mm/hugetlb: simplify the calculation of variables
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
9740ca4e 18#include <linux/mmap_lock.h>
08677214 19#include <linux/range.h>
c6f6b596 20#include <linux/pfn.h>
3565fce3 21#include <linux/percpu-refcount.h>
e9da73d6 22#include <linux/bit_spinlock.h>
b0d40c92 23#include <linux/shrinker.h>
9c599024 24#include <linux/resource.h>
e30825f1 25#include <linux/page_ext.h>
8025e5dd 26#include <linux/err.h>
41901567 27#include <linux/page-flags.h>
fe896d18 28#include <linux/page_ref.h>
7b2d55d2 29#include <linux/memremap.h>
3b3b1a29 30#include <linux/overflow.h>
b5420237 31#include <linux/sizes.h>
7969f226 32#include <linux/sched.h>
65fddcfc 33#include <linux/pgtable.h>
34303244 34#include <linux/kasan.h>
1da177e4
LT
35
36struct mempolicy;
37struct anon_vma;
bf181b9f 38struct anon_vma_chain;
4e950f6f 39struct file_ra_state;
e8edc6e0 40struct user_struct;
4e950f6f 41struct writeback_control;
682aa8e1 42struct bdi_writeback;
bce617ed 43struct pt_regs;
1da177e4 44
5ef64cc8
LT
45extern int sysctl_page_lock_unfairness;
46
597b7305
MH
47void init_mm_internals(void);
48
fccc9987 49#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 50extern unsigned long max_mapnr;
fccc9987
JL
51
52static inline void set_max_mapnr(unsigned long limit)
53{
54 max_mapnr = limit;
55}
56#else
57static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
58#endif
59
ca79b0c2
AK
60extern atomic_long_t _totalram_pages;
61static inline unsigned long totalram_pages(void)
62{
63 return (unsigned long)atomic_long_read(&_totalram_pages);
64}
65
66static inline void totalram_pages_inc(void)
67{
68 atomic_long_inc(&_totalram_pages);
69}
70
71static inline void totalram_pages_dec(void)
72{
73 atomic_long_dec(&_totalram_pages);
74}
75
76static inline void totalram_pages_add(long count)
77{
78 atomic_long_add(count, &_totalram_pages);
79}
80
1da177e4 81extern void * high_memory;
1da177e4
LT
82extern int page_cluster;
83
84#ifdef CONFIG_SYSCTL
85extern int sysctl_legacy_va_layout;
86#else
87#define sysctl_legacy_va_layout 0
88#endif
89
d07e2259
DC
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91extern const int mmap_rnd_bits_min;
92extern const int mmap_rnd_bits_max;
93extern int mmap_rnd_bits __read_mostly;
94#endif
95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96extern const int mmap_rnd_compat_bits_min;
97extern const int mmap_rnd_compat_bits_max;
98extern int mmap_rnd_compat_bits __read_mostly;
99#endif
100
1da177e4 101#include <asm/page.h>
1da177e4 102#include <asm/processor.h>
1da177e4 103
d9344522
AK
104/*
105 * Architectures that support memory tagging (assigning tags to memory regions,
106 * embedding these tags into addresses that point to these memory regions, and
107 * checking that the memory and the pointer tags match on memory accesses)
108 * redefine this macro to strip tags from pointers.
109 * It's defined as noop for arcitectures that don't support memory tagging.
110 */
111#ifndef untagged_addr
112#define untagged_addr(addr) (addr)
113#endif
114
79442ed1
TC
115#ifndef __pa_symbol
116#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
117#endif
118
1dff8083
AB
119#ifndef page_to_virt
120#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
121#endif
122
568c5fe5
LA
123#ifndef lm_alias
124#define lm_alias(x) __va(__pa_symbol(x))
125#endif
126
593befa6
DD
127/*
128 * To prevent common memory management code establishing
129 * a zero page mapping on a read fault.
130 * This macro should be defined within <asm/pgtable.h>.
131 * s390 does this to prevent multiplexing of hardware bits
132 * related to the physical page in case of virtualization.
133 */
134#ifndef mm_forbids_zeropage
135#define mm_forbids_zeropage(X) (0)
136#endif
137
a4a3ede2
PT
138/*
139 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
140 * If an architecture decides to implement their own version of
141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
142 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 143 */
5470dea4
AD
144#if BITS_PER_LONG == 64
145/* This function must be updated when the size of struct page grows above 80
146 * or reduces below 56. The idea that compiler optimizes out switch()
147 * statement, and only leaves move/store instructions. Also the compiler can
148 * combine write statments if they are both assignments and can be reordered,
149 * this can result in several of the writes here being dropped.
150 */
151#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
152static inline void __mm_zero_struct_page(struct page *page)
153{
154 unsigned long *_pp = (void *)page;
155
156 /* Check that struct page is either 56, 64, 72, or 80 bytes */
157 BUILD_BUG_ON(sizeof(struct page) & 7);
158 BUILD_BUG_ON(sizeof(struct page) < 56);
159 BUILD_BUG_ON(sizeof(struct page) > 80);
160
161 switch (sizeof(struct page)) {
162 case 80:
df561f66
GS
163 _pp[9] = 0;
164 fallthrough;
5470dea4 165 case 72:
df561f66
GS
166 _pp[8] = 0;
167 fallthrough;
5470dea4 168 case 64:
df561f66
GS
169 _pp[7] = 0;
170 fallthrough;
5470dea4
AD
171 case 56:
172 _pp[6] = 0;
173 _pp[5] = 0;
174 _pp[4] = 0;
175 _pp[3] = 0;
176 _pp[2] = 0;
177 _pp[1] = 0;
178 _pp[0] = 0;
179 }
180}
181#else
a4a3ede2
PT
182#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
183#endif
184
ea606cf5
AR
185/*
186 * Default maximum number of active map areas, this limits the number of vmas
187 * per mm struct. Users can overwrite this number by sysctl but there is a
188 * problem.
189 *
190 * When a program's coredump is generated as ELF format, a section is created
191 * per a vma. In ELF, the number of sections is represented in unsigned short.
192 * This means the number of sections should be smaller than 65535 at coredump.
193 * Because the kernel adds some informative sections to a image of program at
194 * generating coredump, we need some margin. The number of extra sections is
195 * 1-3 now and depends on arch. We use "5" as safe margin, here.
196 *
197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
198 * not a hard limit any more. Although some userspace tools can be surprised by
199 * that.
200 */
201#define MAPCOUNT_ELF_CORE_MARGIN (5)
202#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203
204extern int sysctl_max_map_count;
205
c9b1d098 206extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 207extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 208
49f0ce5f
JM
209extern int sysctl_overcommit_memory;
210extern int sysctl_overcommit_ratio;
211extern unsigned long sysctl_overcommit_kbytes;
212
32927393
CH
213int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 loff_t *);
215int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 loff_t *);
56f3547b
FT
217int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
218 loff_t *);
6d87d0ec
SJ
219/*
220 * Any attempt to mark this function as static leads to build failure
221 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
222 * is referred to by BPF code. This must be visible for error injection.
223 */
224int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
225 pgoff_t index, gfp_t gfp, void **shadowp);
49f0ce5f 226
1da177e4
LT
227#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
228
27ac792c
AR
229/* to align the pointer to the (next) page boundary */
230#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
231
0fa73b86 232/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 233#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 234
f86196ea
NB
235#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
236
1da177e4
LT
237/*
238 * Linux kernel virtual memory manager primitives.
239 * The idea being to have a "virtual" mm in the same way
240 * we have a virtual fs - giving a cleaner interface to the
241 * mm details, and allowing different kinds of memory mappings
242 * (from shared memory to executable loading to arbitrary
243 * mmap() functions).
244 */
245
490fc053 246struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
247struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
248void vm_area_free(struct vm_area_struct *);
c43692e8 249
1da177e4 250#ifndef CONFIG_MMU
8feae131
DH
251extern struct rb_root nommu_region_tree;
252extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
253
254extern unsigned int kobjsize(const void *objp);
255#endif
256
257/*
605d9288 258 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 259 * When changing, update also include/trace/events/mmflags.h
1da177e4 260 */
cc2383ec
KK
261#define VM_NONE 0x00000000
262
1da177e4
LT
263#define VM_READ 0x00000001 /* currently active flags */
264#define VM_WRITE 0x00000002
265#define VM_EXEC 0x00000004
266#define VM_SHARED 0x00000008
267
7e2cff42 268/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
269#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
270#define VM_MAYWRITE 0x00000020
271#define VM_MAYEXEC 0x00000040
272#define VM_MAYSHARE 0x00000080
273
274#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 275#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 276#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 277#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 278#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 279
1da177e4
LT
280#define VM_LOCKED 0x00002000
281#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
282
283 /* Used by sys_madvise() */
284#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
285#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
286
287#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
288#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 289#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 290#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 291#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 292#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 293#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 294#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 295#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 296#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 297
d9104d1c
CG
298#ifdef CONFIG_MEM_SOFT_DIRTY
299# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
300#else
301# define VM_SOFTDIRTY 0
302#endif
303
b379d790 304#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
305#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
306#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 307#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 308
63c17fb8
DH
309#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
310#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
311#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
312#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
313#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 314#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
315#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
316#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
317#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
318#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 319#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
320#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
321
5212213a 322#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
323# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
324# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 325# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
326# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
327# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
328#ifdef CONFIG_PPC
329# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
330#else
331# define VM_PKEY_BIT4 0
8f62c883 332#endif
5212213a
RP
333#endif /* CONFIG_ARCH_HAS_PKEYS */
334
335#if defined(CONFIG_X86)
336# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
337#elif defined(CONFIG_PPC)
338# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
339#elif defined(CONFIG_PARISC)
340# define VM_GROWSUP VM_ARCH_1
341#elif defined(CONFIG_IA64)
342# define VM_GROWSUP VM_ARCH_1
74a04967
KA
343#elif defined(CONFIG_SPARC64)
344# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
345# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
346#elif defined(CONFIG_ARM64)
347# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
348# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
349#elif !defined(CONFIG_MMU)
350# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
351#endif
352
9f341931
CM
353#if defined(CONFIG_ARM64_MTE)
354# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
355# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
356#else
357# define VM_MTE VM_NONE
358# define VM_MTE_ALLOWED VM_NONE
359#endif
360
cc2383ec
KK
361#ifndef VM_GROWSUP
362# define VM_GROWSUP VM_NONE
363#endif
364
a8bef8ff
MG
365/* Bits set in the VMA until the stack is in its final location */
366#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
367
c62da0c3
AK
368#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
369
370/* Common data flag combinations */
371#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
372 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
373#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
374 VM_MAYWRITE | VM_MAYEXEC)
375#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
376 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
377
378#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
379#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
380#endif
381
1da177e4
LT
382#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
383#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
384#endif
385
386#ifdef CONFIG_STACK_GROWSUP
30bdbb78 387#define VM_STACK VM_GROWSUP
1da177e4 388#else
30bdbb78 389#define VM_STACK VM_GROWSDOWN
1da177e4
LT
390#endif
391
30bdbb78
KK
392#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
393
6cb4d9a2
AK
394/* VMA basic access permission flags */
395#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
396
397
b291f000 398/*
78f11a25 399 * Special vmas that are non-mergable, non-mlock()able.
b291f000 400 */
9050d7eb 401#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 402
b4443772
AK
403/* This mask prevents VMA from being scanned with khugepaged */
404#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
405
a0715cc2
AT
406/* This mask defines which mm->def_flags a process can inherit its parent */
407#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
408
de60f5f1
EM
409/* This mask is used to clear all the VMA flags used by mlock */
410#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
411
2c2d57b5
KA
412/* Arch-specific flags to clear when updating VM flags on protection change */
413#ifndef VM_ARCH_CLEAR
414# define VM_ARCH_CLEAR VM_NONE
415#endif
416#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
417
1da177e4
LT
418/*
419 * mapping from the currently active vm_flags protection bits (the
420 * low four bits) to a page protection mask..
