net: fix building errors on powerpc when CONFIG_RETPOLINE is not set
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
9740ca4e 18#include <linux/mmap_lock.h>
08677214 19#include <linux/range.h>
c6f6b596 20#include <linux/pfn.h>
3565fce3 21#include <linux/percpu-refcount.h>
e9da73d6 22#include <linux/bit_spinlock.h>
b0d40c92 23#include <linux/shrinker.h>
9c599024 24#include <linux/resource.h>
e30825f1 25#include <linux/page_ext.h>
8025e5dd 26#include <linux/err.h>
41901567 27#include <linux/page-flags.h>
fe896d18 28#include <linux/page_ref.h>
7b2d55d2 29#include <linux/memremap.h>
3b3b1a29 30#include <linux/overflow.h>
b5420237 31#include <linux/sizes.h>
7969f226 32#include <linux/sched.h>
65fddcfc 33#include <linux/pgtable.h>
34303244 34#include <linux/kasan.h>
1da177e4
LT
35
36struct mempolicy;
37struct anon_vma;
bf181b9f 38struct anon_vma_chain;
4e950f6f 39struct file_ra_state;
e8edc6e0 40struct user_struct;
4e950f6f 41struct writeback_control;
682aa8e1 42struct bdi_writeback;
bce617ed 43struct pt_regs;
1da177e4 44
5ef64cc8
LT
45extern int sysctl_page_lock_unfairness;
46
597b7305
MH
47void init_mm_internals(void);
48
fccc9987 49#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 50extern unsigned long max_mapnr;
fccc9987
JL
51
52static inline void set_max_mapnr(unsigned long limit)
53{
54 max_mapnr = limit;
55}
56#else
57static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
58#endif
59
ca79b0c2
AK
60extern atomic_long_t _totalram_pages;
61static inline unsigned long totalram_pages(void)
62{
63 return (unsigned long)atomic_long_read(&_totalram_pages);
64}
65
66static inline void totalram_pages_inc(void)
67{
68 atomic_long_inc(&_totalram_pages);
69}
70
71static inline void totalram_pages_dec(void)
72{
73 atomic_long_dec(&_totalram_pages);
74}
75
76static inline void totalram_pages_add(long count)
77{
78 atomic_long_add(count, &_totalram_pages);
79}
80
1da177e4 81extern void * high_memory;
1da177e4
LT
82extern int page_cluster;
83
84#ifdef CONFIG_SYSCTL
85extern int sysctl_legacy_va_layout;
86#else
87#define sysctl_legacy_va_layout 0
88#endif
89
d07e2259
DC
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91extern const int mmap_rnd_bits_min;
92extern const int mmap_rnd_bits_max;
93extern int mmap_rnd_bits __read_mostly;
94#endif
95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96extern const int mmap_rnd_compat_bits_min;
97extern const int mmap_rnd_compat_bits_max;
98extern int mmap_rnd_compat_bits __read_mostly;
99#endif
100
1da177e4 101#include <asm/page.h>
1da177e4 102#include <asm/processor.h>
1da177e4 103
d9344522
AK
104/*
105 * Architectures that support memory tagging (assigning tags to memory regions,
106 * embedding these tags into addresses that point to these memory regions, and
107 * checking that the memory and the pointer tags match on memory accesses)
108 * redefine this macro to strip tags from pointers.
109 * It's defined as noop for arcitectures that don't support memory tagging.
110 */
111#ifndef untagged_addr
112#define untagged_addr(addr) (addr)
113#endif
114
79442ed1
TC
115#ifndef __pa_symbol
116#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
117#endif
118
1dff8083
AB
119#ifndef page_to_virt
120#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
121#endif
122
568c5fe5
LA
123#ifndef lm_alias
124#define lm_alias(x) __va(__pa_symbol(x))
125#endif
126
593befa6
DD
127/*
128 * To prevent common memory management code establishing
129 * a zero page mapping on a read fault.
130 * This macro should be defined within <asm/pgtable.h>.
131 * s390 does this to prevent multiplexing of hardware bits
132 * related to the physical page in case of virtualization.
133 */
134#ifndef mm_forbids_zeropage
135#define mm_forbids_zeropage(X) (0)
136#endif
137
a4a3ede2
PT
138/*
139 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
140 * If an architecture decides to implement their own version of
141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
142 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 143 */
5470dea4
AD
144#if BITS_PER_LONG == 64
145/* This function must be updated when the size of struct page grows above 80
146 * or reduces below 56. The idea that compiler optimizes out switch()
147 * statement, and only leaves move/store instructions. Also the compiler can
148 * combine write statments if they are both assignments and can be reordered,
149 * this can result in several of the writes here being dropped.
150 */
151#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
152static inline void __mm_zero_struct_page(struct page *page)
153{
154 unsigned long *_pp = (void *)page;
155
156 /* Check that struct page is either 56, 64, 72, or 80 bytes */
157 BUILD_BUG_ON(sizeof(struct page) & 7);
158 BUILD_BUG_ON(sizeof(struct page) < 56);
159 BUILD_BUG_ON(sizeof(struct page) > 80);
160
161 switch (sizeof(struct page)) {
162 case 80:
df561f66
GS
163 _pp[9] = 0;
164 fallthrough;
5470dea4 165 case 72:
df561f66
GS
166 _pp[8] = 0;
167 fallthrough;
5470dea4 168 case 64:
df561f66
GS
169 _pp[7] = 0;
170 fallthrough;
5470dea4
AD
171 case 56:
172 _pp[6] = 0;
173 _pp[5] = 0;
174 _pp[4] = 0;
175 _pp[3] = 0;
176 _pp[2] = 0;
177 _pp[1] = 0;
178 _pp[0] = 0;
179 }
180}
181#else
a4a3ede2
PT
182#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
183#endif
184
ea606cf5
AR
185/*
186 * Default maximum number of active map areas, this limits the number of vmas
187 * per mm struct. Users can overwrite this number by sysctl but there is a
188 * problem.
189 *
190 * When a program's coredump is generated as ELF format, a section is created
191 * per a vma. In ELF, the number of sections is represented in unsigned short.
192 * This means the number of sections should be smaller than 65535 at coredump.
193 * Because the kernel adds some informative sections to a image of program at
194 * generating coredump, we need some margin. The number of extra sections is
195 * 1-3 now and depends on arch. We use "5" as safe margin, here.
196 *
197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
198 * not a hard limit any more. Although some userspace tools can be surprised by
199 * that.
200 */
201#define MAPCOUNT_ELF_CORE_MARGIN (5)
202#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203
204extern int sysctl_max_map_count;
205
c9b1d098 206extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 207extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 208
49f0ce5f
JM
209extern int sysctl_overcommit_memory;
210extern int sysctl_overcommit_ratio;
211extern unsigned long sysctl_overcommit_kbytes;
212
32927393
CH
213int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 loff_t *);
215int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 loff_t *);
56f3547b
FT
217int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
218 loff_t *);
6d87d0ec
SJ
219/*
220 * Any attempt to mark this function as static leads to build failure
221 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
222 * is referred to by BPF code. This must be visible for error injection.
223 */
224int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
225 pgoff_t index, gfp_t gfp, void **shadowp);
49f0ce5f 226
1da177e4
LT
227#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
228
27ac792c
AR
229/* to align the pointer to the (next) page boundary */
230#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
231
0fa73b86 232/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 233#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 234
f86196ea
NB
235#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
236
1da177e4
LT
237/*
238 * Linux kernel virtual memory manager primitives.
239 * The idea being to have a "virtual" mm in the same way
240 * we have a virtual fs - giving a cleaner interface to the
241 * mm details, and allowing different kinds of memory mappings
242 * (from shared memory to executable loading to arbitrary
243 * mmap() functions).
244 */
245
490fc053 246struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
247struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
248void vm_area_free(struct vm_area_struct *);
c43692e8 249
1da177e4 250#ifndef CONFIG_MMU
8feae131
DH
251extern struct rb_root nommu_region_tree;
252extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
253
254extern unsigned int kobjsize(const void *objp);
255#endif
256
257/*
605d9288 258 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 259 * When changing, update also include/trace/events/mmflags.h
1da177e4 260 */
cc2383ec
KK
261#define VM_NONE 0x00000000
262
1da177e4
LT
263#define VM_READ 0x00000001 /* currently active flags */
264#define VM_WRITE 0x00000002
265#define VM_EXEC 0x00000004
266#define VM_SHARED 0x00000008
267
7e2cff42 268/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
269#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
270#define VM_MAYWRITE 0x00000020
271#define VM_MAYEXEC 0x00000040
272#define VM_MAYSHARE 0x00000080
273
274#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 275#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 276#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 277#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 278#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 279
1da177e4
LT
280#define VM_LOCKED 0x00002000
281#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
282
283 /* Used by sys_madvise() */
284#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
285#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
286
287#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
288#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 289#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 290#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 291#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 292#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 293#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 294#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 295#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 296#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 297
d9104d1c
CG
298#ifdef CONFIG_MEM_SOFT_DIRTY
299# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
300#else
301# define VM_SOFTDIRTY 0
302#endif
303
b379d790 304#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
305#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
306#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 307#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 308
63c17fb8
DH
309#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
310#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
311#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
312#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
313#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 314#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
315#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
316#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
317#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
318#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 319#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
320#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
321
5212213a 322#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
323# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
324# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 325# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
326# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
327# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
328#ifdef CONFIG_PPC
329# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
330#else
331# define VM_PKEY_BIT4 0
8f62c883 332#endif
5212213a
RP
333#endif /* CONFIG_ARCH_HAS_PKEYS */
334
335#if defined(CONFIG_X86)
336# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
337#elif defined(CONFIG_PPC)
338# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
339#elif defined(CONFIG_PARISC)
340# define VM_GROWSUP VM_ARCH_1
341#elif defined(CONFIG_IA64)
342# define VM_GROWSUP VM_ARCH_1
74a04967
KA
343#elif defined(CONFIG_SPARC64)
344# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
345# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
346#elif defined(CONFIG_ARM64)
347# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
348# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
349#elif !defined(CONFIG_MMU)
350# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
351#endif
352
9f341931
CM
353#if defined(CONFIG_ARM64_MTE)
354# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
355# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
356#else
357# define VM_MTE VM_NONE
358# define VM_MTE_ALLOWED VM_NONE
359#endif
360
cc2383ec
KK
361#ifndef VM_GROWSUP
362# define VM_GROWSUP VM_NONE
363#endif
364
a8bef8ff
MG
365/* Bits set in the VMA until the stack is in its final location */
366#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
367
c62da0c3
AK
368#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
369
370/* Common data flag combinations */
371#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
372 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
373#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
374 VM_MAYWRITE | VM_MAYEXEC)
375#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
376 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
377
378#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
379#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
380#endif
381
1da177e4
LT
382#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
383#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
384#endif
385
386#ifdef CONFIG_STACK_GROWSUP
30bdbb78 387#define VM_STACK VM_GROWSUP
1da177e4 388#else
30bdbb78 389#define VM_STACK VM_GROWSDOWN
1da177e4
LT
390#endif
391
30bdbb78
KK
392#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
393
6cb4d9a2
AK
394/* VMA basic access permission flags */
395#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
396
397
b291f000 398/*
78f11a25 399 * Special vmas that are non-mergable, non-mlock()able.
b291f000 400 */
9050d7eb 401#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 402
b4443772
AK
403/* This mask prevents VMA from being scanned with khugepaged */
404#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
405
a0715cc2
AT
406/* This mask defines which mm->def_flags a process can inherit its parent */
407#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
408
de60f5f1
EM
409/* This mask is used to clear all the VMA flags used by mlock */
410#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
411
2c2d57b5
KA
412/* Arch-specific flags to clear when updating VM flags on protection change */
413#ifndef VM_ARCH_CLEAR
414# define VM_ARCH_CLEAR VM_NONE
415#endif
416#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
417
1da177e4
LT
418/*
419 * mapping from the currently active vm_flags protection bits (the
420 * low four bits) to a page protection mask..
