mm/mmap: change do_brk_flags() to expand existing VMA and add do_brk_munmap()
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
1da177e4
LT
32
33struct mempolicy;
34struct anon_vma;
bf181b9f 35struct anon_vma_chain;
e8edc6e0 36struct user_struct;
bce617ed 37struct pt_regs;
1da177e4 38
5ef64cc8
LT
39extern int sysctl_page_lock_unfairness;
40
597b7305
MH
41void init_mm_internals(void);
42
a9ee6cf5 43#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 44extern unsigned long max_mapnr;
fccc9987
JL
45
46static inline void set_max_mapnr(unsigned long limit)
47{
48 max_mapnr = limit;
49}
50#else
51static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
52#endif
53
ca79b0c2
AK
54extern atomic_long_t _totalram_pages;
55static inline unsigned long totalram_pages(void)
56{
57 return (unsigned long)atomic_long_read(&_totalram_pages);
58}
59
60static inline void totalram_pages_inc(void)
61{
62 atomic_long_inc(&_totalram_pages);
63}
64
65static inline void totalram_pages_dec(void)
66{
67 atomic_long_dec(&_totalram_pages);
68}
69
70static inline void totalram_pages_add(long count)
71{
72 atomic_long_add(count, &_totalram_pages);
73}
74
1da177e4 75extern void * high_memory;
1da177e4
LT
76extern int page_cluster;
77
78#ifdef CONFIG_SYSCTL
79extern int sysctl_legacy_va_layout;
80#else
81#define sysctl_legacy_va_layout 0
82#endif
83
d07e2259
DC
84#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
85extern const int mmap_rnd_bits_min;
86extern const int mmap_rnd_bits_max;
87extern int mmap_rnd_bits __read_mostly;
88#endif
89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
90extern const int mmap_rnd_compat_bits_min;
91extern const int mmap_rnd_compat_bits_max;
92extern int mmap_rnd_compat_bits __read_mostly;
93#endif
94
1da177e4 95#include <asm/page.h>
1da177e4 96#include <asm/processor.h>
1da177e4 97
d9344522
AK
98/*
99 * Architectures that support memory tagging (assigning tags to memory regions,
100 * embedding these tags into addresses that point to these memory regions, and
101 * checking that the memory and the pointer tags match on memory accesses)
102 * redefine this macro to strip tags from pointers.
f0953a1b 103 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
104 */
105#ifndef untagged_addr
106#define untagged_addr(addr) (addr)
107#endif
108
79442ed1
TC
109#ifndef __pa_symbol
110#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
111#endif
112
1dff8083
AB
113#ifndef page_to_virt
114#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
115#endif
116
568c5fe5
LA
117#ifndef lm_alias
118#define lm_alias(x) __va(__pa_symbol(x))
119#endif
120
593befa6
DD
121/*
122 * To prevent common memory management code establishing
123 * a zero page mapping on a read fault.
124 * This macro should be defined within <asm/pgtable.h>.
125 * s390 does this to prevent multiplexing of hardware bits
126 * related to the physical page in case of virtualization.
127 */
128#ifndef mm_forbids_zeropage
129#define mm_forbids_zeropage(X) (0)
130#endif
131
a4a3ede2
PT
132/*
133 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
134 * If an architecture decides to implement their own version of
135 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
136 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 137 */
5470dea4
AD
138#if BITS_PER_LONG == 64
139/* This function must be updated when the size of struct page grows above 80
140 * or reduces below 56. The idea that compiler optimizes out switch()
141 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 142 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
143 * this can result in several of the writes here being dropped.
144 */
145#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
146static inline void __mm_zero_struct_page(struct page *page)
147{
148 unsigned long *_pp = (void *)page;
149
150 /* Check that struct page is either 56, 64, 72, or 80 bytes */
151 BUILD_BUG_ON(sizeof(struct page) & 7);
152 BUILD_BUG_ON(sizeof(struct page) < 56);
153 BUILD_BUG_ON(sizeof(struct page) > 80);
154
155 switch (sizeof(struct page)) {
156 case 80:
df561f66
GS
157 _pp[9] = 0;
158 fallthrough;
5470dea4 159 case 72:
df561f66
GS
160 _pp[8] = 0;
161 fallthrough;
5470dea4 162 case 64:
df561f66
GS
163 _pp[7] = 0;
164 fallthrough;
5470dea4
AD
165 case 56:
166 _pp[6] = 0;
167 _pp[5] = 0;
168 _pp[4] = 0;
169 _pp[3] = 0;
170 _pp[2] = 0;
171 _pp[1] = 0;
172 _pp[0] = 0;
173 }
174}
175#else
a4a3ede2
PT
176#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
177#endif
178
ea606cf5
AR
179/*
180 * Default maximum number of active map areas, this limits the number of vmas
181 * per mm struct. Users can overwrite this number by sysctl but there is a
182 * problem.
183 *
184 * When a program's coredump is generated as ELF format, a section is created
185 * per a vma. In ELF, the number of sections is represented in unsigned short.
186 * This means the number of sections should be smaller than 65535 at coredump.
187 * Because the kernel adds some informative sections to a image of program at
188 * generating coredump, we need some margin. The number of extra sections is
189 * 1-3 now and depends on arch. We use "5" as safe margin, here.
190 *
191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192 * not a hard limit any more. Although some userspace tools can be surprised by
193 * that.
194 */
195#define MAPCOUNT_ELF_CORE_MARGIN (5)
196#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
197
198extern int sysctl_max_map_count;
199
c9b1d098 200extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 201extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 202
49f0ce5f
JM
203extern int sysctl_overcommit_memory;
204extern int sysctl_overcommit_ratio;
205extern unsigned long sysctl_overcommit_kbytes;
206
32927393
CH
207int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
209int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
56f3547b
FT
211int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
212 loff_t *);
49f0ce5f 213
1cfcee72 214#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 215#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 216#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
217#else
218#define nth_page(page,n) ((page) + (n))
659508f9 219#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 220#endif
1da177e4 221
27ac792c
AR
222/* to align the pointer to the (next) page boundary */
223#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224
335e52c2
DG
225/* to align the pointer to the (prev) page boundary */
226#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
227
0fa73b86 228/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 229#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 230
f86196ea 231#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
232static inline struct folio *lru_to_folio(struct list_head *head)
233{
234 return list_entry((head)->prev, struct folio, lru);
235}
f86196ea 236
5748fbc5
KW
237void setup_initial_init_mm(void *start_code, void *end_code,
238 void *end_data, void *brk);
239
1da177e4
LT
240/*
241 * Linux kernel virtual memory manager primitives.
242 * The idea being to have a "virtual" mm in the same way
243 * we have a virtual fs - giving a cleaner interface to the
244 * mm details, and allowing different kinds of memory mappings
245 * (from shared memory to executable loading to arbitrary
246 * mmap() functions).
247 */
248
490fc053 249struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
250struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
251void vm_area_free(struct vm_area_struct *);
c43692e8 252
1da177e4 253#ifndef CONFIG_MMU
8feae131
DH
254extern struct rb_root nommu_region_tree;
255extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
256
257extern unsigned int kobjsize(const void *objp);
258#endif
259
260/*
605d9288 261 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 262 * When changing, update also include/trace/events/mmflags.h
1da177e4 263 */
cc2383ec
KK
264#define VM_NONE 0x00000000
265
1da177e4
LT
266#define VM_READ 0x00000001 /* currently active flags */
267#define VM_WRITE 0x00000002
268#define VM_EXEC 0x00000004
269#define VM_SHARED 0x00000008
270
7e2cff42 271/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
272#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
273#define VM_MAYWRITE 0x00000020
274#define VM_MAYEXEC 0x00000040
275#define VM_MAYSHARE 0x00000080
276
277#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 278#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 279#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 280#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 281
1da177e4
LT
282#define VM_LOCKED 0x00002000
283#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
284
285 /* Used by sys_madvise() */
286#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
287#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
288
289#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
290#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 291#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 292#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 293#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 294#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 295#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 296#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 297#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 298#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 299
d9104d1c
CG
300#ifdef CONFIG_MEM_SOFT_DIRTY
301# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
302#else
303# define VM_SOFTDIRTY 0
304#endif
305
b379d790 306#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
307#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
308#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 309#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 310
63c17fb8
DH
311#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
312#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
313#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
314#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
315#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 316#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
317#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
318#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
319#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
320#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 321#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
322#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
323
5212213a 324#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
325# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
326# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 327# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
328# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
329# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
330#ifdef CONFIG_PPC
331# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
332#else
333# define VM_PKEY_BIT4 0
8f62c883 334#endif
5212213a
RP
335#endif /* CONFIG_ARCH_HAS_PKEYS */
336
337#if defined(CONFIG_X86)
338# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
339#elif defined(CONFIG_PPC)
340# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
341#elif defined(CONFIG_PARISC)
342# define VM_GROWSUP VM_ARCH_1
343#elif defined(CONFIG_IA64)
344# define VM_GROWSUP VM_ARCH_1
74a04967
KA
345#elif defined(CONFIG_SPARC64)
346# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
347# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
348#elif defined(CONFIG_ARM64)
349# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
350# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
351#elif !defined(CONFIG_MMU)
352# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
353#endif
354
9f341931
CM
355#if defined(CONFIG_ARM64_MTE)
356# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
357# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
358#else
359# define VM_MTE VM_NONE
360# define VM_MTE_ALLOWED VM_NONE
361#endif
362
cc2383ec
KK
363#ifndef VM_GROWSUP
364# define VM_GROWSUP VM_NONE
365#endif
366
7677f7fd
AR
367#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
368# define VM_UFFD_MINOR_BIT 37
369# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
370#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
371# define VM_UFFD_MINOR VM_NONE
372#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
373
a8bef8ff
MG
374/* Bits set in the VMA until the stack is in its final location */
375#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
376
c62da0c3
AK
377#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
378
379/* Common data flag combinations */
380#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
381 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
382#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
383 VM_MAYWRITE | VM_MAYEXEC)
384#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
385 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
386
387#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
388#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
389#endif
390
1da177e4
LT
391#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
392#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
393#endif
394
395#ifdef CONFIG_STACK_GROWSUP
30bdbb78 396#define VM_STACK VM_GROWSUP
1da177e4 397#else
30bdbb78 398#define VM_STACK VM_GROWSDOWN
1da177e4
LT
399#endif
400
30bdbb78
KK
401#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
402
6cb4d9a2
AK
403/* VMA basic access permission flags */
404#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
405
406
b291f000 407/*
78f11a25 408 * Special vmas that are non-mergable, non-mlock()able.
b291f000 409 */
9050d7eb 410#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 411
b4443772
AK
412/* This mask prevents VMA from being scanned with khugepaged */
413#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
414
a0715cc2
AT
415/* This mask defines which mm->def_flags a process can inherit its parent */
416#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
417
de60f5f1
EM
418/* This mask is used to clear all the VMA flags used by mlock */
419#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
420
2c2d57b5
KA
421/* Arch-specific flags to clear when updating VM flags on protection change */
422#ifndef VM_ARCH_CLEAR
423# define VM_ARCH_CLEAR VM_NONE
424#endif
425#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
426
1da177e4
LT
427/*
428 * mapping from the currently active vm_flags protection bits (the
429 * low four bits) to a page protection mask..
430 */
1da177e4 431
dde16072
PX
432/*
433 * The default fault flags that should be used by most of the
434 * arch-specific page fault handlers.
435 */
436#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
437 FAULT_FLAG_KILLABLE | \
438 FAULT_FLAG_INTERRUPTIBLE)
dde16072 439
4064b982
PX
440/**
441 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 442 * @flags: Fault flags.
4064b982
PX
443 *
444 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 445 * the mmap_lock for too long a time when waiting for another condition
4064b982 446 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
447 * mmap_lock in the first round to avoid potential starvation of other
448 * processes that would also want the mmap_lock.
4064b982
PX
449 *
450 * Return: true if the page fault allows retry and this is the first
451 * attempt of the fault handling; false otherwise.
452 */
da2f5eb3 453static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
454{
455 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
456 (!(flags & FAULT_FLAG_TRIED));
457}
458
282a8e03
RZ
459#define FAULT_FLAG_TRACE \
460 { FAULT_FLAG_WRITE, "WRITE" }, \
461 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
462 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
463 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
464 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
465 { FAULT_FLAG_TRIED, "TRIED" }, \
466 { FAULT_FLAG_USER, "USER" }, \
467 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
468 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
469 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 470
54cb8821 471/*
11192337 472 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
473 * ->fault function. The vma's ->fault is responsible for returning a bitmask
474 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 475 *
c20cd45e
MH
476 * MM layer fills up gfp_mask for page allocations but fault handler might
477 * alter it if its implementation requires a different allocation context.