421 */
422extern pgprot_t protection_map[16];
423
c270a7ee
PX
424/**
425 * Fault flag definitions.
426 *
427 * @FAULT_FLAG_WRITE: Fault was a write fault.
428 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
429 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
c1e8d7c6 430 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
c270a7ee
PX
431 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
432 * @FAULT_FLAG_TRIED: The fault has been tried once.
433 * @FAULT_FLAG_USER: The fault originated in userspace.
434 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
435 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
436 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
437 *
438 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
439 * whether we would allow page faults to retry by specifying these two
440 * fault flags correctly. Currently there can be three legal combinations:
441 *
442 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
443 * this is the first try
444 *
445 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
446 * we've already tried at least once
447 *
448 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
449 *
450 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
451 * be used. Note that page faults can be allowed to retry for multiple times,
452 * in which case we'll have an initial fault with flags (a) then later on
453 * continuous faults with flags (b). We should always try to detect pending
454 * signals before a retry to make sure the continuous page faults can still be
455 * interrupted if necessary.
c270a7ee
PX
456 */
457#define FAULT_FLAG_WRITE 0x01
458#define FAULT_FLAG_MKWRITE 0x02
459#define FAULT_FLAG_ALLOW_RETRY 0x04
460#define FAULT_FLAG_RETRY_NOWAIT 0x08
461#define FAULT_FLAG_KILLABLE 0x10
462#define FAULT_FLAG_TRIED 0x20
463#define FAULT_FLAG_USER 0x40
464#define FAULT_FLAG_REMOTE 0x80
465#define FAULT_FLAG_INSTRUCTION 0x100
466#define FAULT_FLAG_INTERRUPTIBLE 0x200
d0217ac0 467
dde16072
PX
468/*
469 * The default fault flags that should be used by most of the
470 * arch-specific page fault handlers.
471 */
472#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
473 FAULT_FLAG_KILLABLE | \
474 FAULT_FLAG_INTERRUPTIBLE)
dde16072 475
4064b982
PX
476/**
477 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
478 *
479 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 480 * the mmap_lock for too long a time when waiting for another condition
4064b982 481 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
482 * mmap_lock in the first round to avoid potential starvation of other
483 * processes that would also want the mmap_lock.
4064b982
PX
484 *
485 * Return: true if the page fault allows retry and this is the first
486 * attempt of the fault handling; false otherwise.
487 */
488static inline bool fault_flag_allow_retry_first(unsigned int flags)
489{
490 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
491 (!(flags & FAULT_FLAG_TRIED));
492}
493
282a8e03
RZ
494#define FAULT_FLAG_TRACE \
495 { FAULT_FLAG_WRITE, "WRITE" }, \
496 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
497 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
498 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
499 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
500 { FAULT_FLAG_TRIED, "TRIED" }, \
501 { FAULT_FLAG_USER, "USER" }, \
502 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
503 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
504 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 505
54cb8821 506/*
11192337 507 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
508 * ->fault function. The vma's ->fault is responsible for returning a bitmask
509 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 510 *
c20cd45e
MH
511 * MM layer fills up gfp_mask for page allocations but fault handler might
512 * alter it if its implementation requires a different allocation context.
513 *
9b4bdd2f 514 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 515 */
d0217ac0 516struct vm_fault {
5857c920 517 const struct {
742d3372
WD
518 struct vm_area_struct *vma; /* Target VMA */
519 gfp_t gfp_mask; /* gfp mask to be used for allocations */
520 pgoff_t pgoff; /* Logical page offset based on vma */
521 unsigned long address; /* Faulting virtual address */
522 };
523 unsigned int flags; /* FAULT_FLAG_xxx flags
524 * XXX: should really be 'const' */
82b0f8c3 525 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 526 * the 'address' */
a2d58167
DJ
527 pud_t *pud; /* Pointer to pud entry matching
528 * the 'address'
529 */
2994302b 530 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 531
3917048d 532 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 533 struct page *page; /* ->fault handlers should return a
83c54070 534 * page here, unless VM_FAULT_NOPAGE
d0217ac0 535 * is set (which is also implied by
83c54070 536 * VM_FAULT_ERROR).
d0217ac0 537 */
82b0f8c3 538 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
539 pte_t *pte; /* Pointer to pte entry matching
540 * the 'address'. NULL if the page
541 * table hasn't been allocated.
542 */
543 spinlock_t *ptl; /* Page table lock.
544 * Protects pte page table if 'pte'
545 * is not NULL, otherwise pmd.
546 */
7267ec00 547 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
548 * vm_ops->map_pages() sets up a page
549 * table from atomic context.
7267ec00
KS
550 * do_fault_around() pre-allocates
551 * page table to avoid allocation from
552 * atomic context.
553 */
54cb8821 554};
1da177e4 555
c791ace1
DJ
556/* page entry size for vm->huge_fault() */
557enum page_entry_size {
558 PE_SIZE_PTE = 0,
559 PE_SIZE_PMD,
560 PE_SIZE_PUD,
561};
562
1da177e4
LT
563/*
564 * These are the virtual MM functions - opening of an area, closing and
565 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 566 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
567 */
568struct vm_operations_struct {
569 void (*open)(struct vm_area_struct * area);
570 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
571 /* Called any time before splitting to check if it's allowed */
572 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
cd544fd1 573 int (*mremap)(struct vm_area_struct *area, unsigned long flags);
95bb7c42
SC
574 /*
575 * Called by mprotect() to make driver-specific permission
576 * checks before mprotect() is finalised. The VMA must not
577 * be modified. Returns 0 if eprotect() can proceed.
578 */
579 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
580 unsigned long end, unsigned long newflags);
1c8f4220
SJ
581 vm_fault_t (*fault)(struct vm_fault *vmf);
582 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
583 enum page_entry_size pe_size);
f9ce0be7 584 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 585 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 586 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
587
588 /* notification that a previously read-only page is about to become
589 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 590 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 591
dd906184 592 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 593 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 594
28b2ee20 595 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
596 * for use by special VMAs. See also generic_access_phys() for a generic
597 * implementation useful for any iomem mapping.
28b2ee20
RR
598 */
599 int (*access)(struct vm_area_struct *vma, unsigned long addr,
600 void *buf, int len, int write);
78d683e8
AL
601
602 /* Called by the /proc/PID/maps code to ask the vma whether it
603 * has a special name. Returning non-NULL will also cause this
604 * vma to be dumped unconditionally. */
605 const char *(*name)(struct vm_area_struct *vma);
606
1da177e4 607#ifdef CONFIG_NUMA
a6020ed7
LS
608 /*
609 * set_policy() op must add a reference to any non-NULL @new mempolicy
610 * to hold the policy upon return. Caller should pass NULL @new to
611 * remove a policy and fall back to surrounding context--i.e. do not
612 * install a MPOL_DEFAULT policy, nor the task or system default
613 * mempolicy.
614 */
1da177e4 615 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
616
617 /*
618 * get_policy() op must add reference [mpol_get()] to any policy at
619 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
620 * in mm/mempolicy.c will do this automatically.
621 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 622 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
623 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
624 * must return NULL--i.e., do not "fallback" to task or system default
625 * policy.
626 */
1da177e4
LT
627 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
628 unsigned long addr);
629#endif
667a0a06
DV
630 /*
631 * Called by vm_normal_page() for special PTEs to find the
632 * page for @addr. This is useful if the default behavior
633 * (using pte_page()) would not find the correct page.
634 */
635 struct page *(*find_special_page)(struct vm_area_struct *vma,
636 unsigned long addr);
1da177e4
LT
637};
638
027232da
KS
639static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
640{
bfd40eaf
KS
641 static const struct vm_operations_struct dummy_vm_ops = {};
642
a670468f 643 memset(vma, 0, sizeof(*vma));
027232da 644 vma->vm_mm = mm;
bfd40eaf 645 vma->vm_ops = &dummy_vm_ops;
027232da
KS
646 INIT_LIST_HEAD(&vma->anon_vma_chain);
647}
648
bfd40eaf
KS
649static inline void vma_set_anonymous(struct vm_area_struct *vma)
650{
651 vma->vm_ops = NULL;
652}
653
43675e6f
YS
654static inline bool vma_is_anonymous(struct vm_area_struct *vma)
655{
656 return !vma->vm_ops;
657}
658
222100ee
AK
659static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
660{
661 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
662
663 if (!maybe_stack)
664 return false;
665
666 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
667 VM_STACK_INCOMPLETE_SETUP)
668 return true;
669
670 return false;
671}
672
7969f226
AK
673static inline bool vma_is_foreign(struct vm_area_struct *vma)
674{
675 if (!current->mm)
676 return true;
677
678 if (current->mm != vma->vm_mm)
679 return true;
680
681 return false;
682}
3122e80e
AK
683
684static inline bool vma_is_accessible(struct vm_area_struct *vma)
685{
6cb4d9a2 686 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
687}
688
43675e6f
YS
689#ifdef CONFIG_SHMEM
690/*
691 * The vma_is_shmem is not inline because it is used only by slow
692 * paths in userfault.
693 */
694bool vma_is_shmem(struct vm_area_struct *vma);
695#else
696static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
697#endif
698
699int vma_is_stack_for_current(struct vm_area_struct *vma);
700
8b11ec1b
LT
701/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
702#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
703
1da177e4
LT
704struct mmu_gather;
705struct inode;
706
71e3aac0 707#include <linux/huge_mm.h>
1da177e4
LT
708
709/*
710 * Methods to modify the page usage count.
711 *
712 * What counts for a page usage:
713 * - cache mapping (page->mapping)
714 * - private data (page->private)
715 * - page mapped in a task's page tables, each mapping
716 * is counted separately
717 *
718 * Also, many kernel routines increase the page count before a critical
719 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
720 */
721
722/*
da6052f7 723 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 724 */
7c8ee9a8
NP
725static inline int put_page_testzero(struct page *page)
726{
fe896d18
JK
727 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
728 return page_ref_dec_and_test(page);
7c8ee9a8 729}
1da177e4
LT
730
731/*
7c8ee9a8
NP
732 * Try to grab a ref unless the page has a refcount of zero, return false if
733 * that is the case.
8e0861fa
AK
734 * This can be called when MMU is off so it must not access
735 * any of the virtual mappings.
1da177e4 736 */
7c8ee9a8
NP
737static inline int get_page_unless_zero(struct page *page)
738{
fe896d18 739 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 740}
1da177e4 741
53df8fdc 742extern int page_is_ram(unsigned long pfn);
124fe20d
DW
743
744enum {
745 REGION_INTERSECTS,
746 REGION_DISJOINT,
747 REGION_MIXED,
748};
749
1c29f25b
TK
750int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
751 unsigned long desc);
53df8fdc 752
48667e7a 753/* Support for virtually mapped pages */
b3bdda02
CL
754struct page *vmalloc_to_page(const void *addr);
755unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 756
0738c4bb
PM
757/*
758 * Determine if an address is within the vmalloc range
759 *
760 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
761 * is no special casing required.
