mm: extend MREMAP_DONTUNMAP to non-anonymous mappings
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
9740ca4e 18#include <linux/mmap_lock.h>
08677214 19#include <linux/range.h>
c6f6b596 20#include <linux/pfn.h>
3565fce3 21#include <linux/percpu-refcount.h>
e9da73d6 22#include <linux/bit_spinlock.h>
b0d40c92 23#include <linux/shrinker.h>
9c599024 24#include <linux/resource.h>
e30825f1 25#include <linux/page_ext.h>
8025e5dd 26#include <linux/err.h>
41901567 27#include <linux/page-flags.h>
fe896d18 28#include <linux/page_ref.h>
7b2d55d2 29#include <linux/memremap.h>
3b3b1a29 30#include <linux/overflow.h>
b5420237 31#include <linux/sizes.h>
7969f226 32#include <linux/sched.h>
65fddcfc 33#include <linux/pgtable.h>
34303244 34#include <linux/kasan.h>
1da177e4
LT
35
36struct mempolicy;
37struct anon_vma;
bf181b9f 38struct anon_vma_chain;
4e950f6f 39struct file_ra_state;
e8edc6e0 40struct user_struct;
4e950f6f 41struct writeback_control;
682aa8e1 42struct bdi_writeback;
bce617ed 43struct pt_regs;
1da177e4 44
5ef64cc8
LT
45extern int sysctl_page_lock_unfairness;
46
597b7305
MH
47void init_mm_internals(void);
48
fccc9987 49#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 50extern unsigned long max_mapnr;
fccc9987
JL
51
52static inline void set_max_mapnr(unsigned long limit)
53{
54 max_mapnr = limit;
55}
56#else
57static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
58#endif
59
ca79b0c2
AK
60extern atomic_long_t _totalram_pages;
61static inline unsigned long totalram_pages(void)
62{
63 return (unsigned long)atomic_long_read(&_totalram_pages);
64}
65
66static inline void totalram_pages_inc(void)
67{
68 atomic_long_inc(&_totalram_pages);
69}
70
71static inline void totalram_pages_dec(void)
72{
73 atomic_long_dec(&_totalram_pages);
74}
75
76static inline void totalram_pages_add(long count)
77{
78 atomic_long_add(count, &_totalram_pages);
79}
80
1da177e4 81extern void * high_memory;
1da177e4
LT
82extern int page_cluster;
83
84#ifdef CONFIG_SYSCTL
85extern int sysctl_legacy_va_layout;
86#else
87#define sysctl_legacy_va_layout 0
88#endif
89
d07e2259
DC
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91extern const int mmap_rnd_bits_min;
92extern const int mmap_rnd_bits_max;
93extern int mmap_rnd_bits __read_mostly;
94#endif
95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96extern const int mmap_rnd_compat_bits_min;
97extern const int mmap_rnd_compat_bits_max;
98extern int mmap_rnd_compat_bits __read_mostly;
99#endif
100
1da177e4 101#include <asm/page.h>
1da177e4 102#include <asm/processor.h>
1da177e4 103
d9344522
AK
104/*
105 * Architectures that support memory tagging (assigning tags to memory regions,
106 * embedding these tags into addresses that point to these memory regions, and
107 * checking that the memory and the pointer tags match on memory accesses)
108 * redefine this macro to strip tags from pointers.
109 * It's defined as noop for arcitectures that don't support memory tagging.
110 */
111#ifndef untagged_addr
112#define untagged_addr(addr) (addr)
113#endif
114
79442ed1
TC
115#ifndef __pa_symbol
116#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
117#endif
118
1dff8083
AB
119#ifndef page_to_virt
120#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
121#endif
122
568c5fe5
LA
123#ifndef lm_alias
124#define lm_alias(x) __va(__pa_symbol(x))
125#endif
126
5caf9682
ST
127/*
128 * With CONFIG_CFI_CLANG, the compiler replaces function addresses in
129 * instrumented C code with jump table addresses. Architectures that
130 * support CFI can define this macro to return the actual function address
131 * when needed.
132 */
133#ifndef function_nocfi
134#define function_nocfi(x) (x)
135#endif
136
593befa6
DD
137/*
138 * To prevent common memory management code establishing
139 * a zero page mapping on a read fault.
140 * This macro should be defined within <asm/pgtable.h>.
141 * s390 does this to prevent multiplexing of hardware bits
142 * related to the physical page in case of virtualization.
143 */
144#ifndef mm_forbids_zeropage
145#define mm_forbids_zeropage(X) (0)
146#endif
147
a4a3ede2
PT
148/*
149 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
150 * If an architecture decides to implement their own version of
151 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
152 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 153 */
5470dea4
AD
154#if BITS_PER_LONG == 64
155/* This function must be updated when the size of struct page grows above 80
156 * or reduces below 56. The idea that compiler optimizes out switch()
157 * statement, and only leaves move/store instructions. Also the compiler can
158 * combine write statments if they are both assignments and can be reordered,
159 * this can result in several of the writes here being dropped.
160 */
161#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
162static inline void __mm_zero_struct_page(struct page *page)
163{
164 unsigned long *_pp = (void *)page;
165
166 /* Check that struct page is either 56, 64, 72, or 80 bytes */
167 BUILD_BUG_ON(sizeof(struct page) & 7);
168 BUILD_BUG_ON(sizeof(struct page) < 56);
169 BUILD_BUG_ON(sizeof(struct page) > 80);
170
171 switch (sizeof(struct page)) {
172 case 80:
df561f66
GS
173 _pp[9] = 0;
174 fallthrough;
5470dea4 175 case 72:
df561f66
GS
176 _pp[8] = 0;
177 fallthrough;
5470dea4 178 case 64:
df561f66
GS
179 _pp[7] = 0;
180 fallthrough;
5470dea4
AD
181 case 56:
182 _pp[6] = 0;
183 _pp[5] = 0;
184 _pp[4] = 0;
185 _pp[3] = 0;
186 _pp[2] = 0;
187 _pp[1] = 0;
188 _pp[0] = 0;
189 }
190}
191#else
a4a3ede2
PT
192#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
193#endif
194
ea606cf5
AR
195/*
196 * Default maximum number of active map areas, this limits the number of vmas
197 * per mm struct. Users can overwrite this number by sysctl but there is a
198 * problem.
199 *
200 * When a program's coredump is generated as ELF format, a section is created
201 * per a vma. In ELF, the number of sections is represented in unsigned short.
202 * This means the number of sections should be smaller than 65535 at coredump.
203 * Because the kernel adds some informative sections to a image of program at
204 * generating coredump, we need some margin. The number of extra sections is
205 * 1-3 now and depends on arch. We use "5" as safe margin, here.
206 *
207 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
208 * not a hard limit any more. Although some userspace tools can be surprised by
209 * that.
210 */
211#define MAPCOUNT_ELF_CORE_MARGIN (5)
212#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
213
214extern int sysctl_max_map_count;
215
c9b1d098 216extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 217extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 218
49f0ce5f
JM
219extern int sysctl_overcommit_memory;
220extern int sysctl_overcommit_ratio;
221extern unsigned long sysctl_overcommit_kbytes;
222
32927393
CH
223int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
224 loff_t *);
225int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
226 loff_t *);
56f3547b
FT
227int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
228 loff_t *);
6d87d0ec
SJ
229/*
230 * Any attempt to mark this function as static leads to build failure
231 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
232 * is referred to by BPF code. This must be visible for error injection.
233 */
234int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
235 pgoff_t index, gfp_t gfp, void **shadowp);
49f0ce5f 236
1da177e4
LT
237#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
238
27ac792c
AR
239/* to align the pointer to the (next) page boundary */
240#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
241
0fa73b86 242/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 243#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 244
f86196ea
NB
245#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
246
1da177e4
LT
247/*
248 * Linux kernel virtual memory manager primitives.
249 * The idea being to have a "virtual" mm in the same way
250 * we have a virtual fs - giving a cleaner interface to the
251 * mm details, and allowing different kinds of memory mappings
252 * (from shared memory to executable loading to arbitrary
253 * mmap() functions).
254 */
255
490fc053 256struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
257struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
258void vm_area_free(struct vm_area_struct *);
c43692e8 259
1da177e4 260#ifndef CONFIG_MMU
8feae131
DH
261extern struct rb_root nommu_region_tree;
262extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
263
264extern unsigned int kobjsize(const void *objp);
265#endif
266
267/*
605d9288 268 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 269 * When changing, update also include/trace/events/mmflags.h
1da177e4 270 */
cc2383ec
KK
271#define VM_NONE 0x00000000
272
1da177e4
LT
273#define VM_READ 0x00000001 /* currently active flags */
274#define VM_WRITE 0x00000002
275#define VM_EXEC 0x00000004
276#define VM_SHARED 0x00000008
277
7e2cff42 278/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
279#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
280#define VM_MAYWRITE 0x00000020
281#define VM_MAYEXEC 0x00000040
282#define VM_MAYSHARE 0x00000080
283
284#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 285#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 286#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 287#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 288#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 289
1da177e4
LT
290#define VM_LOCKED 0x00002000
291#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
292
293 /* Used by sys_madvise() */
294#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
295#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
296
297#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
298#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 299#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 300#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 301#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 302#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 303#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 304#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 305#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 306#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 307
d9104d1c
CG
308#ifdef CONFIG_MEM_SOFT_DIRTY
309# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
310#else
311# define VM_SOFTDIRTY 0
312#endif
313
b379d790 314#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
315#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
316#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 317#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 318
63c17fb8
DH
319#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
320#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
321#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
322#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
323#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 324#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
325#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
326#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
327#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
328#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 329#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
330#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
331
5212213a 332#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
333# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
334# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 335# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
336# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
337# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
338#ifdef CONFIG_PPC
339# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
340#else
341# define VM_PKEY_BIT4 0
8f62c883 342#endif
5212213a
RP
343#endif /* CONFIG_ARCH_HAS_PKEYS */
344
345#if defined(CONFIG_X86)
346# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
347#elif defined(CONFIG_PPC)
348# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
349#elif defined(CONFIG_PARISC)
350# define VM_GROWSUP VM_ARCH_1
351#elif defined(CONFIG_IA64)
352# define VM_GROWSUP VM_ARCH_1
74a04967
KA
353#elif defined(CONFIG_SPARC64)
354# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
355# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
356#elif defined(CONFIG_ARM64)
357# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
358# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
359#elif !defined(CONFIG_MMU)
360# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
361#endif
362
9f341931
CM
363#if defined(CONFIG_ARM64_MTE)
364# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
365# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
366#else
367# define VM_MTE VM_NONE
368# define VM_MTE_ALLOWED VM_NONE
369#endif
370
cc2383ec
KK
371#ifndef VM_GROWSUP
372# define VM_GROWSUP VM_NONE
373#endif
374
a8bef8ff
MG
375/* Bits set in the VMA until the stack is in its final location */
376#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
377
c62da0c3
AK
378#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
379
380/* Common data flag combinations */
381#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
382 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
383#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
384 VM_MAYWRITE | VM_MAYEXEC)
385#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387
388#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
389#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
390#endif
391
1da177e4
LT
392#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
393#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
394#endif
395
396#ifdef CONFIG_STACK_GROWSUP
30bdbb78 397#define VM_STACK VM_GROWSUP
1da177e4 398#else
30bdbb78 399#define VM_STACK VM_GROWSDOWN
1da177e4
LT
400#endif
401
30bdbb78
KK
402#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
403
6cb4d9a2
AK
404/* VMA basic access permission flags */
405#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
406
407
b291f000 408/*
78f11a25 409 * Special vmas that are non-mergable, non-mlock()able.
b291f000 410 */
9050d7eb 411#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 412
b4443772
AK
413/* This mask prevents VMA from being scanned with khugepaged */
414#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
415
a0715cc2
AT
416/* This mask defines which mm->def_flags a process can inherit its parent */
417#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
418
de60f5f1
EM
419/* This mask is used to clear all the VMA flags used by mlock */
420#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
421
2c2d57b5
KA
422/* Arch-specific flags to clear when updating VM flags on protection change */
423#ifndef VM_ARCH_CLEAR
424# define VM_ARCH_CLEAR VM_NONE
425#endif
426#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
427
1da177e4
LT
428/*
429 * mapping from the currently active vm_flags protection bits (the
430 * low four bits) to a page protection mask..