421 */
422extern pgprot_t protection_map[16];
423
c270a7ee
PX
424/**
425 * Fault flag definitions.
426 *
427 * @FAULT_FLAG_WRITE: Fault was a write fault.
428 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
429 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
c1e8d7c6 430 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
c270a7ee
PX
431 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
432 * @FAULT_FLAG_TRIED: The fault has been tried once.
433 * @FAULT_FLAG_USER: The fault originated in userspace.
434 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
435 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
436 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
437 *
438 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
439 * whether we would allow page faults to retry by specifying these two
440 * fault flags correctly. Currently there can be three legal combinations:
441 *
442 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
443 * this is the first try
444 *
445 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
446 * we've already tried at least once
447 *
448 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
449 *
450 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
451 * be used. Note that page faults can be allowed to retry for multiple times,
452 * in which case we'll have an initial fault with flags (a) then later on
453 * continuous faults with flags (b). We should always try to detect pending
454 * signals before a retry to make sure the continuous page faults can still be
455 * interrupted if necessary.
c270a7ee
PX
456 */
457#define FAULT_FLAG_WRITE 0x01
458#define FAULT_FLAG_MKWRITE 0x02
459#define FAULT_FLAG_ALLOW_RETRY 0x04
460#define FAULT_FLAG_RETRY_NOWAIT 0x08
461#define FAULT_FLAG_KILLABLE 0x10
462#define FAULT_FLAG_TRIED 0x20
463#define FAULT_FLAG_USER 0x40
464#define FAULT_FLAG_REMOTE 0x80
465#define FAULT_FLAG_INSTRUCTION 0x100
466#define FAULT_FLAG_INTERRUPTIBLE 0x200
d0217ac0 467
dde16072
PX
468/*
469 * The default fault flags that should be used by most of the
470 * arch-specific page fault handlers.
471 */
472#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
473 FAULT_FLAG_KILLABLE | \
474 FAULT_FLAG_INTERRUPTIBLE)
dde16072 475
4064b982
PX
476/**
477 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
478 *
479 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 480 * the mmap_lock for too long a time when waiting for another condition
4064b982 481 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
482 * mmap_lock in the first round to avoid potential starvation of other
483 * processes that would also want the mmap_lock.
4064b982
PX
484 *
485 * Return: true if the page fault allows retry and this is the first
486 * attempt of the fault handling; false otherwise.
487 */
488static inline bool fault_flag_allow_retry_first(unsigned int flags)
489{
490 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
491 (!(flags & FAULT_FLAG_TRIED));
492}
493
282a8e03
RZ
494#define FAULT_FLAG_TRACE \
495 { FAULT_FLAG_WRITE, "WRITE" }, \
496 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
497 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
498 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
499 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
500 { FAULT_FLAG_TRIED, "TRIED" }, \
501 { FAULT_FLAG_USER, "USER" }, \
502 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
503 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
504 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 505
54cb8821 506/*
11192337 507 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
508 * ->fault function. The vma's ->fault is responsible for returning a bitmask
509 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 510 *
c20cd45e
MH
511 * MM layer fills up gfp_mask for page allocations but fault handler might
512 * alter it if its implementation requires a different allocation context.
513 *
9b4bdd2f 514 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 515 */
d0217ac0 516struct vm_fault {
82b0f8c3 517 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 518 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 519 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 520 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 521 unsigned long address; /* Faulting virtual address */
82b0f8c3 522 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 523 * the 'address' */
a2d58167
DJ
524 pud_t *pud; /* Pointer to pud entry matching
525 * the 'address'
526 */
2994302b 527 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 528
3917048d 529 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 530 struct page *page; /* ->fault handlers should return a
83c54070 531 * page here, unless VM_FAULT_NOPAGE
d0217ac0 532 * is set (which is also implied by
83c54070 533 * VM_FAULT_ERROR).
d0217ac0 534 */
82b0f8c3 535 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
536 pte_t *pte; /* Pointer to pte entry matching
537 * the 'address'. NULL if the page
538 * table hasn't been allocated.
539 */
540 spinlock_t *ptl; /* Page table lock.
541 * Protects pte page table if 'pte'
542 * is not NULL, otherwise pmd.
543 */
7267ec00
KS
544 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
545 * vm_ops->map_pages() calls
546 * alloc_set_pte() from atomic context.
547 * do_fault_around() pre-allocates
548 * page table to avoid allocation from
549 * atomic context.
550 */
54cb8821 551};
1da177e4 552
c791ace1
DJ
553/* page entry size for vm->huge_fault() */
554enum page_entry_size {
555 PE_SIZE_PTE = 0,
556 PE_SIZE_PMD,
557 PE_SIZE_PUD,
558};
559
1da177e4
LT
560/*
561 * These are the virtual MM functions - opening of an area, closing and
562 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 563 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
564 */
565struct vm_operations_struct {
566 void (*open)(struct vm_area_struct * area);
567 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
568 /* Called any time before splitting to check if it's allowed */
569 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
cd544fd1 570 int (*mremap)(struct vm_area_struct *area, unsigned long flags);
95bb7c42
SC
571 /*
572 * Called by mprotect() to make driver-specific permission
573 * checks before mprotect() is finalised. The VMA must not
574 * be modified. Returns 0 if eprotect() can proceed.
575 */
576 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
577 unsigned long end, unsigned long newflags);
1c8f4220
SJ
578 vm_fault_t (*fault)(struct vm_fault *vmf);
579 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
580 enum page_entry_size pe_size);
82b0f8c3 581 void (*map_pages)(struct vm_fault *vmf,
bae473a4 582 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 583 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
584
585 /* notification that a previously read-only page is about to become
586 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 587 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 588
dd906184 589 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 590 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 591
28b2ee20
RR
592 /* called by access_process_vm when get_user_pages() fails, typically
593 * for use by special VMAs that can switch between memory and hardware
594 */
595 int (*access)(struct vm_area_struct *vma, unsigned long addr,
596 void *buf, int len, int write);
78d683e8
AL
597
598 /* Called by the /proc/PID/maps code to ask the vma whether it
599 * has a special name. Returning non-NULL will also cause this
600 * vma to be dumped unconditionally. */
601 const char *(*name)(struct vm_area_struct *vma);
602
1da177e4 603#ifdef CONFIG_NUMA
a6020ed7
LS
604 /*
605 * set_policy() op must add a reference to any non-NULL @new mempolicy
606 * to hold the policy upon return. Caller should pass NULL @new to
607 * remove a policy and fall back to surrounding context--i.e. do not
608 * install a MPOL_DEFAULT policy, nor the task or system default
609 * mempolicy.
610 */
1da177e4 611 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
612
613 /*
614 * get_policy() op must add reference [mpol_get()] to any policy at
615 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
616 * in mm/mempolicy.c will do this automatically.
617 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 618 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
619 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
620 * must return NULL--i.e., do not "fallback" to task or system default
621 * policy.
622 */
1da177e4
LT
623 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
624 unsigned long addr);
625#endif
667a0a06
DV
626 /*
627 * Called by vm_normal_page() for special PTEs to find the
628 * page for @addr. This is useful if the default behavior
629 * (using pte_page()) would not find the correct page.
630 */
631 struct page *(*find_special_page)(struct vm_area_struct *vma,
632 unsigned long addr);
1da177e4
LT
633};
634
027232da
KS
635static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
636{
bfd40eaf
KS
637 static const struct vm_operations_struct dummy_vm_ops = {};
638
a670468f 639 memset(vma, 0, sizeof(*vma));
027232da 640 vma->vm_mm = mm;
bfd40eaf 641 vma->vm_ops = &dummy_vm_ops;
027232da
KS
642 INIT_LIST_HEAD(&vma->anon_vma_chain);
643}
644
bfd40eaf
KS
645static inline void vma_set_anonymous(struct vm_area_struct *vma)
646{
647 vma->vm_ops = NULL;
648}
649
43675e6f
YS
650static inline bool vma_is_anonymous(struct vm_area_struct *vma)
651{
652 return !vma->vm_ops;
653}
654
222100ee
AK
655static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
656{
657 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
658
659 if (!maybe_stack)
660 return false;
661
662 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
663 VM_STACK_INCOMPLETE_SETUP)
664 return true;
665
666 return false;
667}
668
7969f226
AK
669static inline bool vma_is_foreign(struct vm_area_struct *vma)
670{
671 if (!current->mm)
672 return true;
673
674 if (current->mm != vma->vm_mm)
675 return true;
676
677 return false;
678}
3122e80e
AK
679
680static inline bool vma_is_accessible(struct vm_area_struct *vma)
681{
6cb4d9a2 682 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
683}
684
43675e6f
YS
685#ifdef CONFIG_SHMEM
686/*
687 * The vma_is_shmem is not inline because it is used only by slow
688 * paths in userfault.
689 */
690bool vma_is_shmem(struct vm_area_struct *vma);
691#else
692static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
693#endif
694
695int vma_is_stack_for_current(struct vm_area_struct *vma);
696
8b11ec1b
LT
697/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
698#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
699
1da177e4
LT
700struct mmu_gather;
701struct inode;
702
71e3aac0 703#include <linux/huge_mm.h>
1da177e4
LT
704
705/*
706 * Methods to modify the page usage count.
707 *
708 * What counts for a page usage:
709 * - cache mapping (page->mapping)
710 * - private data (page->private)
711 * - page mapped in a task's page tables, each mapping
712 * is counted separately
713 *
714 * Also, many kernel routines increase the page count before a critical
715 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
716 */
717
718/*
da6052f7 719 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 720 */
7c8ee9a8
NP
721static inline int put_page_testzero(struct page *page)
722{
fe896d18
JK
723 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
724 return page_ref_dec_and_test(page);
7c8ee9a8 725}
1da177e4
LT
726
727/*
7c8ee9a8
NP
728 * Try to grab a ref unless the page has a refcount of zero, return false if
729 * that is the case.
8e0861fa
AK
730 * This can be called when MMU is off so it must not access
731 * any of the virtual mappings.
1da177e4 732 */
7c8ee9a8
NP
733static inline int get_page_unless_zero(struct page *page)
734{
fe896d18 735 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 736}
1da177e4 737
53df8fdc 738extern int page_is_ram(unsigned long pfn);
124fe20d
DW
739
740enum {
741 REGION_INTERSECTS,
742 REGION_DISJOINT,
743 REGION_MIXED,
744};
745
1c29f25b
TK
746int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
747 unsigned long desc);
53df8fdc 748
48667e7a 749/* Support for virtually mapped pages */
b3bdda02
CL
750struct page *vmalloc_to_page(const void *addr);
751unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 752
0738c4bb
PM
753/*
754 * Determine if an address is within the vmalloc range
755 *
756 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
757 * is no special casing required.
758 */
9bd3bb67
AK
759
760#ifndef is_ioremap_addr
761#define is_ioremap_addr(x) is_vmalloc_addr(x)
762#endif
763
81ac3ad9 764#ifdef CONFIG_MMU
186525bd 765extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
766extern int is_vmalloc_or_module_addr(const void *x);
767#else
186525bd
IM
768static inline bool is_vmalloc_addr(const void *x)
769{
770 return false;
771}
934831d0 772static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
773{
774 return 0;
775}
776#endif
9e2779fa 777
a7c3e901
MH
778extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
779static inline void *kvmalloc(size_t size, gfp_t flags)
780{
781 return kvmalloc_node(size, flags, NUMA_NO_NODE);
782}
783static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
784{
785 return kvmalloc_node(size, flags | __GFP_ZERO, node);
786}
787static inline void *kvzalloc(size_t size, gfp_t flags)
788{
789 return kvmalloc(size, flags | __GFP_ZERO);
790}
791
752ade68
MH
792static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
793{
3b3b1a29
KC
794 size_t bytes;
795
796 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
797 return NULL;
798
3b3b1a29 799 return kvmalloc(bytes, flags);
752ade68
MH
800}
801
1c542f38
KC
802static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
803{
804 return kvmalloc_array(n, size, flags | __GFP_ZERO);
805}
806
39f1f78d 807extern void kvfree(const void *addr);
d4eaa283 808extern void kvfree_sensitive(const void *addr, size_t len);
39f1f78d 809
bac3cf4d 810static inline int head_compound_mapcount(struct page *head)
6dc5ea16
JH
811{
812 return atomic_read(compound_mapcount_ptr(head)) + 1;
813}
814
6988f31d
KK
815/*
816 * Mapcount of compound page as a whole, does not include mapped sub-pages.
