Linux 5.11-rc1
[linux-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4
LT
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
309381fe 9#include <linux/mmdebug.h>
1da177e4 10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
1da177e4
LT
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
83aeeada 15#include <linux/atomic.h>
9a11b49a 16#include <linux/debug_locks.h>
5b99cd0e 17#include <linux/mm_types.h>
9740ca4e 18#include <linux/mmap_lock.h>
08677214 19#include <linux/range.h>
c6f6b596 20#include <linux/pfn.h>
3565fce3 21#include <linux/percpu-refcount.h>
e9da73d6 22#include <linux/bit_spinlock.h>
b0d40c92 23#include <linux/shrinker.h>
9c599024 24#include <linux/resource.h>
e30825f1 25#include <linux/page_ext.h>
8025e5dd 26#include <linux/err.h>
41901567 27#include <linux/page-flags.h>
fe896d18 28#include <linux/page_ref.h>
7b2d55d2 29#include <linux/memremap.h>
3b3b1a29 30#include <linux/overflow.h>
b5420237 31#include <linux/sizes.h>
7969f226 32#include <linux/sched.h>
65fddcfc 33#include <linux/pgtable.h>
34303244 34#include <linux/kasan.h>
1da177e4
LT
35
36struct mempolicy;
37struct anon_vma;
bf181b9f 38struct anon_vma_chain;
4e950f6f 39struct file_ra_state;
e8edc6e0 40struct user_struct;
4e950f6f 41struct writeback_control;
682aa8e1 42struct bdi_writeback;
bce617ed 43struct pt_regs;
1da177e4 44
5ef64cc8
LT
45extern int sysctl_page_lock_unfairness;
46
597b7305
MH
47void init_mm_internals(void);
48
fccc9987 49#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 50extern unsigned long max_mapnr;
fccc9987
JL
51
52static inline void set_max_mapnr(unsigned long limit)
53{
54 max_mapnr = limit;
55}
56#else
57static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
58#endif
59
ca79b0c2
AK
60extern atomic_long_t _totalram_pages;
61static inline unsigned long totalram_pages(void)
62{
63 return (unsigned long)atomic_long_read(&_totalram_pages);
64}
65
66static inline void totalram_pages_inc(void)
67{
68 atomic_long_inc(&_totalram_pages);
69}
70
71static inline void totalram_pages_dec(void)
72{
73 atomic_long_dec(&_totalram_pages);
74}
75
76static inline void totalram_pages_add(long count)
77{
78 atomic_long_add(count, &_totalram_pages);
79}
80
1da177e4 81extern void * high_memory;
1da177e4
LT
82extern int page_cluster;
83
84#ifdef CONFIG_SYSCTL
85extern int sysctl_legacy_va_layout;
86#else
87#define sysctl_legacy_va_layout 0
88#endif
89
d07e2259
DC
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91extern const int mmap_rnd_bits_min;
92extern const int mmap_rnd_bits_max;
93extern int mmap_rnd_bits __read_mostly;
94#endif
95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96extern const int mmap_rnd_compat_bits_min;
97extern const int mmap_rnd_compat_bits_max;
98extern int mmap_rnd_compat_bits __read_mostly;
99#endif
100
1da177e4 101#include <asm/page.h>
1da177e4 102#include <asm/processor.h>
1da177e4 103
d9344522
AK
104/*
105 * Architectures that support memory tagging (assigning tags to memory regions,
106 * embedding these tags into addresses that point to these memory regions, and
107 * checking that the memory and the pointer tags match on memory accesses)
108 * redefine this macro to strip tags from pointers.
109 * It's defined as noop for arcitectures that don't support memory tagging.
110 */
111#ifndef untagged_addr
112#define untagged_addr(addr) (addr)
113#endif
114
79442ed1
TC
115#ifndef __pa_symbol
116#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
117#endif
118
1dff8083
AB
119#ifndef page_to_virt
120#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
121#endif
122
568c5fe5
LA
123#ifndef lm_alias
124#define lm_alias(x) __va(__pa_symbol(x))
125#endif
126
593befa6
DD
127/*
128 * To prevent common memory management code establishing
129 * a zero page mapping on a read fault.
130 * This macro should be defined within <asm/pgtable.h>.
131 * s390 does this to prevent multiplexing of hardware bits
132 * related to the physical page in case of virtualization.
133 */
134#ifndef mm_forbids_zeropage
135#define mm_forbids_zeropage(X) (0)
136#endif
137
a4a3ede2
PT
138/*
139 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
140 * If an architecture decides to implement their own version of
141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
142 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 143 */
5470dea4
AD
144#if BITS_PER_LONG == 64
145/* This function must be updated when the size of struct page grows above 80
146 * or reduces below 56. The idea that compiler optimizes out switch()
147 * statement, and only leaves move/store instructions. Also the compiler can
148 * combine write statments if they are both assignments and can be reordered,
149 * this can result in several of the writes here being dropped.
150 */
151#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
152static inline void __mm_zero_struct_page(struct page *page)
153{
154 unsigned long *_pp = (void *)page;
155
156 /* Check that struct page is either 56, 64, 72, or 80 bytes */
157 BUILD_BUG_ON(sizeof(struct page) & 7);
158 BUILD_BUG_ON(sizeof(struct page) < 56);
159 BUILD_BUG_ON(sizeof(struct page) > 80);
160
161 switch (sizeof(struct page)) {
162 case 80:
df561f66
GS
163 _pp[9] = 0;
164 fallthrough;
5470dea4 165 case 72:
df561f66
GS
166 _pp[8] = 0;
167 fallthrough;
5470dea4 168 case 64:
df561f66
GS
169 _pp[7] = 0;
170 fallthrough;
5470dea4
AD
171 case 56:
172 _pp[6] = 0;
173 _pp[5] = 0;
174 _pp[4] = 0;
175 _pp[3] = 0;
176 _pp[2] = 0;
177 _pp[1] = 0;
178 _pp[0] = 0;
179 }
180}
181#else
a4a3ede2
PT
182#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
183#endif
184
ea606cf5
AR
185/*
186 * Default maximum number of active map areas, this limits the number of vmas
187 * per mm struct. Users can overwrite this number by sysctl but there is a
188 * problem.
189 *
190 * When a program's coredump is generated as ELF format, a section is created
191 * per a vma. In ELF, the number of sections is represented in unsigned short.
192 * This means the number of sections should be smaller than 65535 at coredump.
193 * Because the kernel adds some informative sections to a image of program at
194 * generating coredump, we need some margin. The number of extra sections is
195 * 1-3 now and depends on arch. We use "5" as safe margin, here.
196 *
197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
198 * not a hard limit any more. Although some userspace tools can be surprised by
199 * that.
200 */
201#define MAPCOUNT_ELF_CORE_MARGIN (5)
202#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203
204extern int sysctl_max_map_count;
205
c9b1d098 206extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 207extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 208
49f0ce5f
JM
209extern int sysctl_overcommit_memory;
210extern int sysctl_overcommit_ratio;
211extern unsigned long sysctl_overcommit_kbytes;
212
32927393
CH
213int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 loff_t *);
215int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 loff_t *);
56f3547b
FT
217int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
218 loff_t *);
49f0ce5f 219
1da177e4
LT
220#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
221
27ac792c
AR
222/* to align the pointer to the (next) page boundary */
223#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224
0fa73b86 225/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 226#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 227
f86196ea
NB
228#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
229
1da177e4
LT
230/*
231 * Linux kernel virtual memory manager primitives.
232 * The idea being to have a "virtual" mm in the same way
233 * we have a virtual fs - giving a cleaner interface to the
234 * mm details, and allowing different kinds of memory mappings
235 * (from shared memory to executable loading to arbitrary
236 * mmap() functions).
