mm: hugetlb: defer freeing of HugeTLB pages
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
9740ca4e 18#include <linux/mmap_lock.h>
08677214 19#include <linux/range.h>
c6f6b596 20#include <linux/pfn.h>
3565fce3 21#include <linux/percpu-refcount.h>
e9da73d6 22#include <linux/bit_spinlock.h>
b0d40c92 23#include <linux/shrinker.h>
9c599024 24#include <linux/resource.h>
e30825f1 25#include <linux/page_ext.h>
8025e5dd 26#include <linux/err.h>
41901567 27#include <linux/page-flags.h>
fe896d18 28#include <linux/page_ref.h>
7b2d55d2 29#include <linux/memremap.h>
3b3b1a29 30#include <linux/overflow.h>
b5420237 31#include <linux/sizes.h>
7969f226 32#include <linux/sched.h>
65fddcfc 33#include <linux/pgtable.h>
34303244 34#include <linux/kasan.h>
1da177e4
LT
35
36struct mempolicy;
37struct anon_vma;
bf181b9f 38struct anon_vma_chain;
4e950f6f 39struct file_ra_state;
e8edc6e0 40struct user_struct;
4e950f6f 41struct writeback_control;
682aa8e1 42struct bdi_writeback;
bce617ed 43struct pt_regs;
1da177e4 44
5ef64cc8
LT
45extern int sysctl_page_lock_unfairness;
46
597b7305
MH
47void init_mm_internals(void);
48
a9ee6cf5 49#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 50extern unsigned long max_mapnr;
fccc9987
JL
51
52static inline void set_max_mapnr(unsigned long limit)
53{
54 max_mapnr = limit;
55}
56#else
57static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
58#endif
59
ca79b0c2
AK
60extern atomic_long_t _totalram_pages;
61static inline unsigned long totalram_pages(void)
62{
63 return (unsigned long)atomic_long_read(&_totalram_pages);
64}
65
66static inline void totalram_pages_inc(void)
67{
68 atomic_long_inc(&_totalram_pages);
69}
70
71static inline void totalram_pages_dec(void)
72{
73 atomic_long_dec(&_totalram_pages);
74}
75
76static inline void totalram_pages_add(long count)
77{
78 atomic_long_add(count, &_totalram_pages);
79}
80
1da177e4 81extern void * high_memory;
1da177e4
LT
82extern int page_cluster;
83
84#ifdef CONFIG_SYSCTL
85extern int sysctl_legacy_va_layout;
86#else
87#define sysctl_legacy_va_layout 0
88#endif
89
d07e2259
DC
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91extern const int mmap_rnd_bits_min;
92extern const int mmap_rnd_bits_max;
93extern int mmap_rnd_bits __read_mostly;
94#endif
95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96extern const int mmap_rnd_compat_bits_min;
97extern const int mmap_rnd_compat_bits_max;
98extern int mmap_rnd_compat_bits __read_mostly;
99#endif
100
1da177e4 101#include <asm/page.h>
1da177e4 102#include <asm/processor.h>
1da177e4 103
d9344522
AK
104/*
105 * Architectures that support memory tagging (assigning tags to memory regions,
106 * embedding these tags into addresses that point to these memory regions, and
107 * checking that the memory and the pointer tags match on memory accesses)
108 * redefine this macro to strip tags from pointers.
f0953a1b 109 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
110 */
111#ifndef untagged_addr
112#define untagged_addr(addr) (addr)
113#endif
114
79442ed1
TC
115#ifndef __pa_symbol
116#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
117#endif
118
1dff8083
AB
119#ifndef page_to_virt
120#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
121#endif
122
568c5fe5
LA
123#ifndef lm_alias
124#define lm_alias(x) __va(__pa_symbol(x))
125#endif
126
5caf9682
ST
127/*
128 * With CONFIG_CFI_CLANG, the compiler replaces function addresses in
129 * instrumented C code with jump table addresses. Architectures that
130 * support CFI can define this macro to return the actual function address
131 * when needed.
132 */
133#ifndef function_nocfi
134#define function_nocfi(x) (x)
135#endif
136
593befa6
DD
137/*
138 * To prevent common memory management code establishing
139 * a zero page mapping on a read fault.
140 * This macro should be defined within <asm/pgtable.h>.
141 * s390 does this to prevent multiplexing of hardware bits
142 * related to the physical page in case of virtualization.
143 */
144#ifndef mm_forbids_zeropage
145#define mm_forbids_zeropage(X) (0)
146#endif
147
a4a3ede2
PT
148/*
149 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
150 * If an architecture decides to implement their own version of
151 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
152 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 153 */
5470dea4
AD
154#if BITS_PER_LONG == 64
155/* This function must be updated when the size of struct page grows above 80
156 * or reduces below 56. The idea that compiler optimizes out switch()
157 * statement, and only leaves move/store instructions. Also the compiler can
158 * combine write statments if they are both assignments and can be reordered,
159 * this can result in several of the writes here being dropped.
160 */
161#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
162static inline void __mm_zero_struct_page(struct page *page)
163{
164 unsigned long *_pp = (void *)page;
165
166 /* Check that struct page is either 56, 64, 72, or 80 bytes */
167 BUILD_BUG_ON(sizeof(struct page) & 7);
168 BUILD_BUG_ON(sizeof(struct page) < 56);
169 BUILD_BUG_ON(sizeof(struct page) > 80);
170
171 switch (sizeof(struct page)) {
172 case 80:
df561f66
GS
173 _pp[9] = 0;
174 fallthrough;
5470dea4 175 case 72:
df561f66
GS
176 _pp[8] = 0;
177 fallthrough;
5470dea4 178 case 64:
df561f66
GS
179 _pp[7] = 0;
180 fallthrough;
5470dea4
AD
181 case 56:
182 _pp[6] = 0;
183 _pp[5] = 0;
184 _pp[4] = 0;
185 _pp[3] = 0;
186 _pp[2] = 0;
187 _pp[1] = 0;
188 _pp[0] = 0;
189 }
190}
191#else
a4a3ede2
PT
192#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
193#endif
194
ea606cf5
AR
195/*
196 * Default maximum number of active map areas, this limits the number of vmas
197 * per mm struct. Users can overwrite this number by sysctl but there is a
198 * problem.
199 *
200 * When a program's coredump is generated as ELF format, a section is created
201 * per a vma. In ELF, the number of sections is represented in unsigned short.
202 * This means the number of sections should be smaller than 65535 at coredump.
203 * Because the kernel adds some informative sections to a image of program at
204 * generating coredump, we need some margin. The number of extra sections is
205 * 1-3 now and depends on arch. We use "5" as safe margin, here.
206 *
207 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
208 * not a hard limit any more. Although some userspace tools can be surprised by
209 * that.
210 */
211#define MAPCOUNT_ELF_CORE_MARGIN (5)
212#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
213
214extern int sysctl_max_map_count;
215
c9b1d098 216extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 217extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 218
49f0ce5f
JM
219extern int sysctl_overcommit_memory;
220extern int sysctl_overcommit_ratio;
221extern unsigned long sysctl_overcommit_kbytes;
222
32927393
CH
223int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
224 loff_t *);
225int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
226 loff_t *);
56f3547b
FT
227int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
228 loff_t *);
6d87d0ec
SJ
229/*
230 * Any attempt to mark this function as static leads to build failure
231 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
232 * is referred to by BPF code. This must be visible for error injection.
233 */
234int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
235 pgoff_t index, gfp_t gfp, void **shadowp);
49f0ce5f 236
1cfcee72 237#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 238#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
1cfcee72
MWO
239#else
240#define nth_page(page,n) ((page) + (n))
241#endif
1da177e4 242
27ac792c
AR
243/* to align the pointer to the (next) page boundary */
244#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
245
0fa73b86 246/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 247#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 248
f86196ea
NB
249#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
250
1da177e4
LT
251/*
252 * Linux kernel virtual memory manager primitives.
253 * The idea being to have a "virtual" mm in the same way
254 * we have a virtual fs - giving a cleaner interface to the
255 * mm details, and allowing different kinds of memory mappings
256 * (from shared memory to executable loading to arbitrary
257 * mmap() functions).
258 */
259
490fc053 260struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
261struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
262void vm_area_free(struct vm_area_struct *);
c43692e8 263
1da177e4 264#ifndef CONFIG_MMU
8feae131
DH
265extern struct rb_root nommu_region_tree;
266extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
267
268extern unsigned int kobjsize(const void *objp);
269#endif
270
271/*
605d9288 272 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 273 * When changing, update also include/trace/events/mmflags.h
1da177e4 274 */
cc2383ec
KK
275#define VM_NONE 0x00000000
276
1da177e4
LT
277#define VM_READ 0x00000001 /* currently active flags */
278#define VM_WRITE 0x00000002
279#define VM_EXEC 0x00000004
280#define VM_SHARED 0x00000008
281
7e2cff42 282/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
283#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
284#define VM_MAYWRITE 0x00000020
285#define VM_MAYEXEC 0x00000040
286#define VM_MAYSHARE 0x00000080
287
288#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 289#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 290#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 291#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 292#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 293
1da177e4
LT
294#define VM_LOCKED 0x00002000
295#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
296
297 /* Used by sys_madvise() */
298#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
299#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
300
301#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
302#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 303#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 304#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 305#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 306#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 307#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 308#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 309#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 310#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 311
d9104d1c
CG
312#ifdef CONFIG_MEM_SOFT_DIRTY
313# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
314#else
315# define VM_SOFTDIRTY 0
316#endif
317
b379d790 318#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
319#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
320#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 321#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 322
63c17fb8
DH
323#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
324#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
325#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
326#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
327#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 328#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
329#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
330#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
331#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
332#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 333#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
334#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
335
5212213a 336#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
337# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
338# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 339# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
340# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
341# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
342#ifdef CONFIG_PPC
343# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
344#else
345# define VM_PKEY_BIT4 0
8f62c883 346#endif
5212213a
RP
347#endif /* CONFIG_ARCH_HAS_PKEYS */
348
349#if defined(CONFIG_X86)
350# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
351#elif defined(CONFIG_PPC)
352# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
353#elif defined(CONFIG_PARISC)
354# define VM_GROWSUP VM_ARCH_1
355#elif defined(CONFIG_IA64)
356# define VM_GROWSUP VM_ARCH_1
74a04967
KA
357#elif defined(CONFIG_SPARC64)
358# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
359# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
360#elif defined(CONFIG_ARM64)
361# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
362# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
363#elif !defined(CONFIG_MMU)
364# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
365#endif
366
9f341931
CM
367#if defined(CONFIG_ARM64_MTE)
368# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
369# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
370#else
371# define VM_MTE VM_NONE
372# define VM_MTE_ALLOWED VM_NONE
373#endif
374
cc2383ec
KK
375#ifndef VM_GROWSUP
376# define VM_GROWSUP VM_NONE
377#endif
378
7677f7fd
AR
379#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
380# define VM_UFFD_MINOR_BIT 37
381# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
382#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
383# define VM_UFFD_MINOR VM_NONE
384#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
385
a8bef8ff
MG
386/* Bits set in the VMA until the stack is in its final location */
387#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
388
c62da0c3
AK
389#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
390
391/* Common data flag combinations */
392#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
393 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
394#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
395 VM_MAYWRITE | VM_MAYEXEC)
396#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
397 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
398
399#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
400#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
401#endif
402
1da177e4
LT
403#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
404#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
405#endif
406
407#ifdef CONFIG_STACK_GROWSUP
30bdbb78 408#define VM_STACK VM_GROWSUP
1da177e4 409#else
30bdbb78 410#define VM_STACK VM_GROWSDOWN
1da177e4
LT
411#endif
412
30bdbb78
KK
413#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
414
6cb4d9a2
AK
415/* VMA basic access permission flags */
416#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
417
418
b291f000 419/*
78f11a25 420 * Special vmas that are non-mergable, non-mlock()able.
b291f000 421 */
9050d7eb 422#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 423
b4443772
AK
424/* This mask prevents VMA from being scanned with khugepaged */
425#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
426
a0715cc2
AT
427/* This mask defines which mm->def_flags a process can inherit its parent */
428#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
429
de60f5f1
EM
430/* This mask is used to clear all the VMA flags used by mlock */
431#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
432
2c2d57b5
KA
433/* Arch-specific flags to clear when updating VM flags on protection change */
434#ifndef VM_ARCH_CLEAR
435# define VM_ARCH_CLEAR VM_NONE
436#endif
437#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
438
1da177e4
LT
439/*
440 * mapping from the currently active vm_flags protection bits (the
441 * low four bits) to a page protection mask..
