mm, page_poison: use static key more efficiently
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
9740ca4e 18#include <linux/mmap_lock.h>
08677214 19#include <linux/range.h>
c6f6b596 20#include <linux/pfn.h>
3565fce3 21#include <linux/percpu-refcount.h>
e9da73d6 22#include <linux/bit_spinlock.h>
b0d40c92 23#include <linux/shrinker.h>
9c599024 24#include <linux/resource.h>
e30825f1 25#include <linux/page_ext.h>
8025e5dd 26#include <linux/err.h>
41901567 27#include <linux/page-flags.h>
fe896d18 28#include <linux/page_ref.h>
7b2d55d2 29#include <linux/memremap.h>
3b3b1a29 30#include <linux/overflow.h>
b5420237 31#include <linux/sizes.h>
7969f226 32#include <linux/sched.h>
65fddcfc 33#include <linux/pgtable.h>
1da177e4
LT
34
35struct mempolicy;
36struct anon_vma;
bf181b9f 37struct anon_vma_chain;
4e950f6f 38struct file_ra_state;
e8edc6e0 39struct user_struct;
4e950f6f 40struct writeback_control;
682aa8e1 41struct bdi_writeback;
bce617ed 42struct pt_regs;
1da177e4 43
5ef64cc8
LT
44extern int sysctl_page_lock_unfairness;
45
597b7305
MH
46void init_mm_internals(void);
47
fccc9987 48#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 49extern unsigned long max_mapnr;
fccc9987
JL
50
51static inline void set_max_mapnr(unsigned long limit)
52{
53 max_mapnr = limit;
54}
55#else
56static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
57#endif
58
ca79b0c2
AK
59extern atomic_long_t _totalram_pages;
60static inline unsigned long totalram_pages(void)
61{
62 return (unsigned long)atomic_long_read(&_totalram_pages);
63}
64
65static inline void totalram_pages_inc(void)
66{
67 atomic_long_inc(&_totalram_pages);
68}
69
70static inline void totalram_pages_dec(void)
71{
72 atomic_long_dec(&_totalram_pages);
73}
74
75static inline void totalram_pages_add(long count)
76{
77 atomic_long_add(count, &_totalram_pages);
78}
79
1da177e4 80extern void * high_memory;
1da177e4
LT
81extern int page_cluster;
82
83#ifdef CONFIG_SYSCTL
84extern int sysctl_legacy_va_layout;
85#else
86#define sysctl_legacy_va_layout 0
87#endif
88
d07e2259
DC
89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90extern const int mmap_rnd_bits_min;
91extern const int mmap_rnd_bits_max;
92extern int mmap_rnd_bits __read_mostly;
93#endif
94#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95extern const int mmap_rnd_compat_bits_min;
96extern const int mmap_rnd_compat_bits_max;
97extern int mmap_rnd_compat_bits __read_mostly;
98#endif
99
1da177e4 100#include <asm/page.h>
1da177e4 101#include <asm/processor.h>
1da177e4 102
d9344522
AK
103/*
104 * Architectures that support memory tagging (assigning tags to memory regions,
105 * embedding these tags into addresses that point to these memory regions, and
106 * checking that the memory and the pointer tags match on memory accesses)
107 * redefine this macro to strip tags from pointers.
108 * It's defined as noop for arcitectures that don't support memory tagging.
109 */
110#ifndef untagged_addr
111#define untagged_addr(addr) (addr)
112#endif
113
79442ed1
TC
114#ifndef __pa_symbol
115#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
116#endif
117
1dff8083
AB
118#ifndef page_to_virt
119#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
120#endif
121
568c5fe5
LA
122#ifndef lm_alias
123#define lm_alias(x) __va(__pa_symbol(x))
124#endif
125
593befa6
DD
126/*
127 * To prevent common memory management code establishing
128 * a zero page mapping on a read fault.
129 * This macro should be defined within <asm/pgtable.h>.
130 * s390 does this to prevent multiplexing of hardware bits
131 * related to the physical page in case of virtualization.
132 */
133#ifndef mm_forbids_zeropage
134#define mm_forbids_zeropage(X) (0)
135#endif
136
a4a3ede2
PT
137/*
138 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
139 * If an architecture decides to implement their own version of
140 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
141 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 142 */
5470dea4
AD
143#if BITS_PER_LONG == 64
144/* This function must be updated when the size of struct page grows above 80
145 * or reduces below 56. The idea that compiler optimizes out switch()
146 * statement, and only leaves move/store instructions. Also the compiler can
147 * combine write statments if they are both assignments and can be reordered,
148 * this can result in several of the writes here being dropped.
149 */
150#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
151static inline void __mm_zero_struct_page(struct page *page)
152{
153 unsigned long *_pp = (void *)page;
154
155 /* Check that struct page is either 56, 64, 72, or 80 bytes */
156 BUILD_BUG_ON(sizeof(struct page) & 7);
157 BUILD_BUG_ON(sizeof(struct page) < 56);
158 BUILD_BUG_ON(sizeof(struct page) > 80);
159
160 switch (sizeof(struct page)) {
161 case 80:
df561f66
GS
162 _pp[9] = 0;
163 fallthrough;
5470dea4 164 case 72:
df561f66
GS
165 _pp[8] = 0;
166 fallthrough;
5470dea4 167 case 64:
df561f66
GS
168 _pp[7] = 0;
169 fallthrough;
5470dea4
AD
170 case 56:
171 _pp[6] = 0;
172 _pp[5] = 0;
173 _pp[4] = 0;
174 _pp[3] = 0;
175 _pp[2] = 0;
176 _pp[1] = 0;
177 _pp[0] = 0;
178 }
179}
180#else
a4a3ede2
PT
181#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
182#endif
183
ea606cf5
AR
184/*
185 * Default maximum number of active map areas, this limits the number of vmas
186 * per mm struct. Users can overwrite this number by sysctl but there is a
187 * problem.
188 *
189 * When a program's coredump is generated as ELF format, a section is created
190 * per a vma. In ELF, the number of sections is represented in unsigned short.
191 * This means the number of sections should be smaller than 65535 at coredump.
192 * Because the kernel adds some informative sections to a image of program at
193 * generating coredump, we need some margin. The number of extra sections is
194 * 1-3 now and depends on arch. We use "5" as safe margin, here.
195 *
196 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
197 * not a hard limit any more. Although some userspace tools can be surprised by
198 * that.
199 */
200#define MAPCOUNT_ELF_CORE_MARGIN (5)
201#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
202
203extern int sysctl_max_map_count;
204
c9b1d098 205extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 206extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 207
49f0ce5f
JM
208extern int sysctl_overcommit_memory;
209extern int sysctl_overcommit_ratio;
210extern unsigned long sysctl_overcommit_kbytes;
211
32927393
CH
212int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
213 loff_t *);
214int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
215 loff_t *);
56f3547b
FT
216int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
217 loff_t *);
49f0ce5f 218
1da177e4
LT
219#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
220
27ac792c
AR
221/* to align the pointer to the (next) page boundary */
222#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223
0fa73b86 224/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 225#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 226
f86196ea
NB
227#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
228
1da177e4
LT
229/*
230 * Linux kernel virtual memory manager primitives.
231 * The idea being to have a "virtual" mm in the same way
232 * we have a virtual fs - giving a cleaner interface to the
233 * mm details, and allowing different kinds of memory mappings
234 * (from shared memory to executable loading to arbitrary
235 * mmap() functions).
236 */
237
490fc053 238struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
239struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
240void vm_area_free(struct vm_area_struct *);
c43692e8 241
1da177e4 242#ifndef CONFIG_MMU
8feae131
DH
243extern struct rb_root nommu_region_tree;
244extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
245
246extern unsigned int kobjsize(const void *objp);
247#endif
248
249/*
605d9288 250 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 251 * When changing, update also include/trace/events/mmflags.h
1da177e4 252 */
cc2383ec
KK
253#define VM_NONE 0x00000000
254
1da177e4
LT
255#define VM_READ 0x00000001 /* currently active flags */
256#define VM_WRITE 0x00000002
257#define VM_EXEC 0x00000004
258#define VM_SHARED 0x00000008
259
7e2cff42 260/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
261#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
262#define VM_MAYWRITE 0x00000020
263#define VM_MAYEXEC 0x00000040
264#define VM_MAYSHARE 0x00000080
265
266#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 267#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 268#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 269#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 270#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 271
1da177e4
LT
272#define VM_LOCKED 0x00002000
273#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
274
275 /* Used by sys_madvise() */
276#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
277#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
278
279#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
280#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 281#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 282#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 283#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 284#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 285#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 286#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 287#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 288#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 289
d9104d1c
CG
290#ifdef CONFIG_MEM_SOFT_DIRTY
291# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
292#else
293# define VM_SOFTDIRTY 0
294#endif
295
b379d790 296#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
297#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
298#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 299#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 300
63c17fb8
DH
301#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
302#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
303#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
304#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
305#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 306#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
307#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
308#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
309#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
310#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 311#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
312#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
313
5212213a 314#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
315# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
316# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 317# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
318# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
319# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
320#ifdef CONFIG_PPC
321# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
322#else
323# define VM_PKEY_BIT4 0
8f62c883 324#endif
5212213a
RP
325#endif /* CONFIG_ARCH_HAS_PKEYS */
326
327#if defined(CONFIG_X86)
328# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
329#elif defined(CONFIG_PPC)
330# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
331#elif defined(CONFIG_PARISC)
332# define VM_GROWSUP VM_ARCH_1
333#elif defined(CONFIG_IA64)
334# define VM_GROWSUP VM_ARCH_1
74a04967
KA
335#elif defined(CONFIG_SPARC64)
336# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
337# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
338#elif defined(CONFIG_ARM64)
339# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
340# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
341#elif !defined(CONFIG_MMU)
342# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
343#endif
344
9f341931
CM
345#if defined(CONFIG_ARM64_MTE)
346# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
347# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
348#else
349# define VM_MTE VM_NONE
350# define VM_MTE_ALLOWED VM_NONE
351#endif
352
cc2383ec
KK
353#ifndef VM_GROWSUP
354# define VM_GROWSUP VM_NONE
355#endif
356
a8bef8ff
MG
357/* Bits set in the VMA until the stack is in its final location */
358#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
359
c62da0c3
AK
360#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
361
362/* Common data flag combinations */
363#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
364 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
365#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
366 VM_MAYWRITE | VM_MAYEXEC)
367#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
368 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
369
370#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
371#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
372#endif
373
1da177e4
LT
374#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
375#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
376#endif
377
378#ifdef CONFIG_STACK_GROWSUP
30bdbb78 379#define VM_STACK VM_GROWSUP
1da177e4 380#else
30bdbb78 381#define VM_STACK VM_GROWSDOWN
1da177e4
LT
382#endif
383
30bdbb78
KK
384#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
385
6cb4d9a2
AK
386/* VMA basic access permission flags */
387#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
388
389
b291f000 390/*
78f11a25 391 * Special vmas that are non-mergable, non-mlock()able.
b291f000 392 */
9050d7eb 393#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 394
b4443772
AK
395/* This mask prevents VMA from being scanned with khugepaged */
396#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
397
a0715cc2
AT
398/* This mask defines which mm->def_flags a process can inherit its parent */
399#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
400
de60f5f1
EM
401/* This mask is used to clear all the VMA flags used by mlock */
402#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
403
2c2d57b5
KA
404/* Arch-specific flags to clear when updating VM flags on protection change */
405#ifndef VM_ARCH_CLEAR
406# define VM_ARCH_CLEAR VM_NONE
407#endif
408#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
409
1da177e4
LT
410/*
411 * mapping from the currently active vm_flags protection bits (the
412 * low four bits) to a page protection mask..
413 */
414extern pgprot_t protection_map[16];
415
c270a7ee
PX
416/**
417 * Fault flag definitions.
418 *
419 * @FAULT_FLAG_WRITE: Fault was a write fault.
