoning_enabled_static(void)
3017{
3018 return static_branch_unlikely(&_page_poisoning_enabled);
3019}
3020static inline void kernel_poison_pages(struct page *page, int numpages)
3021{
3022 if (page_poisoning_enabled_static())
3023 __kernel_poison_pages(page, numpages);
3024}
3025static inline void kernel_unpoison_pages(struct page *page, int numpages)
3026{
3027 if (page_poisoning_enabled_static())
3028 __kernel_unpoison_pages(page, numpages);
3029}
8823b1db
LA
3030#else
3031static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3032static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3033static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3034static inline void kernel_poison_pages(struct page *page, int numpages) { }
3035static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3036#endif
3037
51cba1eb 3038DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3039static inline bool want_init_on_alloc(gfp_t flags)
3040{
51cba1eb
KC
3041 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3042 &init_on_alloc))
6471384a
AP
3043 return true;
3044 return flags & __GFP_ZERO;
3045}
3046
51cba1eb 3047DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3048static inline bool want_init_on_free(void)
3049{
51cba1eb
KC
3050 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3051 &init_on_free);
6471384a
AP
3052}
3053
8e57f8ac
VB
3054extern bool _debug_pagealloc_enabled_early;
3055DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3056
3057static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3058{
3059 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3060 _debug_pagealloc_enabled_early;
3061}
3062
3063/*
3064 * For use in fast paths after init_debug_pagealloc() has run, or when a
3065 * false negative result is not harmful when called too early.
3066 */
3067static inline bool debug_pagealloc_enabled_static(void)
031bc574 3068{
96a2b03f
VB
3069 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3070 return false;
3071
3072 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3073}
3074
5d6ad668 3075#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3076/*
5d6ad668
MR
3077 * To support DEBUG_PAGEALLOC architecture must ensure that
3078 * __kernel_map_pages() never fails
c87cbc1f 3079 */
d6332692
RE
3080extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3081
77bc7fd6
MR
3082static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3083{
3084 if (debug_pagealloc_enabled_static())
3085 __kernel_map_pages(page, numpages, 1);
3086}
3087
3088static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3089{
3090 if (debug_pagealloc_enabled_static())
3091 __kernel_map_pages(page, numpages, 0);
3092}
5d6ad668 3093#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3094static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3095static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3096#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3097
a6c19dfe 3098#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3099extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3100extern int in_gate_area_no_mm(unsigned long addr);
3101extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3102#else
a6c19dfe
AL
3103static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3104{
3105 return NULL;
3106}
3107static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3108static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3109{
3110 return 0;
3111}
1da177e4
LT
3112#endif /* __HAVE_ARCH_GATE_AREA */
3113
44a70ade
MH
3114extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3115
146732ce
JT
3116#ifdef CONFIG_SYSCTL
3117extern int sysctl_drop_caches;
32927393
CH
3118int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3119 loff_t *);
146732ce
JT
3120#endif
3121
cb731d6c 3122void drop_slab(void);
9d0243bc 3123
7a9166e3
LY
3124#ifndef CONFIG_MMU
3125#define randomize_va_space 0
3126#else
a62eaf15 3127extern int randomize_va_space;
7a9166e3 3128#endif
a62eaf15 3129
045e72ac 3130const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3131#ifdef CONFIG_MMU
03252919 3132void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3133#else
3134static inline void print_vma_addr(char *prefix, unsigned long rip)
3135{
3136}
3137#endif
e6e5494c 3138
47010c04 3139#ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
3bc2b6a7
MS
3140int vmemmap_remap_free(unsigned long start, unsigned long end,
3141 unsigned long reuse);
ad2fa371
MS
3142int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3143 unsigned long reuse, gfp_t gfp_mask);
e5408417 3144#endif
f41f2ed4 3145
