mm: Introduce struct folio
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
9740ca4e 18#include <linux/mmap_lock.h>
08677214 19#include <linux/range.h>
c6f6b596 20#include <linux/pfn.h>
3565fce3 21#include <linux/percpu-refcount.h>
e9da73d6 22#include <linux/bit_spinlock.h>
b0d40c92 23#include <linux/shrinker.h>
9c599024 24#include <linux/resource.h>
e30825f1 25#include <linux/page_ext.h>
8025e5dd 26#include <linux/err.h>
41901567 27#include <linux/page-flags.h>
fe896d18 28#include <linux/page_ref.h>
7b2d55d2 29#include <linux/memremap.h>
3b3b1a29 30#include <linux/overflow.h>
b5420237 31#include <linux/sizes.h>
7969f226 32#include <linux/sched.h>
65fddcfc 33#include <linux/pgtable.h>
34303244 34#include <linux/kasan.h>
1da177e4
LT
35
36struct mempolicy;
37struct anon_vma;
bf181b9f 38struct anon_vma_chain;
4e950f6f 39struct file_ra_state;
e8edc6e0 40struct user_struct;
4e950f6f 41struct writeback_control;
682aa8e1 42struct bdi_writeback;
bce617ed 43struct pt_regs;
1da177e4 44
5ef64cc8
LT
45extern int sysctl_page_lock_unfairness;
46
597b7305
MH
47void init_mm_internals(void);
48
a9ee6cf5 49#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 50extern unsigned long max_mapnr;
fccc9987
JL
51
52static inline void set_max_mapnr(unsigned long limit)
53{
54 max_mapnr = limit;
55}
56#else
57static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
58#endif
59
ca79b0c2
AK
60extern atomic_long_t _totalram_pages;
61static inline unsigned long totalram_pages(void)
62{
63 return (unsigned long)atomic_long_read(&_totalram_pages);
64}
65
66static inline void totalram_pages_inc(void)
67{
68 atomic_long_inc(&_totalram_pages);
69}
70
71static inline void totalram_pages_dec(void)
72{
73 atomic_long_dec(&_totalram_pages);
74}
75
76static inline void totalram_pages_add(long count)
77{
78 atomic_long_add(count, &_totalram_pages);
79}
80
1da177e4 81extern void * high_memory;
1da177e4
LT
82extern int page_cluster;
83
84#ifdef CONFIG_SYSCTL
85extern int sysctl_legacy_va_layout;
86#else
87#define sysctl_legacy_va_layout 0
88#endif
89
d07e2259
DC
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91extern const int mmap_rnd_bits_min;
92extern const int mmap_rnd_bits_max;
93extern int mmap_rnd_bits __read_mostly;
94#endif
95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96extern const int mmap_rnd_compat_bits_min;
97extern const int mmap_rnd_compat_bits_max;
98extern int mmap_rnd_compat_bits __read_mostly;
99#endif
100
1da177e4 101#include <asm/page.h>
1da177e4 102#include <asm/processor.h>
1da177e4 103
d9344522
AK
104/*
105 * Architectures that support memory tagging (assigning tags to memory regions,
106 * embedding these tags into addresses that point to these memory regions, and
107 * checking that the memory and the pointer tags match on memory accesses)
108 * redefine this macro to strip tags from pointers.
f0953a1b 109 * It's defined as noop for architectures that don't support memory tagging.
d9344522
AK
110 */
111#ifndef untagged_addr
112#define untagged_addr(addr) (addr)
113#endif
114
79442ed1
TC
115#ifndef __pa_symbol
116#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
117#endif
118
1dff8083
AB
119#ifndef page_to_virt
120#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
121#endif
122
568c5fe5
LA
123#ifndef lm_alias
124#define lm_alias(x) __va(__pa_symbol(x))
125#endif
126
593befa6
DD
127/*
128 * To prevent common memory management code establishing
129 * a zero page mapping on a read fault.
130 * This macro should be defined within <asm/pgtable.h>.
131 * s390 does this to prevent multiplexing of hardware bits
132 * related to the physical page in case of virtualization.
133 */
134#ifndef mm_forbids_zeropage
135#define mm_forbids_zeropage(X) (0)
136#endif
137
a4a3ede2
PT
138/*
139 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
140 * If an architecture decides to implement their own version of
141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
142 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 143 */
5470dea4
AD
144#if BITS_PER_LONG == 64
145/* This function must be updated when the size of struct page grows above 80
146 * or reduces below 56. The idea that compiler optimizes out switch()
147 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 148 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
149 * this can result in several of the writes here being dropped.
150 */
151#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
152static inline void __mm_zero_struct_page(struct page *page)
153{
154 unsigned long *_pp = (void *)page;
155
156 /* Check that struct page is either 56, 64, 72, or 80 bytes */
157 BUILD_BUG_ON(sizeof(struct page) & 7);
158 BUILD_BUG_ON(sizeof(struct page) < 56);
159 BUILD_BUG_ON(sizeof(struct page) > 80);
160
161 switch (sizeof(struct page)) {
162 case 80:
df561f66
GS
163 _pp[9] = 0;
164 fallthrough;
5470dea4 165 case 72:
df561f66
GS
166 _pp[8] = 0;
167 fallthrough;
5470dea4 168 case 64:
df561f66
GS
169 _pp[7] = 0;
170 fallthrough;
5470dea4
AD
171 case 56:
172 _pp[6] = 0;
173 _pp[5] = 0;
174 _pp[4] = 0;
175 _pp[3] = 0;
176 _pp[2] = 0;
177 _pp[1] = 0;
178 _pp[0] = 0;
179 }
180}
181#else
a4a3ede2
PT
182#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
183#endif
184
ea606cf5
AR
185/*
186 * Default maximum number of active map areas, this limits the number of vmas
187 * per mm struct. Users can overwrite this number by sysctl but there is a
188 * problem.
189 *
190 * When a program's coredump is generated as ELF format, a section is created
191 * per a vma. In ELF, the number of sections is represented in unsigned short.
192 * This means the number of sections should be smaller than 65535 at coredump.
193 * Because the kernel adds some informative sections to a image of program at
194 * generating coredump, we need some margin. The number of extra sections is
195 * 1-3 now and depends on arch. We use "5" as safe margin, here.
196 *
197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
198 * not a hard limit any more. Although some userspace tools can be surprised by
199 * that.
200 */
201#define MAPCOUNT_ELF_CORE_MARGIN (5)
202#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203
204extern int sysctl_max_map_count;
205
c9b1d098 206extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 207extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 208
49f0ce5f
JM
209extern int sysctl_overcommit_memory;
210extern int sysctl_overcommit_ratio;
211extern unsigned long sysctl_overcommit_kbytes;
212
32927393
CH
213int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 loff_t *);
215int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 loff_t *);
56f3547b
FT
217int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
218 loff_t *);
6d87d0ec
SJ
219/*
220 * Any attempt to mark this function as static leads to build failure
221 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
222 * is referred to by BPF code. This must be visible for error injection.
223 */
224int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
225 pgoff_t index, gfp_t gfp, void **shadowp);
49f0ce5f 226
1cfcee72 227#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 228#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
1cfcee72
MWO
229#else
230#define nth_page(page,n) ((page) + (n))
231#endif
1da177e4 232
27ac792c
AR
233/* to align the pointer to the (next) page boundary */
234#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
235
0fa73b86 236/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 237#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 238
f86196ea
NB
239#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
240
5748fbc5
KW
241void setup_initial_init_mm(void *start_code, void *end_code,
242 void *end_data, void *brk);
243
1da177e4
LT
244/*
245 * Linux kernel virtual memory manager primitives.
246 * The idea being to have a "virtual" mm in the same way
247 * we have a virtual fs - giving a cleaner interface to the
248 * mm details, and allowing different kinds of memory mappings
249 * (from shared memory to executable loading to arbitrary
250 * mmap() functions).
251 */
252
490fc053 253struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
254struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
255void vm_area_free(struct vm_area_struct *);
c43692e8 256
1da177e4 257#ifndef CONFIG_MMU
8feae131
DH
258extern struct rb_root nommu_region_tree;
259extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
260
261extern unsigned int kobjsize(const void *objp);
262#endif
263
264/*
605d9288 265 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 266 * When changing, update also include/trace/events/mmflags.h
1da177e4 267 */
cc2383ec
KK
268#define VM_NONE 0x00000000
269
1da177e4
LT
270#define VM_READ 0x00000001 /* currently active flags */
271#define VM_WRITE 0x00000002
272#define VM_EXEC 0x00000004
273#define VM_SHARED 0x00000008
274
7e2cff42 275/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
276#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
277#define VM_MAYWRITE 0x00000020
278#define VM_MAYEXEC 0x00000040
279#define VM_MAYSHARE 0x00000080
280
281#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 282#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 283#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 284#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 285
1da177e4
LT
286#define VM_LOCKED 0x00002000
287#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
288
289 /* Used by sys_madvise() */
290#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
291#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
292
293#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
294#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 295#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 296#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 297#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 298#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 299#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 300#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 301#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 302#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 303
d9104d1c
CG
304#ifdef CONFIG_MEM_SOFT_DIRTY
305# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
306#else
307# define VM_SOFTDIRTY 0
308#endif
309
b379d790 310#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
311#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
312#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 313#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 314
63c17fb8
DH
315#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
316#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
317#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
318#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 320#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
321#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
322#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
323#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
324#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 325#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
326#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
327
5212213a 328#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
329# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
330# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 331# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
332# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
333# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
334#ifdef CONFIG_PPC
335# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
336#else
337# define VM_PKEY_BIT4 0
8f62c883 338#endif
5212213a
RP
339#endif /* CONFIG_ARCH_HAS_PKEYS */
340
341#if defined(CONFIG_X86)
342# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
343#elif defined(CONFIG_PPC)
344# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
345#elif defined(CONFIG_PARISC)
346# define VM_GROWSUP VM_ARCH_1
347#elif defined(CONFIG_IA64)
348# define VM_GROWSUP VM_ARCH_1
74a04967
KA
349#elif defined(CONFIG_SPARC64)
350# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
351# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
352#elif defined(CONFIG_ARM64)
353# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
354# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
355#elif !defined(CONFIG_MMU)
356# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
357#endif
358
9f341931
CM
359#if defined(CONFIG_ARM64_MTE)
360# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
361# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
362#else
363# define VM_MTE VM_NONE
364# define VM_MTE_ALLOWED VM_NONE
365#endif
366
cc2383ec
KK
367#ifndef VM_GROWSUP
368# define VM_GROWSUP VM_NONE
369#endif
370
7677f7fd
AR
371#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
372# define VM_UFFD_MINOR_BIT 37
373# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
374#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
375# define VM_UFFD_MINOR VM_NONE
376#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
377
a8bef8ff
MG
378/* Bits set in the VMA until the stack is in its final location */
379#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
380
c62da0c3
AK
381#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
382
383/* Common data flag combinations */
384#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
385 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
386#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
387 VM_MAYWRITE | VM_MAYEXEC)
388#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
389 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
390
391#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
392#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
393#endif
394
1da177e4
LT
395#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
396#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
397#endif
398
399#ifdef CONFIG_STACK_GROWSUP
30bdbb78 400#define VM_STACK VM_GROWSUP
1da177e4 401#else
30bdbb78 402#define VM_STACK VM_GROWSDOWN
1da177e4
LT
403#endif
404
30bdbb78
KK
405#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
406
6cb4d9a2
AK
407/* VMA basic access permission flags */
408#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
409
410
b291f000 411/*
78f11a25 412 * Special vmas that are non-mergable, non-mlock()able.
b291f000 413 */
9050d7eb 414#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 415
b4443772
AK
416/* This mask prevents VMA from being scanned with khugepaged */
417#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
418
a0715cc2
AT
419/* This mask defines which mm->def_flags a process can inherit its parent */
420#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
421
de60f5f1
EM
422/* This mask is used to clear all the VMA flags used by mlock */
423#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
424
2c2d57b5
KA
425/* Arch-specific flags to clear when updating VM flags on protection change */
426#ifndef VM_ARCH_CLEAR
427# define VM_ARCH_CLEAR VM_NONE
428#endif
429#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
430
1da177e4
LT
431/*
432 * mapping from the currently active vm_flags protection bits (the
433 * low four bits) to a page protection mask..
434 */
435extern pgprot_t protection_map[16];
436
c270a7ee 437/**
da2f5eb3 438 * enum fault_flag - Fault flag definitions.
c270a7ee
PX
439 * @FAULT_FLAG_WRITE: Fault was a write fault.
440 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
441 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
c1e8d7c6 442 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
c270a7ee
PX
443 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
444 * @FAULT_FLAG_TRIED: The fault has been tried once.