431 */
432extern pgprot_t protection_map[16];
433
c270a7ee
PX
434/**
435 * Fault flag definitions.
436 *
437 * @FAULT_FLAG_WRITE: Fault was a write fault.
438 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
439 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
c1e8d7c6 440 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
c270a7ee
PX
441 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
442 * @FAULT_FLAG_TRIED: The fault has been tried once.
443 * @FAULT_FLAG_USER: The fault originated in userspace.
444 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
445 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
446 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
447 *
448 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
449 * whether we would allow page faults to retry by specifying these two
450 * fault flags correctly. Currently there can be three legal combinations:
451 *
452 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
453 * this is the first try
454 *
455 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
456 * we've already tried at least once
457 *
458 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
459 *
460 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
461 * be used. Note that page faults can be allowed to retry for multiple times,
462 * in which case we'll have an initial fault with flags (a) then later on
463 * continuous faults with flags (b). We should always try to detect pending
464 * signals before a retry to make sure the continuous page faults can still be
465 * interrupted if necessary.
c270a7ee
PX
466 */
467#define FAULT_FLAG_WRITE 0x01
468#define FAULT_FLAG_MKWRITE 0x02
469#define FAULT_FLAG_ALLOW_RETRY 0x04
470#define FAULT_FLAG_RETRY_NOWAIT 0x08
471#define FAULT_FLAG_KILLABLE 0x10
472#define FAULT_FLAG_TRIED 0x20
473#define FAULT_FLAG_USER 0x40
474#define FAULT_FLAG_REMOTE 0x80
475#define FAULT_FLAG_INSTRUCTION 0x100
476#define FAULT_FLAG_INTERRUPTIBLE 0x200
d0217ac0 477
dde16072
PX
478/*
479 * The default fault flags that should be used by most of the
480 * arch-specific page fault handlers.
481 */
482#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
483 FAULT_FLAG_KILLABLE | \
484 FAULT_FLAG_INTERRUPTIBLE)
dde16072 485
4064b982
PX
486/**
487 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
488 *
489 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 490 * the mmap_lock for too long a time when waiting for another condition
4064b982 491 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
492 * mmap_lock in the first round to avoid potential starvation of other
493 * processes that would also want the mmap_lock.
4064b982
PX
494 *
495 * Return: true if the page fault allows retry and this is the first
496 * attempt of the fault handling; false otherwise.
497 */
498static inline bool fault_flag_allow_retry_first(unsigned int flags)
499{
500 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
501 (!(flags & FAULT_FLAG_TRIED));
502}
503
282a8e03
RZ
504#define FAULT_FLAG_TRACE \
505 { FAULT_FLAG_WRITE, "WRITE" }, \
506 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
507 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
508 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
509 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
510 { FAULT_FLAG_TRIED, "TRIED" }, \
511 { FAULT_FLAG_USER, "USER" }, \
512 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
513 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
514 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 515
54cb8821 516/*
11192337 517 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
518 * ->fault function. The vma's ->fault is responsible for returning a bitmask
519 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 520 *
c20cd45e
MH
521 * MM layer fills up gfp_mask for page allocations but fault handler might
522 * alter it if its implementation requires a different allocation context.
523 *
9b4bdd2f 524 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 525 */
d0217ac0 526struct vm_fault {
5857c920 527 const struct {
742d3372
WD
528 struct vm_area_struct *vma; /* Target VMA */
529 gfp_t gfp_mask; /* gfp mask to be used for allocations */
530 pgoff_t pgoff; /* Logical page offset based on vma */
531 unsigned long address; /* Faulting virtual address */
532 };
533 unsigned int flags; /* FAULT_FLAG_xxx flags
534 * XXX: should really be 'const' */
82b0f8c3 535 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 536 * the 'address' */
a2d58167
DJ
537 pud_t *pud; /* Pointer to pud entry matching
538 * the 'address'
539 */
2994302b 540 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 541
3917048d 542 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 543 struct page *page; /* ->fault handlers should return a
83c54070 544 * page here, unless VM_FAULT_NOPAGE
d0217ac0 545 * is set (which is also implied by
83c54070 546 * VM_FAULT_ERROR).
d0217ac0 547 */
82b0f8c3 548 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
549 pte_t *pte; /* Pointer to pte entry matching
550 * the 'address'. NULL if the page
551 * table hasn't been allocated.
552 */
553 spinlock_t *ptl; /* Page table lock.
554 * Protects pte page table if 'pte'
555 * is not NULL, otherwise pmd.
556 */
7267ec00 557 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
558 * vm_ops->map_pages() sets up a page
559 * table from atomic context.
7267ec00
KS
560 * do_fault_around() pre-allocates
561 * page table to avoid allocation from
562 * atomic context.
563 */
54cb8821 564};
1da177e4 565
c791ace1
DJ
566/* page entry size for vm->huge_fault() */
567enum page_entry_size {
568 PE_SIZE_PTE = 0,
569 PE_SIZE_PMD,
570 PE_SIZE_PUD,
571};
572
1da177e4
LT
573/*
574 * These are the virtual MM functions - opening of an area, closing and
575 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 576 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
577 */
578struct vm_operations_struct {
579 void (*open)(struct vm_area_struct * area);
580 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
581 /* Called any time before splitting to check if it's allowed */
582 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
cd544fd1 583 int (*mremap)(struct vm_area_struct *area, unsigned long flags);
95bb7c42
SC
584 /*
585 * Called by mprotect() to make driver-specific permission
586 * checks before mprotect() is finalised. The VMA must not
587 * be modified. Returns 0 if eprotect() can proceed.
588 */
589 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
590 unsigned long end, unsigned long newflags);
1c8f4220
SJ
591 vm_fault_t (*fault)(struct vm_fault *vmf);
592 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
593 enum page_entry_size pe_size);
f9ce0be7 594 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 595 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 596 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
597
598 /* notification that a previously read-only page is about to become
599 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 600 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 601
dd906184 602 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 603 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 604
28b2ee20 605 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
606 * for use by special VMAs. See also generic_access_phys() for a generic
607 * implementation useful for any iomem mapping.
28b2ee20
RR
608 */
609 int (*access)(struct vm_area_struct *vma, unsigned long addr,
610 void *buf, int len, int write);
78d683e8
AL
611
612 /* Called by the /proc/PID/maps code to ask the vma whether it
613 * has a special name. Returning non-NULL will also cause this
614 * vma to be dumped unconditionally. */
615 const char *(*name)(struct vm_area_struct *vma);
616
1da177e4 617#ifdef CONFIG_NUMA
a6020ed7
LS
618 /*
619 * set_policy() op must add a reference to any non-NULL @new mempolicy
620 * to hold the policy upon return. Caller should pass NULL @new to
621 * remove a policy and fall back to surrounding context--i.e. do not
622 * install a MPOL_DEFAULT policy, nor the task or system default
623 * mempolicy.
624 */
1da177e4 625 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
626
627 /*
628 * get_policy() op must add reference [mpol_get()] to any policy at
629 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
630 * in mm/mempolicy.c will do this automatically.
631 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 632 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
633 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
634 * must return NULL--i.e., do not "fallback" to task or system default
635 * policy.
636 */
1da177e4
LT
637 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
638 unsigned long addr);
639#endif
667a0a06
DV
640 /*
641 * Called by vm_normal_page() for special PTEs to find the
642 * page for @addr. This is useful if the default behavior
643 * (using pte_page()) would not find the correct page.
644 */
645 struct page *(*find_special_page)(struct vm_area_struct *vma,
646 unsigned long addr);
1da177e4
LT
647};
648
027232da
KS
649static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
650{
bfd40eaf
KS
651 static const struct vm_operations_struct dummy_vm_ops = {};
652
a670468f 653 memset(vma, 0, sizeof(*vma));
027232da 654 vma->vm_mm = mm;
bfd40eaf 655 vma->vm_ops = &dummy_vm_ops;
027232da
KS
656 INIT_LIST_HEAD(&vma->anon_vma_chain);
657}
658
bfd40eaf
KS
659static inline void vma_set_anonymous(struct vm_area_struct *vma)
660{
661 vma->vm_ops = NULL;
662}
663
43675e6f
YS
664static inline bool vma_is_anonymous(struct vm_area_struct *vma)
665{
666 return !vma->vm_ops;
667}
668
222100ee
AK
669static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
670{
671 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
672
673 if (!maybe_stack)
674 return false;
675
676 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
677 VM_STACK_INCOMPLETE_SETUP)
678 return true;
679
680 return false;
681}
682
7969f226
AK
683static inline bool vma_is_foreign(struct vm_area_struct *vma)
684{
685 if (!current->mm)
686 return true;
687
688 if (current->mm != vma->vm_mm)
689 return true;
690
691 return false;
692}
3122e80e
AK
693
694static inline bool vma_is_accessible(struct vm_area_struct *vma)
695{
6cb4d9a2 696 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
697}
698
43675e6f
YS
699#ifdef CONFIG_SHMEM
700/*
701 * The vma_is_shmem is not inline because it is used only by slow
702 * paths in userfault.
703 */
704bool vma_is_shmem(struct vm_area_struct *vma);
705#else
706static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
707#endif
708
709int vma_is_stack_for_current(struct vm_area_struct *vma);
710
8b11ec1b
LT
711/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
712#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
713
1da177e4
LT
714struct mmu_gather;
715struct inode;
716
71e3aac0 717#include <linux/huge_mm.h>
1da177e4
LT
718
719/*
720 * Methods to modify the page usage count.
721 *
722 * What counts for a page usage:
723 * - cache mapping (page->mapping)
724 * - private data (page->private)
725 * - page mapped in a task's page tables, each mapping
726 * is counted separately
727 *
728 * Also, many kernel routines increase the page count before a critical
729 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
730 */
731
732/*
da6052f7 733 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 734 */
7c8ee9a8
NP
735static inline int put_page_testzero(struct page *page)
736{
fe896d18
JK
737 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
738 return page_ref_dec_and_test(page);
7c8ee9a8 739}
1da177e4
LT
740
741/*
7c8ee9a8
NP
742 * Try to grab a ref unless the page has a refcount of zero, return false if
743 * that is the case.
8e0861fa
AK
744 * This can be called when MMU is off so it must not access
745 * any of the virtual mappings.
1da177e4 746 */
7c8ee9a8
NP
747static inline int get_page_unless_zero(struct page *page)
748{
fe896d18 749 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 750}
1da177e4 751
53df8fdc 752extern int page_is_ram(unsigned long pfn);
124fe20d
DW
753
754enum {
755 REGION_INTERSECTS,
756 REGION_DISJOINT,
757 REGION_MIXED,
758};
759
1c29f25b
TK
760int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
761 unsigned long desc);
53df8fdc 762
48667e7a 763/* Support for virtually mapped pages */
b3bdda02
CL
764struct page *vmalloc_to_page(const void *addr);
765unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 766
0738c4bb
PM
767/*
768 * Determine if an address is within the vmalloc range
769 *
770 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
771 * is no special casing required.