420 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
421 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
c1e8d7c6 422 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
c270a7ee
PX
423 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
424 * @FAULT_FLAG_TRIED: The fault has been tried once.
425 * @FAULT_FLAG_USER: The fault originated in userspace.
426 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
427 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
428 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
429 *
430 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
431 * whether we would allow page faults to retry by specifying these two
432 * fault flags correctly. Currently there can be three legal combinations:
433 *
434 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
435 * this is the first try
436 *
437 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
438 * we've already tried at least once
439 *
440 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
441 *
442 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
443 * be used. Note that page faults can be allowed to retry for multiple times,
444 * in which case we'll have an initial fault with flags (a) then later on
445 * continuous faults with flags (b). We should always try to detect pending
446 * signals before a retry to make sure the continuous page faults can still be
447 * interrupted if necessary.
c270a7ee
PX
448 */
449#define FAULT_FLAG_WRITE 0x01
450#define FAULT_FLAG_MKWRITE 0x02
451#define FAULT_FLAG_ALLOW_RETRY 0x04
452#define FAULT_FLAG_RETRY_NOWAIT 0x08
453#define FAULT_FLAG_KILLABLE 0x10
454#define FAULT_FLAG_TRIED 0x20
455#define FAULT_FLAG_USER 0x40
456#define FAULT_FLAG_REMOTE 0x80
457#define FAULT_FLAG_INSTRUCTION 0x100
458#define FAULT_FLAG_INTERRUPTIBLE 0x200
d0217ac0 459
dde16072
PX
460/*
461 * The default fault flags that should be used by most of the
462 * arch-specific page fault handlers.
463 */
464#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
465 FAULT_FLAG_KILLABLE | \
466 FAULT_FLAG_INTERRUPTIBLE)
dde16072 467
4064b982
PX
468/**
469 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
470 *
471 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 472 * the mmap_lock for too long a time when waiting for another condition
4064b982 473 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
474 * mmap_lock in the first round to avoid potential starvation of other
475 * processes that would also want the mmap_lock.
4064b982
PX
476 *
477 * Return: true if the page fault allows retry and this is the first
478 * attempt of the fault handling; false otherwise.
479 */
480static inline bool fault_flag_allow_retry_first(unsigned int flags)
481{
482 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
483 (!(flags & FAULT_FLAG_TRIED));
484}
485
282a8e03
RZ
486#define FAULT_FLAG_TRACE \
487 { FAULT_FLAG_WRITE, "WRITE" }, \
488 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
489 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
490 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
491 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
492 { FAULT_FLAG_TRIED, "TRIED" }, \
493 { FAULT_FLAG_USER, "USER" }, \
494 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
495 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
496 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 497
54cb8821 498/*
11192337 499 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
500 * ->fault function. The vma's ->fault is responsible for returning a bitmask
501 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 502 *
c20cd45e
MH
503 * MM layer fills up gfp_mask for page allocations but fault handler might
504 * alter it if its implementation requires a different allocation context.
505 *
9b4bdd2f 506 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 507 */
d0217ac0 508struct vm_fault {
82b0f8c3 509 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 510 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 511 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 512 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 513 unsigned long address; /* Faulting virtual address */
82b0f8c3 514 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 515 * the 'address' */
a2d58167
DJ
516 pud_t *pud; /* Pointer to pud entry matching
517 * the 'address'
518 */
2994302b 519 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 520
3917048d 521 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 522 struct page *page; /* ->fault handlers should return a
83c54070 523 * page here, unless VM_FAULT_NOPAGE
d0217ac0 524 * is set (which is also implied by
83c54070 525 * VM_FAULT_ERROR).
d0217ac0 526 */
82b0f8c3 527 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
528 pte_t *pte; /* Pointer to pte entry matching
529 * the 'address'. NULL if the page
530 * table hasn't been allocated.
531 */
532 spinlock_t *ptl; /* Page table lock.
533 * Protects pte page table if 'pte'
534 * is not NULL, otherwise pmd.
535 */
7267ec00
KS
536 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
537 * vm_ops->map_pages() calls
538 * alloc_set_pte() from atomic context.
539 * do_fault_around() pre-allocates
540 * page table to avoid allocation from
541 * atomic context.
542 */
54cb8821 543};
1da177e4 544
c791ace1
DJ
545/* page entry size for vm->huge_fault() */
546enum page_entry_size {
547 PE_SIZE_PTE = 0,
548 PE_SIZE_PMD,
549 PE_SIZE_PUD,
550};
551
1da177e4
LT
552/*
553 * These are the virtual MM functions - opening of an area, closing and
554 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 555 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
556 */
557struct vm_operations_struct {
558 void (*open)(struct vm_area_struct * area);
559 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
560 /* Called any time before splitting to check if it's allowed */
561 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
cd544fd1 562 int (*mremap)(struct vm_area_struct *area, unsigned long flags);
1c8f4220
SJ
563 vm_fault_t (*fault)(struct vm_fault *vmf);
564 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
565 enum page_entry_size pe_size);
82b0f8c3 566 void (*map_pages)(struct vm_fault *vmf,
bae473a4 567 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 568 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
569
570 /* notification that a previously read-only page is about to become
571 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 572 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 573
dd906184 574 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 575 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 576
28b2ee20
RR
577 /* called by access_process_vm when get_user_pages() fails, typically
578 * for use by special VMAs that can switch between memory and hardware
579 */
580 int (*access)(struct vm_area_struct *vma, unsigned long addr,
581 void *buf, int len, int write);
78d683e8
AL
582
583 /* Called by the /proc/PID/maps code to ask the vma whether it
584 * has a special name. Returning non-NULL will also cause this
585 * vma to be dumped unconditionally. */
586 const char *(*name)(struct vm_area_struct *vma);
587
1da177e4 588#ifdef CONFIG_NUMA
a6020ed7
LS
589 /*
590 * set_policy() op must add a reference to any non-NULL @new mempolicy
591 * to hold the policy upon return. Caller should pass NULL @new to
592 * remove a policy and fall back to surrounding context--i.e. do not
593 * install a MPOL_DEFAULT policy, nor the task or system default
594 * mempolicy.
595 */
1da177e4 596 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
597
598 /*
599 * get_policy() op must add reference [mpol_get()] to any policy at
600 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
601 * in mm/mempolicy.c will do this automatically.
602 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 603 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
604 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
605 * must return NULL--i.e., do not "fallback" to task or system default
606 * policy.
607 */
1da177e4
LT
608 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
609 unsigned long addr);
610#endif
667a0a06
DV
611 /*
612 * Called by vm_normal_page() for special PTEs to find the
613 * page for @addr. This is useful if the default behavior
614 * (using pte_page()) would not find the correct page.
615 */
616 struct page *(*find_special_page)(struct vm_area_struct *vma,
617 unsigned long addr);
1da177e4
LT
618};
619
027232da
KS
620static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
621{
bfd40eaf
KS
622 static const struct vm_operations_struct dummy_vm_ops = {};
623
a670468f 624 memset(vma, 0, sizeof(*vma));
027232da 625 vma->vm_mm = mm;
bfd40eaf 626 vma->vm_ops = &dummy_vm_ops;
027232da
KS
627 INIT_LIST_HEAD(&vma->anon_vma_chain);
628}
629
bfd40eaf
KS
630static inline void vma_set_anonymous(struct vm_area_struct *vma)
631{
632 vma->vm_ops = NULL;
633}
634
43675e6f
YS
635static inline bool vma_is_anonymous(struct vm_area_struct *vma)
636{
637 return !vma->vm_ops;
638}
639
222100ee
AK
640static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
641{
642 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
643
644 if (!maybe_stack)
645 return false;
646
647 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
648 VM_STACK_INCOMPLETE_SETUP)
649 return true;
650
651 return false;
652}
653
7969f226
AK
654static inline bool vma_is_foreign(struct vm_area_struct *vma)
655{
656 if (!current->mm)
657 return true;
658
659 if (current->mm != vma->vm_mm)
660 return true;
661
662 return false;
663}
3122e80e
AK
664
665static inline bool vma_is_accessible(struct vm_area_struct *vma)
666{
6cb4d9a2 667 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
668}
669
43675e6f
YS
670#ifdef CONFIG_SHMEM
671/*
672 * The vma_is_shmem is not inline because it is used only by slow
673 * paths in userfault.
674 */
675bool vma_is_shmem(struct vm_area_struct *vma);
676#else
677static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
678#endif
679
680int vma_is_stack_for_current(struct vm_area_struct *vma);
681
8b11ec1b
LT
682/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
683#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
684
1da177e4
LT
685struct mmu_gather;
686struct inode;
687
71e3aac0 688#include <linux/huge_mm.h>
1da177e4
LT
689
690/*
691 * Methods to modify the page usage count.
692 *
693 * What counts for a page usage:
694 * - cache mapping (page->mapping)
695 * - private data (page->private)
696 * - page mapped in a task's page tables, each mapping
697 * is counted separately
698 *
699 * Also, many kernel routines increase the page count before a critical
700 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
701 */
702
703/*
da6052f7 704 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 705 */
7c8ee9a8
NP
706static inline int put_page_testzero(struct page *page)
707{
fe896d18
JK
708 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
709 return page_ref_dec_and_test(page);
7c8ee9a8 710}
1da177e4
LT
711
712/*
7c8ee9a8
NP
713 * Try to grab a ref unless the page has a refcount of zero, return false if
714 * that is the case.
8e0861fa
AK
715 * This can be called when MMU is off so it must not access
716 * any of the virtual mappings.
1da177e4 717 */
7c8ee9a8
NP
718static inline int get_page_unless_zero(struct page *page)
719{
fe896d18 720 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 721}
1da177e4 722
53df8fdc 723extern int page_is_ram(unsigned long pfn);
124fe20d
DW
724
725enum {
726 REGION_INTERSECTS,
727 REGION_DISJOINT,
728 REGION_MIXED,
729};
730
1c29f25b
TK
731int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
732 unsigned long desc);
53df8fdc 733
48667e7a 734/* Support for virtually mapped pages */
b3bdda02
CL
735struct page *vmalloc_to_page(const void *addr);
736unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 737
0738c4bb
PM
738/*
739 * Determine if an address is within the vmalloc range
740 *
741 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
742 * is no special casing required.
743 */
9bd3bb67
AK
744
745#ifndef is_ioremap_addr
746#define is_ioremap_addr(x) is_vmalloc_addr(x)
747#endif
748
81ac3ad9 749#ifdef CONFIG_MMU
186525bd 750extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
751extern int is_vmalloc_or_module_addr(const void *x);
752#else
186525bd
IM
753static inline bool is_vmalloc_addr(const void *x)
754{
755 return false;
756}
934831d0 757static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
758{
759 return 0;
760}
761#endif
9e2779fa 762
a7c3e901
MH
763extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
764static inline void *kvmalloc(size_t size, gfp_t flags)
765{
766 return kvmalloc_node(size, flags, NUMA_NO_NODE);
767}
768static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
769{
770 return kvmalloc_node(size, flags | __GFP_ZERO, node);
771}
772static inline void *kvzalloc(size_t size, gfp_t flags)
773{
774 return kvmalloc(size, flags | __GFP_ZERO);
775}
776
752ade68
MH
777static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
778{
3b3b1a29
KC
779 size_t bytes;
780
781 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
782 return NULL;
783
3b3b1a29 784 return kvmalloc(bytes, flags);
752ade68
MH
785}
786
1c542f38
KC
787static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
788{
789 return kvmalloc_array(n, size, flags | __GFP_ZERO);
790}
791
39f1f78d 792extern void kvfree(const void *addr);
d4eaa283 793extern void kvfree_sensitive(const void *addr, size_t len);
39f1f78d 794
bac3cf4d 795static inline int head_compound_mapcount(struct page *head)
6dc5ea16
JH
796{
797 return atomic_read(compound_mapcount_ptr(head)) + 1;
798}
799
6988f31d
KK
800/*
801 * Mapcount of compound page as a whole, does not include mapped sub-pages.
802 *
803 * Must be called only for compound pages or any their tail sub-pages.