445 * @FAULT_FLAG_USER: The fault originated in userspace.
446 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
447 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
448 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
449 *
450 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
451 * whether we would allow page faults to retry by specifying these two
452 * fault flags correctly. Currently there can be three legal combinations:
453 *
454 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
455 * this is the first try
456 *
457 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
458 * we've already tried at least once
459 *
460 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
461 *
462 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
463 * be used. Note that page faults can be allowed to retry for multiple times,
464 * in which case we'll have an initial fault with flags (a) then later on
465 * continuous faults with flags (b). We should always try to detect pending
466 * signals before a retry to make sure the continuous page faults can still be
467 * interrupted if necessary.
c270a7ee 468 */
da2f5eb3
MWO
469enum fault_flag {
470 FAULT_FLAG_WRITE = 1 << 0,
471 FAULT_FLAG_MKWRITE = 1 << 1,
472 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
473 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
474 FAULT_FLAG_KILLABLE = 1 << 4,
475 FAULT_FLAG_TRIED = 1 << 5,
476 FAULT_FLAG_USER = 1 << 6,
477 FAULT_FLAG_REMOTE = 1 << 7,
478 FAULT_FLAG_INSTRUCTION = 1 << 8,
479 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
480};
d0217ac0 481
dde16072
PX
482/*
483 * The default fault flags that should be used by most of the
484 * arch-specific page fault handlers.
485 */
486#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
487 FAULT_FLAG_KILLABLE | \
488 FAULT_FLAG_INTERRUPTIBLE)
dde16072 489
4064b982
PX
490/**
491 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 492 * @flags: Fault flags.
4064b982
PX
493 *
494 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 495 * the mmap_lock for too long a time when waiting for another condition
4064b982 496 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
497 * mmap_lock in the first round to avoid potential starvation of other
498 * processes that would also want the mmap_lock.
4064b982
PX
499 *
500 * Return: true if the page fault allows retry and this is the first
501 * attempt of the fault handling; false otherwise.
502 */
da2f5eb3 503static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
504{
505 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
506 (!(flags & FAULT_FLAG_TRIED));
507}
508
282a8e03
RZ
509#define FAULT_FLAG_TRACE \
510 { FAULT_FLAG_WRITE, "WRITE" }, \
511 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
512 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
513 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
514 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
515 { FAULT_FLAG_TRIED, "TRIED" }, \
516 { FAULT_FLAG_USER, "USER" }, \
517 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
518 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
519 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 520
54cb8821 521/*
11192337 522 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
523 * ->fault function. The vma's ->fault is responsible for returning a bitmask
524 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 525 *
c20cd45e
MH
526 * MM layer fills up gfp_mask for page allocations but fault handler might
527 * alter it if its implementation requires a different allocation context.
528 *
9b4bdd2f 529 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 530 */
d0217ac0 531struct vm_fault {
5857c920 532 const struct {
742d3372
WD
533 struct vm_area_struct *vma; /* Target VMA */
534 gfp_t gfp_mask; /* gfp mask to be used for allocations */
535 pgoff_t pgoff; /* Logical page offset based on vma */
536 unsigned long address; /* Faulting virtual address */
537 };
da2f5eb3 538 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 539 * XXX: should really be 'const' */
82b0f8c3 540 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 541 * the 'address' */
a2d58167
DJ
542 pud_t *pud; /* Pointer to pud entry matching
543 * the 'address'
544 */
5db4f15c
YS
545 union {
546 pte_t orig_pte; /* Value of PTE at the time of fault */
547 pmd_t orig_pmd; /* Value of PMD at the time of fault,
548 * used by PMD fault only.
549 */
550 };
d0217ac0 551
3917048d 552 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 553 struct page *page; /* ->fault handlers should return a
83c54070 554 * page here, unless VM_FAULT_NOPAGE
d0217ac0 555 * is set (which is also implied by
83c54070 556 * VM_FAULT_ERROR).
d0217ac0 557 */
82b0f8c3 558 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
559 pte_t *pte; /* Pointer to pte entry matching
560 * the 'address'. NULL if the page
561 * table hasn't been allocated.
562 */
563 spinlock_t *ptl; /* Page table lock.
564 * Protects pte page table if 'pte'
565 * is not NULL, otherwise pmd.
566 */
7267ec00 567 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
568 * vm_ops->map_pages() sets up a page
569 * table from atomic context.
7267ec00
KS
570 * do_fault_around() pre-allocates
571 * page table to avoid allocation from
572 * atomic context.
573 */
54cb8821 574};
1da177e4 575
c791ace1
DJ
576/* page entry size for vm->huge_fault() */
577enum page_entry_size {
578 PE_SIZE_PTE = 0,
579 PE_SIZE_PMD,
580 PE_SIZE_PUD,
581};
582
1da177e4
LT
583/*
584 * These are the virtual MM functions - opening of an area, closing and
585 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 586 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
587 */
588struct vm_operations_struct {
589 void (*open)(struct vm_area_struct * area);
590 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
591 /* Called any time before splitting to check if it's allowed */
592 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 593 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
594 /*
595 * Called by mprotect() to make driver-specific permission
596 * checks before mprotect() is finalised. The VMA must not
597 * be modified. Returns 0 if eprotect() can proceed.
598 */
599 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
600 unsigned long end, unsigned long newflags);
1c8f4220
SJ
601 vm_fault_t (*fault)(struct vm_fault *vmf);
602 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
603 enum page_entry_size pe_size);
f9ce0be7 604 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 605 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 606 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
607
608 /* notification that a previously read-only page is about to become
609 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 610 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 611
dd906184 612 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 613 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 614
28b2ee20 615 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
616 * for use by special VMAs. See also generic_access_phys() for a generic
617 * implementation useful for any iomem mapping.
28b2ee20
RR
618 */
619 int (*access)(struct vm_area_struct *vma, unsigned long addr,
620 void *buf, int len, int write);
78d683e8
AL
621
622 /* Called by the /proc/PID/maps code to ask the vma whether it
623 * has a special name. Returning non-NULL will also cause this
624 * vma to be dumped unconditionally. */
625 const char *(*name)(struct vm_area_struct *vma);
626
1da177e4 627#ifdef CONFIG_NUMA
a6020ed7
LS
628 /*
629 * set_policy() op must add a reference to any non-NULL @new mempolicy
630 * to hold the policy upon return. Caller should pass NULL @new to
631 * remove a policy and fall back to surrounding context--i.e. do not
632 * install a MPOL_DEFAULT policy, nor the task or system default
633 * mempolicy.
634 */
1da177e4 635 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
636
637 /*
638 * get_policy() op must add reference [mpol_get()] to any policy at
639 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
640 * in mm/mempolicy.c will do this automatically.
641 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 642 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
643 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
644 * must return NULL--i.e., do not "fallback" to task or system default
645 * policy.
646 */
1da177e4
LT
647 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
648 unsigned long addr);
649#endif
667a0a06
DV
650 /*
651 * Called by vm_normal_page() for special PTEs to find the
652 * page for @addr. This is useful if the default behavior
653 * (using pte_page()) would not find the correct page.
654 */
655 struct page *(*find_special_page)(struct vm_area_struct *vma,
656 unsigned long addr);
1da177e4
LT
657};
658
027232da
KS
659static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
660{
bfd40eaf
KS
661 static const struct vm_operations_struct dummy_vm_ops = {};
662
a670468f 663 memset(vma, 0, sizeof(*vma));
027232da 664 vma->vm_mm = mm;
bfd40eaf 665 vma->vm_ops = &dummy_vm_ops;
027232da
KS
666 INIT_LIST_HEAD(&vma->anon_vma_chain);
667}
668
bfd40eaf
KS
669static inline void vma_set_anonymous(struct vm_area_struct *vma)
670{
671 vma->vm_ops = NULL;
672}
673
43675e6f
YS
674static inline bool vma_is_anonymous(struct vm_area_struct *vma)
675{
676 return !vma->vm_ops;
677}
678
222100ee
AK
679static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
680{
681 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
682
683 if (!maybe_stack)
684 return false;
685
686 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
687 VM_STACK_INCOMPLETE_SETUP)
688 return true;
689
690 return false;
691}
692
7969f226
AK
693static inline bool vma_is_foreign(struct vm_area_struct *vma)
694{
695 if (!current->mm)
696 return true;
697
698 if (current->mm != vma->vm_mm)
699 return true;
700
701 return false;
702}
3122e80e
AK
703
704static inline bool vma_is_accessible(struct vm_area_struct *vma)
705{
6cb4d9a2 706 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
707}
708
43675e6f
YS
709#ifdef CONFIG_SHMEM
710/*
711 * The vma_is_shmem is not inline because it is used only by slow
712 * paths in userfault.
713 */
714bool vma_is_shmem(struct vm_area_struct *vma);
715#else
716static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
717#endif
718
719int vma_is_stack_for_current(struct vm_area_struct *vma);
720
8b11ec1b
LT
721/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
722#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
723
1da177e4
LT
724struct mmu_gather;
725struct inode;
726
71e3aac0 727#include <linux/huge_mm.h>
1da177e4
LT
728
729/*
730 * Methods to modify the page usage count.
731 *
732 * What counts for a page usage:
733 * - cache mapping (page->mapping)
734 * - private data (page->private)
735 * - page mapped in a task's page tables, each mapping
736 * is counted separately
737 *
738 * Also, many kernel routines increase the page count before a critical
739 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
740 */
741
742/*
da6052f7 743 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 744 */
7c8ee9a8
NP
745static inline int put_page_testzero(struct page *page)
746{
fe896d18
JK
747 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
748 return page_ref_dec_and_test(page);
7c8ee9a8 749}
1da177e4
LT
750
751/*
7c8ee9a8
NP
752 * Try to grab a ref unless the page has a refcount of zero, return false if
753 * that is the case.
8e0861fa
AK
754 * This can be called when MMU is off so it must not access
755 * any of the virtual mappings.
1da177e4 756 */
c2530328 757static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 758{
fe896d18 759 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 760}
1da177e4 761
53df8fdc 762extern int page_is_ram(unsigned long pfn);
124fe20d
DW
763
764enum {
765 REGION_INTERSECTS,
766 REGION_DISJOINT,
767 REGION_MIXED,
768};
769
1c29f25b
TK
770int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
771 unsigned long desc);
53df8fdc 772
48667e7a 773/* Support for virtually mapped pages */
b3bdda02
CL
774struct page *vmalloc_to_page(const void *addr);
775unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 776
0738c4bb
PM
777/*
778 * Determine if an address is within the vmalloc range
779 *
780 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
781 * is no special casing required.
782 */
9bd3bb67
AK
783
784#ifndef is_ioremap_addr
785#define is_ioremap_addr(x) is_vmalloc_addr(x)
786#endif
787
81ac3ad9 788#ifdef CONFIG_MMU
186525bd 789extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
790extern int is_vmalloc_or_module_addr(const void *x);
791#else
186525bd
IM
792static inline bool is_vmalloc_addr(const void *x)
793{
794 return false;
795}
934831d0 796static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
797{
798 return 0;
799}
800#endif
9e2779fa 801
a7c3e901
MH
802extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
803static inline void *kvmalloc(size_t size, gfp_t flags)
804{
805 return kvmalloc_node(size, flags, NUMA_NO_NODE);
806}
807static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
808{
809 return kvmalloc_node(size, flags | __GFP_ZERO, node);
810}
811static inline void *kvzalloc(size_t size, gfp_t flags)
812{
813 return kvmalloc(size, flags | __GFP_ZERO);
814}
815
752ade68
MH
816static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
817{
3b3b1a29
KC
818 size_t bytes;
819
820 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
821 return NULL;
822
3b3b1a29 823 return kvmalloc(bytes, flags);
752ade68
MH
824}
825
1c542f38
KC
826static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
827{
828 return kvmalloc_array(n, size, flags | __GFP_ZERO);
829}
830
de2860f4
DC
831extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize,
832 gfp_t flags);
39f1f78d 833extern void kvfree(const void *addr);
d4eaa283 834extern void kvfree_sensitive(const void *addr, size_t len);
39f1f78d 835
bac3cf4d 836static inline int head_compound_mapcount(struct page *head)
6dc5ea16
JH
837{
838 return atomic_read(compound_mapcount_ptr(head)) + 1;
839}
840
6988f31d
KK
841/*
842 * Mapcount of compound page as a whole, does not include mapped sub-pages.
843 *
844 * Must be called only for compound pages or any their tail sub-pages.
845 */
53f9263b
KS
846static inline int compound_mapcount(struct page *page)
847{
5f527c2b 848 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 849 page = compound_head(page);
bac3cf4d 850 return head_compound_mapcount(page);
53f9263b
KS
851}
852
70b50f94
AA
853/*
854 * The atomic page->_mapcount, starts from -1: so that transitions
855 * both from it and to it can be tracked, using atomic_inc_and_test
856 * and atomic_add_negative(-1).
