Linux 5.12-rc2
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
9740ca4e 18#include <linux/mmap_lock.h>
08677214 19#include <linux/range.h>
c6f6b596 20#include <linux/pfn.h>
3565fce3 21#include <linux/percpu-refcount.h>
e9da73d6 22#include <linux/bit_spinlock.h>
b0d40c92 23#include <linux/shrinker.h>
9c599024 24#include <linux/resource.h>
e30825f1 25#include <linux/page_ext.h>
8025e5dd 26#include <linux/err.h>
41901567 27#include <linux/page-flags.h>
fe896d18 28#include <linux/page_ref.h>
7b2d55d2 29#include <linux/memremap.h>
3b3b1a29 30#include <linux/overflow.h>
b5420237 31#include <linux/sizes.h>
7969f226 32#include <linux/sched.h>
65fddcfc 33#include <linux/pgtable.h>
34303244 34#include <linux/kasan.h>
1da177e4
LT
35
36struct mempolicy;
37struct anon_vma;
bf181b9f 38struct anon_vma_chain;
4e950f6f 39struct file_ra_state;
e8edc6e0 40struct user_struct;
4e950f6f 41struct writeback_control;
682aa8e1 42struct bdi_writeback;
bce617ed 43struct pt_regs;
1da177e4 44
5ef64cc8
LT
45extern int sysctl_page_lock_unfairness;
46
597b7305
MH
47void init_mm_internals(void);
48
fccc9987 49#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 50extern unsigned long max_mapnr;
fccc9987
JL
51
52static inline void set_max_mapnr(unsigned long limit)
53{
54 max_mapnr = limit;
55}
56#else
57static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
58#endif
59
ca79b0c2
AK
60extern atomic_long_t _totalram_pages;
61static inline unsigned long totalram_pages(void)
62{
63 return (unsigned long)atomic_long_read(&_totalram_pages);
64}
65
66static inline void totalram_pages_inc(void)
67{
68 atomic_long_inc(&_totalram_pages);
69}
70
71static inline void totalram_pages_dec(void)
72{
73 atomic_long_dec(&_totalram_pages);
74}
75
76static inline void totalram_pages_add(long count)
77{
78 atomic_long_add(count, &_totalram_pages);
79}
80
1da177e4 81extern void * high_memory;
1da177e4
LT
82extern int page_cluster;
83
84#ifdef CONFIG_SYSCTL
85extern int sysctl_legacy_va_layout;
86#else
87#define sysctl_legacy_va_layout 0
88#endif
89
d07e2259
DC
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91extern const int mmap_rnd_bits_min;
92extern const int mmap_rnd_bits_max;
93extern int mmap_rnd_bits __read_mostly;
94#endif
95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96extern const int mmap_rnd_compat_bits_min;
97extern const int mmap_rnd_compat_bits_max;
98extern int mmap_rnd_compat_bits __read_mostly;
99#endif
100
1da177e4 101#include <asm/page.h>
1da177e4 102#include <asm/processor.h>
1da177e4 103
d9344522
AK
104/*
105 * Architectures that support memory tagging (assigning tags to memory regions,
106 * embedding these tags into addresses that point to these memory regions, and
107 * checking that the memory and the pointer tags match on memory accesses)
108 * redefine this macro to strip tags from pointers.
109 * It's defined as noop for arcitectures that don't support memory tagging.
110 */
111#ifndef untagged_addr
112#define untagged_addr(addr) (addr)
113#endif
114
79442ed1
TC
115#ifndef __pa_symbol
116#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
117#endif
118
1dff8083
AB
119#ifndef page_to_virt
120#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
121#endif
122
568c5fe5
LA
123#ifndef lm_alias
124#define lm_alias(x) __va(__pa_symbol(x))
125#endif
126
593befa6
DD
127/*
128 * To prevent common memory management code establishing
129 * a zero page mapping on a read fault.
130 * This macro should be defined within <asm/pgtable.h>.
131 * s390 does this to prevent multiplexing of hardware bits
132 * related to the physical page in case of virtualization.
133 */
134#ifndef mm_forbids_zeropage
135#define mm_forbids_zeropage(X) (0)
136#endif
137
a4a3ede2
PT
138/*
139 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
140 * If an architecture decides to implement their own version of
141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
142 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 143 */
5470dea4
AD
144#if BITS_PER_LONG == 64
145/* This function must be updated when the size of struct page grows above 80
146 * or reduces below 56. The idea that compiler optimizes out switch()
147 * statement, and only leaves move/store instructions. Also the compiler can
148 * combine write statments if they are both assignments and can be reordered,
149 * this can result in several of the writes here being dropped.
150 */
151#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
152static inline void __mm_zero_struct_page(struct page *page)
153{
154 unsigned long *_pp = (void *)page;
155
156 /* Check that struct page is either 56, 64, 72, or 80 bytes */
157 BUILD_BUG_ON(sizeof(struct page) & 7);
158 BUILD_BUG_ON(sizeof(struct page) < 56);
159 BUILD_BUG_ON(sizeof(struct page) > 80);
160
161 switch (sizeof(struct page)) {
162 case 80:
df561f66
GS
163 _pp[9] = 0;
164 fallthrough;
5470dea4 165 case 72:
df561f66
GS
166 _pp[8] = 0;
167 fallthrough;
5470dea4 168 case 64:
df561f66
GS
169 _pp[7] = 0;
170 fallthrough;
5470dea4
AD
171 case 56:
172 _pp[6] = 0;
173 _pp[5] = 0;
174 _pp[4] = 0;
175 _pp[3] = 0;
176 _pp[2] = 0;
177 _pp[1] = 0;
178 _pp[0] = 0;
179 }
180}
181#else
a4a3ede2
PT
182#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
183#endif
184
ea606cf5
AR
185/*
186 * Default maximum number of active map areas, this limits the number of vmas
187 * per mm struct. Users can overwrite this number by sysctl but there is a
188 * problem.
189 *
190 * When a program's coredump is generated as ELF format, a section is created
191 * per a vma. In ELF, the number of sections is represented in unsigned short.
192 * This means the number of sections should be smaller than 65535 at coredump.
193 * Because the kernel adds some informative sections to a image of program at
194 * generating coredump, we need some margin. The number of extra sections is
195 * 1-3 now and depends on arch. We use "5" as safe margin, here.
196 *
197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
198 * not a hard limit any more. Although some userspace tools can be surprised by
199 * that.
200 */
201#define MAPCOUNT_ELF_CORE_MARGIN (5)
202#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203
204extern int sysctl_max_map_count;
205
c9b1d098 206extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 207extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 208
49f0ce5f
JM
209extern int sysctl_overcommit_memory;
210extern int sysctl_overcommit_ratio;
211extern unsigned long sysctl_overcommit_kbytes;
212
32927393
CH
213int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 loff_t *);
215int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 loff_t *);
56f3547b
FT
217int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
218 loff_t *);
6d87d0ec
SJ
219/*
220 * Any attempt to mark this function as static leads to build failure
221 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
222 * is referred to by BPF code. This must be visible for error injection.
223 */
224int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
225 pgoff_t index, gfp_t gfp, void **shadowp);
49f0ce5f 226
1da177e4
LT
227#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
228
27ac792c
AR
229/* to align the pointer to the (next) page boundary */
230#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
231
0fa73b86 232/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 233#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 234
f86196ea
NB
235#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
236
1da177e4
LT
237/*
238 * Linux kernel virtual memory manager primitives.
239 * The idea being to have a "virtual" mm in the same way
240 * we have a virtual fs - giving a cleaner interface to the
241 * mm details, and allowing different kinds of memory mappings
242 * (from shared memory to executable loading to arbitrary
243 * mmap() functions).
244 */
245
490fc053 246struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
247struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
248void vm_area_free(struct vm_area_struct *);
c43692e8 249
1da177e4 250#ifndef CONFIG_MMU
8feae131
DH
251extern struct rb_root nommu_region_tree;
252extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
253
254extern unsigned int kobjsize(const void *objp);
255#endif
256
257/*
605d9288 258 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 259 * When changing, update also include/trace/events/mmflags.h
1da177e4 260 */
cc2383ec
KK
261#define VM_NONE 0x00000000
262
1da177e4
LT
263#define VM_READ 0x00000001 /* currently active flags */
264#define VM_WRITE 0x00000002
265#define VM_EXEC 0x00000004
266#define VM_SHARED 0x00000008
267
7e2cff42 268/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
269#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
270#define VM_MAYWRITE 0x00000020
271#define VM_MAYEXEC 0x00000040
272#define VM_MAYSHARE 0x00000080
273
274#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 275#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 276#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 277#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 278#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 279
1da177e4
LT
280#define VM_LOCKED 0x00002000
281#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
282
283 /* Used by sys_madvise() */
284#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
285#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
286
287#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
288#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 289#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 290#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 291#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 292#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 293#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 294#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 295#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 296#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 297
d9104d1c
CG
298#ifdef CONFIG_MEM_SOFT_DIRTY
299# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
300#else
301# define VM_SOFTDIRTY 0
302#endif
303
b379d790 304#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
305#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
306#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 307#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 308
63c17fb8
DH
309#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
310#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
311#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
312#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
313#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 314#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
315#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
316#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
317#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
318#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 319#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
320#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
321
5212213a 322#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
323# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
324# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 325# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
326# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
327# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
328#ifdef CONFIG_PPC
329# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
330#else
331# define VM_PKEY_BIT4 0
8f62c883 332#endif
5212213a
RP
333#endif /* CONFIG_ARCH_HAS_PKEYS */
334
335#if defined(CONFIG_X86)
336# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
337#elif defined(CONFIG_PPC)
338# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
339#elif defined(CONFIG_PARISC)
340# define VM_GROWSUP VM_ARCH_1
341#elif defined(CONFIG_IA64)
342# define VM_GROWSUP VM_ARCH_1
74a04967
KA
343#elif defined(CONFIG_SPARC64)
344# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
345# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
346#elif defined(CONFIG_ARM64)
347# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
348# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
349#elif !defined(CONFIG_MMU)
350# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
351#endif
352
9f341931
CM
353#if defined(CONFIG_ARM64_MTE)
354# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
355# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
356#else
357# define VM_MTE VM_NONE
358# define VM_MTE_ALLOWED VM_NONE
359#endif
360
cc2383ec
KK
361#ifndef VM_GROWSUP
362# define VM_GROWSUP VM_NONE
363#endif
364
a8bef8ff
MG
365/* Bits set in the VMA until the stack is in its final location */
366#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
367
c62da0c3
AK
368#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
369
370/* Common data flag combinations */
371#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
372 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
373#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
374 VM_MAYWRITE | VM_MAYEXEC)
375#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
376 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
377
378#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
379#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
380#endif
381
1da177e4
LT
382#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
383#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
384#endif
385
386#ifdef CONFIG_STACK_GROWSUP
30bdbb78 387#define VM_STACK VM_GROWSUP
1da177e4 388#else
30bdbb78 389#define VM_STACK VM_GROWSDOWN
1da177e4
LT
390#endif
391
30bdbb78
KK
392#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
393
6cb4d9a2
AK
394/* VMA basic access permission flags */
395#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
396
397
b291f000 398/*
78f11a25 399 * Special vmas that are non-mergable, non-mlock()able.
b291f000 400 */
9050d7eb 401#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 402
b4443772
AK
403/* This mask prevents VMA from being scanned with khugepaged */
404#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
405
a0715cc2
AT
406/* This mask defines which mm->def_flags a process can inherit its parent */
407#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
408
de60f5f1
EM
409/* This mask is used to clear all the VMA flags used by mlock */
410#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
411
2c2d57b5
KA
412/* Arch-specific flags to clear when updating VM flags on protection change */
413#ifndef VM_ARCH_CLEAR
414# define VM_ARCH_CLEAR VM_NONE
415#endif
416#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
417
1da177e4
LT
418/*
419 * mapping from the currently active vm_flags protection bits (the
420 * low four bits) to a page protection mask..