804 */
53f9263b
KS
805static inline int compound_mapcount(struct page *page)
806{
5f527c2b 807 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 808 page = compound_head(page);
bac3cf4d 809 return head_compound_mapcount(page);
53f9263b
KS
810}
811
70b50f94
AA
812/*
813 * The atomic page->_mapcount, starts from -1: so that transitions
814 * both from it and to it can be tracked, using atomic_inc_and_test
815 * and atomic_add_negative(-1).
816 */
22b751c3 817static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
818{
819 atomic_set(&(page)->_mapcount, -1);
820}
821
b20ce5e0
KS
822int __page_mapcount(struct page *page);
823
6988f31d
KK
824/*
825 * Mapcount of 0-order page; when compound sub-page, includes
826 * compound_mapcount().
827 *
828 * Result is undefined for pages which cannot be mapped into userspace.
829 * For example SLAB or special types of pages. See function page_has_type().
830 * They use this place in struct page differently.
831 */
70b50f94
AA
832static inline int page_mapcount(struct page *page)
833{
b20ce5e0
KS
834 if (unlikely(PageCompound(page)))
835 return __page_mapcount(page);
836 return atomic_read(&page->_mapcount) + 1;
837}
838
839#ifdef CONFIG_TRANSPARENT_HUGEPAGE
840int total_mapcount(struct page *page);
6d0a07ed 841int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
842#else
843static inline int total_mapcount(struct page *page)
844{
845 return page_mapcount(page);
70b50f94 846}
6d0a07ed
AA
847static inline int page_trans_huge_mapcount(struct page *page,
848 int *total_mapcount)
849{
850 int mapcount = page_mapcount(page);
851 if (total_mapcount)
852 *total_mapcount = mapcount;
853 return mapcount;
854}
b20ce5e0 855#endif
70b50f94 856
b49af68f
CL
857static inline struct page *virt_to_head_page(const void *x)
858{
859 struct page *page = virt_to_page(x);
ccaafd7f 860
1d798ca3 861 return compound_head(page);
b49af68f
CL
862}
863
ddc58f27
KS
864void __put_page(struct page *page);
865
1d7ea732 866void put_pages_list(struct list_head *pages);
1da177e4 867
8dfcc9ba 868void split_page(struct page *page, unsigned int order);
8dfcc9ba 869
33f2ef89
AW
870/*
871 * Compound pages have a destructor function. Provide a
872 * prototype for that function and accessor functions.
f1e61557 873 * These are _only_ valid on the head of a compound page.
33f2ef89 874 */
f1e61557
KS
875typedef void compound_page_dtor(struct page *);
876
877/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
878enum compound_dtor_id {
879 NULL_COMPOUND_DTOR,
880 COMPOUND_PAGE_DTOR,
881#ifdef CONFIG_HUGETLB_PAGE
882 HUGETLB_PAGE_DTOR,
9a982250
KS
883#endif
884#ifdef CONFIG_TRANSPARENT_HUGEPAGE
885 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
886#endif
887 NR_COMPOUND_DTORS,
888};
ae70eddd 889extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
890
891static inline void set_compound_page_dtor(struct page *page,
f1e61557 892 enum compound_dtor_id compound_dtor)
33f2ef89 893{
f1e61557
KS
894 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
895 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
896}
897
ff45fc3c 898static inline void destroy_compound_page(struct page *page)
33f2ef89 899{
f1e61557 900 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 901 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
902}
903
d00181b9 904static inline unsigned int compound_order(struct page *page)
d85f3385 905{
6d777953 906 if (!PageHead(page))
d85f3385 907 return 0;
e4b294c2 908 return page[1].compound_order;
d85f3385
CL
909}
910
47e29d32
JH
911static inline bool hpage_pincount_available(struct page *page)
912{
913 /*
914 * Can the page->hpage_pinned_refcount field be used? That field is in
915 * the 3rd page of the compound page, so the smallest (2-page) compound
916 * pages cannot support it.
917 */
918 page = compound_head(page);
919 return PageCompound(page) && compound_order(page) > 1;
920}
921
bac3cf4d 922static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
923{
924 return atomic_read(compound_pincount_ptr(head));
925}
926
47e29d32
JH
927static inline int compound_pincount(struct page *page)
928{
929 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
930 page = compound_head(page);
bac3cf4d 931 return head_compound_pincount(page);
47e29d32
JH
932}
933
f1e61557 934static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 935{
e4b294c2 936 page[1].compound_order = order;
1378a5ee 937 page[1].compound_nr = 1U << order;
d85f3385
CL
938}
939
d8c6546b
MWO
940/* Returns the number of pages in this potentially compound page. */
941static inline unsigned long compound_nr(struct page *page)
942{
1378a5ee
MWO
943 if (!PageHead(page))
944 return 1;
945 return page[1].compound_nr;
d8c6546b
MWO
946}
947
a50b854e
MWO
948/* Returns the number of bytes in this potentially compound page. */
949static inline unsigned long page_size(struct page *page)
950{
951 return PAGE_SIZE << compound_order(page);
952}
953
94ad9338
MWO
954/* Returns the number of bits needed for the number of bytes in a page */
955static inline unsigned int page_shift(struct page *page)
956{
957 return PAGE_SHIFT + compound_order(page);
958}
959
9a982250
KS
960void free_compound_page(struct page *page);
961
3dece370 962#ifdef CONFIG_MMU
14fd403f
AA
963/*
964 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
965 * servicing faults for write access. In the normal case, do always want
966 * pte_mkwrite. But get_user_pages can cause write faults for mappings
967 * that do not have writing enabled, when used by access_process_vm.
968 */
969static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
970{
971 if (likely(vma->vm_flags & VM_WRITE))
972 pte = pte_mkwrite(pte);
973 return pte;
974}
8c6e50b0 975
9d82c694 976vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
2b740303
SJ
977vm_fault_t finish_fault(struct vm_fault *vmf);
978vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 979#endif
14fd403f 980
1da177e4
LT
981/*
982 * Multiple processes may "see" the same page. E.g. for untouched
983 * mappings of /dev/null, all processes see the same page full of
984 * zeroes, and text pages of executables and shared libraries have
985 * only one copy in memory, at most, normally.
986 *
987 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
988 * page_count() == 0 means the page is free. page->lru is then used for
989 * freelist management in the buddy allocator.
da6052f7 990 * page_count() > 0 means the page has been allocated.
1da177e4 991 *
da6052f7
NP
992 * Pages are allocated by the slab allocator in order to provide memory
993 * to kmalloc and kmem_cache_alloc. In this case, the management of the
994 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
995 * unless a particular usage is carefully commented. (the responsibility of
996 * freeing the kmalloc memory is the caller's, of course).
1da177e4 997 *
da6052f7
NP
998 * A page may be used by anyone else who does a __get_free_page().
999 * In this case, page_count still tracks the references, and should only
1000 * be used through the normal accessor functions. The top bits of page->flags
1001 * and page->virtual store page management information, but all other fields
1002 * are unused and could be used privately, carefully. The management of this
1003 * page is the responsibility of the one who allocated it, and those who have
1004 * subsequently been given references to it.
1005 *
1006 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1007 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1008 * The following discussion applies only to them.
1009 *
da6052f7
NP
1010 * A pagecache page contains an opaque `private' member, which belongs to the
1011 * page's address_space. Usually, this is the address of a circular list of
1012 * the page's disk buffers. PG_private must be set to tell the VM to call
1013 * into the filesystem to release these pages.
1da177e4 1014 *
da6052f7
NP
1015 * A page may belong to an inode's memory mapping. In this case, page->mapping
1016 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1017 * in units of PAGE_SIZE.
1da177e4 1018 *
da6052f7
NP
1019 * If pagecache pages are not associated with an inode, they are said to be
1020 * anonymous pages. These may become associated with the swapcache, and in that
1021 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1022 *
da6052f7
NP
1023 * In either case (swapcache or inode backed), the pagecache itself holds one
1024 * reference to the page. Setting PG_private should also increment the
1025 * refcount. The each user mapping also has a reference to the page.
1da177e4 1026 *
da6052f7 1027 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1028 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1029 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1030 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1031 *
da6052f7 1032 * All pagecache pages may be subject to I/O:
1da177e4
LT
1033 * - inode pages may need to be read from disk,
1034 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1035 * to be written back to the inode on disk,
1036 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1037 * modified may need to be swapped out to swap space and (later) to be read
1038 * back into memory.
1da177e4
LT
1039 */
1040
1041/*
1042 * The zone field is never updated after free_area_init_core()
1043 * sets it, so none of the operations on it need to be atomic.
1da177e4 1044 */
348f8b6c 1045
90572890 1046/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1047#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1048#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1049#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1050#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1051#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1052
348f8b6c 1053/*
25985edc 1054 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1055 * sections we define the shift as 0; that plus a 0 mask ensures
1056 * the compiler will optimise away reference to them.
1057 */
d41dee36
AW
1058#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1059#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1060#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1061#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1062#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1063
bce54bbf
WD
1064/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1065#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1066#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1067#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1068 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1069#else
89689ae7 1070#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1071#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1072 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1073#endif
1074
bd8029b6 1075#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1076
d41dee36
AW
1077#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1078#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1079#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1080#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1081#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1082#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1083
33dd4e0e 1084static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1085{
c403f6a3 1086 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1087 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1088}
1da177e4 1089
260ae3f7
DW
1090#ifdef CONFIG_ZONE_DEVICE
1091static inline bool is_zone_device_page(const struct page *page)
1092{
1093 return page_zonenum(page) == ZONE_DEVICE;
1094}
966cf44f
AD
1095extern void memmap_init_zone_device(struct zone *, unsigned long,
1096 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1097#else
1098static inline bool is_zone_device_page(const struct page *page)
1099{
1100 return false;
1101}
7b2d55d2 1102#endif
5042db43 1103
e7638488 1104#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1105void free_devmap_managed_page(struct page *page);
e7638488 1106DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1107
1108static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1109{
1110 if (!static_branch_unlikely(&devmap_managed_key))
1111 return false;
1112 if (!is_zone_device_page(page))
1113 return false;
1114 switch (page->pgmap->type) {
1115 case MEMORY_DEVICE_PRIVATE:
e7638488 1116 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1117 return true;
1118 default:
1119 break;
1120 }
1121 return false;
1122}
1123
07d80269
JH
1124void put_devmap_managed_page(struct page *page);
1125
e7638488 1126#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1127static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1128{
1129 return false;
1130}
07d80269
JH
1131
1132static inline void put_devmap_managed_page(struct page *page)
1133{
1134}
7588adf8 1135#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1136
6b368cd4
JG
1137static inline bool is_device_private_page(const struct page *page)
1138{
7588adf8
RM
1139 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1140 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1141 is_zone_device_page(page) &&
1142 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1143}
e7638488 1144
52916982
LG
1145static inline bool is_pci_p2pdma_page(const struct page *page)
1146{
7588adf8
RM
1147 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1148 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1149 is_zone_device_page(page) &&
1150 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1151}
7b2d55d2 1152
f958d7b5
LT
1153/* 127: arbitrary random number, small enough to assemble well */
1154#define page_ref_zero_or_close_to_overflow(page) \
1155 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1156
3565fce3
DW
1157static inline void get_page(struct page *page)
1158{
1159 page = compound_head(page);
1160 /*
1161 * Getting a normal page or the head of a compound page
0139aa7b 1162 * requires to already have an elevated page->_refcount.
3565fce3 1163 */
f958d7b5 1164 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1165 page_ref_inc(page);
3565fce3
DW
1166}
1167
3faa52c0
JH
1168bool __must_check try_grab_page(struct page *page, unsigned int flags);
1169
88b1a17d
LT
1170static inline __must_check bool try_get_page(struct page *page)
1171{
1172 page = compound_head(page);
1173 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1174 return false;
fe896d18 1175 page_ref_inc(page);
88b1a17d 1176 return true;
3565fce3
DW
1177}
1178
1179static inline void put_page(struct page *page)
1180{
1181 page = compound_head(page);
1182
7b2d55d2 1183 /*
e7638488
DW
1184 * For devmap managed pages we need to catch refcount transition from
1185 * 2 to 1, when refcount reach one it means the page is free and we
1186 * need to inform the device driver through callback. See
7b2d55d2
JG
1187 * include/linux/memremap.h and HMM for details.