35fd1eb1 3146void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3147struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3148 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3149 struct dev_pagemap *pgmap);
29c71111 3150pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3151p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3152pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3153pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3154pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3155 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3156void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3157struct vmem_altmap;
56993b4e
AK
3158void *vmemmap_alloc_block_buf(unsigned long size, int node,
3159 struct vmem_altmap *altmap);
8f6aac41 3160void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3161int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3162 int node, struct vmem_altmap *altmap);
7b73d978
CH
3163int vmemmap_populate(unsigned long start, unsigned long end, int node,
3164 struct vmem_altmap *altmap);
c2b91e2e 3165void vmemmap_populate_print_last(void);
0197518c 3166#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3167void vmemmap_free(unsigned long start, unsigned long end,
3168 struct vmem_altmap *altmap);
0197518c 3169#endif
46723bfa 3170void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3171 unsigned long nr_pages);
6a46079c 3172
82ba011b
AK
3173enum mf_flags {
3174 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3175 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3176 MF_MUST_KILL = 1 << 2,
cf870c70 3177 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3178 MF_UNPOISON = 1 << 4,
67f22ba7 3179 MF_SW_SIMULATED = 1 << 5,
82ba011b 3180};
83b57531
EB
3181extern int memory_failure(unsigned long pfn, int flags);
3182extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3183extern void memory_failure_queue_kick(int cpu);
847ce401 3184extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3185extern int sysctl_memory_failure_early_kill;
3186extern int sysctl_memory_failure_recovery;
d0505e9f 3187extern void shake_page(struct page *p);
5844a486 3188extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3189extern int soft_offline_page(unsigned long pfn, int flags);
405ce051
NH
3190#ifdef CONFIG_MEMORY_FAILURE
3191extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags);
3192#else
3193static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
3194{
3195 return 0;
3196}
3197#endif
6a46079c 3198
03b122da
TL
3199#ifndef arch_memory_failure
3200static inline int arch_memory_failure(unsigned long pfn, int flags)
3201{
3202 return -ENXIO;
3203}
3204#endif
3205
3206#ifndef arch_is_platform_page
3207static inline bool arch_is_platform_page(u64 paddr)
3208{
3209 return false;
3210}
3211#endif
cc637b17
XX
3212
3213/*
3214 * Error handlers for various types of pages.
3215 */
cc3e2af4 3216enum mf_result {
cc637b17
XX
3217 MF_IGNORED, /* Error: cannot be handled */
3218 MF_FAILED, /* Error: handling failed */
3219 MF_DELAYED, /* Will be handled later */
3220 MF_RECOVERED, /* Successfully recovered */
3221};
3222
3223enum mf_action_page_type {
3224 MF_MSG_KERNEL,
3225 MF_MSG_KERNEL_HIGH_ORDER,
3226 MF_MSG_SLAB,
3227 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3228 MF_MSG_HUGE,
3229 MF_MSG_FREE_HUGE,
31286a84 3230 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3231 MF_MSG_UNMAP_FAILED,
3232 MF_MSG_DIRTY_SWAPCACHE,
3233 MF_MSG_CLEAN_SWAPCACHE,
3234 MF_MSG_DIRTY_MLOCKED_LRU,
3235 MF_MSG_CLEAN_MLOCKED_LRU,
3236 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3237 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3238 MF_MSG_DIRTY_LRU,
3239 MF_MSG_CLEAN_LRU,
3240 MF_MSG_TRUNCATED_LRU,
3241 MF_MSG_BUDDY,
6100e34b 3242 MF_MSG_DAX,
5d1fd5dc 3243 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3244 MF_MSG_UNKNOWN,
3245};
3246
47ad8475
AA
3247#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3248extern void clear_huge_page(struct page *page,
c79b57e4 3249 unsigned long addr_hint,
47ad8475
AA
3250 unsigned int pages_per_huge_page);
3251extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3252 unsigned long addr_hint,
3253 struct vm_area_struct *vma,
47ad8475 3254 unsigned int pages_per_huge_page);
fa4d75c1
MK
3255extern long copy_huge_page_from_user(struct page *dst_page,
3256 const void __user *usr_src,
810a56b9
MK
3257 unsigned int pages_per_huge_page,
3258 bool allow_pagefault);
2484ca9b
THV
3259
3260/**
3261 * vma_is_special_huge - Are transhuge page-table entries considered special?