817 *
818 * Must be called only for compound pages or any their tail sub-pages.
819 */
53f9263b
KS
820static inline int compound_mapcount(struct page *page)
821{
5f527c2b 822 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 823 page = compound_head(page);
bac3cf4d 824 return head_compound_mapcount(page);
53f9263b
KS
825}
826
70b50f94
AA
827/*
828 * The atomic page->_mapcount, starts from -1: so that transitions
829 * both from it and to it can be tracked, using atomic_inc_and_test
830 * and atomic_add_negative(-1).
831 */
22b751c3 832static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
833{
834 atomic_set(&(page)->_mapcount, -1);
835}
836
b20ce5e0
KS
837int __page_mapcount(struct page *page);
838
6988f31d
KK
839/*
840 * Mapcount of 0-order page; when compound sub-page, includes
841 * compound_mapcount().
842 *
843 * Result is undefined for pages which cannot be mapped into userspace.
844 * For example SLAB or special types of pages. See function page_has_type().
845 * They use this place in struct page differently.
846 */
70b50f94
AA
847static inline int page_mapcount(struct page *page)
848{
b20ce5e0
KS
849 if (unlikely(PageCompound(page)))
850 return __page_mapcount(page);
851 return atomic_read(&page->_mapcount) + 1;
852}
853
854#ifdef CONFIG_TRANSPARENT_HUGEPAGE
855int total_mapcount(struct page *page);
6d0a07ed 856int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
857#else
858static inline int total_mapcount(struct page *page)
859{
860 return page_mapcount(page);
70b50f94 861}
6d0a07ed
AA
862static inline int page_trans_huge_mapcount(struct page *page,
863 int *total_mapcount)
864{
865 int mapcount = page_mapcount(page);
866 if (total_mapcount)
867 *total_mapcount = mapcount;
868 return mapcount;
869}
b20ce5e0 870#endif
70b50f94 871
b49af68f
CL
872static inline struct page *virt_to_head_page(const void *x)
873{
874 struct page *page = virt_to_page(x);
ccaafd7f 875
1d798ca3 876 return compound_head(page);
b49af68f
CL
877}
878
ddc58f27
KS
879void __put_page(struct page *page);
880
1d7ea732 881void put_pages_list(struct list_head *pages);
1da177e4 882
8dfcc9ba 883void split_page(struct page *page, unsigned int order);
8dfcc9ba 884
33f2ef89
AW
885/*
886 * Compound pages have a destructor function. Provide a
887 * prototype for that function and accessor functions.
f1e61557 888 * These are _only_ valid on the head of a compound page.
33f2ef89 889 */
f1e61557
KS
890typedef void compound_page_dtor(struct page *);
891
892/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
893enum compound_dtor_id {
894 NULL_COMPOUND_DTOR,
895 COMPOUND_PAGE_DTOR,
896#ifdef CONFIG_HUGETLB_PAGE
897 HUGETLB_PAGE_DTOR,
9a982250
KS
898#endif
899#ifdef CONFIG_TRANSPARENT_HUGEPAGE
900 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
901#endif
902 NR_COMPOUND_DTORS,
903};
ae70eddd 904extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
905
906static inline void set_compound_page_dtor(struct page *page,
f1e61557 907 enum compound_dtor_id compound_dtor)
33f2ef89 908{
f1e61557
KS
909 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
910 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
911}
912
ff45fc3c 913static inline void destroy_compound_page(struct page *page)
33f2ef89 914{
f1e61557 915 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 916 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
917}
918
d00181b9 919static inline unsigned int compound_order(struct page *page)
d85f3385 920{
6d777953 921 if (!PageHead(page))
d85f3385 922 return 0;
e4b294c2 923 return page[1].compound_order;
d85f3385
CL
924}
925
47e29d32
JH
926static inline bool hpage_pincount_available(struct page *page)
927{
928 /*
929 * Can the page->hpage_pinned_refcount field be used? That field is in
930 * the 3rd page of the compound page, so the smallest (2-page) compound
931 * pages cannot support it.
932 */
933 page = compound_head(page);
934 return PageCompound(page) && compound_order(page) > 1;
935}
936
bac3cf4d 937static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
938{
939 return atomic_read(compound_pincount_ptr(head));
940}
941
47e29d32
JH
942static inline int compound_pincount(struct page *page)
943{
944 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
945 page = compound_head(page);
bac3cf4d 946 return head_compound_pincount(page);
47e29d32
JH
947}
948
f1e61557 949static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 950{
e4b294c2 951 page[1].compound_order = order;
1378a5ee 952 page[1].compound_nr = 1U << order;
d85f3385
CL
953}
954
d8c6546b
MWO
955/* Returns the number of pages in this potentially compound page. */
956static inline unsigned long compound_nr(struct page *page)
957{
1378a5ee
MWO
958 if (!PageHead(page))
959 return 1;
960 return page[1].compound_nr;
d8c6546b
MWO
961}
962
a50b854e
MWO
963/* Returns the number of bytes in this potentially compound page. */
964static inline unsigned long page_size(struct page *page)
965{
966 return PAGE_SIZE << compound_order(page);
967}
968
94ad9338
MWO
969/* Returns the number of bits needed for the number of bytes in a page */
970static inline unsigned int page_shift(struct page *page)
971{
972 return PAGE_SHIFT + compound_order(page);
973}
974
9a982250
KS
975void free_compound_page(struct page *page);
976
3dece370 977#ifdef CONFIG_MMU
14fd403f
AA
978/*
979 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
980 * servicing faults for write access. In the normal case, do always want
981 * pte_mkwrite. But get_user_pages can cause write faults for mappings
982 * that do not have writing enabled, when used by access_process_vm.
983 */
984static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
985{
986 if (likely(vma->vm_flags & VM_WRITE))
987 pte = pte_mkwrite(pte);
988 return pte;
989}
8c6e50b0 990
9d82c694 991vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
2b740303
SJ
992vm_fault_t finish_fault(struct vm_fault *vmf);
993vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 994#endif
14fd403f 995
1da177e4
LT
996/*
997 * Multiple processes may "see" the same page. E.g. for untouched
998 * mappings of /dev/null, all processes see the same page full of
999 * zeroes, and text pages of executables and shared libraries have
1000 * only one copy in memory, at most, normally.
1001 *
1002 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1003 * page_count() == 0 means the page is free. page->lru is then used for
1004 * freelist management in the buddy allocator.
da6052f7 1005 * page_count() > 0 means the page has been allocated.
1da177e4 1006 *
da6052f7
NP
1007 * Pages are allocated by the slab allocator in order to provide memory
1008 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1009 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1010 * unless a particular usage is carefully commented. (the responsibility of
1011 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1012 *
da6052f7
NP
1013 * A page may be used by anyone else who does a __get_free_page().
1014 * In this case, page_count still tracks the references, and should only
1015 * be used through the normal accessor functions. The top bits of page->flags
1016 * and page->virtual store page management information, but all other fields
1017 * are unused and could be used privately, carefully. The management of this
1018 * page is the responsibility of the one who allocated it, and those who have
1019 * subsequently been given references to it.
1020 *
1021 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1022 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1023 * The following discussion applies only to them.
1024 *
da6052f7
NP
1025 * A pagecache page contains an opaque `private' member, which belongs to the
1026 * page's address_space. Usually, this is the address of a circular list of
1027 * the page's disk buffers. PG_private must be set to tell the VM to call
1028 * into the filesystem to release these pages.
1da177e4 1029 *
da6052f7
NP
1030 * A page may belong to an inode's memory mapping. In this case, page->mapping
1031 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1032 * in units of PAGE_SIZE.
1da177e4 1033 *
da6052f7
NP
1034 * If pagecache pages are not associated with an inode, they are said to be
1035 * anonymous pages. These may become associated with the swapcache, and in that
1036 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1037 *
da6052f7
NP
1038 * In either case (swapcache or inode backed), the pagecache itself holds one
1039 * reference to the page. Setting PG_private should also increment the
1040 * refcount. The each user mapping also has a reference to the page.
1da177e4 1041 *
da6052f7 1042 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1043 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1044 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1045 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1046 *
da6052f7 1047 * All pagecache pages may be subject to I/O:
1da177e4
LT
1048 * - inode pages may need to be read from disk,
1049 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1050 * to be written back to the inode on disk,
1051 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1052 * modified may need to be swapped out to swap space and (later) to be read
1053 * back into memory.
1da177e4
LT
1054 */
1055
1056/*
1057 * The zone field is never updated after free_area_init_core()
1058 * sets it, so none of the operations on it need to be atomic.
1da177e4 1059 */
348f8b6c 1060
90572890 1061/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1062#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1063#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1064#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1065#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1066#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1067
348f8b6c 1068/*
25985edc 1069 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1070 * sections we define the shift as 0; that plus a 0 mask ensures
1071 * the compiler will optimise away reference to them.
1072 */
d41dee36
AW
1073#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1074#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1075#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1076#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1077#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1078
bce54bbf
WD
1079/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1080#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1081#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1082#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1083 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1084#else
89689ae7 1085#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1086#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1087 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1088#endif
1089
bd8029b6 1090#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1091
d41dee36
AW
1092#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1093#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1094#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1095#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1096#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1097#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1098
33dd4e0e 1099static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1100{
c403f6a3 1101 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1102 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1103}
1da177e4 1104
260ae3f7
DW
1105#ifdef CONFIG_ZONE_DEVICE
1106static inline bool is_zone_device_page(const struct page *page)
1107{
1108 return page_zonenum(page) == ZONE_DEVICE;
1109}
966cf44f
AD
1110extern void memmap_init_zone_device(struct zone *, unsigned long,
1111 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1112#else
1113static inline bool is_zone_device_page(const struct page *page)
1114{
1115 return false;
1116}
7b2d55d2 1117#endif
5042db43 1118
e7638488 1119#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1120void free_devmap_managed_page(struct page *page);
e7638488 1121DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1122
1123static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1124{
1125 if (!static_branch_unlikely(&devmap_managed_key))
1126 return false;
1127 if (!is_zone_device_page(page))
1128 return false;
1129 switch (page->pgmap->type) {
1130 case MEMORY_DEVICE_PRIVATE:
e7638488 1131 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1132 return true;
1133 default:
1134 break;
1135 }
1136 return false;
1137}
1138
07d80269
JH
1139void put_devmap_managed_page(struct page *page);
1140
e7638488 1141#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1142static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1143{
1144 return false;
1145}
07d80269
JH
1146
1147static inline void put_devmap_managed_page(struct page *page)
1148{
1149}
7588adf8 1150#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1151
6b368cd4
JG
1152static inline bool is_device_private_page(const struct page *page)
1153{
7588adf8
RM
1154 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1155 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1156 is_zone_device_page(page) &&
1157 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1158}
e7638488 1159
52916982
LG
1160static inline bool is_pci_p2pdma_page(const struct page *page)
1161{
7588adf8
RM
1162 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1163 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1164 is_zone_device_page(page) &&
1165 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1166}
7b2d55d2 1167
f958d7b5
LT
1168/* 127: arbitrary random number, small enough to assemble well */
1169#define page_ref_zero_or_close_to_overflow(page) \
1170 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1171
3565fce3
DW
1172static inline void get_page(struct page *page)
1173{
1174 page = compound_head(page);
1175 /*
1176 * Getting a normal page or the head of a compound page
0139aa7b 1177 * requires to already have an elevated page->_refcount.