1188 */
07d80269
JH
1189 if (page_is_devmap_managed(page)) {
1190 put_devmap_managed_page(page);
7b2d55d2 1191 return;
07d80269 1192 }
7b2d55d2 1193
3565fce3
DW
1194 if (put_page_testzero(page))
1195 __put_page(page);
3565fce3
DW
1196}
1197
3faa52c0
JH
1198/*
1199 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1200 * the page's refcount so that two separate items are tracked: the original page
1201 * reference count, and also a new count of how many pin_user_pages() calls were
1202 * made against the page. ("gup-pinned" is another term for the latter).
1203 *
1204 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1205 * distinct from normal pages. As such, the unpin_user_page() call (and its
1206 * variants) must be used in order to release gup-pinned pages.
1207 *
1208 * Choice of value:
1209 *
1210 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1211 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1212 * simpler, due to the fact that adding an even power of two to the page
1213 * refcount has the effect of using only the upper N bits, for the code that
1214 * counts up using the bias value. This means that the lower bits are left for
1215 * the exclusive use of the original code that increments and decrements by one
1216 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1217 *
3faa52c0
JH
1218 * Of course, once the lower bits overflow into the upper bits (and this is
1219 * OK, because subtraction recovers the original values), then visual inspection
1220 * no longer suffices to directly view the separate counts. However, for normal
1221 * applications that don't have huge page reference counts, this won't be an
1222 * issue.
fc1d8e7c 1223 *
3faa52c0
JH
1224 * Locking: the lockless algorithm described in page_cache_get_speculative()
1225 * and page_cache_gup_pin_speculative() provides safe operation for
1226 * get_user_pages and page_mkclean and other calls that race to set up page
1227 * table entries.
fc1d8e7c 1228 */
3faa52c0 1229#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1230
3faa52c0 1231void unpin_user_page(struct page *page);
f1f6a7dd
JH
1232void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1233 bool make_dirty);
f1f6a7dd 1234void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1235
3faa52c0
JH
1236/**
1237 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1238 *
1239 * This function checks if a page has been pinned via a call to
1240 * pin_user_pages*().
1241 *
1242 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1243 * because it means "definitely not pinned for DMA", but true means "probably
1244 * pinned for DMA, but possibly a false positive due to having at least
1245 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1246 *
1247 * False positives are OK, because: a) it's unlikely for a page to get that many
1248 * refcounts, and b) all the callers of this routine are expected to be able to
1249 * deal gracefully with a false positive.
1250 *
47e29d32
JH
1251 * For huge pages, the result will be exactly correct. That's because we have
1252 * more tracking data available: the 3rd struct page in the compound page is
1253 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1254 * scheme).
1255 *
72ef5e52 1256 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0
JH
1257 *
1258 * @page: pointer to page to be queried.
1259 * @Return: True, if it is likely that the page has been "dma-pinned".
1260 * False, if the page is definitely not dma-pinned.
1261 */
1262static inline bool page_maybe_dma_pinned(struct page *page)
1263{
47e29d32
JH
1264 if (hpage_pincount_available(page))
1265 return compound_pincount(page) > 0;
1266
3faa52c0
JH
1267 /*
1268 * page_ref_count() is signed. If that refcount overflows, then
1269 * page_ref_count() returns a negative value, and callers will avoid
1270 * further incrementing the refcount.
1271 *
1272 * Here, for that overflow case, use the signed bit to count a little
1273 * bit higher via unsigned math, and thus still get an accurate result.
1274 */
1275 return ((unsigned int)page_ref_count(compound_head(page))) >=
1276 GUP_PIN_COUNTING_BIAS;
1277}
1278
9127ab4f
CS
1279#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1280#define SECTION_IN_PAGE_FLAGS
1281#endif
1282
89689ae7 1283/*
7a8010cd
VB
1284 * The identification function is mainly used by the buddy allocator for
1285 * determining if two pages could be buddies. We are not really identifying
1286 * the zone since we could be using the section number id if we do not have
1287 * node id available in page flags.
1288 * We only guarantee that it will return the same value for two combinable
1289 * pages in a zone.
89689ae7 1290 */
cb2b95e1
AW
1291static inline int page_zone_id(struct page *page)
1292{
89689ae7 1293 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1294}
1295
89689ae7 1296#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1297extern int page_to_nid(const struct page *page);
89689ae7 1298#else
33dd4e0e 1299static inline int page_to_nid(const struct page *page)
d41dee36 1300{
f165b378
PT
1301 struct page *p = (struct page *)page;
1302
1303 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1304}
89689ae7
CL
1305#endif
1306
57e0a030 1307#ifdef CONFIG_NUMA_BALANCING
90572890 1308static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1309{
90572890 1310 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1311}
1312
90572890 1313static inline int cpupid_to_pid(int cpupid)
57e0a030 1314{
90572890 1315 return cpupid & LAST__PID_MASK;
57e0a030 1316}
b795854b 1317
90572890 1318static inline int cpupid_to_cpu(int cpupid)
b795854b 1319{
90572890 1320 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1321}
1322
90572890 1323static inline int cpupid_to_nid(int cpupid)
b795854b 1324{
90572890 1325 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1326}
1327
90572890 1328static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1329{
90572890 1330 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1331}
1332
90572890 1333static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1334{
90572890 1335 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1336}
1337
8c8a743c
PZ
1338static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1339{
1340 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1341}
1342
1343#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1344#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1345static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1346{
1ae71d03 1347 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1348}
90572890
PZ
1349
1350static inline int page_cpupid_last(struct page *page)
1351{
1352 return page->_last_cpupid;
1353}
1354static inline void page_cpupid_reset_last(struct page *page)
b795854b 1355{
1ae71d03 1356 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1357}
1358#else
90572890 1359static inline int page_cpupid_last(struct page *page)
75980e97 1360{
90572890 1361 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1362}
1363
90572890 1364extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1365
90572890 1366static inline void page_cpupid_reset_last(struct page *page)
75980e97 1367{
09940a4f 1368 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1369}
90572890
PZ
1370#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1371#else /* !CONFIG_NUMA_BALANCING */
1372static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1373{
90572890 1374 return page_to_nid(page); /* XXX */
57e0a030
MG
1375}
1376
90572890 1377static inline int page_cpupid_last(struct page *page)
57e0a030 1378{
90572890 1379 return page_to_nid(page); /* XXX */
57e0a030
MG
1380}
1381
90572890 1382static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1383{
1384 return -1;
1385}
1386
90572890 1387static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1388{
1389 return -1;
1390}
1391
90572890 1392static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1393{
1394 return -1;
1395}
1396
90572890
PZ
1397static inline int cpu_pid_to_cpupid(int nid, int pid)
1398{
1399 return -1;
1400}
1401
1402static inline bool cpupid_pid_unset(int cpupid)
b795854b 1403{
2b787449 1404 return true;
b795854b
MG
1405}
1406
90572890 1407static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1408{
1409}
8c8a743c
PZ
1410
1411static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1412{
1413 return false;
1414}
90572890 1415#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1416
2813b9c0
AK
1417#ifdef CONFIG_KASAN_SW_TAGS
1418static inline u8 page_kasan_tag(const struct page *page)
1419{
1420 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1421}
1422
1423static inline void page_kasan_tag_set(struct page *page, u8 tag)
1424{
1425 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1426 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1427}
1428
1429static inline void page_kasan_tag_reset(struct page *page)
1430{
1431 page_kasan_tag_set(page, 0xff);
1432}
1433#else
1434static inline u8 page_kasan_tag(const struct page *page)
1435{
1436 return 0xff;
1437}
1438
1439static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1440static inline void page_kasan_tag_reset(struct page *page) { }
1441#endif
1442
33dd4e0e 1443static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1444{
1445 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1446}
1447
75ef7184
MG
1448static inline pg_data_t *page_pgdat(const struct page *page)
1449{
1450 return NODE_DATA(page_to_nid(page));
1451}
1452
9127ab4f 1453#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1454static inline void set_page_section(struct page *page, unsigned long section)
1455{
1456 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1457 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1458}
1459
aa462abe 1460static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1461{
1462 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1463}
308c05e3 1464#endif
d41dee36 1465
2f1b6248 1466static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1467{
1468 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1469 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1470}
2f1b6248 1471
348f8b6c
DH
1472static inline void set_page_node(struct page *page, unsigned long node)
1473{
1474 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1475 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1476}
89689ae7 1477
2f1b6248 1478static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1479 unsigned long node, unsigned long pfn)
1da177e4 1480{
348f8b6c
DH
1481 set_page_zone(page, zone);
1482 set_page_node(page, node);
9127ab4f 1483#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1484 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1485#endif
1da177e4
LT
1486}
1487
0610c25d
GT
1488#ifdef CONFIG_MEMCG
1489static inline struct mem_cgroup *page_memcg(struct page *page)
1490{
1491 return page->mem_cgroup;
1492}
55779ec7
JW
1493static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1494{
1495 WARN_ON_ONCE(!rcu_read_lock_held());
1496 return READ_ONCE(page->mem_cgroup);
1497}
0610c25d
GT
1498#else
1499static inline struct mem_cgroup *page_memcg(struct page *page)
1500{
1501 return NULL;
1502}
55779ec7
JW
1503static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1504{
1505 WARN_ON_ONCE(!rcu_read_lock_held());
1506 return NULL;
1507}
0610c25d
GT
1508#endif
1509
f6ac2354
CL
1510/*
1511 * Some inline functions in vmstat.h depend on page_zone()
1512 */
1513#include <linux/vmstat.h>
1514
33dd4e0e 1515static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1516{
1dff8083 1517 return page_to_virt(page);
1da177e4
LT
1518}
1519
1520#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1521#define HASHED_PAGE_VIRTUAL
1522#endif
1523
1524#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1525static inline void *page_address(const struct page *page)
1526{
1527 return page->virtual;
1528}
1529static inline void set_page_address(struct page *page, void *address)
1530{
1531 page->virtual = address;
1532}
1da177e4
LT
1533#define page_address_init() do { } while(0)
1534#endif
1535
1536#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1537void *page_address(const struct page *page);
1da177e4
LT
1538void set_page_address(struct page *page, void *virtual);
1539void page_address_init(void);
1540#endif
1541
1542#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1543#define page_address(page) lowmem_page_address(page)
1544#define set_page_address(page, address) do { } while(0)
1545#define page_address_init() do { } while(0)
1546#endif
1547
e39155ea
KS
1548extern void *page_rmapping(struct page *page);
1549extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1550extern struct address_space *page_mapping(struct page *page);
1da177e4 1551
f981c595
MG
1552extern struct address_space *__page_file_mapping(struct page *);
1553
1554static inline
1555struct address_space *page_file_mapping(struct page *page)
1556{
1557 if (unlikely(PageSwapCache(page)))
1558 return __page_file_mapping(page);
1559
1560 return page->mapping;
1561}
1562
f6ab1f7f
HY
1563extern pgoff_t __page_file_index(struct page *page);
1564
1da177e4
LT
1565/*
1566 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1567 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1568 */
1569static inline pgoff_t page_index(struct page *page)
1570{
1571 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1572 return __page_file_index(page);
1da177e4
LT
1573 return page->index;
1574}
1575
1aa8aea5 1576bool page_mapped(struct page *page);
bda807d4 1577struct address_space *page_mapping(struct page *page);
cb9f753a 1578struct address_space *page_mapping_file(struct page *page);
1da177e4 1579
2f064f34
MH
1580/*
1581 * Return true only if the page has been allocated with
1582 * ALLOC_NO_WATERMARKS and the low watermark was not
1583 * met implying that the system is under some pressure.