762 */
9bd3bb67
AK
763
764#ifndef is_ioremap_addr
765#define is_ioremap_addr(x) is_vmalloc_addr(x)
766#endif
767
81ac3ad9 768#ifdef CONFIG_MMU
186525bd 769extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
770extern int is_vmalloc_or_module_addr(const void *x);
771#else
186525bd
IM
772static inline bool is_vmalloc_addr(const void *x)
773{
774 return false;
775}
934831d0 776static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
777{
778 return 0;
779}
780#endif
9e2779fa 781
a7c3e901
MH
782extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
783static inline void *kvmalloc(size_t size, gfp_t flags)
784{
785 return kvmalloc_node(size, flags, NUMA_NO_NODE);
786}
787static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
788{
789 return kvmalloc_node(size, flags | __GFP_ZERO, node);
790}
791static inline void *kvzalloc(size_t size, gfp_t flags)
792{
793 return kvmalloc(size, flags | __GFP_ZERO);
794}
795
752ade68
MH
796static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
797{
3b3b1a29
KC
798 size_t bytes;
799
800 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
801 return NULL;
802
3b3b1a29 803 return kvmalloc(bytes, flags);
752ade68
MH
804}
805
1c542f38
KC
806static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
807{
808 return kvmalloc_array(n, size, flags | __GFP_ZERO);
809}
810
39f1f78d 811extern void kvfree(const void *addr);
d4eaa283 812extern void kvfree_sensitive(const void *addr, size_t len);
39f1f78d 813
bac3cf4d 814static inline int head_compound_mapcount(struct page *head)
6dc5ea16
JH
815{
816 return atomic_read(compound_mapcount_ptr(head)) + 1;
817}
818
6988f31d
KK
819/*
820 * Mapcount of compound page as a whole, does not include mapped sub-pages.
821 *
822 * Must be called only for compound pages or any their tail sub-pages.
823 */
53f9263b
KS
824static inline int compound_mapcount(struct page *page)
825{
5f527c2b 826 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 827 page = compound_head(page);
bac3cf4d 828 return head_compound_mapcount(page);
53f9263b
KS
829}
830
70b50f94
AA
831/*
832 * The atomic page->_mapcount, starts from -1: so that transitions
833 * both from it and to it can be tracked, using atomic_inc_and_test
834 * and atomic_add_negative(-1).
835 */
22b751c3 836static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
837{
838 atomic_set(&(page)->_mapcount, -1);
839}
840
b20ce5e0
KS
841int __page_mapcount(struct page *page);
842
6988f31d
KK
843/*
844 * Mapcount of 0-order page; when compound sub-page, includes
845 * compound_mapcount().
846 *
847 * Result is undefined for pages which cannot be mapped into userspace.
848 * For example SLAB or special types of pages. See function page_has_type().
849 * They use this place in struct page differently.
850 */
70b50f94
AA
851static inline int page_mapcount(struct page *page)
852{
b20ce5e0
KS
853 if (unlikely(PageCompound(page)))
854 return __page_mapcount(page);
855 return atomic_read(&page->_mapcount) + 1;
856}
857
858#ifdef CONFIG_TRANSPARENT_HUGEPAGE
859int total_mapcount(struct page *page);
6d0a07ed 860int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
861#else
862static inline int total_mapcount(struct page *page)
863{
864 return page_mapcount(page);
70b50f94 865}
6d0a07ed
AA
866static inline int page_trans_huge_mapcount(struct page *page,
867 int *total_mapcount)
868{
869 int mapcount = page_mapcount(page);
870 if (total_mapcount)
871 *total_mapcount = mapcount;
872 return mapcount;
873}
b20ce5e0 874#endif
70b50f94 875
b49af68f
CL
876static inline struct page *virt_to_head_page(const void *x)
877{
878 struct page *page = virt_to_page(x);
ccaafd7f 879
1d798ca3 880 return compound_head(page);
b49af68f
CL
881}
882
ddc58f27
KS
883void __put_page(struct page *page);
884
1d7ea732 885void put_pages_list(struct list_head *pages);
1da177e4 886
8dfcc9ba 887void split_page(struct page *page, unsigned int order);
8dfcc9ba 888
33f2ef89
AW
889/*
890 * Compound pages have a destructor function. Provide a
891 * prototype for that function and accessor functions.
f1e61557 892 * These are _only_ valid on the head of a compound page.
33f2ef89 893 */
f1e61557
KS
894typedef void compound_page_dtor(struct page *);
895
896/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
897enum compound_dtor_id {
898 NULL_COMPOUND_DTOR,
899 COMPOUND_PAGE_DTOR,
900#ifdef CONFIG_HUGETLB_PAGE
901 HUGETLB_PAGE_DTOR,
9a982250
KS
902#endif
903#ifdef CONFIG_TRANSPARENT_HUGEPAGE
904 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
905#endif
906 NR_COMPOUND_DTORS,
907};
ae70eddd 908extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
909
910static inline void set_compound_page_dtor(struct page *page,
f1e61557 911 enum compound_dtor_id compound_dtor)
33f2ef89 912{
f1e61557
KS
913 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
914 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
915}
916
ff45fc3c 917static inline void destroy_compound_page(struct page *page)
33f2ef89 918{
f1e61557 919 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 920 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
921}
922
d00181b9 923static inline unsigned int compound_order(struct page *page)
d85f3385 924{
6d777953 925 if (!PageHead(page))
d85f3385 926 return 0;
e4b294c2 927 return page[1].compound_order;
d85f3385
CL
928}
929
47e29d32
JH
930static inline bool hpage_pincount_available(struct page *page)
931{
932 /*
933 * Can the page->hpage_pinned_refcount field be used? That field is in
934 * the 3rd page of the compound page, so the smallest (2-page) compound
935 * pages cannot support it.
936 */
937 page = compound_head(page);
938 return PageCompound(page) && compound_order(page) > 1;
939}
940
bac3cf4d 941static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
942{
943 return atomic_read(compound_pincount_ptr(head));
944}
945
47e29d32
JH
946static inline int compound_pincount(struct page *page)
947{
948 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
949 page = compound_head(page);
bac3cf4d 950 return head_compound_pincount(page);
47e29d32
JH
951}
952
f1e61557 953static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 954{
e4b294c2 955 page[1].compound_order = order;
1378a5ee 956 page[1].compound_nr = 1U << order;
d85f3385
CL
957}
958
d8c6546b
MWO
959/* Returns the number of pages in this potentially compound page. */
960static inline unsigned long compound_nr(struct page *page)
961{
1378a5ee
MWO
962 if (!PageHead(page))
963 return 1;
964 return page[1].compound_nr;
d8c6546b
MWO
965}
966
a50b854e
MWO
967/* Returns the number of bytes in this potentially compound page. */
968static inline unsigned long page_size(struct page *page)
969{
970 return PAGE_SIZE << compound_order(page);
971}
972
94ad9338
MWO
973/* Returns the number of bits needed for the number of bytes in a page */
974static inline unsigned int page_shift(struct page *page)
975{
976 return PAGE_SHIFT + compound_order(page);
977}
978
9a982250
KS
979void free_compound_page(struct page *page);
980
3dece370 981#ifdef CONFIG_MMU
14fd403f
AA
982/*
983 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
984 * servicing faults for write access. In the normal case, do always want
985 * pte_mkwrite. But get_user_pages can cause write faults for mappings
986 * that do not have writing enabled, when used by access_process_vm.
987 */
988static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
989{
990 if (likely(vma->vm_flags & VM_WRITE))
991 pte = pte_mkwrite(pte);
992 return pte;
993}
8c6e50b0 994
f9ce0be7 995vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 996void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 997
2b740303
SJ
998vm_fault_t finish_fault(struct vm_fault *vmf);
999vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1000#endif
14fd403f 1001
1da177e4
LT
1002/*
1003 * Multiple processes may "see" the same page. E.g. for untouched
1004 * mappings of /dev/null, all processes see the same page full of
1005 * zeroes, and text pages of executables and shared libraries have
1006 * only one copy in memory, at most, normally.
1007 *
1008 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1009 * page_count() == 0 means the page is free. page->lru is then used for
1010 * freelist management in the buddy allocator.
da6052f7 1011 * page_count() > 0 means the page has been allocated.
1da177e4 1012 *
da6052f7
NP
1013 * Pages are allocated by the slab allocator in order to provide memory
1014 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1015 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1016 * unless a particular usage is carefully commented. (the responsibility of
1017 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1018 *
da6052f7
NP
1019 * A page may be used by anyone else who does a __get_free_page().
1020 * In this case, page_count still tracks the references, and should only
1021 * be used through the normal accessor functions. The top bits of page->flags
1022 * and page->virtual store page management information, but all other fields
1023 * are unused and could be used privately, carefully. The management of this
1024 * page is the responsibility of the one who allocated it, and those who have
1025 * subsequently been given references to it.
1026 *
1027 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1028 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1029 * The following discussion applies only to them.
1030 *
da6052f7
NP
1031 * A pagecache page contains an opaque `private' member, which belongs to the
1032 * page's address_space. Usually, this is the address of a circular list of
1033 * the page's disk buffers. PG_private must be set to tell the VM to call
1034 * into the filesystem to release these pages.
1da177e4 1035 *
da6052f7
NP
1036 * A page may belong to an inode's memory mapping. In this case, page->mapping
1037 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1038 * in units of PAGE_SIZE.
1da177e4 1039 *
da6052f7
NP
1040 * If pagecache pages are not associated with an inode, they are said to be
1041 * anonymous pages. These may become associated with the swapcache, and in that
1042 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1043 *
da6052f7
NP
1044 * In either case (swapcache or inode backed), the pagecache itself holds one
1045 * reference to the page. Setting PG_private should also increment the
1046 * refcount. The each user mapping also has a reference to the page.
1da177e4 1047 *
da6052f7 1048 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1049 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1050 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1051 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1052 *
da6052f7 1053 * All pagecache pages may be subject to I/O:
1da177e4
LT
1054 * - inode pages may need to be read from disk,
1055 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1056 * to be written back to the inode on disk,
1057 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1058 * modified may need to be swapped out to swap space and (later) to be read
1059 * back into memory.
1da177e4
LT
1060 */
1061
1062/*
1063 * The zone field is never updated after free_area_init_core()
1064 * sets it, so none of the operations on it need to be atomic.
1da177e4 1065 */
348f8b6c 1066
90572890 1067/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1068#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1069#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1070#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1071#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1072#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1073
348f8b6c 1074/*
25985edc 1075 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1076 * sections we define the shift as 0; that plus a 0 mask ensures
1077 * the compiler will optimise away reference to them.
1078 */
d41dee36
AW
1079#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1080#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1081#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1082#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1083#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1084
bce54bbf
WD
1085/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1086#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1087#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1088#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1089 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1090#else
89689ae7 1091#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1092#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1093 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1094#endif
1095
bd8029b6 1096#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1097
d41dee36
AW
1098#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1099#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1100#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1101#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1102#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1103#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1104
33dd4e0e 1105static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1106{
c403f6a3 1107 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1108 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1109}
1da177e4 1110
260ae3f7
DW
1111#ifdef CONFIG_ZONE_DEVICE
1112static inline bool is_zone_device_page(const struct page *page)
1113{
1114 return page_zonenum(page) == ZONE_DEVICE;
1115}
966cf44f
AD
1116extern void memmap_init_zone_device(struct zone *, unsigned long,
1117 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1118#else
1119static inline bool is_zone_device_page(const struct page *page)
1120{
1121 return false;
1122}
7b2d55d2 1123#endif
5042db43 1124
e7638488 1125#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1126void free_devmap_managed_page(struct page *page);
e7638488 1127DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1128
1129static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1130{
1131 if (!static_branch_unlikely(&devmap_managed_key))
1132 return false;
1133 if (!is_zone_device_page(page))
1134 return false;
1135 switch (page->pgmap->type) {
1136 case MEMORY_DEVICE_PRIVATE:
e7638488 1137 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1138 return true;
1139 default:
1140 break;
1141 }
1142 return false;
1143}
1144
07d80269
JH
1145void put_devmap_managed_page(struct page *page);
1146
e7638488 1147#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1148static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1149{
1150 return false;
1151}
07d80269
JH
1152
1153static inline void put_devmap_managed_page(struct page *page)
1154{
1155}
7588adf8 1156#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1157
6b368cd4
JG
1158static inline bool is_device_private_page(const struct page *page)
1159{
7588adf8
RM
1160 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1161 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1162 is_zone_device_page(page) &&
1163 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1164}
e7638488 1165
52916982
LG
1166static inline bool is_pci_p2pdma_page(const struct page *page)
1167{
7588adf8
RM
1168 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1169 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1170 is_zone_device_page(page) &&
1171 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1172}
7b2d55d2 1173
f958d7b5
LT
1174/* 127: arbitrary random number, small enough to assemble well */
1175#define page_ref_zero_or_close_to_overflow(page) \
1176 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1177
3565fce3
DW
1178static inline void get_page(struct page *page)
1179{
1180 page = compound_head(page);
1181 /*
1182 * Getting a normal page or the head of a compound page
0139aa7b 1183 * requires to already have an elevated page->_refcount.