3565fce3 1178 */
f958d7b5 1179 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1180 page_ref_inc(page);
3565fce3
DW
1181}
1182
3faa52c0
JH
1183bool __must_check try_grab_page(struct page *page, unsigned int flags);
1184
88b1a17d
LT
1185static inline __must_check bool try_get_page(struct page *page)
1186{
1187 page = compound_head(page);
1188 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1189 return false;
fe896d18 1190 page_ref_inc(page);
88b1a17d 1191 return true;
3565fce3
DW
1192}
1193
1194static inline void put_page(struct page *page)
1195{
1196 page = compound_head(page);
1197
7b2d55d2 1198 /*
e7638488
DW
1199 * For devmap managed pages we need to catch refcount transition from
1200 * 2 to 1, when refcount reach one it means the page is free and we
1201 * need to inform the device driver through callback. See
7b2d55d2
JG
1202 * include/linux/memremap.h and HMM for details.
1203 */
07d80269
JH
1204 if (page_is_devmap_managed(page)) {
1205 put_devmap_managed_page(page);
7b2d55d2 1206 return;
07d80269 1207 }
7b2d55d2 1208
3565fce3
DW
1209 if (put_page_testzero(page))
1210 __put_page(page);
3565fce3
DW
1211}
1212
3faa52c0
JH
1213/*
1214 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1215 * the page's refcount so that two separate items are tracked: the original page
1216 * reference count, and also a new count of how many pin_user_pages() calls were
1217 * made against the page. ("gup-pinned" is another term for the latter).
1218 *
1219 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1220 * distinct from normal pages. As such, the unpin_user_page() call (and its
1221 * variants) must be used in order to release gup-pinned pages.
1222 *
1223 * Choice of value:
1224 *
1225 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1226 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1227 * simpler, due to the fact that adding an even power of two to the page
1228 * refcount has the effect of using only the upper N bits, for the code that
1229 * counts up using the bias value. This means that the lower bits are left for
1230 * the exclusive use of the original code that increments and decrements by one
1231 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1232 *
3faa52c0
JH
1233 * Of course, once the lower bits overflow into the upper bits (and this is
1234 * OK, because subtraction recovers the original values), then visual inspection
1235 * no longer suffices to directly view the separate counts. However, for normal
1236 * applications that don't have huge page reference counts, this won't be an
1237 * issue.
fc1d8e7c 1238 *
3faa52c0
JH
1239 * Locking: the lockless algorithm described in page_cache_get_speculative()
1240 * and page_cache_gup_pin_speculative() provides safe operation for
1241 * get_user_pages and page_mkclean and other calls that race to set up page
1242 * table entries.
fc1d8e7c 1243 */
3faa52c0 1244#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1245
3faa52c0 1246void unpin_user_page(struct page *page);
f1f6a7dd
JH
1247void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1248 bool make_dirty);
f1f6a7dd 1249void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1250
3faa52c0
JH
1251/**
1252 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1253 *
1254 * This function checks if a page has been pinned via a call to
1255 * pin_user_pages*().
1256 *
1257 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1258 * because it means "definitely not pinned for DMA", but true means "probably
1259 * pinned for DMA, but possibly a false positive due to having at least
1260 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1261 *
1262 * False positives are OK, because: a) it's unlikely for a page to get that many
1263 * refcounts, and b) all the callers of this routine are expected to be able to
1264 * deal gracefully with a false positive.
1265 *
47e29d32
JH
1266 * For huge pages, the result will be exactly correct. That's because we have
1267 * more tracking data available: the 3rd struct page in the compound page is
1268 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1269 * scheme).
1270 *
72ef5e52 1271 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0
JH
1272 *
1273 * @page: pointer to page to be queried.
1274 * @Return: True, if it is likely that the page has been "dma-pinned".
1275 * False, if the page is definitely not dma-pinned.
1276 */
1277static inline bool page_maybe_dma_pinned(struct page *page)
1278{
47e29d32
JH
1279 if (hpage_pincount_available(page))
1280 return compound_pincount(page) > 0;
1281
3faa52c0
JH
1282 /*
1283 * page_ref_count() is signed. If that refcount overflows, then
1284 * page_ref_count() returns a negative value, and callers will avoid
1285 * further incrementing the refcount.
1286 *
1287 * Here, for that overflow case, use the signed bit to count a little
1288 * bit higher via unsigned math, and thus still get an accurate result.
1289 */
1290 return ((unsigned int)page_ref_count(compound_head(page))) >=
1291 GUP_PIN_COUNTING_BIAS;
1292}
1293
9127ab4f
CS
1294#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1295#define SECTION_IN_PAGE_FLAGS
1296#endif
1297
89689ae7 1298/*
7a8010cd
VB
1299 * The identification function is mainly used by the buddy allocator for
1300 * determining if two pages could be buddies. We are not really identifying
1301 * the zone since we could be using the section number id if we do not have
1302 * node id available in page flags.
1303 * We only guarantee that it will return the same value for two combinable
1304 * pages in a zone.
89689ae7 1305 */
cb2b95e1
AW
1306static inline int page_zone_id(struct page *page)
1307{
89689ae7 1308 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1309}
1310
89689ae7 1311#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1312extern int page_to_nid(const struct page *page);
89689ae7 1313#else
33dd4e0e 1314static inline int page_to_nid(const struct page *page)
d41dee36 1315{
f165b378
PT
1316 struct page *p = (struct page *)page;
1317
1318 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1319}
89689ae7
CL
1320#endif
1321
57e0a030 1322#ifdef CONFIG_NUMA_BALANCING
90572890 1323static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1324{
90572890 1325 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1326}
1327
90572890 1328static inline int cpupid_to_pid(int cpupid)
57e0a030 1329{
90572890 1330 return cpupid & LAST__PID_MASK;
57e0a030 1331}
b795854b 1332
90572890 1333static inline int cpupid_to_cpu(int cpupid)
b795854b 1334{
90572890 1335 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1336}
1337
90572890 1338static inline int cpupid_to_nid(int cpupid)
b795854b 1339{
90572890 1340 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1341}
1342
90572890 1343static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1344{
90572890 1345 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1346}
1347
90572890 1348static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1349{
90572890 1350 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1351}
1352
8c8a743c
PZ
1353static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1354{
1355 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1356}
1357
1358#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1359#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1360static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1361{
1ae71d03 1362 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1363}
90572890
PZ
1364
1365static inline int page_cpupid_last(struct page *page)
1366{
1367 return page->_last_cpupid;
1368}
1369static inline void page_cpupid_reset_last(struct page *page)
b795854b 1370{
1ae71d03 1371 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1372}
1373#else
90572890 1374static inline int page_cpupid_last(struct page *page)
75980e97 1375{
90572890 1376 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1377}
1378
90572890 1379extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1380
90572890 1381static inline void page_cpupid_reset_last(struct page *page)
75980e97 1382{
09940a4f 1383 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1384}
90572890
PZ
1385#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1386#else /* !CONFIG_NUMA_BALANCING */
1387static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1388{
90572890 1389 return page_to_nid(page); /* XXX */
57e0a030
MG
1390}
1391
90572890 1392static inline int page_cpupid_last(struct page *page)
57e0a030 1393{
90572890 1394 return page_to_nid(page); /* XXX */
57e0a030
MG
1395}
1396
90572890 1397static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1398{
1399 return -1;
1400}
1401
90572890 1402static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1403{
1404 return -1;
1405}
1406
90572890 1407static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1408{
1409 return -1;
1410}
1411
90572890
PZ
1412static inline int cpu_pid_to_cpupid(int nid, int pid)
1413{
1414 return -1;
1415}
1416
1417static inline bool cpupid_pid_unset(int cpupid)
b795854b 1418{
2b787449 1419 return true;
b795854b
MG
1420}
1421
90572890 1422static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1423{
1424}
8c8a743c
PZ
1425
1426static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1427{
1428 return false;
1429}
90572890 1430#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1431
2e903b91 1432#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1433
2813b9c0
AK
1434static inline u8 page_kasan_tag(const struct page *page)
1435{
34303244
AK
1436 if (kasan_enabled())
1437 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1438 return 0xff;
2813b9c0
AK
1439}
1440
1441static inline void page_kasan_tag_set(struct page *page, u8 tag)
1442{
34303244
AK
1443 if (kasan_enabled()) {
1444 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1445 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1446 }
2813b9c0
AK
1447}
1448
1449static inline void page_kasan_tag_reset(struct page *page)
1450{
34303244
AK
1451 if (kasan_enabled())
1452 page_kasan_tag_set(page, 0xff);
2813b9c0 1453}
34303244
AK
1454
1455#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1456
2813b9c0
AK
1457static inline u8 page_kasan_tag(const struct page *page)
1458{
1459 return 0xff;
1460}
1461
1462static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1463static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1464
1465#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1466
33dd4e0e 1467static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1468{
1469 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1470}
1471
75ef7184
MG
1472static inline pg_data_t *page_pgdat(const struct page *page)
1473{
1474 return NODE_DATA(page_to_nid(page));
1475}
1476
9127ab4f 1477#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1478static inline void set_page_section(struct page *page, unsigned long section)
1479{
1480 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1481 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1482}
1483
aa462abe 1484static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1485{
1486 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1487}
308c05e3 1488#endif
d41dee36 1489
2f1b6248 1490static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1491{
1492 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1493 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1494}
2f1b6248 1495
348f8b6c
DH
1496static inline void set_page_node(struct page *page, unsigned long node)
1497{
1498 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1499 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1500}
89689ae7 1501
2f1b6248 1502static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1503 unsigned long node, unsigned long pfn)
1da177e4 1504{
348f8b6c
DH
1505 set_page_zone(page, zone);
1506 set_page_node(page, node);
9127ab4f 1507#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1508 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1509#endif
1da177e4
LT
1510}
1511
f6ac2354
CL
1512/*
1513 * Some inline functions in vmstat.h depend on page_zone()
1514 */
1515#include <linux/vmstat.h>
1516
33dd4e0e 1517static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1518{
1dff8083 1519 return page_to_virt(page);
1da177e4
LT
1520}
1521
1522#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1523#define HASHED_PAGE_VIRTUAL
1524#endif
1525
1526#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1527static inline void *page_address(const struct page *page)
1528{
1529 return page->virtual;
1530}
1531static inline void set_page_address(struct page *page, void *address)
1532{
1533 page->virtual = address;
1534}
1da177e4
LT
1535#define page_address_init() do { } while(0)
1536#endif
1537
1538#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1539void *page_address(const struct page *page);
1da177e4
LT
1540void set_page_address(struct page *page, void *virtual);
1541void page_address_init(void);
1542#endif
1543
1544#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1545#define page_address(page) lowmem_page_address(page)
1546#define set_page_address(page, address) do { } while(0)
1547#define page_address_init() do { } while(0)
1548#endif
1549
e39155ea
KS
1550extern void *page_rmapping(struct page *page);
1551extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1552extern struct address_space *page_mapping(struct page *page);
1da177e4 1553
f981c595
MG
1554extern struct address_space *__page_file_mapping(struct page *);
1555
1556static inline
1557struct address_space *page_file_mapping(struct page *page)
1558{
1559 if (unlikely(PageSwapCache(page)))
1560 return __page_file_mapping(page);
1561
1562 return page->mapping;
1563}
1564
f6ab1f7f
HY
1565extern pgoff_t __page_file_index(struct page *page);
1566
1da177e4
LT
1567/*
1568 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1569 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1570 */
1571static inline pgoff_t page_index(struct page *page)
1572{
1573 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1574 return __page_file_index(page);
1da177e4
LT
1575 return page->index;
1576}
1577
1aa8aea5 1578bool page_mapped(struct page *page);
bda807d4 1579struct address_space *page_mapping(struct page *page);
cb9f753a 1580struct address_space *page_mapping_file(struct page *page);
1da177e4 1581
2f064f34
MH
1582/*
1583 * Return true only if the page has been allocated with
1584 * ALLOC_NO_WATERMARKS and the low watermark was not
1585 * met implying that the system is under some pressure.
1586 */
1587static inline bool page_is_pfmemalloc(struct page *page)
1588{
1589 /*
1590 * Page index cannot be this large so this must be
1591 * a pfmemalloc page.