237 */
238
490fc053 239struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
240struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
241void vm_area_free(struct vm_area_struct *);
c43692e8 242
1da177e4 243#ifndef CONFIG_MMU
8feae131
DH
244extern struct rb_root nommu_region_tree;
245extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
246
247extern unsigned int kobjsize(const void *objp);
248#endif
249
250/*
605d9288 251 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 252 * When changing, update also include/trace/events/mmflags.h
1da177e4 253 */
cc2383ec
KK
254#define VM_NONE 0x00000000
255
1da177e4
LT
256#define VM_READ 0x00000001 /* currently active flags */
257#define VM_WRITE 0x00000002
258#define VM_EXEC 0x00000004
259#define VM_SHARED 0x00000008
260
7e2cff42 261/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
262#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
263#define VM_MAYWRITE 0x00000020
264#define VM_MAYEXEC 0x00000040
265#define VM_MAYSHARE 0x00000080
266
267#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 268#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 269#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 270#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 271#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 272
1da177e4
LT
273#define VM_LOCKED 0x00002000
274#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
275
276 /* Used by sys_madvise() */
277#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
278#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
279
280#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
281#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 282#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 283#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 284#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 285#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 286#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 287#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 288#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 289#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 290
d9104d1c
CG
291#ifdef CONFIG_MEM_SOFT_DIRTY
292# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
293#else
294# define VM_SOFTDIRTY 0
295#endif
296
b379d790 297#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
298#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
299#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 300#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 301
63c17fb8
DH
302#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
303#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
304#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
305#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
306#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 307#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
63c17fb8
DH
308#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
309#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
310#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
311#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 312#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
63c17fb8
DH
313#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
314
5212213a 315#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
316# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
317# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 318# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
319# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
320# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
321#ifdef CONFIG_PPC
322# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
323#else
324# define VM_PKEY_BIT4 0
8f62c883 325#endif
5212213a
RP
326#endif /* CONFIG_ARCH_HAS_PKEYS */
327
328#if defined(CONFIG_X86)
329# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
330#elif defined(CONFIG_PPC)
331# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
332#elif defined(CONFIG_PARISC)
333# define VM_GROWSUP VM_ARCH_1
334#elif defined(CONFIG_IA64)
335# define VM_GROWSUP VM_ARCH_1
74a04967
KA
336#elif defined(CONFIG_SPARC64)
337# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
338# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
339#elif defined(CONFIG_ARM64)
340# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
341# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
342#elif !defined(CONFIG_MMU)
343# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
344#endif
345
9f341931
CM
346#if defined(CONFIG_ARM64_MTE)
347# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
348# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
349#else
350# define VM_MTE VM_NONE
351# define VM_MTE_ALLOWED VM_NONE
352#endif
353
cc2383ec
KK
354#ifndef VM_GROWSUP
355# define VM_GROWSUP VM_NONE
356#endif
357
a8bef8ff
MG
358/* Bits set in the VMA until the stack is in its final location */
359#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
360
c62da0c3
AK
361#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
362
363/* Common data flag combinations */
364#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
365 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
366#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
367 VM_MAYWRITE | VM_MAYEXEC)
368#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
369 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
370
371#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
372#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
373#endif
374
1da177e4
LT
375#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
376#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
377#endif
378
379#ifdef CONFIG_STACK_GROWSUP
30bdbb78 380#define VM_STACK VM_GROWSUP
1da177e4 381#else
30bdbb78 382#define VM_STACK VM_GROWSDOWN
1da177e4
LT
383#endif
384
30bdbb78
KK
385#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
386
6cb4d9a2
AK
387/* VMA basic access permission flags */
388#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
389
390
b291f000 391/*
78f11a25 392 * Special vmas that are non-mergable, non-mlock()able.
b291f000 393 */
9050d7eb 394#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 395
b4443772
AK
396/* This mask prevents VMA from being scanned with khugepaged */
397#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
398
a0715cc2
AT
399/* This mask defines which mm->def_flags a process can inherit its parent */
400#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
401
de60f5f1
EM
402/* This mask is used to clear all the VMA flags used by mlock */
403#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
404
2c2d57b5
KA
405/* Arch-specific flags to clear when updating VM flags on protection change */
406#ifndef VM_ARCH_CLEAR
407# define VM_ARCH_CLEAR VM_NONE
408#endif
409#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
410
1da177e4
LT
411/*
412 * mapping from the currently active vm_flags protection bits (the
413 * low four bits) to a page protection mask..
414 */
415extern pgprot_t protection_map[16];
416
c270a7ee
PX
417/**
418 * Fault flag definitions.
419 *
420 * @FAULT_FLAG_WRITE: Fault was a write fault.
421 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
422 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
c1e8d7c6 423 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
c270a7ee
PX
424 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
425 * @FAULT_FLAG_TRIED: The fault has been tried once.
426 * @FAULT_FLAG_USER: The fault originated in userspace.
427 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
428 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
429 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
4064b982
PX
430 *
431 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
432 * whether we would allow page faults to retry by specifying these two
433 * fault flags correctly. Currently there can be three legal combinations:
434 *
435 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
436 * this is the first try
437 *
438 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
439 * we've already tried at least once
440 *
441 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
442 *
443 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
444 * be used. Note that page faults can be allowed to retry for multiple times,
445 * in which case we'll have an initial fault with flags (a) then later on
446 * continuous faults with flags (b). We should always try to detect pending
447 * signals before a retry to make sure the continuous page faults can still be
448 * interrupted if necessary.
c270a7ee
PX
449 */
450#define FAULT_FLAG_WRITE 0x01
451#define FAULT_FLAG_MKWRITE 0x02
452#define FAULT_FLAG_ALLOW_RETRY 0x04
453#define FAULT_FLAG_RETRY_NOWAIT 0x08
454#define FAULT_FLAG_KILLABLE 0x10
455#define FAULT_FLAG_TRIED 0x20
456#define FAULT_FLAG_USER 0x40
457#define FAULT_FLAG_REMOTE 0x80
458#define FAULT_FLAG_INSTRUCTION 0x100
459#define FAULT_FLAG_INTERRUPTIBLE 0x200
d0217ac0 460
dde16072
PX
461/*
462 * The default fault flags that should be used by most of the
463 * arch-specific page fault handlers.
464 */
465#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
466 FAULT_FLAG_KILLABLE | \
467 FAULT_FLAG_INTERRUPTIBLE)
dde16072 468
4064b982
PX
469/**
470 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
471 *
472 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 473 * the mmap_lock for too long a time when waiting for another condition
4064b982 474 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
475 * mmap_lock in the first round to avoid potential starvation of other
476 * processes that would also want the mmap_lock.
4064b982
PX
477 *
478 * Return: true if the page fault allows retry and this is the first
479 * attempt of the fault handling; false otherwise.
480 */
481static inline bool fault_flag_allow_retry_first(unsigned int flags)
482{
483 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
484 (!(flags & FAULT_FLAG_TRIED));
485}
486
282a8e03
RZ
487#define FAULT_FLAG_TRACE \
488 { FAULT_FLAG_WRITE, "WRITE" }, \
489 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
490 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
491 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
492 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
493 { FAULT_FLAG_TRIED, "TRIED" }, \
494 { FAULT_FLAG_USER, "USER" }, \
495 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee
PX
496 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
497 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
282a8e03 498
54cb8821 499/*
11192337 500 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
501 * ->fault function. The vma's ->fault is responsible for returning a bitmask
502 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 503 *
c20cd45e
MH
504 * MM layer fills up gfp_mask for page allocations but fault handler might
505 * alter it if its implementation requires a different allocation context.
506 *
9b4bdd2f 507 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 508 */
d0217ac0 509struct vm_fault {
82b0f8c3 510 struct vm_area_struct *vma; /* Target VMA */
d0217ac0 511 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 512 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0 513 pgoff_t pgoff; /* Logical page offset based on vma */
82b0f8c3 514 unsigned long address; /* Faulting virtual address */
82b0f8c3 515 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 516 * the 'address' */
a2d58167
DJ
517 pud_t *pud; /* Pointer to pud entry matching
518 * the 'address'
519 */
2994302b 520 pte_t orig_pte; /* Value of PTE at the time of fault */
d0217ac0 521
3917048d 522 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 523 struct page *page; /* ->fault handlers should return a
83c54070 524 * page here, unless VM_FAULT_NOPAGE
d0217ac0 525 * is set (which is also implied by
83c54070 526 * VM_FAULT_ERROR).
d0217ac0 527 */
82b0f8c3 528 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
529 pte_t *pte; /* Pointer to pte entry matching
530 * the 'address'. NULL if the page
531 * table hasn't been allocated.
532 */
533 spinlock_t *ptl; /* Page table lock.
534 * Protects pte page table if 'pte'
535 * is not NULL, otherwise pmd.
536 */
7267ec00
KS
537 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
538 * vm_ops->map_pages() calls
539 * alloc_set_pte() from atomic context.
540 * do_fault_around() pre-allocates
541 * page table to avoid allocation from
542 * atomic context.
543 */
54cb8821 544};
1da177e4 545
c791ace1
DJ
546/* page entry size for vm->huge_fault() */
547enum page_entry_size {
548 PE_SIZE_PTE = 0,
549 PE_SIZE_PMD,
550 PE_SIZE_PUD,
551};
552
1da177e4
LT
553/*
554 * These are the virtual MM functions - opening of an area, closing and
555 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 556 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
557 */
558struct vm_operations_struct {
559 void (*open)(struct vm_area_struct * area);
560 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
561 /* Called any time before splitting to check if it's allowed */
562 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
cd544fd1 563 int (*mremap)(struct vm_area_struct *area, unsigned long flags);
95bb7c42
SC
564 /*
565 * Called by mprotect() to make driver-specific permission
566 * checks before mprotect() is finalised. The VMA must not
567 * be modified. Returns 0 if eprotect() can proceed.