3565fce3 1184 */
f958d7b5 1185 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1186 page_ref_inc(page);
3565fce3
DW
1187}
1188
3faa52c0
JH
1189bool __must_check try_grab_page(struct page *page, unsigned int flags);
1190
88b1a17d
LT
1191static inline __must_check bool try_get_page(struct page *page)
1192{
1193 page = compound_head(page);
1194 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1195 return false;
fe896d18 1196 page_ref_inc(page);
88b1a17d 1197 return true;
3565fce3
DW
1198}
1199
1200static inline void put_page(struct page *page)
1201{
1202 page = compound_head(page);
1203
7b2d55d2 1204 /*
e7638488
DW
1205 * For devmap managed pages we need to catch refcount transition from
1206 * 2 to 1, when refcount reach one it means the page is free and we
1207 * need to inform the device driver through callback. See
7b2d55d2
JG
1208 * include/linux/memremap.h and HMM for details.
1209 */
07d80269
JH
1210 if (page_is_devmap_managed(page)) {
1211 put_devmap_managed_page(page);
7b2d55d2 1212 return;
07d80269 1213 }
7b2d55d2 1214
3565fce3
DW
1215 if (put_page_testzero(page))
1216 __put_page(page);
3565fce3
DW
1217}
1218
3faa52c0
JH
1219/*
1220 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1221 * the page's refcount so that two separate items are tracked: the original page
1222 * reference count, and also a new count of how many pin_user_pages() calls were
1223 * made against the page. ("gup-pinned" is another term for the latter).
1224 *
1225 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1226 * distinct from normal pages. As such, the unpin_user_page() call (and its
1227 * variants) must be used in order to release gup-pinned pages.
1228 *
1229 * Choice of value:
1230 *
1231 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1232 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1233 * simpler, due to the fact that adding an even power of two to the page
1234 * refcount has the effect of using only the upper N bits, for the code that
1235 * counts up using the bias value. This means that the lower bits are left for
1236 * the exclusive use of the original code that increments and decrements by one
1237 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1238 *
3faa52c0
JH
1239 * Of course, once the lower bits overflow into the upper bits (and this is
1240 * OK, because subtraction recovers the original values), then visual inspection
1241 * no longer suffices to directly view the separate counts. However, for normal
1242 * applications that don't have huge page reference counts, this won't be an
1243 * issue.
fc1d8e7c 1244 *
3faa52c0
JH
1245 * Locking: the lockless algorithm described in page_cache_get_speculative()
1246 * and page_cache_gup_pin_speculative() provides safe operation for
1247 * get_user_pages and page_mkclean and other calls that race to set up page
1248 * table entries.
fc1d8e7c 1249 */
3faa52c0 1250#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1251
3faa52c0 1252void unpin_user_page(struct page *page);
f1f6a7dd
JH
1253void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1254 bool make_dirty);
f1f6a7dd 1255void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1256
3faa52c0
JH
1257/**
1258 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1259 *
1260 * This function checks if a page has been pinned via a call to
1261 * pin_user_pages*().
1262 *
1263 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1264 * because it means "definitely not pinned for DMA", but true means "probably
1265 * pinned for DMA, but possibly a false positive due to having at least
1266 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1267 *
1268 * False positives are OK, because: a) it's unlikely for a page to get that many
1269 * refcounts, and b) all the callers of this routine are expected to be able to
1270 * deal gracefully with a false positive.
1271 *
47e29d32
JH
1272 * For huge pages, the result will be exactly correct. That's because we have
1273 * more tracking data available: the 3rd struct page in the compound page is
1274 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1275 * scheme).
1276 *
72ef5e52 1277 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0
JH
1278 *
1279 * @page: pointer to page to be queried.
1280 * @Return: True, if it is likely that the page has been "dma-pinned".
1281 * False, if the page is definitely not dma-pinned.
1282 */
1283static inline bool page_maybe_dma_pinned(struct page *page)
1284{
47e29d32
JH
1285 if (hpage_pincount_available(page))
1286 return compound_pincount(page) > 0;
1287
3faa52c0
JH
1288 /*
1289 * page_ref_count() is signed. If that refcount overflows, then
1290 * page_ref_count() returns a negative value, and callers will avoid
1291 * further incrementing the refcount.
1292 *
1293 * Here, for that overflow case, use the signed bit to count a little
1294 * bit higher via unsigned math, and thus still get an accurate result.
1295 */
1296 return ((unsigned int)page_ref_count(compound_head(page))) >=
1297 GUP_PIN_COUNTING_BIAS;
1298}
1299
9127ab4f
CS
1300#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1301#define SECTION_IN_PAGE_FLAGS
1302#endif
1303
89689ae7 1304/*
7a8010cd
VB
1305 * The identification function is mainly used by the buddy allocator for
1306 * determining if two pages could be buddies. We are not really identifying
1307 * the zone since we could be using the section number id if we do not have
1308 * node id available in page flags.
1309 * We only guarantee that it will return the same value for two combinable
1310 * pages in a zone.
89689ae7 1311 */
cb2b95e1
AW
1312static inline int page_zone_id(struct page *page)
1313{
89689ae7 1314 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1315}
1316
89689ae7 1317#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1318extern int page_to_nid(const struct page *page);
89689ae7 1319#else
33dd4e0e 1320static inline int page_to_nid(const struct page *page)
d41dee36 1321{
f165b378
PT
1322 struct page *p = (struct page *)page;
1323
1324 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1325}
89689ae7
CL
1326#endif
1327
57e0a030 1328#ifdef CONFIG_NUMA_BALANCING
90572890 1329static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1330{
90572890 1331 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1332}
1333
90572890 1334static inline int cpupid_to_pid(int cpupid)
57e0a030 1335{
90572890 1336 return cpupid & LAST__PID_MASK;
57e0a030 1337}
b795854b 1338
90572890 1339static inline int cpupid_to_cpu(int cpupid)
b795854b 1340{
90572890 1341 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1342}
1343
90572890 1344static inline int cpupid_to_nid(int cpupid)
b795854b 1345{
90572890 1346 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1347}
1348
90572890 1349static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1350{
90572890 1351 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1352}
1353
90572890 1354static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1355{
90572890 1356 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1357}
1358
8c8a743c
PZ
1359static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1360{
1361 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1362}
1363
1364#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1365#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1366static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1367{
1ae71d03 1368 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1369}
90572890
PZ
1370
1371static inline int page_cpupid_last(struct page *page)
1372{
1373 return page->_last_cpupid;
1374}
1375static inline void page_cpupid_reset_last(struct page *page)
b795854b 1376{
1ae71d03 1377 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1378}
1379#else
90572890 1380static inline int page_cpupid_last(struct page *page)
75980e97 1381{
90572890 1382 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1383}
1384
90572890 1385extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1386
90572890 1387static inline void page_cpupid_reset_last(struct page *page)
75980e97 1388{
09940a4f 1389 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1390}
90572890
PZ
1391#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1392#else /* !CONFIG_NUMA_BALANCING */
1393static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1394{
90572890 1395 return page_to_nid(page); /* XXX */
57e0a030
MG
1396}
1397
90572890 1398static inline int page_cpupid_last(struct page *page)
57e0a030 1399{
90572890 1400 return page_to_nid(page); /* XXX */
57e0a030
MG
1401}
1402
90572890 1403static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1404{
1405 return -1;
1406}
1407
90572890 1408static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1409{
1410 return -1;
1411}
1412
90572890 1413static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1414{
1415 return -1;
1416}
1417
90572890
PZ
1418static inline int cpu_pid_to_cpupid(int nid, int pid)
1419{
1420 return -1;
1421}
1422
1423static inline bool cpupid_pid_unset(int cpupid)
b795854b 1424{
2b787449 1425 return true;
b795854b
MG
1426}
1427
90572890 1428static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1429{
1430}
8c8a743c
PZ
1431
1432static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1433{
1434 return false;
1435}
90572890 1436#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1437
2e903b91 1438#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1439
2813b9c0
AK
1440static inline u8 page_kasan_tag(const struct page *page)
1441{
34303244
AK
1442 if (kasan_enabled())
1443 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1444 return 0xff;
2813b9c0
AK
1445}
1446
1447static inline void page_kasan_tag_set(struct page *page, u8 tag)
1448{
34303244
AK
1449 if (kasan_enabled()) {
1450 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1451 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1452 }
2813b9c0
AK
1453}
1454
1455static inline void page_kasan_tag_reset(struct page *page)
1456{
34303244
AK
1457 if (kasan_enabled())
1458 page_kasan_tag_set(page, 0xff);
2813b9c0 1459}
34303244
AK
1460
1461#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1462
2813b9c0
AK
1463static inline u8 page_kasan_tag(const struct page *page)
1464{
1465 return 0xff;
1466}
1467
1468static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1469static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1470
1471#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1472
33dd4e0e 1473static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1474{
1475 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1476}
1477
75ef7184
MG
1478static inline pg_data_t *page_pgdat(const struct page *page)
1479{
1480 return NODE_DATA(page_to_nid(page));
1481}
1482
9127ab4f 1483#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1484static inline void set_page_section(struct page *page, unsigned long section)
1485{
1486 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1487 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1488}
1489
aa462abe 1490static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1491{
1492 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1493}
308c05e3 1494#endif
d41dee36 1495
2f1b6248 1496static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1497{
1498 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1499 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1500}
2f1b6248 1501
348f8b6c
DH
1502static inline void set_page_node(struct page *page, unsigned long node)
1503{
1504 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1505 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1506}
89689ae7 1507
2f1b6248 1508static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1509 unsigned long node, unsigned long pfn)
1da177e4 1510{
348f8b6c
DH
1511 set_page_zone(page, zone);
1512 set_page_node(page, node);
9127ab4f 1513#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1514 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1515#endif
1da177e4
LT
1516}
1517
f6ac2354
CL
1518/*
1519 * Some inline functions in vmstat.h depend on page_zone()
1520 */
1521#include <linux/vmstat.h>
1522
33dd4e0e 1523static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1524{
1dff8083 1525 return page_to_virt(page);
1da177e4
LT
1526}
1527
1528#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1529#define HASHED_PAGE_VIRTUAL
1530#endif
1531
1532#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1533static inline void *page_address(const struct page *page)
1534{
1535 return page->virtual;
1536}
1537static inline void set_page_address(struct page *page, void *address)
1538{
1539 page->virtual = address;
1540}
1da177e4
LT
1541#define page_address_init() do { } while(0)
1542#endif
1543
1544#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1545void *page_address(const struct page *page);
1da177e4
LT
1546void set_page_address(struct page *page, void *virtual);
1547void page_address_init(void);
1548#endif
1549
1550#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1551#define page_address(page) lowmem_page_address(page)
1552#define set_page_address(page, address) do { } while(0)
1553#define page_address_init() do { } while(0)
1554#endif
1555
e39155ea
KS
1556extern void *page_rmapping(struct page *page);
1557extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1558extern struct address_space *page_mapping(struct page *page);
1da177e4 1559
f981c595
MG
1560extern struct address_space *__page_file_mapping(struct page *);
1561
1562static inline
1563struct address_space *page_file_mapping(struct page *page)
1564{
1565 if (unlikely(PageSwapCache(page)))
1566 return __page_file_mapping(page);
1567
1568 return page->mapping;
1569}
1570
f6ab1f7f
HY
1571extern pgoff_t __page_file_index(struct page *page);
1572
1da177e4
LT
1573/*
1574 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1575 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1576 */
1577static inline pgoff_t page_index(struct page *page)
1578{
1579 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1580 return __page_file_index(page);
1da177e4
LT
1581 return page->index;
1582}
1583
1aa8aea5 1584bool page_mapped(struct page *page);
bda807d4 1585struct address_space *page_mapping(struct page *page);
cb9f753a 1586struct address_space *page_mapping_file(struct page *page);
1da177e4 1587
2f064f34
MH
1588/*
1589 * Return true only if the page has been allocated with
1590 * ALLOC_NO_WATERMARKS and the low watermark was not
1591 * met implying that the system is under some pressure.