1592 */
1593 return page->index == -1UL;
1594}
1595
1596/*
1597 * Only to be called by the page allocator on a freshly allocated
1598 * page.
1599 */
1600static inline void set_page_pfmemalloc(struct page *page)
1601{
1602 page->index = -1UL;
1603}
1604
1605static inline void clear_page_pfmemalloc(struct page *page)
1606{
1607 page->index = 0;
1608}
1609
1c0fe6e3
NP
1610/*
1611 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1612 */
1613extern void pagefault_out_of_memory(void);
1614
1da177e4 1615#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1616#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1da177e4 1617
ddd588b5 1618/*
7bf02ea2 1619 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1620 * various contexts.
1621 */
4b59e6c4 1622#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1623
9af744d7 1624extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1625
710ec38b 1626#ifdef CONFIG_MMU
7f43add4 1627extern bool can_do_mlock(void);
710ec38b
AB
1628#else
1629static inline bool can_do_mlock(void) { return false; }
1630#endif
1da177e4
LT
1631extern int user_shm_lock(size_t, struct user_struct *);
1632extern void user_shm_unlock(size_t, struct user_struct *);
1633
1634/*
1635 * Parameter block passed down to zap_pte_range in exceptional cases.
1636 */
1637struct zap_details {
1da177e4
LT
1638 struct address_space *check_mapping; /* Check page->mapping if set */
1639 pgoff_t first_index; /* Lowest page->index to unmap */
1640 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1641};
1642
25b2995a
CH
1643struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1644 pte_t pte);
28093f9f
GS
1645struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1646 pmd_t pmd);
7e675137 1647
27d036e3
LR
1648void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1649 unsigned long size);
14f5ff5d 1650void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1651 unsigned long size);
4f74d2c8
LT
1652void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1653 unsigned long start, unsigned long end);
e6473092 1654
ac46d4f3
JG
1655struct mmu_notifier_range;
1656
42b77728 1657void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1658 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1659int
1660copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed
CH
1661int follow_pte(struct mm_struct *mm, unsigned long address,
1662 struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp,
1663 spinlock_t **ptlp);
3b6748e2
JW
1664int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1665 unsigned long *pfn);
d87fe660 1666int follow_phys(struct vm_area_struct *vma, unsigned long address,
1667 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1668int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1669 void *buf, int len, int write);
1da177e4 1670
7caef267 1671extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1672extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1673void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1674void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1675int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1676int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1677int invalidate_inode_page(struct page *page);
1678
7ee1dd3f 1679#ifdef CONFIG_MMU
2b740303 1680extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1681 unsigned long address, unsigned int flags,
1682 struct pt_regs *regs);
64019a2e 1683extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1684 unsigned long address, unsigned int fault_flags,
1685 bool *unlocked);
977fbdcd
MW
1686void unmap_mapping_pages(struct address_space *mapping,
1687 pgoff_t start, pgoff_t nr, bool even_cows);
1688void unmap_mapping_range(struct address_space *mapping,
1689 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1690#else
2b740303 1691static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1692 unsigned long address, unsigned int flags,
1693 struct pt_regs *regs)
7ee1dd3f
DH
1694{
1695 /* should never happen if there's no MMU */
1696 BUG();
1697 return VM_FAULT_SIGBUS;
1698}
64019a2e 1699static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1700 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1701{
1702 /* should never happen if there's no MMU */
1703 BUG();
1704 return -EFAULT;
1705}
977fbdcd
MW
1706static inline void unmap_mapping_pages(struct address_space *mapping,
1707 pgoff_t start, pgoff_t nr, bool even_cows) { }
1708static inline void unmap_mapping_range(struct address_space *mapping,
1709 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1710#endif
f33ea7f4 1711
977fbdcd
MW
1712static inline void unmap_shared_mapping_range(struct address_space *mapping,
1713 loff_t const holebegin, loff_t const holelen)
1714{
1715 unmap_mapping_range(mapping, holebegin, holelen, 0);
1716}
1717
1718extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1719 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1720extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1721 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1722extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1723 void *buf, int len, unsigned int gup_flags);
1da177e4 1724
64019a2e 1725long get_user_pages_remote(struct mm_struct *mm,
1e987790 1726 unsigned long start, unsigned long nr_pages,
9beae1ea 1727 unsigned int gup_flags, struct page **pages,
5b56d49f 1728 struct vm_area_struct **vmas, int *locked);
64019a2e 1729long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1730 unsigned long start, unsigned long nr_pages,
1731 unsigned int gup_flags, struct page **pages,
1732 struct vm_area_struct **vmas, int *locked);
c12d2da5 1733long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1734 unsigned int gup_flags, struct page **pages,
cde70140 1735 struct vm_area_struct **vmas);
eddb1c22
JH
1736long pin_user_pages(unsigned long start, unsigned long nr_pages,
1737 unsigned int gup_flags, struct page **pages,
1738 struct vm_area_struct **vmas);
c12d2da5 1739long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1740 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1741long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1742 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1743long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1744 struct page **pages, unsigned int gup_flags);
91429023
JH
1745long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1746 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1747
73b0140b
IW
1748int get_user_pages_fast(unsigned long start, int nr_pages,
1749 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1750int pin_user_pages_fast(unsigned long start, int nr_pages,
1751 unsigned int gup_flags, struct page **pages);
8025e5dd 1752
79eb597c
DJ
1753int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1754int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1755 struct task_struct *task, bool bypass_rlim);
1756
8025e5dd
JK
1757/* Container for pinned pfns / pages */
1758struct frame_vector {
1759 unsigned int nr_allocated; /* Number of frames we have space for */
1760 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1761 bool got_ref; /* Did we pin pages by getting page ref? */
1762 bool is_pfns; /* Does array contain pages or pfns? */
57e86fa1 1763 void *ptrs[]; /* Array of pinned pfns / pages. Use
8025e5dd
JK
1764 * pfns_vector_pages() or pfns_vector_pfns()
1765 * for access */
1766};
1767
1768struct frame_vector *frame_vector_create(unsigned int nr_frames);
1769void frame_vector_destroy(struct frame_vector *vec);
1770int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1771 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1772void put_vaddr_frames(struct frame_vector *vec);
1773int frame_vector_to_pages(struct frame_vector *vec);
1774void frame_vector_to_pfns(struct frame_vector *vec);
1775
1776static inline unsigned int frame_vector_count(struct frame_vector *vec)
1777{
1778 return vec->nr_frames;
1779}
1780
1781static inline struct page **frame_vector_pages(struct frame_vector *vec)
1782{
1783 if (vec->is_pfns) {
1784 int err = frame_vector_to_pages(vec);
1785
1786 if (err)
1787 return ERR_PTR(err);
1788 }
1789 return (struct page **)(vec->ptrs);
1790}
1791
1792static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1793{
1794 if (!vec->is_pfns)
1795 frame_vector_to_pfns(vec);
1796 return (unsigned long *)(vec->ptrs);
1797}
1798
18022c5d
MG
1799struct kvec;
1800int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1801 struct page **pages);
1802int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1803struct page *get_dump_page(unsigned long addr);
1da177e4 1804
cf9a2ae8 1805extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1806extern void do_invalidatepage(struct page *page, unsigned int offset,
1807 unsigned int length);
cf9a2ae8 1808
f82b3764 1809void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1810int __set_page_dirty_nobuffers(struct page *page);
76719325 1811int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1812int redirty_page_for_writepage(struct writeback_control *wbc,
1813 struct page *page);
62cccb8c 1814void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1815void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1816 struct bdi_writeback *wb);
b3c97528 1817int set_page_dirty(struct page *page);
1da177e4 1818int set_page_dirty_lock(struct page *page);
736304f3
JK
1819void __cancel_dirty_page(struct page *page);
1820static inline void cancel_dirty_page(struct page *page)
1821{
1822 /* Avoid atomic ops, locking, etc. when not actually needed. */
1823 if (PageDirty(page))
1824 __cancel_dirty_page(page);
1825}
1da177e4 1826int clear_page_dirty_for_io(struct page *page);
b9ea2515 1827
a9090253 1828int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1829
b6a2fea3
OW
1830extern unsigned long move_page_tables(struct vm_area_struct *vma,
1831 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1832 unsigned long new_addr, unsigned long len,
1833 bool need_rmap_locks);
58705444
PX
1834
1835/*
1836 * Flags used by change_protection(). For now we make it a bitmap so
1837 * that we can pass in multiple flags just like parameters. However
1838 * for now all the callers are only use one of the flags at the same
1839 * time.
1840 */
1841/* Whether we should allow dirty bit accounting */
1842#define MM_CP_DIRTY_ACCT (1UL << 0)
1843/* Whether this protection change is for NUMA hints */
1844#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1845/* Whether this change is for write protecting */
1846#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1847#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1848#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1849 MM_CP_UFFD_WP_RESOLVE)
58705444 1850
7da4d641
PZ
1851extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1852 unsigned long end, pgprot_t newprot,
58705444 1853 unsigned long cp_flags);
b6a2fea3
OW
1854extern int mprotect_fixup(struct vm_area_struct *vma,
1855 struct vm_area_struct **pprev, unsigned long start,
1856 unsigned long end, unsigned long newflags);
1da177e4 1857
465a454f
PZ
1858/*
1859 * doesn't attempt to fault and will return short.
1860 */
dadbb612
SJ
1861int get_user_pages_fast_only(unsigned long start, int nr_pages,
1862 unsigned int gup_flags, struct page **pages);
104acc32
JH
1863int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1864 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1865
1866static inline bool get_user_page_fast_only(unsigned long addr,
1867 unsigned int gup_flags, struct page **pagep)
1868{
1869 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1870}
d559db08
KH
1871/*
1872 * per-process(per-mm_struct) statistics.
1873 */
d559db08
KH
1874static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1875{
69c97823
KK
1876 long val = atomic_long_read(&mm->rss_stat.count[member]);
1877
1878#ifdef SPLIT_RSS_COUNTING
1879 /*
1880 * counter is updated in asynchronous manner and may go to minus.
1881 * But it's never be expected number for users.