478 *
9b4bdd2f 479 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 480 */
d0217ac0 481struct vm_fault {
5857c920 482 const struct {
742d3372
WD
483 struct vm_area_struct *vma; /* Target VMA */
484 gfp_t gfp_mask; /* gfp mask to be used for allocations */
485 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
486 unsigned long address; /* Faulting virtual address - masked */
487 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 488 };
da2f5eb3 489 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 490 * XXX: should really be 'const' */
82b0f8c3 491 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 492 * the 'address' */
a2d58167
DJ
493 pud_t *pud; /* Pointer to pud entry matching
494 * the 'address'
495 */
5db4f15c
YS
496 union {
497 pte_t orig_pte; /* Value of PTE at the time of fault */
498 pmd_t orig_pmd; /* Value of PMD at the time of fault,
499 * used by PMD fault only.
500 */
501 };
d0217ac0 502
3917048d 503 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 504 struct page *page; /* ->fault handlers should return a
83c54070 505 * page here, unless VM_FAULT_NOPAGE
d0217ac0 506 * is set (which is also implied by
83c54070 507 * VM_FAULT_ERROR).
d0217ac0 508 */
82b0f8c3 509 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
510 pte_t *pte; /* Pointer to pte entry matching
511 * the 'address'. NULL if the page
512 * table hasn't been allocated.
513 */
514 spinlock_t *ptl; /* Page table lock.
515 * Protects pte page table if 'pte'
516 * is not NULL, otherwise pmd.
517 */
7267ec00 518 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
519 * vm_ops->map_pages() sets up a page
520 * table from atomic context.
7267ec00
KS
521 * do_fault_around() pre-allocates
522 * page table to avoid allocation from
523 * atomic context.
524 */
54cb8821 525};
1da177e4 526
c791ace1
DJ
527/* page entry size for vm->huge_fault() */
528enum page_entry_size {
529 PE_SIZE_PTE = 0,
530 PE_SIZE_PMD,
531 PE_SIZE_PUD,
532};
533
1da177e4
LT
534/*
535 * These are the virtual MM functions - opening of an area, closing and
536 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 537 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
538 */
539struct vm_operations_struct {
540 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
541 /**
542 * @close: Called when the VMA is being removed from the MM.
543 * Context: User context. May sleep. Caller holds mmap_lock.
544 */
1da177e4 545 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
546 /* Called any time before splitting to check if it's allowed */
547 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 548 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
549 /*
550 * Called by mprotect() to make driver-specific permission
551 * checks before mprotect() is finalised. The VMA must not
552 * be modified. Returns 0 if eprotect() can proceed.
553 */
554 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
555 unsigned long end, unsigned long newflags);
1c8f4220
SJ
556 vm_fault_t (*fault)(struct vm_fault *vmf);
557 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
558 enum page_entry_size pe_size);
f9ce0be7 559 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 560 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 561 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
562
563 /* notification that a previously read-only page is about to become
564 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 565 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 566
dd906184 567 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 568 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 569
28b2ee20 570 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
571 * for use by special VMAs. See also generic_access_phys() for a generic
572 * implementation useful for any iomem mapping.
28b2ee20
RR
573 */
574 int (*access)(struct vm_area_struct *vma, unsigned long addr,
575 void *buf, int len, int write);
78d683e8
AL
576
577 /* Called by the /proc/PID/maps code to ask the vma whether it
578 * has a special name. Returning non-NULL will also cause this
579 * vma to be dumped unconditionally. */
580 const char *(*name)(struct vm_area_struct *vma);
581
1da177e4 582#ifdef CONFIG_NUMA
a6020ed7
LS
583 /*
584 * set_policy() op must add a reference to any non-NULL @new mempolicy
585 * to hold the policy upon return. Caller should pass NULL @new to
586 * remove a policy and fall back to surrounding context--i.e. do not
587 * install a MPOL_DEFAULT policy, nor the task or system default
588 * mempolicy.
589 */
1da177e4 590 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
591
592 /*
593 * get_policy() op must add reference [mpol_get()] to any policy at
594 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
595 * in mm/mempolicy.c will do this automatically.
596 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 597 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
598 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
599 * must return NULL--i.e., do not "fallback" to task or system default
600 * policy.
601 */
1da177e4
LT
602 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
603 unsigned long addr);
604#endif
667a0a06
DV
605 /*
606 * Called by vm_normal_page() for special PTEs to find the
607 * page for @addr. This is useful if the default behavior
608 * (using pte_page()) would not find the correct page.
609 */
610 struct page *(*find_special_page)(struct vm_area_struct *vma,
611 unsigned long addr);
1da177e4
LT
612};
613
027232da
KS
614static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
615{
bfd40eaf
KS
616 static const struct vm_operations_struct dummy_vm_ops = {};
617
a670468f 618 memset(vma, 0, sizeof(*vma));
027232da 619 vma->vm_mm = mm;
bfd40eaf 620 vma->vm_ops = &dummy_vm_ops;
027232da
KS
621 INIT_LIST_HEAD(&vma->anon_vma_chain);
622}
623
bfd40eaf
KS
624static inline void vma_set_anonymous(struct vm_area_struct *vma)
625{
626 vma->vm_ops = NULL;
627}
628
43675e6f
YS
629static inline bool vma_is_anonymous(struct vm_area_struct *vma)
630{
631 return !vma->vm_ops;
632}
633
222100ee
AK
634static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
635{
636 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
637
638 if (!maybe_stack)
639 return false;
640
641 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
642 VM_STACK_INCOMPLETE_SETUP)
643 return true;
644
645 return false;
646}
647
7969f226
AK
648static inline bool vma_is_foreign(struct vm_area_struct *vma)
649{
650 if (!current->mm)
651 return true;
652
653 if (current->mm != vma->vm_mm)
654 return true;
655
656 return false;
657}
3122e80e
AK
658
659static inline bool vma_is_accessible(struct vm_area_struct *vma)
660{
6cb4d9a2 661 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
662}
663
f39af059
MWO
664static inline
665struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
666{
667 return mas_find(&vmi->mas, max);
668}
669
670static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
671{
672 /*
673 * Uses vma_find() to get the first VMA when the iterator starts.
674 * Calling mas_next() could skip the first entry.
675 */
676 return vma_find(vmi, ULONG_MAX);
677}
678
679static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
680{
681 return mas_prev(&vmi->mas, 0);
682}
683
684static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
685{
686 return vmi->mas.index;
687}
688
689#define for_each_vma(__vmi, __vma) \
690 while (((__vma) = vma_next(&(__vmi))) != NULL)
691
692/* The MM code likes to work with exclusive end addresses */
693#define for_each_vma_range(__vmi, __vma, __end) \
694 while (((__vma) = vma_find(&(__vmi), (__end) - 1)) != NULL)
695
43675e6f
YS
696#ifdef CONFIG_SHMEM
697/*
698 * The vma_is_shmem is not inline because it is used only by slow
699 * paths in userfault.
700 */
701bool vma_is_shmem(struct vm_area_struct *vma);
702#else
703static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
704#endif
705
706int vma_is_stack_for_current(struct vm_area_struct *vma);
707
8b11ec1b
LT
708/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
709#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
710
1da177e4
LT
711struct mmu_gather;
712struct inode;
713
5bf34d7c
MWO
714static inline unsigned int compound_order(struct page *page)
715{
716 if (!PageHead(page))
717 return 0;
718 return page[1].compound_order;
719}
720
721/**
722 * folio_order - The allocation order of a folio.
723 * @folio: The folio.
724 *
725 * A folio is composed of 2^order pages. See get_order() for the definition
726 * of order.
727 *
728 * Return: The order of the folio.
729 */
730static inline unsigned int folio_order(struct folio *folio)
731{
732 return compound_order(&folio->page);
733}
734
71e3aac0 735#include <linux/huge_mm.h>
1da177e4
LT
736
737/*
738 * Methods to modify the page usage count.
739 *
740 * What counts for a page usage:
741 * - cache mapping (page->mapping)
742 * - private data (page->private)
743 * - page mapped in a task's page tables, each mapping
744 * is counted separately
745 *
746 * Also, many kernel routines increase the page count before a critical
747 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
748 */
749
750/*
da6052f7 751 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 752 */
7c8ee9a8
NP
753static inline int put_page_testzero(struct page *page)
754{
fe896d18
JK
755 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
756 return page_ref_dec_and_test(page);
7c8ee9a8 757}
1da177e4 758
b620f633
MWO
759static inline int folio_put_testzero(struct folio *folio)
760{
761 return put_page_testzero(&folio->page);
762}
763
1da177e4 764/*
7c8ee9a8
NP
765 * Try to grab a ref unless the page has a refcount of zero, return false if
766 * that is the case.
8e0861fa
AK
767 * This can be called when MMU is off so it must not access
768 * any of the virtual mappings.
1da177e4 769 */
c2530328 770static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 771{
fe896d18 772 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 773}
1da177e4 774
53df8fdc 775extern int page_is_ram(unsigned long pfn);
124fe20d
DW
776
777enum {
778 REGION_INTERSECTS,
779 REGION_DISJOINT,
780 REGION_MIXED,
781};
782
1c29f25b
TK
783int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
784 unsigned long desc);
53df8fdc 785
48667e7a 786/* Support for virtually mapped pages */
b3bdda02
CL
787struct page *vmalloc_to_page(const void *addr);
788unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 789
0738c4bb
PM
790/*
791 * Determine if an address is within the vmalloc range
792 *
793 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
794 * is no special casing required.
795 */
9bd3bb67
AK
796
797#ifndef is_ioremap_addr
798#define is_ioremap_addr(x) is_vmalloc_addr(x)
799#endif
800
81ac3ad9 801#ifdef CONFIG_MMU
186525bd 802extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
803extern int is_vmalloc_or_module_addr(const void *x);
804#else
186525bd
IM
805static inline bool is_vmalloc_addr(const void *x)
806{
807 return false;
808}
934831d0 809static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
810{
811 return 0;
812}
813#endif
9e2779fa 814
74e8ee47
MWO
815/*
816 * How many times the entire folio is mapped as a single unit (eg by a
817 * PMD or PUD entry). This is probably not what you want, except for
818 * debugging purposes; look at folio_mapcount() or page_mapcount()
819 * instead.
820 */
821static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 822{
74e8ee47
MWO
823 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
824 return atomic_read(folio_mapcount_ptr(folio)) + 1;
6dc5ea16
JH
825}
826
6988f31d
KK
827/*
828 * Mapcount of compound page as a whole, does not include mapped sub-pages.
829 *
74e8ee47 830 * Must be called only for compound pages.
6988f31d 831 */
53f9263b
KS
832static inline int compound_mapcount(struct page *page)
833{
74e8ee47 834 return folio_entire_mapcount(page_folio(page));
53f9263b
KS
835}
836
70b50f94
AA
837/*
838 * The atomic page->_mapcount, starts from -1: so that transitions
839 * both from it and to it can be tracked, using atomic_inc_and_test
840 * and atomic_add_negative(-1).
841 */
22b751c3 842static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
843{
844 atomic_set(&(page)->_mapcount, -1);
845}
846
b20ce5e0
KS
847int __page_mapcount(struct page *page);
848
6988f31d
KK
849/*
850 * Mapcount of 0-order page; when compound sub-page, includes
851 * compound_mapcount().
852 *
853 * Result is undefined for pages which cannot be mapped into userspace.
854 * For example SLAB or special types of pages. See function page_has_type().
855 * They use this place in struct page differently.
856 */
70b50f94
AA
857static inline int page_mapcount(struct page *page)
858{
b20ce5e0
KS
859 if (unlikely(PageCompound(page)))
860 return __page_mapcount(page);
861 return atomic_read(&page->_mapcount) + 1;
862}
863
4ba1119c
MWO
864int folio_mapcount(struct folio *folio);
865
b20ce5e0 866#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4ba1119c
MWO
867static inline int total_mapcount(struct page *page)
868{
869 return folio_mapcount(page_folio(page));
870}
871
b20ce5e0
KS
872#else
873static inline int total_mapcount(struct page *page)
874{
875 return page_mapcount(page);
70b50f94 876}
b20ce5e0 877#endif
70b50f94 878
b49af68f
CL
879static inline struct page *virt_to_head_page(const void *x)
880{
881 struct page *page = virt_to_page(x);
ccaafd7f 882
1d798ca3 883 return compound_head(page);
b49af68f
CL
884}
885
7d4203c1
VB
886static inline struct folio *virt_to_folio(const void *x)
887{
888 struct page *page = virt_to_page(x);
889
890 return page_folio(page);
891}
892
8d29c703 893void __folio_put(struct folio *folio);
ddc58f27 894
1d7ea732 895void put_pages_list(struct list_head *pages);
1da177e4 896
8dfcc9ba 897void split_page(struct page *page, unsigned int order);
715cbfd6 898void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 899
a1554c00
ML
900unsigned long nr_free_buffer_pages(void);
901
33f2ef89
AW
902/*
903 * Compound pages have a destructor function. Provide a
904 * prototype for that function and accessor functions.
f1e61557 905 * These are _only_ valid on the head of a compound page.