857 */
22b751c3 858static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
859{
860 atomic_set(&(page)->_mapcount, -1);
861}
862
b20ce5e0
KS
863int __page_mapcount(struct page *page);
864
6988f31d
KK
865/*
866 * Mapcount of 0-order page; when compound sub-page, includes
867 * compound_mapcount().
868 *
869 * Result is undefined for pages which cannot be mapped into userspace.
870 * For example SLAB or special types of pages. See function page_has_type().
871 * They use this place in struct page differently.
872 */
70b50f94
AA
873static inline int page_mapcount(struct page *page)
874{
b20ce5e0
KS
875 if (unlikely(PageCompound(page)))
876 return __page_mapcount(page);
877 return atomic_read(&page->_mapcount) + 1;
878}
879
880#ifdef CONFIG_TRANSPARENT_HUGEPAGE
881int total_mapcount(struct page *page);
6d0a07ed 882int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
883#else
884static inline int total_mapcount(struct page *page)
885{
886 return page_mapcount(page);
70b50f94 887}
6d0a07ed
AA
888static inline int page_trans_huge_mapcount(struct page *page,
889 int *total_mapcount)
890{
891 int mapcount = page_mapcount(page);
892 if (total_mapcount)
893 *total_mapcount = mapcount;
894 return mapcount;
895}
b20ce5e0 896#endif
70b50f94 897
b49af68f
CL
898static inline struct page *virt_to_head_page(const void *x)
899{
900 struct page *page = virt_to_page(x);
ccaafd7f 901
1d798ca3 902 return compound_head(page);
b49af68f
CL
903}
904
ddc58f27
KS
905void __put_page(struct page *page);
906
1d7ea732 907void put_pages_list(struct list_head *pages);
1da177e4 908
8dfcc9ba 909void split_page(struct page *page, unsigned int order);
79789db0 910void copy_huge_page(struct page *dst, struct page *src);
8dfcc9ba 911
33f2ef89
AW
912/*
913 * Compound pages have a destructor function. Provide a
914 * prototype for that function and accessor functions.
f1e61557 915 * These are _only_ valid on the head of a compound page.
33f2ef89 916 */
f1e61557
KS
917typedef void compound_page_dtor(struct page *);
918
919/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
920enum compound_dtor_id {
921 NULL_COMPOUND_DTOR,
922 COMPOUND_PAGE_DTOR,
923#ifdef CONFIG_HUGETLB_PAGE
924 HUGETLB_PAGE_DTOR,
9a982250
KS
925#endif
926#ifdef CONFIG_TRANSPARENT_HUGEPAGE
927 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
928#endif
929 NR_COMPOUND_DTORS,
930};
ae70eddd 931extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
932
933static inline void set_compound_page_dtor(struct page *page,
f1e61557 934 enum compound_dtor_id compound_dtor)
33f2ef89 935{
f1e61557
KS
936 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
937 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
938}
939
ff45fc3c 940static inline void destroy_compound_page(struct page *page)
33f2ef89 941{
f1e61557 942 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 943 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
944}
945
d00181b9 946static inline unsigned int compound_order(struct page *page)
d85f3385 947{
6d777953 948 if (!PageHead(page))
d85f3385 949 return 0;
e4b294c2 950 return page[1].compound_order;
d85f3385
CL
951}
952
7b230db3
MWO
953/**
954 * folio_order - The allocation order of a folio.
955 * @folio: The folio.
956 *
957 * A folio is composed of 2^order pages. See get_order() for the definition
958 * of order.
959 *
960 * Return: The order of the folio.
961 */
962static inline unsigned int folio_order(struct folio *folio)
963{
964 return compound_order(&folio->page);
965}
966
47e29d32
JH
967static inline bool hpage_pincount_available(struct page *page)
968{
969 /*
970 * Can the page->hpage_pinned_refcount field be used? That field is in
971 * the 3rd page of the compound page, so the smallest (2-page) compound
972 * pages cannot support it.
973 */
974 page = compound_head(page);
975 return PageCompound(page) && compound_order(page) > 1;
976}
977
bac3cf4d 978static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
979{
980 return atomic_read(compound_pincount_ptr(head));
981}
982
47e29d32
JH
983static inline int compound_pincount(struct page *page)
984{
985 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
986 page = compound_head(page);
bac3cf4d 987 return head_compound_pincount(page);
47e29d32
JH
988}
989
f1e61557 990static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 991{
e4b294c2 992 page[1].compound_order = order;
1378a5ee 993 page[1].compound_nr = 1U << order;
d85f3385
CL
994}
995
d8c6546b
MWO
996/* Returns the number of pages in this potentially compound page. */
997static inline unsigned long compound_nr(struct page *page)
998{
1378a5ee
MWO
999 if (!PageHead(page))
1000 return 1;
1001 return page[1].compound_nr;
d8c6546b
MWO
1002}
1003
a50b854e
MWO
1004/* Returns the number of bytes in this potentially compound page. */
1005static inline unsigned long page_size(struct page *page)
1006{
1007 return PAGE_SIZE << compound_order(page);
1008}
1009
94ad9338
MWO
1010/* Returns the number of bits needed for the number of bytes in a page */
1011static inline unsigned int page_shift(struct page *page)
1012{
1013 return PAGE_SHIFT + compound_order(page);
1014}
1015
9a982250
KS
1016void free_compound_page(struct page *page);
1017
3dece370 1018#ifdef CONFIG_MMU
14fd403f
AA
1019/*
1020 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1021 * servicing faults for write access. In the normal case, do always want
1022 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1023 * that do not have writing enabled, when used by access_process_vm.
1024 */
1025static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1026{
1027 if (likely(vma->vm_flags & VM_WRITE))
1028 pte = pte_mkwrite(pte);
1029 return pte;
1030}
8c6e50b0 1031
f9ce0be7 1032vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1033void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1034
2b740303
SJ
1035vm_fault_t finish_fault(struct vm_fault *vmf);
1036vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1037#endif
14fd403f 1038
1da177e4
LT
1039/*
1040 * Multiple processes may "see" the same page. E.g. for untouched
1041 * mappings of /dev/null, all processes see the same page full of
1042 * zeroes, and text pages of executables and shared libraries have
1043 * only one copy in memory, at most, normally.
1044 *
1045 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1046 * page_count() == 0 means the page is free. page->lru is then used for
1047 * freelist management in the buddy allocator.
da6052f7 1048 * page_count() > 0 means the page has been allocated.
1da177e4 1049 *
da6052f7
NP
1050 * Pages are allocated by the slab allocator in order to provide memory
1051 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1052 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1053 * unless a particular usage is carefully commented. (the responsibility of
1054 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1055 *
da6052f7
NP
1056 * A page may be used by anyone else who does a __get_free_page().
1057 * In this case, page_count still tracks the references, and should only
1058 * be used through the normal accessor functions. The top bits of page->flags
1059 * and page->virtual store page management information, but all other fields
1060 * are unused and could be used privately, carefully. The management of this
1061 * page is the responsibility of the one who allocated it, and those who have
1062 * subsequently been given references to it.
1063 *
1064 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1065 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1066 * The following discussion applies only to them.
1067 *
da6052f7
NP
1068 * A pagecache page contains an opaque `private' member, which belongs to the
1069 * page's address_space. Usually, this is the address of a circular list of
1070 * the page's disk buffers. PG_private must be set to tell the VM to call
1071 * into the filesystem to release these pages.
1da177e4 1072 *
da6052f7
NP
1073 * A page may belong to an inode's memory mapping. In this case, page->mapping
1074 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1075 * in units of PAGE_SIZE.
1da177e4 1076 *
da6052f7
NP
1077 * If pagecache pages are not associated with an inode, they are said to be
1078 * anonymous pages. These may become associated with the swapcache, and in that
1079 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1080 *
da6052f7
NP
1081 * In either case (swapcache or inode backed), the pagecache itself holds one
1082 * reference to the page. Setting PG_private should also increment the
1083 * refcount. The each user mapping also has a reference to the page.
1da177e4 1084 *
da6052f7 1085 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1086 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1087 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1088 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1089 *
da6052f7 1090 * All pagecache pages may be subject to I/O:
1da177e4
LT
1091 * - inode pages may need to be read from disk,
1092 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1093 * to be written back to the inode on disk,
1094 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1095 * modified may need to be swapped out to swap space and (later) to be read
1096 * back into memory.
1da177e4
LT
1097 */
1098
1099/*
1100 * The zone field is never updated after free_area_init_core()
1101 * sets it, so none of the operations on it need to be atomic.
1da177e4 1102 */
348f8b6c 1103
90572890 1104/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1105#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1106#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1107#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1108#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1109#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1110
348f8b6c 1111/*
25985edc 1112 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1113 * sections we define the shift as 0; that plus a 0 mask ensures
1114 * the compiler will optimise away reference to them.
1115 */
d41dee36
AW
1116#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1117#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1118#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1119#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1120#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1121
bce54bbf
WD
1122/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1123#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1124#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1125#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1126 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1127#else
89689ae7 1128#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1129#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1130 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1131#endif
1132
bd8029b6 1133#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1134
d41dee36
AW
1135#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1136#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1137#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1138#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1139#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1140#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1141
33dd4e0e 1142static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1143{
c403f6a3 1144 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1145 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1146}
1da177e4 1147
260ae3f7
DW
1148#ifdef CONFIG_ZONE_DEVICE
1149static inline bool is_zone_device_page(const struct page *page)
1150{
1151 return page_zonenum(page) == ZONE_DEVICE;
1152}
966cf44f
AD
1153extern void memmap_init_zone_device(struct zone *, unsigned long,
1154 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1155#else
1156static inline bool is_zone_device_page(const struct page *page)
1157{
1158 return false;
1159}
7b2d55d2 1160#endif
5042db43 1161
8e3560d9
PT
1162static inline bool is_zone_movable_page(const struct page *page)
1163{
1164 return page_zonenum(page) == ZONE_MOVABLE;
1165}
1166
e7638488 1167#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1168void free_devmap_managed_page(struct page *page);
e7638488 1169DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1170
1171static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1172{
1173 if (!static_branch_unlikely(&devmap_managed_key))
1174 return false;
1175 if (!is_zone_device_page(page))
1176 return false;
1177 switch (page->pgmap->type) {
1178 case MEMORY_DEVICE_PRIVATE:
e7638488 1179 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1180 return true;
1181 default:
1182 break;
1183 }
1184 return false;
1185}
1186
07d80269
JH
1187void put_devmap_managed_page(struct page *page);
1188
e7638488 1189#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1190static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1191{
1192 return false;
1193}
07d80269
JH
1194
1195static inline void put_devmap_managed_page(struct page *page)
1196{
1197}
7588adf8 1198#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1199
6b368cd4
JG
1200static inline bool is_device_private_page(const struct page *page)
1201{
7588adf8
RM
1202 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1203 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1204 is_zone_device_page(page) &&
1205 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1206}
e7638488 1207
52916982
LG
1208static inline bool is_pci_p2pdma_page(const struct page *page)
1209{
7588adf8
RM
1210 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1211 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1212 is_zone_device_page(page) &&
1213 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1214}
7b2d55d2 1215
f958d7b5
LT
1216/* 127: arbitrary random number, small enough to assemble well */
1217#define page_ref_zero_or_close_to_overflow(page) \
1218 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1219
3565fce3
DW
1220static inline void get_page(struct page *page)
1221{
1222 page = compound_head(page);
1223 /*
1224 * Getting a normal page or the head of a compound page
0139aa7b 1225 * requires to already have an elevated page->_refcount.
3565fce3 1226 */
f958d7b5 1227 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1228 page_ref_inc(page);
3565fce3
DW
1229}
1230
3faa52c0 1231bool __must_check try_grab_page(struct page *page, unsigned int flags);
54d516b1
JH
1232struct page *try_grab_compound_head(struct page *page, int refs,
1233 unsigned int flags);
0fa5bc40 1234
cd1adf1b
LT
1235
1236static inline __must_check bool try_get_page(struct page *page)
1237{
1238 page = compound_head(page);
1239 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1240 return false;
1241 page_ref_inc(page);
1242 return true;
1243}
3565fce3
DW
1244
1245static inline void put_page(struct page *page)
1246{
1247 page = compound_head(page);
1248
7b2d55d2 1249 /*
e7638488
DW
1250 * For devmap managed pages we need to catch refcount transition from
1251 * 2 to 1, when refcount reach one it means the page is free and we
1252 * need to inform the device driver through callback. See
7b2d55d2
JG
1253 * include/linux/memremap.h and HMM for details.