568 */
569 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
570 unsigned long end, unsigned long newflags);
1c8f4220
SJ
571 vm_fault_t (*fault)(struct vm_fault *vmf);
572 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
573 enum page_entry_size pe_size);
82b0f8c3 574 void (*map_pages)(struct vm_fault *vmf,
bae473a4 575 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 576 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
577
578 /* notification that a previously read-only page is about to become
579 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 580 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 581
dd906184 582 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 583 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 584
28b2ee20
RR
585 /* called by access_process_vm when get_user_pages() fails, typically
586 * for use by special VMAs that can switch between memory and hardware
587 */
588 int (*access)(struct vm_area_struct *vma, unsigned long addr,
589 void *buf, int len, int write);
78d683e8
AL
590
591 /* Called by the /proc/PID/maps code to ask the vma whether it
592 * has a special name. Returning non-NULL will also cause this
593 * vma to be dumped unconditionally. */
594 const char *(*name)(struct vm_area_struct *vma);
595
1da177e4 596#ifdef CONFIG_NUMA
a6020ed7
LS
597 /*
598 * set_policy() op must add a reference to any non-NULL @new mempolicy
599 * to hold the policy upon return. Caller should pass NULL @new to
600 * remove a policy and fall back to surrounding context--i.e. do not
601 * install a MPOL_DEFAULT policy, nor the task or system default
602 * mempolicy.
603 */
1da177e4 604 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
605
606 /*
607 * get_policy() op must add reference [mpol_get()] to any policy at
608 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
609 * in mm/mempolicy.c will do this automatically.
610 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 611 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
612 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
613 * must return NULL--i.e., do not "fallback" to task or system default
614 * policy.
615 */
1da177e4
LT
616 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
617 unsigned long addr);
618#endif
667a0a06
DV
619 /*
620 * Called by vm_normal_page() for special PTEs to find the
621 * page for @addr. This is useful if the default behavior
622 * (using pte_page()) would not find the correct page.
623 */
624 struct page *(*find_special_page)(struct vm_area_struct *vma,
625 unsigned long addr);
1da177e4
LT
626};
627
027232da
KS
628static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
629{
bfd40eaf
KS
630 static const struct vm_operations_struct dummy_vm_ops = {};
631
a670468f 632 memset(vma, 0, sizeof(*vma));
027232da 633 vma->vm_mm = mm;
bfd40eaf 634 vma->vm_ops = &dummy_vm_ops;
027232da
KS
635 INIT_LIST_HEAD(&vma->anon_vma_chain);
636}
637
bfd40eaf
KS
638static inline void vma_set_anonymous(struct vm_area_struct *vma)
639{
640 vma->vm_ops = NULL;
641}
642
43675e6f
YS
643static inline bool vma_is_anonymous(struct vm_area_struct *vma)
644{
645 return !vma->vm_ops;
646}
647
222100ee
AK
648static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
649{
650 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
651
652 if (!maybe_stack)
653 return false;
654
655 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
656 VM_STACK_INCOMPLETE_SETUP)
657 return true;
658
659 return false;
660}
661
7969f226
AK
662static inline bool vma_is_foreign(struct vm_area_struct *vma)
663{
664 if (!current->mm)
665 return true;
666
667 if (current->mm != vma->vm_mm)
668 return true;
669
670 return false;
671}
3122e80e
AK
672
673static inline bool vma_is_accessible(struct vm_area_struct *vma)
674{
6cb4d9a2 675 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
676}
677
43675e6f
YS
678#ifdef CONFIG_SHMEM
679/*
680 * The vma_is_shmem is not inline because it is used only by slow
681 * paths in userfault.
682 */
683bool vma_is_shmem(struct vm_area_struct *vma);
684#else
685static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
686#endif
687
688int vma_is_stack_for_current(struct vm_area_struct *vma);
689
8b11ec1b
LT
690/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
691#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
692
1da177e4
LT
693struct mmu_gather;
694struct inode;
695
71e3aac0 696#include <linux/huge_mm.h>
1da177e4
LT
697
698/*
699 * Methods to modify the page usage count.
700 *
701 * What counts for a page usage:
702 * - cache mapping (page->mapping)
703 * - private data (page->private)
704 * - page mapped in a task's page tables, each mapping
705 * is counted separately
706 *
707 * Also, many kernel routines increase the page count before a critical
708 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
709 */
710
711/*
da6052f7 712 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 713 */
7c8ee9a8
NP
714static inline int put_page_testzero(struct page *page)
715{
fe896d18
JK
716 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
717 return page_ref_dec_and_test(page);
7c8ee9a8 718}
1da177e4
LT
719
720/*
7c8ee9a8
NP
721 * Try to grab a ref unless the page has a refcount of zero, return false if
722 * that is the case.
8e0861fa
AK
723 * This can be called when MMU is off so it must not access
724 * any of the virtual mappings.
1da177e4 725 */
7c8ee9a8
NP
726static inline int get_page_unless_zero(struct page *page)
727{
fe896d18 728 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 729}
1da177e4 730
53df8fdc 731extern int page_is_ram(unsigned long pfn);
124fe20d
DW
732
733enum {
734 REGION_INTERSECTS,
735 REGION_DISJOINT,
736 REGION_MIXED,
737};
738
1c29f25b
TK
739int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
740 unsigned long desc);
53df8fdc 741
48667e7a 742/* Support for virtually mapped pages */
b3bdda02
CL
743struct page *vmalloc_to_page(const void *addr);
744unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 745
0738c4bb
PM
746/*
747 * Determine if an address is within the vmalloc range
748 *
749 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
750 * is no special casing required.
751 */
9bd3bb67
AK
752
753#ifndef is_ioremap_addr
754#define is_ioremap_addr(x) is_vmalloc_addr(x)
755#endif
756
81ac3ad9 757#ifdef CONFIG_MMU
186525bd 758extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
759extern int is_vmalloc_or_module_addr(const void *x);
760#else
186525bd
IM
761static inline bool is_vmalloc_addr(const void *x)
762{
763 return false;
764}
934831d0 765static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
766{
767 return 0;
768}
769#endif
9e2779fa 770
a7c3e901
MH
771extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
772static inline void *kvmalloc(size_t size, gfp_t flags)
773{
774 return kvmalloc_node(size, flags, NUMA_NO_NODE);
775}
776static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
777{
778 return kvmalloc_node(size, flags | __GFP_ZERO, node);
779}
780static inline void *kvzalloc(size_t size, gfp_t flags)
781{
782 return kvmalloc(size, flags | __GFP_ZERO);
783}
784
752ade68
MH
785static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
786{
3b3b1a29
KC
787 size_t bytes;
788
789 if (unlikely(check_mul_overflow(n, size, &bytes)))
752ade68
MH
790 return NULL;
791
3b3b1a29 792 return kvmalloc(bytes, flags);
752ade68
MH
793}
794
1c542f38
KC
795static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
796{
797 return kvmalloc_array(n, size, flags | __GFP_ZERO);
798}
799
39f1f78d 800extern void kvfree(const void *addr);
d4eaa283 801extern void kvfree_sensitive(const void *addr, size_t len);
39f1f78d 802
bac3cf4d 803static inline int head_compound_mapcount(struct page *head)
6dc5ea16
JH
804{
805 return atomic_read(compound_mapcount_ptr(head)) + 1;
806}
807
6988f31d
KK
808/*
809 * Mapcount of compound page as a whole, does not include mapped sub-pages.
810 *
811 * Must be called only for compound pages or any their tail sub-pages.
812 */
53f9263b
KS
813static inline int compound_mapcount(struct page *page)
814{
5f527c2b 815 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b 816 page = compound_head(page);
bac3cf4d 817 return head_compound_mapcount(page);
53f9263b
KS
818}
819
70b50f94
AA
820/*
821 * The atomic page->_mapcount, starts from -1: so that transitions
822 * both from it and to it can be tracked, using atomic_inc_and_test
823 * and atomic_add_negative(-1).
824 */
22b751c3 825static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
826{
827 atomic_set(&(page)->_mapcount, -1);
828}
829
b20ce5e0
KS
830int __page_mapcount(struct page *page);
831
6988f31d
KK
832/*
833 * Mapcount of 0-order page; when compound sub-page, includes
834 * compound_mapcount().
835 *
836 * Result is undefined for pages which cannot be mapped into userspace.
837 * For example SLAB or special types of pages. See function page_has_type().
838 * They use this place in struct page differently.