1584 */
1585static inline bool page_is_pfmemalloc(struct page *page)
1586{
1587 /*
1588 * Page index cannot be this large so this must be
1589 * a pfmemalloc page.
1590 */
1591 return page->index == -1UL;
1592}
1593
1594/*
1595 * Only to be called by the page allocator on a freshly allocated
1596 * page.
1597 */
1598static inline void set_page_pfmemalloc(struct page *page)
1599{
1600 page->index = -1UL;
1601}
1602
1603static inline void clear_page_pfmemalloc(struct page *page)
1604{
1605 page->index = 0;
1606}
1607
1c0fe6e3
NP
1608/*
1609 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1610 */
1611extern void pagefault_out_of_memory(void);
1612
1da177e4 1613#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1614#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1da177e4 1615
ddd588b5 1616/*
7bf02ea2 1617 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1618 * various contexts.
1619 */
4b59e6c4 1620#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1621
9af744d7 1622extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1623
710ec38b 1624#ifdef CONFIG_MMU
7f43add4 1625extern bool can_do_mlock(void);
710ec38b
AB
1626#else
1627static inline bool can_do_mlock(void) { return false; }
1628#endif
1da177e4
LT
1629extern int user_shm_lock(size_t, struct user_struct *);
1630extern void user_shm_unlock(size_t, struct user_struct *);
1631
1632/*
1633 * Parameter block passed down to zap_pte_range in exceptional cases.
1634 */
1635struct zap_details {
1da177e4
LT
1636 struct address_space *check_mapping; /* Check page->mapping if set */
1637 pgoff_t first_index; /* Lowest page->index to unmap */
1638 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1639};
1640
25b2995a
CH
1641struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1642 pte_t pte);
28093f9f
GS
1643struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1644 pmd_t pmd);
7e675137 1645
27d036e3
LR
1646void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1647 unsigned long size);
14f5ff5d 1648void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1649 unsigned long size);
4f74d2c8
LT
1650void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1651 unsigned long start, unsigned long end);
e6473092 1652
ac46d4f3
JG
1653struct mmu_notifier_range;
1654
42b77728 1655void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1656 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1657int
1658copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
09796395 1659int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
1660 struct mmu_notifier_range *range,
1661 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
3b6748e2
JW
1662int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1663 unsigned long *pfn);
d87fe660 1664int follow_phys(struct vm_area_struct *vma, unsigned long address,
1665 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1666int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1667 void *buf, int len, int write);
1da177e4 1668
7caef267 1669extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1670extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1671void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1672void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1673int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1674int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1675int invalidate_inode_page(struct page *page);
1676
7ee1dd3f 1677#ifdef CONFIG_MMU
2b740303 1678extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1679 unsigned long address, unsigned int flags,
1680 struct pt_regs *regs);
64019a2e 1681extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1682 unsigned long address, unsigned int fault_flags,
1683 bool *unlocked);
977fbdcd
MW
1684void unmap_mapping_pages(struct address_space *mapping,
1685 pgoff_t start, pgoff_t nr, bool even_cows);
1686void unmap_mapping_range(struct address_space *mapping,
1687 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1688#else
2b740303 1689static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1690 unsigned long address, unsigned int flags,
1691 struct pt_regs *regs)
7ee1dd3f
DH
1692{
1693 /* should never happen if there's no MMU */
1694 BUG();
1695 return VM_FAULT_SIGBUS;
1696}
64019a2e 1697static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1698 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1699{
1700 /* should never happen if there's no MMU */
1701 BUG();
1702 return -EFAULT;
1703}
977fbdcd
MW
1704static inline void unmap_mapping_pages(struct address_space *mapping,
1705 pgoff_t start, pgoff_t nr, bool even_cows) { }
1706static inline void unmap_mapping_range(struct address_space *mapping,
1707 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1708#endif
f33ea7f4 1709
977fbdcd
MW
1710static inline void unmap_shared_mapping_range(struct address_space *mapping,
1711 loff_t const holebegin, loff_t const holelen)
1712{
1713 unmap_mapping_range(mapping, holebegin, holelen, 0);
1714}
1715
1716extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1717 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1718extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1719 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1720extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1721 void *buf, int len, unsigned int gup_flags);
1da177e4 1722
64019a2e 1723long get_user_pages_remote(struct mm_struct *mm,
1e987790 1724 unsigned long start, unsigned long nr_pages,
9beae1ea 1725 unsigned int gup_flags, struct page **pages,
5b56d49f 1726 struct vm_area_struct **vmas, int *locked);
64019a2e 1727long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1728 unsigned long start, unsigned long nr_pages,
1729 unsigned int gup_flags, struct page **pages,
1730 struct vm_area_struct **vmas, int *locked);
c12d2da5 1731long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1732 unsigned int gup_flags, struct page **pages,
cde70140 1733 struct vm_area_struct **vmas);
eddb1c22
JH
1734long pin_user_pages(unsigned long start, unsigned long nr_pages,
1735 unsigned int gup_flags, struct page **pages,
1736 struct vm_area_struct **vmas);
c12d2da5 1737long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1738 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1739long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1740 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1741long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1742 struct page **pages, unsigned int gup_flags);
91429023
JH
1743long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1744 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1745
73b0140b
IW
1746int get_user_pages_fast(unsigned long start, int nr_pages,
1747 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1748int pin_user_pages_fast(unsigned long start, int nr_pages,
1749 unsigned int gup_flags, struct page **pages);
8025e5dd 1750
79eb597c
DJ
1751int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1752int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1753 struct task_struct *task, bool bypass_rlim);
1754
8025e5dd
JK
1755/* Container for pinned pfns / pages */
1756struct frame_vector {
1757 unsigned int nr_allocated; /* Number of frames we have space for */
1758 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1759 bool got_ref; /* Did we pin pages by getting page ref? */
1760 bool is_pfns; /* Does array contain pages or pfns? */
57e86fa1 1761 void *ptrs[]; /* Array of pinned pfns / pages. Use
8025e5dd
JK
1762 * pfns_vector_pages() or pfns_vector_pfns()
1763 * for access */
1764};
1765
1766struct frame_vector *frame_vector_create(unsigned int nr_frames);
1767void frame_vector_destroy(struct frame_vector *vec);
1768int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1769 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1770void put_vaddr_frames(struct frame_vector *vec);
1771int frame_vector_to_pages(struct frame_vector *vec);
1772void frame_vector_to_pfns(struct frame_vector *vec);
1773
1774static inline unsigned int frame_vector_count(struct frame_vector *vec)
1775{
1776 return vec->nr_frames;
1777}
1778
1779static inline struct page **frame_vector_pages(struct frame_vector *vec)
1780{
1781 if (vec->is_pfns) {
1782 int err = frame_vector_to_pages(vec);
1783
1784 if (err)
1785 return ERR_PTR(err);
1786 }
1787 return (struct page **)(vec->ptrs);
1788}
1789
1790static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1791{
1792 if (!vec->is_pfns)
1793 frame_vector_to_pfns(vec);
1794 return (unsigned long *)(vec->ptrs);
1795}
1796
18022c5d
MG
1797struct kvec;
1798int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1799 struct page **pages);
1800int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1801struct page *get_dump_page(unsigned long addr);
1da177e4 1802
cf9a2ae8 1803extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1804extern void do_invalidatepage(struct page *page, unsigned int offset,
1805 unsigned int length);
cf9a2ae8 1806
f82b3764 1807void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1808int __set_page_dirty_nobuffers(struct page *page);
76719325 1809int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1810int redirty_page_for_writepage(struct writeback_control *wbc,
1811 struct page *page);
62cccb8c 1812void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1813void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1814 struct bdi_writeback *wb);
b3c97528 1815int set_page_dirty(struct page *page);
1da177e4 1816int set_page_dirty_lock(struct page *page);
736304f3
JK
1817void __cancel_dirty_page(struct page *page);
1818static inline void cancel_dirty_page(struct page *page)
1819{
1820 /* Avoid atomic ops, locking, etc. when not actually needed. */
1821 if (PageDirty(page))
1822 __cancel_dirty_page(page);
1823}
1da177e4 1824int clear_page_dirty_for_io(struct page *page);
b9ea2515 1825
a9090253 1826int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1827
b6a2fea3
OW
1828extern unsigned long move_page_tables(struct vm_area_struct *vma,
1829 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1830 unsigned long new_addr, unsigned long len,
1831 bool need_rmap_locks);
58705444
PX
1832
1833/*
1834 * Flags used by change_protection(). For now we make it a bitmap so
1835 * that we can pass in multiple flags just like parameters. However
1836 * for now all the callers are only use one of the flags at the same
1837 * time.
1838 */
1839/* Whether we should allow dirty bit accounting */
1840#define MM_CP_DIRTY_ACCT (1UL << 0)
1841/* Whether this protection change is for NUMA hints */
1842#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1843/* Whether this change is for write protecting */
1844#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1845#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1846#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1847 MM_CP_UFFD_WP_RESOLVE)
58705444 1848
7da4d641
PZ
1849extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1850 unsigned long end, pgprot_t newprot,
58705444 1851 unsigned long cp_flags);
b6a2fea3
OW
1852extern int mprotect_fixup(struct vm_area_struct *vma,
1853 struct vm_area_struct **pprev, unsigned long start,
1854 unsigned long end, unsigned long newflags);
1da177e4 1855
465a454f
PZ
1856/*
1857 * doesn't attempt to fault and will return short.
1858 */
dadbb612
SJ
1859int get_user_pages_fast_only(unsigned long start, int nr_pages,
1860 unsigned int gup_flags, struct page **pages);
104acc32
JH
1861int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1862 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1863
1864static inline bool get_user_page_fast_only(unsigned long addr,
1865 unsigned int gup_flags, struct page **pagep)
1866{
1867 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1868}
d559db08
KH
1869/*
1870 * per-process(per-mm_struct) statistics.
1871 */
d559db08
KH
1872static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1873{
69c97823
KK
1874 long val = atomic_long_read(&mm->rss_stat.count[member]);
1875
1876#ifdef SPLIT_RSS_COUNTING
1877 /*
1878 * counter is updated in asynchronous manner and may go to minus.
1879 * But it's never be expected number for users.