772 */
9bd3bb67
AK
773
774#ifndef is_ioremap_addr
775#define is_ioremap_addr(x) is_vmalloc_addr(x)
776#endif
777
81ac3ad9 778#ifdef CONFIG_MMU
186525bd 779extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
780extern int is_vmalloc_or_module_addr(const void *x);
781#else
186525bd
IM
782static inline bool is_vmalloc_addr(const void *x)
783{
784 return false;
785}
934831d0 786static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
787{
788 return 0;
789}
790#endif
9e2779fa 791
a7c3e901
MH
792extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
793static inline void *kvmalloc(size_t size, gfp_t flags)
794{
795 return kvmalloc_node(size, flags, NUMA_NO_NODE);
796}
797static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
798{
799 return kvmalloc_node(size, flags | __GFP_ZERO, node);
800}
801static inline void *kvzalloc(size_t size, gfp_t flags)
802{
803 return kvmalloc(size, flags | __GFP_ZERO);
804}
805
752ade68
MH
806static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
807{
3b3b1a29
KC
808 size_t bytes;
809
810 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
811 return NULL;
812
3b3b1a29 813 return kvmalloc(bytes, flags);
752ade68
MH
814}
815
1c542f38
KC
816static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
817{
818 return kvmalloc_array(n, size, flags | __GFP_ZERO);
819}
820
39f1f78d 821extern void kvfree(const void *addr);
d4eaa283 822extern void kvfree_sensitive(const void *addr, size_t len);
39f1f78d 823
bac3cf4d 824static inline int head_compound_mapcount(struct page *head)
6dc5ea16
JH
825{
826 return atomic_read(compound_mapcount_ptr(head)) + 1;
827}
828
6988f31d
KK
829/*
830 * Mapcount of compound page as a whole, does not include mapped sub-pages.
831 *
832 * Must be called only for compound pages or any their tail sub-pages.
833 */
53f9263b
KS
834static inline int compound_mapcount(struct page *page)
835{
5f527c2b 836 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 837 page = compound_head(page);
bac3cf4d 838 return head_compound_mapcount(page);
53f9263b
KS
839}
840
70b50f94
AA
841/*
842 * The atomic page->_mapcount, starts from -1: so that transitions
843 * both from it and to it can be tracked, using atomic_inc_and_test
844 * and atomic_add_negative(-1).
845 */
22b751c3 846static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
847{
848 atomic_set(&(page)->_mapcount, -1);
849}
850
b20ce5e0
KS
851int __page_mapcount(struct page *page);
852
6988f31d
KK
853/*
854 * Mapcount of 0-order page; when compound sub-page, includes
855 * compound_mapcount().
856 *
857 * Result is undefined for pages which cannot be mapped into userspace.
858 * For example SLAB or special types of pages. See function page_has_type().
859 * They use this place in struct page differently.
860 */
70b50f94
AA
861static inline int page_mapcount(struct page *page)
862{
b20ce5e0
KS
863 if (unlikely(PageCompound(page)))
864 return __page_mapcount(page);
865 return atomic_read(&page->_mapcount) + 1;
866}
867
868#ifdef CONFIG_TRANSPARENT_HUGEPAGE
869int total_mapcount(struct page *page);
6d0a07ed 870int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
871#else
872static inline int total_mapcount(struct page *page)
873{
874 return page_mapcount(page);
70b50f94 875}
6d0a07ed
AA
876static inline int page_trans_huge_mapcount(struct page *page,
877 int *total_mapcount)
878{
879 int mapcount = page_mapcount(page);
880 if (total_mapcount)
881 *total_mapcount = mapcount;
882 return mapcount;
883}
b20ce5e0 884#endif
70b50f94 885
b49af68f
CL
886static inline struct page *virt_to_head_page(const void *x)
887{
888 struct page *page = virt_to_page(x);
ccaafd7f 889
1d798ca3 890 return compound_head(page);
b49af68f
CL
891}
892
ddc58f27
KS
893void __put_page(struct page *page);
894
1d7ea732 895void put_pages_list(struct list_head *pages);
1da177e4 896
8dfcc9ba 897void split_page(struct page *page, unsigned int order);
8dfcc9ba 898
33f2ef89
AW
899/*
900 * Compound pages have a destructor function. Provide a
901 * prototype for that function and accessor functions.
f1e61557 902 * These are _only_ valid on the head of a compound page.
33f2ef89 903 */
f1e61557
KS
904typedef void compound_page_dtor(struct page *);
905
906/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
907enum compound_dtor_id {
908 NULL_COMPOUND_DTOR,
909 COMPOUND_PAGE_DTOR,
910#ifdef CONFIG_HUGETLB_PAGE
911 HUGETLB_PAGE_DTOR,
9a982250
KS
912#endif
913#ifdef CONFIG_TRANSPARENT_HUGEPAGE
914 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
915#endif
916 NR_COMPOUND_DTORS,
917};
ae70eddd 918extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
919
920static inline void set_compound_page_dtor(struct page *page,
f1e61557 921 enum compound_dtor_id compound_dtor)
33f2ef89 922{
f1e61557
KS
923 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
924 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
925}
926
ff45fc3c 927static inline void destroy_compound_page(struct page *page)
33f2ef89 928{
f1e61557 929 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 930 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
931}
932
d00181b9 933static inline unsigned int compound_order(struct page *page)
d85f3385 934{
6d777953 935 if (!PageHead(page))
d85f3385 936 return 0;
e4b294c2 937 return page[1].compound_order;
d85f3385
CL
938}
939
47e29d32
JH
940static inline bool hpage_pincount_available(struct page *page)
941{
942 /*
943 * Can the page->hpage_pinned_refcount field be used? That field is in
944 * the 3rd page of the compound page, so the smallest (2-page) compound
945 * pages cannot support it.
946 */
947 page = compound_head(page);
948 return PageCompound(page) && compound_order(page) > 1;
949}
950
bac3cf4d 951static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
952{
953 return atomic_read(compound_pincount_ptr(head));
954}
955
47e29d32
JH
956static inline int compound_pincount(struct page *page)
957{
958 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
959 page = compound_head(page);
bac3cf4d 960 return head_compound_pincount(page);
47e29d32
JH
961}
962
f1e61557 963static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 964{
e4b294c2 965 page[1].compound_order = order;
1378a5ee 966 page[1].compound_nr = 1U << order;
d85f3385
CL
967}
968
d8c6546b
MWO
969/* Returns the number of pages in this potentially compound page. */
970static inline unsigned long compound_nr(struct page *page)
971{
1378a5ee
MWO
972 if (!PageHead(page))
973 return 1;
974 return page[1].compound_nr;
d8c6546b
MWO
975}
976
a50b854e
MWO
977/* Returns the number of bytes in this potentially compound page. */
978static inline unsigned long page_size(struct page *page)
979{
980 return PAGE_SIZE << compound_order(page);
981}
982
94ad9338
MWO
983/* Returns the number of bits needed for the number of bytes in a page */
984static inline unsigned int page_shift(struct page *page)
985{
986 return PAGE_SHIFT + compound_order(page);
987}
988
9a982250
KS
989void free_compound_page(struct page *page);
990
3dece370 991#ifdef CONFIG_MMU
14fd403f
AA
992/*
993 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
994 * servicing faults for write access. In the normal case, do always want
995 * pte_mkwrite. But get_user_pages can cause write faults for mappings
996 * that do not have writing enabled, when used by access_process_vm.
997 */
998static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
999{
1000 if (likely(vma->vm_flags & VM_WRITE))
1001 pte = pte_mkwrite(pte);
1002 return pte;
1003}
8c6e50b0 1004
f9ce0be7 1005vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 1006void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 1007
2b740303
SJ
1008vm_fault_t finish_fault(struct vm_fault *vmf);
1009vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1010#endif
14fd403f 1011
1da177e4
LT
1012/*
1013 * Multiple processes may "see" the same page. E.g. for untouched
1014 * mappings of /dev/null, all processes see the same page full of
1015 * zeroes, and text pages of executables and shared libraries have
1016 * only one copy in memory, at most, normally.
1017 *
1018 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1019 * page_count() == 0 means the page is free. page->lru is then used for
1020 * freelist management in the buddy allocator.
da6052f7 1021 * page_count() > 0 means the page has been allocated.
1da177e4 1022 *
da6052f7
NP
1023 * Pages are allocated by the slab allocator in order to provide memory
1024 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1025 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1026 * unless a particular usage is carefully commented. (the responsibility of
1027 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1028 *
da6052f7
NP
1029 * A page may be used by anyone else who does a __get_free_page().
1030 * In this case, page_count still tracks the references, and should only
1031 * be used through the normal accessor functions. The top bits of page->flags
1032 * and page->virtual store page management information, but all other fields
1033 * are unused and could be used privately, carefully. The management of this
1034 * page is the responsibility of the one who allocated it, and those who have
1035 * subsequently been given references to it.
1036 *
1037 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1038 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1039 * The following discussion applies only to them.
1040 *
da6052f7
NP
1041 * A pagecache page contains an opaque `private' member, which belongs to the
1042 * page's address_space. Usually, this is the address of a circular list of
1043 * the page's disk buffers. PG_private must be set to tell the VM to call
1044 * into the filesystem to release these pages.
1da177e4 1045 *
da6052f7
NP
1046 * A page may belong to an inode's memory mapping. In this case, page->mapping
1047 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1048 * in units of PAGE_SIZE.
1da177e4 1049 *
da6052f7
NP
1050 * If pagecache pages are not associated with an inode, they are said to be
1051 * anonymous pages. These may become associated with the swapcache, and in that
1052 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1053 *
da6052f7
NP
1054 * In either case (swapcache or inode backed), the pagecache itself holds one
1055 * reference to the page. Setting PG_private should also increment the
1056 * refcount. The each user mapping also has a reference to the page.
1da177e4 1057 *
da6052f7 1058 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1059 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1060 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1061 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1062 *
da6052f7 1063 * All pagecache pages may be subject to I/O:
1da177e4
LT
1064 * - inode pages may need to be read from disk,
1065 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1066 * to be written back to the inode on disk,
1067 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1068 * modified may need to be swapped out to swap space and (later) to be read
1069 * back into memory.
1da177e4
LT
1070 */
1071
1072/*
1073 * The zone field is never updated after free_area_init_core()
1074 * sets it, so none of the operations on it need to be atomic.
1da177e4 1075 */
348f8b6c 1076
90572890 1077/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1078#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1079#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1080#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1081#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1082#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1083
348f8b6c 1084/*
25985edc 1085 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1086 * sections we define the shift as 0; that plus a 0 mask ensures
1087 * the compiler will optimise away reference to them.
1088 */
d41dee36
AW
1089#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1090#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1091#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1092#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1093#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1094
bce54bbf
WD
1095/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1096#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1097#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1098#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1099 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1100#else
89689ae7 1101#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1102#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1103 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1104#endif
1105
bd8029b6 1106#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1107
d41dee36
AW
1108#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1109#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1110#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1111#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1112#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1113#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1114
33dd4e0e 1115static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1116{
c403f6a3 1117 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1118 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1119}
1da177e4 1120
260ae3f7
DW
1121#ifdef CONFIG_ZONE_DEVICE
1122static inline bool is_zone_device_page(const struct page *page)
1123{
1124 return page_zonenum(page) == ZONE_DEVICE;
1125}
966cf44f
AD
1126extern void memmap_init_zone_device(struct zone *, unsigned long,
1127 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1128#else
1129static inline bool is_zone_device_page(const struct page *page)
1130{
1131 return false;
1132}
7b2d55d2 1133#endif
5042db43 1134
e7638488 1135#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1136void free_devmap_managed_page(struct page *page);
e7638488 1137DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1138
1139static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1140{
1141 if (!static_branch_unlikely(&devmap_managed_key))
1142 return false;
1143 if (!is_zone_device_page(page))
1144 return false;
1145 switch (page->pgmap->type) {
1146 case MEMORY_DEVICE_PRIVATE:
e7638488 1147 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1148 return true;
1149 default:
1150 break;
1151 }
1152 return false;
1153}
1154
07d80269
JH
1155void put_devmap_managed_page(struct page *page);
1156
e7638488 1157#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1158static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1159{
1160 return false;
1161}
07d80269
JH
1162
1163static inline void put_devmap_managed_page(struct page *page)
1164{
1165}
7588adf8 1166#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1167
6b368cd4
JG
1168static inline bool is_device_private_page(const struct page *page)
1169{
7588adf8
RM
1170 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1171 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1172 is_zone_device_page(page) &&
1173 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1174}
e7638488 1175
52916982
LG
1176static inline bool is_pci_p2pdma_page(const struct page *page)
1177{
7588adf8
RM
1178 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1179 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1180 is_zone_device_page(page) &&
1181 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1182}
7b2d55d2 1183
f958d7b5
LT
1184/* 127: arbitrary random number, small enough to assemble well */
1185#define page_ref_zero_or_close_to_overflow(page) \
1186 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1187
3565fce3
DW
1188static inline void get_page(struct page *page)
1189{
1190 page = compound_head(page);
1191 /*
1192 * Getting a normal page or the head of a compound page
0139aa7b 1193 * requires to already have an elevated page->_refcount.