839 */
70b50f94
AA
840static inline int page_mapcount(struct page *page)
841{
b20ce5e0
KS
842 if (unlikely(PageCompound(page)))
843 return __page_mapcount(page);
844 return atomic_read(&page->_mapcount) + 1;
845}
846
847#ifdef CONFIG_TRANSPARENT_HUGEPAGE
848int total_mapcount(struct page *page);
6d0a07ed 849int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
850#else
851static inline int total_mapcount(struct page *page)
852{
853 return page_mapcount(page);
70b50f94 854}
6d0a07ed
AA
855static inline int page_trans_huge_mapcount(struct page *page,
856 int *total_mapcount)
857{
858 int mapcount = page_mapcount(page);
859 if (total_mapcount)
860 *total_mapcount = mapcount;
861 return mapcount;
862}
b20ce5e0 863#endif
70b50f94 864
b49af68f
CL
865static inline struct page *virt_to_head_page(const void *x)
866{
867 struct page *page = virt_to_page(x);
ccaafd7f 868
1d798ca3 869 return compound_head(page);
b49af68f
CL
870}
871
ddc58f27
KS
872void __put_page(struct page *page);
873
1d7ea732 874void put_pages_list(struct list_head *pages);
1da177e4 875
8dfcc9ba 876void split_page(struct page *page, unsigned int order);
8dfcc9ba 877
33f2ef89
AW
878/*
879 * Compound pages have a destructor function. Provide a
880 * prototype for that function and accessor functions.
f1e61557 881 * These are _only_ valid on the head of a compound page.
33f2ef89 882 */
f1e61557
KS
883typedef void compound_page_dtor(struct page *);
884
885/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
886enum compound_dtor_id {
887 NULL_COMPOUND_DTOR,
888 COMPOUND_PAGE_DTOR,
889#ifdef CONFIG_HUGETLB_PAGE
890 HUGETLB_PAGE_DTOR,
9a982250
KS
891#endif
892#ifdef CONFIG_TRANSPARENT_HUGEPAGE
893 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
894#endif
895 NR_COMPOUND_DTORS,
896};
ae70eddd 897extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
33f2ef89
AW
898
899static inline void set_compound_page_dtor(struct page *page,
f1e61557 900 enum compound_dtor_id compound_dtor)
33f2ef89 901{
f1e61557
KS
902 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
903 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
904}
905
ff45fc3c 906static inline void destroy_compound_page(struct page *page)
33f2ef89 907{
f1e61557 908 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
ff45fc3c 909 compound_page_dtors[page[1].compound_dtor](page);
33f2ef89
AW
910}
911
d00181b9 912static inline unsigned int compound_order(struct page *page)
d85f3385 913{
6d777953 914 if (!PageHead(page))
d85f3385 915 return 0;
e4b294c2 916 return page[1].compound_order;
d85f3385
CL
917}
918
47e29d32
JH
919static inline bool hpage_pincount_available(struct page *page)
920{
921 /*
922 * Can the page->hpage_pinned_refcount field be used? That field is in
923 * the 3rd page of the compound page, so the smallest (2-page) compound
924 * pages cannot support it.
925 */
926 page = compound_head(page);
927 return PageCompound(page) && compound_order(page) > 1;
928}
929
bac3cf4d 930static inline int head_compound_pincount(struct page *head)
6dc5ea16
JH
931{
932 return atomic_read(compound_pincount_ptr(head));
933}
934
47e29d32
JH
935static inline int compound_pincount(struct page *page)
936{
937 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
938 page = compound_head(page);
bac3cf4d 939 return head_compound_pincount(page);
47e29d32
JH
940}
941
f1e61557 942static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 943{
e4b294c2 944 page[1].compound_order = order;
1378a5ee 945 page[1].compound_nr = 1U << order;
d85f3385
CL
946}
947
d8c6546b
MWO
948/* Returns the number of pages in this potentially compound page. */
949static inline unsigned long compound_nr(struct page *page)
950{
1378a5ee
MWO
951 if (!PageHead(page))
952 return 1;
953 return page[1].compound_nr;
d8c6546b
MWO
954}
955
a50b854e
MWO
956/* Returns the number of bytes in this potentially compound page. */
957static inline unsigned long page_size(struct page *page)
958{
959 return PAGE_SIZE << compound_order(page);
960}
961
94ad9338
MWO
962/* Returns the number of bits needed for the number of bytes in a page */
963static inline unsigned int page_shift(struct page *page)
964{
965 return PAGE_SHIFT + compound_order(page);
966}
967
9a982250
KS
968void free_compound_page(struct page *page);
969
3dece370 970#ifdef CONFIG_MMU
14fd403f
AA
971/*
972 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
973 * servicing faults for write access. In the normal case, do always want
974 * pte_mkwrite. But get_user_pages can cause write faults for mappings
975 * that do not have writing enabled, when used by access_process_vm.
976 */
977static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
978{
979 if (likely(vma->vm_flags & VM_WRITE))
980 pte = pte_mkwrite(pte);
981 return pte;
982}
8c6e50b0 983
9d82c694 984vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
2b740303
SJ
985vm_fault_t finish_fault(struct vm_fault *vmf);
986vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
3dece370 987#endif
14fd403f 988
1da177e4
LT
989/*
990 * Multiple processes may "see" the same page. E.g. for untouched
991 * mappings of /dev/null, all processes see the same page full of
992 * zeroes, and text pages of executables and shared libraries have
993 * only one copy in memory, at most, normally.
994 *
995 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
996 * page_count() == 0 means the page is free. page->lru is then used for
997 * freelist management in the buddy allocator.
da6052f7 998 * page_count() > 0 means the page has been allocated.
1da177e4 999 *
da6052f7
NP
1000 * Pages are allocated by the slab allocator in order to provide memory
1001 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1002 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1003 * unless a particular usage is carefully commented. (the responsibility of
1004 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1005 *
da6052f7
NP
1006 * A page may be used by anyone else who does a __get_free_page().
1007 * In this case, page_count still tracks the references, and should only
1008 * be used through the normal accessor functions. The top bits of page->flags
1009 * and page->virtual store page management information, but all other fields
1010 * are unused and could be used privately, carefully. The management of this
1011 * page is the responsibility of the one who allocated it, and those who have
1012 * subsequently been given references to it.
1013 *
1014 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1015 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1016 * The following discussion applies only to them.
1017 *
da6052f7
NP
1018 * A pagecache page contains an opaque `private' member, which belongs to the
1019 * page's address_space. Usually, this is the address of a circular list of
1020 * the page's disk buffers. PG_private must be set to tell the VM to call
1021 * into the filesystem to release these pages.
1da177e4 1022 *
da6052f7
NP
1023 * A page may belong to an inode's memory mapping. In this case, page->mapping
1024 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1025 * in units of PAGE_SIZE.
1da177e4 1026 *
da6052f7
NP
1027 * If pagecache pages are not associated with an inode, they are said to be
1028 * anonymous pages. These may become associated with the swapcache, and in that
1029 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1030 *
da6052f7
NP
1031 * In either case (swapcache or inode backed), the pagecache itself holds one
1032 * reference to the page. Setting PG_private should also increment the
1033 * refcount. The each user mapping also has a reference to the page.
1da177e4 1034 *
da6052f7 1035 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1036 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1037 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1038 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1039 *
da6052f7 1040 * All pagecache pages may be subject to I/O:
1da177e4
LT
1041 * - inode pages may need to be read from disk,
1042 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1043 * to be written back to the inode on disk,
1044 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1045 * modified may need to be swapped out to swap space and (later) to be read
1046 * back into memory.
1da177e4
LT
1047 */
1048
1049/*
1050 * The zone field is never updated after free_area_init_core()
1051 * sets it, so none of the operations on it need to be atomic.
1da177e4 1052 */
348f8b6c 1053
90572890 1054/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 1055#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
1056#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1057#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 1058#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
2813b9c0 1059#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
d41dee36 1060
348f8b6c 1061/*
25985edc 1062 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
1063 * sections we define the shift as 0; that plus a 0 mask ensures
1064 * the compiler will optimise away reference to them.