421 */
422extern pgprot_t protection_map[16];
423
c270a7ee
PX
424/**
425 * Fault flag definitions.
426 *
427 * @FAULT_FLAG_WRITE: Fault was a write fault.
428 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
429 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
c1e8d7c6 430 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
c270a7ee
PX
431 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
432 * @FAULT_FLAG_TRIED: The fault has been tried once.
433 * @FAULT_FLAG_USER: The fault originated in userspace.
434 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
435 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
436 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
437 *
438 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
439 * whether we would allow page faults to retry by specifying these two
440 * fault flags correctly. Currently there can be three legal combinations:
441 *
442 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
443 * this is the first try
444 *
445 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
446 * we've already tried at least once
447 *
448 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
449 *
450 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
451 * be used. Note that page faults can be allowed to retry for multiple times,
452 * in which case we'll have an initial fault with flags (a) then later on
453 * continuous faults with flags (b). We should always try to detect pending
454 * signals before a retry to make sure the continuous page faults can still be
455 * interrupted if necessary.
c270a7ee
PX
456 */
457#define FAULT_FLAG_WRITE 0x01
458#define FAULT_FLAG_MKWRITE 0x02
459#define FAULT_FLAG_ALLOW_RETRY 0x04
460#define FAULT_FLAG_RETRY_NOWAIT 0x08
461#define FAULT_FLAG_KILLABLE 0x10
462#define FAULT_FLAG_TRIED 0x20
463#define FAULT_FLAG_USER 0x40
464#define FAULT_FLAG_REMOTE 0x80
465#define FAULT_FLAG_INSTRUCTION 0x100
466#define FAULT_FLAG_INTERRUPTIBLE 0x200
d0217ac0 467
dde16072
PX
468/*
469 * The default fault flags that should be used by most of the
470 * arch-specific page fault handlers.
471 */
472#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
473 FAULT_FLAG_KILLABLE | \
474 FAULT_FLAG_INTERRUPTIBLE)
dde16072 475
4064b982
PX
476/**
477 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
478 *
479 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 480 * the mmap_lock for too long a time when waiting for another condition
4064b982 481 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
482 * mmap_lock in the first round to avoid potential starvation of other
483 * processes that would also want the mmap_lock.
4064b982
PX
484 *
485 * Return: true if the page fault allows retry and this is the first
486 * attempt of the fault handling; false otherwise.
487 */
488static inline bool fault_flag_allow_retry_first(unsigned int flags)
489{
490 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
491 (!(flags & FAULT_FLAG_TRIED));
492}
493
282a8e03
RZ
494#define FAULT_FLAG_TRACE \
495 { FAULT_FLAG_WRITE, "WRITE" }, \
496 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
497 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
498 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
499 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
500 { FAULT_FLAG_TRIED, "TRIED" }, \
501 { FAULT_FLAG_USER, "USER" }, \
502 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
503 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
504 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 505
54cb8821 506/*
11192337 507 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
508 * ->fault function. The vma's ->fault is responsible for returning a bitmask
509 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 510 *
c20cd45e
MH
511 * MM layer fills up gfp_mask for page allocations but fault handler might
512 * alter it if its implementation requires a different allocation context.
513 *
9b4bdd2f 514 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 515 */
d0217ac0 516struct vm_fault {
5857c920 517 const struct {
742d3372
WD
518 struct vm_area_struct *vma; /* Target VMA */
519 gfp_t gfp_mask; /* gfp mask to be used for allocations */
520 pgoff_t pgoff; /* Logical page offset based on vma */
521 unsigned long address; /* Faulting virtual address */
522 };
523 unsigned int flags; /* FAULT_FLAG_xxx flags
524 * XXX: should really be 'const' */
82b0f8c3 525 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 526 * the 'address' */
a2d58167
DJ
527 pud_t *pud; /* Pointer to pud entry matching
528 * the 'address'
529 */
2994302b 530 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 531
3917048d 532 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 533 struct page *page; /* ->fault handlers should return a
83c54070 534 * page here, unless VM_FAULT_NOPAGE
d0217ac0 535 * is set (which is also implied by
83c54070 536 * VM_FAULT_ERROR).
d0217ac0 537 */
82b0f8c3 538 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
539 pte_t *pte; /* Pointer to pte entry matching
540 * the 'address'. NULL if the page
541 * table hasn't been allocated.
542 */
543 spinlock_t *ptl; /* Page table lock.
544 * Protects pte page table if 'pte'
545 * is not NULL, otherwise pmd.
546 */
7267ec00 547 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
548 * vm_ops->map_pages() sets up a page
549 * table from atomic context.
7267ec00
KS
550 * do_fault_around() pre-allocates
551 * page table to avoid allocation from
552 * atomic context.
553 */
54cb8821 554};
1da177e4 555
c791ace1
DJ
556/* page entry size for vm->huge_fault() */
557enum page_entry_size {
558 PE_SIZE_PTE = 0,
559 PE_SIZE_PMD,
560 PE_SIZE_PUD,
561};
562
1da177e4
LT
563/*
564 * These are the virtual MM functions - opening of an area, closing and
565 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 566 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
567 */
568struct vm_operations_struct {
569 void (*open)(struct vm_area_struct * area);
570 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
571 /* Called any time before splitting to check if it's allowed */
572 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
cd544fd1 573 int (*mremap)(struct vm_area_struct *area, unsigned long flags);
95bb7c42
SC
574 /*
575 * Called by mprotect() to make driver-specific permission
576 * checks before mprotect() is finalised. The VMA must not
577 * be modified. Returns 0 if eprotect() can proceed.
578 */
579 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
580 unsigned long end, unsigned long newflags);
1c8f4220
SJ
581 vm_fault_t (*fault)(struct vm_fault *vmf);
582 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
583 enum page_entry_size pe_size);
f9ce0be7 584 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 585 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 586 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
587
588 /* notification that a previously read-only page is about to become
589 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 590 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 591
dd906184 592 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 593 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 594
28b2ee20 595 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
596 * for use by special VMAs. See also generic_access_phys() for a generic
597 * implementation useful for any iomem mapping.
28b2ee20
RR
598 */
599 int (*access)(struct vm_area_struct *vma, unsigned long addr,
600 void *buf, int len, int write);
78d683e8
AL
601
602 /* Called by the /proc/PID/maps code to ask the vma whether it
603 * has a special name. Returning non-NULL will also cause this
604 * vma to be dumped unconditionally. */
605 const char *(*name)(struct vm_area_struct *vma);
606
1da177e4 607#ifdef CONFIG_NUMA
a6020ed7
LS
608 /*
609 * set_policy() op must add a reference to any non-NULL @new mempolicy
610 * to hold the policy upon return. Caller should pass NULL @new to
611 * remove a policy and fall back to surrounding context--i.e. do not
612 * install a MPOL_DEFAULT policy, nor the task or system default
613 * mempolicy.
614 */
1da177e4 615 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
616
617 /*
618 * get_policy() op must add reference [mpol_get()] to any policy at
619 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
620 * in mm/mempolicy.c will do this automatically.
621 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 622 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
623 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
624 * must return NULL--i.e., do not "fallback" to task or system default
625 * policy.
626 */
1da177e4
LT
627 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
628 unsigned long addr);
629#endif
667a0a06
DV
630 /*
631 * Called by vm_normal_page() for special PTEs to find the
632 * page for @addr. This is useful if the default behavior
633 * (using pte_page()) would not find the correct page.
634 */
635 struct page *(*find_special_page)(struct vm_area_struct *vma,
636 unsigned long addr);
1da177e4
LT
637};
638
027232da
KS
639static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
640{
bfd40eaf
KS
641 static const struct vm_operations_struct dummy_vm_ops = {};
642
a670468f 643 memset(vma, 0, sizeof(*vma));
027232da 644 vma->vm_mm = mm;
bfd40eaf 645 vma->vm_ops = &dummy_vm_ops;
027232da
KS
646 INIT_LIST_HEAD(&vma->anon_vma_chain);
647}
648
bfd40eaf
KS
649static inline void vma_set_anonymous(struct vm_area_struct *vma)
650{
651 vma->vm_ops = NULL;
652}
653
43675e6f
YS
654static inline bool vma_is_anonymous(struct vm_area_struct *vma)
655{
656 return !vma->vm_ops;
657}
658
222100ee
AK
659static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
660{
661 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
662
663 if (!maybe_stack)
664 return false;
665
666 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
667 VM_STACK_INCOMPLETE_SETUP)
668 return true;
669
670 return false;
671}
672
7969f226
AK
673static inline bool vma_is_foreign(struct vm_area_struct *vma)
674{
675 if (!current->mm)
676 return true;
677
678 if (current->mm != vma->vm_mm)
679 return true;
680
681 return false;
682}
3122e80e
AK
683
684static inline bool vma_is_accessible(struct vm_area_struct *vma)
685{
6cb4d9a2 686 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
687}
688
43675e6f
YS
689#ifdef CONFIG_SHMEM
690/*
691 * The vma_is_shmem is not inline because it is used only by slow
692 * paths in userfault.
693 */
694bool vma_is_shmem(struct vm_area_struct *vma);
695#else
696static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
697#endif
698
699int vma_is_stack_for_current(struct vm_area_struct *vma);
700
8b11ec1b
LT
701/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
702#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
703
1da177e4
LT
704struct mmu_gather;
705struct inode;
706
71e3aac0 707#include <linux/huge_mm.h>
1da177e4
LT
708
709/*
710 * Methods to modify the page usage count.
711 *
712 * What counts for a page usage:
713 * - cache mapping (page->mapping)
714 * - private data (page->private)
715 * - page mapped in a task's page tables, each mapping
716 * is counted separately
717 *
718 * Also, many kernel routines increase the page count before a critical
719 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
720 */
721
722/*
da6052f7 723 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 724 */
7c8ee9a8
NP
725static inline int put_page_testzero(struct page *page)
726{
fe896d18
JK
727 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
728 return page_ref_dec_and_test(page);
7c8ee9a8 729}
1da177e4
LT
730
731/*
7c8ee9a8
NP
732 * Try to grab a ref unless the page has a refcount of zero, return false if
733 * that is the case.
8e0861fa
AK
734 * This can be called when MMU is off so it must not access
735 * any of the virtual mappings.
1da177e4 736 */
7c8ee9a8
NP
737static inline int get_page_unless_zero(struct page *page)
738{
fe896d18 739 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 740}
1da177e4 741
53df8fdc 742extern int page_is_ram(unsigned long pfn);
124fe20d
DW
743
744enum {
745 REGION_INTERSECTS,
746 REGION_DISJOINT,
747 REGION_MIXED,
748};
749
1c29f25b
TK
750int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
751 unsigned long desc);
53df8fdc 752
48667e7a 753/* Support for virtually mapped pages */
b3bdda02
CL
754struct page *vmalloc_to_page(const void *addr);
755unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 756
0738c4bb
PM
757/*
758 * Determine if an address is within the vmalloc range
759 *
760 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
761 * is no special casing required.