33f2ef89 906 */
f1e61557
KS
907typedef void compound_page_dtor(struct page *);
908
909/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
910enum compound_dtor_id {
911 NULL_COMPOUND_DTOR,
912 COMPOUND_PAGE_DTOR,
913#ifdef CONFIG_HUGETLB_PAGE
914 HUGETLB_PAGE_DTOR,
9a982250
KS
915#endif
916#ifdef CONFIG_TRANSPARENT_HUGEPAGE
917 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
918#endif
919 NR_COMPOUND_DTORS,
920};
ae70eddd 921extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
922
923static inline void set_compound_page_dtor(struct page *page,
f1e61557 924 enum compound_dtor_id compound_dtor)
33f2ef89 925{
f1e61557
KS
926 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
927 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
928}
929
5375336c 930void destroy_large_folio(struct folio *folio);
33f2ef89 931
bac3cf4d 932static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
933{
934 return atomic_read(compound_pincount_ptr(head));
935}
936
f1e61557 937static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 938{
e4b294c2 939 page[1].compound_order = order;
5232c63f 940#ifdef CONFIG_64BIT
1378a5ee 941 page[1].compound_nr = 1U << order;
5232c63f 942#endif
d85f3385
CL
943}
944
d8c6546b
MWO
945/* Returns the number of pages in this potentially compound page. */
946static inline unsigned long compound_nr(struct page *page)
947{
1378a5ee
MWO
948 if (!PageHead(page))
949 return 1;
5232c63f 950#ifdef CONFIG_64BIT
1378a5ee 951 return page[1].compound_nr;
5232c63f
MWO
952#else
953 return 1UL << compound_order(page);
954#endif
d8c6546b
MWO
955}
956
a50b854e
MWO
957/* Returns the number of bytes in this potentially compound page. */
958static inline unsigned long page_size(struct page *page)
959{
960 return PAGE_SIZE << compound_order(page);
961}
962
94ad9338
MWO
963/* Returns the number of bits needed for the number of bytes in a page */
964static inline unsigned int page_shift(struct page *page)
965{
966 return PAGE_SHIFT + compound_order(page);
967}
968
18788cfa
MWO
969/**
970 * thp_order - Order of a transparent huge page.
971 * @page: Head page of a transparent huge page.
972 */
973static inline unsigned int thp_order(struct page *page)
974{
975 VM_BUG_ON_PGFLAGS(PageTail(page), page);
976 return compound_order(page);
977}
978
979/**
980 * thp_nr_pages - The number of regular pages in this huge page.
981 * @page: The head page of a huge page.
982 */
983static inline int thp_nr_pages(struct page *page)
984{
985 VM_BUG_ON_PGFLAGS(PageTail(page), page);
986 return compound_nr(page);
987}
988
989/**
990 * thp_size - Size of a transparent huge page.
991 * @page: Head page of a transparent huge page.
992 *
993 * Return: Number of bytes in this page.
994 */
995static inline unsigned long thp_size(struct page *page)
996{
997 return PAGE_SIZE << thp_order(page);
998}
999
9a982250
KS
1000void free_compound_page(struct page *page);
1001
3dece370 1002#ifdef CONFIG_MMU
14fd403f
AA
1003/*
1004 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1005 * servicing faults for write access. In the normal case, do always want
1006 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1007 * that do not have writing enabled, when used by access_process_vm.
1008 */
1009static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1010{
1011 if (likely(vma->vm_flags & VM_WRITE))
1012 pte = pte_mkwrite(pte);
1013 return pte;
1014}
8c6e50b0 1015
f9ce0be7 1016vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1017void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1018
2b740303
SJ
1019vm_fault_t finish_fault(struct vm_fault *vmf);
1020vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1021#endif
14fd403f 1022
1da177e4
LT
1023/*
1024 * Multiple processes may "see" the same page. E.g. for untouched
1025 * mappings of /dev/null, all processes see the same page full of
1026 * zeroes, and text pages of executables and shared libraries have
1027 * only one copy in memory, at most, normally.
1028 *
1029 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1030 * page_count() == 0 means the page is free. page->lru is then used for
1031 * freelist management in the buddy allocator.
da6052f7 1032 * page_count() > 0 means the page has been allocated.
1da177e4 1033 *
da6052f7
NP
1034 * Pages are allocated by the slab allocator in order to provide memory
1035 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1036 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1037 * unless a particular usage is carefully commented. (the responsibility of
1038 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1039 *
da6052f7
NP
1040 * A page may be used by anyone else who does a __get_free_page().
1041 * In this case, page_count still tracks the references, and should only
1042 * be used through the normal accessor functions. The top bits of page->flags
1043 * and page->virtual store page management information, but all other fields
1044 * are unused and could be used privately, carefully. The management of this
1045 * page is the responsibility of the one who allocated it, and those who have
1046 * subsequently been given references to it.
1047 *
1048 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1049 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1050 * The following discussion applies only to them.
1051 *
da6052f7
NP
1052 * A pagecache page contains an opaque `private' member, which belongs to the
1053 * page's address_space. Usually, this is the address of a circular list of
1054 * the page's disk buffers. PG_private must be set to tell the VM to call
1055 * into the filesystem to release these pages.
1da177e4 1056 *
da6052f7
NP
1057 * A page may belong to an inode's memory mapping. In this case, page->mapping
1058 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1059 * in units of PAGE_SIZE.
1da177e4 1060 *
da6052f7
NP
1061 * If pagecache pages are not associated with an inode, they are said to be
1062 * anonymous pages. These may become associated with the swapcache, and in that
1063 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1064 *
da6052f7
NP
1065 * In either case (swapcache or inode backed), the pagecache itself holds one
1066 * reference to the page. Setting PG_private should also increment the
1067 * refcount. The each user mapping also has a reference to the page.
1da177e4 1068 *
da6052f7 1069 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1070 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1071 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1072 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1073 *
da6052f7 1074 * All pagecache pages may be subject to I/O:
1da177e4
LT
1075 * - inode pages may need to be read from disk,
1076 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1077 * to be written back to the inode on disk,
1078 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1079 * modified may need to be swapped out to swap space and (later) to be read
1080 * back into memory.
1da177e4
LT
1081 */
1082
27674ef6 1083#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1084DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1085
f4f451a1
MS
1086bool __put_devmap_managed_page_refs(struct page *page, int refs);
1087static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1088{
1089 if (!static_branch_unlikely(&devmap_managed_key))
1090 return false;
1091 if (!is_zone_device_page(page))
1092 return false;
f4f451a1 1093 return __put_devmap_managed_page_refs(page, refs);
e7638488 1094}
27674ef6 1095#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1096static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1097{
1098 return false;
1099}
27674ef6 1100#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1101
f4f451a1
MS
1102static inline bool put_devmap_managed_page(struct page *page)
1103{
1104 return put_devmap_managed_page_refs(page, 1);
1105}
1106
f958d7b5 1107/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1108#define folio_ref_zero_or_close_to_overflow(folio) \
1109 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1110
1111/**
1112 * folio_get - Increment the reference count on a folio.
1113 * @folio: The folio.
1114 *
1115 * Context: May be called in any context, as long as you know that
1116 * you have a refcount on the folio. If you do not already have one,
1117 * folio_try_get() may be the right interface for you to use.
1118 */
1119static inline void folio_get(struct folio *folio)
1120{
1121 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1122 folio_ref_inc(folio);
1123}
f958d7b5 1124
3565fce3
DW
1125static inline void get_page(struct page *page)
1126{
86d234cb 1127 folio_get(page_folio(page));
3565fce3
DW
1128}
1129
3faa52c0 1130bool __must_check try_grab_page(struct page *page, unsigned int flags);
cd1adf1b
LT
1131
1132static inline __must_check bool try_get_page(struct page *page)
1133{
1134 page = compound_head(page);
1135 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1136 return false;
1137 page_ref_inc(page);
1138 return true;
1139}
3565fce3 1140
b620f633
MWO
1141/**
1142 * folio_put - Decrement the reference count on a folio.
1143 * @folio: The folio.
1144 *
1145 * If the folio's reference count reaches zero, the memory will be
1146 * released back to the page allocator and may be used by another
1147 * allocation immediately. Do not access the memory or the struct folio
1148 * after calling folio_put() unless you can be sure that it wasn't the
1149 * last reference.
1150 *
1151 * Context: May be called in process or interrupt context, but not in NMI
1152 * context. May be called while holding a spinlock.
1153 */
1154static inline void folio_put(struct folio *folio)
1155{
1156 if (folio_put_testzero(folio))
8d29c703 1157 __folio_put(folio);
b620f633
MWO
1158}
1159
3fe7fa58
MWO
1160/**
1161 * folio_put_refs - Reduce the reference count on a folio.
1162 * @folio: The folio.
1163 * @refs: The amount to subtract from the folio's reference count.
1164 *
1165 * If the folio's reference count reaches zero, the memory will be
1166 * released back to the page allocator and may be used by another
1167 * allocation immediately. Do not access the memory or the struct folio
1168 * after calling folio_put_refs() unless you can be sure that these weren't
1169 * the last references.
1170 *
1171 * Context: May be called in process or interrupt context, but not in NMI
1172 * context. May be called while holding a spinlock.
1173 */
1174static inline void folio_put_refs(struct folio *folio, int refs)
1175{
1176 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1177 __folio_put(folio);
3fe7fa58
MWO
1178}
1179
e3c4cebf
MWO
1180void release_pages(struct page **pages, int nr);
1181
1182/**
1183 * folios_put - Decrement the reference count on an array of folios.
1184 * @folios: The folios.
1185 * @nr: How many folios there are.
1186 *
1187 * Like folio_put(), but for an array of folios. This is more efficient
1188 * than writing the loop yourself as it will optimise the locks which
1189 * need to be taken if the folios are freed.
1190 *
1191 * Context: May be called in process or interrupt context, but not in NMI
1192 * context. May be called while holding a spinlock.
1193 */
1194static inline void folios_put(struct folio **folios, unsigned int nr)
1195{
1196 release_pages((struct page **)folios, nr);
3fe7fa58
MWO
1197}
1198
3565fce3
DW
1199static inline void put_page(struct page *page)
1200{
b620f633 1201 struct folio *folio = page_folio(page);
3565fce3 1202
7b2d55d2 1203 /*
89574945
CH
1204 * For some devmap managed pages we need to catch refcount transition
1205 * from 2 to 1:
7b2d55d2 1206 */
89574945 1207 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1208 return;
b620f633 1209 folio_put(folio);
3565fce3
DW
1210}
1211
3faa52c0
JH
1212/*
1213 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1214 * the page's refcount so that two separate items are tracked: the original page
1215 * reference count, and also a new count of how many pin_user_pages() calls were
1216 * made against the page. ("gup-pinned" is another term for the latter).
1217 *
1218 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1219 * distinct from normal pages. As such, the unpin_user_page() call (and its
1220 * variants) must be used in order to release gup-pinned pages.
1221 *
1222 * Choice of value:
1223 *
1224 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1225 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1226 * simpler, due to the fact that adding an even power of two to the page
1227 * refcount has the effect of using only the upper N bits, for the code that
1228 * counts up using the bias value. This means that the lower bits are left for
1229 * the exclusive use of the original code that increments and decrements by one
1230 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1231 *
3faa52c0
JH
1232 * Of course, once the lower bits overflow into the upper bits (and this is
1233 * OK, because subtraction recovers the original values), then visual inspection
1234 * no longer suffices to directly view the separate counts. However, for normal
1235 * applications that don't have huge page reference counts, this won't be an
1236 * issue.
fc1d8e7c 1237 *
40fcc7fc
MWO
1238 * Locking: the lockless algorithm described in folio_try_get_rcu()
1239 * provides safe operation for get_user_pages(), page_mkclean() and
1240 * other calls that race to set up page table entries.
fc1d8e7c 1241 */
3faa52c0 1242#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1243
3faa52c0 1244void unpin_user_page(struct page *page);
f1f6a7dd
JH
1245void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1246 bool make_dirty);
458a4f78
JM
1247void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1248 bool make_dirty);
f1f6a7dd 1249void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1250
97a7e473
PX
1251static inline bool is_cow_mapping(vm_flags_t flags)
1252{
1253 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1254}
1255
9127ab4f
CS
1256#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1257#define SECTION_IN_PAGE_FLAGS
1258#endif
1259
89689ae7 1260/*
7a8010cd
VB
1261 * The identification function is mainly used by the buddy allocator for
1262 * determining if two pages could be buddies. We are not really identifying
1263 * the zone since we could be using the section number id if we do not have
1264 * node id available in page flags.
1265 * We only guarantee that it will return the same value for two combinable
1266 * pages in a zone.