442 */
443extern pgprot_t protection_map[16];
444
c270a7ee 445/**
da2f5eb3 446 * enum fault_flag - Fault flag definitions.
c270a7ee
PX
447 * @FAULT_FLAG_WRITE: Fault was a write fault.
448 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
449 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
c1e8d7c6 450 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
c270a7ee
PX
451 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
452 * @FAULT_FLAG_TRIED: The fault has been tried once.
453 * @FAULT_FLAG_USER: The fault originated in userspace.
454 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
455 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
456 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
457 *
458 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
459 * whether we would allow page faults to retry by specifying these two
460 * fault flags correctly. Currently there can be three legal combinations:
461 *
462 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
463 * this is the first try
464 *
465 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
466 * we've already tried at least once
467 *
468 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
469 *
470 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
471 * be used. Note that page faults can be allowed to retry for multiple times,
472 * in which case we'll have an initial fault with flags (a) then later on
473 * continuous faults with flags (b). We should always try to detect pending
474 * signals before a retry to make sure the continuous page faults can still be
475 * interrupted if necessary.
c270a7ee 476 */
da2f5eb3
MWO
477enum fault_flag {
478 FAULT_FLAG_WRITE = 1 << 0,
479 FAULT_FLAG_MKWRITE = 1 << 1,
480 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
481 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
482 FAULT_FLAG_KILLABLE = 1 << 4,
483 FAULT_FLAG_TRIED = 1 << 5,
484 FAULT_FLAG_USER = 1 << 6,
485 FAULT_FLAG_REMOTE = 1 << 7,
486 FAULT_FLAG_INSTRUCTION = 1 << 8,
487 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
488};
d0217ac0 489
dde16072
PX
490/*
491 * The default fault flags that should be used by most of the
492 * arch-specific page fault handlers.
493 */
494#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
495 FAULT_FLAG_KILLABLE | \
496 FAULT_FLAG_INTERRUPTIBLE)
dde16072 497
4064b982
PX
498/**
499 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 500 * @flags: Fault flags.
4064b982
PX
501 *
502 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 503 * the mmap_lock for too long a time when waiting for another condition
4064b982 504 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
505 * mmap_lock in the first round to avoid potential starvation of other
506 * processes that would also want the mmap_lock.
4064b982
PX
507 *
508 * Return: true if the page fault allows retry and this is the first
509 * attempt of the fault handling; false otherwise.
510 */
da2f5eb3 511static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
512{
513 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
514 (!(flags & FAULT_FLAG_TRIED));
515}
516
282a8e03
RZ
517#define FAULT_FLAG_TRACE \
518 { FAULT_FLAG_WRITE, "WRITE" }, \
519 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
520 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
521 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
522 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
523 { FAULT_FLAG_TRIED, "TRIED" }, \
524 { FAULT_FLAG_USER, "USER" }, \
525 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
526 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
527 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 528
54cb8821 529/*
11192337 530 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
531 * ->fault function. The vma's ->fault is responsible for returning a bitmask
532 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 533 *
c20cd45e
MH
534 * MM layer fills up gfp_mask for page allocations but fault handler might
535 * alter it if its implementation requires a different allocation context.
536 *
9b4bdd2f 537 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 538 */
d0217ac0 539struct vm_fault {
5857c920 540 const struct {
742d3372
WD
541 struct vm_area_struct *vma; /* Target VMA */
542 gfp_t gfp_mask; /* gfp mask to be used for allocations */
543 pgoff_t pgoff; /* Logical page offset based on vma */
544 unsigned long address; /* Faulting virtual address */
545 };
da2f5eb3 546 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 547 * XXX: should really be 'const' */
82b0f8c3 548 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 549 * the 'address' */
a2d58167
DJ
550 pud_t *pud; /* Pointer to pud entry matching
551 * the 'address'
552 */
2994302b 553 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 554
3917048d 555 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 556 struct page *page; /* ->fault handlers should return a
83c54070 557 * page here, unless VM_FAULT_NOPAGE
d0217ac0 558 * is set (which is also implied by
83c54070 559 * VM_FAULT_ERROR).
d0217ac0 560 */
82b0f8c3 561 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
562 pte_t *pte; /* Pointer to pte entry matching
563 * the 'address'. NULL if the page
564 * table hasn't been allocated.
565 */
566 spinlock_t *ptl; /* Page table lock.
567 * Protects pte page table if 'pte'
568 * is not NULL, otherwise pmd.
569 */
7267ec00 570 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
571 * vm_ops->map_pages() sets up a page
572 * table from atomic context.
7267ec00
KS
573 * do_fault_around() pre-allocates
574 * page table to avoid allocation from
575 * atomic context.
576 */
54cb8821 577};
1da177e4 578
c791ace1
DJ
579/* page entry size for vm->huge_fault() */
580enum page_entry_size {
581 PE_SIZE_PTE = 0,
582 PE_SIZE_PMD,
583 PE_SIZE_PUD,
584};
585
1da177e4
LT
586/*
587 * These are the virtual MM functions - opening of an area, closing and
588 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 589 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
590 */
591struct vm_operations_struct {
592 void (*open)(struct vm_area_struct * area);
593 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
594 /* Called any time before splitting to check if it's allowed */
595 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 596 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
597 /*
598 * Called by mprotect() to make driver-specific permission
599 * checks before mprotect() is finalised. The VMA must not
600 * be modified. Returns 0 if eprotect() can proceed.
601 */
602 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
603 unsigned long end, unsigned long newflags);
1c8f4220
SJ
604 vm_fault_t (*fault)(struct vm_fault *vmf);
605 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
606 enum page_entry_size pe_size);
f9ce0be7 607 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 608 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 609 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
610
611 /* notification that a previously read-only page is about to become
612 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 613 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 614
dd906184 615 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 616 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 617
28b2ee20 618 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
619 * for use by special VMAs. See also generic_access_phys() for a generic
620 * implementation useful for any iomem mapping.
28b2ee20
RR
621 */
622 int (*access)(struct vm_area_struct *vma, unsigned long addr,
623 void *buf, int len, int write);
78d683e8
AL
624
625 /* Called by the /proc/PID/maps code to ask the vma whether it
626 * has a special name. Returning non-NULL will also cause this
627 * vma to be dumped unconditionally. */
628 const char *(*name)(struct vm_area_struct *vma);
629
1da177e4 630#ifdef CONFIG_NUMA
a6020ed7
LS
631 /*
632 * set_policy() op must add a reference to any non-NULL @new mempolicy
633 * to hold the policy upon return. Caller should pass NULL @new to
634 * remove a policy and fall back to surrounding context--i.e. do not
635 * install a MPOL_DEFAULT policy, nor the task or system default
636 * mempolicy.
637 */
1da177e4 638 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
639
640 /*
641 * get_policy() op must add reference [mpol_get()] to any policy at
642 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
643 * in mm/mempolicy.c will do this automatically.
644 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 645 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
646 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
647 * must return NULL--i.e., do not "fallback" to task or system default
648 * policy.
649 */
1da177e4
LT
650 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
651 unsigned long addr);
652#endif
667a0a06
DV
653 /*
654 * Called by vm_normal_page() for special PTEs to find the
655 * page for @addr. This is useful if the default behavior
656 * (using pte_page()) would not find the correct page.
657 */
658 struct page *(*find_special_page)(struct vm_area_struct *vma,
659 unsigned long addr);
1da177e4
LT
660};
661
027232da
KS
662static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
663{
bfd40eaf
KS
664 static const struct vm_operations_struct dummy_vm_ops = {};
665
a670468f 666 memset(vma, 0, sizeof(*vma));
027232da 667 vma->vm_mm = mm;
bfd40eaf 668 vma->vm_ops = &dummy_vm_ops;
027232da
KS
669 INIT_LIST_HEAD(&vma->anon_vma_chain);
670}
671
bfd40eaf
KS
672static inline void vma_set_anonymous(struct vm_area_struct *vma)
673{
674 vma->vm_ops = NULL;
675}
676
43675e6f
YS
677static inline bool vma_is_anonymous(struct vm_area_struct *vma)
678{
679 return !vma->vm_ops;
680}
681
222100ee
AK
682static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
683{
684 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
685
686 if (!maybe_stack)
687 return false;
688
689 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
690 VM_STACK_INCOMPLETE_SETUP)
691 return true;
692
693 return false;
694}
695
7969f226
AK
696static inline bool vma_is_foreign(struct vm_area_struct *vma)
697{
698 if (!current->mm)
699 return true;
700
701 if (current->mm != vma->vm_mm)
702 return true;
703
704 return false;
705}
3122e80e
AK
706
707static inline bool vma_is_accessible(struct vm_area_struct *vma)
708{
6cb4d9a2 709 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
710}
711
43675e6f
YS
712#ifdef CONFIG_SHMEM
713/*
714 * The vma_is_shmem is not inline because it is used only by slow
715 * paths in userfault.
716 */
717bool vma_is_shmem(struct vm_area_struct *vma);
718#else
719static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
720#endif
721
722int vma_is_stack_for_current(struct vm_area_struct *vma);
723
8b11ec1b
LT
724/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
725#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
726
1da177e4
LT
727struct mmu_gather;
728struct inode;
729
71e3aac0 730#include <linux/huge_mm.h>
1da177e4
LT
731
732/*
733 * Methods to modify the page usage count.
734 *
735 * What counts for a page usage:
736 * - cache mapping (page->mapping)
737 * - private data (page->private)
738 * - page mapped in a task's page tables, each mapping
739 * is counted separately
740 *
741 * Also, many kernel routines increase the page count before a critical
742 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
743 */
744
745/*
da6052f7 746 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 747 */
7c8ee9a8
NP
748static inline int put_page_testzero(struct page *page)
749{
fe896d18
JK
750 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
751 return page_ref_dec_and_test(page);
7c8ee9a8 752}
1da177e4
LT
753
754/*
7c8ee9a8
NP
755 * Try to grab a ref unless the page has a refcount of zero, return false if
756 * that is the case.
8e0861fa
AK
757 * This can be called when MMU is off so it must not access
758 * any of the virtual mappings.
1da177e4 759 */
7c8ee9a8
NP
760static inline int get_page_unless_zero(struct page *page)
761{
fe896d18 762 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 763}
1da177e4 764
53df8fdc 765extern int page_is_ram(unsigned long pfn);
124fe20d
DW
766
767enum {
768 REGION_INTERSECTS,
769 REGION_DISJOINT,
770 REGION_MIXED,
771};
772
1c29f25b
TK
773int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
774 unsigned long desc);
53df8fdc 775
48667e7a 776/* Support for virtually mapped pages */
b3bdda02
CL
777struct page *vmalloc_to_page(const void *addr);
778unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 779
0738c4bb
PM
780/*
781 * Determine if an address is within the vmalloc range
782 *
783 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
784 * is no special casing required.
785 */
9bd3bb67
AK
786
787#ifndef is_ioremap_addr
788#define is_ioremap_addr(x) is_vmalloc_addr(x)
789#endif
790
81ac3ad9 791#ifdef CONFIG_MMU
186525bd 792extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
793extern int is_vmalloc_or_module_addr(const void *x);
794#else
186525bd
IM
795static inline bool is_vmalloc_addr(const void *x)
796{
797 return false;
798}
934831d0 799static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
800{
801 return 0;
802}
803#endif
9e2779fa 804
a7c3e901
MH
805extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
806static inline void *kvmalloc(size_t size, gfp_t flags)
807{
808 return kvmalloc_node(size, flags, NUMA_NO_NODE);
809}
810static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
811{
812 return kvmalloc_node(size, flags | __GFP_ZERO, node);
813}
814static inline void *kvzalloc(size_t size, gfp_t flags)
815{
816 return kvmalloc(size, flags | __GFP_ZERO);
817}
818
752ade68
MH
819static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
820{
3b3b1a29
KC
821 size_t bytes;
822
823 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
824 return NULL;
825
3b3b1a29 826 return kvmalloc(bytes, flags);
752ade68
MH
827}
828
1c542f38
KC
829static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
830{
831 return kvmalloc_array(n, size, flags | __GFP_ZERO);
832}
833
39f1f78d 834extern void kvfree(const void *addr);
d4eaa283 835extern void kvfree_sensitive(const void *addr, size_t len);
39f1f78d 836
bac3cf4d 837static inline int head_compound_mapcount(struct page *head)
6dc5ea16
JH
838{
839 return atomic_read(compound_mapcount_ptr(head)) + 1;
840}
841
6988f31d
KK
842/*
843 * Mapcount of compound page as a whole, does not include mapped sub-pages.