3565fce3 1194 */
f958d7b5 1195 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1196 page_ref_inc(page);
3565fce3
DW
1197}
1198
3faa52c0 1199bool __must_check try_grab_page(struct page *page, unsigned int flags);
0fa5bc40
JM
1200__maybe_unused struct page *try_grab_compound_head(struct page *page, int refs,
1201 unsigned int flags);
1202
3faa52c0 1203
88b1a17d
LT
1204static inline __must_check bool try_get_page(struct page *page)
1205{
1206 page = compound_head(page);
1207 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1208 return false;
fe896d18 1209 page_ref_inc(page);
88b1a17d 1210 return true;
3565fce3
DW
1211}
1212
1213static inline void put_page(struct page *page)
1214{
1215 page = compound_head(page);
1216
7b2d55d2 1217 /*
e7638488
DW
1218 * For devmap managed pages we need to catch refcount transition from
1219 * 2 to 1, when refcount reach one it means the page is free and we
1220 * need to inform the device driver through callback. See
7b2d55d2
JG
1221 * include/linux/memremap.h and HMM for details.
1222 */
07d80269
JH
1223 if (page_is_devmap_managed(page)) {
1224 put_devmap_managed_page(page);
7b2d55d2 1225 return;
07d80269 1226 }
7b2d55d2 1227
3565fce3
DW
1228 if (put_page_testzero(page))
1229 __put_page(page);
3565fce3
DW
1230}
1231
3faa52c0
JH
1232/*
1233 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1234 * the page's refcount so that two separate items are tracked: the original page
1235 * reference count, and also a new count of how many pin_user_pages() calls were
1236 * made against the page. ("gup-pinned" is another term for the latter).
1237 *
1238 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1239 * distinct from normal pages. As such, the unpin_user_page() call (and its
1240 * variants) must be used in order to release gup-pinned pages.
1241 *
1242 * Choice of value:
1243 *
1244 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1245 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1246 * simpler, due to the fact that adding an even power of two to the page
1247 * refcount has the effect of using only the upper N bits, for the code that
1248 * counts up using the bias value. This means that the lower bits are left for
1249 * the exclusive use of the original code that increments and decrements by one
1250 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1251 *
3faa52c0
JH
1252 * Of course, once the lower bits overflow into the upper bits (and this is
1253 * OK, because subtraction recovers the original values), then visual inspection
1254 * no longer suffices to directly view the separate counts. However, for normal
1255 * applications that don't have huge page reference counts, this won't be an
1256 * issue.
fc1d8e7c 1257 *
3faa52c0
JH
1258 * Locking: the lockless algorithm described in page_cache_get_speculative()
1259 * and page_cache_gup_pin_speculative() provides safe operation for
1260 * get_user_pages and page_mkclean and other calls that race to set up page
1261 * table entries.
fc1d8e7c 1262 */
3faa52c0 1263#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1264
3faa52c0 1265void unpin_user_page(struct page *page);
f1f6a7dd
JH
1266void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1267 bool make_dirty);
458a4f78
JM
1268void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1269 bool make_dirty);
f1f6a7dd 1270void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1271
3faa52c0
JH
1272/**
1273 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1274 *
1275 * This function checks if a page has been pinned via a call to
1276 * pin_user_pages*().
1277 *
1278 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1279 * because it means "definitely not pinned for DMA", but true means "probably
1280 * pinned for DMA, but possibly a false positive due to having at least
1281 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1282 *
1283 * False positives are OK, because: a) it's unlikely for a page to get that many
1284 * refcounts, and b) all the callers of this routine are expected to be able to
1285 * deal gracefully with a false positive.
1286 *
47e29d32
JH
1287 * For huge pages, the result will be exactly correct. That's because we have
1288 * more tracking data available: the 3rd struct page in the compound page is
1289 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1290 * scheme).
1291 *
72ef5e52 1292 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0
JH
1293 *
1294 * @page: pointer to page to be queried.
1295 * @Return: True, if it is likely that the page has been "dma-pinned".
1296 * False, if the page is definitely not dma-pinned.
1297 */
1298static inline bool page_maybe_dma_pinned(struct page *page)
1299{
47e29d32
JH
1300 if (hpage_pincount_available(page))
1301 return compound_pincount(page) > 0;
1302
3faa52c0
JH
1303 /*
1304 * page_ref_count() is signed. If that refcount overflows, then
1305 * page_ref_count() returns a negative value, and callers will avoid
1306 * further incrementing the refcount.
1307 *
1308 * Here, for that overflow case, use the signed bit to count a little
1309 * bit higher via unsigned math, and thus still get an accurate result.
1310 */
1311 return ((unsigned int)page_ref_count(compound_head(page))) >=
1312 GUP_PIN_COUNTING_BIAS;
1313}
1314
97a7e473
PX
1315static inline bool is_cow_mapping(vm_flags_t flags)
1316{
1317 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1318}
1319
1320/*
1321 * This should most likely only be called during fork() to see whether we
1322 * should break the cow immediately for a page on the src mm.
1323 */
1324static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1325 struct page *page)
1326{
1327 if (!is_cow_mapping(vma->vm_flags))
1328 return false;
1329
1330 if (!atomic_read(&vma->vm_mm->has_pinned))
1331 return false;
1332
1333 return page_maybe_dma_pinned(page);
1334}
1335
9127ab4f
CS
1336#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1337#define SECTION_IN_PAGE_FLAGS
1338#endif
1339
89689ae7 1340/*
7a8010cd
VB
1341 * The identification function is mainly used by the buddy allocator for
1342 * determining if two pages could be buddies. We are not really identifying
1343 * the zone since we could be using the section number id if we do not have
1344 * node id available in page flags.
1345 * We only guarantee that it will return the same value for two combinable
1346 * pages in a zone.
89689ae7 1347 */
cb2b95e1
AW
1348static inline int page_zone_id(struct page *page)
1349{
89689ae7 1350 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1351}
1352
89689ae7 1353#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1354extern int page_to_nid(const struct page *page);
89689ae7 1355#else
33dd4e0e 1356static inline int page_to_nid(const struct page *page)
d41dee36 1357{
f165b378
PT
1358 struct page *p = (struct page *)page;
1359
1360 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1361}
89689ae7
CL
1362#endif
1363
57e0a030 1364#ifdef CONFIG_NUMA_BALANCING
90572890 1365static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1366{
90572890 1367 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1368}
1369
90572890 1370static inline int cpupid_to_pid(int cpupid)
57e0a030 1371{
90572890 1372 return cpupid & LAST__PID_MASK;
57e0a030 1373}
b795854b 1374
90572890 1375static inline int cpupid_to_cpu(int cpupid)
b795854b 1376{
90572890 1377 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1378}
1379
90572890 1380static inline int cpupid_to_nid(int cpupid)
b795854b 1381{
90572890 1382 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1383}
1384
90572890 1385static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1386{
90572890 1387 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1388}
1389
90572890 1390static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1391{
90572890 1392 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1393}
1394
8c8a743c
PZ
1395static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1396{
1397 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1398}
1399
1400#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1401#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1402static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1403{
1ae71d03 1404 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1405}
90572890
PZ
1406
1407static inline int page_cpupid_last(struct page *page)
1408{
1409 return page->_last_cpupid;
1410}
1411static inline void page_cpupid_reset_last(struct page *page)
b795854b 1412{
1ae71d03 1413 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1414}
1415#else
90572890 1416static inline int page_cpupid_last(struct page *page)
75980e97 1417{
90572890 1418 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1419}
1420
90572890 1421extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1422
90572890 1423static inline void page_cpupid_reset_last(struct page *page)
75980e97 1424{
09940a4f 1425 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1426}
90572890
PZ
1427#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1428#else /* !CONFIG_NUMA_BALANCING */
1429static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1430{
90572890 1431 return page_to_nid(page); /* XXX */
57e0a030
MG
1432}
1433
90572890 1434static inline int page_cpupid_last(struct page *page)
57e0a030 1435{
90572890 1436 return page_to_nid(page); /* XXX */
57e0a030
MG
1437}
1438
90572890 1439static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1440{
1441 return -1;
1442}
1443
90572890 1444static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1445{
1446 return -1;
1447}
1448
90572890 1449static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1450{
1451 return -1;
1452}
1453
90572890
PZ
1454static inline int cpu_pid_to_cpupid(int nid, int pid)
1455{
1456 return -1;
1457}
1458
1459static inline bool cpupid_pid_unset(int cpupid)
b795854b 1460{
2b787449 1461 return true;
b795854b
MG
1462}
1463
90572890 1464static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1465{
1466}
8c8a743c
PZ
1467
1468static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1469{
1470 return false;
1471}
90572890 1472#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1473
2e903b91 1474#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1475
cf10bd4c
AK
1476/*
1477 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1478 * setting tags for all pages to native kernel tag value 0xff, as the default
1479 * value 0x00 maps to 0xff.
1480 */
1481
2813b9c0
AK
1482static inline u8 page_kasan_tag(const struct page *page)
1483{
cf10bd4c
AK
1484 u8 tag = 0xff;
1485
1486 if (kasan_enabled()) {
1487 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1488 tag ^= 0xff;
1489 }
1490
1491 return tag;
2813b9c0
AK
1492}
1493
1494static inline void page_kasan_tag_set(struct page *page, u8 tag)
1495{
34303244 1496 if (kasan_enabled()) {
cf10bd4c 1497 tag ^= 0xff;
34303244
AK
1498 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1499 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1500 }
2813b9c0
AK
1501}
1502
1503static inline void page_kasan_tag_reset(struct page *page)
1504{
34303244
AK
1505 if (kasan_enabled())
1506 page_kasan_tag_set(page, 0xff);
2813b9c0 1507}
34303244
AK
1508
1509#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1510
2813b9c0
AK
1511static inline u8 page_kasan_tag(const struct page *page)
1512{
1513 return 0xff;
1514}
1515
1516static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1517static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1518
1519#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1520
33dd4e0e 1521static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1522{
1523 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1524}
1525
75ef7184
MG
1526static inline pg_data_t *page_pgdat(const struct page *page)
1527{
1528 return NODE_DATA(page_to_nid(page));
1529}
1530
9127ab4f 1531#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1532static inline void set_page_section(struct page *page, unsigned long section)
1533{
1534 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1535 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1536}
1537
aa462abe 1538static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1539{
1540 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1541}
308c05e3 1542#endif
d41dee36 1543
2f1b6248 1544static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1545{
1546 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1547 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1548}
2f1b6248 1549
348f8b6c
DH
1550static inline void set_page_node(struct page *page, unsigned long node)
1551{
1552 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1553 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1554}
89689ae7 1555
2f1b6248 1556static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1557 unsigned long node, unsigned long pfn)
1da177e4 1558{
348f8b6c
DH
1559 set_page_zone(page, zone);
1560 set_page_node(page, node);
9127ab4f 1561#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1562 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1563#endif
1da177e4
LT
1564}
1565
f6ac2354
CL
1566/*
1567 * Some inline functions in vmstat.h depend on page_zone()
1568 */
1569#include <linux/vmstat.h>
1570
33dd4e0e 1571static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1572{
1dff8083 1573 return page_to_virt(page);
1da177e4
LT
1574}
1575
1576#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1577#define HASHED_PAGE_VIRTUAL
1578#endif
1579
1580#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1581static inline void *page_address(const struct page *page)
1582{
1583 return page->virtual;
1584}
1585static inline void set_page_address(struct page *page, void *address)
1586{
1587 page->virtual = address;
1588}
1da177e4
LT
1589#define page_address_init() do { } while(0)
1590#endif
1591
1592#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1593void *page_address(const struct page *page);
1da177e4
LT
1594void set_page_address(struct page *page, void *virtual);
1595void page_address_init(void);
1596#endif
1597
1598#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1599#define page_address(page) lowmem_page_address(page)
1600#define set_page_address(page, address) do { } while(0)
1601#define page_address_init() do { } while(0)
1602#endif
1603
e39155ea
KS
1604extern void *page_rmapping(struct page *page);
1605extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1606extern struct address_space *page_mapping(struct page *page);
1da177e4 1607
f981c595
MG
1608extern struct address_space *__page_file_mapping(struct page *);
1609
1610static inline
1611struct address_space *page_file_mapping(struct page *page)
1612{
1613 if (unlikely(PageSwapCache(page)))
1614 return __page_file_mapping(page);
1615
1616 return page->mapping;
1617}
1618
f6ab1f7f
HY
1619extern pgoff_t __page_file_index(struct page *page);
1620
1da177e4
LT
1621/*
1622 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1623 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1624 */
1625static inline pgoff_t page_index(struct page *page)
1626{
1627 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1628 return __page_file_index(page);
1da177e4
LT
1629 return page->index;
1630}
1631
1aa8aea5 1632bool page_mapped(struct page *page);
bda807d4 1633struct address_space *page_mapping(struct page *page);
1da177e4 1634
2f064f34
MH
1635/*
1636 * Return true only if the page has been allocated with
1637 * ALLOC_NO_WATERMARKS and the low watermark was not
1638 * met implying that the system is under some pressure.