89689ae7 1267 */
cb2b95e1
AW
1268static inline int page_zone_id(struct page *page)
1269{
89689ae7 1270 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1271}
1272
89689ae7 1273#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1274extern int page_to_nid(const struct page *page);
89689ae7 1275#else
33dd4e0e 1276static inline int page_to_nid(const struct page *page)
d41dee36 1277{
f165b378
PT
1278 struct page *p = (struct page *)page;
1279
1280 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1281}
89689ae7
CL
1282#endif
1283
874fd90c
MWO
1284static inline int folio_nid(const struct folio *folio)
1285{
1286 return page_to_nid(&folio->page);
1287}
1288
57e0a030 1289#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1290/* page access time bits needs to hold at least 4 seconds */
1291#define PAGE_ACCESS_TIME_MIN_BITS 12
1292#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1293#define PAGE_ACCESS_TIME_BUCKETS \
1294 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1295#else
1296#define PAGE_ACCESS_TIME_BUCKETS 0
1297#endif
1298
1299#define PAGE_ACCESS_TIME_MASK \
1300 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1301
90572890 1302static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1303{
90572890 1304 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1305}
1306
90572890 1307static inline int cpupid_to_pid(int cpupid)
57e0a030 1308{
90572890 1309 return cpupid & LAST__PID_MASK;
57e0a030 1310}
b795854b 1311
90572890 1312static inline int cpupid_to_cpu(int cpupid)
b795854b 1313{
90572890 1314 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1315}
1316
90572890 1317static inline int cpupid_to_nid(int cpupid)
b795854b 1318{
90572890 1319 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1320}
1321
90572890 1322static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1323{
90572890 1324 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1325}
1326
90572890 1327static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1328{
90572890 1329 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1330}
1331
8c8a743c
PZ
1332static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1333{
1334 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1335}
1336
1337#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1338#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1339static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1340{
1ae71d03 1341 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1342}
90572890
PZ
1343
1344static inline int page_cpupid_last(struct page *page)
1345{
1346 return page->_last_cpupid;
1347}
1348static inline void page_cpupid_reset_last(struct page *page)
b795854b 1349{
1ae71d03 1350 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1351}
1352#else
90572890 1353static inline int page_cpupid_last(struct page *page)
75980e97 1354{
90572890 1355 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1356}
1357
90572890 1358extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1359
90572890 1360static inline void page_cpupid_reset_last(struct page *page)
75980e97 1361{
09940a4f 1362 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1363}
90572890 1364#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536
HY
1365
1366static inline int xchg_page_access_time(struct page *page, int time)
1367{
1368 int last_time;
1369
1370 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1371 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1372}
90572890
PZ
1373#else /* !CONFIG_NUMA_BALANCING */
1374static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1375{
90572890 1376 return page_to_nid(page); /* XXX */
57e0a030
MG
1377}
1378
33024536
HY
1379static inline int xchg_page_access_time(struct page *page, int time)
1380{
1381 return 0;
1382}
1383
90572890 1384static inline int page_cpupid_last(struct page *page)
57e0a030 1385{
90572890 1386 return page_to_nid(page); /* XXX */
57e0a030
MG
1387}
1388
90572890 1389static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1390{
1391 return -1;
1392}
1393
90572890 1394static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1395{
1396 return -1;
1397}
1398
90572890 1399static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1400{
1401 return -1;
1402}
1403
90572890
PZ
1404static inline int cpu_pid_to_cpupid(int nid, int pid)
1405{
1406 return -1;
1407}
1408
1409static inline bool cpupid_pid_unset(int cpupid)
b795854b 1410{
2b787449 1411 return true;
b795854b
MG
1412}
1413
90572890 1414static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1415{
1416}
8c8a743c
PZ
1417
1418static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1419{
1420 return false;
1421}
90572890 1422#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1423
2e903b91 1424#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1425
cf10bd4c
AK
1426/*
1427 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1428 * setting tags for all pages to native kernel tag value 0xff, as the default
1429 * value 0x00 maps to 0xff.
1430 */
1431
2813b9c0
AK
1432static inline u8 page_kasan_tag(const struct page *page)
1433{
cf10bd4c
AK
1434 u8 tag = 0xff;
1435
1436 if (kasan_enabled()) {
1437 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1438 tag ^= 0xff;
1439 }
1440
1441 return tag;
2813b9c0
AK
1442}
1443
1444static inline void page_kasan_tag_set(struct page *page, u8 tag)
1445{
27fe7339
PC
1446 unsigned long old_flags, flags;
1447
1448 if (!kasan_enabled())
1449 return;
1450
1451 tag ^= 0xff;
1452 old_flags = READ_ONCE(page->flags);
1453 do {
1454 flags = old_flags;
1455 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1456 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1457 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1458}
1459
1460static inline void page_kasan_tag_reset(struct page *page)
1461{
34303244
AK
1462 if (kasan_enabled())
1463 page_kasan_tag_set(page, 0xff);
2813b9c0 1464}
34303244
AK
1465
1466#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1467
2813b9c0
AK
1468static inline u8 page_kasan_tag(const struct page *page)
1469{
1470 return 0xff;
1471}
1472
1473static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1474static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1475
1476#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1477
33dd4e0e 1478static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1479{
1480 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1481}
1482
75ef7184
MG
1483static inline pg_data_t *page_pgdat(const struct page *page)
1484{
1485 return NODE_DATA(page_to_nid(page));
1486}
1487
32b8fc48
MWO
1488static inline struct zone *folio_zone(const struct folio *folio)
1489{
1490 return page_zone(&folio->page);
1491}
1492
1493static inline pg_data_t *folio_pgdat(const struct folio *folio)
1494{
1495 return page_pgdat(&folio->page);
1496}
1497
9127ab4f 1498#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1499static inline void set_page_section(struct page *page, unsigned long section)
1500{
1501 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1502 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1503}
1504
aa462abe 1505static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1506{
1507 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1508}
308c05e3 1509#endif
d41dee36 1510
bf6bd276
MWO
1511/**
1512 * folio_pfn - Return the Page Frame Number of a folio.
1513 * @folio: The folio.
1514 *
1515 * A folio may contain multiple pages. The pages have consecutive
1516 * Page Frame Numbers.
1517 *
1518 * Return: The Page Frame Number of the first page in the folio.
1519 */
1520static inline unsigned long folio_pfn(struct folio *folio)
1521{
1522 return page_to_pfn(&folio->page);
1523}
1524
018ee47f
YZ
1525static inline struct folio *pfn_folio(unsigned long pfn)
1526{
1527 return page_folio(pfn_to_page(pfn));
1528}
1529
3d11b225
MWO
1530static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1531{
1532 return &folio_page(folio, 1)->compound_pincount;
1533}
1534
0b90ddae
MWO
1535/**
1536 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1537 * @folio: The folio.
1538 *
1539 * This function checks if a folio has been pinned via a call to
1540 * a function in the pin_user_pages() family.
1541 *
1542 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1543 * because it means "definitely not pinned for DMA", but true means "probably
1544 * pinned for DMA, but possibly a false positive due to having at least
1545 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1546 *
1547 * False positives are OK, because: a) it's unlikely for a folio to
1548 * get that many refcounts, and b) all the callers of this routine are
1549 * expected to be able to deal gracefully with a false positive.
1550 *
1551 * For large folios, the result will be exactly correct. That's because
1552 * we have more tracking data available: the compound_pincount is used
1553 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1554 *
1555 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1556 *
1557 * Return: True, if it is likely that the page has been "dma-pinned".
1558 * False, if the page is definitely not dma-pinned.
1559 */
1560static inline bool folio_maybe_dma_pinned(struct folio *folio)
1561{
1562 if (folio_test_large(folio))
1563 return atomic_read(folio_pincount_ptr(folio)) > 0;
1564
1565 /*
1566 * folio_ref_count() is signed. If that refcount overflows, then
1567 * folio_ref_count() returns a negative value, and callers will avoid
1568 * further incrementing the refcount.
1569 *
1570 * Here, for that overflow case, use the sign bit to count a little
1571 * bit higher via unsigned math, and thus still get an accurate result.
1572 */
1573 return ((unsigned int)folio_ref_count(folio)) >=
1574 GUP_PIN_COUNTING_BIAS;
1575}
1576
1577static inline bool page_maybe_dma_pinned(struct page *page)
1578{
1579 return folio_maybe_dma_pinned(page_folio(page));
1580}
1581
1582/*
1583 * This should most likely only be called during fork() to see whether we
fb3d824d 1584 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1585 *
1586 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1587 */
1588static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1589 struct page *page)
1590{
623a1ddf 1591 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1592
1593 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1594 return false;
1595
1596 return page_maybe_dma_pinned(page);
1597}
1598
8e3560d9
PT
1599/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1600#ifdef CONFIG_MIGRATION
6077c943 1601static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9 1602{
1c563432
MK
1603#ifdef CONFIG_CMA
1604 int mt = get_pageblock_migratetype(page);
1605
1606 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1607 return false;
1608#endif
fcab34b4
AW
1609 /* The zero page may always be pinned */
1610 if (is_zero_pfn(page_to_pfn(page)))
1611 return true;
1612
1613 /* Coherent device memory must always allow eviction. */
1614 if (is_device_coherent_page(page))
1615 return false;
1616
1617 /* Otherwise, non-movable zone pages can be pinned. */
1618 return !is_zone_movable_page(page);
8e3560d9
PT
1619}
1620#else
6077c943 1621static inline bool is_longterm_pinnable_page(struct page *page)
8e3560d9
PT
1622{
1623 return true;
1624}
1625#endif
1626
6077c943 1627static inline bool folio_is_longterm_pinnable(struct folio *folio)
536939ff 1628{
6077c943 1629 return is_longterm_pinnable_page(&folio->page);
536939ff
MWO
1630}
1631
2f1b6248 1632static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1633{
1634 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1635 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1636}
2f1b6248 1637
348f8b6c
DH
1638static inline void set_page_node(struct page *page, unsigned long node)
1639{
1640 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1641 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1642}
89689ae7 1643
2f1b6248 1644static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1645 unsigned long node, unsigned long pfn)
1da177e4 1646{
348f8b6c
DH
1647 set_page_zone(page, zone);
1648 set_page_node(page, node);
9127ab4f 1649#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1650 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1651#endif
1da177e4
LT
1652}
1653
7b230db3
MWO
1654/**
1655 * folio_nr_pages - The number of pages in the folio.
1656 * @folio: The folio.
1657 *
1658 * Return: A positive power of two.
1659 */
1660static inline long folio_nr_pages(struct folio *folio)
1661{
1662 return compound_nr(&folio->page);
1663}
1664
1665/**
1666 * folio_next - Move to the next physical folio.
1667 * @folio: The folio we're currently operating on.
1668 *
1669 * If you have physically contiguous memory which may span more than
1670 * one folio (eg a &struct bio_vec), use this function to move from one
1671 * folio to the next. Do not use it if the memory is only virtually
1672 * contiguous as the folios are almost certainly not adjacent to each
1673 * other. This is the folio equivalent to writing ``page++``.
1674 *
1675 * Context: We assume that the folios are refcounted and/or locked at a
1676 * higher level and do not adjust the reference counts.
1677 * Return: The next struct folio.
1678 */
1679static inline struct folio *folio_next(struct folio *folio)
1680{
1681 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1682}
1683
1684/**
1685 * folio_shift - The size of the memory described by this folio.
1686 * @folio: The folio.
1687 *
1688 * A folio represents a number of bytes which is a power-of-two in size.
1689 * This function tells you which power-of-two the folio is. See also
1690 * folio_size() and folio_order().
1691 *
1692 * Context: The caller should have a reference on the folio to prevent
1693 * it from being split. It is not necessary for the folio to be locked.
1694 * Return: The base-2 logarithm of the size of this folio.
1695 */
1696static inline unsigned int folio_shift(struct folio *folio)
1697{
1698 return PAGE_SHIFT + folio_order(folio);
1699}
1700
1701/**
1702 * folio_size - The number of bytes in a folio.
1703 * @folio: The folio.
1704 *
1705 * Context: The caller should have a reference on the folio to prevent
1706 * it from being split. It is not necessary for the folio to be locked.
1707 * Return: The number of bytes in this folio.