844 *
845 * Must be called only for compound pages or any their tail sub-pages.
846 */
53f9263b
KS
847static inline int compound_mapcount(struct page *page)
848{
5f527c2b 849 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 850 page = compound_head(page);
bac3cf4d 851 return head_compound_mapcount(page);
53f9263b
KS
852}
853
70b50f94
AA
854/*
855 * The atomic page->_mapcount, starts from -1: so that transitions
856 * both from it and to it can be tracked, using atomic_inc_and_test
857 * and atomic_add_negative(-1).
858 */
22b751c3 859static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
860{
861 atomic_set(&(page)->_mapcount, -1);
862}
863
b20ce5e0
KS
864int __page_mapcount(struct page *page);
865
6988f31d
KK
866/*
867 * Mapcount of 0-order page; when compound sub-page, includes
868 * compound_mapcount().
869 *
870 * Result is undefined for pages which cannot be mapped into userspace.
871 * For example SLAB or special types of pages. See function page_has_type().
872 * They use this place in struct page differently.
873 */
70b50f94
AA
874static inline int page_mapcount(struct page *page)
875{
b20ce5e0
KS
876 if (unlikely(PageCompound(page)))
877 return __page_mapcount(page);
878 return atomic_read(&page->_mapcount) + 1;
879}
880
881#ifdef CONFIG_TRANSPARENT_HUGEPAGE
882int total_mapcount(struct page *page);
6d0a07ed 883int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
884#else
885static inline int total_mapcount(struct page *page)
886{
887 return page_mapcount(page);
70b50f94 888}
6d0a07ed
AA
889static inline int page_trans_huge_mapcount(struct page *page,
890 int *total_mapcount)
891{
892 int mapcount = page_mapcount(page);
893 if (total_mapcount)
894 *total_mapcount = mapcount;
895 return mapcount;
896}
b20ce5e0 897#endif
70b50f94 898
b49af68f
CL
899static inline struct page *virt_to_head_page(const void *x)
900{
901 struct page *page = virt_to_page(x);
ccaafd7f 902
1d798ca3 903 return compound_head(page);
b49af68f
CL
904}
905
ddc58f27
KS
906void __put_page(struct page *page);
907
1d7ea732 908void put_pages_list(struct list_head *pages);
1da177e4 909
8dfcc9ba 910void split_page(struct page *page, unsigned int order);
8dfcc9ba 911
33f2ef89
AW
912/*
913 * Compound pages have a destructor function. Provide a
914 * prototype for that function and accessor functions.
f1e61557 915 * These are _only_ valid on the head of a compound page.
33f2ef89 916 */
f1e61557
KS
917typedef void compound_page_dtor(struct page *);
918
919/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
920enum compound_dtor_id {
921 NULL_COMPOUND_DTOR,
922 COMPOUND_PAGE_DTOR,
923#ifdef CONFIG_HUGETLB_PAGE
924 HUGETLB_PAGE_DTOR,
9a982250
KS
925#endif
926#ifdef CONFIG_TRANSPARENT_HUGEPAGE
927 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
928#endif
929 NR_COMPOUND_DTORS,
930};
ae70eddd 931extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
932
933static inline void set_compound_page_dtor(struct page *page,
f1e61557 934 enum compound_dtor_id compound_dtor)
33f2ef89 935{
f1e61557
KS
936 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
937 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
938}
939
ff45fc3c 940static inline void destroy_compound_page(struct page *page)
33f2ef89 941{
f1e61557 942 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 943 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
944}
945
d00181b9 946static inline unsigned int compound_order(struct page *page)
d85f3385 947{
6d777953 948 if (!PageHead(page))
d85f3385 949 return 0;
e4b294c2 950 return page[1].compound_order;
d85f3385
CL
951}
952
47e29d32
JH
953static inline bool hpage_pincount_available(struct page *page)
954{
955 /*
956 * Can the page->hpage_pinned_refcount field be used? That field is in
957 * the 3rd page of the compound page, so the smallest (2-page) compound
958 * pages cannot support it.
959 */
960 page = compound_head(page);
961 return PageCompound(page) && compound_order(page) > 1;
962}
963
bac3cf4d 964static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
965{
966 return atomic_read(compound_pincount_ptr(head));
967}
968
47e29d32
JH
969static inline int compound_pincount(struct page *page)
970{
971 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
972 page = compound_head(page);
bac3cf4d 973 return head_compound_pincount(page);
47e29d32
JH
974}
975
f1e61557 976static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 977{
e4b294c2 978 page[1].compound_order = order;
1378a5ee 979 page[1].compound_nr = 1U << order;
d85f3385
CL
980}
981
d8c6546b
MWO
982/* Returns the number of pages in this potentially compound page. */
983static inline unsigned long compound_nr(struct page *page)
984{
1378a5ee
MWO
985 if (!PageHead(page))
986 return 1;
987 return page[1].compound_nr;
d8c6546b
MWO
988}
989
a50b854e
MWO
990/* Returns the number of bytes in this potentially compound page. */
991static inline unsigned long page_size(struct page *page)
992{
993 return PAGE_SIZE << compound_order(page);
994}
995
94ad9338
MWO
996/* Returns the number of bits needed for the number of bytes in a page */
997static inline unsigned int page_shift(struct page *page)
998{
999 return PAGE_SHIFT + compound_order(page);
1000}
1001
9a982250
KS
1002void free_compound_page(struct page *page);
1003
3dece370 1004#ifdef CONFIG_MMU
14fd403f
AA
1005/*
1006 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1007 * servicing faults for write access. In the normal case, do always want
1008 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1009 * that do not have writing enabled, when used by access_process_vm.
1010 */
1011static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1012{
1013 if (likely(vma->vm_flags & VM_WRITE))
1014 pte = pte_mkwrite(pte);
1015 return pte;
1016}
8c6e50b0 1017
f9ce0be7 1018vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1019void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1020
2b740303
SJ
1021vm_fault_t finish_fault(struct vm_fault *vmf);
1022vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1023#endif
14fd403f 1024
1da177e4
LT
1025/*
1026 * Multiple processes may "see" the same page. E.g. for untouched
1027 * mappings of /dev/null, all processes see the same page full of
1028 * zeroes, and text pages of executables and shared libraries have
1029 * only one copy in memory, at most, normally.
1030 *
1031 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1032 * page_count() == 0 means the page is free. page->lru is then used for
1033 * freelist management in the buddy allocator.
da6052f7 1034 * page_count() > 0 means the page has been allocated.
1da177e4 1035 *
da6052f7
NP
1036 * Pages are allocated by the slab allocator in order to provide memory
1037 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1038 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1039 * unless a particular usage is carefully commented. (the responsibility of
1040 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1041 *
da6052f7
NP
1042 * A page may be used by anyone else who does a __get_free_page().
1043 * In this case, page_count still tracks the references, and should only
1044 * be used through the normal accessor functions. The top bits of page->flags
1045 * and page->virtual store page management information, but all other fields
1046 * are unused and could be used privately, carefully. The management of this
1047 * page is the responsibility of the one who allocated it, and those who have
1048 * subsequently been given references to it.
1049 *
1050 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1051 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1052 * The following discussion applies only to them.
1053 *
da6052f7
NP
1054 * A pagecache page contains an opaque `private' member, which belongs to the
1055 * page's address_space. Usually, this is the address of a circular list of
1056 * the page's disk buffers. PG_private must be set to tell the VM to call
1057 * into the filesystem to release these pages.
1da177e4 1058 *
da6052f7
NP
1059 * A page may belong to an inode's memory mapping. In this case, page->mapping
1060 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1061 * in units of PAGE_SIZE.
1da177e4 1062 *
da6052f7
NP
1063 * If pagecache pages are not associated with an inode, they are said to be
1064 * anonymous pages. These may become associated with the swapcache, and in that
1065 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1066 *
da6052f7
NP
1067 * In either case (swapcache or inode backed), the pagecache itself holds one
1068 * reference to the page. Setting PG_private should also increment the
1069 * refcount. The each user mapping also has a reference to the page.
1da177e4 1070 *
da6052f7 1071 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1072 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1073 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1074 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1075 *
da6052f7 1076 * All pagecache pages may be subject to I/O:
1da177e4
LT
1077 * - inode pages may need to be read from disk,
1078 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1079 * to be written back to the inode on disk,
1080 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1081 * modified may need to be swapped out to swap space and (later) to be read
1082 * back into memory.
1da177e4
LT
1083 */
1084
1085/*
1086 * The zone field is never updated after free_area_init_core()
1087 * sets it, so none of the operations on it need to be atomic.
1da177e4 1088 */
348f8b6c 1089
90572890 1090/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1091#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1092#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1093#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1094#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1095#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1096
348f8b6c 1097/*
25985edc 1098 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1099 * sections we define the shift as 0; that plus a 0 mask ensures
1100 * the compiler will optimise away reference to them.
1101 */
d41dee36
AW
1102#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1103#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1104#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1105#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1106#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1107
bce54bbf
WD
1108/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1109#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1110#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1111#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1112 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1113#else
89689ae7 1114#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1115#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1116 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1117#endif
1118
bd8029b6 1119#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1120
d41dee36
AW
1121#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1122#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1123#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1124#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1125#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1126#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1127
33dd4e0e 1128static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1129{
c403f6a3 1130 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1131 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1132}
1da177e4 1133
260ae3f7
DW
1134#ifdef CONFIG_ZONE_DEVICE
1135static inline bool is_zone_device_page(const struct page *page)
1136{
1137 return page_zonenum(page) == ZONE_DEVICE;
1138}
966cf44f
AD
1139extern void memmap_init_zone_device(struct zone *, unsigned long,
1140 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1141#else
1142static inline bool is_zone_device_page(const struct page *page)
1143{
1144 return false;
1145}
7b2d55d2 1146#endif
5042db43 1147
8e3560d9
PT
1148static inline bool is_zone_movable_page(const struct page *page)
1149{
1150 return page_zonenum(page) == ZONE_MOVABLE;
1151}
1152
e7638488 1153#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1154void free_devmap_managed_page(struct page *page);
e7638488 1155DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1156
1157static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1158{
1159 if (!static_branch_unlikely(&devmap_managed_key))
1160 return false;
1161 if (!is_zone_device_page(page))
1162 return false;
1163 switch (page->pgmap->type) {
1164 case MEMORY_DEVICE_PRIVATE:
e7638488 1165 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1166 return true;
1167 default:
1168 break;
1169 }
1170 return false;
1171}
1172
07d80269
JH
1173void put_devmap_managed_page(struct page *page);
1174
e7638488 1175#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1176static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1177{
1178 return false;
1179}
07d80269
JH
1180
1181static inline void put_devmap_managed_page(struct page *page)
1182{
1183}
7588adf8 1184#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1185
6b368cd4
JG
1186static inline bool is_device_private_page(const struct page *page)
1187{
7588adf8
RM
1188 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1189 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1190 is_zone_device_page(page) &&
1191 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1192}
e7638488 1193
52916982
LG
1194static inline bool is_pci_p2pdma_page(const struct page *page)
1195{
7588adf8
RM
1196 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1197 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1198 is_zone_device_page(page) &&
1199 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1200}
7b2d55d2 1201
f958d7b5
LT
1202/* 127: arbitrary random number, small enough to assemble well */
1203#define page_ref_zero_or_close_to_overflow(page) \
1204 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1205
3565fce3
DW
1206static inline void get_page(struct page *page)
1207{
1208 page = compound_head(page);
1209 /*
1210 * Getting a normal page or the head of a compound page
0139aa7b 1211 * requires to already have an elevated page->_refcount.