1065 */
d41dee36
AW
1066#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1067#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1068#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 1069#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
2813b9c0 1070#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
348f8b6c 1071
bce54bbf
WD
1072/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1073#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 1074#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1075#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1076 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 1077#else
89689ae7 1078#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
1079#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1080 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
1081#endif
1082
bd8029b6 1083#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 1084
d41dee36
AW
1085#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1086#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1087#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 1088#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
2813b9c0 1089#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
89689ae7 1090#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 1091
33dd4e0e 1092static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 1093{
c403f6a3 1094 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
348f8b6c 1095 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 1096}
1da177e4 1097
260ae3f7
DW
1098#ifdef CONFIG_ZONE_DEVICE
1099static inline bool is_zone_device_page(const struct page *page)
1100{
1101 return page_zonenum(page) == ZONE_DEVICE;
1102}
966cf44f
AD
1103extern void memmap_init_zone_device(struct zone *, unsigned long,
1104 unsigned long, struct dev_pagemap *);
260ae3f7
DW
1105#else
1106static inline bool is_zone_device_page(const struct page *page)
1107{
1108 return false;
1109}
7b2d55d2 1110#endif
5042db43 1111
e7638488 1112#ifdef CONFIG_DEV_PAGEMAP_OPS
07d80269 1113void free_devmap_managed_page(struct page *page);
e7638488 1114DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269
JH
1115
1116static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1117{
1118 if (!static_branch_unlikely(&devmap_managed_key))
1119 return false;
1120 if (!is_zone_device_page(page))
1121 return false;
1122 switch (page->pgmap->type) {
1123 case MEMORY_DEVICE_PRIVATE:
e7638488 1124 case MEMORY_DEVICE_FS_DAX:
e7638488
DW
1125 return true;
1126 default:
1127 break;
1128 }
1129 return false;
1130}
1131
07d80269
JH
1132void put_devmap_managed_page(struct page *page);
1133
e7638488 1134#else /* CONFIG_DEV_PAGEMAP_OPS */
07d80269 1135static inline bool page_is_devmap_managed(struct page *page)
e7638488
DW
1136{
1137 return false;
1138}
07d80269
JH
1139
1140static inline void put_devmap_managed_page(struct page *page)
1141{
1142}
7588adf8 1143#endif /* CONFIG_DEV_PAGEMAP_OPS */
e7638488 1144
6b368cd4
JG
1145static inline bool is_device_private_page(const struct page *page)
1146{
7588adf8
RM
1147 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1148 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1149 is_zone_device_page(page) &&
1150 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
6b368cd4 1151}
e7638488 1152
52916982
LG
1153static inline bool is_pci_p2pdma_page(const struct page *page)
1154{
7588adf8
RM
1155 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1156 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1157 is_zone_device_page(page) &&
1158 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
52916982 1159}
7b2d55d2 1160
f958d7b5
LT
1161/* 127: arbitrary random number, small enough to assemble well */
1162#define page_ref_zero_or_close_to_overflow(page) \
1163 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1164
3565fce3
DW
1165static inline void get_page(struct page *page)
1166{
1167 page = compound_head(page);
1168 /*
1169 * Getting a normal page or the head of a compound page
0139aa7b 1170 * requires to already have an elevated page->_refcount.
3565fce3 1171 */
f958d7b5 1172 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
fe896d18 1173 page_ref_inc(page);
3565fce3
DW
1174}
1175
3faa52c0
JH
1176bool __must_check try_grab_page(struct page *page, unsigned int flags);
1177
88b1a17d
LT
1178static inline __must_check bool try_get_page(struct page *page)
1179{
1180 page = compound_head(page);
1181 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1182 return false;
fe896d18 1183 page_ref_inc(page);
88b1a17d 1184 return true;
3565fce3
DW
1185}
1186
1187static inline void put_page(struct page *page)
1188{
1189 page = compound_head(page);
1190
7b2d55d2 1191 /*
e7638488
DW
1192 * For devmap managed pages we need to catch refcount transition from
1193 * 2 to 1, when refcount reach one it means the page is free and we
1194 * need to inform the device driver through callback. See
7b2d55d2
JG
1195 * include/linux/memremap.h and HMM for details.
1196 */
07d80269
JH
1197 if (page_is_devmap_managed(page)) {
1198 put_devmap_managed_page(page);
7b2d55d2 1199 return;
07d80269 1200 }
7b2d55d2 1201
3565fce3
DW
1202 if (put_page_testzero(page))
1203 __put_page(page);
3565fce3
DW
1204}
1205
3faa52c0
JH
1206/*
1207 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1208 * the page's refcount so that two separate items are tracked: the original page
1209 * reference count, and also a new count of how many pin_user_pages() calls were
1210 * made against the page. ("gup-pinned" is another term for the latter).
1211 *
1212 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1213 * distinct from normal pages. As such, the unpin_user_page() call (and its
1214 * variants) must be used in order to release gup-pinned pages.
1215 *
1216 * Choice of value:
1217 *
1218 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1219 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1220 * simpler, due to the fact that adding an even power of two to the page
1221 * refcount has the effect of using only the upper N bits, for the code that
1222 * counts up using the bias value. This means that the lower bits are left for
1223 * the exclusive use of the original code that increments and decrements by one
1224 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1225 *
3faa52c0
JH
1226 * Of course, once the lower bits overflow into the upper bits (and this is
1227 * OK, because subtraction recovers the original values), then visual inspection
1228 * no longer suffices to directly view the separate counts. However, for normal
1229 * applications that don't have huge page reference counts, this won't be an
1230 * issue.
fc1d8e7c 1231 *
3faa52c0
JH
1232 * Locking: the lockless algorithm described in page_cache_get_speculative()
1233 * and page_cache_gup_pin_speculative() provides safe operation for
1234 * get_user_pages and page_mkclean and other calls that race to set up page
1235 * table entries.
fc1d8e7c 1236 */
3faa52c0 1237#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1238
3faa52c0 1239void unpin_user_page(struct page *page);
f1f6a7dd
JH
1240void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1241 bool make_dirty);
f1f6a7dd 1242void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1243
3faa52c0
JH
1244/**
1245 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1246 *
1247 * This function checks if a page has been pinned via a call to
1248 * pin_user_pages*().
1249 *
1250 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1251 * because it means "definitely not pinned for DMA", but true means "probably
1252 * pinned for DMA, but possibly a false positive due to having at least
1253 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1254 *
1255 * False positives are OK, because: a) it's unlikely for a page to get that many
1256 * refcounts, and b) all the callers of this routine are expected to be able to
1257 * deal gracefully with a false positive.
1258 *
47e29d32
JH
1259 * For huge pages, the result will be exactly correct. That's because we have
1260 * more tracking data available: the 3rd struct page in the compound page is
1261 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1262 * scheme).
1263 *
72ef5e52 1264 * For more information, please see Documentation/core-api/pin_user_pages.rst.
3faa52c0
JH
1265 *
1266 * @page: pointer to page to be queried.
1267 * @Return: True, if it is likely that the page has been "dma-pinned".
1268 * False, if the page is definitely not dma-pinned.
1269 */
1270static inline bool page_maybe_dma_pinned(struct page *page)
1271{
47e29d32
JH
1272 if (hpage_pincount_available(page))
1273 return compound_pincount(page) > 0;
1274
3faa52c0
JH
1275 /*
1276 * page_ref_count() is signed. If that refcount overflows, then
1277 * page_ref_count() returns a negative value, and callers will avoid
1278 * further incrementing the refcount.
1279 *
1280 * Here, for that overflow case, use the signed bit to count a little
1281 * bit higher via unsigned math, and thus still get an accurate result.
1282 */
1283 return ((unsigned int)page_ref_count(compound_head(page))) >=
1284 GUP_PIN_COUNTING_BIAS;
1285}
1286
9127ab4f
CS
1287#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1288#define SECTION_IN_PAGE_FLAGS
1289#endif
1290
89689ae7 1291/*
7a8010cd
VB
1292 * The identification function is mainly used by the buddy allocator for
1293 * determining if two pages could be buddies. We are not really identifying
1294 * the zone since we could be using the section number id if we do not have
1295 * node id available in page flags.
1296 * We only guarantee that it will return the same value for two combinable
1297 * pages in a zone.