762 */
9bd3bb67
AK
763
764#ifndef is_ioremap_addr
765#define is_ioremap_addr(x) is_vmalloc_addr(x)
766#endif
767
81ac3ad9 768#ifdef CONFIG_MMU
186525bd 769extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
770extern int is_vmalloc_or_module_addr(const void *x);
771#else
186525bd
IM
772static inline bool is_vmalloc_addr(const void *x)
773{
774 return false;
775}
934831d0 776static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
777{
778 return 0;
779}
780#endif
9e2779fa 781
a7c3e901
MH
782extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
783static inline void *kvmalloc(size_t size, gfp_t flags)
784{
785 return kvmalloc_node(size, flags, NUMA_NO_NODE);
786}
787static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
788{
789 return kvmalloc_node(size, flags | __GFP_ZERO, node);
790}
791static inline void *kvzalloc(size_t size, gfp_t flags)
792{
793 return kvmalloc(size, flags | __GFP_ZERO);
794}
795
752ade68
MH
796static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
797{
3b3b1a29
KC
798 size_t bytes;
799
800 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
801 return NULL;
802
3b3b1a29 803 return kvmalloc(bytes, flags);
752ade68
MH
804}
805
1c542f38
KC
806static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
807{
808 return kvmalloc_array(n, size, flags | __GFP_ZERO);
809}
810
39f1f78d 811extern void kvfree(const void *addr);
d4eaa283 812extern void kvfree_sensitive(const void *addr, size_t len);
39f1f78d 813
bac3cf4d 814static inline int head_compound_mapcount(struct page *head)
6dc5ea16
JH
815{
816 return atomic_read(compound_mapcount_ptr(head)) + 1;
817}
818
6988f31d
KK
819/*
820 * Mapcount of compound page as a whole, does not include mapped sub-pages.
821 *
822 * Must be called only for compound pages or any their tail sub-pages.
823 */
53f9263b
KS
824static inline int compound_mapcount(struct page *page)
825{
5f527c2b 826 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 827 page = compound_head(page);
bac3cf4d 828 return head_compound_mapcount(page);
53f9263b
KS
829}
830
70b50f94
AA
831/*
832 * The atomic page->_mapcount, starts from -1: so that transitions
833 * both from it and to it can be tracked, using atomic_inc_and_test
834 * and atomic_add_negative(-1).
835 */
22b751c3 836static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
837{
838 atomic_set(&(page)->_mapcount, -1);
839}
840
b20ce5e0
KS
841int __page_mapcount(struct page *page);
842
6988f31d
KK
843/*
844 * Mapcount of 0-order page; when compound sub-page, includes
845 * compound_mapcount().
846 *
847 * Result is undefined for pages which cannot be mapped into userspace.
848 * For example SLAB or special types of pages. See function page_has_type().
849 * They use this place in struct page differently.
850 */
70b50f94
AA
851static inline int page_mapcount(struct page *page)
852{
b20ce5e0
KS
853 if (unlikely(PageCompound(page)))
854 return __page_mapcount(page);
855 return atomic_read(&page->_mapcount) + 1;
856}
857
858#ifdef CONFIG_TRANSPARENT_HUGEPAGE
859int total_mapcount(struct page *page);
6d0a07ed 860int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
861#else
862static inline int total_mapcount(struct page *page)
863{
864 return page_mapcount(page);
70b50f94 865}
6d0a07ed
AA
866static inline int page_trans_huge_mapcount(struct page *page,
867 int *total_mapcount)
868{
869 int mapcount = page_mapcount(page);
870 if (total_mapcount)
871 *total_mapcount = mapcount;
872 return mapcount;
873}
b20ce5e0 874#endif
70b50f94 875
b49af68f
CL
876static inline struct page *virt_to_head_page(const void *x)
877{
878 struct page *page = virt_to_page(x);
ccaafd7f 879
1d798ca3 880 return compound_head(page);
b49af68f
CL
881}
882
ddc58f27
KS
883void __put_page(struct page *page);
884
1d7ea732 885void put_pages_list(struct list_head *pages);
1da177e4 886
8dfcc9ba 887void split_page(struct page *page, unsigned int order);
8dfcc9ba 888
33f2ef89
AW
889/*
890 * Compound pages have a destructor function. Provide a
891 * prototype for that function and accessor functions.
f1e61557 892 * These are _only_ valid on the head of a compound page.
33f2ef89 893 */
f1e61557
KS
894typedef void compound_page_dtor(struct page *);
895
896/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
897enum compound_dtor_id {
898 NULL_COMPOUND_DTOR,
899 COMPOUND_PAGE_DTOR,
900#ifdef CONFIG_HUGETLB_PAGE
901 HUGETLB_PAGE_DTOR,
9a982250
KS
902#endif
903#ifdef CONFIG_TRANSPARENT_HUGEPAGE
904 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
905#endif
906 NR_COMPOUND_DTORS,
907};
ae70eddd 908extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
909
910static inline void set_compound_page_dtor(struct page *page,
f1e61557 911 enum compound_dtor_id compound_dtor)
33f2ef89 912{
f1e61557
KS
913 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
914 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
915}
916
ff45fc3c 917static inline void destroy_compound_page(struct page *page)
33f2ef89 918{
f1e61557 919 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 920 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
921}
922
d00181b9 923static inline unsigned int compound_order(struct page *page)
d85f3385 924{
6d777953 925 if (!PageHead(page))
d85f3385 926 return 0;
e4b294c2 927 return page[1].compound_order;
d85f3385
CL
928}
929
47e29d32
JH
930static inline bool hpage_pincount_available(struct page *page)
931{
932 /*
933 * Can the page->hpage_pinned_refcount field be used? That field is in
934 * the 3rd page of the compound page, so the smallest (2-page) compound
935 * pages cannot support it.
936 */
937 page = compound_head(page);
938 return PageCompound(page) && compound_order(page) > 1;
939}
940
bac3cf4d 941static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
942{
943 return atomic_read(compound_pincount_ptr(head));
944}
945
47e29d32
JH
946static inline int compound_pincount(struct page *page)
947{
948 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
949 page = compound_head(page);
bac3cf4d 950 return head_compound_pincount(page);
47e29d32
JH
951}
952
f1e61557 953static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 954{
e4b294c2 955 page[1].compound_order = order;
1378a5ee 956 page[1].compound_nr = 1U << order;
d85f3385
CL
957}
958
d8c6546b
MWO
959/* Returns the number of pages in this potentially compound page. */
960static inline unsigned long compound_nr(struct page *page)
961{
1378a5ee
MWO
962 if (!PageHead(page))
963 return 1;
964 return page[1].compound_nr;
d8c6546b
MWO
965}
966
a50b854e
MWO
967/* Returns the number of bytes in this potentially compound page. */
968static inline unsigned long page_size(struct page *page)
969{
970 return PAGE_SIZE << compound_order(page);
971}
972
94ad9338
MWO
973/* Returns the number of bits needed for the number of bytes in a page */
974static inline unsigned int page_shift(struct page *page)
975{
976 return PAGE_SHIFT + compound_order(page);
977}
978
9a982250
KS
979void free_compound_page(struct page *page);
980
3dece370 981#ifdef CONFIG_MMU
14fd403f
AA
982/*
983 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
984 * servicing faults for write access. In the normal case, do always want
985 * pte_mkwrite. But get_user_pages can cause write faults for mappings
986 * that do not have writing enabled, when used by access_process_vm.
987 */
988static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
989{
990 if (likely(vma->vm_flags & VM_WRITE))
991 pte = pte_mkwrite(pte);
992 return pte;
993}
8c6e50b0 994
f9ce0be7 995vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
9d3af4b4 996void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
f9ce0be7 997
2b740303
SJ
998vm_fault_t finish_fault(struct vm_fault *vmf);
999vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 1000#endif
14fd403f 1001
1da177e4
LT
1002/*
1003 * Multiple processes may "see" the same page. E.g. for untouched
1004 * mappings of /dev/null, all processes see the same page full of
1005 * zeroes, and text pages of executables and shared libraries have
1006 * only one copy in memory, at most, normally.
1007 *
1008 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1009 * page_count() == 0 means the page is free. page->lru is then used for
1010 * freelist management in the buddy allocator.
da6052f7 1011 * page_count() > 0 means the page has been allocated.
1da177e4 1012 *
da6052f7
NP
1013 * Pages are allocated by the slab allocator in order to provide memory
1014 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1015 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1016 * unless a particular usage is carefully commented. (the responsibility of
1017 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1018 *
da6052f7
NP
1019 * A page may be used by anyone else who does a __get_free_page().
1020 * In this case, page_count still tracks the references, and should only
1021 * be used through the normal accessor functions. The top bits of page->flags
1022 * and page->virtual store page management information, but all other fields
1023 * are unused and could be used privately, carefully. The management of this
1024 * page is the responsibility of the one who allocated it, and those who have
1025 * subsequently been given references to it.
1026 *
1027 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1028 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1029 * The following discussion applies only to them.
1030 *
da6052f7
NP
1031 * A pagecache page contains an opaque `private' member, which belongs to the
1032 * page's address_space. Usually, this is the address of a circular list of
1033 * the page's disk buffers. PG_private must be set to tell the VM to call
1034 * into the filesystem to release these pages.
1da177e4 1035 *
da6052f7
NP
1036 * A page may belong to an inode's memory mapping. In this case, page->mapping
1037 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1038 * in units of PAGE_SIZE.
1da177e4 1039 *
da6052f7
NP
1040 * If pagecache pages are not associated with an inode, they are said to be
1041 * anonymous pages. These may become associated with the swapcache, and in that
1042 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1043 *
da6052f7
NP
1044 * In either case (swapcache or inode backed), the pagecache itself holds one
1045 * reference to the page. Setting PG_private should also increment the
1046 * refcount. The each user mapping also has a reference to the page.
1da177e4 1047 *
da6052f7 1048 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1049 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1050 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1051 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1052 *
da6052f7 1053 * All pagecache pages may be subject to I/O:
1da177e4
LT
1054 * - inode pages may need to be read from disk,
1055 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1056 * to be written back to the inode on disk,
1057 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1058 * modified may need to be swapped out to swap space and (later) to be read
1059 * back into memory.
1da177e4
LT
1060 */
1061
1062/*
1063 * The zone field is never updated after free_area_init_core()
1064 * sets it, so none of the operations on it need to be atomic.
1da177e4 1065 */
348f8b6c 1066
90572890 1067/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1068#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1069#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1070#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1071#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1072#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1073
348f8b6c 1074/*
25985edc 1075 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1076 * sections we define the shift as 0; that plus a 0 mask ensures
1077 * the compiler will optimise away reference to them.
1078 */
d41dee36
AW
1079#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1080#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1081#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1082#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1083#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1084
bce54bbf
WD
1085/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1086#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1087#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1088#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1089 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1090#else
89689ae7 1091#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1092#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1093 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1094#endif
1095
bd8029b6 1096#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1097
d41dee36
AW
1098#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1099#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1100#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1101#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1102#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1103#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1104
33dd4e0e 1105static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1106{
c403f6a3 1107 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1108 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1109}
1da177e4 1110
260ae3f7
DW
1111#ifdef CONFIG_ZONE_DEVICE
1112static inline bool is_zone_device_page(const struct page *page)
1113{
1114 return page_zonenum(page) == ZONE_DEVICE;
1115}
966cf44f
AD
1116extern void memmap_init_zone_device(struct zone *, unsigned long,
1117 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1118#else
1119static inline bool is_zone_device_page(const struct page *page)
1120{
1121 return false;
1122}
7b2d55d2 1123#endif
5042db43 1124
e7638488 1125#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1126void free_devmap_managed_page(struct page *page);
e7638488 1127DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1128
1129static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1130{
1131 if (!static_branch_unlikely(&devmap_managed_key))
1132 return false;
1133 if (!is_zone_device_page(page))
1134 return false;
1135 switch (page->pgmap->type) {
1136 case MEMORY_DEVICE_PRIVATE:
e7638488 1137 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1138 return true;
1139 default:
1140 break;
1141 }
1142 return false;
1143}
1144
07d80269
JH
1145void put_devmap_managed_page(struct page *page);
1146
e7638488 1147#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1148static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1149{
1150 return false;
1151}
07d80269
JH
1152
1153static inline void put_devmap_managed_page(struct page *page)
1154{
1155}
7588adf8 1156#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1157
6b368cd4
JG
1158static inline bool is_device_private_page(const struct page *page)
1159{
7588adf8
RM
1160 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1161 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1162 is_zone_device_page(page) &&
1163 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1164}
e7638488 1165
52916982
LG
1166static inline bool is_pci_p2pdma_page(const struct page *page)
1167{
7588adf8
RM
1168 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1169 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1170 is_zone_device_page(page) &&
1171 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1172}
7b2d55d2 1173
f958d7b5
LT
1174/* 127: arbitrary random number, small enough to assemble well */
1175#define page_ref_zero_or_close_to_overflow(page) \
1176 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1177
3565fce3
DW
1178static inline void get_page(struct page *page)
1179{
1180 page = compound_head(page);
1181 /*
1182 * Getting a normal page or the head of a compound page
0139aa7b 1183 * requires to already have an elevated page->_refcount.