1708 */
1709static inline size_t folio_size(struct folio *folio)
1710{
1711 return PAGE_SIZE << folio_order(folio);
1712}
1713
b424de33
MWO
1714#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1715static inline int arch_make_page_accessible(struct page *page)
1716{
1717 return 0;
1718}
1719#endif
1720
1721#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1722static inline int arch_make_folio_accessible(struct folio *folio)
1723{
1724 int ret;
1725 long i, nr = folio_nr_pages(folio);
1726
1727 for (i = 0; i < nr; i++) {
1728 ret = arch_make_page_accessible(folio_page(folio, i));
1729 if (ret)
1730 break;
1731 }
1732
1733 return ret;
1734}
1735#endif
1736
f6ac2354
CL
1737/*
1738 * Some inline functions in vmstat.h depend on page_zone()
1739 */
1740#include <linux/vmstat.h>
1741
33dd4e0e 1742static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1743{
1dff8083 1744 return page_to_virt(page);
1da177e4
LT
1745}
1746
1747#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1748#define HASHED_PAGE_VIRTUAL
1749#endif
1750
1751#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1752static inline void *page_address(const struct page *page)
1753{
1754 return page->virtual;
1755}
1756static inline void set_page_address(struct page *page, void *address)
1757{
1758 page->virtual = address;
1759}
1da177e4
LT
1760#define page_address_init() do { } while(0)
1761#endif
1762
1763#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1764void *page_address(const struct page *page);
1da177e4
LT
1765void set_page_address(struct page *page, void *virtual);
1766void page_address_init(void);
1767#endif
1768
1769#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1770#define page_address(page) lowmem_page_address(page)
1771#define set_page_address(page, address) do { } while(0)
1772#define page_address_init() do { } while(0)
1773#endif
1774
7d4203c1
VB
1775static inline void *folio_address(const struct folio *folio)
1776{
1777 return page_address(&folio->page);
1778}
1779
e39155ea 1780extern void *page_rmapping(struct page *page);
f6ab1f7f
HY
1781extern pgoff_t __page_file_index(struct page *page);
1782
1da177e4
LT
1783/*
1784 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1785 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1786 */
1787static inline pgoff_t page_index(struct page *page)
1788{
1789 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1790 return __page_file_index(page);
1da177e4
LT
1791 return page->index;
1792}
1793
1aa8aea5 1794bool page_mapped(struct page *page);
dd10ab04 1795bool folio_mapped(struct folio *folio);
1da177e4 1796
2f064f34
MH
1797/*
1798 * Return true only if the page has been allocated with
1799 * ALLOC_NO_WATERMARKS and the low watermark was not
1800 * met implying that the system is under some pressure.
1801 */
1d7bab6a 1802static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1803{
1804 /*
c07aea3e
MC
1805 * lru.next has bit 1 set if the page is allocated from the
1806 * pfmemalloc reserves. Callers may simply overwrite it if
1807 * they do not need to preserve that information.
2f064f34 1808 */
c07aea3e 1809 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
1810}
1811
1812/*
1813 * Only to be called by the page allocator on a freshly allocated
1814 * page.
1815 */
1816static inline void set_page_pfmemalloc(struct page *page)
1817{
c07aea3e 1818 page->lru.next = (void *)BIT(1);
2f064f34
MH
1819}
1820
1821static inline void clear_page_pfmemalloc(struct page *page)
1822{
c07aea3e 1823 page->lru.next = NULL;
2f064f34
MH
1824}
1825
1c0fe6e3
NP
1826/*
1827 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1828 */
1829extern void pagefault_out_of_memory(void);
1830
1da177e4 1831#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1832#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 1833#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 1834
ddd588b5 1835/*
7bf02ea2 1836 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1837 * various contexts.
1838 */
4b59e6c4 1839#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1840
9af744d7 1841extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1842
710ec38b 1843#ifdef CONFIG_MMU
7f43add4 1844extern bool can_do_mlock(void);
710ec38b
AB
1845#else
1846static inline bool can_do_mlock(void) { return false; }
1847#endif
d7c9e99a
AG
1848extern int user_shm_lock(size_t, struct ucounts *);
1849extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 1850
25b2995a
CH
1851struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1852 pte_t pte);
28093f9f
GS
1853struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1854 pmd_t pmd);
7e675137 1855
27d036e3
LR
1856void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1857 unsigned long size);
14f5ff5d 1858void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1859 unsigned long size);
4f74d2c8
LT
1860void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1861 unsigned long start, unsigned long end);
e6473092 1862
ac46d4f3
JG
1863struct mmu_notifier_range;
1864
42b77728 1865void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1866 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1867int
1868copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 1869int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 1870 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
1871int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1872 unsigned long *pfn);
d87fe660 1873int follow_phys(struct vm_area_struct *vma, unsigned long address,
1874 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1875int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1876 void *buf, int len, int write);
1da177e4 1877
7caef267 1878extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1879extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1880void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1881void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
25718736 1882int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668 1883
7ee1dd3f 1884#ifdef CONFIG_MMU
2b740303 1885extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1886 unsigned long address, unsigned int flags,
1887 struct pt_regs *regs);
64019a2e 1888extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1889 unsigned long address, unsigned int fault_flags,
1890 bool *unlocked);
977fbdcd
MW
1891void unmap_mapping_pages(struct address_space *mapping,
1892 pgoff_t start, pgoff_t nr, bool even_cows);
1893void unmap_mapping_range(struct address_space *mapping,
1894 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1895#else
2b740303 1896static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1897 unsigned long address, unsigned int flags,
1898 struct pt_regs *regs)
7ee1dd3f
DH
1899{
1900 /* should never happen if there's no MMU */
1901 BUG();
1902 return VM_FAULT_SIGBUS;
1903}
64019a2e 1904static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1905 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1906{
1907 /* should never happen if there's no MMU */
1908 BUG();
1909 return -EFAULT;
1910}
977fbdcd
MW
1911static inline void unmap_mapping_pages(struct address_space *mapping,
1912 pgoff_t start, pgoff_t nr, bool even_cows) { }
1913static inline void unmap_mapping_range(struct address_space *mapping,
1914 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1915#endif
f33ea7f4 1916
977fbdcd
MW
1917static inline void unmap_shared_mapping_range(struct address_space *mapping,
1918 loff_t const holebegin, loff_t const holelen)
1919{
1920 unmap_mapping_range(mapping, holebegin, holelen, 0);
1921}
1922
1923extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1924 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1925extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1926 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1927extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1928 void *buf, int len, unsigned int gup_flags);
1da177e4 1929
64019a2e 1930long get_user_pages_remote(struct mm_struct *mm,
1e987790 1931 unsigned long start, unsigned long nr_pages,
9beae1ea 1932 unsigned int gup_flags, struct page **pages,
5b56d49f 1933 struct vm_area_struct **vmas, int *locked);
64019a2e 1934long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1935 unsigned long start, unsigned long nr_pages,
1936 unsigned int gup_flags, struct page **pages,
1937 struct vm_area_struct **vmas, int *locked);
c12d2da5 1938long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1939 unsigned int gup_flags, struct page **pages,
cde70140 1940 struct vm_area_struct **vmas);
eddb1c22
JH
1941long pin_user_pages(unsigned long start, unsigned long nr_pages,
1942 unsigned int gup_flags, struct page **pages,
1943 struct vm_area_struct **vmas);
c12d2da5 1944long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1945 struct page **pages, unsigned int gup_flags);
91429023
JH
1946long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1947 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1948
73b0140b
IW
1949int get_user_pages_fast(unsigned long start, int nr_pages,
1950 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1951int pin_user_pages_fast(unsigned long start, int nr_pages,
1952 unsigned int gup_flags, struct page **pages);
8025e5dd 1953
79eb597c
DJ
1954int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1955int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1956 struct task_struct *task, bool bypass_rlim);
1957
18022c5d
MG
1958struct kvec;
1959int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1960 struct page **pages);
f3e8fccd 1961struct page *get_dump_page(unsigned long addr);
1da177e4 1962
b5e84594
MWO
1963bool folio_mark_dirty(struct folio *folio);
1964bool set_page_dirty(struct page *page);
1da177e4 1965int set_page_dirty_lock(struct page *page);
b9ea2515 1966
a9090253 1967int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1968
b6a2fea3
OW
1969extern unsigned long move_page_tables(struct vm_area_struct *vma,
1970 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1971 unsigned long new_addr, unsigned long len,
1972 bool need_rmap_locks);
58705444
PX
1973
1974/*
1975 * Flags used by change_protection(). For now we make it a bitmap so
1976 * that we can pass in multiple flags just like parameters. However
1977 * for now all the callers are only use one of the flags at the same
1978 * time.
1979 */
64fe24a3
DH
1980/*
1981 * Whether we should manually check if we can map individual PTEs writable,
1982 * because something (e.g., COW, uffd-wp) blocks that from happening for all
1983 * PTEs automatically in a writable mapping.
1984 */
1985#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
1986/* Whether this protection change is for NUMA hints */
1987#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1988/* Whether this change is for write protecting */
1989#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1990#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1991#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1992 MM_CP_UFFD_WP_RESOLVE)
58705444 1993
4a18419f
NA
1994extern unsigned long change_protection(struct mmu_gather *tlb,
1995 struct vm_area_struct *vma, unsigned long start,
7da4d641 1996 unsigned long end, pgprot_t newprot,
58705444 1997 unsigned long cp_flags);
4a18419f 1998extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
b6a2fea3
OW
1999 struct vm_area_struct **pprev, unsigned long start,
2000 unsigned long end, unsigned long newflags);
1da177e4 2001
465a454f
PZ
2002/*
2003 * doesn't attempt to fault and will return short.
2004 */
dadbb612
SJ
2005int get_user_pages_fast_only(unsigned long start, int nr_pages,
2006 unsigned int gup_flags, struct page **pages);
104acc32
JH
2007int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2008 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2009
2010static inline bool get_user_page_fast_only(unsigned long addr,
2011 unsigned int gup_flags, struct page **pagep)
2012{
2013 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2014}
d559db08
KH
2015/*
2016 * per-process(per-mm_struct) statistics.
2017 */
d559db08
KH
2018static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2019{
69c97823
KK
2020 long val = atomic_long_read(&mm->rss_stat.count[member]);
2021
2022#ifdef SPLIT_RSS_COUNTING
2023 /*
2024 * counter is updated in asynchronous manner and may go to minus.
2025 * But it's never be expected number for users.