1880 */
1881 if (val < 0)
1882 val = 0;
172703b0 1883#endif
69c97823
KK
1884 return (unsigned long)val;
1885}
d559db08 1886
e4dcad20 1887void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1888
d559db08
KH
1889static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1890{
b3d1411b
JFG
1891 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1892
e4dcad20 1893 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1894}
1895
1896static inline void inc_mm_counter(struct mm_struct *mm, int member)
1897{
b3d1411b
JFG
1898 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1899
e4dcad20 1900 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1901}
1902
1903static inline void dec_mm_counter(struct mm_struct *mm, int member)
1904{
b3d1411b
JFG
1905 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1906
e4dcad20 1907 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1908}
1909
eca56ff9
JM
1910/* Optimized variant when page is already known not to be PageAnon */
1911static inline int mm_counter_file(struct page *page)
1912{
1913 if (PageSwapBacked(page))
1914 return MM_SHMEMPAGES;
1915 return MM_FILEPAGES;
1916}
1917
1918static inline int mm_counter(struct page *page)
1919{
1920 if (PageAnon(page))
1921 return MM_ANONPAGES;
1922 return mm_counter_file(page);
1923}
1924
d559db08
KH
1925static inline unsigned long get_mm_rss(struct mm_struct *mm)
1926{
1927 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1928 get_mm_counter(mm, MM_ANONPAGES) +
1929 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1930}
1931
1932static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1933{
1934 return max(mm->hiwater_rss, get_mm_rss(mm));
1935}
1936
1937static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1938{
1939 return max(mm->hiwater_vm, mm->total_vm);
1940}
1941
1942static inline void update_hiwater_rss(struct mm_struct *mm)
1943{
1944 unsigned long _rss = get_mm_rss(mm);
1945
1946 if ((mm)->hiwater_rss < _rss)
1947 (mm)->hiwater_rss = _rss;
1948}
1949
1950static inline void update_hiwater_vm(struct mm_struct *mm)
1951{
1952 if (mm->hiwater_vm < mm->total_vm)
1953 mm->hiwater_vm = mm->total_vm;
1954}
1955
695f0559
PC
1956static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1957{
1958 mm->hiwater_rss = get_mm_rss(mm);
1959}
1960
d559db08
KH
1961static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1962 struct mm_struct *mm)
1963{
1964 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1965
1966 if (*maxrss < hiwater_rss)
1967 *maxrss = hiwater_rss;
1968}
1969
53bddb4e 1970#if defined(SPLIT_RSS_COUNTING)
05af2e10 1971void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1972#else
05af2e10 1973static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1974{
1975}
1976#endif
465a454f 1977
78e7c5af
AK
1978#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1979static inline int pte_special(pte_t pte)
1980{
1981 return 0;
1982}
1983
1984static inline pte_t pte_mkspecial(pte_t pte)
1985{
1986 return pte;
1987}
1988#endif
1989
17596731 1990#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
1991static inline int pte_devmap(pte_t pte)
1992{
1993 return 0;
1994}
1995#endif
1996
6d2329f8 1997int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1998
25ca1d6c
NK
1999extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2000 spinlock_t **ptl);
2001static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2002 spinlock_t **ptl)
2003{
2004 pte_t *ptep;
2005 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2006 return ptep;
2007}
c9cfcddf 2008
c2febafc
KS
2009#ifdef __PAGETABLE_P4D_FOLDED
2010static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2011 unsigned long address)
2012{
2013 return 0;
2014}
2015#else
2016int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2017#endif
2018
b4e98d9a 2019#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2020static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2021 unsigned long address)
2022{
2023 return 0;
2024}
b4e98d9a
KS
2025static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2026static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2027
5f22df00 2028#else
c2febafc 2029int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2030
b4e98d9a
KS
2031static inline void mm_inc_nr_puds(struct mm_struct *mm)
2032{
6d212db1
MS
2033 if (mm_pud_folded(mm))
2034 return;
af5b0f6a 2035 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2036}
2037
2038static inline void mm_dec_nr_puds(struct mm_struct *mm)
2039{
6d212db1
MS
2040 if (mm_pud_folded(mm))
2041 return;
af5b0f6a 2042 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2043}
5f22df00
NP
2044#endif
2045
2d2f5119 2046#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2047static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2048 unsigned long address)
2049{
2050 return 0;
2051}
dc6c9a35 2052
dc6c9a35
KS
2053static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2054static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2055
5f22df00 2056#else
1bb3630e 2057int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2058
dc6c9a35
KS
2059static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2060{
6d212db1
MS
2061 if (mm_pmd_folded(mm))
2062 return;
af5b0f6a 2063 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2064}
2065
2066static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2067{
6d212db1
MS
2068 if (mm_pmd_folded(mm))
2069 return;
af5b0f6a 2070 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2071}
5f22df00
NP
2072#endif
2073
c4812909 2074#ifdef CONFIG_MMU
af5b0f6a 2075static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2076{
af5b0f6a 2077 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2078}
2079
af5b0f6a 2080static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2081{
af5b0f6a 2082 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2083}
2084
2085static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2086{
af5b0f6a 2087 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2088}
2089
2090static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2091{
af5b0f6a 2092 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2093}
2094#else
c4812909 2095
af5b0f6a
KS
2096static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2097static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2098{
2099 return 0;
2100}
2101
2102static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2103static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2104#endif
2105
4cf58924
JFG
2106int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2107int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2108
f949286c
MR
2109#if defined(CONFIG_MMU)
2110
c2febafc
KS
2111static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2112 unsigned long address)
2113{
2114 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2115 NULL : p4d_offset(pgd, address);
2116}
2117
2118static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2119 unsigned long address)
1da177e4 2120{
c2febafc
KS
2121 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2122 NULL : pud_offset(p4d, address);
1da177e4 2123}
d8626138 2124
1da177e4
LT
2125static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2126{
1bb3630e
HD
2127 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2128 NULL: pmd_offset(pud, address);
1da177e4 2129}
f949286c 2130#endif /* CONFIG_MMU */
1bb3630e 2131
57c1ffce 2132#if USE_SPLIT_PTE_PTLOCKS
597d795a 2133#if ALLOC_SPLIT_PTLOCKS
b35f1819 2134void __init ptlock_cache_init(void);
539edb58
PZ
2135extern bool ptlock_alloc(struct page *page);
2136extern void ptlock_free(struct page *page);
2137
2138static inline spinlock_t *ptlock_ptr(struct page *page)
2139{
2140 return page->ptl;
2141}
597d795a 2142#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2143static inline void ptlock_cache_init(void)
2144{
2145}
2146
49076ec2
KS
2147static inline bool ptlock_alloc(struct page *page)
2148{
49076ec2
KS
2149 return true;
2150}
539edb58 2151
49076ec2
KS
2152static inline void ptlock_free(struct page *page)
2153{
49076ec2
KS
2154}
2155
2156static inline spinlock_t *ptlock_ptr(struct page *page)
2157{
539edb58 2158 return &page->ptl;
49076ec2 2159}
597d795a 2160#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2161
2162static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2163{
2164 return ptlock_ptr(pmd_page(*pmd));
2165}
2166
2167static inline bool ptlock_init(struct page *page)
2168{
2169 /*
2170 * prep_new_page() initialize page->private (and therefore page->ptl)
2171 * with 0. Make sure nobody took it in use in between.
2172 *
2173 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2174 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2175 */
309381fe 2176 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2177 if (!ptlock_alloc(page))
2178 return false;
2179 spin_lock_init(ptlock_ptr(page));
2180 return true;
2181}
2182
57c1ffce 2183#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2184/*
2185 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2186 */
49076ec2
KS
2187static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2188{
2189 return &mm->page_table_lock;
2190}
b35f1819 2191static inline void ptlock_cache_init(void) {}
49076ec2 2192static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2193static inline void ptlock_free(struct page *page) {}
57c1ffce 2194#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2195
b35f1819
KS
2196static inline void pgtable_init(void)
2197{
2198 ptlock_cache_init();
2199 pgtable_cache_init();
2200}
2201
b4ed71f5 2202static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2203{
706874e9
VD
2204 if (!ptlock_init(page))
2205 return false;
1d40a5ea 2206 __SetPageTable(page);
f0c0c115 2207 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2208 return true;
2f569afd
MS
2209}
2210
b4ed71f5 2211static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2212{
9e247bab 2213 ptlock_free(page);
1d40a5ea 2214 __ClearPageTable(page);
f0c0c115 2215 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2216}
2217
c74df32c
HD
2218#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2219({ \
4c21e2f2 2220 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2221 pte_t *__pte = pte_offset_map(pmd, address); \
2222 *(ptlp) = __ptl; \
2223 spin_lock(__ptl); \
2224 __pte; \
2225})
2226
2227#define pte_unmap_unlock(pte, ptl) do { \
2228 spin_unlock(ptl); \
2229 pte_unmap(pte); \
2230} while (0)
2231
4cf58924 2232#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2233
2234#define pte_alloc_map(mm, pmd, address) \
4cf58924 2235 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2236
c74df32c 2237#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2238 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2239 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2240
1bb3630e 2241#define pte_alloc_kernel(pmd, address) \
4cf58924 2242 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2243 NULL: pte_offset_kernel(pmd, address))
1da177e4 2244
e009bb30
KS
2245#if USE_SPLIT_PMD_PTLOCKS
2246
634391ac
MS
2247static struct page *pmd_to_page(pmd_t *pmd)
2248{
2249 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2250 return virt_to_page((void *)((unsigned long) pmd & mask));
2251}
2252
e009bb30
KS
2253static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2254{
634391ac 2255 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2256}
2257
b2b29d6d 2258static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2259{
e009bb30
KS
2260#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2261 page->pmd_huge_pte = NULL;
2262#endif
49076ec2 2263 return ptlock_init(page);
e009bb30
KS
2264}
2265
b2b29d6d 2266static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2267{
2268#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2269 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2270#endif
49076ec2 2271 ptlock_free(page);
e009bb30
KS
2272}
2273
634391ac 2274#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2275
2276#else
2277
9a86cb7b
KS
2278static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2279{
2280 return &mm->page_table_lock;
2281}
2282
b2b29d6d
MW
2283static inline bool pmd_ptlock_init(struct page *page) { return true; }
2284static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2285
c389a250 2286#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2287
e009bb30
KS
2288#endif
2289
9a86cb7b
KS
2290static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2291{
2292 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2293 spin_lock(ptl);
2294 return ptl;
2295}
2296
b2b29d6d
MW
2297static inline bool pgtable_pmd_page_ctor(struct page *page)
2298{
2299 if (!pmd_ptlock_init(page))
2300 return false;
2301 __SetPageTable(page);
f0c0c115 2302 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2303 return true;
2304}
2305
2306static inline void pgtable_pmd_page_dtor(struct page *page)
2307{
2308 pmd_ptlock_free(page);
2309 __ClearPageTable(page);
f0c0c115 2310 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2311}
2312
a00cc7d9
MW
2313/*
2314 * No scalability reason to split PUD locks yet, but follow the same pattern
2315 * as the PMD locks to make it easier if we decide to. The VM should not be
2316 * considered ready to switch to split PUD locks yet; there may be places
2317 * which need to be converted from page_table_lock.
2318 */
2319static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2320{
2321 return &mm->page_table_lock;
2322}
2323
2324static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2325{
2326 spinlock_t *ptl = pud_lockptr(mm, pud);
2327
2328 spin_lock(ptl);
2329 return ptl;
2330}
62906027 2331
a00cc7d9 2332extern void __init pagecache_init(void);
bc9331a1 2333extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2334extern void free_initmem(void);
2335
69afade7
JL
2336/*
2337 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2338 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2339 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2340 * Return pages freed into the buddy system.
2341 */
11199692 2342extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2343 int poison, const char *s);
c3d5f5f0 2344
cfa11e08
JL
2345#ifdef CONFIG_HIGHMEM
2346/*
2347 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2348 * and totalram_pages.
2349 */
2350extern void free_highmem_page(struct page *page);
2351#endif
69afade7 2352
c3d5f5f0 2353extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2354extern void mem_init_print_info(const char *str);
69afade7 2355
4b50bcc7 2356extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2357
69afade7
JL
2358/* Free the reserved page into the buddy system, so it gets managed. */
2359static inline void __free_reserved_page(struct page *page)
2360{
2361 ClearPageReserved(page);
2362 init_page_count(page);
2363 __free_page(page);
2364}
2365
2366static inline void free_reserved_page(struct page *page)
2367{
2368 __free_reserved_page(page);
2369 adjust_managed_page_count(page, 1);
2370}
2371
2372static inline void mark_page_reserved(struct page *page)
2373{
2374 SetPageReserved(page);
2375 adjust_managed_page_count(page, -1);
2376}
2377
2378/*
2379 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2380 * The freed pages will be poisoned with pattern "poison" if it's within
2381 * range [0, UCHAR_MAX].
2382 * Return pages freed into the buddy system.