3565fce3 1184 */
f958d7b5 1185 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1186 page_ref_inc(page);
3565fce3
DW
1187}
1188
3faa52c0 1189bool __must_check try_grab_page(struct page *page, unsigned int flags);
0fa5bc40
JM
1190__maybe_unused struct page *try_grab_compound_head(struct page *page, int refs,
1191 unsigned int flags);
1192
3faa52c0 1193
88b1a17d
LT
1194static inline __must_check bool try_get_page(struct page *page)
1195{
1196 page = compound_head(page);
1197 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1198 return false;
fe896d18 1199 page_ref_inc(page);
88b1a17d 1200 return true;
3565fce3
DW
1201}
1202
1203static inline void put_page(struct page *page)
1204{
1205 page = compound_head(page);
1206
7b2d55d2 1207 /*
e7638488
DW
1208 * For devmap managed pages we need to catch refcount transition from
1209 * 2 to 1, when refcount reach one it means the page is free and we
1210 * need to inform the device driver through callback. See
7b2d55d2
JG
1211 * include/linux/memremap.h and HMM for details.
1212 */
07d80269
JH
1213 if (page_is_devmap_managed(page)) {
1214 put_devmap_managed_page(page);
7b2d55d2 1215 return;
07d80269 1216 }
7b2d55d2 1217
3565fce3
DW
1218 if (put_page_testzero(page))
1219 __put_page(page);
3565fce3
DW
1220}
1221
3faa52c0
JH
1222/*
1223 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1224 * the page's refcount so that two separate items are tracked: the original page
1225 * reference count, and also a new count of how many pin_user_pages() calls were
1226 * made against the page. ("gup-pinned" is another term for the latter).
1227 *
1228 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1229 * distinct from normal pages. As such, the unpin_user_page() call (and its
1230 * variants) must be used in order to release gup-pinned pages.
1231 *
1232 * Choice of value:
1233 *
1234 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1235 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1236 * simpler, due to the fact that adding an even power of two to the page
1237 * refcount has the effect of using only the upper N bits, for the code that
1238 * counts up using the bias value. This means that the lower bits are left for
1239 * the exclusive use of the original code that increments and decrements by one
1240 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1241 *
3faa52c0
JH
1242 * Of course, once the lower bits overflow into the upper bits (and this is
1243 * OK, because subtraction recovers the original values), then visual inspection
1244 * no longer suffices to directly view the separate counts. However, for normal
1245 * applications that don't have huge page reference counts, this won't be an
1246 * issue.
fc1d8e7c 1247 *
3faa52c0
JH
1248 * Locking: the lockless algorithm described in page_cache_get_speculative()
1249 * and page_cache_gup_pin_speculative() provides safe operation for
1250 * get_user_pages and page_mkclean and other calls that race to set up page
1251 * table entries.
fc1d8e7c 1252 */
3faa52c0 1253#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1254
3faa52c0 1255void unpin_user_page(struct page *page);
f1f6a7dd
JH
1256void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1257 bool make_dirty);
f1f6a7dd 1258void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1259
3faa52c0
JH
1260/**
1261 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1262 *
1263 * This function checks if a page has been pinned via a call to
1264 * pin_user_pages*().
1265 *
1266 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1267 * because it means "definitely not pinned for DMA", but true means "probably
1268 * pinned for DMA, but possibly a false positive due to having at least
1269 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1270 *
1271 * False positives are OK, because: a) it's unlikely for a page to get that many
1272 * refcounts, and b) all the callers of this routine are expected to be able to
1273 * deal gracefully with a false positive.
1274 *
47e29d32
JH
1275 * For huge pages, the result will be exactly correct. That's because we have
1276 * more tracking data available: the 3rd struct page in the compound page is
1277 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1278 * scheme).
1279 *
72ef5e52 1280 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0
JH
1281 *
1282 * @page: pointer to page to be queried.
1283 * @Return: True, if it is likely that the page has been "dma-pinned".
1284 * False, if the page is definitely not dma-pinned.
1285 */
1286static inline bool page_maybe_dma_pinned(struct page *page)
1287{
47e29d32
JH
1288 if (hpage_pincount_available(page))
1289 return compound_pincount(page) > 0;
1290
3faa52c0
JH
1291 /*
1292 * page_ref_count() is signed. If that refcount overflows, then
1293 * page_ref_count() returns a negative value, and callers will avoid
1294 * further incrementing the refcount.
1295 *
1296 * Here, for that overflow case, use the signed bit to count a little
1297 * bit higher via unsigned math, and thus still get an accurate result.
1298 */
1299 return ((unsigned int)page_ref_count(compound_head(page))) >=
1300 GUP_PIN_COUNTING_BIAS;
1301}
1302
9127ab4f
CS
1303#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1304#define SECTION_IN_PAGE_FLAGS
1305#endif
1306
89689ae7 1307/*
7a8010cd
VB
1308 * The identification function is mainly used by the buddy allocator for
1309 * determining if two pages could be buddies. We are not really identifying
1310 * the zone since we could be using the section number id if we do not have
1311 * node id available in page flags.
1312 * We only guarantee that it will return the same value for two combinable
1313 * pages in a zone.
89689ae7 1314 */
cb2b95e1
AW
1315static inline int page_zone_id(struct page *page)
1316{
89689ae7 1317 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1318}
1319
89689ae7 1320#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1321extern int page_to_nid(const struct page *page);
89689ae7 1322#else
33dd4e0e 1323static inline int page_to_nid(const struct page *page)
d41dee36 1324{
f165b378
PT
1325 struct page *p = (struct page *)page;
1326
1327 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1328}
89689ae7
CL
1329#endif
1330
57e0a030 1331#ifdef CONFIG_NUMA_BALANCING
90572890 1332static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1333{
90572890 1334 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1335}
1336
90572890 1337static inline int cpupid_to_pid(int cpupid)
57e0a030 1338{
90572890 1339 return cpupid & LAST__PID_MASK;
57e0a030 1340}
b795854b 1341
90572890 1342static inline int cpupid_to_cpu(int cpupid)
b795854b 1343{
90572890 1344 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1345}
1346
90572890 1347static inline int cpupid_to_nid(int cpupid)
b795854b 1348{
90572890 1349 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1350}
1351
90572890 1352static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1353{
90572890 1354 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1355}
1356
90572890 1357static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1358{
90572890 1359 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1360}
1361
8c8a743c
PZ
1362static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1363{
1364 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1365}
1366
1367#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1368#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1369static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1370{
1ae71d03 1371 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1372}
90572890
PZ
1373
1374static inline int page_cpupid_last(struct page *page)
1375{
1376 return page->_last_cpupid;
1377}
1378static inline void page_cpupid_reset_last(struct page *page)
b795854b 1379{
1ae71d03 1380 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1381}
1382#else
90572890 1383static inline int page_cpupid_last(struct page *page)
75980e97 1384{
90572890 1385 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1386}
1387
90572890 1388extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1389
90572890 1390static inline void page_cpupid_reset_last(struct page *page)
75980e97 1391{
09940a4f 1392 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1393}
90572890
PZ
1394#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1395#else /* !CONFIG_NUMA_BALANCING */
1396static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1397{
90572890 1398 return page_to_nid(page); /* XXX */
57e0a030
MG
1399}
1400
90572890 1401static inline int page_cpupid_last(struct page *page)
57e0a030 1402{
90572890 1403 return page_to_nid(page); /* XXX */
57e0a030
MG
1404}
1405
90572890 1406static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1407{
1408 return -1;
1409}
1410
90572890 1411static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1412{
1413 return -1;
1414}
1415
90572890 1416static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1417{
1418 return -1;
1419}
1420
90572890
PZ
1421static inline int cpu_pid_to_cpupid(int nid, int pid)
1422{
1423 return -1;
1424}
1425
1426static inline bool cpupid_pid_unset(int cpupid)
b795854b 1427{
2b787449 1428 return true;
b795854b
MG
1429}
1430
90572890 1431static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1432{
1433}
8c8a743c
PZ
1434
1435static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1436{
1437 return false;
1438}
90572890 1439#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1440
2e903b91 1441#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1442
2813b9c0
AK
1443static inline u8 page_kasan_tag(const struct page *page)
1444{
34303244
AK
1445 if (kasan_enabled())
1446 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1447 return 0xff;
2813b9c0
AK
1448}
1449
1450static inline void page_kasan_tag_set(struct page *page, u8 tag)
1451{
34303244
AK
1452 if (kasan_enabled()) {
1453 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1454 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1455 }
2813b9c0
AK
1456}
1457
1458static inline void page_kasan_tag_reset(struct page *page)
1459{
34303244
AK
1460 if (kasan_enabled())
1461 page_kasan_tag_set(page, 0xff);
2813b9c0 1462}
34303244
AK
1463
1464#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1465
2813b9c0
AK
1466static inline u8 page_kasan_tag(const struct page *page)
1467{
1468 return 0xff;
1469}
1470
1471static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1472static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1473
1474#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1475
33dd4e0e 1476static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1477{
1478 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1479}
1480
75ef7184
MG
1481static inline pg_data_t *page_pgdat(const struct page *page)
1482{
1483 return NODE_DATA(page_to_nid(page));
1484}
1485
9127ab4f 1486#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1487static inline void set_page_section(struct page *page, unsigned long section)
1488{
1489 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1490 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1491}
1492
aa462abe 1493static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1494{
1495 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1496}
308c05e3 1497#endif
d41dee36 1498
2f1b6248 1499static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1500{
1501 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1502 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1503}
2f1b6248 1504
348f8b6c
DH
1505static inline void set_page_node(struct page *page, unsigned long node)
1506{
1507 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1508 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1509}
89689ae7 1510
2f1b6248 1511static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1512 unsigned long node, unsigned long pfn)
1da177e4 1513{
348f8b6c
DH
1514 set_page_zone(page, zone);
1515 set_page_node(page, node);
9127ab4f 1516#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1517 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1518#endif
1da177e4
LT
1519}
1520
f6ac2354
CL
1521/*
1522 * Some inline functions in vmstat.h depend on page_zone()
1523 */
1524#include <linux/vmstat.h>
1525
33dd4e0e 1526static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1527{
1dff8083 1528 return page_to_virt(page);
1da177e4
LT
1529}
1530
1531#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1532#define HASHED_PAGE_VIRTUAL
1533#endif
1534
1535#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1536static inline void *page_address(const struct page *page)
1537{
1538 return page->virtual;
1539}
1540static inline void set_page_address(struct page *page, void *address)
1541{
1542 page->virtual = address;
1543}
1da177e4
LT
1544#define page_address_init() do { } while(0)
1545#endif
1546
1547#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1548void *page_address(const struct page *page);
1da177e4
LT
1549void set_page_address(struct page *page, void *virtual);
1550void page_address_init(void);
1551#endif
1552
1553#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1554#define page_address(page) lowmem_page_address(page)
1555#define set_page_address(page, address) do { } while(0)
1556#define page_address_init() do { } while(0)
1557#endif
1558
e39155ea
KS
1559extern void *page_rmapping(struct page *page);
1560extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1561extern struct address_space *page_mapping(struct page *page);
1da177e4 1562
f981c595
MG
1563extern struct address_space *__page_file_mapping(struct page *);
1564
1565static inline
1566struct address_space *page_file_mapping(struct page *page)
1567{
1568 if (unlikely(PageSwapCache(page)))
1569 return __page_file_mapping(page);
1570
1571 return page->mapping;
1572}
1573
f6ab1f7f
HY
1574extern pgoff_t __page_file_index(struct page *page);
1575
1da177e4
LT
1576/*
1577 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1578 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1579 */
1580static inline pgoff_t page_index(struct page *page)
1581{
1582 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1583 return __page_file_index(page);
1da177e4
LT
1584 return page->index;
1585}
1586
1aa8aea5 1587bool page_mapped(struct page *page);
bda807d4 1588struct address_space *page_mapping(struct page *page);
cb9f753a 1589struct address_space *page_mapping_file(struct page *page);
1da177e4 1590
2f064f34
MH
1591/*
1592 * Return true only if the page has been allocated with
1593 * ALLOC_NO_WATERMARKS and the low watermark was not
1594 * met implying that the system is under some pressure.