2026 */
2027 if (val < 0)
2028 val = 0;
172703b0 2029#endif
69c97823
KK
2030 return (unsigned long)val;
2031}
d559db08 2032
e4dcad20 2033void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 2034
d559db08
KH
2035static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2036{
b3d1411b
JFG
2037 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
2038
e4dcad20 2039 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2040}
2041
2042static inline void inc_mm_counter(struct mm_struct *mm, int member)
2043{
b3d1411b
JFG
2044 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
2045
e4dcad20 2046 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2047}
2048
2049static inline void dec_mm_counter(struct mm_struct *mm, int member)
2050{
b3d1411b
JFG
2051 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2052
e4dcad20 2053 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2054}
2055
eca56ff9
JM
2056/* Optimized variant when page is already known not to be PageAnon */
2057static inline int mm_counter_file(struct page *page)
2058{
2059 if (PageSwapBacked(page))
2060 return MM_SHMEMPAGES;
2061 return MM_FILEPAGES;
2062}
2063
2064static inline int mm_counter(struct page *page)
2065{
2066 if (PageAnon(page))
2067 return MM_ANONPAGES;
2068 return mm_counter_file(page);
2069}
2070
d559db08
KH
2071static inline unsigned long get_mm_rss(struct mm_struct *mm)
2072{
2073 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2074 get_mm_counter(mm, MM_ANONPAGES) +
2075 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2076}
2077
2078static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2079{
2080 return max(mm->hiwater_rss, get_mm_rss(mm));
2081}
2082
2083static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2084{
2085 return max(mm->hiwater_vm, mm->total_vm);
2086}
2087
2088static inline void update_hiwater_rss(struct mm_struct *mm)
2089{
2090 unsigned long _rss = get_mm_rss(mm);
2091
2092 if ((mm)->hiwater_rss < _rss)
2093 (mm)->hiwater_rss = _rss;
2094}
2095
2096static inline void update_hiwater_vm(struct mm_struct *mm)
2097{
2098 if (mm->hiwater_vm < mm->total_vm)
2099 mm->hiwater_vm = mm->total_vm;
2100}
2101
695f0559
PC
2102static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2103{
2104 mm->hiwater_rss = get_mm_rss(mm);
2105}
2106
d559db08
KH
2107static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2108 struct mm_struct *mm)
2109{
2110 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2111
2112 if (*maxrss < hiwater_rss)
2113 *maxrss = hiwater_rss;
2114}
2115
53bddb4e 2116#if defined(SPLIT_RSS_COUNTING)
05af2e10 2117void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2118#else
05af2e10 2119static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2120{
2121}
2122#endif
465a454f 2123
78e7c5af
AK
2124#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2125static inline int pte_special(pte_t pte)
2126{
2127 return 0;
2128}
2129
2130static inline pte_t pte_mkspecial(pte_t pte)
2131{
2132 return pte;
2133}
2134#endif
2135
17596731 2136#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2137static inline int pte_devmap(pte_t pte)
2138{
2139 return 0;
2140}
2141#endif
2142
6d2329f8 2143int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 2144
25ca1d6c
NK
2145extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2146 spinlock_t **ptl);
2147static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2148 spinlock_t **ptl)
2149{
2150 pte_t *ptep;
2151 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2152 return ptep;
2153}
c9cfcddf 2154
c2febafc
KS
2155#ifdef __PAGETABLE_P4D_FOLDED
2156static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2157 unsigned long address)
2158{
2159 return 0;
2160}
2161#else
2162int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2163#endif
2164
b4e98d9a 2165#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2166static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2167 unsigned long address)
2168{
2169 return 0;
2170}
b4e98d9a
KS
2171static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2172static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2173
5f22df00 2174#else
c2febafc 2175int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2176
b4e98d9a
KS
2177static inline void mm_inc_nr_puds(struct mm_struct *mm)
2178{
6d212db1
MS
2179 if (mm_pud_folded(mm))
2180 return;
af5b0f6a 2181 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2182}
2183
2184static inline void mm_dec_nr_puds(struct mm_struct *mm)
2185{
6d212db1
MS
2186 if (mm_pud_folded(mm))
2187 return;
af5b0f6a 2188 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2189}
5f22df00
NP
2190#endif
2191
2d2f5119 2192#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2193static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2194 unsigned long address)
2195{
2196 return 0;
2197}
dc6c9a35 2198
dc6c9a35
KS
2199static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2200static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2201
5f22df00 2202#else
1bb3630e 2203int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2204
dc6c9a35
KS
2205static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2206{
6d212db1
MS
2207 if (mm_pmd_folded(mm))
2208 return;
af5b0f6a 2209 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2210}
2211
2212static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2213{
6d212db1
MS
2214 if (mm_pmd_folded(mm))
2215 return;
af5b0f6a 2216 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2217}
5f22df00
NP
2218#endif
2219
c4812909 2220#ifdef CONFIG_MMU
af5b0f6a 2221static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2222{
af5b0f6a 2223 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2224}
2225
af5b0f6a 2226static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2227{
af5b0f6a 2228 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2229}
2230
2231static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2232{
af5b0f6a 2233 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2234}
2235
2236static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2237{
af5b0f6a 2238 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2239}
2240#else
c4812909 2241
af5b0f6a
KS
2242static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2243static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2244{
2245 return 0;
2246}
2247
2248static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2249static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2250#endif
2251
4cf58924
JFG
2252int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2253int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2254
f949286c
MR
2255#if defined(CONFIG_MMU)
2256
c2febafc
KS
2257static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2258 unsigned long address)
2259{
2260 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2261 NULL : p4d_offset(pgd, address);
2262}
2263
2264static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2265 unsigned long address)
1da177e4 2266{
c2febafc
KS
2267 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2268 NULL : pud_offset(p4d, address);
1da177e4 2269}
d8626138 2270
1da177e4
LT
2271static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2272{
1bb3630e
HD
2273 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2274 NULL: pmd_offset(pud, address);
1da177e4 2275}
f949286c 2276#endif /* CONFIG_MMU */
1bb3630e 2277
57c1ffce 2278#if USE_SPLIT_PTE_PTLOCKS
597d795a 2279#if ALLOC_SPLIT_PTLOCKS
b35f1819 2280void __init ptlock_cache_init(void);
539edb58
PZ
2281extern bool ptlock_alloc(struct page *page);
2282extern void ptlock_free(struct page *page);
2283
2284static inline spinlock_t *ptlock_ptr(struct page *page)
2285{
2286 return page->ptl;
2287}
597d795a 2288#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2289static inline void ptlock_cache_init(void)
2290{
2291}
2292
49076ec2
KS
2293static inline bool ptlock_alloc(struct page *page)
2294{
49076ec2
KS
2295 return true;
2296}
539edb58 2297
49076ec2
KS
2298static inline void ptlock_free(struct page *page)
2299{
49076ec2
KS
2300}
2301
2302static inline spinlock_t *ptlock_ptr(struct page *page)
2303{
539edb58 2304 return &page->ptl;
49076ec2 2305}
597d795a 2306#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2307
2308static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2309{
2310 return ptlock_ptr(pmd_page(*pmd));
2311}
2312
2313static inline bool ptlock_init(struct page *page)
2314{
2315 /*
2316 * prep_new_page() initialize page->private (and therefore page->ptl)
2317 * with 0. Make sure nobody took it in use in between.
2318 *
2319 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2320 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2321 */
309381fe 2322 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2323 if (!ptlock_alloc(page))
2324 return false;
2325 spin_lock_init(ptlock_ptr(page));
2326 return true;
2327}
2328
57c1ffce 2329#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2330/*
2331 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2332 */
49076ec2
KS
2333static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2334{
2335 return &mm->page_table_lock;
2336}
b35f1819 2337static inline void ptlock_cache_init(void) {}
49076ec2 2338static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2339static inline void ptlock_free(struct page *page) {}
57c1ffce 2340#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2341
b35f1819
KS
2342static inline void pgtable_init(void)
2343{
2344 ptlock_cache_init();
2345 pgtable_cache_init();
2346}
2347
b4ed71f5 2348static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2349{
706874e9
VD
2350 if (!ptlock_init(page))
2351 return false;
1d40a5ea 2352 __SetPageTable(page);
f0c0c115 2353 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2354 return true;
2f569afd
MS
2355}
2356
b4ed71f5 2357static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2358{
9e247bab 2359 ptlock_free(page);
1d40a5ea 2360 __ClearPageTable(page);
f0c0c115 2361 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2362}
2363
c74df32c
HD
2364#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2365({ \
4c21e2f2 2366 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2367 pte_t *__pte = pte_offset_map(pmd, address); \
2368 *(ptlp) = __ptl; \
2369 spin_lock(__ptl); \
2370 __pte; \
2371})
2372
2373#define pte_unmap_unlock(pte, ptl) do { \
2374 spin_unlock(ptl); \
2375 pte_unmap(pte); \
2376} while (0)
2377
4cf58924 2378#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2379
2380#define pte_alloc_map(mm, pmd, address) \
4cf58924 2381 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2382
c74df32c 2383#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2384 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2385 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2386
1bb3630e 2387#define pte_alloc_kernel(pmd, address) \
4cf58924 2388 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2389 NULL: pte_offset_kernel(pmd, address))
1da177e4 2390
e009bb30
KS
2391#if USE_SPLIT_PMD_PTLOCKS
2392
634391ac
MS
2393static struct page *pmd_to_page(pmd_t *pmd)
2394{
2395 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2396 return virt_to_page((void *)((unsigned long) pmd & mask));
2397}
2398
e009bb30
KS
2399static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2400{
634391ac 2401 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2402}
2403
b2b29d6d 2404static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2405{
e009bb30
KS
2406#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2407 page->pmd_huge_pte = NULL;
2408#endif
49076ec2 2409 return ptlock_init(page);
e009bb30
KS
2410}
2411
b2b29d6d 2412static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2413{
2414#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2415 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2416#endif
49076ec2 2417 ptlock_free(page);
e009bb30
KS
2418}
2419
634391ac 2420#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2421
2422#else
2423
9a86cb7b
KS
2424static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2425{
2426 return &mm->page_table_lock;
2427}
2428
b2b29d6d
MW
2429static inline bool pmd_ptlock_init(struct page *page) { return true; }
2430static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2431
c389a250 2432#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2433
e009bb30
KS
2434#endif
2435
9a86cb7b
KS
2436static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2437{
2438 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2439 spin_lock(ptl);
2440 return ptl;
2441}
2442
b2b29d6d
MW
2443static inline bool pgtable_pmd_page_ctor(struct page *page)
2444{
2445 if (!pmd_ptlock_init(page))
2446 return false;
2447 __SetPageTable(page);
f0c0c115 2448 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2449 return true;
2450}
2451
2452static inline void pgtable_pmd_page_dtor(struct page *page)
2453{
2454 pmd_ptlock_free(page);
2455 __ClearPageTable(page);
f0c0c115 2456 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2457}
2458
a00cc7d9
MW
2459/*
2460 * No scalability reason to split PUD locks yet, but follow the same pattern
2461 * as the PMD locks to make it easier if we decide to. The VM should not be
2462 * considered ready to switch to split PUD locks yet; there may be places
2463 * which need to be converted from page_table_lock.
2464 */
2465static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2466{
2467 return &mm->page_table_lock;
2468}
2469
2470static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2471{
2472 spinlock_t *ptl = pud_lockptr(mm, pud);
2473
2474 spin_lock(ptl);
2475 return ptl;
2476}
62906027 2477
a00cc7d9 2478extern void __init pagecache_init(void);
49a7f04a
DH
2479extern void free_initmem(void);
2480
69afade7
JL
2481/*
2482 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2483 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2484 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2485 * Return pages freed into the buddy system.
2486 */
11199692 2487extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2488 int poison, const char *s);
c3d5f5f0 2489
c3d5f5f0 2490extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2491extern void mem_init_print_info(void);
69afade7 2492
4b50bcc7 2493extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2494
69afade7 2495/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2496static inline void free_reserved_page(struct page *page)
69afade7
JL
2497{
2498 ClearPageReserved(page);
2499 init_page_count(page);
2500 __free_page(page);
69afade7
JL
2501 adjust_managed_page_count(page, 1);
2502}
a0cd7a7c 2503#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2504
2505static inline void mark_page_reserved(struct page *page)
2506{
2507 SetPageReserved(page);
2508 adjust_managed_page_count(page, -1);
2509}
2510
2511/*
2512 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2513 * The freed pages will be poisoned with pattern "poison" if it's within
2514 * range [0, UCHAR_MAX].
2515 * Return pages freed into the buddy system.
69afade7
JL
2516 */
2517static inline unsigned long free_initmem_default(int poison)
2518{
2519 extern char __init_begin[], __init_end[];
2520
11199692 2521 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2522 poison, "unused kernel image (initmem)");
69afade7
JL
2523}
2524
7ee3d4e8
JL
2525static inline unsigned long get_num_physpages(void)
2526{
2527 int nid;
2528 unsigned long phys_pages = 0;
2529
2530 for_each_online_node(nid)
2531 phys_pages += node_present_pages(nid);
2532
2533 return phys_pages;
2534}
2535
c713216d 2536/*
3f08a302 2537 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2538 * zones, allocate the backing mem_map and account for memory holes in an
2539 * architecture independent manner.