3565fce3 1212 */
f958d7b5 1213 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1214 page_ref_inc(page);
3565fce3
DW
1215}
1216
3faa52c0 1217bool __must_check try_grab_page(struct page *page, unsigned int flags);
0fa5bc40
JM
1218__maybe_unused struct page *try_grab_compound_head(struct page *page, int refs,
1219 unsigned int flags);
1220
3faa52c0 1221
88b1a17d
LT
1222static inline __must_check bool try_get_page(struct page *page)
1223{
1224 page = compound_head(page);
1225 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1226 return false;
fe896d18 1227 page_ref_inc(page);
88b1a17d 1228 return true;
3565fce3
DW
1229}
1230
1231static inline void put_page(struct page *page)
1232{
1233 page = compound_head(page);
1234
7b2d55d2 1235 /*
e7638488
DW
1236 * For devmap managed pages we need to catch refcount transition from
1237 * 2 to 1, when refcount reach one it means the page is free and we
1238 * need to inform the device driver through callback. See
7b2d55d2
JG
1239 * include/linux/memremap.h and HMM for details.
1240 */
07d80269
JH
1241 if (page_is_devmap_managed(page)) {
1242 put_devmap_managed_page(page);
7b2d55d2 1243 return;
07d80269 1244 }
7b2d55d2 1245
3565fce3
DW
1246 if (put_page_testzero(page))
1247 __put_page(page);
3565fce3
DW
1248}
1249
3faa52c0
JH
1250/*
1251 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1252 * the page's refcount so that two separate items are tracked: the original page
1253 * reference count, and also a new count of how many pin_user_pages() calls were
1254 * made against the page. ("gup-pinned" is another term for the latter).
1255 *
1256 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1257 * distinct from normal pages. As such, the unpin_user_page() call (and its
1258 * variants) must be used in order to release gup-pinned pages.
1259 *
1260 * Choice of value:
1261 *
1262 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1263 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1264 * simpler, due to the fact that adding an even power of two to the page
1265 * refcount has the effect of using only the upper N bits, for the code that
1266 * counts up using the bias value. This means that the lower bits are left for
1267 * the exclusive use of the original code that increments and decrements by one
1268 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1269 *
3faa52c0
JH
1270 * Of course, once the lower bits overflow into the upper bits (and this is
1271 * OK, because subtraction recovers the original values), then visual inspection
1272 * no longer suffices to directly view the separate counts. However, for normal
1273 * applications that don't have huge page reference counts, this won't be an
1274 * issue.
fc1d8e7c 1275 *
3faa52c0
JH
1276 * Locking: the lockless algorithm described in page_cache_get_speculative()
1277 * and page_cache_gup_pin_speculative() provides safe operation for
1278 * get_user_pages and page_mkclean and other calls that race to set up page
1279 * table entries.
fc1d8e7c 1280 */
3faa52c0 1281#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1282
3faa52c0 1283void unpin_user_page(struct page *page);
f1f6a7dd
JH
1284void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1285 bool make_dirty);
458a4f78
JM
1286void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1287 bool make_dirty);
f1f6a7dd 1288void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1289
3faa52c0 1290/**
136dfc99
MWO
1291 * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1292 * @page: The page.
3faa52c0
JH
1293 *
1294 * This function checks if a page has been pinned via a call to
136dfc99 1295 * a function in the pin_user_pages() family.
3faa52c0
JH
1296 *
1297 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1298 * because it means "definitely not pinned for DMA", but true means "probably
1299 * pinned for DMA, but possibly a false positive due to having at least
1300 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1301 *
1302 * False positives are OK, because: a) it's unlikely for a page to get that many
1303 * refcounts, and b) all the callers of this routine are expected to be able to
1304 * deal gracefully with a false positive.
1305 *
47e29d32
JH
1306 * For huge pages, the result will be exactly correct. That's because we have
1307 * more tracking data available: the 3rd struct page in the compound page is
1308 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1309 * scheme).
1310 *
72ef5e52 1311 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0 1312 *
136dfc99
MWO
1313 * Return: True, if it is likely that the page has been "dma-pinned".
1314 * False, if the page is definitely not dma-pinned.
3faa52c0
JH
1315 */
1316static inline bool page_maybe_dma_pinned(struct page *page)
1317{
47e29d32
JH
1318 if (hpage_pincount_available(page))
1319 return compound_pincount(page) > 0;
1320
3faa52c0
JH
1321 /*
1322 * page_ref_count() is signed. If that refcount overflows, then
1323 * page_ref_count() returns a negative value, and callers will avoid
1324 * further incrementing the refcount.
1325 *
1326 * Here, for that overflow case, use the signed bit to count a little
1327 * bit higher via unsigned math, and thus still get an accurate result.
1328 */
1329 return ((unsigned int)page_ref_count(compound_head(page))) >=
1330 GUP_PIN_COUNTING_BIAS;
1331}
1332
97a7e473
PX
1333static inline bool is_cow_mapping(vm_flags_t flags)
1334{
1335 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1336}
1337
1338/*
1339 * This should most likely only be called during fork() to see whether we
1340 * should break the cow immediately for a page on the src mm.
1341 */
1342static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1343 struct page *page)
1344{
1345 if (!is_cow_mapping(vma->vm_flags))
1346 return false;
1347
a458b76a 1348 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
97a7e473
PX
1349 return false;
1350
1351 return page_maybe_dma_pinned(page);
1352}
1353
9127ab4f
CS
1354#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1355#define SECTION_IN_PAGE_FLAGS
1356#endif
1357
89689ae7 1358/*
7a8010cd
VB
1359 * The identification function is mainly used by the buddy allocator for
1360 * determining if two pages could be buddies. We are not really identifying
1361 * the zone since we could be using the section number id if we do not have
1362 * node id available in page flags.
1363 * We only guarantee that it will return the same value for two combinable
1364 * pages in a zone.
89689ae7 1365 */
cb2b95e1
AW
1366static inline int page_zone_id(struct page *page)
1367{
89689ae7 1368 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1369}
1370
89689ae7 1371#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1372extern int page_to_nid(const struct page *page);
89689ae7 1373#else
33dd4e0e 1374static inline int page_to_nid(const struct page *page)
d41dee36 1375{
f165b378
PT
1376 struct page *p = (struct page *)page;
1377
1378 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1379}
89689ae7
CL
1380#endif
1381
57e0a030 1382#ifdef CONFIG_NUMA_BALANCING
90572890 1383static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1384{
90572890 1385 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1386}
1387
90572890 1388static inline int cpupid_to_pid(int cpupid)
57e0a030 1389{
90572890 1390 return cpupid & LAST__PID_MASK;
57e0a030 1391}
b795854b 1392
90572890 1393static inline int cpupid_to_cpu(int cpupid)
b795854b 1394{
90572890 1395 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1396}
1397
90572890 1398static inline int cpupid_to_nid(int cpupid)
b795854b 1399{
90572890 1400 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1401}
1402
90572890 1403static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1404{
90572890 1405 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1406}
1407
90572890 1408static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1409{
90572890 1410 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1411}
1412
8c8a743c
PZ
1413static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1414{
1415 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1416}
1417
1418#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1419#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1420static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1421{
1ae71d03 1422 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1423}
90572890
PZ
1424
1425static inline int page_cpupid_last(struct page *page)
1426{
1427 return page->_last_cpupid;
1428}
1429static inline void page_cpupid_reset_last(struct page *page)
b795854b 1430{
1ae71d03 1431 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1432}
1433#else
90572890 1434static inline int page_cpupid_last(struct page *page)
75980e97 1435{
90572890 1436 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1437}
1438
90572890 1439extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1440
90572890 1441static inline void page_cpupid_reset_last(struct page *page)
75980e97 1442{
09940a4f 1443 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1444}
90572890
PZ
1445#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1446#else /* !CONFIG_NUMA_BALANCING */
1447static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1448{
90572890 1449 return page_to_nid(page); /* XXX */
57e0a030
MG
1450}
1451
90572890 1452static inline int page_cpupid_last(struct page *page)
57e0a030 1453{
90572890 1454 return page_to_nid(page); /* XXX */
57e0a030
MG
1455}
1456
90572890 1457static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1458{
1459 return -1;
1460}
1461
90572890 1462static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1463{
1464 return -1;
1465}
1466
90572890 1467static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1468{
1469 return -1;
1470}
1471
90572890
PZ
1472static inline int cpu_pid_to_cpupid(int nid, int pid)
1473{
1474 return -1;
1475}
1476
1477static inline bool cpupid_pid_unset(int cpupid)
b795854b 1478{
2b787449 1479 return true;
b795854b
MG
1480}
1481
90572890 1482static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1483{
1484}
8c8a743c
PZ
1485
1486static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1487{
1488 return false;
1489}
90572890 1490#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1491
2e903b91 1492#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1493
cf10bd4c
AK
1494/*
1495 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1496 * setting tags for all pages to native kernel tag value 0xff, as the default
1497 * value 0x00 maps to 0xff.
1498 */
1499
2813b9c0
AK
1500static inline u8 page_kasan_tag(const struct page *page)
1501{
cf10bd4c
AK
1502 u8 tag = 0xff;
1503
1504 if (kasan_enabled()) {
1505 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1506 tag ^= 0xff;
1507 }
1508
1509 return tag;
2813b9c0
AK
1510}
1511
1512static inline void page_kasan_tag_set(struct page *page, u8 tag)
1513{
34303244 1514 if (kasan_enabled()) {
cf10bd4c 1515 tag ^= 0xff;
34303244
AK
1516 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1517 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1518 }
2813b9c0
AK
1519}
1520
1521static inline void page_kasan_tag_reset(struct page *page)
1522{
34303244
AK
1523 if (kasan_enabled())
1524 page_kasan_tag_set(page, 0xff);
2813b9c0 1525}
34303244
AK
1526
1527#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1528
2813b9c0
AK
1529static inline u8 page_kasan_tag(const struct page *page)
1530{
1531 return 0xff;
1532}
1533
1534static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1535static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1536
1537#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1538
33dd4e0e 1539static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1540{
1541 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1542}
1543
75ef7184
MG
1544static inline pg_data_t *page_pgdat(const struct page *page)
1545{
1546 return NODE_DATA(page_to_nid(page));
1547}
1548
9127ab4f 1549#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1550static inline void set_page_section(struct page *page, unsigned long section)
1551{
1552 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1553 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1554}
1555
aa462abe 1556static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1557{
1558 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1559}
308c05e3 1560#endif
d41dee36 1561
8e3560d9
PT
1562/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1563#ifdef CONFIG_MIGRATION
1564static inline bool is_pinnable_page(struct page *page)
1565{
9afaf30f
PT
1566 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1567 is_zero_pfn(page_to_pfn(page));
8e3560d9
PT
1568}
1569#else
1570static inline bool is_pinnable_page(struct page *page)
1571{
1572 return true;
1573}
1574#endif
1575
2f1b6248 1576static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1577{
1578 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1579 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1580}
2f1b6248 1581
348f8b6c
DH
1582static inline void set_page_node(struct page *page, unsigned long node)
1583{
1584 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1585 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1586}
89689ae7 1587
2f1b6248 1588static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1589 unsigned long node, unsigned long pfn)
1da177e4 1590{
348f8b6c
DH
1591 set_page_zone(page, zone);
1592 set_page_node(page, node);
9127ab4f 1593#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1594 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1595#endif
1da177e4
LT
1596}
1597
f6ac2354
CL
1598/*
1599 * Some inline functions in vmstat.h depend on page_zone()
1600 */
1601#include <linux/vmstat.h>
1602
33dd4e0e 1603static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1604{
1dff8083 1605 return page_to_virt(page);
1da177e4
LT
1606}
1607
1608#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1609#define HASHED_PAGE_VIRTUAL
1610#endif
1611
1612#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1613static inline void *page_address(const struct page *page)
1614{
1615 return page->virtual;
1616}
1617static inline void set_page_address(struct page *page, void *address)
1618{
1619 page->virtual = address;
1620}
1da177e4
LT
1621#define page_address_init() do { } while(0)
1622#endif
1623
1624#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1625void *page_address(const struct page *page);
1da177e4
LT
1626void set_page_address(struct page *page, void *virtual);
1627void page_address_init(void);
1628#endif
1629
1630#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1631#define page_address(page) lowmem_page_address(page)
1632#define set_page_address(page, address) do { } while(0)
1633#define page_address_init() do { } while(0)
1634#endif
1635
e39155ea
KS
1636extern void *page_rmapping(struct page *page);
1637extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1638extern struct address_space *page_mapping(struct page *page);
1da177e4 1639
f981c595
MG
1640extern struct address_space *__page_file_mapping(struct page *);
1641
1642static inline
1643struct address_space *page_file_mapping(struct page *page)
1644{
1645 if (unlikely(PageSwapCache(page)))
1646 return __page_file_mapping(page);
1647
1648 return page->mapping;
1649}
1650
f6ab1f7f
HY
1651extern pgoff_t __page_file_index(struct page *page);
1652
1da177e4
LT
1653/*
1654 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1655 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1656 */
1657static inline pgoff_t page_index(struct page *page)
1658{
1659 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1660 return __page_file_index(page);
1da177e4
LT
1661 return page->index;
1662}
1663
1aa8aea5 1664bool page_mapped(struct page *page);
bda807d4 1665struct address_space *page_mapping(struct page *page);
1da177e4 1666
2f064f34
MH
1667/*
1668 * Return true only if the page has been allocated with
1669 * ALLOC_NO_WATERMARKS and the low watermark was not
1670 * met implying that the system is under some pressure.