1595 */
1d7bab6a 1596static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
1597{
1598 /*
1599 * Page index cannot be this large so this must be
1600 * a pfmemalloc page.
1601 */
1602 return page->index == -1UL;
1603}
1604
1605/*
1606 * Only to be called by the page allocator on a freshly allocated
1607 * page.
1608 */
1609static inline void set_page_pfmemalloc(struct page *page)
1610{
1611 page->index = -1UL;
1612}
1613
1614static inline void clear_page_pfmemalloc(struct page *page)
1615{
1616 page->index = 0;
1617}
1618
1c0fe6e3
NP
1619/*
1620 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1621 */
1622extern void pagefault_out_of_memory(void);
1623
1da177e4 1624#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1625#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1da177e4 1626
ddd588b5 1627/*
7bf02ea2 1628 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1629 * various contexts.
1630 */
4b59e6c4 1631#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1632
9af744d7 1633extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1634
710ec38b 1635#ifdef CONFIG_MMU
7f43add4 1636extern bool can_do_mlock(void);
710ec38b
AB
1637#else
1638static inline bool can_do_mlock(void) { return false; }
1639#endif
1da177e4
LT
1640extern int user_shm_lock(size_t, struct user_struct *);
1641extern void user_shm_unlock(size_t, struct user_struct *);
1642
1643/*
1644 * Parameter block passed down to zap_pte_range in exceptional cases.
1645 */
1646struct zap_details {
1da177e4
LT
1647 struct address_space *check_mapping; /* Check page->mapping if set */
1648 pgoff_t first_index; /* Lowest page->index to unmap */
1649 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1650};
1651
25b2995a
CH
1652struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1653 pte_t pte);
28093f9f
GS
1654struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1655 pmd_t pmd);
7e675137 1656
27d036e3
LR
1657void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1658 unsigned long size);
14f5ff5d 1659void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1660 unsigned long size);
4f74d2c8
LT
1661void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1662 unsigned long start, unsigned long end);
e6473092 1663
ac46d4f3
JG
1664struct mmu_notifier_range;
1665
42b77728 1666void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1667 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1668int
1669copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
9fd6dad1
PB
1670int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1671 struct mmu_notifier_range *range, pte_t **ptepp,
1672 pmd_t **pmdpp, spinlock_t **ptlp);
ff5c19ed 1673int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 1674 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
1675int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1676 unsigned long *pfn);
d87fe660 1677int follow_phys(struct vm_area_struct *vma, unsigned long address,
1678 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1679int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1680 void *buf, int len, int write);
1da177e4 1681
7caef267 1682extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1683extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1684void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1685void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1686int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1687int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1688int invalidate_inode_page(struct page *page);
1689
7ee1dd3f 1690#ifdef CONFIG_MMU
2b740303 1691extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1692 unsigned long address, unsigned int flags,
1693 struct pt_regs *regs);
64019a2e 1694extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1695 unsigned long address, unsigned int fault_flags,
1696 bool *unlocked);
977fbdcd
MW
1697void unmap_mapping_pages(struct address_space *mapping,
1698 pgoff_t start, pgoff_t nr, bool even_cows);
1699void unmap_mapping_range(struct address_space *mapping,
1700 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1701#else
2b740303 1702static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1703 unsigned long address, unsigned int flags,
1704 struct pt_regs *regs)
7ee1dd3f
DH
1705{
1706 /* should never happen if there's no MMU */
1707 BUG();
1708 return VM_FAULT_SIGBUS;
1709}
64019a2e 1710static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1711 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1712{
1713 /* should never happen if there's no MMU */
1714 BUG();
1715 return -EFAULT;
1716}
977fbdcd
MW
1717static inline void unmap_mapping_pages(struct address_space *mapping,
1718 pgoff_t start, pgoff_t nr, bool even_cows) { }
1719static inline void unmap_mapping_range(struct address_space *mapping,
1720 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1721#endif
f33ea7f4 1722
977fbdcd
MW
1723static inline void unmap_shared_mapping_range(struct address_space *mapping,
1724 loff_t const holebegin, loff_t const holelen)
1725{
1726 unmap_mapping_range(mapping, holebegin, holelen, 0);
1727}
1728
1729extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1730 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1731extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1732 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1733extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1734 void *buf, int len, unsigned int gup_flags);
1da177e4 1735
64019a2e 1736long get_user_pages_remote(struct mm_struct *mm,
1e987790 1737 unsigned long start, unsigned long nr_pages,
9beae1ea 1738 unsigned int gup_flags, struct page **pages,
5b56d49f 1739 struct vm_area_struct **vmas, int *locked);
64019a2e 1740long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1741 unsigned long start, unsigned long nr_pages,
1742 unsigned int gup_flags, struct page **pages,
1743 struct vm_area_struct **vmas, int *locked);
c12d2da5 1744long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1745 unsigned int gup_flags, struct page **pages,
cde70140 1746 struct vm_area_struct **vmas);
eddb1c22
JH
1747long pin_user_pages(unsigned long start, unsigned long nr_pages,
1748 unsigned int gup_flags, struct page **pages,
1749 struct vm_area_struct **vmas);
c12d2da5 1750long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1751 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1752long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1753 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1754long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1755 struct page **pages, unsigned int gup_flags);
91429023
JH
1756long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1757 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1758
73b0140b
IW
1759int get_user_pages_fast(unsigned long start, int nr_pages,
1760 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1761int pin_user_pages_fast(unsigned long start, int nr_pages,
1762 unsigned int gup_flags, struct page **pages);
8025e5dd 1763
79eb597c
DJ
1764int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1765int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1766 struct task_struct *task, bool bypass_rlim);
1767
18022c5d
MG
1768struct kvec;
1769int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1770 struct page **pages);
1771int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1772struct page *get_dump_page(unsigned long addr);
1da177e4 1773
cf9a2ae8 1774extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1775extern void do_invalidatepage(struct page *page, unsigned int offset,
1776 unsigned int length);
cf9a2ae8 1777
f82b3764 1778void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1779int __set_page_dirty_nobuffers(struct page *page);
76719325 1780int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1781int redirty_page_for_writepage(struct writeback_control *wbc,
1782 struct page *page);
62cccb8c 1783void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1784void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1785 struct bdi_writeback *wb);
b3c97528 1786int set_page_dirty(struct page *page);
1da177e4 1787int set_page_dirty_lock(struct page *page);
736304f3
JK
1788void __cancel_dirty_page(struct page *page);
1789static inline void cancel_dirty_page(struct page *page)
1790{
1791 /* Avoid atomic ops, locking, etc. when not actually needed. */
1792 if (PageDirty(page))
1793 __cancel_dirty_page(page);
1794}
1da177e4 1795int clear_page_dirty_for_io(struct page *page);
b9ea2515 1796
a9090253 1797int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1798
b6a2fea3
OW
1799extern unsigned long move_page_tables(struct vm_area_struct *vma,
1800 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1801 unsigned long new_addr, unsigned long len,
1802 bool need_rmap_locks);
58705444
PX
1803
1804/*
1805 * Flags used by change_protection(). For now we make it a bitmap so
1806 * that we can pass in multiple flags just like parameters. However
1807 * for now all the callers are only use one of the flags at the same
1808 * time.
1809 */
1810/* Whether we should allow dirty bit accounting */
1811#define MM_CP_DIRTY_ACCT (1UL << 0)
1812/* Whether this protection change is for NUMA hints */
1813#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1814/* Whether this change is for write protecting */
1815#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1816#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1817#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1818 MM_CP_UFFD_WP_RESOLVE)
58705444 1819
7da4d641
PZ
1820extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1821 unsigned long end, pgprot_t newprot,
58705444 1822 unsigned long cp_flags);
b6a2fea3
OW
1823extern int mprotect_fixup(struct vm_area_struct *vma,
1824 struct vm_area_struct **pprev, unsigned long start,
1825 unsigned long end, unsigned long newflags);
1da177e4 1826
465a454f
PZ
1827/*
1828 * doesn't attempt to fault and will return short.
1829 */
dadbb612
SJ
1830int get_user_pages_fast_only(unsigned long start, int nr_pages,
1831 unsigned int gup_flags, struct page **pages);
104acc32
JH
1832int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1833 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1834
1835static inline bool get_user_page_fast_only(unsigned long addr,
1836 unsigned int gup_flags, struct page **pagep)
1837{
1838 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1839}
d559db08
KH
1840/*
1841 * per-process(per-mm_struct) statistics.
1842 */
d559db08
KH
1843static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1844{
69c97823
KK
1845 long val = atomic_long_read(&mm->rss_stat.count[member]);
1846
1847#ifdef SPLIT_RSS_COUNTING
1848 /*
1849 * counter is updated in asynchronous manner and may go to minus.
1850 * But it's never be expected number for users.