1254 */
07d80269
JH
1255 if (page_is_devmap_managed(page)) {
1256 put_devmap_managed_page(page);
7b2d55d2 1257 return;
07d80269 1258 }
7b2d55d2 1259
3565fce3
DW
1260 if (put_page_testzero(page))
1261 __put_page(page);
3565fce3
DW
1262}
1263
3faa52c0
JH
1264/*
1265 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1266 * the page's refcount so that two separate items are tracked: the original page
1267 * reference count, and also a new count of how many pin_user_pages() calls were
1268 * made against the page. ("gup-pinned" is another term for the latter).
1269 *
1270 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1271 * distinct from normal pages. As such, the unpin_user_page() call (and its
1272 * variants) must be used in order to release gup-pinned pages.
1273 *
1274 * Choice of value:
1275 *
1276 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1277 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1278 * simpler, due to the fact that adding an even power of two to the page
1279 * refcount has the effect of using only the upper N bits, for the code that
1280 * counts up using the bias value. This means that the lower bits are left for
1281 * the exclusive use of the original code that increments and decrements by one
1282 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1283 *
3faa52c0
JH
1284 * Of course, once the lower bits overflow into the upper bits (and this is
1285 * OK, because subtraction recovers the original values), then visual inspection
1286 * no longer suffices to directly view the separate counts. However, for normal
1287 * applications that don't have huge page reference counts, this won't be an
1288 * issue.
fc1d8e7c 1289 *
3faa52c0
JH
1290 * Locking: the lockless algorithm described in page_cache_get_speculative()
1291 * and page_cache_gup_pin_speculative() provides safe operation for
1292 * get_user_pages and page_mkclean and other calls that race to set up page
1293 * table entries.
fc1d8e7c 1294 */
3faa52c0 1295#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1296
3faa52c0 1297void unpin_user_page(struct page *page);
f1f6a7dd
JH
1298void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1299 bool make_dirty);
458a4f78
JM
1300void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1301 bool make_dirty);
f1f6a7dd 1302void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1303
3faa52c0 1304/**
136dfc99
MWO
1305 * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1306 * @page: The page.
3faa52c0
JH
1307 *
1308 * This function checks if a page has been pinned via a call to
136dfc99 1309 * a function in the pin_user_pages() family.
3faa52c0
JH
1310 *
1311 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1312 * because it means "definitely not pinned for DMA", but true means "probably
1313 * pinned for DMA, but possibly a false positive due to having at least
1314 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1315 *
1316 * False positives are OK, because: a) it's unlikely for a page to get that many
1317 * refcounts, and b) all the callers of this routine are expected to be able to
1318 * deal gracefully with a false positive.
1319 *
47e29d32
JH
1320 * For huge pages, the result will be exactly correct. That's because we have
1321 * more tracking data available: the 3rd struct page in the compound page is
1322 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1323 * scheme).
1324 *
72ef5e52 1325 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0 1326 *
136dfc99
MWO
1327 * Return: True, if it is likely that the page has been "dma-pinned".
1328 * False, if the page is definitely not dma-pinned.
3faa52c0
JH
1329 */
1330static inline bool page_maybe_dma_pinned(struct page *page)
1331{
47e29d32
JH
1332 if (hpage_pincount_available(page))
1333 return compound_pincount(page) > 0;
1334
3faa52c0
JH
1335 /*
1336 * page_ref_count() is signed. If that refcount overflows, then
1337 * page_ref_count() returns a negative value, and callers will avoid
1338 * further incrementing the refcount.
1339 *
1340 * Here, for that overflow case, use the signed bit to count a little
1341 * bit higher via unsigned math, and thus still get an accurate result.
1342 */
1343 return ((unsigned int)page_ref_count(compound_head(page))) >=
1344 GUP_PIN_COUNTING_BIAS;
1345}
1346
97a7e473
PX
1347static inline bool is_cow_mapping(vm_flags_t flags)
1348{
1349 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1350}
1351
1352/*
1353 * This should most likely only be called during fork() to see whether we
1354 * should break the cow immediately for a page on the src mm.
1355 */
1356static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1357 struct page *page)
1358{
1359 if (!is_cow_mapping(vma->vm_flags))
1360 return false;
1361
a458b76a 1362 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
97a7e473
PX
1363 return false;
1364
1365 return page_maybe_dma_pinned(page);
1366}
1367
9127ab4f
CS
1368#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1369#define SECTION_IN_PAGE_FLAGS
1370#endif
1371
89689ae7 1372/*
7a8010cd
VB
1373 * The identification function is mainly used by the buddy allocator for
1374 * determining if two pages could be buddies. We are not really identifying
1375 * the zone since we could be using the section number id if we do not have
1376 * node id available in page flags.
1377 * We only guarantee that it will return the same value for two combinable
1378 * pages in a zone.
89689ae7 1379 */
cb2b95e1
AW
1380static inline int page_zone_id(struct page *page)
1381{
89689ae7 1382 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1383}
1384
89689ae7 1385#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1386extern int page_to_nid(const struct page *page);
89689ae7 1387#else
33dd4e0e 1388static inline int page_to_nid(const struct page *page)
d41dee36 1389{
f165b378
PT
1390 struct page *p = (struct page *)page;
1391
1392 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1393}
89689ae7
CL
1394#endif
1395
57e0a030 1396#ifdef CONFIG_NUMA_BALANCING
90572890 1397static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1398{
90572890 1399 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1400}
1401
90572890 1402static inline int cpupid_to_pid(int cpupid)
57e0a030 1403{
90572890 1404 return cpupid & LAST__PID_MASK;
57e0a030 1405}
b795854b 1406
90572890 1407static inline int cpupid_to_cpu(int cpupid)
b795854b 1408{
90572890 1409 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1410}
1411
90572890 1412static inline int cpupid_to_nid(int cpupid)
b795854b 1413{
90572890 1414 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1415}
1416
90572890 1417static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1418{
90572890 1419 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1420}
1421
90572890 1422static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1423{
90572890 1424 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1425}
1426
8c8a743c
PZ
1427static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1428{
1429 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1430}
1431
1432#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1433#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1434static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1435{
1ae71d03 1436 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1437}
90572890
PZ
1438
1439static inline int page_cpupid_last(struct page *page)
1440{
1441 return page->_last_cpupid;
1442}
1443static inline void page_cpupid_reset_last(struct page *page)
b795854b 1444{
1ae71d03 1445 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1446}
1447#else
90572890 1448static inline int page_cpupid_last(struct page *page)
75980e97 1449{
90572890 1450 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1451}
1452
90572890 1453extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1454
90572890 1455static inline void page_cpupid_reset_last(struct page *page)
75980e97 1456{
09940a4f 1457 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1458}
90572890
PZ
1459#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1460#else /* !CONFIG_NUMA_BALANCING */
1461static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1462{
90572890 1463 return page_to_nid(page); /* XXX */
57e0a030
MG
1464}
1465
90572890 1466static inline int page_cpupid_last(struct page *page)
57e0a030 1467{
90572890 1468 return page_to_nid(page); /* XXX */
57e0a030
MG
1469}
1470
90572890 1471static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1472{
1473 return -1;
1474}
1475
90572890 1476static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1477{
1478 return -1;
1479}
1480
90572890 1481static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1482{
1483 return -1;
1484}
1485
90572890
PZ
1486static inline int cpu_pid_to_cpupid(int nid, int pid)
1487{
1488 return -1;
1489}
1490
1491static inline bool cpupid_pid_unset(int cpupid)
b795854b 1492{
2b787449 1493 return true;
b795854b
MG
1494}
1495
90572890 1496static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1497{
1498}
8c8a743c
PZ
1499
1500static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1501{
1502 return false;
1503}
90572890 1504#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1505
2e903b91 1506#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1507
cf10bd4c
AK
1508/*
1509 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1510 * setting tags for all pages to native kernel tag value 0xff, as the default
1511 * value 0x00 maps to 0xff.
1512 */
1513
2813b9c0
AK
1514static inline u8 page_kasan_tag(const struct page *page)
1515{
cf10bd4c
AK
1516 u8 tag = 0xff;
1517
1518 if (kasan_enabled()) {
1519 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1520 tag ^= 0xff;
1521 }
1522
1523 return tag;
2813b9c0
AK
1524}
1525
1526static inline void page_kasan_tag_set(struct page *page, u8 tag)
1527{
34303244 1528 if (kasan_enabled()) {
cf10bd4c 1529 tag ^= 0xff;
34303244
AK
1530 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1531 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1532 }
2813b9c0
AK
1533}
1534
1535static inline void page_kasan_tag_reset(struct page *page)
1536{
34303244
AK
1537 if (kasan_enabled())
1538 page_kasan_tag_set(page, 0xff);
2813b9c0 1539}
34303244
AK
1540
1541#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1542
2813b9c0
AK
1543static inline u8 page_kasan_tag(const struct page *page)
1544{
1545 return 0xff;
1546}
1547
1548static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1549static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1550
1551#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1552
33dd4e0e 1553static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1554{
1555 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1556}
1557
75ef7184
MG
1558static inline pg_data_t *page_pgdat(const struct page *page)
1559{
1560 return NODE_DATA(page_to_nid(page));
1561}
1562
9127ab4f 1563#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1564static inline void set_page_section(struct page *page, unsigned long section)
1565{
1566 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1567 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1568}
1569
aa462abe 1570static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1571{
1572 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1573}
308c05e3 1574#endif
d41dee36 1575
8e3560d9
PT
1576/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1577#ifdef CONFIG_MIGRATION
1578static inline bool is_pinnable_page(struct page *page)
1579{
9afaf30f
PT
1580 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1581 is_zero_pfn(page_to_pfn(page));
8e3560d9
PT
1582}
1583#else
1584static inline bool is_pinnable_page(struct page *page)
1585{
1586 return true;
1587}
1588#endif
1589
2f1b6248 1590static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1591{
1592 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1593 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1594}
2f1b6248 1595
348f8b6c
DH
1596static inline void set_page_node(struct page *page, unsigned long node)
1597{
1598 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1599 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1600}
89689ae7 1601
2f1b6248 1602static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1603 unsigned long node, unsigned long pfn)
1da177e4 1604{
348f8b6c
DH
1605 set_page_zone(page, zone);
1606 set_page_node(page, node);
9127ab4f 1607#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1608 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1609#endif
1da177e4
LT
1610}
1611
7b230db3
MWO
1612/**
1613 * folio_nr_pages - The number of pages in the folio.
1614 * @folio: The folio.
1615 *
1616 * Return: A positive power of two.
1617 */
1618static inline long folio_nr_pages(struct folio *folio)
1619{
1620 return compound_nr(&folio->page);
1621}
1622
1623/**
1624 * folio_next - Move to the next physical folio.
1625 * @folio: The folio we're currently operating on.
1626 *
1627 * If you have physically contiguous memory which may span more than
1628 * one folio (eg a &struct bio_vec), use this function to move from one
1629 * folio to the next. Do not use it if the memory is only virtually
1630 * contiguous as the folios are almost certainly not adjacent to each
1631 * other. This is the folio equivalent to writing ``page++``.
1632 *
1633 * Context: We assume that the folios are refcounted and/or locked at a
1634 * higher level and do not adjust the reference counts.
1635 * Return: The next struct folio.
1636 */
1637static inline struct folio *folio_next(struct folio *folio)
1638{
1639 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1640}
1641
1642/**
1643 * folio_shift - The size of the memory described by this folio.
1644 * @folio: The folio.
1645 *
1646 * A folio represents a number of bytes which is a power-of-two in size.
1647 * This function tells you which power-of-two the folio is. See also
1648 * folio_size() and folio_order().
1649 *
1650 * Context: The caller should have a reference on the folio to prevent
1651 * it from being split. It is not necessary for the folio to be locked.
1652 * Return: The base-2 logarithm of the size of this folio.
1653 */
1654static inline unsigned int folio_shift(struct folio *folio)
1655{
1656 return PAGE_SHIFT + folio_order(folio);
1657}
1658
1659/**
1660 * folio_size - The number of bytes in a folio.
1661 * @folio: The folio.
1662 *
1663 * Context: The caller should have a reference on the folio to prevent
1664 * it from being split. It is not necessary for the folio to be locked.
1665 * Return: The number of bytes in this folio.