69afade7
JL
2383 */
2384static inline unsigned long free_initmem_default(int poison)
2385{
2386 extern char __init_begin[], __init_end[];
2387
11199692 2388 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2389 poison, "unused kernel");
2390}
2391
7ee3d4e8
JL
2392static inline unsigned long get_num_physpages(void)
2393{
2394 int nid;
2395 unsigned long phys_pages = 0;
2396
2397 for_each_online_node(nid)
2398 phys_pages += node_present_pages(nid);
2399
2400 return phys_pages;
2401}
2402
c713216d 2403/*
3f08a302 2404 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2405 * zones, allocate the backing mem_map and account for memory holes in an
2406 * architecture independent manner.
c713216d
MG
2407 *
2408 * An architecture is expected to register range of page frames backed by
0ee332c1 2409 * physical memory with memblock_add[_node]() before calling
9691a071 2410 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2411 * usage, an architecture is expected to do something like
2412 *
2413 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2414 * max_highmem_pfn};
2415 * for_each_valid_physical_page_range()
0ee332c1 2416 * memblock_add_node(base, size, nid)
9691a071 2417 * free_area_init(max_zone_pfns);
c713216d 2418 */
9691a071 2419void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2420unsigned long node_map_pfn_alignment(void);
32996250
YL
2421unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2422 unsigned long end_pfn);
c713216d
MG
2423extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2424 unsigned long end_pfn);
2425extern void get_pfn_range_for_nid(unsigned int nid,
2426 unsigned long *start_pfn, unsigned long *end_pfn);
2427extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2428
3f08a302 2429#ifndef CONFIG_NEED_MULTIPLE_NODES
6f24fbd3 2430static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2431{
2432 return 0;
2433}
2434#else
2435/* please see mm/page_alloc.c */
2436extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2437#endif
2438
0e0b864e 2439extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7 2440extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
d882c006 2441 enum meminit_context, struct vmem_altmap *, int migratetype);
bc75d33f 2442extern void setup_per_zone_wmarks(void);
1b79acc9 2443extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2444extern void mem_init(void);
8feae131 2445extern void __init mmap_init(void);
9af744d7 2446extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2447extern long si_mem_available(void);
1da177e4
LT
2448extern void si_meminfo(struct sysinfo * val);
2449extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2450#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2451extern unsigned long arch_reserved_kernel_pages(void);
2452#endif
1da177e4 2453
a8e99259
MH
2454extern __printf(3, 4)
2455void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2456
e7c8d5c9 2457extern void setup_per_cpu_pageset(void);
e7c8d5c9 2458
75f7ad8e
PS
2459/* page_alloc.c */
2460extern int min_free_kbytes;
1c30844d 2461extern int watermark_boost_factor;
795ae7a0 2462extern int watermark_scale_factor;
51930df5 2463extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2464
8feae131 2465/* nommu.c */
33e5d769 2466extern atomic_long_t mmap_pages_allocated;
7e660872 2467extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2468
6b2dbba8 2469/* interval_tree.c */
6b2dbba8 2470void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2471 struct rb_root_cached *root);
9826a516
ML
2472void vma_interval_tree_insert_after(struct vm_area_struct *node,
2473 struct vm_area_struct *prev,
f808c13f 2474 struct rb_root_cached *root);
6b2dbba8 2475void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2476 struct rb_root_cached *root);
2477struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2478 unsigned long start, unsigned long last);
2479struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2480 unsigned long start, unsigned long last);
2481
2482#define vma_interval_tree_foreach(vma, root, start, last) \
2483 for (vma = vma_interval_tree_iter_first(root, start, last); \
2484 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2485
bf181b9f 2486void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2487 struct rb_root_cached *root);
bf181b9f 2488void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2489 struct rb_root_cached *root);
2490struct anon_vma_chain *
2491anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2492 unsigned long start, unsigned long last);
bf181b9f
ML
2493struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2494 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2495#ifdef CONFIG_DEBUG_VM_RB
2496void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2497#endif
bf181b9f
ML
2498
2499#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2500 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2501 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2502
1da177e4 2503/* mmap.c */
34b4e4aa 2504extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2505extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2506 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2507 struct vm_area_struct *expand);
2508static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2509 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2510{
2511 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2512}
1da177e4
LT
2513extern struct vm_area_struct *vma_merge(struct mm_struct *,
2514 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2515 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2516 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2517extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2518extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2519 unsigned long addr, int new_below);
2520extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2521 unsigned long addr, int new_below);
1da177e4
LT
2522extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2523extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2524 struct rb_node **, struct rb_node *);
a8fb5618 2525extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2526extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2527 unsigned long addr, unsigned long len, pgoff_t pgoff,
2528 bool *need_rmap_locks);
1da177e4 2529extern void exit_mmap(struct mm_struct *);
925d1c40 2530
9c599024
CG
2531static inline int check_data_rlimit(unsigned long rlim,
2532 unsigned long new,
2533 unsigned long start,
2534 unsigned long end_data,
2535 unsigned long start_data)
2536{
2537 if (rlim < RLIM_INFINITY) {
2538 if (((new - start) + (end_data - start_data)) > rlim)
2539 return -ENOSPC;
2540 }
2541
2542 return 0;
2543}
2544
7906d00c
AA
2545extern int mm_take_all_locks(struct mm_struct *mm);
2546extern void mm_drop_all_locks(struct mm_struct *mm);
2547
38646013
JS
2548extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2549extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2550extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2551
84638335
KK
2552extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2553extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2554
2eefd878
DS
2555extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2556 const struct vm_special_mapping *sm);
3935ed6a
SS
2557extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2558 unsigned long addr, unsigned long len,
a62c34bd
AL
2559 unsigned long flags,
2560 const struct vm_special_mapping *spec);
2561/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2562extern int install_special_mapping(struct mm_struct *mm,
2563 unsigned long addr, unsigned long len,
2564 unsigned long flags, struct page **pages);
1da177e4 2565
649775be
AG
2566unsigned long randomize_stack_top(unsigned long stack_top);
2567
1da177e4
LT
2568extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2569
0165ab44 2570extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2571 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2572 struct list_head *uf);
1fcfd8db 2573extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2574 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2575 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2576extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2577 struct list_head *uf, bool downgrade);
897ab3e0
MR
2578extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2579 struct list_head *uf);
0726b01e 2580extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2581
bebeb3d6
ML
2582#ifdef CONFIG_MMU
2583extern int __mm_populate(unsigned long addr, unsigned long len,
2584 int ignore_errors);
2585static inline void mm_populate(unsigned long addr, unsigned long len)
2586{
2587 /* Ignore errors */
2588 (void) __mm_populate(addr, len, 1);
2589}
2590#else
2591static inline void mm_populate(unsigned long addr, unsigned long len) {}
2592#endif
2593
e4eb1ff6 2594/* These take the mm semaphore themselves */
5d22fc25 2595extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2596extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2597extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2598extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2599 unsigned long, unsigned long,
2600 unsigned long, unsigned long);
1da177e4 2601
db4fbfb9
ML
2602struct vm_unmapped_area_info {
2603#define VM_UNMAPPED_AREA_TOPDOWN 1
2604 unsigned long flags;
2605 unsigned long length;
2606 unsigned long low_limit;
2607 unsigned long high_limit;
2608 unsigned long align_mask;
2609 unsigned long align_offset;
2610};
2611
baceaf1c 2612extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2613
85821aab 2614/* truncate.c */
1da177e4 2615extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2616extern void truncate_inode_pages_range(struct address_space *,
2617 loff_t lstart, loff_t lend);
91b0abe3 2618extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2619
2620/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2621extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2622extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2623 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2624extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2625
2626/* mm/page-writeback.c */
2b69c828 2627int __must_check write_one_page(struct page *page);
1cf6e7d8 2628void task_dirty_inc(struct task_struct *tsk);
1da177e4 2629
1be7107f 2630extern unsigned long stack_guard_gap;
d05f3169 2631/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2632extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2633
11192337 2634/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2635extern int expand_downwards(struct vm_area_struct *vma,
2636 unsigned long address);
8ca3eb08 2637#if VM_GROWSUP
46dea3d0 2638extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2639#else
fee7e49d 2640 #define expand_upwards(vma, address) (0)
9ab88515 2641#endif
1da177e4
LT
2642
2643/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2644extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2645extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2646 struct vm_area_struct **pprev);
2647
2648/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2649 NULL if none. Assume start_addr < end_addr. */
2650static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2651{
2652 struct vm_area_struct * vma = find_vma(mm,start_addr);
2653
2654 if (vma && end_addr <= vma->vm_start)
2655 vma = NULL;
2656 return vma;
2657}
2658
1be7107f
HD
2659static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2660{
2661 unsigned long vm_start = vma->vm_start;
2662
2663 if (vma->vm_flags & VM_GROWSDOWN) {
2664 vm_start -= stack_guard_gap;
2665 if (vm_start > vma->vm_start)
2666 vm_start = 0;
2667 }
2668 return vm_start;
2669}
2670
2671static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2672{
2673 unsigned long vm_end = vma->vm_end;
2674
2675 if (vma->vm_flags & VM_GROWSUP) {
2676 vm_end += stack_guard_gap;
2677 if (vm_end < vma->vm_end)
2678 vm_end = -PAGE_SIZE;
2679 }
2680 return vm_end;
2681}
2682
1da177e4
LT
2683static inline unsigned long vma_pages(struct vm_area_struct *vma)
2684{
2685 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2686}
2687
640708a2
PE
2688/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2689static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2690 unsigned long vm_start, unsigned long vm_end)
2691{
2692 struct vm_area_struct *vma = find_vma(mm, vm_start);
2693
2694 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2695 vma = NULL;
2696
2697 return vma;
2698}
2699
017b1660
MK
2700static inline bool range_in_vma(struct vm_area_struct *vma,
2701 unsigned long start, unsigned long end)
2702{
2703 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2704}
2705
bad849b3 2706#ifdef CONFIG_MMU
804af2cf 2707pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2708void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2709#else
2710static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2711{
2712 return __pgprot(0);
2713}
64e45507
PF
2714static inline void vma_set_page_prot(struct vm_area_struct *vma)
2715{
2716 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2717}
bad849b3
DH
2718#endif
2719
5877231f 2720#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2721unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2722 unsigned long start, unsigned long end);
2723#endif
2724
deceb6cd 2725struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2726int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2727 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2728int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2729int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2730 struct page **pages, unsigned long *num);
a667d745
SJ
2731int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2732 unsigned long num);
2733int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2734 unsigned long num);
ae2b01f3 2735vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2736 unsigned long pfn);
f5e6d1d5
MW
2737vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2738 unsigned long pfn, pgprot_t pgprot);
5d747637 2739vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2740 pfn_t pfn);
574c5b3d
TH
2741vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2742 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2743vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2744 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2745int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2746
1c8f4220
SJ
2747static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2748 unsigned long addr, struct page *page)
2749{
2750 int err = vm_insert_page(vma, addr, page);
2751
2752 if (err == -ENOMEM)
2753 return VM_FAULT_OOM;
2754 if (err < 0 && err != -EBUSY)
2755 return VM_FAULT_SIGBUS;
2756
2757 return VM_FAULT_NOPAGE;
2758}
2759
f8f6ae5d
JG
2760#ifndef io_remap_pfn_range
2761static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2762 unsigned long addr, unsigned long pfn,
2763 unsigned long size, pgprot_t prot)
2764{
2765 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2766}
2767#endif
2768
d97baf94
SJ
2769static inline vm_fault_t vmf_error(int err)
2770{
2771 if (err == -ENOMEM)
2772 return VM_FAULT_OOM;
2773 return VM_FAULT_SIGBUS;
2774}
2775
df06b37f
KB
2776struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2777 unsigned int foll_flags);
240aadee 2778
deceb6cd
HD
2779#define FOLL_WRITE 0x01 /* check pte is writable */
2780#define FOLL_TOUCH 0x02 /* mark page accessed */
2781#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2782#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2783#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2784#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2785 * and return without waiting upon it */
84d33df2 2786#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2787#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2788#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2789#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2790#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2791#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2792#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2793#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2794#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2795#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2796#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2797#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2798#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2799#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2800
2801/*
eddb1c22
JH
2802 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2803 * other. Here is what they mean, and how to use them:
932f4a63
IW
2804 *
2805 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2806 * period _often_ under userspace control. This is in contrast to
2807 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2808 *
2809 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2810 * lifetime enforced by the filesystem and we need guarantees that longterm
2811 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2812 * the filesystem. Ideas for this coordination include revoking the longterm
2813 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2814 * added after the problem with filesystems was found FS DAX VMAs are
2815 * specifically failed. Filesystem pages are still subject to bugs and use of
2816 * FOLL_LONGTERM should be avoided on those pages.