1851 */
1852 if (val < 0)
1853 val = 0;
172703b0 1854#endif
69c97823
KK
1855 return (unsigned long)val;
1856}
d559db08 1857
e4dcad20 1858void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1859
d559db08
KH
1860static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1861{
b3d1411b
JFG
1862 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1863
e4dcad20 1864 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1865}
1866
1867static inline void inc_mm_counter(struct mm_struct *mm, int member)
1868{
b3d1411b
JFG
1869 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1870
e4dcad20 1871 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1872}
1873
1874static inline void dec_mm_counter(struct mm_struct *mm, int member)
1875{
b3d1411b
JFG
1876 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1877
e4dcad20 1878 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1879}
1880
eca56ff9
JM
1881/* Optimized variant when page is already known not to be PageAnon */
1882static inline int mm_counter_file(struct page *page)
1883{
1884 if (PageSwapBacked(page))
1885 return MM_SHMEMPAGES;
1886 return MM_FILEPAGES;
1887}
1888
1889static inline int mm_counter(struct page *page)
1890{
1891 if (PageAnon(page))
1892 return MM_ANONPAGES;
1893 return mm_counter_file(page);
1894}
1895
d559db08
KH
1896static inline unsigned long get_mm_rss(struct mm_struct *mm)
1897{
1898 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1899 get_mm_counter(mm, MM_ANONPAGES) +
1900 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1901}
1902
1903static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1904{
1905 return max(mm->hiwater_rss, get_mm_rss(mm));
1906}
1907
1908static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1909{
1910 return max(mm->hiwater_vm, mm->total_vm);
1911}
1912
1913static inline void update_hiwater_rss(struct mm_struct *mm)
1914{
1915 unsigned long _rss = get_mm_rss(mm);
1916
1917 if ((mm)->hiwater_rss < _rss)
1918 (mm)->hiwater_rss = _rss;
1919}
1920
1921static inline void update_hiwater_vm(struct mm_struct *mm)
1922{
1923 if (mm->hiwater_vm < mm->total_vm)
1924 mm->hiwater_vm = mm->total_vm;
1925}
1926
695f0559
PC
1927static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1928{
1929 mm->hiwater_rss = get_mm_rss(mm);
1930}
1931
d559db08
KH
1932static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1933 struct mm_struct *mm)
1934{
1935 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1936
1937 if (*maxrss < hiwater_rss)
1938 *maxrss = hiwater_rss;
1939}
1940
53bddb4e 1941#if defined(SPLIT_RSS_COUNTING)
05af2e10 1942void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1943#else
05af2e10 1944static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1945{
1946}
1947#endif
465a454f 1948
78e7c5af
AK
1949#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1950static inline int pte_special(pte_t pte)
1951{
1952 return 0;
1953}
1954
1955static inline pte_t pte_mkspecial(pte_t pte)
1956{
1957 return pte;
1958}
1959#endif
1960
17596731 1961#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
1962static inline int pte_devmap(pte_t pte)
1963{
1964 return 0;
1965}
1966#endif
1967
6d2329f8 1968int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1969
25ca1d6c
NK
1970extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1971 spinlock_t **ptl);
1972static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1973 spinlock_t **ptl)
1974{
1975 pte_t *ptep;
1976 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1977 return ptep;
1978}
c9cfcddf 1979
c2febafc
KS
1980#ifdef __PAGETABLE_P4D_FOLDED
1981static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1982 unsigned long address)
1983{
1984 return 0;
1985}
1986#else
1987int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1988#endif
1989
b4e98d9a 1990#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 1991static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
1992 unsigned long address)
1993{
1994 return 0;
1995}
b4e98d9a
KS
1996static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1997static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1998
5f22df00 1999#else
c2febafc 2000int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2001
b4e98d9a
KS
2002static inline void mm_inc_nr_puds(struct mm_struct *mm)
2003{
6d212db1
MS
2004 if (mm_pud_folded(mm))
2005 return;
af5b0f6a 2006 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2007}
2008
2009static inline void mm_dec_nr_puds(struct mm_struct *mm)
2010{
6d212db1
MS
2011 if (mm_pud_folded(mm))
2012 return;
af5b0f6a 2013 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2014}
5f22df00
NP
2015#endif
2016
2d2f5119 2017#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2018static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2019 unsigned long address)
2020{
2021 return 0;
2022}
dc6c9a35 2023
dc6c9a35
KS
2024static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2025static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2026
5f22df00 2027#else
1bb3630e 2028int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2029
dc6c9a35
KS
2030static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2031{
6d212db1
MS
2032 if (mm_pmd_folded(mm))
2033 return;
af5b0f6a 2034 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2035}
2036
2037static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2038{
6d212db1
MS
2039 if (mm_pmd_folded(mm))
2040 return;
af5b0f6a 2041 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2042}
5f22df00
NP
2043#endif
2044
c4812909 2045#ifdef CONFIG_MMU
af5b0f6a 2046static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2047{
af5b0f6a 2048 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2049}
2050
af5b0f6a 2051static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2052{
af5b0f6a 2053 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2054}
2055
2056static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2057{
af5b0f6a 2058 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2059}
2060
2061static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2062{
af5b0f6a 2063 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2064}
2065#else
c4812909 2066
af5b0f6a
KS
2067static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2068static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2069{
2070 return 0;
2071}
2072
2073static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2074static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2075#endif
2076
4cf58924
JFG
2077int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2078int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2079
f949286c
MR
2080#if defined(CONFIG_MMU)
2081
c2febafc
KS
2082static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2083 unsigned long address)
2084{
2085 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2086 NULL : p4d_offset(pgd, address);
2087}
2088
2089static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2090 unsigned long address)
1da177e4 2091{
c2febafc
KS
2092 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2093 NULL : pud_offset(p4d, address);
1da177e4 2094}
d8626138 2095
1da177e4
LT
2096static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2097{
1bb3630e
HD
2098 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2099 NULL: pmd_offset(pud, address);
1da177e4 2100}
f949286c 2101#endif /* CONFIG_MMU */
1bb3630e 2102
57c1ffce 2103#if USE_SPLIT_PTE_PTLOCKS
597d795a 2104#if ALLOC_SPLIT_PTLOCKS
b35f1819 2105void __init ptlock_cache_init(void);
539edb58
PZ
2106extern bool ptlock_alloc(struct page *page);
2107extern void ptlock_free(struct page *page);
2108
2109static inline spinlock_t *ptlock_ptr(struct page *page)
2110{
2111 return page->ptl;
2112}
597d795a 2113#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2114static inline void ptlock_cache_init(void)
2115{
2116}
2117
49076ec2
KS
2118static inline bool ptlock_alloc(struct page *page)
2119{
49076ec2
KS
2120 return true;
2121}
539edb58 2122
49076ec2
KS
2123static inline void ptlock_free(struct page *page)
2124{
49076ec2
KS
2125}
2126
2127static inline spinlock_t *ptlock_ptr(struct page *page)
2128{
539edb58 2129 return &page->ptl;
49076ec2 2130}
597d795a 2131#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2132
2133static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2134{
2135 return ptlock_ptr(pmd_page(*pmd));
2136}
2137
2138static inline bool ptlock_init(struct page *page)
2139{
2140 /*
2141 * prep_new_page() initialize page->private (and therefore page->ptl)
2142 * with 0. Make sure nobody took it in use in between.
2143 *
2144 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2145 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2146 */
309381fe 2147 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2148 if (!ptlock_alloc(page))
2149 return false;
2150 spin_lock_init(ptlock_ptr(page));
2151 return true;
2152}
2153
57c1ffce 2154#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2155/*
2156 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2157 */
49076ec2
KS
2158static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2159{
2160 return &mm->page_table_lock;
2161}
b35f1819 2162static inline void ptlock_cache_init(void) {}
49076ec2 2163static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2164static inline void ptlock_free(struct page *page) {}
57c1ffce 2165#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2166
b35f1819
KS
2167static inline void pgtable_init(void)
2168{
2169 ptlock_cache_init();
2170 pgtable_cache_init();
2171}
2172
b4ed71f5 2173static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2174{
706874e9
VD
2175 if (!ptlock_init(page))
2176 return false;
1d40a5ea 2177 __SetPageTable(page);
f0c0c115 2178 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2179 return true;
2f569afd
MS
2180}
2181
b4ed71f5 2182static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2183{
9e247bab 2184 ptlock_free(page);
1d40a5ea 2185 __ClearPageTable(page);
f0c0c115 2186 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2187}
2188
c74df32c
HD
2189#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2190({ \
4c21e2f2 2191 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2192 pte_t *__pte = pte_offset_map(pmd, address); \
2193 *(ptlp) = __ptl; \
2194 spin_lock(__ptl); \
2195 __pte; \
2196})
2197
2198#define pte_unmap_unlock(pte, ptl) do { \
2199 spin_unlock(ptl); \
2200 pte_unmap(pte); \
2201} while (0)
2202
4cf58924 2203#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2204
2205#define pte_alloc_map(mm, pmd, address) \
4cf58924 2206 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2207
c74df32c 2208#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2209 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2210 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2211
1bb3630e 2212#define pte_alloc_kernel(pmd, address) \
4cf58924 2213 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2214 NULL: pte_offset_kernel(pmd, address))
1da177e4 2215
e009bb30
KS
2216#if USE_SPLIT_PMD_PTLOCKS
2217
634391ac
MS
2218static struct page *pmd_to_page(pmd_t *pmd)
2219{
2220 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2221 return virt_to_page((void *)((unsigned long) pmd & mask));
2222}
2223
e009bb30
KS
2224static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2225{
634391ac 2226 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2227}
2228
b2b29d6d 2229static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2230{
e009bb30
KS
2231#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2232 page->pmd_huge_pte = NULL;
2233#endif
49076ec2 2234 return ptlock_init(page);
e009bb30
KS
2235}
2236
b2b29d6d 2237static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2238{
2239#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2240 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2241#endif
49076ec2 2242 ptlock_free(page);
e009bb30
KS
2243}
2244
634391ac 2245#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2246
2247#else
2248
9a86cb7b
KS
2249static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2250{
2251 return &mm->page_table_lock;
2252}
2253
b2b29d6d
MW
2254static inline bool pmd_ptlock_init(struct page *page) { return true; }
2255static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2256
c389a250 2257#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2258
e009bb30
KS
2259#endif
2260
9a86cb7b
KS
2261static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2262{
2263 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2264 spin_lock(ptl);
2265 return ptl;
2266}
2267
b2b29d6d
MW
2268static inline bool pgtable_pmd_page_ctor(struct page *page)
2269{
2270 if (!pmd_ptlock_init(page))
2271 return false;
2272 __SetPageTable(page);
f0c0c115 2273 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2274 return true;
2275}
2276
2277static inline void pgtable_pmd_page_dtor(struct page *page)
2278{
2279 pmd_ptlock_free(page);
2280 __ClearPageTable(page);
f0c0c115 2281 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2282}
2283
a00cc7d9
MW
2284/*
2285 * No scalability reason to split PUD locks yet, but follow the same pattern
2286 * as the PMD locks to make it easier if we decide to. The VM should not be
2287 * considered ready to switch to split PUD locks yet; there may be places
2288 * which need to be converted from page_table_lock.
2289 */
2290static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2291{
2292 return &mm->page_table_lock;
2293}
2294
2295static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2296{
2297 spinlock_t *ptl = pud_lockptr(mm, pud);
2298
2299 spin_lock(ptl);
2300 return ptl;
2301}
62906027 2302
a00cc7d9 2303extern void __init pagecache_init(void);
bc9331a1 2304extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2305extern void free_initmem(void);
2306
69afade7
JL
2307/*
2308 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2309 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2310 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2311 * Return pages freed into the buddy system.
2312 */
11199692 2313extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2314 int poison, const char *s);
c3d5f5f0 2315
c3d5f5f0 2316extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2317extern void mem_init_print_info(const char *str);
69afade7 2318
4b50bcc7 2319extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2320
69afade7 2321/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 2322static inline void free_reserved_page(struct page *page)
69afade7
JL
2323{
2324 ClearPageReserved(page);
2325 init_page_count(page);
2326 __free_page(page);
69afade7
JL
2327 adjust_managed_page_count(page, 1);
2328}
a0cd7a7c 2329#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
2330
2331static inline void mark_page_reserved(struct page *page)
2332{
2333 SetPageReserved(page);
2334 adjust_managed_page_count(page, -1);
2335}
2336
2337/*
2338 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2339 * The freed pages will be poisoned with pattern "poison" if it's within
2340 * range [0, UCHAR_MAX].
2341 * Return pages freed into the buddy system.