1666 */
1667static inline size_t folio_size(struct folio *folio)
1668{
1669 return PAGE_SIZE << folio_order(folio);
1670}
1671
f6ac2354
CL
1672/*
1673 * Some inline functions in vmstat.h depend on page_zone()
1674 */
1675#include <linux/vmstat.h>
1676
33dd4e0e 1677static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1678{
1dff8083 1679 return page_to_virt(page);
1da177e4
LT
1680}
1681
1682#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1683#define HASHED_PAGE_VIRTUAL
1684#endif
1685
1686#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1687static inline void *page_address(const struct page *page)
1688{
1689 return page->virtual;
1690}
1691static inline void set_page_address(struct page *page, void *address)
1692{
1693 page->virtual = address;
1694}
1da177e4
LT
1695#define page_address_init() do { } while(0)
1696#endif
1697
1698#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1699void *page_address(const struct page *page);
1da177e4
LT
1700void set_page_address(struct page *page, void *virtual);
1701void page_address_init(void);
1702#endif
1703
1704#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1705#define page_address(page) lowmem_page_address(page)
1706#define set_page_address(page, address) do { } while(0)
1707#define page_address_init() do { } while(0)
1708#endif
1709
e39155ea
KS
1710extern void *page_rmapping(struct page *page);
1711extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1712extern struct address_space *page_mapping(struct page *page);
1da177e4 1713
f981c595
MG
1714extern struct address_space *__page_file_mapping(struct page *);
1715
1716static inline
1717struct address_space *page_file_mapping(struct page *page)
1718{
1719 if (unlikely(PageSwapCache(page)))
1720 return __page_file_mapping(page);
1721
1722 return page->mapping;
1723}
1724
f6ab1f7f
HY
1725extern pgoff_t __page_file_index(struct page *page);
1726
1da177e4
LT
1727/*
1728 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1729 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1730 */
1731static inline pgoff_t page_index(struct page *page)
1732{
1733 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1734 return __page_file_index(page);
1da177e4
LT
1735 return page->index;
1736}
1737
1aa8aea5 1738bool page_mapped(struct page *page);
bda807d4 1739struct address_space *page_mapping(struct page *page);
1da177e4 1740
2f064f34
MH
1741/*
1742 * Return true only if the page has been allocated with
1743 * ALLOC_NO_WATERMARKS and the low watermark was not
1744 * met implying that the system is under some pressure.
1745 */
1d7bab6a 1746static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1747{
1748 /*
c07aea3e
MC
1749 * lru.next has bit 1 set if the page is allocated from the
1750 * pfmemalloc reserves. Callers may simply overwrite it if
1751 * they do not need to preserve that information.
2f064f34 1752 */
c07aea3e 1753 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
1754}
1755
1756/*
1757 * Only to be called by the page allocator on a freshly allocated
1758 * page.
1759 */
1760static inline void set_page_pfmemalloc(struct page *page)
1761{
c07aea3e 1762 page->lru.next = (void *)BIT(1);
2f064f34
MH
1763}
1764
1765static inline void clear_page_pfmemalloc(struct page *page)
1766{
c07aea3e 1767 page->lru.next = NULL;
2f064f34
MH
1768}
1769
1c0fe6e3
NP
1770/*
1771 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1772 */
1773extern void pagefault_out_of_memory(void);
1774
1da177e4 1775#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1776#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 1777#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 1778
ddd588b5 1779/*
7bf02ea2 1780 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1781 * various contexts.
1782 */
4b59e6c4 1783#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1784
9af744d7 1785extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1786
710ec38b 1787#ifdef CONFIG_MMU
7f43add4 1788extern bool can_do_mlock(void);
710ec38b
AB
1789#else
1790static inline bool can_do_mlock(void) { return false; }
1791#endif
d7c9e99a
AG
1792extern int user_shm_lock(size_t, struct ucounts *);
1793extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4
LT
1794
1795/*
1796 * Parameter block passed down to zap_pte_range in exceptional cases.
1797 */
1798struct zap_details {
1da177e4
LT
1799 struct address_space *check_mapping; /* Check page->mapping if set */
1800 pgoff_t first_index; /* Lowest page->index to unmap */
1801 pgoff_t last_index; /* Highest page->index to unmap */
22061a1f 1802 struct page *single_page; /* Locked page to be unmapped */
1da177e4
LT
1803};
1804
25b2995a
CH
1805struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1806 pte_t pte);
28093f9f
GS
1807struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1808 pmd_t pmd);
7e675137 1809
27d036e3
LR
1810void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1811 unsigned long size);
14f5ff5d 1812void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1813 unsigned long size);
4f74d2c8
LT
1814void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1815 unsigned long start, unsigned long end);
e6473092 1816
ac46d4f3
JG
1817struct mmu_notifier_range;
1818
42b77728 1819void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1820 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1821int
1822copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
9fd6dad1
PB
1823int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1824 struct mmu_notifier_range *range, pte_t **ptepp,
1825 pmd_t **pmdpp, spinlock_t **ptlp);
ff5c19ed 1826int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 1827 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
1828int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1829 unsigned long *pfn);
d87fe660 1830int follow_phys(struct vm_area_struct *vma, unsigned long address,
1831 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1832int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1833 void *buf, int len, int write);
1da177e4 1834
7caef267 1835extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1836extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1837void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1838void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1839int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1840int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1841int invalidate_inode_page(struct page *page);
1842
7ee1dd3f 1843#ifdef CONFIG_MMU
2b740303 1844extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1845 unsigned long address, unsigned int flags,
1846 struct pt_regs *regs);
64019a2e 1847extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1848 unsigned long address, unsigned int fault_flags,
1849 bool *unlocked);
22061a1f 1850void unmap_mapping_page(struct page *page);
977fbdcd
MW
1851void unmap_mapping_pages(struct address_space *mapping,
1852 pgoff_t start, pgoff_t nr, bool even_cows);
1853void unmap_mapping_range(struct address_space *mapping,
1854 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1855#else
2b740303 1856static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1857 unsigned long address, unsigned int flags,
1858 struct pt_regs *regs)
7ee1dd3f
DH
1859{
1860 /* should never happen if there's no MMU */
1861 BUG();
1862 return VM_FAULT_SIGBUS;
1863}
64019a2e 1864static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1865 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1866{
1867 /* should never happen if there's no MMU */
1868 BUG();
1869 return -EFAULT;
1870}
22061a1f 1871static inline void unmap_mapping_page(struct page *page) { }
977fbdcd
MW
1872static inline void unmap_mapping_pages(struct address_space *mapping,
1873 pgoff_t start, pgoff_t nr, bool even_cows) { }
1874static inline void unmap_mapping_range(struct address_space *mapping,
1875 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1876#endif
f33ea7f4 1877
977fbdcd
MW
1878static inline void unmap_shared_mapping_range(struct address_space *mapping,
1879 loff_t const holebegin, loff_t const holelen)
1880{
1881 unmap_mapping_range(mapping, holebegin, holelen, 0);
1882}
1883
1884extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1885 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1886extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1887 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1888extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1889 void *buf, int len, unsigned int gup_flags);
1da177e4 1890
64019a2e 1891long get_user_pages_remote(struct mm_struct *mm,
1e987790 1892 unsigned long start, unsigned long nr_pages,
9beae1ea 1893 unsigned int gup_flags, struct page **pages,
5b56d49f 1894 struct vm_area_struct **vmas, int *locked);
64019a2e 1895long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1896 unsigned long start, unsigned long nr_pages,
1897 unsigned int gup_flags, struct page **pages,
1898 struct vm_area_struct **vmas, int *locked);
c12d2da5 1899long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1900 unsigned int gup_flags, struct page **pages,
cde70140 1901 struct vm_area_struct **vmas);
eddb1c22
JH
1902long pin_user_pages(unsigned long start, unsigned long nr_pages,
1903 unsigned int gup_flags, struct page **pages,
1904 struct vm_area_struct **vmas);
c12d2da5 1905long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1906 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1907long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1908 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1909long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1910 struct page **pages, unsigned int gup_flags);
91429023
JH
1911long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1912 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1913
73b0140b
IW
1914int get_user_pages_fast(unsigned long start, int nr_pages,
1915 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1916int pin_user_pages_fast(unsigned long start, int nr_pages,
1917 unsigned int gup_flags, struct page **pages);
8025e5dd 1918
79eb597c
DJ
1919int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1920int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1921 struct task_struct *task, bool bypass_rlim);
1922
18022c5d
MG
1923struct kvec;
1924int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1925 struct page **pages);
f3e8fccd 1926struct page *get_dump_page(unsigned long addr);
1da177e4 1927
cf9a2ae8 1928extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1929extern void do_invalidatepage(struct page *page, unsigned int offset,
1930 unsigned int length);
cf9a2ae8 1931
1da177e4
LT
1932int redirty_page_for_writepage(struct writeback_control *wbc,
1933 struct page *page);
c4843a75 1934void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1935 struct bdi_writeback *wb);
b3c97528 1936int set_page_dirty(struct page *page);
1da177e4 1937int set_page_dirty_lock(struct page *page);
736304f3
JK
1938void __cancel_dirty_page(struct page *page);
1939static inline void cancel_dirty_page(struct page *page)
1940{
1941 /* Avoid atomic ops, locking, etc. when not actually needed. */
1942 if (PageDirty(page))
1943 __cancel_dirty_page(page);
1944}
1da177e4 1945int clear_page_dirty_for_io(struct page *page);
b9ea2515 1946
a9090253 1947int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1948
b6a2fea3
OW
1949extern unsigned long move_page_tables(struct vm_area_struct *vma,
1950 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1951 unsigned long new_addr, unsigned long len,
1952 bool need_rmap_locks);
58705444
PX
1953
1954/*
1955 * Flags used by change_protection(). For now we make it a bitmap so
1956 * that we can pass in multiple flags just like parameters. However
1957 * for now all the callers are only use one of the flags at the same
1958 * time.
1959 */
1960/* Whether we should allow dirty bit accounting */
1961#define MM_CP_DIRTY_ACCT (1UL << 0)
1962/* Whether this protection change is for NUMA hints */
1963#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1964/* Whether this change is for write protecting */
1965#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1966#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1967#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1968 MM_CP_UFFD_WP_RESOLVE)
58705444 1969
7da4d641
PZ
1970extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1971 unsigned long end, pgprot_t newprot,
58705444 1972 unsigned long cp_flags);
b6a2fea3
OW
1973extern int mprotect_fixup(struct vm_area_struct *vma,
1974 struct vm_area_struct **pprev, unsigned long start,
1975 unsigned long end, unsigned long newflags);
1da177e4 1976
465a454f
PZ
1977/*
1978 * doesn't attempt to fault and will return short.
1979 */
dadbb612
SJ
1980int get_user_pages_fast_only(unsigned long start, int nr_pages,
1981 unsigned int gup_flags, struct page **pages);
104acc32
JH
1982int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1983 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1984
1985static inline bool get_user_page_fast_only(unsigned long addr,
1986 unsigned int gup_flags, struct page **pagep)
1987{
1988 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1989}
d559db08
KH
1990/*
1991 * per-process(per-mm_struct) statistics.
1992 */
d559db08
KH
1993static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1994{
69c97823
KK
1995 long val = atomic_long_read(&mm->rss_stat.count[member]);
1996
1997#ifdef SPLIT_RSS_COUNTING
1998 /*
1999 * counter is updated in asynchronous manner and may go to minus.
2000 * But it's never be expected number for users.