c713216d
MG
2540 *
2541 * An architecture is expected to register range of page frames backed by
0ee332c1 2542 * physical memory with memblock_add[_node]() before calling
9691a071 2543 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2544 * usage, an architecture is expected to do something like
2545 *
2546 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2547 * max_highmem_pfn};
2548 * for_each_valid_physical_page_range()
952eea9b 2549 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 2550 * free_area_init(max_zone_pfns);
c713216d 2551 */
9691a071 2552void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2553unsigned long node_map_pfn_alignment(void);
32996250
YL
2554unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2555 unsigned long end_pfn);
c713216d
MG
2556extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2557 unsigned long end_pfn);
2558extern void get_pfn_range_for_nid(unsigned int nid,
2559 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 2560
a9ee6cf5 2561#ifndef CONFIG_NUMA
6f24fbd3 2562static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2563{
2564 return 0;
2565}
2566#else
2567/* please see mm/page_alloc.c */
2568extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2569#endif
2570
0e0b864e 2571extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2572extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2573 unsigned long, unsigned long, enum meminit_context,
2574 struct vmem_altmap *, int migratetype);
bc75d33f 2575extern void setup_per_zone_wmarks(void);
bd3400ea 2576extern void calculate_min_free_kbytes(void);
1b79acc9 2577extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2578extern void mem_init(void);
8feae131 2579extern void __init mmap_init(void);
9af744d7 2580extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2581extern long si_mem_available(void);
1da177e4
LT
2582extern void si_meminfo(struct sysinfo * val);
2583extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2584#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2585extern unsigned long arch_reserved_kernel_pages(void);
2586#endif
1da177e4 2587
a8e99259
MH
2588extern __printf(3, 4)
2589void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2590
e7c8d5c9 2591extern void setup_per_cpu_pageset(void);
e7c8d5c9 2592
75f7ad8e
PS
2593/* page_alloc.c */
2594extern int min_free_kbytes;
1c30844d 2595extern int watermark_boost_factor;
795ae7a0 2596extern int watermark_scale_factor;
51930df5 2597extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2598
8feae131 2599/* nommu.c */
33e5d769 2600extern atomic_long_t mmap_pages_allocated;
7e660872 2601extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2602
6b2dbba8 2603/* interval_tree.c */
6b2dbba8 2604void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2605 struct rb_root_cached *root);
9826a516
ML
2606void vma_interval_tree_insert_after(struct vm_area_struct *node,
2607 struct vm_area_struct *prev,
f808c13f 2608 struct rb_root_cached *root);
6b2dbba8 2609void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2610 struct rb_root_cached *root);
2611struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2612 unsigned long start, unsigned long last);
2613struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2614 unsigned long start, unsigned long last);
2615
2616#define vma_interval_tree_foreach(vma, root, start, last) \
2617 for (vma = vma_interval_tree_iter_first(root, start, last); \
2618 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2619
bf181b9f 2620void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2621 struct rb_root_cached *root);
bf181b9f 2622void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2623 struct rb_root_cached *root);
2624struct anon_vma_chain *
2625anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2626 unsigned long start, unsigned long last);
bf181b9f
ML
2627struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2628 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2629#ifdef CONFIG_DEBUG_VM_RB
2630void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2631#endif
bf181b9f
ML
2632
2633#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2634 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2635 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2636
1da177e4 2637/* mmap.c */
34b4e4aa 2638extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2639extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2640 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2641 struct vm_area_struct *expand);
2642static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2643 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2644{
2645 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2646}
1da177e4
LT
2647extern struct vm_area_struct *vma_merge(struct mm_struct *,
2648 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2649 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
5c26f6ac 2650 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
1da177e4 2651extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2652extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2653 unsigned long addr, int new_below);
2654extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2655 unsigned long addr, int new_below);
1da177e4 2656extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 2657extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2658extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2659 unsigned long addr, unsigned long len, pgoff_t pgoff,
2660 bool *need_rmap_locks);
1da177e4 2661extern void exit_mmap(struct mm_struct *);
925d1c40 2662
d4af56c5
LH
2663void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas);
2664void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas);
2665
9c599024
CG
2666static inline int check_data_rlimit(unsigned long rlim,
2667 unsigned long new,
2668 unsigned long start,
2669 unsigned long end_data,
2670 unsigned long start_data)
2671{
2672 if (rlim < RLIM_INFINITY) {
2673 if (((new - start) + (end_data - start_data)) > rlim)
2674 return -ENOSPC;
2675 }
2676
2677 return 0;
2678}
2679
7906d00c
AA
2680extern int mm_take_all_locks(struct mm_struct *mm);
2681extern void mm_drop_all_locks(struct mm_struct *mm);
2682
fe69d560 2683extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 2684extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 2685extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2686extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2687
84638335
KK
2688extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2689extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2690
2eefd878
DS
2691extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2692 const struct vm_special_mapping *sm);
3935ed6a
SS
2693extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2694 unsigned long addr, unsigned long len,
a62c34bd
AL
2695 unsigned long flags,
2696 const struct vm_special_mapping *spec);
2697/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2698extern int install_special_mapping(struct mm_struct *mm,
2699 unsigned long addr, unsigned long len,
2700 unsigned long flags, struct page **pages);
1da177e4 2701
649775be 2702unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 2703unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 2704
1da177e4
LT
2705extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2706
0165ab44 2707extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2708 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2709 struct list_head *uf);
1fcfd8db 2710extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2711 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2712 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2713extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2714 struct list_head *uf, bool downgrade);
897ab3e0
MR
2715extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2716 struct list_head *uf);
0726b01e 2717extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2718
bebeb3d6
ML
2719#ifdef CONFIG_MMU
2720extern int __mm_populate(unsigned long addr, unsigned long len,
2721 int ignore_errors);
2722static inline void mm_populate(unsigned long addr, unsigned long len)
2723{
2724 /* Ignore errors */
2725 (void) __mm_populate(addr, len, 1);
2726}
2727#else
2728static inline void mm_populate(unsigned long addr, unsigned long len) {}
2729#endif
2730
e4eb1ff6 2731/* These take the mm semaphore themselves */
5d22fc25 2732extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2733extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2734extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2735extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2736 unsigned long, unsigned long,
2737 unsigned long, unsigned long);
1da177e4 2738
db4fbfb9
ML
2739struct vm_unmapped_area_info {
2740#define VM_UNMAPPED_AREA_TOPDOWN 1
2741 unsigned long flags;
2742 unsigned long length;
2743 unsigned long low_limit;
2744 unsigned long high_limit;
2745 unsigned long align_mask;
2746 unsigned long align_offset;
2747};
2748
baceaf1c 2749extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2750
85821aab 2751/* truncate.c */
1da177e4 2752extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2753extern void truncate_inode_pages_range(struct address_space *,
2754 loff_t lstart, loff_t lend);
91b0abe3 2755extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2756
2757/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2758extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2759extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2760 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2761extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 2762
1be7107f 2763extern unsigned long stack_guard_gap;
d05f3169 2764/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2765extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2766
11192337 2767/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2768extern int expand_downwards(struct vm_area_struct *vma,
2769 unsigned long address);
8ca3eb08 2770#if VM_GROWSUP
46dea3d0 2771extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2772#else
fee7e49d 2773 #define expand_upwards(vma, address) (0)
9ab88515 2774#endif
1da177e4
LT
2775
2776/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2777extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2778extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2779 struct vm_area_struct **pprev);
2780
ce6d42f2
LH
2781/**
2782 * find_vma_intersection() - Look up the first VMA which intersects the interval
2783 * @mm: The process address space.
2784 * @start_addr: The inclusive start user address.
2785 * @end_addr: The exclusive end user address.
2786 *
2787 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2788 * start_addr < end_addr.
2789 */
2790static inline
2791struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2792 unsigned long start_addr,
2793 unsigned long end_addr)
1da177e4 2794{
ce6d42f2 2795 struct vm_area_struct *vma = find_vma(mm, start_addr);
1da177e4
LT
2796
2797 if (vma && end_addr <= vma->vm_start)
2798 vma = NULL;
2799 return vma;
2800}
2801
ce6d42f2
LH
2802/**
2803 * vma_lookup() - Find a VMA at a specific address
2804 * @mm: The process address space.
2805 * @addr: The user address.
2806 *
2807 * Return: The vm_area_struct at the given address, %NULL otherwise.
2808 */
2809static inline
2810struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2811{
2812 struct vm_area_struct *vma = find_vma(mm, addr);
2813
2814 if (vma && addr < vma->vm_start)
2815 vma = NULL;
2816
2817 return vma;
2818}
2819
1be7107f
HD
2820static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2821{
2822 unsigned long vm_start = vma->vm_start;
2823
2824 if (vma->vm_flags & VM_GROWSDOWN) {
2825 vm_start -= stack_guard_gap;
2826 if (vm_start > vma->vm_start)
2827 vm_start = 0;
2828 }
2829 return vm_start;
2830}
2831
2832static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2833{
2834 unsigned long vm_end = vma->vm_end;
2835
2836 if (vma->vm_flags & VM_GROWSUP) {
2837 vm_end += stack_guard_gap;
2838 if (vm_end < vma->vm_end)
2839 vm_end = -PAGE_SIZE;
2840 }
2841 return vm_end;
2842}
2843
1da177e4
LT
2844static inline unsigned long vma_pages(struct vm_area_struct *vma)
2845{
2846 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2847}
2848
640708a2
PE
2849/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2850static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2851 unsigned long vm_start, unsigned long vm_end)
2852{
dc8635b2 2853 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
2854
2855 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2856 vma = NULL;
2857
2858 return vma;
2859}
2860
017b1660
MK
2861static inline bool range_in_vma(struct vm_area_struct *vma,
2862 unsigned long start, unsigned long end)
2863{
2864 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2865}
2866
bad849b3 2867#ifdef CONFIG_MMU
804af2cf 2868pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2869void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2870#else
2871static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2872{
2873 return __pgprot(0);
2874}
64e45507
PF
2875static inline void vma_set_page_prot(struct vm_area_struct *vma)
2876{
2877 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2878}
bad849b3
DH
2879#endif
2880
295992fb
CK
2881void vma_set_file(struct vm_area_struct *vma, struct file *file);
2882
5877231f 2883#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2884unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2885 unsigned long start, unsigned long end);
2886#endif
2887
deceb6cd 2888struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2889int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2890 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
2891int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2892 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 2893int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2894int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2895 struct page **pages, unsigned long *num);
a667d745
SJ
2896int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2897 unsigned long num);
2898int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2899 unsigned long num);
ae2b01f3 2900vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2901 unsigned long pfn);
f5e6d1d5
MW
2902vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2903 unsigned long pfn, pgprot_t pgprot);
5d747637 2904vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2905 pfn_t pfn);
574c5b3d
TH
2906vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2907 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2908vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2909 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2910int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2911
1c8f4220
SJ
2912static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2913 unsigned long addr, struct page *page)
2914{
2915 int err = vm_insert_page(vma, addr, page);
2916
2917 if (err == -ENOMEM)
2918 return VM_FAULT_OOM;
2919 if (err < 0 && err != -EBUSY)
2920 return VM_FAULT_SIGBUS;
2921
2922 return VM_FAULT_NOPAGE;
2923}
2924
f8f6ae5d
JG
2925#ifndef io_remap_pfn_range
2926static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2927 unsigned long addr, unsigned long pfn,
2928 unsigned long size, pgprot_t prot)
2929{
2930 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2931}
2932#endif
2933
d97baf94
SJ
2934static inline vm_fault_t vmf_error(int err)
2935{
2936 if (err == -ENOMEM)
2937 return VM_FAULT_OOM;
2938 return VM_FAULT_SIGBUS;
2939}
2940
df06b37f
KB
2941struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2942 unsigned int foll_flags);
240aadee 2943
deceb6cd
HD
2944#define FOLL_WRITE 0x01 /* check pte is writable */
2945#define FOLL_TOUCH 0x02 /* mark page accessed */
2946#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2947#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2948#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2949#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2950 * and return without waiting upon it */
55b8fe70 2951#define FOLL_NOFAULT 0x80 /* do not fault in pages */
69ebb83e 2952#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2953#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2954#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2955#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1e987790 2956#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
7f7ccc2c 2957#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2958#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2959#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2960#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2961#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2962
2963/*
eddb1c22
JH
2964 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2965 * other. Here is what they mean, and how to use them:
932f4a63
IW
2966 *
2967 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2968 * period _often_ under userspace control. This is in contrast to
2969 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2970 *
2971 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2972 * lifetime enforced by the filesystem and we need guarantees that longterm
2973 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2974 * the filesystem. Ideas for this coordination include revoking the longterm
2975 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2976 * added after the problem with filesystems was found FS DAX VMAs are
2977 * specifically failed. Filesystem pages are still subject to bugs and use of
2978 * FOLL_LONGTERM should be avoided on those pages.
2979 *
2980 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2981 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2982 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2983 * is due to an incompatibility with the FS DAX check and
eddb1c22 2984 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2985 *
eddb1c22
JH
2986 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2987 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2988 * FOLL_LONGTERM is specified.
eddb1c22
JH
2989 *
2990 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2991 * but an additional pin counting system) will be invoked. This is intended for
2992 * anything that gets a page reference and then touches page data (for example,
2993 * Direct IO). This lets the filesystem know that some non-file-system entity is
2994 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2995 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2996 * a call to unpin_user_page().
eddb1c22
JH
2997 *
2998 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2999 * and separate refcounting mechanisms, however, and that means that each has
3000 * its own acquire and release mechanisms:
3001 *
3002 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
3003 *
f1f6a7dd 3004 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
3005 *
3006 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
3007 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
3008 * calls applied to them, and that's perfectly OK. This is a constraint on the
3009 * callers, not on the pages.)
3010 *
3011 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
3012 * directly by the caller. That's in order to help avoid mismatches when
3013 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 3014 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 3015 *
72ef5e52 3016 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 3017 */
1da177e4 3018
2b740303 3019static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3020{
3021 if (vm_fault & VM_FAULT_OOM)
3022 return -ENOMEM;
3023 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3024 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3025 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3026 return -EFAULT;
3027 return 0;
3028}
3029
a7f22660
DH
3030/*
3031 * Indicates for which pages that are write-protected in the page table,
3032 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
3033 * GUP pin will remain consistent with the pages mapped into the page tables
3034 * of the MM.
3035 *
3036 * Temporary unmapping of PageAnonExclusive() pages or clearing of
3037 * PageAnonExclusive() has to protect against concurrent GUP:
3038 * * Ordinary GUP: Using the PT lock
3039 * * GUP-fast and fork(): mm->write_protect_seq
088b8aa5
DH
3040 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
3041 * page_try_share_anon_rmap()
a7f22660
DH
3042 *
3043 * Must be called with the (sub)page that's actually referenced via the
3044 * page table entry, which might not necessarily be the head page for a
3045 * PTE-mapped THP.
3046 */
3047static inline bool gup_must_unshare(unsigned int flags, struct page *page)
3048{
3049 /*
3050 * FOLL_WRITE is implicitly handled correctly as the page table entry
3051 * has to be writable -- and if it references (part of) an anonymous
3052 * folio, that part is required to be marked exclusive.
3053 */
3054 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
3055 return false;
3056 /*
3057 * Note: PageAnon(page) is stable until the page is actually getting
3058 * freed.
3059 */
3060 if (!PageAnon(page))
3061 return false;
088b8aa5
DH
3062
3063 /* Paired with a memory barrier in page_try_share_anon_rmap(). */
3064 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
3065 smp_rmb();
3066
a7f22660
DH
3067 /*
3068 * Note that PageKsm() pages cannot be exclusive, and consequently,
3069 * cannot get pinned.