1671 */
1d7bab6a 1672static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1673{
1674 /*
1675 * Page index cannot be this large so this must be
1676 * a pfmemalloc page.
1677 */
1678 return page->index == -1UL;
1679}
1680
1681/*
1682 * Only to be called by the page allocator on a freshly allocated
1683 * page.
1684 */
1685static inline void set_page_pfmemalloc(struct page *page)
1686{
1687 page->index = -1UL;
1688}
1689
1690static inline void clear_page_pfmemalloc(struct page *page)
1691{
1692 page->index = 0;
1693}
1694
1c0fe6e3
NP
1695/*
1696 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1697 */
1698extern void pagefault_out_of_memory(void);
1699
1da177e4 1700#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1701#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1da177e4 1702
ddd588b5 1703/*
7bf02ea2 1704 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1705 * various contexts.
1706 */
4b59e6c4 1707#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1708
9af744d7 1709extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1710
710ec38b 1711#ifdef CONFIG_MMU
7f43add4 1712extern bool can_do_mlock(void);
710ec38b
AB
1713#else
1714static inline bool can_do_mlock(void) { return false; }
1715#endif
1da177e4
LT
1716extern int user_shm_lock(size_t, struct user_struct *);
1717extern void user_shm_unlock(size_t, struct user_struct *);
1718
1719/*
1720 * Parameter block passed down to zap_pte_range in exceptional cases.
1721 */
1722struct zap_details {
1da177e4
LT
1723 struct address_space *check_mapping; /* Check page->mapping if set */
1724 pgoff_t first_index; /* Lowest page->index to unmap */
1725 pgoff_t last_index; /* Highest page->index to unmap */
22061a1f 1726 struct page *single_page; /* Locked page to be unmapped */
1da177e4
LT
1727};
1728
25b2995a
CH
1729struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1730 pte_t pte);
28093f9f
GS
1731struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1732 pmd_t pmd);
7e675137 1733
27d036e3
LR
1734void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1735 unsigned long size);
14f5ff5d 1736void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1737 unsigned long size);
4f74d2c8
LT
1738void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1739 unsigned long start, unsigned long end);
e6473092 1740
ac46d4f3
JG
1741struct mmu_notifier_range;
1742
42b77728 1743void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1744 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1745int
1746copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
9fd6dad1
PB
1747int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1748 struct mmu_notifier_range *range, pte_t **ptepp,
1749 pmd_t **pmdpp, spinlock_t **ptlp);
ff5c19ed 1750int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 1751 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
1752int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1753 unsigned long *pfn);
d87fe660 1754int follow_phys(struct vm_area_struct *vma, unsigned long address,
1755 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1756int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1757 void *buf, int len, int write);
1da177e4 1758
7caef267 1759extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1760extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1761void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1762void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1763int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1764int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1765int invalidate_inode_page(struct page *page);
1766
7ee1dd3f 1767#ifdef CONFIG_MMU
2b740303 1768extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1769 unsigned long address, unsigned int flags,
1770 struct pt_regs *regs);
64019a2e 1771extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1772 unsigned long address, unsigned int fault_flags,
1773 bool *unlocked);
22061a1f 1774void unmap_mapping_page(struct page *page);
977fbdcd
MW
1775void unmap_mapping_pages(struct address_space *mapping,
1776 pgoff_t start, pgoff_t nr, bool even_cows);
1777void unmap_mapping_range(struct address_space *mapping,
1778 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1779#else
2b740303 1780static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1781 unsigned long address, unsigned int flags,
1782 struct pt_regs *regs)
7ee1dd3f
DH
1783{
1784 /* should never happen if there's no MMU */
1785 BUG();
1786 return VM_FAULT_SIGBUS;
1787}
64019a2e 1788static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1789 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1790{
1791 /* should never happen if there's no MMU */
1792 BUG();
1793 return -EFAULT;
1794}
22061a1f 1795static inline void unmap_mapping_page(struct page *page) { }
977fbdcd
MW
1796static inline void unmap_mapping_pages(struct address_space *mapping,
1797 pgoff_t start, pgoff_t nr, bool even_cows) { }
1798static inline void unmap_mapping_range(struct address_space *mapping,
1799 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1800#endif
f33ea7f4 1801
977fbdcd
MW
1802static inline void unmap_shared_mapping_range(struct address_space *mapping,
1803 loff_t const holebegin, loff_t const holelen)
1804{
1805 unmap_mapping_range(mapping, holebegin, holelen, 0);
1806}
1807
1808extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1809 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1810extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1811 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1812extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1813 void *buf, int len, unsigned int gup_flags);
1da177e4 1814
64019a2e 1815long get_user_pages_remote(struct mm_struct *mm,
1e987790 1816 unsigned long start, unsigned long nr_pages,
9beae1ea 1817 unsigned int gup_flags, struct page **pages,
5b56d49f 1818 struct vm_area_struct **vmas, int *locked);
64019a2e 1819long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1820 unsigned long start, unsigned long nr_pages,
1821 unsigned int gup_flags, struct page **pages,
1822 struct vm_area_struct **vmas, int *locked);
c12d2da5 1823long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1824 unsigned int gup_flags, struct page **pages,
cde70140 1825 struct vm_area_struct **vmas);
eddb1c22
JH
1826long pin_user_pages(unsigned long start, unsigned long nr_pages,
1827 unsigned int gup_flags, struct page **pages,
1828 struct vm_area_struct **vmas);
c12d2da5 1829long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1830 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1831long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1832 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1833long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1834 struct page **pages, unsigned int gup_flags);
91429023
JH
1835long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1836 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1837
73b0140b
IW
1838int get_user_pages_fast(unsigned long start, int nr_pages,
1839 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1840int pin_user_pages_fast(unsigned long start, int nr_pages,
1841 unsigned int gup_flags, struct page **pages);
8025e5dd 1842
79eb597c
DJ
1843int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1844int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1845 struct task_struct *task, bool bypass_rlim);
1846
18022c5d
MG
1847struct kvec;
1848int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1849 struct page **pages);
1850int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1851struct page *get_dump_page(unsigned long addr);
1da177e4 1852
cf9a2ae8 1853extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1854extern void do_invalidatepage(struct page *page, unsigned int offset,
1855 unsigned int length);
cf9a2ae8 1856
1da177e4
LT
1857int redirty_page_for_writepage(struct writeback_control *wbc,
1858 struct page *page);
c4843a75 1859void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1860 struct bdi_writeback *wb);
b3c97528 1861int set_page_dirty(struct page *page);
1da177e4 1862int set_page_dirty_lock(struct page *page);
736304f3
JK
1863void __cancel_dirty_page(struct page *page);
1864static inline void cancel_dirty_page(struct page *page)
1865{
1866 /* Avoid atomic ops, locking, etc. when not actually needed. */
1867 if (PageDirty(page))
1868 __cancel_dirty_page(page);
1869}
1da177e4 1870int clear_page_dirty_for_io(struct page *page);
b9ea2515 1871
a9090253 1872int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1873
b6a2fea3
OW
1874extern unsigned long move_page_tables(struct vm_area_struct *vma,
1875 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1876 unsigned long new_addr, unsigned long len,
1877 bool need_rmap_locks);
58705444
PX
1878
1879/*
1880 * Flags used by change_protection(). For now we make it a bitmap so
1881 * that we can pass in multiple flags just like parameters. However
1882 * for now all the callers are only use one of the flags at the same
1883 * time.
1884 */
1885/* Whether we should allow dirty bit accounting */
1886#define MM_CP_DIRTY_ACCT (1UL << 0)
1887/* Whether this protection change is for NUMA hints */
1888#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1889/* Whether this change is for write protecting */
1890#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1891#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1892#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1893 MM_CP_UFFD_WP_RESOLVE)
58705444 1894
7da4d641
PZ
1895extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1896 unsigned long end, pgprot_t newprot,
58705444 1897 unsigned long cp_flags);
b6a2fea3
OW
1898extern int mprotect_fixup(struct vm_area_struct *vma,
1899 struct vm_area_struct **pprev, unsigned long start,
1900 unsigned long end, unsigned long newflags);
1da177e4 1901
465a454f
PZ
1902/*
1903 * doesn't attempt to fault and will return short.
1904 */
dadbb612
SJ
1905int get_user_pages_fast_only(unsigned long start, int nr_pages,
1906 unsigned int gup_flags, struct page **pages);
104acc32
JH
1907int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1908 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1909
1910static inline bool get_user_page_fast_only(unsigned long addr,
1911 unsigned int gup_flags, struct page **pagep)
1912{
1913 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1914}
d559db08
KH
1915/*
1916 * per-process(per-mm_struct) statistics.
1917 */
d559db08
KH
1918static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1919{
69c97823
KK
1920 long val = atomic_long_read(&mm->rss_stat.count[member]);
1921
1922#ifdef SPLIT_RSS_COUNTING
1923 /*
1924 * counter is updated in asynchronous manner and may go to minus.
1925 * But it's never be expected number for users.