1592 */
1d7bab6a 1593static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1594{
1595 /*
1596 * Page index cannot be this large so this must be
1597 * a pfmemalloc page.
1598 */
1599 return page->index == -1UL;
1600}
1601
1602/*
1603 * Only to be called by the page allocator on a freshly allocated
1604 * page.
1605 */
1606static inline void set_page_pfmemalloc(struct page *page)
1607{
1608 page->index = -1UL;
1609}
1610
1611static inline void clear_page_pfmemalloc(struct page *page)
1612{
1613 page->index = 0;
1614}
1615
1c0fe6e3
NP
1616/*
1617 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1618 */
1619extern void pagefault_out_of_memory(void);
1620
1da177e4 1621#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1622#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1da177e4 1623
ddd588b5 1624/*
7bf02ea2 1625 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1626 * various contexts.
1627 */
4b59e6c4 1628#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1629
9af744d7 1630extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1631
710ec38b 1632#ifdef CONFIG_MMU
7f43add4 1633extern bool can_do_mlock(void);
710ec38b
AB
1634#else
1635static inline bool can_do_mlock(void) { return false; }
1636#endif
1da177e4
LT
1637extern int user_shm_lock(size_t, struct user_struct *);
1638extern void user_shm_unlock(size_t, struct user_struct *);
1639
1640/*
1641 * Parameter block passed down to zap_pte_range in exceptional cases.
1642 */
1643struct zap_details {
1da177e4
LT
1644 struct address_space *check_mapping; /* Check page->mapping if set */
1645 pgoff_t first_index; /* Lowest page->index to unmap */
1646 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1647};
1648
25b2995a
CH
1649struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1650 pte_t pte);
28093f9f
GS
1651struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1652 pmd_t pmd);
7e675137 1653
27d036e3
LR
1654void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1655 unsigned long size);
14f5ff5d 1656void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1657 unsigned long size);
4f74d2c8
LT
1658void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1659 unsigned long start, unsigned long end);
e6473092 1660
ac46d4f3
JG
1661struct mmu_notifier_range;
1662
42b77728 1663void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1664 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1665int
1666copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
9fd6dad1
PB
1667int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1668 struct mmu_notifier_range *range, pte_t **ptepp,
1669 pmd_t **pmdpp, spinlock_t **ptlp);
ff5c19ed 1670int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 1671 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
1672int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1673 unsigned long *pfn);
d87fe660 1674int follow_phys(struct vm_area_struct *vma, unsigned long address,
1675 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1676int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1677 void *buf, int len, int write);
1da177e4 1678
7caef267 1679extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1680extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1681void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1682void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1683int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1684int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1685int invalidate_inode_page(struct page *page);
1686
7ee1dd3f 1687#ifdef CONFIG_MMU
2b740303 1688extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1689 unsigned long address, unsigned int flags,
1690 struct pt_regs *regs);
64019a2e 1691extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1692 unsigned long address, unsigned int fault_flags,
1693 bool *unlocked);
977fbdcd
MW
1694void unmap_mapping_pages(struct address_space *mapping,
1695 pgoff_t start, pgoff_t nr, bool even_cows);
1696void unmap_mapping_range(struct address_space *mapping,
1697 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1698#else
2b740303 1699static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1700 unsigned long address, unsigned int flags,
1701 struct pt_regs *regs)
7ee1dd3f
DH
1702{
1703 /* should never happen if there's no MMU */
1704 BUG();
1705 return VM_FAULT_SIGBUS;
1706}
64019a2e 1707static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1708 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1709{
1710 /* should never happen if there's no MMU */
1711 BUG();
1712 return -EFAULT;
1713}
977fbdcd
MW
1714static inline void unmap_mapping_pages(struct address_space *mapping,
1715 pgoff_t start, pgoff_t nr, bool even_cows) { }
1716static inline void unmap_mapping_range(struct address_space *mapping,
1717 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1718#endif
f33ea7f4 1719
977fbdcd
MW
1720static inline void unmap_shared_mapping_range(struct address_space *mapping,
1721 loff_t const holebegin, loff_t const holelen)
1722{
1723 unmap_mapping_range(mapping, holebegin, holelen, 0);
1724}
1725
1726extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1727 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1728extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1729 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1730extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1731 void *buf, int len, unsigned int gup_flags);
1da177e4 1732
64019a2e 1733long get_user_pages_remote(struct mm_struct *mm,
1e987790 1734 unsigned long start, unsigned long nr_pages,
9beae1ea 1735 unsigned int gup_flags, struct page **pages,
5b56d49f 1736 struct vm_area_struct **vmas, int *locked);
64019a2e 1737long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1738 unsigned long start, unsigned long nr_pages,
1739 unsigned int gup_flags, struct page **pages,
1740 struct vm_area_struct **vmas, int *locked);
c12d2da5 1741long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1742 unsigned int gup_flags, struct page **pages,
cde70140 1743 struct vm_area_struct **vmas);
eddb1c22
JH
1744long pin_user_pages(unsigned long start, unsigned long nr_pages,
1745 unsigned int gup_flags, struct page **pages,
1746 struct vm_area_struct **vmas);
c12d2da5 1747long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1748 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1749long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1750 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1751long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1752 struct page **pages, unsigned int gup_flags);
91429023
JH
1753long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1754 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1755
73b0140b
IW
1756int get_user_pages_fast(unsigned long start, int nr_pages,
1757 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1758int pin_user_pages_fast(unsigned long start, int nr_pages,
1759 unsigned int gup_flags, struct page **pages);
8025e5dd 1760
79eb597c
DJ
1761int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1762int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1763 struct task_struct *task, bool bypass_rlim);
1764
18022c5d
MG
1765struct kvec;
1766int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1767 struct page **pages);
1768int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1769struct page *get_dump_page(unsigned long addr);
1da177e4 1770
cf9a2ae8 1771extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1772extern void do_invalidatepage(struct page *page, unsigned int offset,
1773 unsigned int length);
cf9a2ae8 1774
f82b3764 1775void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1776int __set_page_dirty_nobuffers(struct page *page);
76719325 1777int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1778int redirty_page_for_writepage(struct writeback_control *wbc,
1779 struct page *page);
62cccb8c 1780void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1781void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1782 struct bdi_writeback *wb);
b3c97528 1783int set_page_dirty(struct page *page);
1da177e4 1784int set_page_dirty_lock(struct page *page);
736304f3
JK
1785void __cancel_dirty_page(struct page *page);
1786static inline void cancel_dirty_page(struct page *page)
1787{
1788 /* Avoid atomic ops, locking, etc. when not actually needed. */
1789 if (PageDirty(page))
1790 __cancel_dirty_page(page);
1791}
1da177e4 1792int clear_page_dirty_for_io(struct page *page);
b9ea2515 1793
a9090253 1794int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1795
b6a2fea3
OW
1796extern unsigned long move_page_tables(struct vm_area_struct *vma,
1797 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1798 unsigned long new_addr, unsigned long len,
1799 bool need_rmap_locks);
58705444
PX
1800
1801/*
1802 * Flags used by change_protection(). For now we make it a bitmap so
1803 * that we can pass in multiple flags just like parameters. However
1804 * for now all the callers are only use one of the flags at the same
1805 * time.
1806 */
1807/* Whether we should allow dirty bit accounting */
1808#define MM_CP_DIRTY_ACCT (1UL << 0)
1809/* Whether this protection change is for NUMA hints */
1810#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1811/* Whether this change is for write protecting */
1812#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1813#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1814#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1815 MM_CP_UFFD_WP_RESOLVE)
58705444 1816
7da4d641
PZ
1817extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1818 unsigned long end, pgprot_t newprot,
58705444 1819 unsigned long cp_flags);
b6a2fea3
OW
1820extern int mprotect_fixup(struct vm_area_struct *vma,
1821 struct vm_area_struct **pprev, unsigned long start,
1822 unsigned long end, unsigned long newflags);
1da177e4 1823
465a454f
PZ
1824/*
1825 * doesn't attempt to fault and will return short.
1826 */
dadbb612
SJ
1827int get_user_pages_fast_only(unsigned long start, int nr_pages,
1828 unsigned int gup_flags, struct page **pages);
104acc32
JH
1829int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1830 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1831
1832static inline bool get_user_page_fast_only(unsigned long addr,
1833 unsigned int gup_flags, struct page **pagep)
1834{
1835 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1836}
d559db08
KH
1837/*
1838 * per-process(per-mm_struct) statistics.
1839 */
d559db08
KH
1840static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1841{
69c97823
KK
1842 long val = atomic_long_read(&mm->rss_stat.count[member]);
1843
1844#ifdef SPLIT_RSS_COUNTING
1845 /*
1846 * counter is updated in asynchronous manner and may go to minus.
1847 * But it's never be expected number for users.