1639 */
1d7bab6a 1640static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1641{
1642 /*
1643 * Page index cannot be this large so this must be
1644 * a pfmemalloc page.
1645 */
1646 return page->index == -1UL;
1647}
1648
1649/*
1650 * Only to be called by the page allocator on a freshly allocated
1651 * page.
1652 */
1653static inline void set_page_pfmemalloc(struct page *page)
1654{
1655 page->index = -1UL;
1656}
1657
1658static inline void clear_page_pfmemalloc(struct page *page)
1659{
1660 page->index = 0;
1661}
1662
1c0fe6e3
NP
1663/*
1664 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1665 */
1666extern void pagefault_out_of_memory(void);
1667
1da177e4 1668#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1669#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1da177e4 1670
ddd588b5 1671/*
7bf02ea2 1672 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1673 * various contexts.
1674 */
4b59e6c4 1675#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1676
9af744d7 1677extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1678
710ec38b 1679#ifdef CONFIG_MMU
7f43add4 1680extern bool can_do_mlock(void);
710ec38b
AB
1681#else
1682static inline bool can_do_mlock(void) { return false; }
1683#endif
1da177e4
LT
1684extern int user_shm_lock(size_t, struct user_struct *);
1685extern void user_shm_unlock(size_t, struct user_struct *);
1686
1687/*
1688 * Parameter block passed down to zap_pte_range in exceptional cases.
1689 */
1690struct zap_details {
1da177e4
LT
1691 struct address_space *check_mapping; /* Check page->mapping if set */
1692 pgoff_t first_index; /* Lowest page->index to unmap */
1693 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1694};
1695
25b2995a
CH
1696struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1697 pte_t pte);
28093f9f
GS
1698struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1699 pmd_t pmd);
7e675137 1700
27d036e3
LR
1701void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1702 unsigned long size);
14f5ff5d 1703void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1704 unsigned long size);
4f74d2c8
LT
1705void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1706 unsigned long start, unsigned long end);
e6473092 1707
ac46d4f3
JG
1708struct mmu_notifier_range;
1709
42b77728 1710void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1711 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1712int
1713copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
9fd6dad1
PB
1714int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1715 struct mmu_notifier_range *range, pte_t **ptepp,
1716 pmd_t **pmdpp, spinlock_t **ptlp);
ff5c19ed 1717int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 1718 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
1719int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1720 unsigned long *pfn);
d87fe660 1721int follow_phys(struct vm_area_struct *vma, unsigned long address,
1722 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1723int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1724 void *buf, int len, int write);
1da177e4 1725
7caef267 1726extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1727extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1728void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1729void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1730int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1731int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1732int invalidate_inode_page(struct page *page);
1733
7ee1dd3f 1734#ifdef CONFIG_MMU
2b740303 1735extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1736 unsigned long address, unsigned int flags,
1737 struct pt_regs *regs);
64019a2e 1738extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1739 unsigned long address, unsigned int fault_flags,
1740 bool *unlocked);
977fbdcd
MW
1741void unmap_mapping_pages(struct address_space *mapping,
1742 pgoff_t start, pgoff_t nr, bool even_cows);
1743void unmap_mapping_range(struct address_space *mapping,
1744 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1745#else
2b740303 1746static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1747 unsigned long address, unsigned int flags,
1748 struct pt_regs *regs)
7ee1dd3f
DH
1749{
1750 /* should never happen if there's no MMU */
1751 BUG();
1752 return VM_FAULT_SIGBUS;
1753}
64019a2e 1754static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1755 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1756{
1757 /* should never happen if there's no MMU */
1758 BUG();
1759 return -EFAULT;
1760}
977fbdcd
MW
1761static inline void unmap_mapping_pages(struct address_space *mapping,
1762 pgoff_t start, pgoff_t nr, bool even_cows) { }
1763static inline void unmap_mapping_range(struct address_space *mapping,
1764 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1765#endif
f33ea7f4 1766
977fbdcd
MW
1767static inline void unmap_shared_mapping_range(struct address_space *mapping,
1768 loff_t const holebegin, loff_t const holelen)
1769{
1770 unmap_mapping_range(mapping, holebegin, holelen, 0);
1771}
1772
1773extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1774 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1775extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1776 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1777extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1778 void *buf, int len, unsigned int gup_flags);
1da177e4 1779
64019a2e 1780long get_user_pages_remote(struct mm_struct *mm,
1e987790 1781 unsigned long start, unsigned long nr_pages,
9beae1ea 1782 unsigned int gup_flags, struct page **pages,
5b56d49f 1783 struct vm_area_struct **vmas, int *locked);
64019a2e 1784long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1785 unsigned long start, unsigned long nr_pages,
1786 unsigned int gup_flags, struct page **pages,
1787 struct vm_area_struct **vmas, int *locked);
c12d2da5 1788long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1789 unsigned int gup_flags, struct page **pages,
cde70140 1790 struct vm_area_struct **vmas);
eddb1c22
JH
1791long pin_user_pages(unsigned long start, unsigned long nr_pages,
1792 unsigned int gup_flags, struct page **pages,
1793 struct vm_area_struct **vmas);
c12d2da5 1794long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1795 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1796long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1797 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1798long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1799 struct page **pages, unsigned int gup_flags);
91429023
JH
1800long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1801 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1802
73b0140b
IW
1803int get_user_pages_fast(unsigned long start, int nr_pages,
1804 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1805int pin_user_pages_fast(unsigned long start, int nr_pages,
1806 unsigned int gup_flags, struct page **pages);
8025e5dd 1807
79eb597c
DJ
1808int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1809int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1810 struct task_struct *task, bool bypass_rlim);
1811
18022c5d
MG
1812struct kvec;
1813int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1814 struct page **pages);
1815int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1816struct page *get_dump_page(unsigned long addr);
1da177e4 1817
cf9a2ae8 1818extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1819extern void do_invalidatepage(struct page *page, unsigned int offset,
1820 unsigned int length);
cf9a2ae8 1821
f82b3764 1822void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1823int __set_page_dirty_nobuffers(struct page *page);
76719325 1824int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1825int redirty_page_for_writepage(struct writeback_control *wbc,
1826 struct page *page);
62cccb8c 1827void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1828void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1829 struct bdi_writeback *wb);
b3c97528 1830int set_page_dirty(struct page *page);
1da177e4 1831int set_page_dirty_lock(struct page *page);
736304f3
JK
1832void __cancel_dirty_page(struct page *page);
1833static inline void cancel_dirty_page(struct page *page)
1834{
1835 /* Avoid atomic ops, locking, etc. when not actually needed. */
1836 if (PageDirty(page))
1837 __cancel_dirty_page(page);
1838}
1da177e4 1839int clear_page_dirty_for_io(struct page *page);
b9ea2515 1840
a9090253 1841int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1842
b6a2fea3
OW
1843extern unsigned long move_page_tables(struct vm_area_struct *vma,
1844 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1845 unsigned long new_addr, unsigned long len,
1846 bool need_rmap_locks);
58705444
PX
1847
1848/*
1849 * Flags used by change_protection(). For now we make it a bitmap so
1850 * that we can pass in multiple flags just like parameters. However
1851 * for now all the callers are only use one of the flags at the same
1852 * time.
1853 */
1854/* Whether we should allow dirty bit accounting */
1855#define MM_CP_DIRTY_ACCT (1UL << 0)
1856/* Whether this protection change is for NUMA hints */
1857#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1858/* Whether this change is for write protecting */
1859#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1860#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1861#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1862 MM_CP_UFFD_WP_RESOLVE)
58705444 1863
7da4d641
PZ
1864extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1865 unsigned long end, pgprot_t newprot,
58705444 1866 unsigned long cp_flags);
b6a2fea3
OW
1867extern int mprotect_fixup(struct vm_area_struct *vma,
1868 struct vm_area_struct **pprev, unsigned long start,
1869 unsigned long end, unsigned long newflags);
1da177e4 1870
465a454f
PZ
1871/*
1872 * doesn't attempt to fault and will return short.
1873 */
dadbb612
SJ
1874int get_user_pages_fast_only(unsigned long start, int nr_pages,
1875 unsigned int gup_flags, struct page **pages);
104acc32
JH
1876int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1877 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1878
1879static inline bool get_user_page_fast_only(unsigned long addr,
1880 unsigned int gup_flags, struct page **pagep)
1881{
1882 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1883}
d559db08
KH
1884/*
1885 * per-process(per-mm_struct) statistics.
1886 */
d559db08
KH
1887static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1888{
69c97823
KK
1889 long val = atomic_long_read(&mm->rss_stat.count[member]);
1890
1891#ifdef SPLIT_RSS_COUNTING
1892 /*
1893 * counter is updated in asynchronous manner and may go to minus.
1894 * But it's never be expected number for users.