69afade7
JL
2342 */
2343static inline unsigned long free_initmem_default(int poison)
2344{
2345 extern char __init_begin[], __init_end[];
2346
11199692 2347 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2348 poison, "unused kernel");
2349}
2350
7ee3d4e8
JL
2351static inline unsigned long get_num_physpages(void)
2352{
2353 int nid;
2354 unsigned long phys_pages = 0;
2355
2356 for_each_online_node(nid)
2357 phys_pages += node_present_pages(nid);
2358
2359 return phys_pages;
2360}
2361
c713216d 2362/*
3f08a302 2363 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2364 * zones, allocate the backing mem_map and account for memory holes in an
2365 * architecture independent manner.
c713216d
MG
2366 *
2367 * An architecture is expected to register range of page frames backed by
0ee332c1 2368 * physical memory with memblock_add[_node]() before calling
9691a071 2369 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2370 * usage, an architecture is expected to do something like
2371 *
2372 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2373 * max_highmem_pfn};
2374 * for_each_valid_physical_page_range()
0ee332c1 2375 * memblock_add_node(base, size, nid)
9691a071 2376 * free_area_init(max_zone_pfns);
c713216d 2377 */
9691a071 2378void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2379unsigned long node_map_pfn_alignment(void);
32996250
YL
2380unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2381 unsigned long end_pfn);
c713216d
MG
2382extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2383 unsigned long end_pfn);
2384extern void get_pfn_range_for_nid(unsigned int nid,
2385 unsigned long *start_pfn, unsigned long *end_pfn);
2386extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2387
3f08a302 2388#ifndef CONFIG_NEED_MULTIPLE_NODES
6f24fbd3 2389static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2390{
2391 return 0;
2392}
2393#else
2394/* please see mm/page_alloc.c */
2395extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2396#endif
2397
0e0b864e 2398extern void set_dma_reserve(unsigned long new_dma_reserve);
ab28cb6e 2399extern void memmap_init_range(unsigned long, int, unsigned long,
dc2da7b4
BH
2400 unsigned long, unsigned long, enum meminit_context,
2401 struct vmem_altmap *, int migratetype);
3256ff83 2402extern void memmap_init_zone(struct zone *zone);
bc75d33f 2403extern void setup_per_zone_wmarks(void);
1b79acc9 2404extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2405extern void mem_init(void);
8feae131 2406extern void __init mmap_init(void);
9af744d7 2407extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2408extern long si_mem_available(void);
1da177e4
LT
2409extern void si_meminfo(struct sysinfo * val);
2410extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2411#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2412extern unsigned long arch_reserved_kernel_pages(void);
2413#endif
1da177e4 2414
a8e99259
MH
2415extern __printf(3, 4)
2416void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2417
e7c8d5c9 2418extern void setup_per_cpu_pageset(void);
e7c8d5c9 2419
75f7ad8e
PS
2420/* page_alloc.c */
2421extern int min_free_kbytes;
1c30844d 2422extern int watermark_boost_factor;
795ae7a0 2423extern int watermark_scale_factor;
51930df5 2424extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2425
8feae131 2426/* nommu.c */
33e5d769 2427extern atomic_long_t mmap_pages_allocated;
7e660872 2428extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2429
6b2dbba8 2430/* interval_tree.c */
6b2dbba8 2431void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2432 struct rb_root_cached *root);
9826a516
ML
2433void vma_interval_tree_insert_after(struct vm_area_struct *node,
2434 struct vm_area_struct *prev,
f808c13f 2435 struct rb_root_cached *root);
6b2dbba8 2436void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2437 struct rb_root_cached *root);
2438struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2439 unsigned long start, unsigned long last);
2440struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2441 unsigned long start, unsigned long last);
2442
2443#define vma_interval_tree_foreach(vma, root, start, last) \
2444 for (vma = vma_interval_tree_iter_first(root, start, last); \
2445 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2446
bf181b9f 2447void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2448 struct rb_root_cached *root);
bf181b9f 2449void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2450 struct rb_root_cached *root);
2451struct anon_vma_chain *
2452anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2453 unsigned long start, unsigned long last);
bf181b9f
ML
2454struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2455 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2456#ifdef CONFIG_DEBUG_VM_RB
2457void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2458#endif
bf181b9f
ML
2459
2460#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2461 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2462 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2463
1da177e4 2464/* mmap.c */
34b4e4aa 2465extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2466extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2467 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2468 struct vm_area_struct *expand);
2469static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2470 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2471{
2472 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2473}
1da177e4
LT
2474extern struct vm_area_struct *vma_merge(struct mm_struct *,
2475 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2476 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2477 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2478extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2479extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2480 unsigned long addr, int new_below);
2481extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2482 unsigned long addr, int new_below);
1da177e4
LT
2483extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2484extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2485 struct rb_node **, struct rb_node *);
a8fb5618 2486extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2487extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2488 unsigned long addr, unsigned long len, pgoff_t pgoff,
2489 bool *need_rmap_locks);
1da177e4 2490extern void exit_mmap(struct mm_struct *);
925d1c40 2491
9c599024
CG
2492static inline int check_data_rlimit(unsigned long rlim,
2493 unsigned long new,
2494 unsigned long start,
2495 unsigned long end_data,
2496 unsigned long start_data)
2497{
2498 if (rlim < RLIM_INFINITY) {
2499 if (((new - start) + (end_data - start_data)) > rlim)
2500 return -ENOSPC;
2501 }
2502
2503 return 0;
2504}
2505
7906d00c
AA
2506extern int mm_take_all_locks(struct mm_struct *mm);
2507extern void mm_drop_all_locks(struct mm_struct *mm);
2508
38646013
JS
2509extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2510extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2511extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2512
84638335
KK
2513extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2514extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2515
2eefd878
DS
2516extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2517 const struct vm_special_mapping *sm);
3935ed6a
SS
2518extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2519 unsigned long addr, unsigned long len,
a62c34bd
AL
2520 unsigned long flags,
2521 const struct vm_special_mapping *spec);
2522/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2523extern int install_special_mapping(struct mm_struct *mm,
2524 unsigned long addr, unsigned long len,
2525 unsigned long flags, struct page **pages);
1da177e4 2526
649775be
AG
2527unsigned long randomize_stack_top(unsigned long stack_top);
2528
1da177e4
LT
2529extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2530
0165ab44 2531extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2532 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2533 struct list_head *uf);
1fcfd8db 2534extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2535 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2536 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2537extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2538 struct list_head *uf, bool downgrade);
897ab3e0
MR
2539extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2540 struct list_head *uf);
0726b01e 2541extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2542
bebeb3d6
ML
2543#ifdef CONFIG_MMU
2544extern int __mm_populate(unsigned long addr, unsigned long len,
2545 int ignore_errors);
2546static inline void mm_populate(unsigned long addr, unsigned long len)
2547{
2548 /* Ignore errors */
2549 (void) __mm_populate(addr, len, 1);
2550}
2551#else
2552static inline void mm_populate(unsigned long addr, unsigned long len) {}
2553#endif
2554
e4eb1ff6 2555/* These take the mm semaphore themselves */
5d22fc25 2556extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2557extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2558extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2559extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2560 unsigned long, unsigned long,
2561 unsigned long, unsigned long);
1da177e4 2562
db4fbfb9
ML
2563struct vm_unmapped_area_info {
2564#define VM_UNMAPPED_AREA_TOPDOWN 1
2565 unsigned long flags;
2566 unsigned long length;
2567 unsigned long low_limit;
2568 unsigned long high_limit;
2569 unsigned long align_mask;
2570 unsigned long align_offset;
2571};
2572
baceaf1c 2573extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2574
85821aab 2575/* truncate.c */
1da177e4 2576extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2577extern void truncate_inode_pages_range(struct address_space *,
2578 loff_t lstart, loff_t lend);
91b0abe3 2579extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2580
2581/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2582extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 2583extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 2584 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2585extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2586
2587/* mm/page-writeback.c */
2b69c828 2588int __must_check write_one_page(struct page *page);
1cf6e7d8 2589void task_dirty_inc(struct task_struct *tsk);
1da177e4 2590
1be7107f 2591extern unsigned long stack_guard_gap;
d05f3169 2592/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2593extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2594
11192337 2595/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2596extern int expand_downwards(struct vm_area_struct *vma,
2597 unsigned long address);
8ca3eb08 2598#if VM_GROWSUP
46dea3d0 2599extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2600#else
fee7e49d 2601 #define expand_upwards(vma, address) (0)
9ab88515 2602#endif
1da177e4
LT
2603
2604/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2605extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2606extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2607 struct vm_area_struct **pprev);
2608
2609/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2610 NULL if none. Assume start_addr < end_addr. */
2611static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2612{
2613 struct vm_area_struct * vma = find_vma(mm,start_addr);
2614
2615 if (vma && end_addr <= vma->vm_start)
2616 vma = NULL;
2617 return vma;
2618}
2619
1be7107f
HD
2620static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2621{
2622 unsigned long vm_start = vma->vm_start;
2623
2624 if (vma->vm_flags & VM_GROWSDOWN) {
2625 vm_start -= stack_guard_gap;
2626 if (vm_start > vma->vm_start)
2627 vm_start = 0;
2628 }
2629 return vm_start;
2630}
2631
2632static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2633{
2634 unsigned long vm_end = vma->vm_end;
2635
2636 if (vma->vm_flags & VM_GROWSUP) {
2637 vm_end += stack_guard_gap;
2638 if (vm_end < vma->vm_end)
2639 vm_end = -PAGE_SIZE;
2640 }
2641 return vm_end;
2642}
2643
1da177e4
LT
2644static inline unsigned long vma_pages(struct vm_area_struct *vma)
2645{
2646 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2647}
2648
640708a2
PE
2649/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2650static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2651 unsigned long vm_start, unsigned long vm_end)
2652{
2653 struct vm_area_struct *vma = find_vma(mm, vm_start);
2654
2655 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2656 vma = NULL;
2657
2658 return vma;
2659}
2660
017b1660
MK
2661static inline bool range_in_vma(struct vm_area_struct *vma,
2662 unsigned long start, unsigned long end)
2663{
2664 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2665}
2666
bad849b3 2667#ifdef CONFIG_MMU
804af2cf 2668pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2669void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2670#else
2671static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2672{
2673 return __pgprot(0);
2674}
64e45507
PF
2675static inline void vma_set_page_prot(struct vm_area_struct *vma)
2676{
2677 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2678}
bad849b3
DH
2679#endif
2680
295992fb
CK
2681void vma_set_file(struct vm_area_struct *vma, struct file *file);
2682
5877231f 2683#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2684unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2685 unsigned long start, unsigned long end);
2686#endif
2687
deceb6cd 2688struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2689int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2690 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2691int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2692int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2693 struct page **pages, unsigned long *num);
a667d745
SJ
2694int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2695 unsigned long num);
2696int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2697 unsigned long num);
ae2b01f3 2698vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2699 unsigned long pfn);
f5e6d1d5
MW
2700vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2701 unsigned long pfn, pgprot_t pgprot);
5d747637 2702vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2703 pfn_t pfn);
574c5b3d
TH
2704vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2705 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2706vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2707 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2708int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2709
1c8f4220
SJ
2710static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2711 unsigned long addr, struct page *page)
2712{
2713 int err = vm_insert_page(vma, addr, page);
2714
2715 if (err == -ENOMEM)
2716 return VM_FAULT_OOM;
2717 if (err < 0 && err != -EBUSY)
2718 return VM_FAULT_SIGBUS;
2719
2720 return VM_FAULT_NOPAGE;
2721}
2722
f8f6ae5d
JG
2723#ifndef io_remap_pfn_range
2724static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2725 unsigned long addr, unsigned long pfn,
2726 unsigned long size, pgprot_t prot)
2727{
2728 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2729}
2730#endif
2731
d97baf94
SJ
2732static inline vm_fault_t vmf_error(int err)
2733{
2734 if (err == -ENOMEM)
2735 return VM_FAULT_OOM;
2736 return VM_FAULT_SIGBUS;
2737}
2738
df06b37f
KB
2739struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2740 unsigned int foll_flags);
240aadee 2741
deceb6cd
HD
2742#define FOLL_WRITE 0x01 /* check pte is writable */
2743#define FOLL_TOUCH 0x02 /* mark page accessed */
2744#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2745#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2746#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2747#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2748 * and return without waiting upon it */
84d33df2 2749#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2750#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2751#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2752#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2753#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2754#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2755#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2756#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2757#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2758#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2759#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2760#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2761#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2762#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2763
2764/*
eddb1c22
JH
2765 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2766 * other. Here is what they mean, and how to use them:
932f4a63
IW
2767 *
2768 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2769 * period _often_ under userspace control. This is in contrast to
2770 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2771 *
2772 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2773 * lifetime enforced by the filesystem and we need guarantees that longterm
2774 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2775 * the filesystem. Ideas for this coordination include revoking the longterm
2776 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2777 * added after the problem with filesystems was found FS DAX VMAs are
2778 * specifically failed. Filesystem pages are still subject to bugs and use of
2779 * FOLL_LONGTERM should be avoided on those pages.