1848 */
1849 if (val < 0)
1850 val = 0;
172703b0 1851#endif
69c97823
KK
1852 return (unsigned long)val;
1853}
d559db08 1854
e4dcad20 1855void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1856
d559db08
KH
1857static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1858{
b3d1411b
JFG
1859 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1860
e4dcad20 1861 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1862}
1863
1864static inline void inc_mm_counter(struct mm_struct *mm, int member)
1865{
b3d1411b
JFG
1866 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1867
e4dcad20 1868 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1869}
1870
1871static inline void dec_mm_counter(struct mm_struct *mm, int member)
1872{
b3d1411b
JFG
1873 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1874
e4dcad20 1875 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1876}
1877
eca56ff9
JM
1878/* Optimized variant when page is already known not to be PageAnon */
1879static inline int mm_counter_file(struct page *page)
1880{
1881 if (PageSwapBacked(page))
1882 return MM_SHMEMPAGES;
1883 return MM_FILEPAGES;
1884}
1885
1886static inline int mm_counter(struct page *page)
1887{
1888 if (PageAnon(page))
1889 return MM_ANONPAGES;
1890 return mm_counter_file(page);
1891}
1892
d559db08
KH
1893static inline unsigned long get_mm_rss(struct mm_struct *mm)
1894{
1895 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1896 get_mm_counter(mm, MM_ANONPAGES) +
1897 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1898}
1899
1900static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1901{
1902 return max(mm->hiwater_rss, get_mm_rss(mm));
1903}
1904
1905static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1906{
1907 return max(mm->hiwater_vm, mm->total_vm);
1908}
1909
1910static inline void update_hiwater_rss(struct mm_struct *mm)
1911{
1912 unsigned long _rss = get_mm_rss(mm);
1913
1914 if ((mm)->hiwater_rss < _rss)
1915 (mm)->hiwater_rss = _rss;
1916}
1917
1918static inline void update_hiwater_vm(struct mm_struct *mm)
1919{
1920 if (mm->hiwater_vm < mm->total_vm)
1921 mm->hiwater_vm = mm->total_vm;
1922}
1923
695f0559
PC
1924static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1925{
1926 mm->hiwater_rss = get_mm_rss(mm);
1927}
1928
d559db08
KH
1929static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1930 struct mm_struct *mm)
1931{
1932 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1933
1934 if (*maxrss < hiwater_rss)
1935 *maxrss = hiwater_rss;
1936}
1937
53bddb4e 1938#if defined(SPLIT_RSS_COUNTING)
05af2e10 1939void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1940#else
05af2e10 1941static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1942{
1943}
1944#endif
465a454f 1945
78e7c5af
AK
1946#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1947static inline int pte_special(pte_t pte)
1948{
1949 return 0;
1950}
1951
1952static inline pte_t pte_mkspecial(pte_t pte)
1953{
1954 return pte;
1955}
1956#endif
1957
17596731 1958#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
1959static inline int pte_devmap(pte_t pte)
1960{
1961 return 0;
1962}
1963#endif
1964
6d2329f8 1965int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1966
25ca1d6c
NK
1967extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1968 spinlock_t **ptl);
1969static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1970 spinlock_t **ptl)
1971{
1972 pte_t *ptep;
1973 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1974 return ptep;
1975}
c9cfcddf 1976
c2febafc
KS
1977#ifdef __PAGETABLE_P4D_FOLDED
1978static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1979 unsigned long address)
1980{
1981 return 0;
1982}
1983#else
1984int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1985#endif
1986
b4e98d9a 1987#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1988static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1989 unsigned long address)
1990{
1991 return 0;
1992}
b4e98d9a
KS
1993static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1994static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1995
5f22df00 1996#else
c2febafc 1997int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 1998
b4e98d9a
KS
1999static inline void mm_inc_nr_puds(struct mm_struct *mm)
2000{
6d212db1
MS
2001 if (mm_pud_folded(mm))
2002 return;
af5b0f6a 2003 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2004}
2005
2006static inline void mm_dec_nr_puds(struct mm_struct *mm)
2007{
6d212db1
MS
2008 if (mm_pud_folded(mm))
2009 return;
af5b0f6a 2010 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2011}
5f22df00
NP
2012#endif
2013
2d2f5119 2014#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2015static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2016 unsigned long address)
2017{
2018 return 0;
2019}
dc6c9a35 2020
dc6c9a35
KS
2021static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2022static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2023
5f22df00 2024#else
1bb3630e 2025int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2026
dc6c9a35
KS
2027static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2028{
6d212db1
MS
2029 if (mm_pmd_folded(mm))
2030 return;
af5b0f6a 2031 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2032}
2033
2034static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2035{
6d212db1
MS
2036 if (mm_pmd_folded(mm))
2037 return;
af5b0f6a 2038 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2039}
5f22df00
NP
2040#endif
2041
c4812909 2042#ifdef CONFIG_MMU
af5b0f6a 2043static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2044{
af5b0f6a 2045 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2046}
2047
af5b0f6a 2048static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2049{
af5b0f6a 2050 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2051}
2052
2053static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2054{
af5b0f6a 2055 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2056}
2057
2058static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2059{
af5b0f6a 2060 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2061}
2062#else
c4812909 2063
af5b0f6a
KS
2064static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2065static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2066{
2067 return 0;
2068}
2069
2070static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2071static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2072#endif
2073
4cf58924
JFG
2074int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2075int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2076
f949286c
MR
2077#if defined(CONFIG_MMU)
2078
c2febafc
KS
2079static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2080 unsigned long address)
2081{
2082 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2083 NULL : p4d_offset(pgd, address);
2084}
2085
2086static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2087 unsigned long address)
1da177e4 2088{
c2febafc
KS
2089 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2090 NULL : pud_offset(p4d, address);
1da177e4 2091}
d8626138 2092
1da177e4
LT
2093static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2094{
1bb3630e
HD
2095 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2096 NULL: pmd_offset(pud, address);
1da177e4 2097}
f949286c 2098#endif /* CONFIG_MMU */
1bb3630e 2099
57c1ffce 2100#if USE_SPLIT_PTE_PTLOCKS
597d795a 2101#if ALLOC_SPLIT_PTLOCKS
b35f1819 2102void __init ptlock_cache_init(void);
539edb58
PZ
2103extern bool ptlock_alloc(struct page *page);
2104extern void ptlock_free(struct page *page);
2105
2106static inline spinlock_t *ptlock_ptr(struct page *page)
2107{
2108 return page->ptl;
2109}
597d795a 2110#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2111static inline void ptlock_cache_init(void)
2112{
2113}
2114
49076ec2
KS
2115static inline bool ptlock_alloc(struct page *page)
2116{
49076ec2
KS
2117 return true;
2118}
539edb58 2119
49076ec2
KS
2120static inline void ptlock_free(struct page *page)
2121{
49076ec2
KS
2122}
2123
2124static inline spinlock_t *ptlock_ptr(struct page *page)
2125{
539edb58 2126 return &page->ptl;
49076ec2 2127}
597d795a 2128#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2129
2130static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2131{
2132 return ptlock_ptr(pmd_page(*pmd));
2133}
2134
2135static inline bool ptlock_init(struct page *page)
2136{
2137 /*
2138 * prep_new_page() initialize page->private (and therefore page->ptl)
2139 * with 0. Make sure nobody took it in use in between.
2140 *
2141 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2142 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2143 */
309381fe 2144 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2145 if (!ptlock_alloc(page))
2146 return false;
2147 spin_lock_init(ptlock_ptr(page));
2148 return true;
2149}
2150
57c1ffce 2151#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2152/*
2153 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2154 */
49076ec2
KS
2155static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2156{
2157 return &mm->page_table_lock;
2158}
b35f1819 2159static inline void ptlock_cache_init(void) {}
49076ec2 2160static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2161static inline void ptlock_free(struct page *page) {}
57c1ffce 2162#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2163
b35f1819
KS
2164static inline void pgtable_init(void)
2165{
2166 ptlock_cache_init();
2167 pgtable_cache_init();
2168}
2169
b4ed71f5 2170static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2171{
706874e9
VD
2172 if (!ptlock_init(page))
2173 return false;
1d40a5ea 2174 __SetPageTable(page);
f0c0c115 2175 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2176 return true;
2f569afd
MS
2177}
2178
b4ed71f5 2179static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2180{
9e247bab 2181 ptlock_free(page);
1d40a5ea 2182 __ClearPageTable(page);
f0c0c115 2183 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2184}
2185
c74df32c
HD
2186#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2187({ \
4c21e2f2 2188 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2189 pte_t *__pte = pte_offset_map(pmd, address); \
2190 *(ptlp) = __ptl; \
2191 spin_lock(__ptl); \
2192 __pte; \
2193})
2194
2195#define pte_unmap_unlock(pte, ptl) do { \
2196 spin_unlock(ptl); \
2197 pte_unmap(pte); \
2198} while (0)
2199
4cf58924 2200#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2201
2202#define pte_alloc_map(mm, pmd, address) \
4cf58924 2203 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2204
c74df32c 2205#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2206 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2207 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2208
1bb3630e 2209#define pte_alloc_kernel(pmd, address) \
4cf58924 2210 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2211 NULL: pte_offset_kernel(pmd, address))
1da177e4 2212
e009bb30
KS
2213#if USE_SPLIT_PMD_PTLOCKS
2214
634391ac
MS
2215static struct page *pmd_to_page(pmd_t *pmd)
2216{
2217 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2218 return virt_to_page((void *)((unsigned long) pmd & mask));
2219}
2220
e009bb30
KS
2221static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2222{
634391ac 2223 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2224}
2225
b2b29d6d 2226static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2227{
e009bb30
KS
2228#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2229 page->pmd_huge_pte = NULL;
2230#endif
49076ec2 2231 return ptlock_init(page);
e009bb30
KS
2232}
2233
b2b29d6d 2234static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2235{
2236#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2237 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2238#endif
49076ec2 2239 ptlock_free(page);
e009bb30
KS
2240}
2241
634391ac 2242#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2243
2244#else
2245
9a86cb7b
KS
2246static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2247{
2248 return &mm->page_table_lock;
2249}
2250
b2b29d6d
MW
2251static inline bool pmd_ptlock_init(struct page *page) { return true; }
2252static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2253
c389a250 2254#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2255
e009bb30
KS
2256#endif
2257
9a86cb7b
KS
2258static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2259{
2260 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2261 spin_lock(ptl);
2262 return ptl;
2263}
2264
b2b29d6d
MW
2265static inline bool pgtable_pmd_page_ctor(struct page *page)
2266{
2267 if (!pmd_ptlock_init(page))
2268 return false;
2269 __SetPageTable(page);
f0c0c115 2270 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2271 return true;
2272}
2273
2274static inline void pgtable_pmd_page_dtor(struct page *page)
2275{
2276 pmd_ptlock_free(page);
2277 __ClearPageTable(page);
f0c0c115 2278 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2279}
2280
a00cc7d9
MW
2281/*
2282 * No scalability reason to split PUD locks yet, but follow the same pattern
2283 * as the PMD locks to make it easier if we decide to. The VM should not be
2284 * considered ready to switch to split PUD locks yet; there may be places
2285 * which need to be converted from page_table_lock.
2286 */
2287static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2288{
2289 return &mm->page_table_lock;
2290}
2291
2292static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2293{
2294 spinlock_t *ptl = pud_lockptr(mm, pud);
2295
2296 spin_lock(ptl);
2297 return ptl;
2298}
62906027 2299
a00cc7d9 2300extern void __init pagecache_init(void);
bc9331a1 2301extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2302extern void free_initmem(void);
2303
69afade7
JL
2304/*
2305 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2306 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2307 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2308 * Return pages freed into the buddy system.
2309 */
11199692 2310extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2311 int poison, const char *s);
c3d5f5f0 2312
c3d5f5f0 2313extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2314extern void mem_init_print_info(const char *str);
69afade7 2315
4b50bcc7 2316extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2317
69afade7 2318/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2319static inline void free_reserved_page(struct page *page)
69afade7
JL
2320{
2321 ClearPageReserved(page);
2322 init_page_count(page);
2323 __free_page(page);
69afade7
JL
2324 adjust_managed_page_count(page, 1);
2325}
a0cd7a7c 2326#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2327
2328static inline void mark_page_reserved(struct page *page)
2329{
2330 SetPageReserved(page);
2331 adjust_managed_page_count(page, -1);
2332}
2333
2334/*
2335 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2336 * The freed pages will be poisoned with pattern "poison" if it's within
2337 * range [0, UCHAR_MAX].
2338 * Return pages freed into the buddy system.