1895 */
1896 if (val < 0)
1897 val = 0;
172703b0 1898#endif
69c97823
KK
1899 return (unsigned long)val;
1900}
d559db08 1901
e4dcad20 1902void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1903
d559db08
KH
1904static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1905{
b3d1411b
JFG
1906 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1907
e4dcad20 1908 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1909}
1910
1911static inline void inc_mm_counter(struct mm_struct *mm, int member)
1912{
b3d1411b
JFG
1913 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1914
e4dcad20 1915 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1916}
1917
1918static inline void dec_mm_counter(struct mm_struct *mm, int member)
1919{
b3d1411b
JFG
1920 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1921
e4dcad20 1922 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1923}
1924
eca56ff9
JM
1925/* Optimized variant when page is already known not to be PageAnon */
1926static inline int mm_counter_file(struct page *page)
1927{
1928 if (PageSwapBacked(page))
1929 return MM_SHMEMPAGES;
1930 return MM_FILEPAGES;
1931}
1932
1933static inline int mm_counter(struct page *page)
1934{
1935 if (PageAnon(page))
1936 return MM_ANONPAGES;
1937 return mm_counter_file(page);
1938}
1939
d559db08
KH
1940static inline unsigned long get_mm_rss(struct mm_struct *mm)
1941{
1942 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1943 get_mm_counter(mm, MM_ANONPAGES) +
1944 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1945}
1946
1947static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1948{
1949 return max(mm->hiwater_rss, get_mm_rss(mm));
1950}
1951
1952static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1953{
1954 return max(mm->hiwater_vm, mm->total_vm);
1955}
1956
1957static inline void update_hiwater_rss(struct mm_struct *mm)
1958{
1959 unsigned long _rss = get_mm_rss(mm);
1960
1961 if ((mm)->hiwater_rss < _rss)
1962 (mm)->hiwater_rss = _rss;
1963}
1964
1965static inline void update_hiwater_vm(struct mm_struct *mm)
1966{
1967 if (mm->hiwater_vm < mm->total_vm)
1968 mm->hiwater_vm = mm->total_vm;
1969}
1970
695f0559
PC
1971static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1972{
1973 mm->hiwater_rss = get_mm_rss(mm);
1974}
1975
d559db08
KH
1976static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1977 struct mm_struct *mm)
1978{
1979 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1980
1981 if (*maxrss < hiwater_rss)
1982 *maxrss = hiwater_rss;
1983}
1984
53bddb4e 1985#if defined(SPLIT_RSS_COUNTING)
05af2e10 1986void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1987#else
05af2e10 1988static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1989{
1990}
1991#endif
465a454f 1992
78e7c5af
AK
1993#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1994static inline int pte_special(pte_t pte)
1995{
1996 return 0;
1997}
1998
1999static inline pte_t pte_mkspecial(pte_t pte)
2000{
2001 return pte;
2002}
2003#endif
2004
17596731 2005#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2006static inline int pte_devmap(pte_t pte)
2007{
2008 return 0;
2009}
2010#endif
2011
6d2329f8 2012int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 2013
25ca1d6c
NK
2014extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2015 spinlock_t **ptl);
2016static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2017 spinlock_t **ptl)
2018{
2019 pte_t *ptep;
2020 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2021 return ptep;
2022}
c9cfcddf 2023
c2febafc
KS
2024#ifdef __PAGETABLE_P4D_FOLDED
2025static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2026 unsigned long address)
2027{
2028 return 0;
2029}
2030#else
2031int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2032#endif
2033
b4e98d9a 2034#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2035static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2036 unsigned long address)
2037{
2038 return 0;
2039}
b4e98d9a
KS
2040static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2041static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2042
5f22df00 2043#else
c2febafc 2044int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2045
b4e98d9a
KS
2046static inline void mm_inc_nr_puds(struct mm_struct *mm)
2047{
6d212db1
MS
2048 if (mm_pud_folded(mm))
2049 return;
af5b0f6a 2050 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2051}
2052
2053static inline void mm_dec_nr_puds(struct mm_struct *mm)
2054{
6d212db1
MS
2055 if (mm_pud_folded(mm))
2056 return;
af5b0f6a 2057 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2058}
5f22df00
NP
2059#endif
2060
2d2f5119 2061#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2062static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2063 unsigned long address)
2064{
2065 return 0;
2066}
dc6c9a35 2067
dc6c9a35
KS
2068static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2069static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2070
5f22df00 2071#else
1bb3630e 2072int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2073
dc6c9a35
KS
2074static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2075{
6d212db1
MS
2076 if (mm_pmd_folded(mm))
2077 return;
af5b0f6a 2078 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2079}
2080
2081static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2082{
6d212db1
MS
2083 if (mm_pmd_folded(mm))
2084 return;
af5b0f6a 2085 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2086}
5f22df00
NP
2087#endif
2088
c4812909 2089#ifdef CONFIG_MMU
af5b0f6a 2090static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2091{
af5b0f6a 2092 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2093}
2094
af5b0f6a 2095static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2096{
af5b0f6a 2097 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2098}
2099
2100static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2101{
af5b0f6a 2102 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2103}
2104
2105static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2106{
af5b0f6a 2107 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2108}
2109#else
c4812909 2110
af5b0f6a
KS
2111static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2112static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2113{
2114 return 0;
2115}
2116
2117static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2118static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2119#endif
2120
4cf58924
JFG
2121int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2122int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2123
f949286c
MR
2124#if defined(CONFIG_MMU)
2125
c2febafc
KS
2126static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2127 unsigned long address)
2128{
2129 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2130 NULL : p4d_offset(pgd, address);
2131}
2132
2133static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2134 unsigned long address)
1da177e4 2135{
c2febafc
KS
2136 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2137 NULL : pud_offset(p4d, address);
1da177e4 2138}
d8626138 2139
1da177e4
LT
2140static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2141{
1bb3630e
HD
2142 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2143 NULL: pmd_offset(pud, address);
1da177e4 2144}
f949286c 2145#endif /* CONFIG_MMU */
1bb3630e 2146
57c1ffce 2147#if USE_SPLIT_PTE_PTLOCKS
597d795a 2148#if ALLOC_SPLIT_PTLOCKS
b35f1819 2149void __init ptlock_cache_init(void);
539edb58
PZ
2150extern bool ptlock_alloc(struct page *page);
2151extern void ptlock_free(struct page *page);
2152
2153static inline spinlock_t *ptlock_ptr(struct page *page)
2154{
2155 return page->ptl;
2156}
597d795a 2157#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2158static inline void ptlock_cache_init(void)
2159{
2160}
2161
49076ec2
KS
2162static inline bool ptlock_alloc(struct page *page)
2163{
49076ec2
KS
2164 return true;
2165}
539edb58 2166
49076ec2
KS
2167static inline void ptlock_free(struct page *page)
2168{
49076ec2
KS
2169}
2170
2171static inline spinlock_t *ptlock_ptr(struct page *page)
2172{
539edb58 2173 return &page->ptl;
49076ec2 2174}
597d795a 2175#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2176
2177static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2178{
2179 return ptlock_ptr(pmd_page(*pmd));
2180}
2181
2182static inline bool ptlock_init(struct page *page)
2183{
2184 /*
2185 * prep_new_page() initialize page->private (and therefore page->ptl)
2186 * with 0. Make sure nobody took it in use in between.
2187 *
2188 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2189 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2190 */
309381fe 2191 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2192 if (!ptlock_alloc(page))
2193 return false;
2194 spin_lock_init(ptlock_ptr(page));
2195 return true;
2196}
2197
57c1ffce 2198#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2199/*
2200 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2201 */
49076ec2
KS
2202static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2203{
2204 return &mm->page_table_lock;
2205}
b35f1819 2206static inline void ptlock_cache_init(void) {}
49076ec2 2207static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2208static inline void ptlock_free(struct page *page) {}
57c1ffce 2209#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2210
b35f1819
KS
2211static inline void pgtable_init(void)
2212{
2213 ptlock_cache_init();
2214 pgtable_cache_init();
2215}
2216
b4ed71f5 2217static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2218{
706874e9
VD
2219 if (!ptlock_init(page))
2220 return false;
1d40a5ea 2221 __SetPageTable(page);
f0c0c115 2222 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2223 return true;
2f569afd
MS
2224}
2225
b4ed71f5 2226static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2227{
9e247bab 2228 ptlock_free(page);
1d40a5ea 2229 __ClearPageTable(page);
f0c0c115 2230 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2231}
2232
c74df32c
HD
2233#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2234({ \
4c21e2f2 2235 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2236 pte_t *__pte = pte_offset_map(pmd, address); \
2237 *(ptlp) = __ptl; \
2238 spin_lock(__ptl); \
2239 __pte; \
2240})
2241
2242#define pte_unmap_unlock(pte, ptl) do { \
2243 spin_unlock(ptl); \
2244 pte_unmap(pte); \
2245} while (0)
2246
4cf58924 2247#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2248
2249#define pte_alloc_map(mm, pmd, address) \
4cf58924 2250 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2251
c74df32c 2252#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2253 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2254 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2255
1bb3630e 2256#define pte_alloc_kernel(pmd, address) \
4cf58924 2257 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2258 NULL: pte_offset_kernel(pmd, address))
1da177e4 2259
e009bb30
KS
2260#if USE_SPLIT_PMD_PTLOCKS
2261
634391ac
MS
2262static struct page *pmd_to_page(pmd_t *pmd)
2263{
2264 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2265 return virt_to_page((void *)((unsigned long) pmd & mask));
2266}
2267
e009bb30
KS
2268static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2269{
634391ac 2270 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2271}
2272
b2b29d6d 2273static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2274{
e009bb30
KS
2275#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2276 page->pmd_huge_pte = NULL;
2277#endif
49076ec2 2278 return ptlock_init(page);
e009bb30
KS
2279}
2280
b2b29d6d 2281static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2282{
2283#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2284 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2285#endif
49076ec2 2286 ptlock_free(page);
e009bb30
KS
2287}
2288
634391ac 2289#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2290
2291#else
2292
9a86cb7b
KS
2293static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2294{
2295 return &mm->page_table_lock;
2296}
2297
b2b29d6d
MW
2298static inline bool pmd_ptlock_init(struct page *page) { return true; }
2299static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2300
c389a250 2301#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2302
e009bb30
KS
2303#endif
2304
9a86cb7b
KS
2305static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2306{
2307 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2308 spin_lock(ptl);
2309 return ptl;
2310}
2311
b2b29d6d
MW
2312static inline bool pgtable_pmd_page_ctor(struct page *page)
2313{
2314 if (!pmd_ptlock_init(page))
2315 return false;
2316 __SetPageTable(page);
f0c0c115 2317 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2318 return true;
2319}
2320
2321static inline void pgtable_pmd_page_dtor(struct page *page)
2322{
2323 pmd_ptlock_free(page);
2324 __ClearPageTable(page);
f0c0c115 2325 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2326}
2327
a00cc7d9
MW
2328/*
2329 * No scalability reason to split PUD locks yet, but follow the same pattern
2330 * as the PMD locks to make it easier if we decide to. The VM should not be
2331 * considered ready to switch to split PUD locks yet; there may be places
2332 * which need to be converted from page_table_lock.
2333 */
2334static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2335{
2336 return &mm->page_table_lock;
2337}
2338
2339static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2340{
2341 spinlock_t *ptl = pud_lockptr(mm, pud);
2342
2343 spin_lock(ptl);
2344 return ptl;
2345}
62906027 2346
a00cc7d9 2347extern void __init pagecache_init(void);
bc9331a1 2348extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2349extern void free_initmem(void);
2350
69afade7
JL
2351/*
2352 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2353 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2354 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2355 * Return pages freed into the buddy system.
2356 */
11199692 2357extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2358 int poison, const char *s);
c3d5f5f0 2359
c3d5f5f0 2360extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2361extern void mem_init_print_info(const char *str);
69afade7 2362
4b50bcc7 2363extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2364
69afade7 2365/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2366static inline void free_reserved_page(struct page *page)
69afade7
JL
2367{
2368 ClearPageReserved(page);
2369 init_page_count(page);
2370 __free_page(page);
69afade7
JL
2371 adjust_managed_page_count(page, 1);
2372}
a0cd7a7c 2373#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2374
2375static inline void mark_page_reserved(struct page *page)
2376{
2377 SetPageReserved(page);
2378 adjust_managed_page_count(page, -1);
2379}
2380
2381/*
2382 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2383 * The freed pages will be poisoned with pattern "poison" if it's within
2384 * range [0, UCHAR_MAX].
2385 * Return pages freed into the buddy system.