1882 */
1883 if (val < 0)
1884 val = 0;
172703b0 1885#endif
69c97823
KK
1886 return (unsigned long)val;
1887}
d559db08 1888
e4dcad20 1889void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1890
d559db08
KH
1891static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1892{
b3d1411b
JFG
1893 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1894
e4dcad20 1895 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1896}
1897
1898static inline void inc_mm_counter(struct mm_struct *mm, int member)
1899{
b3d1411b
JFG
1900 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1901
e4dcad20 1902 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1903}
1904
1905static inline void dec_mm_counter(struct mm_struct *mm, int member)
1906{
b3d1411b
JFG
1907 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1908
e4dcad20 1909 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1910}
1911
eca56ff9
JM
1912/* Optimized variant when page is already known not to be PageAnon */
1913static inline int mm_counter_file(struct page *page)
1914{
1915 if (PageSwapBacked(page))
1916 return MM_SHMEMPAGES;
1917 return MM_FILEPAGES;
1918}
1919
1920static inline int mm_counter(struct page *page)
1921{
1922 if (PageAnon(page))
1923 return MM_ANONPAGES;
1924 return mm_counter_file(page);
1925}
1926
d559db08
KH
1927static inline unsigned long get_mm_rss(struct mm_struct *mm)
1928{
1929 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1930 get_mm_counter(mm, MM_ANONPAGES) +
1931 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1932}
1933
1934static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1935{
1936 return max(mm->hiwater_rss, get_mm_rss(mm));
1937}
1938
1939static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1940{
1941 return max(mm->hiwater_vm, mm->total_vm);
1942}
1943
1944static inline void update_hiwater_rss(struct mm_struct *mm)
1945{
1946 unsigned long _rss = get_mm_rss(mm);
1947
1948 if ((mm)->hiwater_rss < _rss)
1949 (mm)->hiwater_rss = _rss;
1950}
1951
1952static inline void update_hiwater_vm(struct mm_struct *mm)
1953{
1954 if (mm->hiwater_vm < mm->total_vm)
1955 mm->hiwater_vm = mm->total_vm;
1956}
1957
695f0559
PC
1958static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1959{
1960 mm->hiwater_rss = get_mm_rss(mm);
1961}
1962
d559db08
KH
1963static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1964 struct mm_struct *mm)
1965{
1966 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1967
1968 if (*maxrss < hiwater_rss)
1969 *maxrss = hiwater_rss;
1970}
1971
53bddb4e 1972#if defined(SPLIT_RSS_COUNTING)
05af2e10 1973void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1974#else
05af2e10 1975static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1976{
1977}
1978#endif
465a454f 1979
78e7c5af
AK
1980#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1981static inline int pte_special(pte_t pte)
1982{
1983 return 0;
1984}
1985
1986static inline pte_t pte_mkspecial(pte_t pte)
1987{
1988 return pte;
1989}
1990#endif
1991
17596731 1992#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
1993static inline int pte_devmap(pte_t pte)
1994{
1995 return 0;
1996}
1997#endif
1998
6d2329f8 1999int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 2000
25ca1d6c
NK
2001extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2002 spinlock_t **ptl);
2003static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2004 spinlock_t **ptl)
2005{
2006 pte_t *ptep;
2007 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2008 return ptep;
2009}
c9cfcddf 2010
c2febafc
KS
2011#ifdef __PAGETABLE_P4D_FOLDED
2012static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2013 unsigned long address)
2014{
2015 return 0;
2016}
2017#else
2018int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2019#endif
2020
b4e98d9a 2021#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2022static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2023 unsigned long address)
2024{
2025 return 0;
2026}
b4e98d9a
KS
2027static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2028static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2029
5f22df00 2030#else
c2febafc 2031int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2032
b4e98d9a
KS
2033static inline void mm_inc_nr_puds(struct mm_struct *mm)
2034{
6d212db1
MS
2035 if (mm_pud_folded(mm))
2036 return;
af5b0f6a 2037 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2038}
2039
2040static inline void mm_dec_nr_puds(struct mm_struct *mm)
2041{
6d212db1
MS
2042 if (mm_pud_folded(mm))
2043 return;
af5b0f6a 2044 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2045}
5f22df00
NP
2046#endif
2047
2d2f5119 2048#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2049static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2050 unsigned long address)
2051{
2052 return 0;
2053}
dc6c9a35 2054
dc6c9a35
KS
2055static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2056static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2057
5f22df00 2058#else
1bb3630e 2059int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2060
dc6c9a35
KS
2061static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2062{
6d212db1
MS
2063 if (mm_pmd_folded(mm))
2064 return;
af5b0f6a 2065 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2066}
2067
2068static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2069{
6d212db1
MS
2070 if (mm_pmd_folded(mm))
2071 return;
af5b0f6a 2072 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2073}
5f22df00
NP
2074#endif
2075
c4812909 2076#ifdef CONFIG_MMU
af5b0f6a 2077static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2078{
af5b0f6a 2079 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2080}
2081
af5b0f6a 2082static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2083{
af5b0f6a 2084 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2085}
2086
2087static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2088{
af5b0f6a 2089 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2090}
2091
2092static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2093{
af5b0f6a 2094 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2095}
2096#else
c4812909 2097
af5b0f6a
KS
2098static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2099static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2100{
2101 return 0;
2102}
2103
2104static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2105static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2106#endif
2107
4cf58924
JFG
2108int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2109int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2110
f949286c
MR
2111#if defined(CONFIG_MMU)
2112
c2febafc
KS
2113static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2114 unsigned long address)
2115{
2116 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2117 NULL : p4d_offset(pgd, address);
2118}
2119
2120static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2121 unsigned long address)
1da177e4 2122{
c2febafc
KS
2123 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2124 NULL : pud_offset(p4d, address);
1da177e4 2125}
d8626138 2126
1da177e4
LT
2127static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2128{
1bb3630e
HD
2129 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2130 NULL: pmd_offset(pud, address);
1da177e4 2131}
f949286c 2132#endif /* CONFIG_MMU */
1bb3630e 2133
57c1ffce 2134#if USE_SPLIT_PTE_PTLOCKS
597d795a 2135#if ALLOC_SPLIT_PTLOCKS
b35f1819 2136void __init ptlock_cache_init(void);
539edb58
PZ
2137extern bool ptlock_alloc(struct page *page);
2138extern void ptlock_free(struct page *page);
2139
2140static inline spinlock_t *ptlock_ptr(struct page *page)
2141{
2142 return page->ptl;
2143}
597d795a 2144#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2145static inline void ptlock_cache_init(void)
2146{
2147}
2148
49076ec2
KS
2149static inline bool ptlock_alloc(struct page *page)
2150{
49076ec2
KS
2151 return true;
2152}
539edb58 2153
49076ec2
KS
2154static inline void ptlock_free(struct page *page)
2155{
49076ec2
KS
2156}
2157
2158static inline spinlock_t *ptlock_ptr(struct page *page)
2159{
539edb58 2160 return &page->ptl;
49076ec2 2161}
597d795a 2162#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2163
2164static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2165{
2166 return ptlock_ptr(pmd_page(*pmd));
2167}
2168
2169static inline bool ptlock_init(struct page *page)
2170{
2171 /*
2172 * prep_new_page() initialize page->private (and therefore page->ptl)
2173 * with 0. Make sure nobody took it in use in between.
2174 *
2175 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2176 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2177 */
309381fe 2178 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2179 if (!ptlock_alloc(page))
2180 return false;
2181 spin_lock_init(ptlock_ptr(page));
2182 return true;
2183}
2184
57c1ffce 2185#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2186/*
2187 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2188 */
49076ec2
KS
2189static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2190{
2191 return &mm->page_table_lock;
2192}
b35f1819 2193static inline void ptlock_cache_init(void) {}
49076ec2 2194static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2195static inline void ptlock_free(struct page *page) {}
57c1ffce 2196#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2197
b35f1819
KS
2198static inline void pgtable_init(void)
2199{
2200 ptlock_cache_init();
2201 pgtable_cache_init();
2202}
2203
b4ed71f5 2204static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2205{
706874e9
VD
2206 if (!ptlock_init(page))
2207 return false;
1d40a5ea 2208 __SetPageTable(page);
f0c0c115 2209 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2210 return true;
2f569afd
MS
2211}
2212
b4ed71f5 2213static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2214{
9e247bab 2215 ptlock_free(page);
1d40a5ea 2216 __ClearPageTable(page);
f0c0c115 2217 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2218}
2219
c74df32c
HD
2220#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2221({ \
4c21e2f2 2222 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2223 pte_t *__pte = pte_offset_map(pmd, address); \
2224 *(ptlp) = __ptl; \
2225 spin_lock(__ptl); \
2226 __pte; \
2227})
2228
2229#define pte_unmap_unlock(pte, ptl) do { \
2230 spin_unlock(ptl); \
2231 pte_unmap(pte); \
2232} while (0)
2233
4cf58924 2234#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2235
2236#define pte_alloc_map(mm, pmd, address) \
4cf58924 2237 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2238
c74df32c 2239#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2240 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2241 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2242
1bb3630e 2243#define pte_alloc_kernel(pmd, address) \
4cf58924 2244 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2245 NULL: pte_offset_kernel(pmd, address))
1da177e4 2246
e009bb30
KS
2247#if USE_SPLIT_PMD_PTLOCKS
2248
634391ac
MS
2249static struct page *pmd_to_page(pmd_t *pmd)
2250{
2251 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2252 return virt_to_page((void *)((unsigned long) pmd & mask));
2253}
2254
e009bb30
KS
2255static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2256{
634391ac 2257 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2258}
2259
b2b29d6d 2260static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2261{
e009bb30
KS
2262#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2263 page->pmd_huge_pte = NULL;
2264#endif
49076ec2 2265 return ptlock_init(page);
e009bb30
KS
2266}
2267
b2b29d6d 2268static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2269{
2270#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2271 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2272#endif
49076ec2 2273 ptlock_free(page);
e009bb30
KS
2274}
2275
634391ac 2276#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2277
2278#else
2279
9a86cb7b
KS
2280static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2281{
2282 return &mm->page_table_lock;
2283}
2284
b2b29d6d
MW
2285static inline bool pmd_ptlock_init(struct page *page) { return true; }
2286static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2287
c389a250 2288#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2289
e009bb30
KS
2290#endif
2291
9a86cb7b
KS
2292static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2293{
2294 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2295 spin_lock(ptl);
2296 return ptl;
2297}
2298
b2b29d6d
MW
2299static inline bool pgtable_pmd_page_ctor(struct page *page)
2300{
2301 if (!pmd_ptlock_init(page))
2302 return false;
2303 __SetPageTable(page);
f0c0c115 2304 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2305 return true;
2306}
2307
2308static inline void pgtable_pmd_page_dtor(struct page *page)
2309{
2310 pmd_ptlock_free(page);
2311 __ClearPageTable(page);
f0c0c115 2312 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2313}
2314
a00cc7d9
MW
2315/*
2316 * No scalability reason to split PUD locks yet, but follow the same pattern
2317 * as the PMD locks to make it easier if we decide to. The VM should not be
2318 * considered ready to switch to split PUD locks yet; there may be places
2319 * which need to be converted from page_table_lock.
2320 */
2321static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2322{
2323 return &mm->page_table_lock;
2324}
2325
2326static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2327{
2328 spinlock_t *ptl = pud_lockptr(mm, pud);
2329
2330 spin_lock(ptl);
2331 return ptl;
2332}
62906027 2333
a00cc7d9 2334extern void __init pagecache_init(void);
bc9331a1 2335extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2336extern void free_initmem(void);
2337
69afade7
JL
2338/*
2339 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2340 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2341 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2342 * Return pages freed into the buddy system.
2343 */
11199692 2344extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2345 int poison, const char *s);
c3d5f5f0 2346
cfa11e08
JL
2347#ifdef CONFIG_HIGHMEM
2348/*
2349 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2350 * and totalram_pages.
2351 */
2352extern void free_highmem_page(struct page *page);
2353#endif
69afade7 2354
c3d5f5f0 2355extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2356extern void mem_init_print_info(const char *str);
69afade7 2357
4b50bcc7 2358extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2359
69afade7
JL
2360/* Free the reserved page into the buddy system, so it gets managed. */
2361static inline void __free_reserved_page(struct page *page)
2362{
2363 ClearPageReserved(page);
2364 init_page_count(page);
2365 __free_page(page);
2366}
2367
2368static inline void free_reserved_page(struct page *page)
2369{
2370 __free_reserved_page(page);
2371 adjust_managed_page_count(page, 1);
2372}
2373
2374static inline void mark_page_reserved(struct page *page)
2375{
2376 SetPageReserved(page);
2377 adjust_managed_page_count(page, -1);
2378}
2379
2380/*
2381 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2382 * The freed pages will be poisoned with pattern "poison" if it's within
2383 * range [0, UCHAR_MAX].
2384 * Return pages freed into the buddy system.