69afade7
JL
2339 */
2340static inline unsigned long free_initmem_default(int poison)
2341{
2342 extern char __init_begin[], __init_end[];
2343
11199692 2344 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2345 poison, "unused kernel");
2346}
2347
7ee3d4e8
JL
2348static inline unsigned long get_num_physpages(void)
2349{
2350 int nid;
2351 unsigned long phys_pages = 0;
2352
2353 for_each_online_node(nid)
2354 phys_pages += node_present_pages(nid);
2355
2356 return phys_pages;
2357}
2358
c713216d 2359/*
3f08a302 2360 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2361 * zones, allocate the backing mem_map and account for memory holes in an
2362 * architecture independent manner.
c713216d
MG
2363 *
2364 * An architecture is expected to register range of page frames backed by
0ee332c1 2365 * physical memory with memblock_add[_node]() before calling
9691a071 2366 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2367 * usage, an architecture is expected to do something like
2368 *
2369 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2370 * max_highmem_pfn};
2371 * for_each_valid_physical_page_range()
0ee332c1 2372 * memblock_add_node(base, size, nid)
9691a071 2373 * free_area_init(max_zone_pfns);
c713216d 2374 */
9691a071 2375void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2376unsigned long node_map_pfn_alignment(void);
32996250
YL
2377unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2378 unsigned long end_pfn);
c713216d
MG
2379extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2380 unsigned long end_pfn);
2381extern void get_pfn_range_for_nid(unsigned int nid,
2382 unsigned long *start_pfn, unsigned long *end_pfn);
2383extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2384
3f08a302 2385#ifndef CONFIG_NEED_MULTIPLE_NODES
6f24fbd3 2386static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2387{
2388 return 0;
2389}
2390#else
2391/* please see mm/page_alloc.c */
2392extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2393#endif
2394
0e0b864e 2395extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2396extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2397 unsigned long, unsigned long, enum meminit_context,
2398 struct vmem_altmap *, int migratetype);
3256ff83 2399extern void memmap_init_zone(struct zone *zone);
bc75d33f 2400extern void setup_per_zone_wmarks(void);
1b79acc9 2401extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2402extern void mem_init(void);
8feae131 2403extern void __init mmap_init(void);
9af744d7 2404extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2405extern long si_mem_available(void);
1da177e4
LT
2406extern void si_meminfo(struct sysinfo * val);
2407extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2408#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2409extern unsigned long arch_reserved_kernel_pages(void);
2410#endif
1da177e4 2411
a8e99259
MH
2412extern __printf(3, 4)
2413void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2414
e7c8d5c9 2415extern void setup_per_cpu_pageset(void);
e7c8d5c9 2416
75f7ad8e
PS
2417/* page_alloc.c */
2418extern int min_free_kbytes;
1c30844d 2419extern int watermark_boost_factor;
795ae7a0 2420extern int watermark_scale_factor;
51930df5 2421extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2422
8feae131 2423/* nommu.c */
33e5d769 2424extern atomic_long_t mmap_pages_allocated;
7e660872 2425extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2426
6b2dbba8 2427/* interval_tree.c */
6b2dbba8 2428void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2429 struct rb_root_cached *root);
9826a516
ML
2430void vma_interval_tree_insert_after(struct vm_area_struct *node,
2431 struct vm_area_struct *prev,
f808c13f 2432 struct rb_root_cached *root);
6b2dbba8 2433void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2434 struct rb_root_cached *root);
2435struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2436 unsigned long start, unsigned long last);
2437struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2438 unsigned long start, unsigned long last);
2439
2440#define vma_interval_tree_foreach(vma, root, start, last) \
2441 for (vma = vma_interval_tree_iter_first(root, start, last); \
2442 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2443
bf181b9f 2444void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2445 struct rb_root_cached *root);
bf181b9f 2446void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2447 struct rb_root_cached *root);
2448struct anon_vma_chain *
2449anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2450 unsigned long start, unsigned long last);
bf181b9f
ML
2451struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2452 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2453#ifdef CONFIG_DEBUG_VM_RB
2454void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2455#endif
bf181b9f
ML
2456
2457#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2458 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2459 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2460
1da177e4 2461/* mmap.c */
34b4e4aa 2462extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2463extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2464 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2465 struct vm_area_struct *expand);
2466static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2467 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2468{
2469 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2470}
1da177e4
LT
2471extern struct vm_area_struct *vma_merge(struct mm_struct *,
2472 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2473 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2474 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2475extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2476extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2477 unsigned long addr, int new_below);
2478extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2479 unsigned long addr, int new_below);
1da177e4
LT
2480extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2481extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2482 struct rb_node **, struct rb_node *);
a8fb5618 2483extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2484extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2485 unsigned long addr, unsigned long len, pgoff_t pgoff,
2486 bool *need_rmap_locks);
1da177e4 2487extern void exit_mmap(struct mm_struct *);
925d1c40 2488
9c599024
CG
2489static inline int check_data_rlimit(unsigned long rlim,
2490 unsigned long new,
2491 unsigned long start,
2492 unsigned long end_data,
2493 unsigned long start_data)
2494{
2495 if (rlim < RLIM_INFINITY) {
2496 if (((new - start) + (end_data - start_data)) > rlim)
2497 return -ENOSPC;
2498 }
2499
2500 return 0;
2501}
2502
7906d00c
AA
2503extern int mm_take_all_locks(struct mm_struct *mm);
2504extern void mm_drop_all_locks(struct mm_struct *mm);
2505
38646013
JS
2506extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2507extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2508extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2509
84638335
KK
2510extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2511extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2512
2eefd878
DS
2513extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2514 const struct vm_special_mapping *sm);
3935ed6a
SS
2515extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2516 unsigned long addr, unsigned long len,
a62c34bd
AL
2517 unsigned long flags,
2518 const struct vm_special_mapping *spec);
2519/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2520extern int install_special_mapping(struct mm_struct *mm,
2521 unsigned long addr, unsigned long len,
2522 unsigned long flags, struct page **pages);
1da177e4 2523
649775be
AG
2524unsigned long randomize_stack_top(unsigned long stack_top);
2525
1da177e4
LT
2526extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2527
0165ab44 2528extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2529 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2530 struct list_head *uf);
1fcfd8db 2531extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2532 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2533 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2534extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2535 struct list_head *uf, bool downgrade);
897ab3e0
MR
2536extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2537 struct list_head *uf);
0726b01e 2538extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2539
bebeb3d6
ML
2540#ifdef CONFIG_MMU
2541extern int __mm_populate(unsigned long addr, unsigned long len,
2542 int ignore_errors);
2543static inline void mm_populate(unsigned long addr, unsigned long len)
2544{
2545 /* Ignore errors */
2546 (void) __mm_populate(addr, len, 1);
2547}
2548#else
2549static inline void mm_populate(unsigned long addr, unsigned long len) {}
2550#endif
2551
e4eb1ff6 2552/* These take the mm semaphore themselves */
5d22fc25 2553extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2554extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2555extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2556extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2557 unsigned long, unsigned long,
2558 unsigned long, unsigned long);
1da177e4 2559
db4fbfb9
ML
2560struct vm_unmapped_area_info {
2561#define VM_UNMAPPED_AREA_TOPDOWN 1
2562 unsigned long flags;
2563 unsigned long length;
2564 unsigned long low_limit;
2565 unsigned long high_limit;
2566 unsigned long align_mask;
2567 unsigned long align_offset;
2568};
2569
baceaf1c 2570extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2571
85821aab 2572/* truncate.c */
1da177e4 2573extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2574extern void truncate_inode_pages_range(struct address_space *,
2575 loff_t lstart, loff_t lend);
91b0abe3 2576extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2577
2578/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2579extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2580extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2581 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2582extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2583
2584/* mm/page-writeback.c */
2b69c828 2585int __must_check write_one_page(struct page *page);
1cf6e7d8 2586void task_dirty_inc(struct task_struct *tsk);
1da177e4 2587
1be7107f 2588extern unsigned long stack_guard_gap;
d05f3169 2589/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2590extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2591
11192337 2592/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2593extern int expand_downwards(struct vm_area_struct *vma,
2594 unsigned long address);
8ca3eb08 2595#if VM_GROWSUP
46dea3d0 2596extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2597#else
fee7e49d 2598 #define expand_upwards(vma, address) (0)
9ab88515 2599#endif
1da177e4
LT
2600
2601/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2602extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2603extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2604 struct vm_area_struct **pprev);
2605
2606/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2607 NULL if none. Assume start_addr < end_addr. */
2608static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2609{
2610 struct vm_area_struct * vma = find_vma(mm,start_addr);
2611
2612 if (vma && end_addr <= vma->vm_start)
2613 vma = NULL;
2614 return vma;
2615}
2616
1be7107f
HD
2617static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2618{
2619 unsigned long vm_start = vma->vm_start;
2620
2621 if (vma->vm_flags & VM_GROWSDOWN) {
2622 vm_start -= stack_guard_gap;
2623 if (vm_start > vma->vm_start)
2624 vm_start = 0;
2625 }
2626 return vm_start;
2627}
2628
2629static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2630{
2631 unsigned long vm_end = vma->vm_end;
2632
2633 if (vma->vm_flags & VM_GROWSUP) {
2634 vm_end += stack_guard_gap;
2635 if (vm_end < vma->vm_end)
2636 vm_end = -PAGE_SIZE;
2637 }
2638 return vm_end;
2639}
2640
1da177e4
LT
2641static inline unsigned long vma_pages(struct vm_area_struct *vma)
2642{
2643 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2644}
2645
640708a2
PE
2646/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2647static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2648 unsigned long vm_start, unsigned long vm_end)
2649{
2650 struct vm_area_struct *vma = find_vma(mm, vm_start);
2651
2652 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2653 vma = NULL;
2654
2655 return vma;
2656}
2657
017b1660
MK
2658static inline bool range_in_vma(struct vm_area_struct *vma,
2659 unsigned long start, unsigned long end)
2660{
2661 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2662}
2663
bad849b3 2664#ifdef CONFIG_MMU
804af2cf 2665pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2666void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2667#else
2668static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2669{
2670 return __pgprot(0);
2671}
64e45507
PF
2672static inline void vma_set_page_prot(struct vm_area_struct *vma)
2673{
2674 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2675}
bad849b3
DH
2676#endif
2677
295992fb
CK
2678void vma_set_file(struct vm_area_struct *vma, struct file *file);
2679
5877231f 2680#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2681unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2682 unsigned long start, unsigned long end);
2683#endif
2684
deceb6cd 2685struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2686int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2687 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2688int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2689int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2690 struct page **pages, unsigned long *num);
a667d745
SJ
2691int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2692 unsigned long num);
2693int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2694 unsigned long num);
ae2b01f3 2695vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2696 unsigned long pfn);
f5e6d1d5
MW
2697vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2698 unsigned long pfn, pgprot_t pgprot);
5d747637 2699vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2700 pfn_t pfn);
574c5b3d
TH
2701vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2702 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2703vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2704 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2705int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2706
1c8f4220
SJ
2707static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2708 unsigned long addr, struct page *page)
2709{
2710 int err = vm_insert_page(vma, addr, page);
2711
2712 if (err == -ENOMEM)
2713 return VM_FAULT_OOM;
2714 if (err < 0 && err != -EBUSY)
2715 return VM_FAULT_SIGBUS;
2716
2717 return VM_FAULT_NOPAGE;
2718}
2719
f8f6ae5d
JG
2720#ifndef io_remap_pfn_range
2721static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2722 unsigned long addr, unsigned long pfn,
2723 unsigned long size, pgprot_t prot)
2724{
2725 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2726}
2727#endif
2728
d97baf94
SJ
2729static inline vm_fault_t vmf_error(int err)
2730{
2731 if (err == -ENOMEM)
2732 return VM_FAULT_OOM;
2733 return VM_FAULT_SIGBUS;
2734}
2735
df06b37f
KB
2736struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2737 unsigned int foll_flags);
240aadee 2738
deceb6cd
HD
2739#define FOLL_WRITE 0x01 /* check pte is writable */
2740#define FOLL_TOUCH 0x02 /* mark page accessed */
2741#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2742#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2743#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2744#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2745 * and return without waiting upon it */
84d33df2 2746#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2747#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2748#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2749#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2750#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2751#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2752#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2753#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2754#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2755#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2756#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2757#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2758#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2759#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2760
2761/*
eddb1c22
JH
2762 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2763 * other. Here is what they mean, and how to use them:
932f4a63
IW
2764 *
2765 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2766 * period _often_ under userspace control. This is in contrast to
2767 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2768 *
2769 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2770 * lifetime enforced by the filesystem and we need guarantees that longterm
2771 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2772 * the filesystem. Ideas for this coordination include revoking the longterm
2773 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2774 * added after the problem with filesystems was found FS DAX VMAs are
2775 * specifically failed. Filesystem pages are still subject to bugs and use of
2776 * FOLL_LONGTERM should be avoided on those pages.