69afade7
JL
2386 */
2387static inline unsigned long free_initmem_default(int poison)
2388{
2389 extern char __init_begin[], __init_end[];
2390
11199692 2391 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2392 poison, "unused kernel");
2393}
2394
7ee3d4e8
JL
2395static inline unsigned long get_num_physpages(void)
2396{
2397 int nid;
2398 unsigned long phys_pages = 0;
2399
2400 for_each_online_node(nid)
2401 phys_pages += node_present_pages(nid);
2402
2403 return phys_pages;
2404}
2405
c713216d 2406/*
3f08a302 2407 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2408 * zones, allocate the backing mem_map and account for memory holes in an
2409 * architecture independent manner.
c713216d
MG
2410 *
2411 * An architecture is expected to register range of page frames backed by
0ee332c1 2412 * physical memory with memblock_add[_node]() before calling
9691a071 2413 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2414 * usage, an architecture is expected to do something like
2415 *
2416 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2417 * max_highmem_pfn};
2418 * for_each_valid_physical_page_range()
0ee332c1 2419 * memblock_add_node(base, size, nid)
9691a071 2420 * free_area_init(max_zone_pfns);
c713216d 2421 */
9691a071 2422void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2423unsigned long node_map_pfn_alignment(void);
32996250
YL
2424unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2425 unsigned long end_pfn);
c713216d
MG
2426extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2427 unsigned long end_pfn);
2428extern void get_pfn_range_for_nid(unsigned int nid,
2429 unsigned long *start_pfn, unsigned long *end_pfn);
2430extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2431
3f08a302 2432#ifndef CONFIG_NEED_MULTIPLE_NODES
6f24fbd3 2433static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2434{
2435 return 0;
2436}
2437#else
2438/* please see mm/page_alloc.c */
2439extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2440#endif
2441
0e0b864e 2442extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2443extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2444 unsigned long, unsigned long, enum meminit_context,
2445 struct vmem_altmap *, int migratetype);
3256ff83 2446extern void memmap_init_zone(struct zone *zone);
bc75d33f 2447extern void setup_per_zone_wmarks(void);
1b79acc9 2448extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2449extern void mem_init(void);
8feae131 2450extern void __init mmap_init(void);
9af744d7 2451extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2452extern long si_mem_available(void);
1da177e4
LT
2453extern void si_meminfo(struct sysinfo * val);
2454extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2455#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2456extern unsigned long arch_reserved_kernel_pages(void);
2457#endif
1da177e4 2458
a8e99259
MH
2459extern __printf(3, 4)
2460void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2461
e7c8d5c9 2462extern void setup_per_cpu_pageset(void);
e7c8d5c9 2463
75f7ad8e
PS
2464/* page_alloc.c */
2465extern int min_free_kbytes;
1c30844d 2466extern int watermark_boost_factor;
795ae7a0 2467extern int watermark_scale_factor;
51930df5 2468extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2469
8feae131 2470/* nommu.c */
33e5d769 2471extern atomic_long_t mmap_pages_allocated;
7e660872 2472extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2473
6b2dbba8 2474/* interval_tree.c */
6b2dbba8 2475void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2476 struct rb_root_cached *root);
9826a516
ML
2477void vma_interval_tree_insert_after(struct vm_area_struct *node,
2478 struct vm_area_struct *prev,
f808c13f 2479 struct rb_root_cached *root);
6b2dbba8 2480void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2481 struct rb_root_cached *root);
2482struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2483 unsigned long start, unsigned long last);
2484struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2485 unsigned long start, unsigned long last);
2486
2487#define vma_interval_tree_foreach(vma, root, start, last) \
2488 for (vma = vma_interval_tree_iter_first(root, start, last); \
2489 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2490
bf181b9f 2491void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2492 struct rb_root_cached *root);
bf181b9f 2493void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2494 struct rb_root_cached *root);
2495struct anon_vma_chain *
2496anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2497 unsigned long start, unsigned long last);
bf181b9f
ML
2498struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2499 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2500#ifdef CONFIG_DEBUG_VM_RB
2501void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2502#endif
bf181b9f
ML
2503
2504#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2505 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2506 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2507
1da177e4 2508/* mmap.c */
34b4e4aa 2509extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2510extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2511 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2512 struct vm_area_struct *expand);
2513static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2514 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2515{
2516 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2517}
1da177e4
LT
2518extern struct vm_area_struct *vma_merge(struct mm_struct *,
2519 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2520 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2521 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2522extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2523extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2524 unsigned long addr, int new_below);
2525extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2526 unsigned long addr, int new_below);
1da177e4
LT
2527extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2528extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2529 struct rb_node **, struct rb_node *);
a8fb5618 2530extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2531extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2532 unsigned long addr, unsigned long len, pgoff_t pgoff,
2533 bool *need_rmap_locks);
1da177e4 2534extern void exit_mmap(struct mm_struct *);
925d1c40 2535
9c599024
CG
2536static inline int check_data_rlimit(unsigned long rlim,
2537 unsigned long new,
2538 unsigned long start,
2539 unsigned long end_data,
2540 unsigned long start_data)
2541{
2542 if (rlim < RLIM_INFINITY) {
2543 if (((new - start) + (end_data - start_data)) > rlim)
2544 return -ENOSPC;
2545 }
2546
2547 return 0;
2548}
2549
7906d00c
AA
2550extern int mm_take_all_locks(struct mm_struct *mm);
2551extern void mm_drop_all_locks(struct mm_struct *mm);
2552
38646013
JS
2553extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2554extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2555extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2556
84638335
KK
2557extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2558extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2559
2eefd878
DS
2560extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2561 const struct vm_special_mapping *sm);
3935ed6a
SS
2562extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2563 unsigned long addr, unsigned long len,
a62c34bd
AL
2564 unsigned long flags,
2565 const struct vm_special_mapping *spec);
2566/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2567extern int install_special_mapping(struct mm_struct *mm,
2568 unsigned long addr, unsigned long len,
2569 unsigned long flags, struct page **pages);
1da177e4 2570
649775be
AG
2571unsigned long randomize_stack_top(unsigned long stack_top);
2572
1da177e4
LT
2573extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2574
0165ab44 2575extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2576 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2577 struct list_head *uf);
1fcfd8db 2578extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2579 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2580 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2581extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2582 struct list_head *uf, bool downgrade);
897ab3e0
MR
2583extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2584 struct list_head *uf);
0726b01e 2585extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2586
bebeb3d6
ML
2587#ifdef CONFIG_MMU
2588extern int __mm_populate(unsigned long addr, unsigned long len,
2589 int ignore_errors);
2590static inline void mm_populate(unsigned long addr, unsigned long len)
2591{
2592 /* Ignore errors */
2593 (void) __mm_populate(addr, len, 1);
2594}
2595#else
2596static inline void mm_populate(unsigned long addr, unsigned long len) {}
2597#endif
2598
e4eb1ff6 2599/* These take the mm semaphore themselves */
5d22fc25 2600extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2601extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2602extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2603extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2604 unsigned long, unsigned long,
2605 unsigned long, unsigned long);
1da177e4 2606
db4fbfb9
ML
2607struct vm_unmapped_area_info {
2608#define VM_UNMAPPED_AREA_TOPDOWN 1
2609 unsigned long flags;
2610 unsigned long length;
2611 unsigned long low_limit;
2612 unsigned long high_limit;
2613 unsigned long align_mask;
2614 unsigned long align_offset;
2615};
2616
baceaf1c 2617extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2618
85821aab 2619/* truncate.c */
1da177e4 2620extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2621extern void truncate_inode_pages_range(struct address_space *,
2622 loff_t lstart, loff_t lend);
91b0abe3 2623extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2624
2625/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2626extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2627extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2628 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2629extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2630
2631/* mm/page-writeback.c */
2b69c828 2632int __must_check write_one_page(struct page *page);
1cf6e7d8 2633void task_dirty_inc(struct task_struct *tsk);
1da177e4 2634
1be7107f 2635extern unsigned long stack_guard_gap;
d05f3169 2636/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2637extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2638
11192337 2639/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2640extern int expand_downwards(struct vm_area_struct *vma,
2641 unsigned long address);
8ca3eb08 2642#if VM_GROWSUP
46dea3d0 2643extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2644#else
fee7e49d 2645 #define expand_upwards(vma, address) (0)
9ab88515 2646#endif
1da177e4
LT
2647
2648/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2649extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2650extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2651 struct vm_area_struct **pprev);
2652
2653/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2654 NULL if none. Assume start_addr < end_addr. */
2655static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2656{
2657 struct vm_area_struct * vma = find_vma(mm,start_addr);
2658
2659 if (vma && end_addr <= vma->vm_start)
2660 vma = NULL;
2661 return vma;
2662}
2663
1be7107f
HD
2664static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2665{
2666 unsigned long vm_start = vma->vm_start;
2667
2668 if (vma->vm_flags & VM_GROWSDOWN) {
2669 vm_start -= stack_guard_gap;
2670 if (vm_start > vma->vm_start)
2671 vm_start = 0;
2672 }
2673 return vm_start;
2674}
2675
2676static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2677{
2678 unsigned long vm_end = vma->vm_end;
2679
2680 if (vma->vm_flags & VM_GROWSUP) {
2681 vm_end += stack_guard_gap;
2682 if (vm_end < vma->vm_end)
2683 vm_end = -PAGE_SIZE;
2684 }
2685 return vm_end;
2686}
2687
1da177e4
LT
2688static inline unsigned long vma_pages(struct vm_area_struct *vma)
2689{
2690 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2691}
2692
640708a2
PE
2693/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2694static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2695 unsigned long vm_start, unsigned long vm_end)
2696{
2697 struct vm_area_struct *vma = find_vma(mm, vm_start);
2698
2699 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2700 vma = NULL;
2701
2702 return vma;
2703}
2704
017b1660
MK
2705static inline bool range_in_vma(struct vm_area_struct *vma,
2706 unsigned long start, unsigned long end)
2707{
2708 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2709}
2710
bad849b3 2711#ifdef CONFIG_MMU
804af2cf 2712pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2713void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2714#else
2715static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2716{
2717 return __pgprot(0);
2718}
64e45507
PF
2719static inline void vma_set_page_prot(struct vm_area_struct *vma)
2720{
2721 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2722}
bad849b3
DH
2723#endif
2724
295992fb
CK
2725void vma_set_file(struct vm_area_struct *vma, struct file *file);
2726
5877231f 2727#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2728unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2729 unsigned long start, unsigned long end);
2730#endif
2731
deceb6cd 2732struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2733int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2734 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
2735int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2736 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 2737int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2738int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2739 struct page **pages, unsigned long *num);
a667d745
SJ
2740int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2741 unsigned long num);
2742int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2743 unsigned long num);
ae2b01f3 2744vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2745 unsigned long pfn);
f5e6d1d5
MW
2746vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2747 unsigned long pfn, pgprot_t pgprot);
5d747637 2748vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2749 pfn_t pfn);
574c5b3d
TH
2750vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2751 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2752vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2753 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2754int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2755
1c8f4220
SJ
2756static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2757 unsigned long addr, struct page *page)
2758{
2759 int err = vm_insert_page(vma, addr, page);
2760
2761 if (err == -ENOMEM)
2762 return VM_FAULT_OOM;
2763 if (err < 0 && err != -EBUSY)
2764 return VM_FAULT_SIGBUS;
2765
2766 return VM_FAULT_NOPAGE;
2767}
2768
f8f6ae5d
JG
2769#ifndef io_remap_pfn_range
2770static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2771 unsigned long addr, unsigned long pfn,
2772 unsigned long size, pgprot_t prot)
2773{
2774 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2775}
2776#endif
2777
d97baf94
SJ
2778static inline vm_fault_t vmf_error(int err)
2779{
2780 if (err == -ENOMEM)
2781 return VM_FAULT_OOM;
2782 return VM_FAULT_SIGBUS;
2783}
2784
df06b37f
KB
2785struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2786 unsigned int foll_flags);
240aadee 2787
deceb6cd
HD
2788#define FOLL_WRITE 0x01 /* check pte is writable */
2789#define FOLL_TOUCH 0x02 /* mark page accessed */
2790#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2791#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2792#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2793#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2794 * and return without waiting upon it */
84d33df2 2795#define FOLL_POPULATE 0x40 /* fault in page */
69ebb83e 2796#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2797#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2798#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2799#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2800#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2801#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2802#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2803#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2804#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2805#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2806#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2807#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2808
2809/*
eddb1c22
JH
2810 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2811 * other. Here is what they mean, and how to use them:
932f4a63
IW
2812 *
2813 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2814 * period _often_ under userspace control. This is in contrast to
2815 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2816 *
2817 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2818 * lifetime enforced by the filesystem and we need guarantees that longterm
2819 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2820 * the filesystem. Ideas for this coordination include revoking the longterm
2821 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2822 * added after the problem with filesystems was found FS DAX VMAs are
2823 * specifically failed. Filesystem pages are still subject to bugs and use of
2824 * FOLL_LONGTERM should be avoided on those pages.