3262 * @vma: Pointer to the struct vm_area_struct to consider
3263 *
3264 * Whether transhuge page-table entries are considered "special" following
3265 * the definition in vm_normal_page().
3266 *
3267 * Return: true if transhuge page-table entries should be considered special,
3268 * false otherwise.
3269 */
3270static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3271{
3272 return vma_is_dax(vma) || (vma->vm_file &&
3273 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3274}
3275
47ad8475
AA
3276#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3277
c0a32fc5
SG
3278#ifdef CONFIG_DEBUG_PAGEALLOC
3279extern unsigned int _debug_guardpage_minorder;
96a2b03f 3280DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3281
3282static inline unsigned int debug_guardpage_minorder(void)
3283{
3284 return _debug_guardpage_minorder;
3285}
3286
e30825f1
JK
3287static inline bool debug_guardpage_enabled(void)
3288{
96a2b03f 3289 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3290}
3291
c0a32fc5
SG
3292static inline bool page_is_guard(struct page *page)
3293{
e30825f1
JK
3294 if (!debug_guardpage_enabled())
3295 return false;
3296
3972f6bb 3297 return PageGuard(page);
c0a32fc5
SG
3298}
3299#else
3300static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3301static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3302static inline bool page_is_guard(struct page *page) { return false; }
3303#endif /* CONFIG_DEBUG_PAGEALLOC */
3304
f9872caf
CS
3305#if MAX_NUMNODES > 1
3306void __init setup_nr_node_ids(void);
3307#else
3308static inline void setup_nr_node_ids(void) {}
3309#endif
3310
010c164a
SL
3311extern int memcmp_pages(struct page *page1, struct page *page2);
3312
3313static inline int pages_identical(struct page *page1, struct page *page2)
3314{
3315 return !memcmp_pages(page1, page2);
3316}
3317
c5acad84
TH
3318#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3319unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3320 pgoff_t first_index, pgoff_t nr,
3321 pgoff_t bitmap_pgoff,
3322 unsigned long *bitmap,
3323 pgoff_t *start,
3324 pgoff_t *end);
3325
3326unsigned long wp_shared_mapping_range(struct address_space *mapping,
3327 pgoff_t first_index, pgoff_t nr);
3328#endif
3329
2374c09b
CH
3330extern int sysctl_nr_trim_pages;
3331
5bb1bb35 3332#ifdef CONFIG_PRINTK
8e7f37f2 3333void mem_dump_obj(void *object);
5bb1bb35
PM
3334#else
3335static inline void mem_dump_obj(void *object) {}
3336#endif
8e7f37f2 3337
22247efd
PX
3338/**
3339 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3340 * @seals: the seals to check
3341 * @vma: the vma to operate on
3342 *
3343 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3344 * the vma flags. Return 0 if check pass, or <0 for errors.
3345 */
3346static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3347{
3348 if (seals & F_SEAL_FUTURE_WRITE) {
3349 /*
3350 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3351 * "future write" seal active.
3352 */
3353 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3354 return -EPERM;
3355
3356 /*
3357 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3358 * MAP_SHARED and read-only, take care to not allow mprotect to
3359 * revert protections on such mappings. Do this only for shared
3360 * mappings. For private mappings, don't need to mask
3361 * VM_MAYWRITE as we still want them to be COW-writable.
3362 */
3363 if (vma->vm_flags & VM_SHARED)
3364 vma->vm_flags &= ~(VM_MAYWRITE);
3365 }
3366
3367 return 0;
3368}
3369
9a10064f
CC
3370#ifdef CONFIG_ANON_VMA_NAME
3371int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
3372 unsigned long len_in,
3373 struct anon_vma_name *anon_name);
9a10064f
CC
3374#else
3375static inline int
3376madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 3377 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
3378 return 0;
3379}
3380#endif
3381
999dad82
PX
3382/*
3383 * Whether to drop the pte markers, for example, the uffd-wp information for
3384 * file-backed memory. This should only be specified when we will completely
3385 * drop the page in the mm, either by truncation or unmapping of the vma. By
3386 * default, the flag is not set.
3387 */
3388#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
3389
1da177e4 3390#endif /* _LINUX_MM_H */