2001 */
2002 if (val < 0)
2003 val = 0;
172703b0 2004#endif
69c97823
KK
2005 return (unsigned long)val;
2006}
d559db08 2007
e4dcad20 2008void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 2009
d559db08
KH
2010static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2011{
b3d1411b
JFG
2012 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
2013
e4dcad20 2014 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2015}
2016
2017static inline void inc_mm_counter(struct mm_struct *mm, int member)
2018{
b3d1411b
JFG
2019 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
2020
e4dcad20 2021 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2022}
2023
2024static inline void dec_mm_counter(struct mm_struct *mm, int member)
2025{
b3d1411b
JFG
2026 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2027
e4dcad20 2028 mm_trace_rss_stat(mm, member, count);
d559db08
KH
2029}
2030
eca56ff9
JM
2031/* Optimized variant when page is already known not to be PageAnon */
2032static inline int mm_counter_file(struct page *page)
2033{
2034 if (PageSwapBacked(page))
2035 return MM_SHMEMPAGES;
2036 return MM_FILEPAGES;
2037}
2038
2039static inline int mm_counter(struct page *page)
2040{
2041 if (PageAnon(page))
2042 return MM_ANONPAGES;
2043 return mm_counter_file(page);
2044}
2045
d559db08
KH
2046static inline unsigned long get_mm_rss(struct mm_struct *mm)
2047{
2048 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2049 get_mm_counter(mm, MM_ANONPAGES) +
2050 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2051}
2052
2053static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2054{
2055 return max(mm->hiwater_rss, get_mm_rss(mm));
2056}
2057
2058static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2059{
2060 return max(mm->hiwater_vm, mm->total_vm);
2061}
2062
2063static inline void update_hiwater_rss(struct mm_struct *mm)
2064{
2065 unsigned long _rss = get_mm_rss(mm);
2066
2067 if ((mm)->hiwater_rss < _rss)
2068 (mm)->hiwater_rss = _rss;
2069}
2070
2071static inline void update_hiwater_vm(struct mm_struct *mm)
2072{
2073 if (mm->hiwater_vm < mm->total_vm)
2074 mm->hiwater_vm = mm->total_vm;
2075}
2076
695f0559
PC
2077static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2078{
2079 mm->hiwater_rss = get_mm_rss(mm);
2080}
2081
d559db08
KH
2082static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2083 struct mm_struct *mm)
2084{
2085 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2086
2087 if (*maxrss < hiwater_rss)
2088 *maxrss = hiwater_rss;
2089}
2090
53bddb4e 2091#if defined(SPLIT_RSS_COUNTING)
05af2e10 2092void sync_mm_rss(struct mm_struct *mm);
53bddb4e 2093#else
05af2e10 2094static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
2095{
2096}
2097#endif
465a454f 2098
78e7c5af
AK
2099#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2100static inline int pte_special(pte_t pte)
2101{
2102 return 0;
2103}
2104
2105static inline pte_t pte_mkspecial(pte_t pte)
2106{
2107 return pte;
2108}
2109#endif
2110
17596731 2111#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2112static inline int pte_devmap(pte_t pte)
2113{
2114 return 0;
2115}
2116#endif
2117
6d2329f8 2118int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 2119
25ca1d6c
NK
2120extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2121 spinlock_t **ptl);
2122static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2123 spinlock_t **ptl)
2124{
2125 pte_t *ptep;
2126 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2127 return ptep;
2128}
c9cfcddf 2129
c2febafc
KS
2130#ifdef __PAGETABLE_P4D_FOLDED
2131static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2132 unsigned long address)
2133{
2134 return 0;
2135}
2136#else
2137int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2138#endif
2139
b4e98d9a 2140#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2141static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2142 unsigned long address)
2143{
2144 return 0;
2145}
b4e98d9a
KS
2146static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2147static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2148
5f22df00 2149#else
c2febafc 2150int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2151
b4e98d9a
KS
2152static inline void mm_inc_nr_puds(struct mm_struct *mm)
2153{
6d212db1
MS
2154 if (mm_pud_folded(mm))
2155 return;
af5b0f6a 2156 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2157}
2158
2159static inline void mm_dec_nr_puds(struct mm_struct *mm)
2160{
6d212db1
MS
2161 if (mm_pud_folded(mm))
2162 return;
af5b0f6a 2163 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2164}
5f22df00
NP
2165#endif
2166
2d2f5119 2167#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2168static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2169 unsigned long address)
2170{
2171 return 0;
2172}
dc6c9a35 2173
dc6c9a35
KS
2174static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2175static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2176
5f22df00 2177#else
1bb3630e 2178int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2179
dc6c9a35
KS
2180static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2181{
6d212db1
MS
2182 if (mm_pmd_folded(mm))
2183 return;
af5b0f6a 2184 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2185}
2186
2187static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2188{
6d212db1
MS
2189 if (mm_pmd_folded(mm))
2190 return;
af5b0f6a 2191 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2192}
5f22df00
NP
2193#endif
2194
c4812909 2195#ifdef CONFIG_MMU
af5b0f6a 2196static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2197{
af5b0f6a 2198 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2199}
2200
af5b0f6a 2201static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2202{
af5b0f6a 2203 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2204}
2205
2206static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2207{
af5b0f6a 2208 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2209}
2210
2211static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2212{
af5b0f6a 2213 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2214}
2215#else
c4812909 2216
af5b0f6a
KS
2217static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2218static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2219{
2220 return 0;
2221}
2222
2223static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2224static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2225#endif
2226
4cf58924
JFG
2227int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2228int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2229
f949286c
MR
2230#if defined(CONFIG_MMU)
2231
c2febafc
KS
2232static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2233 unsigned long address)
2234{
2235 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2236 NULL : p4d_offset(pgd, address);
2237}
2238
2239static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2240 unsigned long address)
1da177e4 2241{
c2febafc
KS
2242 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2243 NULL : pud_offset(p4d, address);
1da177e4 2244}
d8626138 2245
1da177e4
LT
2246static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2247{
1bb3630e
HD
2248 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2249 NULL: pmd_offset(pud, address);
1da177e4 2250}
f949286c 2251#endif /* CONFIG_MMU */
1bb3630e 2252
57c1ffce 2253#if USE_SPLIT_PTE_PTLOCKS
597d795a 2254#if ALLOC_SPLIT_PTLOCKS
b35f1819 2255void __init ptlock_cache_init(void);
539edb58
PZ
2256extern bool ptlock_alloc(struct page *page);
2257extern void ptlock_free(struct page *page);
2258
2259static inline spinlock_t *ptlock_ptr(struct page *page)
2260{
2261 return page->ptl;
2262}
597d795a 2263#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2264static inline void ptlock_cache_init(void)
2265{
2266}
2267
49076ec2
KS
2268static inline bool ptlock_alloc(struct page *page)
2269{
49076ec2
KS
2270 return true;
2271}
539edb58 2272
49076ec2
KS
2273static inline void ptlock_free(struct page *page)
2274{
49076ec2
KS
2275}
2276
2277static inline spinlock_t *ptlock_ptr(struct page *page)
2278{
539edb58 2279 return &page->ptl;
49076ec2 2280}
597d795a 2281#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2282
2283static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2284{
2285 return ptlock_ptr(pmd_page(*pmd));
2286}
2287
2288static inline bool ptlock_init(struct page *page)
2289{
2290 /*
2291 * prep_new_page() initialize page->private (and therefore page->ptl)
2292 * with 0. Make sure nobody took it in use in between.
2293 *
2294 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2295 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2296 */
309381fe 2297 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2298 if (!ptlock_alloc(page))
2299 return false;
2300 spin_lock_init(ptlock_ptr(page));
2301 return true;
2302}
2303
57c1ffce 2304#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2305/*
2306 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2307 */
49076ec2
KS
2308static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2309{
2310 return &mm->page_table_lock;
2311}
b35f1819 2312static inline void ptlock_cache_init(void) {}
49076ec2 2313static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2314static inline void ptlock_free(struct page *page) {}
57c1ffce 2315#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2316
b35f1819
KS
2317static inline void pgtable_init(void)
2318{
2319 ptlock_cache_init();
2320 pgtable_cache_init();
2321}
2322
b4ed71f5 2323static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2324{
706874e9
VD
2325 if (!ptlock_init(page))
2326 return false;
1d40a5ea 2327 __SetPageTable(page);
f0c0c115 2328 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2329 return true;
2f569afd
MS
2330}
2331
b4ed71f5 2332static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2333{
9e247bab 2334 ptlock_free(page);
1d40a5ea 2335 __ClearPageTable(page);
f0c0c115 2336 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2337}
2338
c74df32c
HD
2339#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2340({ \
4c21e2f2 2341 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2342 pte_t *__pte = pte_offset_map(pmd, address); \
2343 *(ptlp) = __ptl; \
2344 spin_lock(__ptl); \
2345 __pte; \
2346})
2347
2348#define pte_unmap_unlock(pte, ptl) do { \
2349 spin_unlock(ptl); \
2350 pte_unmap(pte); \
2351} while (0)
2352
4cf58924 2353#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2354
2355#define pte_alloc_map(mm, pmd, address) \
4cf58924 2356 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2357
c74df32c 2358#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2359 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2360 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2361
1bb3630e 2362#define pte_alloc_kernel(pmd, address) \
4cf58924 2363 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2364 NULL: pte_offset_kernel(pmd, address))
1da177e4 2365
e009bb30
KS
2366#if USE_SPLIT_PMD_PTLOCKS
2367
634391ac
MS
2368static struct page *pmd_to_page(pmd_t *pmd)
2369{
2370 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2371 return virt_to_page((void *)((unsigned long) pmd & mask));
2372}
2373
e009bb30
KS
2374static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2375{
634391ac 2376 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2377}
2378
b2b29d6d 2379static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2380{
e009bb30
KS
2381#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2382 page->pmd_huge_pte = NULL;
2383#endif
49076ec2 2384 return ptlock_init(page);
e009bb30
KS
2385}
2386
b2b29d6d 2387static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2388{
2389#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2390 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2391#endif
49076ec2 2392 ptlock_free(page);
e009bb30
KS
2393}
2394
634391ac 2395#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2396
2397#else
2398
9a86cb7b
KS
2399static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2400{
2401 return &mm->page_table_lock;
2402}
2403
b2b29d6d
MW
2404static inline bool pmd_ptlock_init(struct page *page) { return true; }
2405static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2406
c389a250 2407#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2408
e009bb30
KS
2409#endif
2410
9a86cb7b
KS
2411static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2412{
2413 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2414 spin_lock(ptl);
2415 return ptl;
2416}
2417
b2b29d6d
MW
2418static inline bool pgtable_pmd_page_ctor(struct page *page)
2419{
2420 if (!pmd_ptlock_init(page))
2421 return false;
2422 __SetPageTable(page);
f0c0c115 2423 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2424 return true;
2425}
2426
2427static inline void pgtable_pmd_page_dtor(struct page *page)
2428{
2429 pmd_ptlock_free(page);
2430 __ClearPageTable(page);
f0c0c115 2431 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2432}
2433
a00cc7d9
MW
2434/*
2435 * No scalability reason to split PUD locks yet, but follow the same pattern
2436 * as the PMD locks to make it easier if we decide to. The VM should not be
2437 * considered ready to switch to split PUD locks yet; there may be places
2438 * which need to be converted from page_table_lock.
2439 */
2440static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2441{
2442 return &mm->page_table_lock;
2443}
2444
2445static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2446{
2447 spinlock_t *ptl = pud_lockptr(mm, pud);
2448
2449 spin_lock(ptl);
2450 return ptl;
2451}
62906027 2452
a00cc7d9 2453extern void __init pagecache_init(void);
bc9331a1 2454extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2455extern void free_initmem(void);
2456
69afade7
JL
2457/*
2458 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2459 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2460 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2461 * Return pages freed into the buddy system.
2462 */
11199692 2463extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2464 int poison, const char *s);
c3d5f5f0 2465
c3d5f5f0 2466extern void adjust_managed_page_count(struct page *page, long count);
1f9d03c5 2467extern void mem_init_print_info(void);
69afade7 2468
4b50bcc7 2469extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2470
69afade7 2471/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2472static inline void free_reserved_page(struct page *page)
69afade7
JL
2473{
2474 ClearPageReserved(page);
2475 init_page_count(page);
2476 __free_page(page);
69afade7
JL
2477 adjust_managed_page_count(page, 1);
2478}
a0cd7a7c 2479#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2480
2481static inline void mark_page_reserved(struct page *page)
2482{
2483 SetPageReserved(page);
2484 adjust_managed_page_count(page, -1);
2485}
2486
2487/*
2488 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2489 * The freed pages will be poisoned with pattern "poison" if it's within
2490 * range [0, UCHAR_MAX].
2491 * Return pages freed into the buddy system.