2825 *
2826 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2827 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2828 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2829 * is due to an incompatibility with the FS DAX check and
eddb1c22 2830 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2831 *
eddb1c22
JH
2832 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2833 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2834 * FOLL_LONGTERM is specified.
eddb1c22
JH
2835 *
2836 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2837 * but an additional pin counting system) will be invoked. This is intended for
2838 * anything that gets a page reference and then touches page data (for example,
2839 * Direct IO). This lets the filesystem know that some non-file-system entity is
2840 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2841 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2842 * a call to unpin_user_page().
eddb1c22
JH
2843 *
2844 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2845 * and separate refcounting mechanisms, however, and that means that each has
2846 * its own acquire and release mechanisms:
2847 *
2848 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2849 *
f1f6a7dd 2850 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2851 *
2852 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2853 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2854 * calls applied to them, and that's perfectly OK. This is a constraint on the
2855 * callers, not on the pages.)
2856 *
2857 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2858 * directly by the caller. That's in order to help avoid mismatches when
2859 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2860 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2861 *
72ef5e52 2862 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2863 */
1da177e4 2864
2b740303 2865static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2866{
2867 if (vm_fault & VM_FAULT_OOM)
2868 return -ENOMEM;
2869 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2870 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2871 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2872 return -EFAULT;
2873 return 0;
2874}
2875
8b1e0f81 2876typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2877extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2878 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2879extern int apply_to_existing_page_range(struct mm_struct *mm,
2880 unsigned long address, unsigned long size,
2881 pte_fn_t fn, void *data);
aee16b3c 2882
04013513 2883extern void init_mem_debugging_and_hardening(void);
8823b1db 2884#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
2885extern void __kernel_poison_pages(struct page *page, int numpages);
2886extern void __kernel_unpoison_pages(struct page *page, int numpages);
2887extern bool _page_poisoning_enabled_early;
2888DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2889static inline bool page_poisoning_enabled(void)
2890{
2891 return _page_poisoning_enabled_early;
2892}
2893/*
2894 * For use in fast paths after init_mem_debugging() has run, or when a
2895 * false negative result is not harmful when called too early.
2896 */
2897static inline bool page_poisoning_enabled_static(void)
2898{
2899 return static_branch_unlikely(&_page_poisoning_enabled);
2900}
2901static inline void kernel_poison_pages(struct page *page, int numpages)
2902{
2903 if (page_poisoning_enabled_static())
2904 __kernel_poison_pages(page, numpages);
2905}
2906static inline void kernel_unpoison_pages(struct page *page, int numpages)
2907{
2908 if (page_poisoning_enabled_static())
2909 __kernel_unpoison_pages(page, numpages);
2910}
8823b1db
LA
2911#else
2912static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 2913static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 2914static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
2915static inline void kernel_poison_pages(struct page *page, int numpages) { }
2916static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
2917#endif
2918
51cba1eb 2919DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
2920static inline bool want_init_on_alloc(gfp_t flags)
2921{
51cba1eb
KC
2922 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
2923 &init_on_alloc))
6471384a
AP
2924 return true;
2925 return flags & __GFP_ZERO;
2926}
2927
51cba1eb 2928DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
2929static inline bool want_init_on_free(void)
2930{
51cba1eb
KC
2931 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
2932 &init_on_free);
6471384a
AP
2933}
2934
8e57f8ac
VB
2935extern bool _debug_pagealloc_enabled_early;
2936DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2937
2938static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2939{
2940 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2941 _debug_pagealloc_enabled_early;
2942}
2943
2944/*
2945 * For use in fast paths after init_debug_pagealloc() has run, or when a
2946 * false negative result is not harmful when called too early.
2947 */
2948static inline bool debug_pagealloc_enabled_static(void)
031bc574 2949{
96a2b03f
VB
2950 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2951 return false;
2952
2953 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2954}
2955
5d6ad668 2956#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 2957/*
5d6ad668
MR
2958 * To support DEBUG_PAGEALLOC architecture must ensure that
2959 * __kernel_map_pages() never fails
c87cbc1f 2960 */
d6332692
RE
2961extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2962
77bc7fd6
MR
2963static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2964{
2965 if (debug_pagealloc_enabled_static())
2966 __kernel_map_pages(page, numpages, 1);
2967}
2968
2969static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
2970{
2971 if (debug_pagealloc_enabled_static())
2972 __kernel_map_pages(page, numpages, 0);
2973}
5d6ad668 2974#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
2975static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
2976static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 2977#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2978
a6c19dfe 2979#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2980extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2981extern int in_gate_area_no_mm(unsigned long addr);
2982extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2983#else
a6c19dfe
AL
2984static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2985{
2986 return NULL;
2987}
2988static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2989static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2990{
2991 return 0;
2992}
1da177e4
LT
2993#endif /* __HAVE_ARCH_GATE_AREA */
2994
44a70ade
MH
2995extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2996
146732ce
JT
2997#ifdef CONFIG_SYSCTL
2998extern int sysctl_drop_caches;
32927393
CH
2999int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3000 loff_t *);
146732ce
JT
3001#endif
3002
cb731d6c
VD
3003void drop_slab(void);
3004void drop_slab_node(int nid);
9d0243bc 3005
7a9166e3
LY
3006#ifndef CONFIG_MMU
3007#define randomize_va_space 0
3008#else
a62eaf15 3009extern int randomize_va_space;
7a9166e3 3010#endif
a62eaf15 3011
045e72ac 3012const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3013#ifdef CONFIG_MMU
03252919 3014void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3015#else
3016static inline void print_vma_addr(char *prefix, unsigned long rip)
3017{
3018}
3019#endif
e6e5494c 3020
35fd1eb1 3021void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
3022struct page * __populate_section_memmap(unsigned long pfn,
3023 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3024pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3025p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3026pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3027pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
3028pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3029 struct vmem_altmap *altmap);
8f6aac41 3030void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3031struct vmem_altmap;
56993b4e
AK
3032void *vmemmap_alloc_block_buf(unsigned long size, int node,
3033 struct vmem_altmap *altmap);
8f6aac41 3034void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3035int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3036 int node, struct vmem_altmap *altmap);
7b73d978
CH
3037int vmemmap_populate(unsigned long start, unsigned long end, int node,
3038 struct vmem_altmap *altmap);
c2b91e2e 3039void vmemmap_populate_print_last(void);
0197518c 3040#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3041void vmemmap_free(unsigned long start, unsigned long end,
3042 struct vmem_altmap *altmap);
0197518c 3043#endif
46723bfa 3044void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3045 unsigned long nr_pages);
6a46079c 3046
82ba011b
AK
3047enum mf_flags {
3048 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3049 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3050 MF_MUST_KILL = 1 << 2,
cf870c70 3051 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3052};
83b57531
EB
3053extern int memory_failure(unsigned long pfn, int flags);
3054extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3055extern void memory_failure_queue_kick(int cpu);
847ce401 3056extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3057extern int sysctl_memory_failure_early_kill;
3058extern int sysctl_memory_failure_recovery;
facb6011 3059extern void shake_page(struct page *p, int access);
5844a486 3060extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3061extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3062
cc637b17
XX
3063
3064/*
3065 * Error handlers for various types of pages.
3066 */
cc3e2af4 3067enum mf_result {
cc637b17
XX
3068 MF_IGNORED, /* Error: cannot be handled */
3069 MF_FAILED, /* Error: handling failed */
3070 MF_DELAYED, /* Will be handled later */
3071 MF_RECOVERED, /* Successfully recovered */
3072};
3073
3074enum mf_action_page_type {
3075 MF_MSG_KERNEL,
3076 MF_MSG_KERNEL_HIGH_ORDER,
3077 MF_MSG_SLAB,
3078 MF_MSG_DIFFERENT_COMPOUND,
3079 MF_MSG_POISONED_HUGE,
3080 MF_MSG_HUGE,
3081 MF_MSG_FREE_HUGE,
31286a84 3082 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3083 MF_MSG_UNMAP_FAILED,
3084 MF_MSG_DIRTY_SWAPCACHE,
3085 MF_MSG_CLEAN_SWAPCACHE,
3086 MF_MSG_DIRTY_MLOCKED_LRU,
3087 MF_MSG_CLEAN_MLOCKED_LRU,
3088 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3089 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3090 MF_MSG_DIRTY_LRU,
3091 MF_MSG_CLEAN_LRU,
3092 MF_MSG_TRUNCATED_LRU,
3093 MF_MSG_BUDDY,
3094 MF_MSG_BUDDY_2ND,
6100e34b 3095 MF_MSG_DAX,
5d1fd5dc 3096 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3097 MF_MSG_UNKNOWN,
3098};
3099
47ad8475
AA
3100#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3101extern void clear_huge_page(struct page *page,
c79b57e4 3102 unsigned long addr_hint,
47ad8475
AA
3103 unsigned int pages_per_huge_page);
3104extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3105 unsigned long addr_hint,
3106 struct vm_area_struct *vma,
47ad8475 3107 unsigned int pages_per_huge_page);
fa4d75c1
MK
3108extern long copy_huge_page_from_user(struct page *dst_page,
3109 const void __user *usr_src,
810a56b9
MK
3110 unsigned int pages_per_huge_page,
3111 bool allow_pagefault);
2484ca9b
THV
3112
3113/**
3114 * vma_is_special_huge - Are transhuge page-table entries considered special?
3115 * @vma: Pointer to the struct vm_area_struct to consider
3116 *
3117 * Whether transhuge page-table entries are considered "special" following
3118 * the definition in vm_normal_page().
3119 *
3120 * Return: true if transhuge page-table entries should be considered special,
3121 * false otherwise.
3122 */
3123static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3124{
3125 return vma_is_dax(vma) || (vma->vm_file &&
3126 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3127}
3128
47ad8475
AA
3129#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3130
c0a32fc5
SG
3131#ifdef CONFIG_DEBUG_PAGEALLOC
3132extern unsigned int _debug_guardpage_minorder;
96a2b03f 3133DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3134
3135static inline unsigned int debug_guardpage_minorder(void)
3136{
3137 return _debug_guardpage_minorder;
3138}
3139
e30825f1
JK
3140static inline bool debug_guardpage_enabled(void)
3141{
96a2b03f 3142 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3143}
3144
c0a32fc5
SG
3145static inline bool page_is_guard(struct page *page)
3146{
e30825f1
JK
3147 if (!debug_guardpage_enabled())
3148 return false;
3149
3972f6bb 3150 return PageGuard(page);
c0a32fc5
SG
3151}
3152#else
3153static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3154static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3155static inline bool page_is_guard(struct page *page) { return false; }
3156#endif /* CONFIG_DEBUG_PAGEALLOC */
3157
f9872caf
CS
3158#if MAX_NUMNODES > 1
3159void __init setup_nr_node_ids(void);
3160#else
3161static inline void setup_nr_node_ids(void) {}
3162#endif
3163
010c164a
SL
3164extern int memcmp_pages(struct page *page1, struct page *page2);
3165
3166static inline int pages_identical(struct page *page1, struct page *page2)
3167{
3168 return !memcmp_pages(page1, page2);
3169}
3170
c5acad84
TH
3171#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3172unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3173 pgoff_t first_index, pgoff_t nr,
3174 pgoff_t bitmap_pgoff,
3175 unsigned long *bitmap,
3176 pgoff_t *start,
3177 pgoff_t *end);
3178
3179unsigned long wp_shared_mapping_range(struct address_space *mapping,
3180 pgoff_t first_index, pgoff_t nr);
3181#endif
3182
2374c09b
CH
3183extern int sysctl_nr_trim_pages;
3184
5bb1bb35 3185#ifdef CONFIG_PRINTK
8e7f37f2 3186void mem_dump_obj(void *object);
5bb1bb35
PM
3187#else
3188static inline void mem_dump_obj(void *object) {}
3189#endif
8e7f37f2 3190
1da177e4
LT
3191#endif /* __KERNEL__ */
3192#endif /* _LINUX_MM_H */