89689ae7 1298 */
cb2b95e1
AW
1299static inline int page_zone_id(struct page *page)
1300{
89689ae7 1301 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1302}
1303
89689ae7 1304#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1305extern int page_to_nid(const struct page *page);
89689ae7 1306#else
33dd4e0e 1307static inline int page_to_nid(const struct page *page)
d41dee36 1308{
f165b378
PT
1309 struct page *p = (struct page *)page;
1310
1311 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1312}
89689ae7
CL
1313#endif
1314
57e0a030 1315#ifdef CONFIG_NUMA_BALANCING
90572890 1316static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1317{
90572890 1318 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1319}
1320
90572890 1321static inline int cpupid_to_pid(int cpupid)
57e0a030 1322{
90572890 1323 return cpupid & LAST__PID_MASK;
57e0a030 1324}
b795854b 1325
90572890 1326static inline int cpupid_to_cpu(int cpupid)
b795854b 1327{
90572890 1328 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1329}
1330
90572890 1331static inline int cpupid_to_nid(int cpupid)
b795854b 1332{
90572890 1333 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1334}
1335
90572890 1336static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1337{
90572890 1338 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1339}
1340
90572890 1341static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1342{
90572890 1343 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1344}
1345
8c8a743c
PZ
1346static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1347{
1348 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1349}
1350
1351#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
1352#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1353static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 1354{
1ae71d03 1355 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1356}
90572890
PZ
1357
1358static inline int page_cpupid_last(struct page *page)
1359{
1360 return page->_last_cpupid;
1361}
1362static inline void page_cpupid_reset_last(struct page *page)
b795854b 1363{
1ae71d03 1364 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1365}
1366#else
90572890 1367static inline int page_cpupid_last(struct page *page)
75980e97 1368{
90572890 1369 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1370}
1371
90572890 1372extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 1373
90572890 1374static inline void page_cpupid_reset_last(struct page *page)
75980e97 1375{
09940a4f 1376 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1377}
90572890
PZ
1378#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1379#else /* !CONFIG_NUMA_BALANCING */
1380static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 1381{
90572890 1382 return page_to_nid(page); /* XXX */
57e0a030
MG
1383}
1384
90572890 1385static inline int page_cpupid_last(struct page *page)
57e0a030 1386{
90572890 1387 return page_to_nid(page); /* XXX */
57e0a030
MG
1388}
1389
90572890 1390static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1391{
1392 return -1;
1393}
1394
90572890 1395static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1396{
1397 return -1;
1398}
1399
90572890 1400static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1401{
1402 return -1;
1403}
1404
90572890
PZ
1405static inline int cpu_pid_to_cpupid(int nid, int pid)
1406{
1407 return -1;
1408}
1409
1410static inline bool cpupid_pid_unset(int cpupid)
b795854b 1411{
2b787449 1412 return true;
b795854b
MG
1413}
1414
90572890 1415static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1416{
1417}
8c8a743c
PZ
1418
1419static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1420{
1421 return false;
1422}
90572890 1423#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1424
2e903b91 1425#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1426
2813b9c0
AK
1427static inline u8 page_kasan_tag(const struct page *page)
1428{
34303244
AK
1429 if (kasan_enabled())
1430 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1431 return 0xff;
2813b9c0
AK
1432}
1433
1434static inline void page_kasan_tag_set(struct page *page, u8 tag)
1435{
34303244
AK
1436 if (kasan_enabled()) {
1437 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1438 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1439 }
2813b9c0
AK
1440}
1441
1442static inline void page_kasan_tag_reset(struct page *page)
1443{
34303244
AK
1444 if (kasan_enabled())
1445 page_kasan_tag_set(page, 0xff);
2813b9c0 1446}
34303244
AK
1447
1448#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1449
2813b9c0
AK
1450static inline u8 page_kasan_tag(const struct page *page)
1451{
1452 return 0xff;
1453}
1454
1455static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1456static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1457
1458#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1459
33dd4e0e 1460static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1461{
1462 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1463}
1464
75ef7184
MG
1465static inline pg_data_t *page_pgdat(const struct page *page)
1466{
1467 return NODE_DATA(page_to_nid(page));
1468}
1469
9127ab4f 1470#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1471static inline void set_page_section(struct page *page, unsigned long section)
1472{
1473 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1474 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1475}
1476
aa462abe 1477static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1478{
1479 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1480}
308c05e3 1481#endif
d41dee36 1482
2f1b6248 1483static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
1484{
1485 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1486 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1487}
2f1b6248 1488
348f8b6c
DH
1489static inline void set_page_node(struct page *page, unsigned long node)
1490{
1491 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1492 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 1493}
89689ae7 1494
2f1b6248 1495static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 1496 unsigned long node, unsigned long pfn)
1da177e4 1497{
348f8b6c
DH
1498 set_page_zone(page, zone);
1499 set_page_node(page, node);
9127ab4f 1500#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 1501 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 1502#endif
1da177e4
LT
1503}
1504
f6ac2354
CL
1505/*
1506 * Some inline functions in vmstat.h depend on page_zone()
1507 */
1508#include <linux/vmstat.h>
1509
33dd4e0e 1510static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1511{
1dff8083 1512 return page_to_virt(page);
1da177e4
LT
1513}
1514
1515#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1516#define HASHED_PAGE_VIRTUAL
1517#endif
1518
1519#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1520static inline void *page_address(const struct page *page)
1521{
1522 return page->virtual;
1523}
1524static inline void set_page_address(struct page *page, void *address)
1525{
1526 page->virtual = address;
1527}
1da177e4
LT
1528#define page_address_init() do { } while(0)
1529#endif
1530
1531#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1532void *page_address(const struct page *page);
1da177e4
LT
1533void set_page_address(struct page *page, void *virtual);
1534void page_address_init(void);
1535#endif
1536
1537#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1538#define page_address(page) lowmem_page_address(page)
1539#define set_page_address(page, address) do { } while(0)
1540#define page_address_init() do { } while(0)
1541#endif
1542
e39155ea
KS
1543extern void *page_rmapping(struct page *page);
1544extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1545extern struct address_space *page_mapping(struct page *page);
1da177e4 1546
f981c595
MG
1547extern struct address_space *__page_file_mapping(struct page *);
1548
1549static inline
1550struct address_space *page_file_mapping(struct page *page)
1551{
1552 if (unlikely(PageSwapCache(page)))
1553 return __page_file_mapping(page);
1554
1555 return page->mapping;
1556}
1557
f6ab1f7f
HY
1558extern pgoff_t __page_file_index(struct page *page);
1559
1da177e4
LT
1560/*
1561 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 1562 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
1563 */
1564static inline pgoff_t page_index(struct page *page)
1565{
1566 if (unlikely(PageSwapCache(page)))
f6ab1f7f 1567 return __page_file_index(page);
1da177e4
LT
1568 return page->index;
1569}
1570
1aa8aea5 1571bool page_mapped(struct page *page);
bda807d4 1572struct address_space *page_mapping(struct page *page);
cb9f753a 1573struct address_space *page_mapping_file(struct page *page);
1da177e4 1574
2f064f34
MH
1575/*
1576 * Return true only if the page has been allocated with
1577 * ALLOC_NO_WATERMARKS and the low watermark was not
1578 * met implying that the system is under some pressure.
1579 */
1580static inline bool page_is_pfmemalloc(struct page *page)
1581{
1582 /*
1583 * Page index cannot be this large so this must be
1584 * a pfmemalloc page.
1585 */
1586 return page->index == -1UL;
1587}
1588
1589/*
1590 * Only to be called by the page allocator on a freshly allocated
1591 * page.
1592 */
1593static inline void set_page_pfmemalloc(struct page *page)
1594{
1595 page->index = -1UL;
1596}
1597
1598static inline void clear_page_pfmemalloc(struct page *page)
1599{
1600 page->index = 0;
1601}
1602
1c0fe6e3
NP
1603/*
1604 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1605 */
1606extern void pagefault_out_of_memory(void);
1607
1da177e4 1608#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 1609#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1da177e4 1610
ddd588b5 1611/*
7bf02ea2 1612 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1613 * various contexts.
1614 */
4b59e6c4 1615#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1616
9af744d7 1617extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1da177e4 1618
710ec38b 1619#ifdef CONFIG_MMU
7f43add4 1620extern bool can_do_mlock(void);
710ec38b
AB
1621#else
1622static inline bool can_do_mlock(void) { return false; }
1623#endif
1da177e4
LT
1624extern int user_shm_lock(size_t, struct user_struct *);
1625extern void user_shm_unlock(size_t, struct user_struct *);
1626
1627/*
1628 * Parameter block passed down to zap_pte_range in exceptional cases.