69afade7
JL
2492 */
2493static inline unsigned long free_initmem_default(int poison)
2494{
2495 extern char __init_begin[], __init_end[];
2496
11199692 2497 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 2498 poison, "unused kernel image (initmem)");
69afade7
JL
2499}
2500
7ee3d4e8
JL
2501static inline unsigned long get_num_physpages(void)
2502{
2503 int nid;
2504 unsigned long phys_pages = 0;
2505
2506 for_each_online_node(nid)
2507 phys_pages += node_present_pages(nid);
2508
2509 return phys_pages;
2510}
2511
c713216d 2512/*
3f08a302 2513 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2514 * zones, allocate the backing mem_map and account for memory holes in an
2515 * architecture independent manner.
c713216d
MG
2516 *
2517 * An architecture is expected to register range of page frames backed by
0ee332c1 2518 * physical memory with memblock_add[_node]() before calling
9691a071 2519 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2520 * usage, an architecture is expected to do something like
2521 *
2522 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2523 * max_highmem_pfn};
2524 * for_each_valid_physical_page_range()
0ee332c1 2525 * memblock_add_node(base, size, nid)
9691a071 2526 * free_area_init(max_zone_pfns);
c713216d 2527 */
9691a071 2528void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2529unsigned long node_map_pfn_alignment(void);
32996250
YL
2530unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2531 unsigned long end_pfn);
c713216d
MG
2532extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2533 unsigned long end_pfn);
2534extern void get_pfn_range_for_nid(unsigned int nid,
2535 unsigned long *start_pfn, unsigned long *end_pfn);
2536extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2537
a9ee6cf5 2538#ifndef CONFIG_NUMA
6f24fbd3 2539static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2540{
2541 return 0;
2542}
2543#else
2544/* please see mm/page_alloc.c */
2545extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2546#endif
2547
0e0b864e 2548extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2549extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2550 unsigned long, unsigned long, enum meminit_context,
2551 struct vmem_altmap *, int migratetype);
bc75d33f 2552extern void setup_per_zone_wmarks(void);
1b79acc9 2553extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2554extern void mem_init(void);
8feae131 2555extern void __init mmap_init(void);
9af744d7 2556extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2557extern long si_mem_available(void);
1da177e4
LT
2558extern void si_meminfo(struct sysinfo * val);
2559extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2560#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2561extern unsigned long arch_reserved_kernel_pages(void);
2562#endif
1da177e4 2563
a8e99259
MH
2564extern __printf(3, 4)
2565void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2566
e7c8d5c9 2567extern void setup_per_cpu_pageset(void);
e7c8d5c9 2568
75f7ad8e
PS
2569/* page_alloc.c */
2570extern int min_free_kbytes;
1c30844d 2571extern int watermark_boost_factor;
795ae7a0 2572extern int watermark_scale_factor;
51930df5 2573extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2574
8feae131 2575/* nommu.c */
33e5d769 2576extern atomic_long_t mmap_pages_allocated;
7e660872 2577extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2578
6b2dbba8 2579/* interval_tree.c */
6b2dbba8 2580void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2581 struct rb_root_cached *root);
9826a516
ML
2582void vma_interval_tree_insert_after(struct vm_area_struct *node,
2583 struct vm_area_struct *prev,
f808c13f 2584 struct rb_root_cached *root);
6b2dbba8 2585void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2586 struct rb_root_cached *root);
2587struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2588 unsigned long start, unsigned long last);
2589struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2590 unsigned long start, unsigned long last);
2591
2592#define vma_interval_tree_foreach(vma, root, start, last) \
2593 for (vma = vma_interval_tree_iter_first(root, start, last); \
2594 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2595
bf181b9f 2596void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2597 struct rb_root_cached *root);
bf181b9f 2598void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2599 struct rb_root_cached *root);
2600struct anon_vma_chain *
2601anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2602 unsigned long start, unsigned long last);
bf181b9f
ML
2603struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2604 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2605#ifdef CONFIG_DEBUG_VM_RB
2606void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2607#endif
bf181b9f
ML
2608
2609#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2610 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2611 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2612
1da177e4 2613/* mmap.c */
34b4e4aa 2614extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2615extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2616 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2617 struct vm_area_struct *expand);
2618static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2619 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2620{
2621 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2622}
1da177e4
LT
2623extern struct vm_area_struct *vma_merge(struct mm_struct *,
2624 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2625 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2626 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2627extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2628extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2629 unsigned long addr, int new_below);
2630extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2631 unsigned long addr, int new_below);
1da177e4
LT
2632extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2633extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2634 struct rb_node **, struct rb_node *);
a8fb5618 2635extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2636extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2637 unsigned long addr, unsigned long len, pgoff_t pgoff,
2638 bool *need_rmap_locks);
1da177e4 2639extern void exit_mmap(struct mm_struct *);
925d1c40 2640
9c599024
CG
2641static inline int check_data_rlimit(unsigned long rlim,
2642 unsigned long new,
2643 unsigned long start,
2644 unsigned long end_data,
2645 unsigned long start_data)
2646{
2647 if (rlim < RLIM_INFINITY) {
2648 if (((new - start) + (end_data - start_data)) > rlim)
2649 return -ENOSPC;
2650 }
2651
2652 return 0;
2653}
2654
7906d00c
AA
2655extern int mm_take_all_locks(struct mm_struct *mm);
2656extern void mm_drop_all_locks(struct mm_struct *mm);
2657
fe69d560 2658extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 2659extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 2660extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2661extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2662
84638335
KK
2663extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2664extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2665
2eefd878
DS
2666extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2667 const struct vm_special_mapping *sm);
3935ed6a
SS
2668extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2669 unsigned long addr, unsigned long len,
a62c34bd
AL
2670 unsigned long flags,
2671 const struct vm_special_mapping *spec);
2672/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2673extern int install_special_mapping(struct mm_struct *mm,
2674 unsigned long addr, unsigned long len,
2675 unsigned long flags, struct page **pages);
1da177e4 2676
649775be
AG
2677unsigned long randomize_stack_top(unsigned long stack_top);
2678
1da177e4
LT
2679extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2680
0165ab44 2681extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2682 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2683 struct list_head *uf);
1fcfd8db 2684extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2685 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2686 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2687extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2688 struct list_head *uf, bool downgrade);
897ab3e0
MR
2689extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2690 struct list_head *uf);
0726b01e 2691extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2692
bebeb3d6
ML
2693#ifdef CONFIG_MMU
2694extern int __mm_populate(unsigned long addr, unsigned long len,
2695 int ignore_errors);
2696static inline void mm_populate(unsigned long addr, unsigned long len)
2697{
2698 /* Ignore errors */
2699 (void) __mm_populate(addr, len, 1);
2700}
2701#else
2702static inline void mm_populate(unsigned long addr, unsigned long len) {}
2703#endif
2704
e4eb1ff6 2705/* These take the mm semaphore themselves */
5d22fc25 2706extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2707extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2708extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2709extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2710 unsigned long, unsigned long,
2711 unsigned long, unsigned long);
1da177e4 2712
db4fbfb9
ML
2713struct vm_unmapped_area_info {
2714#define VM_UNMAPPED_AREA_TOPDOWN 1
2715 unsigned long flags;
2716 unsigned long length;
2717 unsigned long low_limit;
2718 unsigned long high_limit;
2719 unsigned long align_mask;
2720 unsigned long align_offset;
2721};
2722
baceaf1c 2723extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2724
85821aab 2725/* truncate.c */
1da177e4 2726extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2727extern void truncate_inode_pages_range(struct address_space *,
2728 loff_t lstart, loff_t lend);
91b0abe3 2729extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2730
2731/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2732extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2733extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2734 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2735extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2736
2737/* mm/page-writeback.c */
2b69c828 2738int __must_check write_one_page(struct page *page);
1cf6e7d8 2739void task_dirty_inc(struct task_struct *tsk);
1da177e4 2740
1be7107f 2741extern unsigned long stack_guard_gap;
d05f3169 2742/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2743extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2744
11192337 2745/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2746extern int expand_downwards(struct vm_area_struct *vma,
2747 unsigned long address);
8ca3eb08 2748#if VM_GROWSUP
46dea3d0 2749extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2750#else
fee7e49d 2751 #define expand_upwards(vma, address) (0)
9ab88515 2752#endif
1da177e4
LT
2753
2754/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2755extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2756extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2757 struct vm_area_struct **pprev);
2758
ce6d42f2
LH
2759/**
2760 * find_vma_intersection() - Look up the first VMA which intersects the interval
2761 * @mm: The process address space.
2762 * @start_addr: The inclusive start user address.
2763 * @end_addr: The exclusive end user address.
2764 *
2765 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2766 * start_addr < end_addr.
2767 */
2768static inline
2769struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2770 unsigned long start_addr,
2771 unsigned long end_addr)
1da177e4 2772{
ce6d42f2 2773 struct vm_area_struct *vma = find_vma(mm, start_addr);
1da177e4
LT
2774
2775 if (vma && end_addr <= vma->vm_start)
2776 vma = NULL;
2777 return vma;
2778}
2779
ce6d42f2
LH
2780/**
2781 * vma_lookup() - Find a VMA at a specific address
2782 * @mm: The process address space.
2783 * @addr: The user address.
2784 *
2785 * Return: The vm_area_struct at the given address, %NULL otherwise.
2786 */
2787static inline
2788struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2789{
2790 struct vm_area_struct *vma = find_vma(mm, addr);
2791
2792 if (vma && addr < vma->vm_start)
2793 vma = NULL;
2794
2795 return vma;
2796}
2797
1be7107f
HD
2798static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2799{
2800 unsigned long vm_start = vma->vm_start;
2801
2802 if (vma->vm_flags & VM_GROWSDOWN) {
2803 vm_start -= stack_guard_gap;
2804 if (vm_start > vma->vm_start)
2805 vm_start = 0;
2806 }
2807 return vm_start;
2808}
2809
2810static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2811{
2812 unsigned long vm_end = vma->vm_end;
2813
2814 if (vma->vm_flags & VM_GROWSUP) {
2815 vm_end += stack_guard_gap;
2816 if (vm_end < vma->vm_end)
2817 vm_end = -PAGE_SIZE;
2818 }
2819 return vm_end;
2820}
2821
1da177e4
LT
2822static inline unsigned long vma_pages(struct vm_area_struct *vma)
2823{
2824 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2825}
2826
640708a2
PE
2827/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2828static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2829 unsigned long vm_start, unsigned long vm_end)
2830{
2831 struct vm_area_struct *vma = find_vma(mm, vm_start);
2832
2833 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2834 vma = NULL;
2835
2836 return vma;
2837}
2838
017b1660
MK
2839static inline bool range_in_vma(struct vm_area_struct *vma,
2840 unsigned long start, unsigned long end)
2841{
2842 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2843}
2844
bad849b3 2845#ifdef CONFIG_MMU
804af2cf 2846pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2847void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2848#else
2849static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2850{
2851 return __pgprot(0);
2852}
64e45507
PF
2853static inline void vma_set_page_prot(struct vm_area_struct *vma)
2854{
2855 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2856}
bad849b3
DH
2857#endif
2858
295992fb
CK
2859void vma_set_file(struct vm_area_struct *vma, struct file *file);
2860
5877231f 2861#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2862unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2863 unsigned long start, unsigned long end);
2864#endif
2865
deceb6cd 2866struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2867int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2868 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
2869int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2870 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 2871int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2872int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2873 struct page **pages, unsigned long *num);
a667d745
SJ
2874int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2875 unsigned long num);
2876int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2877 unsigned long num);
ae2b01f3 2878vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2879 unsigned long pfn);
f5e6d1d5
MW
2880vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2881 unsigned long pfn, pgprot_t pgprot);
5d747637 2882vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2883 pfn_t pfn);
574c5b3d
TH
2884vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2885 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2886vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2887 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2888int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2889
1c8f4220
SJ
2890static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2891 unsigned long addr, struct page *page)
2892{
2893 int err = vm_insert_page(vma, addr, page);
2894
2895 if (err == -ENOMEM)
2896 return VM_FAULT_OOM;
2897 if (err < 0 && err != -EBUSY)
2898 return VM_FAULT_SIGBUS;
2899
2900 return VM_FAULT_NOPAGE;
2901}
2902
f8f6ae5d
JG
2903#ifndef io_remap_pfn_range
2904static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2905 unsigned long addr, unsigned long pfn,
2906 unsigned long size, pgprot_t prot)
2907{
2908 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2909}
2910#endif
2911
d97baf94
SJ
2912static inline vm_fault_t vmf_error(int err)
2913{
2914 if (err == -ENOMEM)
2915 return VM_FAULT_OOM;
2916 return VM_FAULT_SIGBUS;
2917}
2918
df06b37f
KB
2919struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2920 unsigned int foll_flags);
240aadee 2921
deceb6cd
HD
2922#define FOLL_WRITE 0x01 /* check pte is writable */
2923#define FOLL_TOUCH 0x02 /* mark page accessed */
2924#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2925#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2926#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2927#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2928 * and return without waiting upon it */
84d33df2 2929#define FOLL_POPULATE 0x40 /* fault in page */
69ebb83e 2930#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2931#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2932#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2933#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2934#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2935#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2936#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2937#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2938#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2939#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2940#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2941#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2942
2943/*
eddb1c22
JH
2944 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2945 * other. Here is what they mean, and how to use them:
932f4a63
IW
2946 *
2947 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2948 * period _often_ under userspace control. This is in contrast to
2949 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2950 *
2951 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2952 * lifetime enforced by the filesystem and we need guarantees that longterm
2953 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2954 * the filesystem. Ideas for this coordination include revoking the longterm
2955 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2956 * added after the problem with filesystems was found FS DAX VMAs are
2957 * specifically failed. Filesystem pages are still subject to bugs and use of
2958 * FOLL_LONGTERM should be avoided on those pages.