2817 *
2818 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2819 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2820 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2821 * is due to an incompatibility with the FS DAX check and
eddb1c22 2822 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2823 *
eddb1c22
JH
2824 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2825 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2826 * FOLL_LONGTERM is specified.
eddb1c22
JH
2827 *
2828 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2829 * but an additional pin counting system) will be invoked. This is intended for
2830 * anything that gets a page reference and then touches page data (for example,
2831 * Direct IO). This lets the filesystem know that some non-file-system entity is
2832 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2833 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2834 * a call to unpin_user_page().
eddb1c22
JH
2835 *
2836 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2837 * and separate refcounting mechanisms, however, and that means that each has
2838 * its own acquire and release mechanisms:
2839 *
2840 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2841 *
f1f6a7dd 2842 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2843 *
2844 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2845 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2846 * calls applied to them, and that's perfectly OK. This is a constraint on the
2847 * callers, not on the pages.)
2848 *
2849 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2850 * directly by the caller. That's in order to help avoid mismatches when
2851 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2852 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2853 *
72ef5e52 2854 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2855 */
1da177e4 2856
2b740303 2857static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2858{
2859 if (vm_fault & VM_FAULT_OOM)
2860 return -ENOMEM;
2861 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2862 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2863 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2864 return -EFAULT;
2865 return 0;
2866}
2867
8b1e0f81 2868typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2869extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2870 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2871extern int apply_to_existing_page_range(struct mm_struct *mm,
2872 unsigned long address, unsigned long size,
2873 pte_fn_t fn, void *data);
aee16b3c 2874
04013513 2875extern void init_mem_debugging_and_hardening(void);
8823b1db 2876#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
2877extern void __kernel_poison_pages(struct page *page, int numpages);
2878extern void __kernel_unpoison_pages(struct page *page, int numpages);
2879extern bool _page_poisoning_enabled_early;
2880DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2881static inline bool page_poisoning_enabled(void)
2882{
2883 return _page_poisoning_enabled_early;
2884}
2885/*
2886 * For use in fast paths after init_mem_debugging() has run, or when a
2887 * false negative result is not harmful when called too early.
2888 */
2889static inline bool page_poisoning_enabled_static(void)
2890{
2891 return static_branch_unlikely(&_page_poisoning_enabled);
2892}
2893static inline void kernel_poison_pages(struct page *page, int numpages)
2894{
2895 if (page_poisoning_enabled_static())
2896 __kernel_poison_pages(page, numpages);
2897}
2898static inline void kernel_unpoison_pages(struct page *page, int numpages)
2899{
2900 if (page_poisoning_enabled_static())
2901 __kernel_unpoison_pages(page, numpages);
2902}
8823b1db
LA
2903#else
2904static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d
VB
2905static inline bool page_poisoning_enabled_static(void) { return false; }
2906static inline void kernel_poison_pages(struct page *page, int numpages) { }
2907static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
2908#endif
2909
6471384a 2910DECLARE_STATIC_KEY_FALSE(init_on_alloc);
6471384a
AP
2911static inline bool want_init_on_alloc(gfp_t flags)
2912{
04013513 2913 if (static_branch_unlikely(&init_on_alloc))
6471384a
AP
2914 return true;
2915 return flags & __GFP_ZERO;
2916}
2917
6471384a 2918DECLARE_STATIC_KEY_FALSE(init_on_free);
6471384a
AP
2919static inline bool want_init_on_free(void)
2920{
04013513 2921 return static_branch_unlikely(&init_on_free);
6471384a
AP
2922}
2923
8e57f8ac
VB
2924extern bool _debug_pagealloc_enabled_early;
2925DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2926
2927static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2928{
2929 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2930 _debug_pagealloc_enabled_early;
2931}
2932
2933/*
2934 * For use in fast paths after init_debug_pagealloc() has run, or when a
2935 * false negative result is not harmful when called too early.
2936 */
2937static inline bool debug_pagealloc_enabled_static(void)
031bc574 2938{
96a2b03f
VB
2939 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2940 return false;
2941
2942 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2943}
2944
5d6ad668
MR
2945#ifdef CONFIG_DEBUG_PAGEALLOC
2946/*
2947 * To support DEBUG_PAGEALLOC architecture must ensure that
2948 * __kernel_map_pages() never fails
2949 */
d6332692
RE
2950extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2951
77bc7fd6
MR
2952static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2953{
2954 if (debug_pagealloc_enabled_static())
2955 __kernel_map_pages(page, numpages, 1);
2956}
2957
2958static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
2959{
2960 if (debug_pagealloc_enabled_static())
2961 __kernel_map_pages(page, numpages, 0);
2962}
5d6ad668 2963#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
2964static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
2965static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 2966#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2967
a6c19dfe 2968#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2969extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2970extern int in_gate_area_no_mm(unsigned long addr);
2971extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2972#else
a6c19dfe
AL
2973static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2974{
2975 return NULL;
2976}
2977static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2978static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2979{
2980 return 0;
2981}
1da177e4
LT
2982#endif /* __HAVE_ARCH_GATE_AREA */
2983
44a70ade
MH
2984extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2985
146732ce
JT
2986#ifdef CONFIG_SYSCTL
2987extern int sysctl_drop_caches;
32927393
CH
2988int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2989 loff_t *);
146732ce
JT
2990#endif
2991
cb731d6c
VD
2992void drop_slab(void);
2993void drop_slab_node(int nid);
9d0243bc 2994
7a9166e3
LY
2995#ifndef CONFIG_MMU
2996#define randomize_va_space 0
2997#else
a62eaf15 2998extern int randomize_va_space;
7a9166e3 2999#endif
a62eaf15 3000
045e72ac 3001const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3002#ifdef CONFIG_MMU
03252919 3003void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3004#else
3005static inline void print_vma_addr(char *prefix, unsigned long rip)
3006{
3007}
3008#endif
e6e5494c 3009
35fd1eb1 3010void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
3011struct page * __populate_section_memmap(unsigned long pfn,
3012 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3013pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3014p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3015pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3016pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
3017pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3018 struct vmem_altmap *altmap);
8f6aac41 3019void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3020struct vmem_altmap;
56993b4e
AK
3021void *vmemmap_alloc_block_buf(unsigned long size, int node,
3022 struct vmem_altmap *altmap);
8f6aac41 3023void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3024int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3025 int node, struct vmem_altmap *altmap);
7b73d978
CH
3026int vmemmap_populate(unsigned long start, unsigned long end, int node,
3027 struct vmem_altmap *altmap);
c2b91e2e 3028void vmemmap_populate_print_last(void);
0197518c 3029#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3030void vmemmap_free(unsigned long start, unsigned long end,
3031 struct vmem_altmap *altmap);
0197518c 3032#endif
46723bfa 3033void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3034 unsigned long nr_pages);
6a46079c 3035
82ba011b
AK
3036enum mf_flags {
3037 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3038 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3039 MF_MUST_KILL = 1 << 2,
cf870c70 3040 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3041};
83b57531
EB
3042extern int memory_failure(unsigned long pfn, int flags);
3043extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3044extern void memory_failure_queue_kick(int cpu);
847ce401 3045extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3046extern int sysctl_memory_failure_early_kill;
3047extern int sysctl_memory_failure_recovery;
facb6011 3048extern void shake_page(struct page *p, int access);
5844a486 3049extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3050extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3051
cc637b17
XX
3052
3053/*
3054 * Error handlers for various types of pages.
3055 */
cc3e2af4 3056enum mf_result {
cc637b17
XX
3057 MF_IGNORED, /* Error: cannot be handled */
3058 MF_FAILED, /* Error: handling failed */
3059 MF_DELAYED, /* Will be handled later */
3060 MF_RECOVERED, /* Successfully recovered */
3061};
3062
3063enum mf_action_page_type {
3064 MF_MSG_KERNEL,
3065 MF_MSG_KERNEL_HIGH_ORDER,
3066 MF_MSG_SLAB,
3067 MF_MSG_DIFFERENT_COMPOUND,
3068 MF_MSG_POISONED_HUGE,
3069 MF_MSG_HUGE,
3070 MF_MSG_FREE_HUGE,
31286a84 3071 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3072 MF_MSG_UNMAP_FAILED,
3073 MF_MSG_DIRTY_SWAPCACHE,
3074 MF_MSG_CLEAN_SWAPCACHE,
3075 MF_MSG_DIRTY_MLOCKED_LRU,
3076 MF_MSG_CLEAN_MLOCKED_LRU,
3077 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3078 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3079 MF_MSG_DIRTY_LRU,
3080 MF_MSG_CLEAN_LRU,
3081 MF_MSG_TRUNCATED_LRU,
3082 MF_MSG_BUDDY,
3083 MF_MSG_BUDDY_2ND,
6100e34b 3084 MF_MSG_DAX,
5d1fd5dc 3085 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3086 MF_MSG_UNKNOWN,
3087};
3088
47ad8475
AA
3089#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3090extern void clear_huge_page(struct page *page,
c79b57e4 3091 unsigned long addr_hint,
47ad8475
AA
3092 unsigned int pages_per_huge_page);
3093extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3094 unsigned long addr_hint,
3095 struct vm_area_struct *vma,
47ad8475 3096 unsigned int pages_per_huge_page);
fa4d75c1
MK
3097extern long copy_huge_page_from_user(struct page *dst_page,
3098 const void __user *usr_src,
810a56b9
MK
3099 unsigned int pages_per_huge_page,
3100 bool allow_pagefault);
2484ca9b
THV
3101
3102/**
3103 * vma_is_special_huge - Are transhuge page-table entries considered special?
3104 * @vma: Pointer to the struct vm_area_struct to consider
3105 *
3106 * Whether transhuge page-table entries are considered "special" following
3107 * the definition in vm_normal_page().
3108 *
3109 * Return: true if transhuge page-table entries should be considered special,
3110 * false otherwise.
3111 */
3112static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3113{
3114 return vma_is_dax(vma) || (vma->vm_file &&
3115 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3116}
3117
47ad8475
AA
3118#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3119
c0a32fc5
SG
3120#ifdef CONFIG_DEBUG_PAGEALLOC
3121extern unsigned int _debug_guardpage_minorder;
96a2b03f 3122DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3123
3124static inline unsigned int debug_guardpage_minorder(void)
3125{
3126 return _debug_guardpage_minorder;
3127}
3128
e30825f1
JK
3129static inline bool debug_guardpage_enabled(void)
3130{
96a2b03f 3131 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3132}
3133
c0a32fc5
SG
3134static inline bool page_is_guard(struct page *page)
3135{
e30825f1
JK
3136 if (!debug_guardpage_enabled())
3137 return false;
3138
3972f6bb 3139 return PageGuard(page);
c0a32fc5
SG
3140}
3141#else
3142static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3143static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3144static inline bool page_is_guard(struct page *page) { return false; }
3145#endif /* CONFIG_DEBUG_PAGEALLOC */
3146
f9872caf
CS
3147#if MAX_NUMNODES > 1
3148void __init setup_nr_node_ids(void);
3149#else
3150static inline void setup_nr_node_ids(void) {}
3151#endif
3152
010c164a
SL
3153extern int memcmp_pages(struct page *page1, struct page *page2);
3154
3155static inline int pages_identical(struct page *page1, struct page *page2)
3156{
3157 return !memcmp_pages(page1, page2);
3158}
3159
c5acad84
TH
3160#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3161unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3162 pgoff_t first_index, pgoff_t nr,
3163 pgoff_t bitmap_pgoff,
3164 unsigned long *bitmap,
3165 pgoff_t *start,
3166 pgoff_t *end);
3167
3168unsigned long wp_shared_mapping_range(struct address_space *mapping,
3169 pgoff_t first_index, pgoff_t nr);
3170#endif
3171
2374c09b
CH
3172extern int sysctl_nr_trim_pages;
3173
1da177e4
LT
3174#endif /* __KERNEL__ */
3175#endif /* _LINUX_MM_H */