1629 */
1630struct zap_details {
1da177e4
LT
1631 struct address_space *check_mapping; /* Check page->mapping if set */
1632 pgoff_t first_index; /* Lowest page->index to unmap */
1633 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1634};
1635
25b2995a
CH
1636struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1637 pte_t pte);
28093f9f
GS
1638struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1639 pmd_t pmd);
7e675137 1640
27d036e3
LR
1641void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1642 unsigned long size);
14f5ff5d 1643void zap_page_range(struct vm_area_struct *vma, unsigned long address,
27d036e3 1644 unsigned long size);
4f74d2c8
LT
1645void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1646 unsigned long start, unsigned long end);
e6473092 1647
ac46d4f3
JG
1648struct mmu_notifier_range;
1649
42b77728 1650void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1651 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
1652int
1653copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed
CH
1654int follow_pte(struct mm_struct *mm, unsigned long address,
1655 struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp,
1656 spinlock_t **ptlp);
3b6748e2
JW
1657int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1658 unsigned long *pfn);
d87fe660 1659int follow_phys(struct vm_area_struct *vma, unsigned long address,
1660 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1661int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1662 void *buf, int len, int write);
1da177e4 1663
7caef267 1664extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1665extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1666void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1667void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1668int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1669int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1670int invalidate_inode_page(struct page *page);
1671
7ee1dd3f 1672#ifdef CONFIG_MMU
2b740303 1673extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1674 unsigned long address, unsigned int flags,
1675 struct pt_regs *regs);
64019a2e 1676extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1677 unsigned long address, unsigned int fault_flags,
1678 bool *unlocked);
977fbdcd
MW
1679void unmap_mapping_pages(struct address_space *mapping,
1680 pgoff_t start, pgoff_t nr, bool even_cows);
1681void unmap_mapping_range(struct address_space *mapping,
1682 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 1683#else
2b740303 1684static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
1685 unsigned long address, unsigned int flags,
1686 struct pt_regs *regs)
7ee1dd3f
DH
1687{
1688 /* should never happen if there's no MMU */
1689 BUG();
1690 return VM_FAULT_SIGBUS;
1691}
64019a2e 1692static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 1693 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1694{
1695 /* should never happen if there's no MMU */
1696 BUG();
1697 return -EFAULT;
1698}
977fbdcd
MW
1699static inline void unmap_mapping_pages(struct address_space *mapping,
1700 pgoff_t start, pgoff_t nr, bool even_cows) { }
1701static inline void unmap_mapping_range(struct address_space *mapping,
1702 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 1703#endif
f33ea7f4 1704
977fbdcd
MW
1705static inline void unmap_shared_mapping_range(struct address_space *mapping,
1706 loff_t const holebegin, loff_t const holelen)
1707{
1708 unmap_mapping_range(mapping, holebegin, holelen, 0);
1709}
1710
1711extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1712 void *buf, int len, unsigned int gup_flags);
5ddd36b9 1713extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 1714 void *buf, int len, unsigned int gup_flags);
d3f5ffca
JH
1715extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1716 void *buf, int len, unsigned int gup_flags);
1da177e4 1717
64019a2e 1718long get_user_pages_remote(struct mm_struct *mm,
1e987790 1719 unsigned long start, unsigned long nr_pages,
9beae1ea 1720 unsigned int gup_flags, struct page **pages,
5b56d49f 1721 struct vm_area_struct **vmas, int *locked);
64019a2e 1722long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1723 unsigned long start, unsigned long nr_pages,
1724 unsigned int gup_flags, struct page **pages,
1725 struct vm_area_struct **vmas, int *locked);
c12d2da5 1726long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1727 unsigned int gup_flags, struct page **pages,
cde70140 1728 struct vm_area_struct **vmas);
eddb1c22
JH
1729long pin_user_pages(unsigned long start, unsigned long nr_pages,
1730 unsigned int gup_flags, struct page **pages,
1731 struct vm_area_struct **vmas);
c12d2da5 1732long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 1733 unsigned int gup_flags, struct page **pages, int *locked);
420c2091
JH
1734long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1735 unsigned int gup_flags, struct page **pages, int *locked);
c12d2da5 1736long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 1737 struct page **pages, unsigned int gup_flags);
91429023
JH
1738long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1739 struct page **pages, unsigned int gup_flags);
9a4e9f3b 1740
73b0140b
IW
1741int get_user_pages_fast(unsigned long start, int nr_pages,
1742 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
1743int pin_user_pages_fast(unsigned long start, int nr_pages,
1744 unsigned int gup_flags, struct page **pages);
8025e5dd 1745
79eb597c
DJ
1746int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1747int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1748 struct task_struct *task, bool bypass_rlim);
1749
8025e5dd
JK
1750/* Container for pinned pfns / pages */
1751struct frame_vector {
1752 unsigned int nr_allocated; /* Number of frames we have space for */
1753 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1754 bool got_ref; /* Did we pin pages by getting page ref? */
1755 bool is_pfns; /* Does array contain pages or pfns? */
57e86fa1 1756 void *ptrs[]; /* Array of pinned pfns / pages. Use
8025e5dd
JK
1757 * pfns_vector_pages() or pfns_vector_pfns()
1758 * for access */
1759};
1760
1761struct frame_vector *frame_vector_create(unsigned int nr_frames);
1762void frame_vector_destroy(struct frame_vector *vec);
1763int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
7f23b350 1764 unsigned int gup_flags, struct frame_vector *vec);
8025e5dd
JK
1765void put_vaddr_frames(struct frame_vector *vec);
1766int frame_vector_to_pages(struct frame_vector *vec);
1767void frame_vector_to_pfns(struct frame_vector *vec);
1768
1769static inline unsigned int frame_vector_count(struct frame_vector *vec)
1770{
1771 return vec->nr_frames;
1772}
1773
1774static inline struct page **frame_vector_pages(struct frame_vector *vec)
1775{
1776 if (vec->is_pfns) {
1777 int err = frame_vector_to_pages(vec);
1778
1779 if (err)
1780 return ERR_PTR(err);
1781 }
1782 return (struct page **)(vec->ptrs);
1783}
1784
1785static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1786{
1787 if (!vec->is_pfns)
1788 frame_vector_to_pfns(vec);
1789 return (unsigned long *)(vec->ptrs);
1790}
1791
18022c5d
MG
1792struct kvec;
1793int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1794 struct page **pages);
1795int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1796struct page *get_dump_page(unsigned long addr);
1da177e4 1797
cf9a2ae8 1798extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1799extern void do_invalidatepage(struct page *page, unsigned int offset,
1800 unsigned int length);
cf9a2ae8 1801
f82b3764 1802void __set_page_dirty(struct page *, struct address_space *, int warn);
1da177e4 1803int __set_page_dirty_nobuffers(struct page *page);
76719325 1804int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1805int redirty_page_for_writepage(struct writeback_control *wbc,
1806 struct page *page);
62cccb8c 1807void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1808void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1809 struct bdi_writeback *wb);
b3c97528 1810int set_page_dirty(struct page *page);
1da177e4 1811int set_page_dirty_lock(struct page *page);
736304f3
JK
1812void __cancel_dirty_page(struct page *page);
1813static inline void cancel_dirty_page(struct page *page)
1814{
1815 /* Avoid atomic ops, locking, etc. when not actually needed. */
1816 if (PageDirty(page))
1817 __cancel_dirty_page(page);
1818}
1da177e4 1819int clear_page_dirty_for_io(struct page *page);
b9ea2515 1820
a9090253 1821int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1822
b6a2fea3
OW
1823extern unsigned long move_page_tables(struct vm_area_struct *vma,
1824 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1825 unsigned long new_addr, unsigned long len,
1826 bool need_rmap_locks);
58705444
PX
1827
1828/*
1829 * Flags used by change_protection(). For now we make it a bitmap so
1830 * that we can pass in multiple flags just like parameters. However
1831 * for now all the callers are only use one of the flags at the same
1832 * time.
1833 */
1834/* Whether we should allow dirty bit accounting */
1835#define MM_CP_DIRTY_ACCT (1UL << 0)
1836/* Whether this protection change is for NUMA hints */
1837#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
1838/* Whether this change is for write protecting */
1839#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1840#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1841#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1842 MM_CP_UFFD_WP_RESOLVE)
58705444 1843
7da4d641
PZ
1844extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1845 unsigned long end, pgprot_t newprot,
58705444 1846 unsigned long cp_flags);
b6a2fea3
OW
1847extern int mprotect_fixup(struct vm_area_struct *vma,
1848 struct vm_area_struct **pprev, unsigned long start,
1849 unsigned long end, unsigned long newflags);
1da177e4 1850
465a454f
PZ
1851/*
1852 * doesn't attempt to fault and will return short.
1853 */
dadbb612
SJ
1854int get_user_pages_fast_only(unsigned long start, int nr_pages,
1855 unsigned int gup_flags, struct page **pages);
104acc32
JH
1856int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1857 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
1858
1859static inline bool get_user_page_fast_only(unsigned long addr,
1860 unsigned int gup_flags, struct page **pagep)
1861{
1862 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1863}
d559db08
KH
1864/*
1865 * per-process(per-mm_struct) statistics.
1866 */
d559db08
KH
1867static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1868{
69c97823
KK
1869 long val = atomic_long_read(&mm->rss_stat.count[member]);
1870
1871#ifdef SPLIT_RSS_COUNTING
1872 /*
1873 * counter is updated in asynchronous manner and may go to minus.
1874 * But it's never be expected number for users.