2959 *
2960 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2961 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2962 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2963 * is due to an incompatibility with the FS DAX check and
eddb1c22 2964 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2965 *
eddb1c22
JH
2966 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2967 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2968 * FOLL_LONGTERM is specified.
eddb1c22
JH
2969 *
2970 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2971 * but an additional pin counting system) will be invoked. This is intended for
2972 * anything that gets a page reference and then touches page data (for example,
2973 * Direct IO). This lets the filesystem know that some non-file-system entity is
2974 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2975 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2976 * a call to unpin_user_page().
eddb1c22
JH
2977 *
2978 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2979 * and separate refcounting mechanisms, however, and that means that each has
2980 * its own acquire and release mechanisms:
2981 *
2982 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2983 *
f1f6a7dd 2984 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2985 *
2986 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2987 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2988 * calls applied to them, and that's perfectly OK. This is a constraint on the
2989 * callers, not on the pages.)
2990 *
2991 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2992 * directly by the caller. That's in order to help avoid mismatches when
2993 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2994 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2995 *
72ef5e52 2996 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2997 */
1da177e4 2998
2b740303 2999static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3000{
3001 if (vm_fault & VM_FAULT_OOM)
3002 return -ENOMEM;
3003 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3004 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3005 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3006 return -EFAULT;
3007 return 0;
3008}
3009
8b1e0f81 3010typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3011extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3012 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3013extern int apply_to_existing_page_range(struct mm_struct *mm,
3014 unsigned long address, unsigned long size,
3015 pte_fn_t fn, void *data);
aee16b3c 3016
04013513 3017extern void init_mem_debugging_and_hardening(void);
8823b1db 3018#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3019extern void __kernel_poison_pages(struct page *page, int numpages);
3020extern void __kernel_unpoison_pages(struct page *page, int numpages);
3021extern bool _page_poisoning_enabled_early;
3022DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3023static inline bool page_poisoning_enabled(void)
3024{
3025 return _page_poisoning_enabled_early;
3026}
3027/*
3028 * For use in fast paths after init_mem_debugging() has run, or when a
3029 * false negative result is not harmful when called too early.
3030 */
3031static inline bool page_poisoning_enabled_static(void)
3032{
3033 return static_branch_unlikely(&_page_poisoning_enabled);
3034}
3035static inline void kernel_poison_pages(struct page *page, int numpages)
3036{
3037 if (page_poisoning_enabled_static())
3038 __kernel_poison_pages(page, numpages);
3039}
3040static inline void kernel_unpoison_pages(struct page *page, int numpages)
3041{
3042 if (page_poisoning_enabled_static())
3043 __kernel_unpoison_pages(page, numpages);
3044}
8823b1db
LA
3045#else
3046static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3047static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3048static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3049static inline void kernel_poison_pages(struct page *page, int numpages) { }
3050static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3051#endif
3052
51cba1eb 3053DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3054static inline bool want_init_on_alloc(gfp_t flags)
3055{
51cba1eb
KC
3056 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3057 &init_on_alloc))
6471384a
AP
3058 return true;
3059 return flags & __GFP_ZERO;
3060}
3061
51cba1eb 3062DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3063static inline bool want_init_on_free(void)
3064{
51cba1eb
KC
3065 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3066 &init_on_free);
6471384a
AP
3067}
3068
8e57f8ac
VB
3069extern bool _debug_pagealloc_enabled_early;
3070DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3071
3072static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3073{
3074 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3075 _debug_pagealloc_enabled_early;
3076}
3077
3078/*
3079 * For use in fast paths after init_debug_pagealloc() has run, or when a
3080 * false negative result is not harmful when called too early.
3081 */
3082static inline bool debug_pagealloc_enabled_static(void)
031bc574 3083{
96a2b03f
VB
3084 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3085 return false;
3086
3087 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3088}
3089
5d6ad668 3090#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 3091/*
5d6ad668
MR
3092 * To support DEBUG_PAGEALLOC architecture must ensure that
3093 * __kernel_map_pages() never fails
c87cbc1f 3094 */
d6332692
RE
3095extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3096
77bc7fd6
MR
3097static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3098{
3099 if (debug_pagealloc_enabled_static())
3100 __kernel_map_pages(page, numpages, 1);
3101}
3102
3103static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3104{
3105 if (debug_pagealloc_enabled_static())
3106 __kernel_map_pages(page, numpages, 0);
3107}
5d6ad668 3108#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3109static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3110static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 3111#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3112
a6c19dfe 3113#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3114extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3115extern int in_gate_area_no_mm(unsigned long addr);
3116extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3117#else
a6c19dfe
AL
3118static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3119{
3120 return NULL;
3121}
3122static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3123static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3124{
3125 return 0;
3126}
1da177e4
LT
3127#endif /* __HAVE_ARCH_GATE_AREA */
3128
44a70ade
MH
3129extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3130
146732ce
JT
3131#ifdef CONFIG_SYSCTL
3132extern int sysctl_drop_caches;
32927393
CH
3133int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3134 loff_t *);
146732ce
JT
3135#endif
3136
cb731d6c
VD
3137void drop_slab(void);
3138void drop_slab_node(int nid);
9d0243bc 3139
7a9166e3
LY
3140#ifndef CONFIG_MMU
3141#define randomize_va_space 0
3142#else
a62eaf15 3143extern int randomize_va_space;
7a9166e3 3144#endif
a62eaf15 3145
045e72ac 3146const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3147#ifdef CONFIG_MMU
03252919 3148void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3149#else
3150static inline void print_vma_addr(char *prefix, unsigned long rip)
3151{
3152}
3153#endif
e6e5494c 3154
3bc2b6a7
MS
3155int vmemmap_remap_free(unsigned long start, unsigned long end,
3156 unsigned long reuse);
ad2fa371
MS
3157int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3158 unsigned long reuse, gfp_t gfp_mask);
f41f2ed4 3159
35fd1eb1 3160void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
3161struct page * __populate_section_memmap(unsigned long pfn,
3162 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3163pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3164p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3165pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3166pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
3167pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3168 struct vmem_altmap *altmap);
8f6aac41 3169void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3170struct vmem_altmap;
56993b4e
AK
3171void *vmemmap_alloc_block_buf(unsigned long size, int node,
3172 struct vmem_altmap *altmap);
8f6aac41 3173void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3174int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3175 int node, struct vmem_altmap *altmap);
7b73d978
CH
3176int vmemmap_populate(unsigned long start, unsigned long end, int node,
3177 struct vmem_altmap *altmap);
c2b91e2e 3178void vmemmap_populate_print_last(void);
0197518c 3179#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3180void vmemmap_free(unsigned long start, unsigned long end,
3181 struct vmem_altmap *altmap);
0197518c 3182#endif
46723bfa 3183void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3184 unsigned long nr_pages);
6a46079c 3185
82ba011b
AK
3186enum mf_flags {
3187 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3188 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3189 MF_MUST_KILL = 1 << 2,
cf870c70 3190 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3191};
83b57531
EB
3192extern int memory_failure(unsigned long pfn, int flags);
3193extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3194extern void memory_failure_queue_kick(int cpu);
847ce401 3195extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3196extern int sysctl_memory_failure_early_kill;
3197extern int sysctl_memory_failure_recovery;
d0505e9f 3198extern void shake_page(struct page *p);
5844a486 3199extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3200extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3201
cc637b17
XX
3202
3203/*
3204 * Error handlers for various types of pages.
3205 */
cc3e2af4 3206enum mf_result {
cc637b17
XX
3207 MF_IGNORED, /* Error: cannot be handled */
3208 MF_FAILED, /* Error: handling failed */
3209 MF_DELAYED, /* Will be handled later */
3210 MF_RECOVERED, /* Successfully recovered */
3211};
3212
3213enum mf_action_page_type {
3214 MF_MSG_KERNEL,
3215 MF_MSG_KERNEL_HIGH_ORDER,
3216 MF_MSG_SLAB,
3217 MF_MSG_DIFFERENT_COMPOUND,
3218 MF_MSG_POISONED_HUGE,
3219 MF_MSG_HUGE,
3220 MF_MSG_FREE_HUGE,
31286a84 3221 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3222 MF_MSG_UNMAP_FAILED,
3223 MF_MSG_DIRTY_SWAPCACHE,
3224 MF_MSG_CLEAN_SWAPCACHE,
3225 MF_MSG_DIRTY_MLOCKED_LRU,
3226 MF_MSG_CLEAN_MLOCKED_LRU,
3227 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3228 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3229 MF_MSG_DIRTY_LRU,
3230 MF_MSG_CLEAN_LRU,
3231 MF_MSG_TRUNCATED_LRU,
3232 MF_MSG_BUDDY,
3233 MF_MSG_BUDDY_2ND,
6100e34b 3234 MF_MSG_DAX,
5d1fd5dc 3235 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3236 MF_MSG_UNKNOWN,
3237};
3238
47ad8475
AA
3239#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3240extern void clear_huge_page(struct page *page,
c79b57e4 3241 unsigned long addr_hint,
47ad8475
AA
3242 unsigned int pages_per_huge_page);
3243extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3244 unsigned long addr_hint,
3245 struct vm_area_struct *vma,
47ad8475 3246 unsigned int pages_per_huge_page);
fa4d75c1
MK
3247extern long copy_huge_page_from_user(struct page *dst_page,
3248 const void __user *usr_src,
810a56b9
MK
3249 unsigned int pages_per_huge_page,
3250 bool allow_pagefault);
2484ca9b
THV
3251
3252/**
3253 * vma_is_special_huge - Are transhuge page-table entries considered special?
3254 * @vma: Pointer to the struct vm_area_struct to consider
3255 *
3256 * Whether transhuge page-table entries are considered "special" following
3257 * the definition in vm_normal_page().
3258 *
3259 * Return: true if transhuge page-table entries should be considered special,
3260 * false otherwise.
3261 */
3262static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3263{
3264 return vma_is_dax(vma) || (vma->vm_file &&
3265 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3266}
3267
47ad8475
AA
3268#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3269
c0a32fc5
SG
3270#ifdef CONFIG_DEBUG_PAGEALLOC
3271extern unsigned int _debug_guardpage_minorder;
96a2b03f 3272DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3273
3274static inline unsigned int debug_guardpage_minorder(void)
3275{
3276 return _debug_guardpage_minorder;
3277}
3278
e30825f1
JK
3279static inline bool debug_guardpage_enabled(void)
3280{
96a2b03f 3281 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3282}
3283
c0a32fc5
SG
3284static inline bool page_is_guard(struct page *page)
3285{
e30825f1
JK
3286 if (!debug_guardpage_enabled())
3287 return false;
3288
3972f6bb 3289 return PageGuard(page);
c0a32fc5
SG
3290}
3291#else
3292static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3293static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3294static inline bool page_is_guard(struct page *page) { return false; }
3295#endif /* CONFIG_DEBUG_PAGEALLOC */
3296
f9872caf
CS
3297#if MAX_NUMNODES > 1
3298void __init setup_nr_node_ids(void);
3299#else
3300static inline void setup_nr_node_ids(void) {}
3301#endif
3302
010c164a
SL
3303extern int memcmp_pages(struct page *page1, struct page *page2);
3304
3305static inline int pages_identical(struct page *page1, struct page *page2)
3306{
3307 return !memcmp_pages(page1, page2);
3308}
3309
c5acad84
TH
3310#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3311unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3312 pgoff_t first_index, pgoff_t nr,
3313 pgoff_t bitmap_pgoff,
3314 unsigned long *bitmap,
3315 pgoff_t *start,
3316 pgoff_t *end);
3317
3318unsigned long wp_shared_mapping_range(struct address_space *mapping,
3319 pgoff_t first_index, pgoff_t nr);
3320#endif
3321
2374c09b
CH
3322extern int sysctl_nr_trim_pages;
3323
5bb1bb35 3324#ifdef CONFIG_PRINTK
8e7f37f2 3325void mem_dump_obj(void *object);
5bb1bb35
PM
3326#else
3327static inline void mem_dump_obj(void *object) {}
3328#endif
8e7f37f2 3329
22247efd
PX
3330/**
3331 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3332 * @seals: the seals to check
3333 * @vma: the vma to operate on
3334 *
3335 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3336 * the vma flags. Return 0 if check pass, or <0 for errors.
3337 */
3338static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3339{
3340 if (seals & F_SEAL_FUTURE_WRITE) {
3341 /*
3342 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3343 * "future write" seal active.
3344 */
3345 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3346 return -EPERM;
3347
3348 /*
3349 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3350 * MAP_SHARED and read-only, take care to not allow mprotect to
3351 * revert protections on such mappings. Do this only for shared
3352 * mappings. For private mappings, don't need to mask
3353 * VM_MAYWRITE as we still want them to be COW-writable.
3354 */
3355 if (vma->vm_flags & VM_SHARED)
3356 vma->vm_flags &= ~(VM_MAYWRITE);
3357 }
3358
3359 return 0;
3360}
3361
1da177e4
LT
3362#endif /* __KERNEL__ */
3363#endif /* _LINUX_MM_H */