69afade7
JL
2385 */
2386static inline unsigned long free_initmem_default(int poison)
2387{
2388 extern char __init_begin[], __init_end[];
2389
11199692 2390 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2391 poison, "unused kernel");
2392}
2393
7ee3d4e8
JL
2394static inline unsigned long get_num_physpages(void)
2395{
2396 int nid;
2397 unsigned long phys_pages = 0;
2398
2399 for_each_online_node(nid)
2400 phys_pages += node_present_pages(nid);
2401
2402 return phys_pages;
2403}
2404
c713216d 2405/*
3f08a302 2406 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2407 * zones, allocate the backing mem_map and account for memory holes in an
2408 * architecture independent manner.
c713216d
MG
2409 *
2410 * An architecture is expected to register range of page frames backed by
0ee332c1 2411 * physical memory with memblock_add[_node]() before calling
9691a071 2412 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2413 * usage, an architecture is expected to do something like
2414 *
2415 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2416 * max_highmem_pfn};
2417 * for_each_valid_physical_page_range()
0ee332c1 2418 * memblock_add_node(base, size, nid)
9691a071 2419 * free_area_init(max_zone_pfns);
c713216d 2420 */
9691a071 2421void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2422unsigned long node_map_pfn_alignment(void);
32996250
YL
2423unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2424 unsigned long end_pfn);
c713216d
MG
2425extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2426 unsigned long end_pfn);
2427extern void get_pfn_range_for_nid(unsigned int nid,
2428 unsigned long *start_pfn, unsigned long *end_pfn);
2429extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2430
3f08a302 2431#ifndef CONFIG_NEED_MULTIPLE_NODES
6f24fbd3 2432static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2433{
2434 return 0;
2435}
2436#else
2437/* please see mm/page_alloc.c */
2438extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2439#endif
2440
0e0b864e 2441extern void set_dma_reserve(unsigned long new_dma_reserve);
dc2da7b4
BH
2442extern void memmap_init_zone(unsigned long, int, unsigned long,
2443 unsigned long, unsigned long, enum meminit_context,
2444 struct vmem_altmap *, int migratetype);
bc75d33f 2445extern void setup_per_zone_wmarks(void);
1b79acc9 2446extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2447extern void mem_init(void);
8feae131 2448extern void __init mmap_init(void);
9af744d7 2449extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2450extern long si_mem_available(void);
1da177e4
LT
2451extern void si_meminfo(struct sysinfo * val);
2452extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2453#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2454extern unsigned long arch_reserved_kernel_pages(void);
2455#endif
1da177e4 2456
a8e99259
MH
2457extern __printf(3, 4)
2458void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2459
e7c8d5c9 2460extern void setup_per_cpu_pageset(void);
e7c8d5c9 2461
75f7ad8e
PS
2462/* page_alloc.c */
2463extern int min_free_kbytes;
1c30844d 2464extern int watermark_boost_factor;
795ae7a0 2465extern int watermark_scale_factor;
51930df5 2466extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2467
8feae131 2468/* nommu.c */
33e5d769 2469extern atomic_long_t mmap_pages_allocated;
7e660872 2470extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2471
6b2dbba8 2472/* interval_tree.c */
6b2dbba8 2473void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2474 struct rb_root_cached *root);
9826a516
ML
2475void vma_interval_tree_insert_after(struct vm_area_struct *node,
2476 struct vm_area_struct *prev,
f808c13f 2477 struct rb_root_cached *root);
6b2dbba8 2478void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2479 struct rb_root_cached *root);
2480struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2481 unsigned long start, unsigned long last);
2482struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2483 unsigned long start, unsigned long last);
2484
2485#define vma_interval_tree_foreach(vma, root, start, last) \
2486 for (vma = vma_interval_tree_iter_first(root, start, last); \
2487 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2488
bf181b9f 2489void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2490 struct rb_root_cached *root);
bf181b9f 2491void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2492 struct rb_root_cached *root);
2493struct anon_vma_chain *
2494anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2495 unsigned long start, unsigned long last);
bf181b9f
ML
2496struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2497 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2498#ifdef CONFIG_DEBUG_VM_RB
2499void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2500#endif
bf181b9f
ML
2501
2502#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2503 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2504 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2505
1da177e4 2506/* mmap.c */
34b4e4aa 2507extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2508extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2509 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2510 struct vm_area_struct *expand);
2511static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2512 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2513{
2514 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2515}
1da177e4
LT
2516extern struct vm_area_struct *vma_merge(struct mm_struct *,
2517 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2518 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2519 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2520extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2521extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2522 unsigned long addr, int new_below);
2523extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2524 unsigned long addr, int new_below);
1da177e4
LT
2525extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2526extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2527 struct rb_node **, struct rb_node *);
a8fb5618 2528extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2529extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2530 unsigned long addr, unsigned long len, pgoff_t pgoff,
2531 bool *need_rmap_locks);
1da177e4 2532extern void exit_mmap(struct mm_struct *);
925d1c40 2533
9c599024
CG
2534static inline int check_data_rlimit(unsigned long rlim,
2535 unsigned long new,
2536 unsigned long start,
2537 unsigned long end_data,
2538 unsigned long start_data)
2539{
2540 if (rlim < RLIM_INFINITY) {
2541 if (((new - start) + (end_data - start_data)) > rlim)
2542 return -ENOSPC;
2543 }
2544
2545 return 0;
2546}
2547
7906d00c
AA
2548extern int mm_take_all_locks(struct mm_struct *mm);
2549extern void mm_drop_all_locks(struct mm_struct *mm);
2550
38646013
JS
2551extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2552extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2553extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2554
84638335
KK
2555extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2556extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2557
2eefd878
DS
2558extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2559 const struct vm_special_mapping *sm);
3935ed6a
SS
2560extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2561 unsigned long addr, unsigned long len,
a62c34bd
AL
2562 unsigned long flags,
2563 const struct vm_special_mapping *spec);
2564/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2565extern int install_special_mapping(struct mm_struct *mm,
2566 unsigned long addr, unsigned long len,
2567 unsigned long flags, struct page **pages);
1da177e4 2568
649775be
AG
2569unsigned long randomize_stack_top(unsigned long stack_top);
2570
1da177e4
LT
2571extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2572
0165ab44 2573extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2574 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2575 struct list_head *uf);
1fcfd8db 2576extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2577 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2578 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2579extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2580 struct list_head *uf, bool downgrade);
897ab3e0
MR
2581extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2582 struct list_head *uf);
0726b01e 2583extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2584
bebeb3d6
ML
2585#ifdef CONFIG_MMU
2586extern int __mm_populate(unsigned long addr, unsigned long len,
2587 int ignore_errors);
2588static inline void mm_populate(unsigned long addr, unsigned long len)
2589{
2590 /* Ignore errors */
2591 (void) __mm_populate(addr, len, 1);
2592}
2593#else
2594static inline void mm_populate(unsigned long addr, unsigned long len) {}
2595#endif
2596
e4eb1ff6 2597/* These take the mm semaphore themselves */
5d22fc25 2598extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2599extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2600extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2601extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2602 unsigned long, unsigned long,
2603 unsigned long, unsigned long);
1da177e4 2604
db4fbfb9
ML
2605struct vm_unmapped_area_info {
2606#define VM_UNMAPPED_AREA_TOPDOWN 1
2607 unsigned long flags;
2608 unsigned long length;
2609 unsigned long low_limit;
2610 unsigned long high_limit;
2611 unsigned long align_mask;
2612 unsigned long align_offset;
2613};
2614
baceaf1c 2615extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2616
85821aab 2617/* truncate.c */
1da177e4 2618extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2619extern void truncate_inode_pages_range(struct address_space *,
2620 loff_t lstart, loff_t lend);
91b0abe3 2621extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2622
2623/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2624extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2625extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2626 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2627extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2628
2629/* mm/page-writeback.c */
2b69c828 2630int __must_check write_one_page(struct page *page);
1cf6e7d8 2631void task_dirty_inc(struct task_struct *tsk);
1da177e4 2632
1be7107f 2633extern unsigned long stack_guard_gap;
d05f3169 2634/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2635extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2636
11192337 2637/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2638extern int expand_downwards(struct vm_area_struct *vma,
2639 unsigned long address);
8ca3eb08 2640#if VM_GROWSUP
46dea3d0 2641extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2642#else
fee7e49d 2643 #define expand_upwards(vma, address) (0)
9ab88515 2644#endif
1da177e4
LT
2645
2646/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2647extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2648extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2649 struct vm_area_struct **pprev);
2650
2651/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2652 NULL if none. Assume start_addr < end_addr. */
2653static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2654{
2655 struct vm_area_struct * vma = find_vma(mm,start_addr);
2656
2657 if (vma && end_addr <= vma->vm_start)
2658 vma = NULL;
2659 return vma;
2660}
2661
1be7107f
HD
2662static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2663{
2664 unsigned long vm_start = vma->vm_start;
2665
2666 if (vma->vm_flags & VM_GROWSDOWN) {
2667 vm_start -= stack_guard_gap;
2668 if (vm_start > vma->vm_start)
2669 vm_start = 0;
2670 }
2671 return vm_start;
2672}
2673
2674static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2675{
2676 unsigned long vm_end = vma->vm_end;
2677
2678 if (vma->vm_flags & VM_GROWSUP) {
2679 vm_end += stack_guard_gap;
2680 if (vm_end < vma->vm_end)
2681 vm_end = -PAGE_SIZE;
2682 }
2683 return vm_end;
2684}
2685
1da177e4
LT
2686static inline unsigned long vma_pages(struct vm_area_struct *vma)
2687{
2688 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2689}
2690
640708a2
PE
2691/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2692static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2693 unsigned long vm_start, unsigned long vm_end)
2694{
2695 struct vm_area_struct *vma = find_vma(mm, vm_start);
2696
2697 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2698 vma = NULL;
2699
2700 return vma;
2701}
2702
017b1660
MK
2703static inline bool range_in_vma(struct vm_area_struct *vma,
2704 unsigned long start, unsigned long end)
2705{
2706 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2707}
2708
bad849b3 2709#ifdef CONFIG_MMU
804af2cf 2710pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2711void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2712#else
2713static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2714{
2715 return __pgprot(0);
2716}
64e45507
PF
2717static inline void vma_set_page_prot(struct vm_area_struct *vma)
2718{
2719 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2720}
bad849b3
DH
2721#endif
2722
295992fb
CK
2723void vma_set_file(struct vm_area_struct *vma, struct file *file);
2724
5877231f 2725#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2726unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2727 unsigned long start, unsigned long end);
2728#endif
2729
deceb6cd 2730struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2731int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2732 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2733int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2734int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2735 struct page **pages, unsigned long *num);
a667d745
SJ
2736int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2737 unsigned long num);
2738int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2739 unsigned long num);
ae2b01f3 2740vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2741 unsigned long pfn);
f5e6d1d5
MW
2742vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2743 unsigned long pfn, pgprot_t pgprot);
5d747637 2744vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2745 pfn_t pfn);
574c5b3d
TH
2746vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2747 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2748vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2749 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2750int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2751
1c8f4220
SJ
2752static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2753 unsigned long addr, struct page *page)
2754{
2755 int err = vm_insert_page(vma, addr, page);
2756
2757 if (err == -ENOMEM)
2758 return VM_FAULT_OOM;
2759 if (err < 0 && err != -EBUSY)
2760 return VM_FAULT_SIGBUS;
2761
2762 return VM_FAULT_NOPAGE;
2763}
2764
f8f6ae5d
JG
2765#ifndef io_remap_pfn_range
2766static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2767 unsigned long addr, unsigned long pfn,
2768 unsigned long size, pgprot_t prot)
2769{
2770 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2771}
2772#endif
2773
d97baf94
SJ
2774static inline vm_fault_t vmf_error(int err)
2775{
2776 if (err == -ENOMEM)
2777 return VM_FAULT_OOM;
2778 return VM_FAULT_SIGBUS;
2779}
2780
df06b37f
KB
2781struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2782 unsigned int foll_flags);
240aadee 2783
deceb6cd
HD
2784#define FOLL_WRITE 0x01 /* check pte is writable */
2785#define FOLL_TOUCH 0x02 /* mark page accessed */
2786#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2787#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2788#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2789#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2790 * and return without waiting upon it */
84d33df2 2791#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2792#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2793#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2794#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2795#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2796#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2797#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2798#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2799#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2800#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2801#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2802#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2803#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2804#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2805
2806/*
eddb1c22
JH
2807 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2808 * other. Here is what they mean, and how to use them:
932f4a63
IW
2809 *
2810 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2811 * period _often_ under userspace control. This is in contrast to
2812 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2813 *
2814 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2815 * lifetime enforced by the filesystem and we need guarantees that longterm
2816 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2817 * the filesystem. Ideas for this coordination include revoking the longterm
2818 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2819 * added after the problem with filesystems was found FS DAX VMAs are
2820 * specifically failed. Filesystem pages are still subject to bugs and use of
2821 * FOLL_LONGTERM should be avoided on those pages.