1926 */
1927 if (val < 0)
1928 val = 0;
172703b0 1929#endif
69c97823
KK
1930 return (unsigned long)val;
1931}
d559db08 1932
e4dcad20 1933void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1934
d559db08
KH
1935static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1936{
b3d1411b
JFG
1937 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1938
e4dcad20 1939 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1940}
1941
1942static inline void inc_mm_counter(struct mm_struct *mm, int member)
1943{
b3d1411b
JFG
1944 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1945
e4dcad20 1946 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1947}
1948
1949static inline void dec_mm_counter(struct mm_struct *mm, int member)
1950{
b3d1411b
JFG
1951 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1952
e4dcad20 1953 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1954}
1955
eca56ff9
JM
1956/* Optimized variant when page is already known not to be PageAnon */
1957static inline int mm_counter_file(struct page *page)
1958{
1959 if (PageSwapBacked(page))
1960 return MM_SHMEMPAGES;
1961 return MM_FILEPAGES;
1962}
1963
1964static inline int mm_counter(struct page *page)
1965{
1966 if (PageAnon(page))
1967 return MM_ANONPAGES;
1968 return mm_counter_file(page);
1969}
1970
d559db08
KH
1971static inline unsigned long get_mm_rss(struct mm_struct *mm)
1972{
1973 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1974 get_mm_counter(mm, MM_ANONPAGES) +
1975 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1976}
1977
1978static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1979{
1980 return max(mm->hiwater_rss, get_mm_rss(mm));
1981}
1982
1983static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1984{
1985 return max(mm->hiwater_vm, mm->total_vm);
1986}
1987
1988static inline void update_hiwater_rss(struct mm_struct *mm)
1989{
1990 unsigned long _rss = get_mm_rss(mm);
1991
1992 if ((mm)->hiwater_rss < _rss)
1993 (mm)->hiwater_rss = _rss;
1994}
1995
1996static inline void update_hiwater_vm(struct mm_struct *mm)
1997{
1998 if (mm->hiwater_vm < mm->total_vm)
1999 mm->hiwater_vm = mm->total_vm;
2000}
2001
695f0559
PC
2002static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2003{
2004 mm->hiwater_rss = get_mm_rss(mm);
2005}
2006
d559db08
KH
2007static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2008 struct mm_struct *mm)
2009{
2010 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2011
2012 if (*maxrss < hiwater_rss)
2013 *maxrss = hiwater_rss;
2014}
2015
53bddb4e 2016#if defined(SPLIT_RSS_COUNTING)
05af2e10 2017void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2018#else
05af2e10 2019static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2020{
2021}
2022#endif
465a454f 2023
78e7c5af
AK
2024#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2025static inline int pte_special(pte_t pte)
2026{
2027 return 0;
2028}
2029
2030static inline pte_t pte_mkspecial(pte_t pte)
2031{
2032 return pte;
2033}
2034#endif
2035
17596731 2036#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2037static inline int pte_devmap(pte_t pte)
2038{
2039 return 0;
2040}
2041#endif
2042
6d2329f8 2043int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 2044
25ca1d6c
NK
2045extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2046 spinlock_t **ptl);
2047static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2048 spinlock_t **ptl)
2049{
2050 pte_t *ptep;
2051 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2052 return ptep;
2053}
c9cfcddf 2054
c2febafc
KS
2055#ifdef __PAGETABLE_P4D_FOLDED
2056static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2057 unsigned long address)
2058{
2059 return 0;
2060}
2061#else
2062int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2063#endif
2064
b4e98d9a 2065#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2066static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2067 unsigned long address)
2068{
2069 return 0;
2070}
b4e98d9a
KS
2071static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2072static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2073
5f22df00 2074#else
c2febafc 2075int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2076
b4e98d9a
KS
2077static inline void mm_inc_nr_puds(struct mm_struct *mm)
2078{
6d212db1
MS
2079 if (mm_pud_folded(mm))
2080 return;
af5b0f6a 2081 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2082}
2083
2084static inline void mm_dec_nr_puds(struct mm_struct *mm)
2085{
6d212db1
MS
2086 if (mm_pud_folded(mm))
2087 return;
af5b0f6a 2088 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2089}
5f22df00
NP
2090#endif
2091
2d2f5119 2092#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2093static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2094 unsigned long address)
2095{
2096 return 0;
2097}
dc6c9a35 2098
dc6c9a35
KS
2099static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2100static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2101
5f22df00 2102#else
1bb3630e 2103int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2104
dc6c9a35
KS
2105static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2106{
6d212db1
MS
2107 if (mm_pmd_folded(mm))
2108 return;
af5b0f6a 2109 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2110}
2111
2112static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2113{
6d212db1
MS
2114 if (mm_pmd_folded(mm))
2115 return;
af5b0f6a 2116 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2117}
5f22df00
NP
2118#endif
2119
c4812909 2120#ifdef CONFIG_MMU
af5b0f6a 2121static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2122{
af5b0f6a 2123 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2124}
2125
af5b0f6a 2126static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2127{
af5b0f6a 2128 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2129}
2130
2131static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2132{
af5b0f6a 2133 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2134}
2135
2136static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2137{
af5b0f6a 2138 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2139}
2140#else
c4812909 2141
af5b0f6a
KS
2142static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2143static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2144{
2145 return 0;
2146}
2147
2148static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2149static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2150#endif
2151
4cf58924
JFG
2152int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2153int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2154
f949286c
MR
2155#if defined(CONFIG_MMU)
2156
c2febafc
KS
2157static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2158 unsigned long address)
2159{
2160 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2161 NULL : p4d_offset(pgd, address);
2162}
2163
2164static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2165 unsigned long address)
1da177e4 2166{
c2febafc
KS
2167 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2168 NULL : pud_offset(p4d, address);
1da177e4 2169}
d8626138 2170
1da177e4
LT
2171static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2172{
1bb3630e
HD
2173 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2174 NULL: pmd_offset(pud, address);
1da177e4 2175}
f949286c 2176#endif /* CONFIG_MMU */
1bb3630e 2177
57c1ffce 2178#if USE_SPLIT_PTE_PTLOCKS
597d795a 2179#if ALLOC_SPLIT_PTLOCKS
b35f1819 2180void __init ptlock_cache_init(void);
539edb58
PZ
2181extern bool ptlock_alloc(struct page *page);
2182extern void ptlock_free(struct page *page);
2183
2184static inline spinlock_t *ptlock_ptr(struct page *page)
2185{
2186 return page->ptl;
2187}
597d795a 2188#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2189static inline void ptlock_cache_init(void)
2190{
2191}
2192
49076ec2
KS
2193static inline bool ptlock_alloc(struct page *page)
2194{
49076ec2
KS
2195 return true;
2196}
539edb58 2197
49076ec2
KS
2198static inline void ptlock_free(struct page *page)
2199{
49076ec2
KS
2200}
2201
2202static inline spinlock_t *ptlock_ptr(struct page *page)
2203{
539edb58 2204 return &page->ptl;
49076ec2 2205}
597d795a 2206#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2207
2208static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2209{
2210 return ptlock_ptr(pmd_page(*pmd));
2211}
2212
2213static inline bool ptlock_init(struct page *page)
2214{
2215 /*
2216 * prep_new_page() initialize page->private (and therefore page->ptl)
2217 * with 0. Make sure nobody took it in use in between.
2218 *
2219 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2220 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2221 */
309381fe 2222 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2223 if (!ptlock_alloc(page))
2224 return false;
2225 spin_lock_init(ptlock_ptr(page));
2226 return true;
2227}
2228
57c1ffce 2229#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2230/*
2231 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2232 */
49076ec2
KS
2233static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2234{
2235 return &mm->page_table_lock;
2236}
b35f1819 2237static inline void ptlock_cache_init(void) {}
49076ec2 2238static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2239static inline void ptlock_free(struct page *page) {}
57c1ffce 2240#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2241
b35f1819
KS
2242static inline void pgtable_init(void)
2243{
2244 ptlock_cache_init();
2245 pgtable_cache_init();
2246}
2247
b4ed71f5 2248static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2249{
706874e9
VD
2250 if (!ptlock_init(page))
2251 return false;
1d40a5ea 2252 __SetPageTable(page);
f0c0c115 2253 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2254 return true;
2f569afd
MS
2255}
2256
b4ed71f5 2257static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2258{
9e247bab 2259 ptlock_free(page);
1d40a5ea 2260 __ClearPageTable(page);
f0c0c115 2261 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2262}
2263
c74df32c
HD
2264#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2265({ \
4c21e2f2 2266 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2267 pte_t *__pte = pte_offset_map(pmd, address); \
2268 *(ptlp) = __ptl; \
2269 spin_lock(__ptl); \
2270 __pte; \
2271})
2272
2273#define pte_unmap_unlock(pte, ptl) do { \
2274 spin_unlock(ptl); \
2275 pte_unmap(pte); \
2276} while (0)
2277
4cf58924 2278#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2279
2280#define pte_alloc_map(mm, pmd, address) \
4cf58924 2281 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2282
c74df32c 2283#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2284 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2285 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2286
1bb3630e 2287#define pte_alloc_kernel(pmd, address) \
4cf58924 2288 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2289 NULL: pte_offset_kernel(pmd, address))
1da177e4 2290
e009bb30
KS
2291#if USE_SPLIT_PMD_PTLOCKS
2292
634391ac
MS
2293static struct page *pmd_to_page(pmd_t *pmd)
2294{
2295 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2296 return virt_to_page((void *)((unsigned long) pmd & mask));
2297}
2298
e009bb30
KS
2299static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2300{
634391ac 2301 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2302}
2303
b2b29d6d 2304static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2305{
e009bb30
KS
2306#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2307 page->pmd_huge_pte = NULL;
2308#endif
49076ec2 2309 return ptlock_init(page);
e009bb30
KS
2310}
2311
b2b29d6d 2312static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2313{
2314#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2315 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2316#endif
49076ec2 2317 ptlock_free(page);
e009bb30
KS
2318}
2319
634391ac 2320#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2321
2322#else
2323
9a86cb7b
KS
2324static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2325{
2326 return &mm->page_table_lock;
2327}
2328
b2b29d6d
MW
2329static inline bool pmd_ptlock_init(struct page *page) { return true; }
2330static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2331
c389a250 2332#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2333
e009bb30
KS
2334#endif
2335
9a86cb7b
KS
2336static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2337{
2338 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2339 spin_lock(ptl);
2340 return ptl;
2341}
2342
b2b29d6d
MW
2343static inline bool pgtable_pmd_page_ctor(struct page *page)
2344{
2345 if (!pmd_ptlock_init(page))
2346 return false;
2347 __SetPageTable(page);
f0c0c115 2348 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2349 return true;
2350}
2351
2352static inline void pgtable_pmd_page_dtor(struct page *page)
2353{
2354 pmd_ptlock_free(page);
2355 __ClearPageTable(page);
f0c0c115 2356 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2357}
2358
a00cc7d9
MW
2359/*
2360 * No scalability reason to split PUD locks yet, but follow the same pattern
2361 * as the PMD locks to make it easier if we decide to. The VM should not be
2362 * considered ready to switch to split PUD locks yet; there may be places
2363 * which need to be converted from page_table_lock.
2364 */
2365static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2366{
2367 return &mm->page_table_lock;
2368}
2369
2370static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2371{
2372 spinlock_t *ptl = pud_lockptr(mm, pud);
2373
2374 spin_lock(ptl);
2375 return ptl;
2376}
62906027 2377
a00cc7d9 2378extern void __init pagecache_init(void);
bc9331a1 2379extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2380extern void free_initmem(void);
2381
69afade7
JL
2382/*
2383 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2384 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2385 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2386 * Return pages freed into the buddy system.
2387 */
11199692 2388extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2389 int poison, const char *s);
c3d5f5f0 2390
c3d5f5f0 2391extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2392extern void mem_init_print_info(void);
69afade7 2393
4b50bcc7 2394extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2395
69afade7 2396/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2397static inline void free_reserved_page(struct page *page)
69afade7
JL
2398{
2399 ClearPageReserved(page);
2400 init_page_count(page);
2401 __free_page(page);
69afade7
JL
2402 adjust_managed_page_count(page, 1);
2403}
a0cd7a7c 2404#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2405
2406static inline void mark_page_reserved(struct page *page)
2407{
2408 SetPageReserved(page);
2409 adjust_managed_page_count(page, -1);
2410}
2411
2412/*
2413 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2414 * The freed pages will be poisoned with pattern "poison" if it's within
2415 * range [0, UCHAR_MAX].
2416 * Return pages freed into the buddy system.
69afade7
JL
2417 */
2418static inline unsigned long free_initmem_default(int poison)
2419{
2420 extern char __init_begin[], __init_end[];
2421
11199692 2422 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2423 poison, "unused kernel image (initmem)");
69afade7
JL
2424}
2425
7ee3d4e8
JL
2426static inline unsigned long get_num_physpages(void)
2427{
2428 int nid;
2429 unsigned long phys_pages = 0;
2430
2431 for_each_online_node(nid)
2432 phys_pages += node_present_pages(nid);
2433
2434 return phys_pages;
2435}
2436
c713216d 2437/*
3f08a302 2438 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2439 * zones, allocate the backing mem_map and account for memory holes in an
2440 * architecture independent manner.