3070 */
3071 return !PageAnonExclusive(page);
3072}
3073
8b1e0f81 3074typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3075extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3076 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3077extern int apply_to_existing_page_range(struct mm_struct *mm,
3078 unsigned long address, unsigned long size,
3079 pte_fn_t fn, void *data);
aee16b3c 3080
04013513 3081extern void init_mem_debugging_and_hardening(void);
8823b1db 3082#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3083extern void __kernel_poison_pages(struct page *page, int numpages);
3084extern void __kernel_unpoison_pages(struct page *page, int numpages);
3085extern bool _page_poisoning_enabled_early;
3086DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3087static inline bool page_poisoning_enabled(void)
3088{
3089 return _page_poisoning_enabled_early;
3090}
3091/*
3092 * For use in fast paths after init_mem_debugging() has run, or when a
3093 * false negative result is not harmful when called too early.
3094 */
3095static inline bool page_poisoning_enabled_static(void)
3096{
3097 return static_branch_unlikely(&_page_poisoning_enabled);
3098}
3099static inline void kernel_poison_pages(struct page *page, int numpages)
3100{
3101 if (page_poisoning_enabled_static())
3102 __kernel_poison_pages(page, numpages);
3103}
3104static inline void kernel_unpoison_pages(struct page *page, int numpages)
3105{
3106 if (page_poisoning_enabled_static())
3107 __kernel_unpoison_pages(page, numpages);
3108}
8823b1db
LA
3109#else
3110static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3111static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3112static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3113static inline void kernel_poison_pages(struct page *page, int numpages) { }
3114static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3115#endif
3116
51cba1eb 3117DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3118static inline bool want_init_on_alloc(gfp_t flags)
3119{
51cba1eb
KC
3120 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3121 &init_on_alloc))
6471384a
AP
3122 return true;
3123 return flags & __GFP_ZERO;
3124}
3125
51cba1eb 3126DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3127static inline bool want_init_on_free(void)
3128{
51cba1eb
KC
3129 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3130 &init_on_free);
6471384a
AP
3131}
3132
8e57f8ac
VB
3133extern bool _debug_pagealloc_enabled_early;
3134DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3135
3136static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3137{
3138 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3139 _debug_pagealloc_enabled_early;
3140}
3141
3142/*
3143 * For use in fast paths after init_debug_pagealloc() has run, or when a
3144 * false negative result is not harmful when called too early.
3145 */
3146static inline bool debug_pagealloc_enabled_static(void)
031bc574 3147{
96a2b03f
VB
3148 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3149 return false;
3150
3151 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3152}
3153
5d6ad668 3154#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3155/*
5d6ad668
MR
3156 * To support DEBUG_PAGEALLOC architecture must ensure that
3157 * __kernel_map_pages() never fails
c87cbc1f 3158 */
d6332692
RE
3159extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3160
77bc7fd6
MR
3161static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3162{
3163 if (debug_pagealloc_enabled_static())
3164 __kernel_map_pages(page, numpages, 1);
3165}
3166
3167static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3168{
3169 if (debug_pagealloc_enabled_static())
3170 __kernel_map_pages(page, numpages, 0);
3171}
5d6ad668 3172#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3173static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3174static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3175#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3176
a6c19dfe 3177#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3178extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3179extern int in_gate_area_no_mm(unsigned long addr);
3180extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3181#else
a6c19dfe
AL
3182static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3183{
3184 return NULL;
3185}
3186static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3187static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3188{
3189 return 0;
3190}
1da177e4
LT
3191#endif /* __HAVE_ARCH_GATE_AREA */
3192
44a70ade
MH
3193extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3194
146732ce
JT
3195#ifdef CONFIG_SYSCTL
3196extern int sysctl_drop_caches;
32927393
CH
3197int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3198 loff_t *);
146732ce
JT
3199#endif
3200
cb731d6c 3201void drop_slab(void);
9d0243bc 3202
7a9166e3
LY
3203#ifndef CONFIG_MMU
3204#define randomize_va_space 0
3205#else
a62eaf15 3206extern int randomize_va_space;
7a9166e3 3207#endif
a62eaf15 3208
045e72ac 3209const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3210#ifdef CONFIG_MMU
03252919 3211void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3212#else
3213static inline void print_vma_addr(char *prefix, unsigned long rip)
3214{
3215}
3216#endif
e6e5494c 3217
35fd1eb1 3218void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3219struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3220 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3221 struct dev_pagemap *pgmap);
29c71111 3222pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3223p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3224pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3225pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3226pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3227 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3228void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3229struct vmem_altmap;
56993b4e
AK
3230void *vmemmap_alloc_block_buf(unsigned long size, int node,
3231 struct vmem_altmap *altmap);
8f6aac41 3232void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3233int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3234 int node, struct vmem_altmap *altmap);
7b73d978
CH
3235int vmemmap_populate(unsigned long start, unsigned long end, int node,
3236 struct vmem_altmap *altmap);
c2b91e2e 3237void vmemmap_populate_print_last(void);
0197518c 3238#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3239void vmemmap_free(unsigned long start, unsigned long end,
3240 struct vmem_altmap *altmap);
0197518c 3241#endif
46723bfa 3242void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3243 unsigned long nr_pages);
6a46079c 3244
82ba011b
AK
3245enum mf_flags {
3246 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3247 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3248 MF_MUST_KILL = 1 << 2,
cf870c70 3249 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3250 MF_UNPOISON = 1 << 4,
67f22ba7 3251 MF_SW_SIMULATED = 1 << 5,
38f6d293 3252 MF_NO_RETRY = 1 << 6,
82ba011b 3253};
c36e2024
SR
3254int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3255 unsigned long count, int mf_flags);
83b57531
EB
3256extern int memory_failure(unsigned long pfn, int flags);
3257extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3258extern void memory_failure_queue_kick(int cpu);
847ce401 3259extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3260extern int sysctl_memory_failure_early_kill;
3261extern int sysctl_memory_failure_recovery;
d0505e9f 3262extern void shake_page(struct page *p);
5844a486 3263extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3264extern int soft_offline_page(unsigned long pfn, int flags);
405ce051
NH
3265#ifdef CONFIG_MEMORY_FAILURE
3266extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags);
3267#else
3268static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
3269{
3270 return 0;
3271}
3272#endif
6a46079c 3273
03b122da
TL
3274#ifndef arch_memory_failure
3275static inline int arch_memory_failure(unsigned long pfn, int flags)
3276{
3277 return -ENXIO;
3278}
3279#endif
3280
3281#ifndef arch_is_platform_page
3282static inline bool arch_is_platform_page(u64 paddr)
3283{
3284 return false;
3285}
3286#endif
cc637b17
XX
3287
3288/*
3289 * Error handlers for various types of pages.
3290 */
cc3e2af4 3291enum mf_result {
cc637b17
XX
3292 MF_IGNORED, /* Error: cannot be handled */
3293 MF_FAILED, /* Error: handling failed */
3294 MF_DELAYED, /* Will be handled later */
3295 MF_RECOVERED, /* Successfully recovered */
3296};
3297
3298enum mf_action_page_type {
3299 MF_MSG_KERNEL,
3300 MF_MSG_KERNEL_HIGH_ORDER,
3301 MF_MSG_SLAB,
3302 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
3303 MF_MSG_HUGE,
3304 MF_MSG_FREE_HUGE,
3305 MF_MSG_UNMAP_FAILED,
3306 MF_MSG_DIRTY_SWAPCACHE,
3307 MF_MSG_CLEAN_SWAPCACHE,
3308 MF_MSG_DIRTY_MLOCKED_LRU,
3309 MF_MSG_CLEAN_MLOCKED_LRU,
3310 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3311 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3312 MF_MSG_DIRTY_LRU,
3313 MF_MSG_CLEAN_LRU,
3314 MF_MSG_TRUNCATED_LRU,
3315 MF_MSG_BUDDY,
6100e34b 3316 MF_MSG_DAX,
5d1fd5dc 3317 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3318 MF_MSG_UNKNOWN,
3319};
3320
47ad8475
AA
3321#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3322extern void clear_huge_page(struct page *page,
c79b57e4 3323 unsigned long addr_hint,
47ad8475
AA
3324 unsigned int pages_per_huge_page);
3325extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3326 unsigned long addr_hint,
3327 struct vm_area_struct *vma,
47ad8475 3328 unsigned int pages_per_huge_page);
fa4d75c1
MK
3329extern long copy_huge_page_from_user(struct page *dst_page,
3330 const void __user *usr_src,
810a56b9
MK
3331 unsigned int pages_per_huge_page,
3332 bool allow_pagefault);
2484ca9b
THV
3333
3334/**
3335 * vma_is_special_huge - Are transhuge page-table entries considered special?
3336 * @vma: Pointer to the struct vm_area_struct to consider
3337 *
3338 * Whether transhuge page-table entries are considered "special" following
3339 * the definition in vm_normal_page().
3340 *
3341 * Return: true if transhuge page-table entries should be considered special,
3342 * false otherwise.
3343 */
3344static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3345{
3346 return vma_is_dax(vma) || (vma->vm_file &&
3347 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3348}
3349
47ad8475
AA
3350#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3351
c0a32fc5
SG
3352#ifdef CONFIG_DEBUG_PAGEALLOC
3353extern unsigned int _debug_guardpage_minorder;
96a2b03f 3354DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3355
3356static inline unsigned int debug_guardpage_minorder(void)
3357{
3358 return _debug_guardpage_minorder;
3359}
3360
e30825f1
JK
3361static inline bool debug_guardpage_enabled(void)
3362{
96a2b03f 3363 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3364}
3365
c0a32fc5
SG
3366static inline bool page_is_guard(struct page *page)
3367{
e30825f1
JK
3368 if (!debug_guardpage_enabled())
3369 return false;
3370
3972f6bb 3371 return PageGuard(page);
c0a32fc5
SG
3372}
3373#else
3374static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3375static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3376static inline bool page_is_guard(struct page *page) { return false; }
3377#endif /* CONFIG_DEBUG_PAGEALLOC */
3378
f9872caf
CS
3379#if MAX_NUMNODES > 1
3380void __init setup_nr_node_ids(void);
3381#else
3382static inline void setup_nr_node_ids(void) {}
3383#endif
3384
010c164a
SL
3385extern int memcmp_pages(struct page *page1, struct page *page2);
3386
3387static inline int pages_identical(struct page *page1, struct page *page2)
3388{
3389 return !memcmp_pages(page1, page2);
3390}
3391
c5acad84
TH
3392#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3393unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3394 pgoff_t first_index, pgoff_t nr,
3395 pgoff_t bitmap_pgoff,
3396 unsigned long *bitmap,
3397 pgoff_t *start,
3398 pgoff_t *end);
3399
3400unsigned long wp_shared_mapping_range(struct address_space *mapping,
3401 pgoff_t first_index, pgoff_t nr);
3402#endif
3403
2374c09b
CH
3404extern int sysctl_nr_trim_pages;
3405
5bb1bb35 3406#ifdef CONFIG_PRINTK
8e7f37f2 3407void mem_dump_obj(void *object);
5bb1bb35
PM
3408#else
3409static inline void mem_dump_obj(void *object) {}
3410#endif
8e7f37f2 3411
22247efd
PX
3412/**
3413 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3414 * @seals: the seals to check
3415 * @vma: the vma to operate on
3416 *
3417 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3418 * the vma flags. Return 0 if check pass, or <0 for errors.
3419 */
3420static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3421{
3422 if (seals & F_SEAL_FUTURE_WRITE) {
3423 /*
3424 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3425 * "future write" seal active.
3426 */
3427 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3428 return -EPERM;
3429
3430 /*
3431 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3432 * MAP_SHARED and read-only, take care to not allow mprotect to
3433 * revert protections on such mappings. Do this only for shared
3434 * mappings. For private mappings, don't need to mask
3435 * VM_MAYWRITE as we still want them to be COW-writable.
3436 */
3437 if (vma->vm_flags & VM_SHARED)
3438 vma->vm_flags &= ~(VM_MAYWRITE);
3439 }
3440
3441 return 0;
3442}
3443
9a10064f
CC
3444#ifdef CONFIG_ANON_VMA_NAME
3445int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
3446 unsigned long len_in,
3447 struct anon_vma_name *anon_name);
9a10064f
CC
3448#else
3449static inline int
3450madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 3451 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
3452 return 0;
3453}
3454#endif
3455
999dad82
PX
3456/*
3457 * Whether to drop the pte markers, for example, the uffd-wp information for
3458 * file-backed memory. This should only be specified when we will completely
3459 * drop the page in the mm, either by truncation or unmapping of the vma. By
3460 * default, the flag is not set.
3461 */
3462#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
3463
1da177e4 3464#endif /* _LINUX_MM_H */