2822 *
2823 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2824 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2825 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2826 * is due to an incompatibility with the FS DAX check and
eddb1c22 2827 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2828 *
eddb1c22
JH
2829 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2830 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2831 * FOLL_LONGTERM is specified.
eddb1c22
JH
2832 *
2833 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2834 * but an additional pin counting system) will be invoked. This is intended for
2835 * anything that gets a page reference and then touches page data (for example,
2836 * Direct IO). This lets the filesystem know that some non-file-system entity is
2837 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2838 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2839 * a call to unpin_user_page().
eddb1c22
JH
2840 *
2841 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2842 * and separate refcounting mechanisms, however, and that means that each has
2843 * its own acquire and release mechanisms:
2844 *
2845 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2846 *
f1f6a7dd 2847 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2848 *
2849 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2850 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2851 * calls applied to them, and that's perfectly OK. This is a constraint on the
2852 * callers, not on the pages.)
2853 *
2854 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2855 * directly by the caller. That's in order to help avoid mismatches when
2856 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2857 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2858 *
72ef5e52 2859 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2860 */
1da177e4 2861
2b740303 2862static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2863{
2864 if (vm_fault & VM_FAULT_OOM)
2865 return -ENOMEM;
2866 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2867 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2868 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2869 return -EFAULT;
2870 return 0;
2871}
2872
8b1e0f81 2873typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2874extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2875 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2876extern int apply_to_existing_page_range(struct mm_struct *mm,
2877 unsigned long address, unsigned long size,
2878 pte_fn_t fn, void *data);
aee16b3c 2879
04013513 2880extern void init_mem_debugging_and_hardening(void);
8823b1db 2881#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
2882extern void __kernel_poison_pages(struct page *page, int numpages);
2883extern void __kernel_unpoison_pages(struct page *page, int numpages);
2884extern bool _page_poisoning_enabled_early;
2885DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2886static inline bool page_poisoning_enabled(void)
2887{
2888 return _page_poisoning_enabled_early;
2889}
2890/*
2891 * For use in fast paths after init_mem_debugging() has run, or when a
2892 * false negative result is not harmful when called too early.
2893 */
2894static inline bool page_poisoning_enabled_static(void)
2895{
2896 return static_branch_unlikely(&_page_poisoning_enabled);
2897}
2898static inline void kernel_poison_pages(struct page *page, int numpages)
2899{
2900 if (page_poisoning_enabled_static())
2901 __kernel_poison_pages(page, numpages);
2902}
2903static inline void kernel_unpoison_pages(struct page *page, int numpages)
2904{
2905 if (page_poisoning_enabled_static())
2906 __kernel_unpoison_pages(page, numpages);
2907}
8823b1db
LA
2908#else
2909static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 2910static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 2911static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
2912static inline void kernel_poison_pages(struct page *page, int numpages) { }
2913static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
2914#endif
2915
6471384a 2916DECLARE_STATIC_KEY_FALSE(init_on_alloc);
6471384a
AP
2917static inline bool want_init_on_alloc(gfp_t flags)
2918{
04013513 2919 if (static_branch_unlikely(&init_on_alloc))
6471384a
AP
2920 return true;
2921 return flags & __GFP_ZERO;
2922}
2923
6471384a 2924DECLARE_STATIC_KEY_FALSE(init_on_free);
6471384a
AP
2925static inline bool want_init_on_free(void)
2926{
04013513 2927 return static_branch_unlikely(&init_on_free);
6471384a
AP
2928}
2929
8e57f8ac
VB
2930extern bool _debug_pagealloc_enabled_early;
2931DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2932
2933static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2934{
2935 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2936 _debug_pagealloc_enabled_early;
2937}
2938
2939/*
2940 * For use in fast paths after init_debug_pagealloc() has run, or when a
2941 * false negative result is not harmful when called too early.
2942 */
2943static inline bool debug_pagealloc_enabled_static(void)
031bc574 2944{
96a2b03f
VB
2945 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2946 return false;
2947
2948 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2949}
2950
5d6ad668 2951#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 2952/*
5d6ad668
MR
2953 * To support DEBUG_PAGEALLOC architecture must ensure that
2954 * __kernel_map_pages() never fails
c87cbc1f 2955 */
d6332692
RE
2956extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2957
77bc7fd6
MR
2958static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2959{
2960 if (debug_pagealloc_enabled_static())
2961 __kernel_map_pages(page, numpages, 1);
2962}
2963
2964static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
2965{
2966 if (debug_pagealloc_enabled_static())
2967 __kernel_map_pages(page, numpages, 0);
2968}
5d6ad668 2969#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
2970static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
2971static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 2972#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2973
a6c19dfe 2974#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2975extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2976extern int in_gate_area_no_mm(unsigned long addr);
2977extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2978#else
a6c19dfe
AL
2979static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2980{
2981 return NULL;
2982}
2983static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2984static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2985{
2986 return 0;
2987}
1da177e4
LT
2988#endif /* __HAVE_ARCH_GATE_AREA */
2989
44a70ade
MH
2990extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2991
146732ce
JT
2992#ifdef CONFIG_SYSCTL
2993extern int sysctl_drop_caches;
32927393
CH
2994int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2995 loff_t *);
146732ce
JT
2996#endif
2997
cb731d6c
VD
2998void drop_slab(void);
2999void drop_slab_node(int nid);
9d0243bc 3000
7a9166e3
LY
3001#ifndef CONFIG_MMU
3002#define randomize_va_space 0
3003#else
a62eaf15 3004extern int randomize_va_space;
7a9166e3 3005#endif
a62eaf15 3006
045e72ac 3007const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3008#ifdef CONFIG_MMU
03252919 3009void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3010#else
3011static inline void print_vma_addr(char *prefix, unsigned long rip)
3012{
3013}
3014#endif
e6e5494c 3015
35fd1eb1 3016void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
3017struct page * __populate_section_memmap(unsigned long pfn,
3018 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3019pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3020p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3021pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3022pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
3023pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3024 struct vmem_altmap *altmap);
8f6aac41 3025void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3026struct vmem_altmap;
56993b4e
AK
3027void *vmemmap_alloc_block_buf(unsigned long size, int node,
3028 struct vmem_altmap *altmap);
8f6aac41 3029void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3030int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3031 int node, struct vmem_altmap *altmap);
7b73d978
CH
3032int vmemmap_populate(unsigned long start, unsigned long end, int node,
3033 struct vmem_altmap *altmap);
c2b91e2e 3034void vmemmap_populate_print_last(void);
0197518c 3035#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3036void vmemmap_free(unsigned long start, unsigned long end,
3037 struct vmem_altmap *altmap);
0197518c 3038#endif
46723bfa 3039void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3040 unsigned long nr_pages);
6a46079c 3041
82ba011b
AK
3042enum mf_flags {
3043 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3044 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3045 MF_MUST_KILL = 1 << 2,
cf870c70 3046 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3047};
83b57531
EB
3048extern int memory_failure(unsigned long pfn, int flags);
3049extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3050extern void memory_failure_queue_kick(int cpu);
847ce401 3051extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3052extern int sysctl_memory_failure_early_kill;
3053extern int sysctl_memory_failure_recovery;
facb6011 3054extern void shake_page(struct page *p, int access);
5844a486 3055extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3056extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3057
cc637b17
XX
3058
3059/*
3060 * Error handlers for various types of pages.
3061 */
cc3e2af4 3062enum mf_result {
cc637b17
XX
3063 MF_IGNORED, /* Error: cannot be handled */
3064 MF_FAILED, /* Error: handling failed */
3065 MF_DELAYED, /* Will be handled later */
3066 MF_RECOVERED, /* Successfully recovered */
3067};
3068
3069enum mf_action_page_type {
3070 MF_MSG_KERNEL,
3071 MF_MSG_KERNEL_HIGH_ORDER,
3072 MF_MSG_SLAB,
3073 MF_MSG_DIFFERENT_COMPOUND,
3074 MF_MSG_POISONED_HUGE,
3075 MF_MSG_HUGE,
3076 MF_MSG_FREE_HUGE,
31286a84 3077 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3078 MF_MSG_UNMAP_FAILED,
3079 MF_MSG_DIRTY_SWAPCACHE,
3080 MF_MSG_CLEAN_SWAPCACHE,
3081 MF_MSG_DIRTY_MLOCKED_LRU,
3082 MF_MSG_CLEAN_MLOCKED_LRU,
3083 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3084 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3085 MF_MSG_DIRTY_LRU,
3086 MF_MSG_CLEAN_LRU,
3087 MF_MSG_TRUNCATED_LRU,
3088 MF_MSG_BUDDY,
3089 MF_MSG_BUDDY_2ND,
6100e34b 3090 MF_MSG_DAX,
5d1fd5dc 3091 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3092 MF_MSG_UNKNOWN,
3093};
3094
47ad8475
AA
3095#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3096extern void clear_huge_page(struct page *page,
c79b57e4 3097 unsigned long addr_hint,
47ad8475
AA
3098 unsigned int pages_per_huge_page);
3099extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3100 unsigned long addr_hint,
3101 struct vm_area_struct *vma,
47ad8475 3102 unsigned int pages_per_huge_page);
fa4d75c1
MK
3103extern long copy_huge_page_from_user(struct page *dst_page,
3104 const void __user *usr_src,
810a56b9
MK
3105 unsigned int pages_per_huge_page,
3106 bool allow_pagefault);
2484ca9b
THV
3107
3108/**
3109 * vma_is_special_huge - Are transhuge page-table entries considered special?
3110 * @vma: Pointer to the struct vm_area_struct to consider
3111 *
3112 * Whether transhuge page-table entries are considered "special" following
3113 * the definition in vm_normal_page().
3114 *
3115 * Return: true if transhuge page-table entries should be considered special,
3116 * false otherwise.
3117 */
3118static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3119{
3120 return vma_is_dax(vma) || (vma->vm_file &&
3121 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3122}
3123
47ad8475
AA
3124#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3125
c0a32fc5
SG
3126#ifdef CONFIG_DEBUG_PAGEALLOC
3127extern unsigned int _debug_guardpage_minorder;
96a2b03f 3128DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3129
3130static inline unsigned int debug_guardpage_minorder(void)
3131{
3132 return _debug_guardpage_minorder;
3133}
3134
e30825f1
JK
3135static inline bool debug_guardpage_enabled(void)
3136{
96a2b03f 3137 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3138}
3139
c0a32fc5
SG
3140static inline bool page_is_guard(struct page *page)
3141{
e30825f1
JK
3142 if (!debug_guardpage_enabled())
3143 return false;
3144
3972f6bb 3145 return PageGuard(page);
c0a32fc5
SG
3146}
3147#else
3148static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3149static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3150static inline bool page_is_guard(struct page *page) { return false; }
3151#endif /* CONFIG_DEBUG_PAGEALLOC */
3152
f9872caf
CS
3153#if MAX_NUMNODES > 1
3154void __init setup_nr_node_ids(void);
3155#else
3156static inline void setup_nr_node_ids(void) {}
3157#endif
3158
010c164a
SL
3159extern int memcmp_pages(struct page *page1, struct page *page2);
3160
3161static inline int pages_identical(struct page *page1, struct page *page2)
3162{
3163 return !memcmp_pages(page1, page2);
3164}
3165
c5acad84
TH
3166#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3167unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3168 pgoff_t first_index, pgoff_t nr,
3169 pgoff_t bitmap_pgoff,
3170 unsigned long *bitmap,
3171 pgoff_t *start,
3172 pgoff_t *end);
3173
3174unsigned long wp_shared_mapping_range(struct address_space *mapping,
3175 pgoff_t first_index, pgoff_t nr);
3176#endif
3177
2374c09b
CH
3178extern int sysctl_nr_trim_pages;
3179
1da177e4
LT
3180#endif /* __KERNEL__ */
3181#endif /* _LINUX_MM_H */