c713216d
MG
2441 *
2442 * An architecture is expected to register range of page frames backed by
0ee332c1 2443 * physical memory with memblock_add[_node]() before calling
9691a071 2444 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2445 * usage, an architecture is expected to do something like
2446 *
2447 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2448 * max_highmem_pfn};
2449 * for_each_valid_physical_page_range()
0ee332c1 2450 * memblock_add_node(base, size, nid)
9691a071 2451 * free_area_init(max_zone_pfns);
c713216d 2452 */
9691a071 2453void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2454unsigned long node_map_pfn_alignment(void);
32996250
YL
2455unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2456 unsigned long end_pfn);
c713216d
MG
2457extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2458 unsigned long end_pfn);
2459extern void get_pfn_range_for_nid(unsigned int nid,
2460 unsigned long *start_pfn, unsigned long *end_pfn);
2461extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2462
a9ee6cf5 2463#ifndef CONFIG_NUMA
6f24fbd3 2464static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2465{
2466 return 0;
2467}
2468#else
2469/* please see mm/page_alloc.c */
2470extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2471#endif
2472
0e0b864e 2473extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2474extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2475 unsigned long, unsigned long, enum meminit_context,
2476 struct vmem_altmap *, int migratetype);
bc75d33f 2477extern void setup_per_zone_wmarks(void);
1b79acc9 2478extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2479extern void mem_init(void);
8feae131 2480extern void __init mmap_init(void);
9af744d7 2481extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2482extern long si_mem_available(void);
1da177e4
LT
2483extern void si_meminfo(struct sysinfo * val);
2484extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2485#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2486extern unsigned long arch_reserved_kernel_pages(void);
2487#endif
1da177e4 2488
a8e99259
MH
2489extern __printf(3, 4)
2490void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2491
e7c8d5c9 2492extern void setup_per_cpu_pageset(void);
e7c8d5c9 2493
75f7ad8e
PS
2494/* page_alloc.c */
2495extern int min_free_kbytes;
1c30844d 2496extern int watermark_boost_factor;
795ae7a0 2497extern int watermark_scale_factor;
51930df5 2498extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2499
8feae131 2500/* nommu.c */
33e5d769 2501extern atomic_long_t mmap_pages_allocated;
7e660872 2502extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2503
6b2dbba8 2504/* interval_tree.c */
6b2dbba8 2505void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2506 struct rb_root_cached *root);
9826a516
ML
2507void vma_interval_tree_insert_after(struct vm_area_struct *node,
2508 struct vm_area_struct *prev,
f808c13f 2509 struct rb_root_cached *root);
6b2dbba8 2510void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2511 struct rb_root_cached *root);
2512struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2513 unsigned long start, unsigned long last);
2514struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2515 unsigned long start, unsigned long last);
2516
2517#define vma_interval_tree_foreach(vma, root, start, last) \
2518 for (vma = vma_interval_tree_iter_first(root, start, last); \
2519 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2520
bf181b9f 2521void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2522 struct rb_root_cached *root);
bf181b9f 2523void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2524 struct rb_root_cached *root);
2525struct anon_vma_chain *
2526anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2527 unsigned long start, unsigned long last);
bf181b9f
ML
2528struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2529 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2530#ifdef CONFIG_DEBUG_VM_RB
2531void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2532#endif
bf181b9f
ML
2533
2534#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2535 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2536 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2537
1da177e4 2538/* mmap.c */
34b4e4aa 2539extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2540extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2541 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2542 struct vm_area_struct *expand);
2543static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2544 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2545{
2546 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2547}
1da177e4
LT
2548extern struct vm_area_struct *vma_merge(struct mm_struct *,
2549 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2550 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2551 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2552extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2553extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2554 unsigned long addr, int new_below);
2555extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2556 unsigned long addr, int new_below);
1da177e4
LT
2557extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2558extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2559 struct rb_node **, struct rb_node *);
a8fb5618 2560extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2561extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2562 unsigned long addr, unsigned long len, pgoff_t pgoff,
2563 bool *need_rmap_locks);
1da177e4 2564extern void exit_mmap(struct mm_struct *);
925d1c40 2565
9c599024
CG
2566static inline int check_data_rlimit(unsigned long rlim,
2567 unsigned long new,
2568 unsigned long start,
2569 unsigned long end_data,
2570 unsigned long start_data)
2571{
2572 if (rlim < RLIM_INFINITY) {
2573 if (((new - start) + (end_data - start_data)) > rlim)
2574 return -ENOSPC;
2575 }
2576
2577 return 0;
2578}
2579
7906d00c
AA
2580extern int mm_take_all_locks(struct mm_struct *mm);
2581extern void mm_drop_all_locks(struct mm_struct *mm);
2582
38646013
JS
2583extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2584extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2585extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2586
84638335
KK
2587extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2588extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2589
2eefd878
DS
2590extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2591 const struct vm_special_mapping *sm);
3935ed6a
SS
2592extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2593 unsigned long addr, unsigned long len,
a62c34bd
AL
2594 unsigned long flags,
2595 const struct vm_special_mapping *spec);
2596/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2597extern int install_special_mapping(struct mm_struct *mm,
2598 unsigned long addr, unsigned long len,
2599 unsigned long flags, struct page **pages);
1da177e4 2600
649775be
AG
2601unsigned long randomize_stack_top(unsigned long stack_top);
2602
1da177e4
LT
2603extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2604
0165ab44 2605extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2606 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2607 struct list_head *uf);
1fcfd8db 2608extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2609 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2610 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2611extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2612 struct list_head *uf, bool downgrade);
897ab3e0
MR
2613extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2614 struct list_head *uf);
0726b01e 2615extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2616
bebeb3d6
ML
2617#ifdef CONFIG_MMU
2618extern int __mm_populate(unsigned long addr, unsigned long len,
2619 int ignore_errors);
2620static inline void mm_populate(unsigned long addr, unsigned long len)
2621{
2622 /* Ignore errors */
2623 (void) __mm_populate(addr, len, 1);
2624}
2625#else
2626static inline void mm_populate(unsigned long addr, unsigned long len) {}
2627#endif
2628
e4eb1ff6 2629/* These take the mm semaphore themselves */
5d22fc25 2630extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2631extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2632extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2633extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2634 unsigned long, unsigned long,
2635 unsigned long, unsigned long);
1da177e4 2636
db4fbfb9
ML
2637struct vm_unmapped_area_info {
2638#define VM_UNMAPPED_AREA_TOPDOWN 1
2639 unsigned long flags;
2640 unsigned long length;
2641 unsigned long low_limit;
2642 unsigned long high_limit;
2643 unsigned long align_mask;
2644 unsigned long align_offset;
2645};
2646
baceaf1c 2647extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2648
85821aab 2649/* truncate.c */
1da177e4 2650extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2651extern void truncate_inode_pages_range(struct address_space *,
2652 loff_t lstart, loff_t lend);
91b0abe3 2653extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2654
2655/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2656extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2657extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2658 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2659extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2660
2661/* mm/page-writeback.c */
2b69c828 2662int __must_check write_one_page(struct page *page);
1cf6e7d8 2663void task_dirty_inc(struct task_struct *tsk);
1da177e4 2664
1be7107f 2665extern unsigned long stack_guard_gap;
d05f3169 2666/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2667extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2668
11192337 2669/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2670extern int expand_downwards(struct vm_area_struct *vma,
2671 unsigned long address);
8ca3eb08 2672#if VM_GROWSUP
46dea3d0 2673extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2674#else
fee7e49d 2675 #define expand_upwards(vma, address) (0)
9ab88515 2676#endif
1da177e4
LT
2677
2678/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2679extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2680extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2681 struct vm_area_struct **pprev);
2682
ce6d42f2
LH
2683/**
2684 * find_vma_intersection() - Look up the first VMA which intersects the interval
2685 * @mm: The process address space.
2686 * @start_addr: The inclusive start user address.
2687 * @end_addr: The exclusive end user address.
2688 *
2689 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2690 * start_addr < end_addr.
2691 */
2692static inline
2693struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2694 unsigned long start_addr,
2695 unsigned long end_addr)
1da177e4 2696{
ce6d42f2 2697 struct vm_area_struct *vma = find_vma(mm, start_addr);
1da177e4
LT
2698
2699 if (vma && end_addr <= vma->vm_start)
2700 vma = NULL;
2701 return vma;
2702}
2703
ce6d42f2
LH
2704/**
2705 * vma_lookup() - Find a VMA at a specific address
2706 * @mm: The process address space.
2707 * @addr: The user address.
2708 *
2709 * Return: The vm_area_struct at the given address, %NULL otherwise.
2710 */
2711static inline
2712struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2713{
2714 struct vm_area_struct *vma = find_vma(mm, addr);
2715
2716 if (vma && addr < vma->vm_start)
2717 vma = NULL;
2718
2719 return vma;
2720}
2721
1be7107f
HD
2722static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2723{
2724 unsigned long vm_start = vma->vm_start;
2725
2726 if (vma->vm_flags & VM_GROWSDOWN) {
2727 vm_start -= stack_guard_gap;
2728 if (vm_start > vma->vm_start)
2729 vm_start = 0;
2730 }
2731 return vm_start;
2732}
2733
2734static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2735{
2736 unsigned long vm_end = vma->vm_end;
2737
2738 if (vma->vm_flags & VM_GROWSUP) {
2739 vm_end += stack_guard_gap;
2740 if (vm_end < vma->vm_end)
2741 vm_end = -PAGE_SIZE;
2742 }
2743 return vm_end;
2744}
2745
1da177e4
LT
2746static inline unsigned long vma_pages(struct vm_area_struct *vma)
2747{
2748 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2749}
2750
640708a2
PE
2751/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2752static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2753 unsigned long vm_start, unsigned long vm_end)
2754{
2755 struct vm_area_struct *vma = find_vma(mm, vm_start);
2756
2757 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2758 vma = NULL;
2759
2760 return vma;
2761}
2762
017b1660
MK
2763static inline bool range_in_vma(struct vm_area_struct *vma,
2764 unsigned long start, unsigned long end)
2765{
2766 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2767}
2768
bad849b3 2769#ifdef CONFIG_MMU
804af2cf 2770pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2771void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2772#else
2773static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2774{
2775 return __pgprot(0);
2776}
64e45507
PF
2777static inline void vma_set_page_prot(struct vm_area_struct *vma)
2778{
2779 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2780}
bad849b3
DH
2781#endif
2782
295992fb
CK
2783void vma_set_file(struct vm_area_struct *vma, struct file *file);
2784
5877231f 2785#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2786unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2787 unsigned long start, unsigned long end);
2788#endif
2789
deceb6cd 2790struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2791int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2792 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
2793int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2794 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 2795int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2796int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2797 struct page **pages, unsigned long *num);
a667d745
SJ
2798int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2799 unsigned long num);
2800int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2801 unsigned long num);
ae2b01f3 2802vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2803 unsigned long pfn);
f5e6d1d5
MW
2804vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2805 unsigned long pfn, pgprot_t pgprot);
5d747637 2806vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2807 pfn_t pfn);
574c5b3d
TH
2808vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2809 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2810vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2811 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2812int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2813
1c8f4220
SJ
2814static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2815 unsigned long addr, struct page *page)
2816{
2817 int err = vm_insert_page(vma, addr, page);
2818
2819 if (err == -ENOMEM)
2820 return VM_FAULT_OOM;
2821 if (err < 0 && err != -EBUSY)
2822 return VM_FAULT_SIGBUS;
2823
2824 return VM_FAULT_NOPAGE;
2825}
2826
f8f6ae5d
JG
2827#ifndef io_remap_pfn_range
2828static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2829 unsigned long addr, unsigned long pfn,
2830 unsigned long size, pgprot_t prot)
2831{
2832 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2833}
2834#endif
2835
d97baf94
SJ
2836static inline vm_fault_t vmf_error(int err)
2837{
2838 if (err == -ENOMEM)
2839 return VM_FAULT_OOM;
2840 return VM_FAULT_SIGBUS;
2841}
2842
df06b37f
KB
2843struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2844 unsigned int foll_flags);
240aadee 2845
deceb6cd
HD
2846#define FOLL_WRITE 0x01 /* check pte is writable */
2847#define FOLL_TOUCH 0x02 /* mark page accessed */
2848#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2849#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2850#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2851#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2852 * and return without waiting upon it */
84d33df2 2853#define FOLL_POPULATE 0x40 /* fault in page */
69ebb83e 2854#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2855#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2856#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2857#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2858#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2859#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2860#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2861#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2862#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2863#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2864#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2865#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2866
2867/*
eddb1c22
JH
2868 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2869 * other. Here is what they mean, and how to use them:
932f4a63
IW
2870 *
2871 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2872 * period _often_ under userspace control. This is in contrast to
2873 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2874 *
2875 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2876 * lifetime enforced by the filesystem and we need guarantees that longterm
2877 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2878 * the filesystem. Ideas for this coordination include revoking the longterm
2879 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2880 * added after the problem with filesystems was found FS DAX VMAs are
2881 * specifically failed. Filesystem pages are still subject to bugs and use of
2882 * FOLL_LONGTERM should be avoided on those pages.
2883 *
2884 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2885 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2886 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2887 * is due to an incompatibility with the FS DAX check and
eddb1c22 2888 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2889 *
eddb1c22
JH
2890 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2891 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2892 * FOLL_LONGTERM is specified.
eddb1c22
JH
2893 *
2894 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2895 * but an additional pin counting system) will be invoked. This is intended for
2896 * anything that gets a page reference and then touches page data (for example,
2897 * Direct IO). This lets the filesystem know that some non-file-system entity is
2898 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2899 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2900 * a call to unpin_user_page().
eddb1c22
JH
2901 *
2902 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2903 * and separate refcounting mechanisms, however, and that means that each has
2904 * its own acquire and release mechanisms:
2905 *
2906 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2907 *
f1f6a7dd 2908 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2909 *
2910 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2911 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2912 * calls applied to them, and that's perfectly OK. This is a constraint on the
2913 * callers, not on the pages.)