2777 *
2778 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2779 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2780 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2781 * is due to an incompatibility with the FS DAX check and
eddb1c22 2782 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2783 *
eddb1c22
JH
2784 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2785 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2786 * FOLL_LONGTERM is specified.
eddb1c22
JH
2787 *
2788 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2789 * but an additional pin counting system) will be invoked. This is intended for
2790 * anything that gets a page reference and then touches page data (for example,
2791 * Direct IO). This lets the filesystem know that some non-file-system entity is
2792 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2793 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2794 * a call to unpin_user_page().
eddb1c22
JH
2795 *
2796 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2797 * and separate refcounting mechanisms, however, and that means that each has
2798 * its own acquire and release mechanisms:
2799 *
2800 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2801 *
f1f6a7dd 2802 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2803 *
2804 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2805 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2806 * calls applied to them, and that's perfectly OK. This is a constraint on the
2807 * callers, not on the pages.)
2808 *
2809 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2810 * directly by the caller. That's in order to help avoid mismatches when
2811 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2812 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2813 *
72ef5e52 2814 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2815 */
1da177e4 2816
2b740303 2817static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2818{
2819 if (vm_fault & VM_FAULT_OOM)
2820 return -ENOMEM;
2821 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2822 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2823 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2824 return -EFAULT;
2825 return 0;
2826}
2827
8b1e0f81 2828typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2829extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2830 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2831extern int apply_to_existing_page_range(struct mm_struct *mm,
2832 unsigned long address, unsigned long size,
2833 pte_fn_t fn, void *data);
aee16b3c 2834
04013513 2835extern void init_mem_debugging_and_hardening(void);
8823b1db 2836#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
2837extern void __kernel_poison_pages(struct page *page, int numpages);
2838extern void __kernel_unpoison_pages(struct page *page, int numpages);
2839extern bool _page_poisoning_enabled_early;
2840DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2841static inline bool page_poisoning_enabled(void)
2842{
2843 return _page_poisoning_enabled_early;
2844}
2845/*
2846 * For use in fast paths after init_mem_debugging() has run, or when a
2847 * false negative result is not harmful when called too early.
2848 */
2849static inline bool page_poisoning_enabled_static(void)
2850{
2851 return static_branch_unlikely(&_page_poisoning_enabled);
2852}
2853static inline void kernel_poison_pages(struct page *page, int numpages)
2854{
2855 if (page_poisoning_enabled_static())
2856 __kernel_poison_pages(page, numpages);
2857}
2858static inline void kernel_unpoison_pages(struct page *page, int numpages)
2859{
2860 if (page_poisoning_enabled_static())
2861 __kernel_unpoison_pages(page, numpages);
2862}
8823b1db
LA
2863#else
2864static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 2865static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 2866static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
2867static inline void kernel_poison_pages(struct page *page, int numpages) { }
2868static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
2869#endif
2870
6471384a 2871DECLARE_STATIC_KEY_FALSE(init_on_alloc);
6471384a
AP
2872static inline bool want_init_on_alloc(gfp_t flags)
2873{
04013513 2874 if (static_branch_unlikely(&init_on_alloc))
6471384a
AP
2875 return true;
2876 return flags & __GFP_ZERO;
2877}
2878
6471384a 2879DECLARE_STATIC_KEY_FALSE(init_on_free);
6471384a
AP
2880static inline bool want_init_on_free(void)
2881{
04013513 2882 return static_branch_unlikely(&init_on_free);
6471384a
AP
2883}
2884
8e57f8ac
VB
2885extern bool _debug_pagealloc_enabled_early;
2886DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2887
2888static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2889{
2890 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2891 _debug_pagealloc_enabled_early;
2892}
2893
2894/*
2895 * For use in fast paths after init_debug_pagealloc() has run, or when a
2896 * false negative result is not harmful when called too early.
2897 */
2898static inline bool debug_pagealloc_enabled_static(void)
031bc574 2899{
96a2b03f
VB
2900 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2901 return false;
2902
2903 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2904}
2905
5d6ad668 2906#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 2907/*
5d6ad668
MR
2908 * To support DEBUG_PAGEALLOC architecture must ensure that
2909 * __kernel_map_pages() never fails
c87cbc1f 2910 */
d6332692
RE
2911extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2912
77bc7fd6
MR
2913static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2914{
2915 if (debug_pagealloc_enabled_static())
2916 __kernel_map_pages(page, numpages, 1);
2917}
2918
2919static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
2920{
2921 if (debug_pagealloc_enabled_static())
2922 __kernel_map_pages(page, numpages, 0);
2923}
5d6ad668 2924#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
2925static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
2926static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 2927#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2928
a6c19dfe 2929#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2930extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2931extern int in_gate_area_no_mm(unsigned long addr);
2932extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2933#else
a6c19dfe
AL
2934static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2935{
2936 return NULL;
2937}
2938static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2939static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2940{
2941 return 0;
2942}
1da177e4
LT
2943#endif /* __HAVE_ARCH_GATE_AREA */
2944
44a70ade
MH
2945extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2946
146732ce
JT
2947#ifdef CONFIG_SYSCTL
2948extern int sysctl_drop_caches;
32927393
CH
2949int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2950 loff_t *);
146732ce
JT
2951#endif
2952
cb731d6c
VD
2953void drop_slab(void);
2954void drop_slab_node(int nid);
9d0243bc 2955
7a9166e3
LY
2956#ifndef CONFIG_MMU
2957#define randomize_va_space 0
2958#else
a62eaf15 2959extern int randomize_va_space;
7a9166e3 2960#endif
a62eaf15 2961
045e72ac 2962const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 2963#ifdef CONFIG_MMU
03252919 2964void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
2965#else
2966static inline void print_vma_addr(char *prefix, unsigned long rip)
2967{
2968}
2969#endif
e6e5494c 2970
35fd1eb1 2971void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
2972struct page * __populate_section_memmap(unsigned long pfn,
2973 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 2974pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2975p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2976pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 2977pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
2978pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
2979 struct vmem_altmap *altmap);
8f6aac41 2980void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2981struct vmem_altmap;
56993b4e
AK
2982void *vmemmap_alloc_block_buf(unsigned long size, int node,
2983 struct vmem_altmap *altmap);
8f6aac41 2984void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 2985int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 2986 int node, struct vmem_altmap *altmap);
7b73d978
CH
2987int vmemmap_populate(unsigned long start, unsigned long end, int node,
2988 struct vmem_altmap *altmap);
c2b91e2e 2989void vmemmap_populate_print_last(void);
0197518c 2990#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2991void vmemmap_free(unsigned long start, unsigned long end,
2992 struct vmem_altmap *altmap);
0197518c 2993#endif
46723bfa 2994void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2995 unsigned long nr_pages);
6a46079c 2996
82ba011b
AK
2997enum mf_flags {
2998 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2999 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3000 MF_MUST_KILL = 1 << 2,
cf870c70 3001 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3002};
83b57531
EB
3003extern int memory_failure(unsigned long pfn, int flags);
3004extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3005extern void memory_failure_queue_kick(int cpu);
847ce401 3006extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3007extern int sysctl_memory_failure_early_kill;
3008extern int sysctl_memory_failure_recovery;
facb6011 3009extern void shake_page(struct page *p, int access);
5844a486 3010extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3011extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3012
cc637b17
XX
3013
3014/*
3015 * Error handlers for various types of pages.
3016 */
cc3e2af4 3017enum mf_result {
cc637b17
XX
3018 MF_IGNORED, /* Error: cannot be handled */
3019 MF_FAILED, /* Error: handling failed */
3020 MF_DELAYED, /* Will be handled later */
3021 MF_RECOVERED, /* Successfully recovered */
3022};
3023
3024enum mf_action_page_type {
3025 MF_MSG_KERNEL,
3026 MF_MSG_KERNEL_HIGH_ORDER,
3027 MF_MSG_SLAB,
3028 MF_MSG_DIFFERENT_COMPOUND,
3029 MF_MSG_POISONED_HUGE,
3030 MF_MSG_HUGE,
3031 MF_MSG_FREE_HUGE,
31286a84 3032 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3033 MF_MSG_UNMAP_FAILED,
3034 MF_MSG_DIRTY_SWAPCACHE,
3035 MF_MSG_CLEAN_SWAPCACHE,
3036 MF_MSG_DIRTY_MLOCKED_LRU,
3037 MF_MSG_CLEAN_MLOCKED_LRU,
3038 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3039 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3040 MF_MSG_DIRTY_LRU,
3041 MF_MSG_CLEAN_LRU,
3042 MF_MSG_TRUNCATED_LRU,
3043 MF_MSG_BUDDY,
3044 MF_MSG_BUDDY_2ND,
6100e34b 3045 MF_MSG_DAX,
5d1fd5dc 3046 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3047 MF_MSG_UNKNOWN,
3048};
3049
47ad8475
AA
3050#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3051extern void clear_huge_page(struct page *page,
c79b57e4 3052 unsigned long addr_hint,
47ad8475
AA
3053 unsigned int pages_per_huge_page);
3054extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3055 unsigned long addr_hint,
3056 struct vm_area_struct *vma,
47ad8475 3057 unsigned int pages_per_huge_page);
fa4d75c1
MK
3058extern long copy_huge_page_from_user(struct page *dst_page,
3059 const void __user *usr_src,
810a56b9
MK
3060 unsigned int pages_per_huge_page,
3061 bool allow_pagefault);
2484ca9b
THV
3062
3063/**
3064 * vma_is_special_huge - Are transhuge page-table entries considered special?
3065 * @vma: Pointer to the struct vm_area_struct to consider
3066 *
3067 * Whether transhuge page-table entries are considered "special" following
3068 * the definition in vm_normal_page().
3069 *
3070 * Return: true if transhuge page-table entries should be considered special,
3071 * false otherwise.
3072 */
3073static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3074{
3075 return vma_is_dax(vma) || (vma->vm_file &&
3076 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3077}
3078
47ad8475
AA
3079#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3080
c0a32fc5
SG
3081#ifdef CONFIG_DEBUG_PAGEALLOC
3082extern unsigned int _debug_guardpage_minorder;
96a2b03f 3083DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3084
3085static inline unsigned int debug_guardpage_minorder(void)
3086{
3087 return _debug_guardpage_minorder;
3088}
3089
e30825f1
JK
3090static inline bool debug_guardpage_enabled(void)
3091{
96a2b03f 3092 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3093}
3094
c0a32fc5
SG
3095static inline bool page_is_guard(struct page *page)
3096{
e30825f1
JK
3097 if (!debug_guardpage_enabled())
3098 return false;
3099
3972f6bb 3100 return PageGuard(page);
c0a32fc5
SG
3101}
3102#else
3103static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3104static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3105static inline bool page_is_guard(struct page *page) { return false; }
3106#endif /* CONFIG_DEBUG_PAGEALLOC */
3107
f9872caf
CS
3108#if MAX_NUMNODES > 1
3109void __init setup_nr_node_ids(void);
3110#else
3111static inline void setup_nr_node_ids(void) {}
3112#endif
3113
010c164a
SL
3114extern int memcmp_pages(struct page *page1, struct page *page2);
3115
3116static inline int pages_identical(struct page *page1, struct page *page2)
3117{
3118 return !memcmp_pages(page1, page2);
3119}
3120
c5acad84
TH
3121#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3122unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3123 pgoff_t first_index, pgoff_t nr,
3124 pgoff_t bitmap_pgoff,
3125 unsigned long *bitmap,
3126 pgoff_t *start,
3127 pgoff_t *end);
3128
3129unsigned long wp_shared_mapping_range(struct address_space *mapping,
3130 pgoff_t first_index, pgoff_t nr);
3131#endif
3132
2374c09b
CH
3133extern int sysctl_nr_trim_pages;
3134
8e7f37f2
PM
3135void mem_dump_obj(void *object);
3136
1da177e4
LT
3137#endif /* __KERNEL__ */
3138#endif /* _LINUX_MM_H */