2780 *
2781 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2782 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2783 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2784 * is due to an incompatibility with the FS DAX check and
eddb1c22 2785 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2786 *
eddb1c22
JH
2787 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2788 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2789 * FOLL_LONGTERM is specified.
eddb1c22
JH
2790 *
2791 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2792 * but an additional pin counting system) will be invoked. This is intended for
2793 * anything that gets a page reference and then touches page data (for example,
2794 * Direct IO). This lets the filesystem know that some non-file-system entity is
2795 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2796 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2797 * a call to unpin_user_page().
eddb1c22
JH
2798 *
2799 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2800 * and separate refcounting mechanisms, however, and that means that each has
2801 * its own acquire and release mechanisms:
2802 *
2803 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2804 *
f1f6a7dd 2805 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2806 *
2807 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2808 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2809 * calls applied to them, and that's perfectly OK. This is a constraint on the
2810 * callers, not on the pages.)
2811 *
2812 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2813 * directly by the caller. That's in order to help avoid mismatches when
2814 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2815 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2816 *
72ef5e52 2817 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2818 */
1da177e4 2819
2b740303 2820static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2821{
2822 if (vm_fault & VM_FAULT_OOM)
2823 return -ENOMEM;
2824 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2825 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2826 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2827 return -EFAULT;
2828 return 0;
2829}
2830
8b1e0f81 2831typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2832extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2833 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2834extern int apply_to_existing_page_range(struct mm_struct *mm,
2835 unsigned long address, unsigned long size,
2836 pte_fn_t fn, void *data);
aee16b3c 2837
04013513 2838extern void init_mem_debugging_and_hardening(void);
8823b1db 2839#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
2840extern void __kernel_poison_pages(struct page *page, int numpages);
2841extern void __kernel_unpoison_pages(struct page *page, int numpages);
2842extern bool _page_poisoning_enabled_early;
2843DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2844static inline bool page_poisoning_enabled(void)
2845{
2846 return _page_poisoning_enabled_early;
2847}
2848/*
2849 * For use in fast paths after init_mem_debugging() has run, or when a
2850 * false negative result is not harmful when called too early.
2851 */
2852static inline bool page_poisoning_enabled_static(void)
2853{
2854 return static_branch_unlikely(&_page_poisoning_enabled);
2855}
2856static inline void kernel_poison_pages(struct page *page, int numpages)
2857{
2858 if (page_poisoning_enabled_static())
2859 __kernel_poison_pages(page, numpages);
2860}
2861static inline void kernel_unpoison_pages(struct page *page, int numpages)
2862{
2863 if (page_poisoning_enabled_static())
2864 __kernel_unpoison_pages(page, numpages);
2865}
8823b1db
LA
2866#else
2867static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 2868static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 2869static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
2870static inline void kernel_poison_pages(struct page *page, int numpages) { }
2871static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
2872#endif
2873
6471384a 2874DECLARE_STATIC_KEY_FALSE(init_on_alloc);
6471384a
AP
2875static inline bool want_init_on_alloc(gfp_t flags)
2876{
04013513 2877 if (static_branch_unlikely(&init_on_alloc))
6471384a
AP
2878 return true;
2879 return flags & __GFP_ZERO;
2880}
2881
6471384a 2882DECLARE_STATIC_KEY_FALSE(init_on_free);
6471384a
AP
2883static inline bool want_init_on_free(void)
2884{
04013513 2885 return static_branch_unlikely(&init_on_free);
6471384a
AP
2886}
2887
8e57f8ac
VB
2888extern bool _debug_pagealloc_enabled_early;
2889DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2890
2891static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2892{
2893 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2894 _debug_pagealloc_enabled_early;
2895}
2896
2897/*
2898 * For use in fast paths after init_debug_pagealloc() has run, or when a
2899 * false negative result is not harmful when called too early.
2900 */
2901static inline bool debug_pagealloc_enabled_static(void)
031bc574 2902{
96a2b03f
VB
2903 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2904 return false;
2905
2906 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2907}
2908
5d6ad668 2909#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 2910/*
5d6ad668
MR
2911 * To support DEBUG_PAGEALLOC architecture must ensure that
2912 * __kernel_map_pages() never fails
c87cbc1f 2913 */
d6332692
RE
2914extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2915
77bc7fd6
MR
2916static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2917{
2918 if (debug_pagealloc_enabled_static())
2919 __kernel_map_pages(page, numpages, 1);
2920}
2921
2922static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
2923{
2924 if (debug_pagealloc_enabled_static())
2925 __kernel_map_pages(page, numpages, 0);
2926}
5d6ad668 2927#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
2928static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
2929static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 2930#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2931
a6c19dfe 2932#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2933extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2934extern int in_gate_area_no_mm(unsigned long addr);
2935extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2936#else
a6c19dfe
AL
2937static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2938{
2939 return NULL;
2940}
2941static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2942static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2943{
2944 return 0;
2945}
1da177e4
LT
2946#endif /* __HAVE_ARCH_GATE_AREA */
2947
44a70ade
MH
2948extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2949
146732ce
JT
2950#ifdef CONFIG_SYSCTL
2951extern int sysctl_drop_caches;
32927393
CH
2952int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2953 loff_t *);
146732ce
JT
2954#endif
2955
cb731d6c
VD
2956void drop_slab(void);
2957void drop_slab_node(int nid);
9d0243bc 2958
7a9166e3
LY
2959#ifndef CONFIG_MMU
2960#define randomize_va_space 0
2961#else
a62eaf15 2962extern int randomize_va_space;
7a9166e3 2963#endif
a62eaf15 2964
045e72ac 2965const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 2966#ifdef CONFIG_MMU
03252919 2967void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
2968#else
2969static inline void print_vma_addr(char *prefix, unsigned long rip)
2970{
2971}
2972#endif
e6e5494c 2973
35fd1eb1 2974void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
2975struct page * __populate_section_memmap(unsigned long pfn,
2976 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 2977pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
2978p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2979pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 2980pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
2981pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
2982 struct vmem_altmap *altmap);
8f6aac41 2983void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 2984struct vmem_altmap;
56993b4e
AK
2985void *vmemmap_alloc_block_buf(unsigned long size, int node,
2986 struct vmem_altmap *altmap);
8f6aac41 2987void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 2988int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 2989 int node, struct vmem_altmap *altmap);
7b73d978
CH
2990int vmemmap_populate(unsigned long start, unsigned long end, int node,
2991 struct vmem_altmap *altmap);
c2b91e2e 2992void vmemmap_populate_print_last(void);
0197518c 2993#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
2994void vmemmap_free(unsigned long start, unsigned long end,
2995 struct vmem_altmap *altmap);
0197518c 2996#endif
46723bfa 2997void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 2998 unsigned long nr_pages);
6a46079c 2999
82ba011b
AK
3000enum mf_flags {
3001 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3002 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3003 MF_MUST_KILL = 1 << 2,
cf870c70 3004 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3005};
83b57531
EB
3006extern int memory_failure(unsigned long pfn, int flags);
3007extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3008extern void memory_failure_queue_kick(int cpu);
847ce401 3009extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3010extern int sysctl_memory_failure_early_kill;
3011extern int sysctl_memory_failure_recovery;
facb6011 3012extern void shake_page(struct page *p, int access);
5844a486 3013extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3014extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3015
cc637b17
XX
3016
3017/*
3018 * Error handlers for various types of pages.
3019 */
cc3e2af4 3020enum mf_result {
cc637b17
XX
3021 MF_IGNORED, /* Error: cannot be handled */
3022 MF_FAILED, /* Error: handling failed */
3023 MF_DELAYED, /* Will be handled later */
3024 MF_RECOVERED, /* Successfully recovered */
3025};
3026
3027enum mf_action_page_type {
3028 MF_MSG_KERNEL,
3029 MF_MSG_KERNEL_HIGH_ORDER,
3030 MF_MSG_SLAB,
3031 MF_MSG_DIFFERENT_COMPOUND,
3032 MF_MSG_POISONED_HUGE,
3033 MF_MSG_HUGE,
3034 MF_MSG_FREE_HUGE,
31286a84 3035 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3036 MF_MSG_UNMAP_FAILED,
3037 MF_MSG_DIRTY_SWAPCACHE,
3038 MF_MSG_CLEAN_SWAPCACHE,
3039 MF_MSG_DIRTY_MLOCKED_LRU,
3040 MF_MSG_CLEAN_MLOCKED_LRU,
3041 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3042 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3043 MF_MSG_DIRTY_LRU,
3044 MF_MSG_CLEAN_LRU,
3045 MF_MSG_TRUNCATED_LRU,
3046 MF_MSG_BUDDY,
3047 MF_MSG_BUDDY_2ND,
6100e34b 3048 MF_MSG_DAX,
5d1fd5dc 3049 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3050 MF_MSG_UNKNOWN,
3051};
3052
47ad8475
AA
3053#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3054extern void clear_huge_page(struct page *page,
c79b57e4 3055 unsigned long addr_hint,
47ad8475
AA
3056 unsigned int pages_per_huge_page);
3057extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3058 unsigned long addr_hint,
3059 struct vm_area_struct *vma,
47ad8475 3060 unsigned int pages_per_huge_page);
fa4d75c1
MK
3061extern long copy_huge_page_from_user(struct page *dst_page,
3062 const void __user *usr_src,
810a56b9
MK
3063 unsigned int pages_per_huge_page,
3064 bool allow_pagefault);
2484ca9b
THV
3065
3066/**
3067 * vma_is_special_huge - Are transhuge page-table entries considered special?
3068 * @vma: Pointer to the struct vm_area_struct to consider
3069 *
3070 * Whether transhuge page-table entries are considered "special" following
3071 * the definition in vm_normal_page().
3072 *
3073 * Return: true if transhuge page-table entries should be considered special,
3074 * false otherwise.
3075 */
3076static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3077{
3078 return vma_is_dax(vma) || (vma->vm_file &&
3079 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3080}
3081
47ad8475
AA
3082#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3083
c0a32fc5
SG
3084#ifdef CONFIG_DEBUG_PAGEALLOC
3085extern unsigned int _debug_guardpage_minorder;
96a2b03f 3086DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3087
3088static inline unsigned int debug_guardpage_minorder(void)
3089{
3090 return _debug_guardpage_minorder;
3091}
3092
e30825f1
JK
3093static inline bool debug_guardpage_enabled(void)
3094{
96a2b03f 3095 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3096}
3097
c0a32fc5
SG
3098static inline bool page_is_guard(struct page *page)
3099{
e30825f1
JK
3100 if (!debug_guardpage_enabled())
3101 return false;
3102
3972f6bb 3103 return PageGuard(page);
c0a32fc5
SG
3104}
3105#else
3106static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3107static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3108static inline bool page_is_guard(struct page *page) { return false; }
3109#endif /* CONFIG_DEBUG_PAGEALLOC */
3110
f9872caf
CS
3111#if MAX_NUMNODES > 1
3112void __init setup_nr_node_ids(void);
3113#else
3114static inline void setup_nr_node_ids(void) {}
3115#endif
3116
010c164a
SL
3117extern int memcmp_pages(struct page *page1, struct page *page2);
3118
3119static inline int pages_identical(struct page *page1, struct page *page2)
3120{
3121 return !memcmp_pages(page1, page2);
3122}
3123
c5acad84
TH
3124#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3125unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3126 pgoff_t first_index, pgoff_t nr,
3127 pgoff_t bitmap_pgoff,
3128 unsigned long *bitmap,
3129 pgoff_t *start,
3130 pgoff_t *end);
3131
3132unsigned long wp_shared_mapping_range(struct address_space *mapping,
3133 pgoff_t first_index, pgoff_t nr);
3134#endif
3135
2374c09b
CH
3136extern int sysctl_nr_trim_pages;
3137
8e7f37f2
PM
3138void mem_dump_obj(void *object);
3139
1da177e4
LT
3140#endif /* __KERNEL__ */
3141#endif /* _LINUX_MM_H */