2914 *
2915 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2916 * directly by the caller. That's in order to help avoid mismatches when
2917 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2918 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2919 *
72ef5e52 2920 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2921 */
1da177e4 2922
2b740303 2923static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2924{
2925 if (vm_fault & VM_FAULT_OOM)
2926 return -ENOMEM;
2927 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2928 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2929 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2930 return -EFAULT;
2931 return 0;
2932}
2933
8b1e0f81 2934typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2935extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2936 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2937extern int apply_to_existing_page_range(struct mm_struct *mm,
2938 unsigned long address, unsigned long size,
2939 pte_fn_t fn, void *data);
aee16b3c 2940
04013513 2941extern void init_mem_debugging_and_hardening(void);
8823b1db 2942#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
2943extern void __kernel_poison_pages(struct page *page, int numpages);
2944extern void __kernel_unpoison_pages(struct page *page, int numpages);
2945extern bool _page_poisoning_enabled_early;
2946DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2947static inline bool page_poisoning_enabled(void)
2948{
2949 return _page_poisoning_enabled_early;
2950}
2951/*
2952 * For use in fast paths after init_mem_debugging() has run, or when a
2953 * false negative result is not harmful when called too early.
2954 */
2955static inline bool page_poisoning_enabled_static(void)
2956{
2957 return static_branch_unlikely(&_page_poisoning_enabled);
2958}
2959static inline void kernel_poison_pages(struct page *page, int numpages)
2960{
2961 if (page_poisoning_enabled_static())
2962 __kernel_poison_pages(page, numpages);
2963}
2964static inline void kernel_unpoison_pages(struct page *page, int numpages)
2965{
2966 if (page_poisoning_enabled_static())
2967 __kernel_unpoison_pages(page, numpages);
2968}
8823b1db
LA
2969#else
2970static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 2971static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 2972static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
2973static inline void kernel_poison_pages(struct page *page, int numpages) { }
2974static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
2975#endif
2976
51cba1eb 2977DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
2978static inline bool want_init_on_alloc(gfp_t flags)
2979{
51cba1eb
KC
2980 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
2981 &init_on_alloc))
6471384a
AP
2982 return true;
2983 return flags & __GFP_ZERO;
2984}
2985
51cba1eb 2986DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
2987static inline bool want_init_on_free(void)
2988{
51cba1eb
KC
2989 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
2990 &init_on_free);
6471384a
AP
2991}
2992
8e57f8ac
VB
2993extern bool _debug_pagealloc_enabled_early;
2994DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2995
2996static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2997{
2998 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2999 _debug_pagealloc_enabled_early;
3000}
3001
3002/*
3003 * For use in fast paths after init_debug_pagealloc() has run, or when a
3004 * false negative result is not harmful when called too early.
3005 */
3006static inline bool debug_pagealloc_enabled_static(void)
031bc574 3007{
96a2b03f
VB
3008 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3009 return false;
3010
3011 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3012}
3013
5d6ad668 3014#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3015/*
5d6ad668
MR
3016 * To support DEBUG_PAGEALLOC architecture must ensure that
3017 * __kernel_map_pages() never fails
c87cbc1f 3018 */
d6332692
RE
3019extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3020
77bc7fd6
MR
3021static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3022{
3023 if (debug_pagealloc_enabled_static())
3024 __kernel_map_pages(page, numpages, 1);
3025}
3026
3027static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3028{
3029 if (debug_pagealloc_enabled_static())
3030 __kernel_map_pages(page, numpages, 0);
3031}
5d6ad668 3032#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3033static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3034static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3035#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3036
a6c19dfe 3037#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3038extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3039extern int in_gate_area_no_mm(unsigned long addr);
3040extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3041#else
a6c19dfe
AL
3042static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3043{
3044 return NULL;
3045}
3046static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3047static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3048{
3049 return 0;
3050}
1da177e4
LT
3051#endif /* __HAVE_ARCH_GATE_AREA */
3052
44a70ade
MH
3053extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3054
146732ce
JT
3055#ifdef CONFIG_SYSCTL
3056extern int sysctl_drop_caches;
32927393
CH
3057int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3058 loff_t *);
146732ce
JT
3059#endif
3060
cb731d6c
VD
3061void drop_slab(void);
3062void drop_slab_node(int nid);
9d0243bc 3063
7a9166e3
LY
3064#ifndef CONFIG_MMU
3065#define randomize_va_space 0
3066#else
a62eaf15 3067extern int randomize_va_space;
7a9166e3 3068#endif
a62eaf15 3069
045e72ac 3070const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3071#ifdef CONFIG_MMU
03252919 3072void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3073#else
3074static inline void print_vma_addr(char *prefix, unsigned long rip)
3075{
3076}
3077#endif
e6e5494c 3078
f41f2ed4
MS
3079void vmemmap_remap_free(unsigned long start, unsigned long end,
3080 unsigned long reuse);
3081
35fd1eb1 3082void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
3083struct page * __populate_section_memmap(unsigned long pfn,
3084 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3085pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3086p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3087pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3088pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
3089pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3090 struct vmem_altmap *altmap);
8f6aac41 3091void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3092struct vmem_altmap;
56993b4e
AK
3093void *vmemmap_alloc_block_buf(unsigned long size, int node,
3094 struct vmem_altmap *altmap);
8f6aac41 3095void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3096int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3097 int node, struct vmem_altmap *altmap);
7b73d978
CH
3098int vmemmap_populate(unsigned long start, unsigned long end, int node,
3099 struct vmem_altmap *altmap);
c2b91e2e 3100void vmemmap_populate_print_last(void);
0197518c 3101#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3102void vmemmap_free(unsigned long start, unsigned long end,
3103 struct vmem_altmap *altmap);
0197518c 3104#endif
46723bfa 3105void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3106 unsigned long nr_pages);
6a46079c 3107
82ba011b
AK
3108enum mf_flags {
3109 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3110 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3111 MF_MUST_KILL = 1 << 2,
cf870c70 3112 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3113};
83b57531
EB
3114extern int memory_failure(unsigned long pfn, int flags);
3115extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3116extern void memory_failure_queue_kick(int cpu);
847ce401 3117extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3118extern int sysctl_memory_failure_early_kill;
3119extern int sysctl_memory_failure_recovery;
facb6011 3120extern void shake_page(struct page *p, int access);
5844a486 3121extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3122extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3123
cc637b17
XX
3124
3125/*
3126 * Error handlers for various types of pages.
3127 */
cc3e2af4 3128enum mf_result {
cc637b17
XX
3129 MF_IGNORED, /* Error: cannot be handled */
3130 MF_FAILED, /* Error: handling failed */
3131 MF_DELAYED, /* Will be handled later */
3132 MF_RECOVERED, /* Successfully recovered */
3133};
3134
3135enum mf_action_page_type {
3136 MF_MSG_KERNEL,
3137 MF_MSG_KERNEL_HIGH_ORDER,
3138 MF_MSG_SLAB,
3139 MF_MSG_DIFFERENT_COMPOUND,
3140 MF_MSG_POISONED_HUGE,
3141 MF_MSG_HUGE,
3142 MF_MSG_FREE_HUGE,
31286a84 3143 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3144 MF_MSG_UNMAP_FAILED,
3145 MF_MSG_DIRTY_SWAPCACHE,
3146 MF_MSG_CLEAN_SWAPCACHE,
3147 MF_MSG_DIRTY_MLOCKED_LRU,
3148 MF_MSG_CLEAN_MLOCKED_LRU,
3149 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3150 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3151 MF_MSG_DIRTY_LRU,
3152 MF_MSG_CLEAN_LRU,
3153 MF_MSG_TRUNCATED_LRU,
3154 MF_MSG_BUDDY,
3155 MF_MSG_BUDDY_2ND,
6100e34b 3156 MF_MSG_DAX,
5d1fd5dc 3157 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3158 MF_MSG_UNKNOWN,
3159};
3160
47ad8475
AA
3161#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3162extern void clear_huge_page(struct page *page,
c79b57e4 3163 unsigned long addr_hint,
47ad8475
AA
3164 unsigned int pages_per_huge_page);
3165extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3166 unsigned long addr_hint,
3167 struct vm_area_struct *vma,
47ad8475 3168 unsigned int pages_per_huge_page);
fa4d75c1
MK
3169extern long copy_huge_page_from_user(struct page *dst_page,
3170 const void __user *usr_src,
810a56b9
MK
3171 unsigned int pages_per_huge_page,
3172 bool allow_pagefault);
2484ca9b
THV
3173
3174/**
3175 * vma_is_special_huge - Are transhuge page-table entries considered special?
3176 * @vma: Pointer to the struct vm_area_struct to consider
3177 *
3178 * Whether transhuge page-table entries are considered "special" following
3179 * the definition in vm_normal_page().
3180 *
3181 * Return: true if transhuge page-table entries should be considered special,
3182 * false otherwise.
3183 */
3184static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3185{
3186 return vma_is_dax(vma) || (vma->vm_file &&
3187 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3188}
3189
47ad8475
AA
3190#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3191
c0a32fc5
SG
3192#ifdef CONFIG_DEBUG_PAGEALLOC
3193extern unsigned int _debug_guardpage_minorder;
96a2b03f 3194DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3195
3196static inline unsigned int debug_guardpage_minorder(void)
3197{
3198 return _debug_guardpage_minorder;
3199}
3200
e30825f1
JK
3201static inline bool debug_guardpage_enabled(void)
3202{
96a2b03f 3203 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3204}
3205
c0a32fc5
SG
3206static inline bool page_is_guard(struct page *page)
3207{
e30825f1
JK
3208 if (!debug_guardpage_enabled())
3209 return false;
3210
3972f6bb 3211 return PageGuard(page);
c0a32fc5
SG
3212}
3213#else
3214static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3215static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3216static inline bool page_is_guard(struct page *page) { return false; }
3217#endif /* CONFIG_DEBUG_PAGEALLOC */
3218
f9872caf
CS
3219#if MAX_NUMNODES > 1
3220void __init setup_nr_node_ids(void);
3221#else
3222static inline void setup_nr_node_ids(void) {}
3223#endif
3224
010c164a
SL
3225extern int memcmp_pages(struct page *page1, struct page *page2);
3226
3227static inline int pages_identical(struct page *page1, struct page *page2)
3228{
3229 return !memcmp_pages(page1, page2);
3230}
3231
c5acad84
TH
3232#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3233unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3234 pgoff_t first_index, pgoff_t nr,
3235 pgoff_t bitmap_pgoff,
3236 unsigned long *bitmap,
3237 pgoff_t *start,
3238 pgoff_t *end);
3239
3240unsigned long wp_shared_mapping_range(struct address_space *mapping,
3241 pgoff_t first_index, pgoff_t nr);
3242#endif
3243
2374c09b
CH
3244extern int sysctl_nr_trim_pages;
3245
5bb1bb35 3246#ifdef CONFIG_PRINTK
8e7f37f2 3247void mem_dump_obj(void *object);
5bb1bb35
PM
3248#else
3249static inline void mem_dump_obj(void *object) {}
3250#endif
8e7f37f2 3251
22247efd
PX
3252/**
3253 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3254 * @seals: the seals to check
3255 * @vma: the vma to operate on
3256 *
3257 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3258 * the vma flags. Return 0 if check pass, or <0 for errors.
3259 */
3260static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3261{
3262 if (seals & F_SEAL_FUTURE_WRITE) {
3263 /*
3264 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3265 * "future write" seal active.
3266 */
3267 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3268 return -EPERM;
3269
3270 /*
3271 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3272 * MAP_SHARED and read-only, take care to not allow mprotect to
3273 * revert protections on such mappings. Do this only for shared
3274 * mappings. For private mappings, don't need to mask
3275 * VM_MAYWRITE as we still want them to be COW-writable.
3276 */
3277 if (vma->vm_flags & VM_SHARED)
3278 vma->vm_flags &= ~(VM_MAYWRITE);
3279 }
3280
3281 return 0;
3282}
3283
1da177e4
LT
3284#endif /* __KERNEL__ */
3285#endif /* _LINUX_MM_H */