1875 */
1876 if (val < 0)
1877 val = 0;
172703b0 1878#endif
69c97823
KK
1879 return (unsigned long)val;
1880}
d559db08 1881
e4dcad20 1882void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
b3d1411b 1883
d559db08
KH
1884static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1885{
b3d1411b
JFG
1886 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1887
e4dcad20 1888 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1889}
1890
1891static inline void inc_mm_counter(struct mm_struct *mm, int member)
1892{
b3d1411b
JFG
1893 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1894
e4dcad20 1895 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1896}
1897
1898static inline void dec_mm_counter(struct mm_struct *mm, int member)
1899{
b3d1411b
JFG
1900 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1901
e4dcad20 1902 mm_trace_rss_stat(mm, member, count);
d559db08
KH
1903}
1904
eca56ff9
JM
1905/* Optimized variant when page is already known not to be PageAnon */
1906static inline int mm_counter_file(struct page *page)
1907{
1908 if (PageSwapBacked(page))
1909 return MM_SHMEMPAGES;
1910 return MM_FILEPAGES;
1911}
1912
1913static inline int mm_counter(struct page *page)
1914{
1915 if (PageAnon(page))
1916 return MM_ANONPAGES;
1917 return mm_counter_file(page);
1918}
1919
d559db08
KH
1920static inline unsigned long get_mm_rss(struct mm_struct *mm)
1921{
1922 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1923 get_mm_counter(mm, MM_ANONPAGES) +
1924 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1925}
1926
1927static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1928{
1929 return max(mm->hiwater_rss, get_mm_rss(mm));
1930}
1931
1932static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1933{
1934 return max(mm->hiwater_vm, mm->total_vm);
1935}
1936
1937static inline void update_hiwater_rss(struct mm_struct *mm)
1938{
1939 unsigned long _rss = get_mm_rss(mm);
1940
1941 if ((mm)->hiwater_rss < _rss)
1942 (mm)->hiwater_rss = _rss;
1943}
1944
1945static inline void update_hiwater_vm(struct mm_struct *mm)
1946{
1947 if (mm->hiwater_vm < mm->total_vm)
1948 mm->hiwater_vm = mm->total_vm;
1949}
1950
695f0559
PC
1951static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1952{
1953 mm->hiwater_rss = get_mm_rss(mm);
1954}
1955
d559db08
KH
1956static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1957 struct mm_struct *mm)
1958{
1959 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1960
1961 if (*maxrss < hiwater_rss)
1962 *maxrss = hiwater_rss;
1963}
1964
53bddb4e 1965#if defined(SPLIT_RSS_COUNTING)
05af2e10 1966void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1967#else
05af2e10 1968static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1969{
1970}
1971#endif
465a454f 1972
78e7c5af
AK
1973#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1974static inline int pte_special(pte_t pte)
1975{
1976 return 0;
1977}
1978
1979static inline pte_t pte_mkspecial(pte_t pte)
1980{
1981 return pte;
1982}
1983#endif
1984
17596731 1985#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
1986static inline int pte_devmap(pte_t pte)
1987{
1988 return 0;
1989}
1990#endif
1991
6d2329f8 1992int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
d08b3851 1993
25ca1d6c
NK
1994extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1995 spinlock_t **ptl);
1996static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1997 spinlock_t **ptl)
1998{
1999 pte_t *ptep;
2000 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2001 return ptep;
2002}
c9cfcddf 2003
c2febafc
KS
2004#ifdef __PAGETABLE_P4D_FOLDED
2005static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2006 unsigned long address)
2007{
2008 return 0;
2009}
2010#else
2011int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2012#endif
2013
b4e98d9a 2014#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2015static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2016 unsigned long address)
2017{
2018 return 0;
2019}
b4e98d9a
KS
2020static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2021static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2022
5f22df00 2023#else
c2febafc 2024int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2025
b4e98d9a
KS
2026static inline void mm_inc_nr_puds(struct mm_struct *mm)
2027{
6d212db1
MS
2028 if (mm_pud_folded(mm))
2029 return;
af5b0f6a 2030 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2031}
2032
2033static inline void mm_dec_nr_puds(struct mm_struct *mm)
2034{
6d212db1
MS
2035 if (mm_pud_folded(mm))
2036 return;
af5b0f6a 2037 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2038}
5f22df00
NP
2039#endif
2040
2d2f5119 2041#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2042static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2043 unsigned long address)
2044{
2045 return 0;
2046}
dc6c9a35 2047
dc6c9a35
KS
2048static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2049static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2050
5f22df00 2051#else
1bb3630e 2052int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2053
dc6c9a35
KS
2054static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2055{
6d212db1
MS
2056 if (mm_pmd_folded(mm))
2057 return;
af5b0f6a 2058 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2059}
2060
2061static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2062{
6d212db1
MS
2063 if (mm_pmd_folded(mm))
2064 return;
af5b0f6a 2065 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2066}
5f22df00
NP
2067#endif
2068
c4812909 2069#ifdef CONFIG_MMU
af5b0f6a 2070static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2071{
af5b0f6a 2072 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2073}
2074
af5b0f6a 2075static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2076{
af5b0f6a 2077 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2078}
2079
2080static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2081{
af5b0f6a 2082 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2083}
2084
2085static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2086{
af5b0f6a 2087 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2088}
2089#else
c4812909 2090
af5b0f6a
KS
2091static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2092static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2093{
2094 return 0;
2095}
2096
2097static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2098static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2099#endif
2100
4cf58924
JFG
2101int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2102int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2103
f949286c
MR
2104#if defined(CONFIG_MMU)
2105
c2febafc
KS
2106static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2107 unsigned long address)
2108{
2109 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2110 NULL : p4d_offset(pgd, address);
2111}
2112
2113static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2114 unsigned long address)
1da177e4 2115{
c2febafc
KS
2116 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2117 NULL : pud_offset(p4d, address);
1da177e4 2118}
d8626138 2119
1da177e4
LT
2120static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2121{
1bb3630e
HD
2122 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2123 NULL: pmd_offset(pud, address);
1da177e4 2124}
f949286c 2125#endif /* CONFIG_MMU */
1bb3630e 2126
57c1ffce 2127#if USE_SPLIT_PTE_PTLOCKS
597d795a 2128#if ALLOC_SPLIT_PTLOCKS
b35f1819 2129void __init ptlock_cache_init(void);
539edb58
PZ
2130extern bool ptlock_alloc(struct page *page);
2131extern void ptlock_free(struct page *page);
2132
2133static inline spinlock_t *ptlock_ptr(struct page *page)
2134{
2135 return page->ptl;
2136}
597d795a 2137#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2138static inline void ptlock_cache_init(void)
2139{
2140}
2141
49076ec2
KS
2142static inline bool ptlock_alloc(struct page *page)
2143{
49076ec2
KS
2144 return true;
2145}
539edb58 2146
49076ec2
KS
2147static inline void ptlock_free(struct page *page)
2148{
49076ec2
KS
2149}
2150
2151static inline spinlock_t *ptlock_ptr(struct page *page)
2152{
539edb58 2153 return &page->ptl;
49076ec2 2154}
597d795a 2155#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2156
2157static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2158{
2159 return ptlock_ptr(pmd_page(*pmd));
2160}
2161
2162static inline bool ptlock_init(struct page *page)
2163{
2164 /*
2165 * prep_new_page() initialize page->private (and therefore page->ptl)
2166 * with 0. Make sure nobody took it in use in between.
2167 *
2168 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2169 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2170 */
309381fe 2171 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
2172 if (!ptlock_alloc(page))
2173 return false;
2174 spin_lock_init(ptlock_ptr(page));
2175 return true;
2176}
2177
57c1ffce 2178#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2179/*
2180 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2181 */
49076ec2
KS
2182static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2183{
2184 return &mm->page_table_lock;
2185}
b35f1819 2186static inline void ptlock_cache_init(void) {}
49076ec2 2187static inline bool ptlock_init(struct page *page) { return true; }
9e247bab 2188static inline void ptlock_free(struct page *page) {}
57c1ffce 2189#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2190
b35f1819
KS
2191static inline void pgtable_init(void)
2192{
2193 ptlock_cache_init();
2194 pgtable_cache_init();
2195}
2196
b4ed71f5 2197static inline bool pgtable_pte_page_ctor(struct page *page)
2f569afd 2198{
706874e9
VD
2199 if (!ptlock_init(page))
2200 return false;
1d40a5ea 2201 __SetPageTable(page);
f0c0c115 2202 inc_lruvec_page_state(page, NR_PAGETABLE);
706874e9 2203 return true;
2f569afd
MS
2204}
2205
b4ed71f5 2206static inline void pgtable_pte_page_dtor(struct page *page)
2f569afd 2207{
9e247bab 2208 ptlock_free(page);
1d40a5ea 2209 __ClearPageTable(page);
f0c0c115 2210 dec_lruvec_page_state(page, NR_PAGETABLE);
2f569afd
MS
2211}
2212
c74df32c
HD
2213#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2214({ \
4c21e2f2 2215 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
2216 pte_t *__pte = pte_offset_map(pmd, address); \
2217 *(ptlp) = __ptl; \
2218 spin_lock(__ptl); \
2219 __pte; \
2220})
2221
2222#define pte_unmap_unlock(pte, ptl) do { \
2223 spin_unlock(ptl); \
2224 pte_unmap(pte); \
2225} while (0)
2226
4cf58924 2227#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2228
2229#define pte_alloc_map(mm, pmd, address) \
4cf58924 2230 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2231
c74df32c 2232#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2233 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2234 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2235
1bb3630e 2236#define pte_alloc_kernel(pmd, address) \
4cf58924 2237 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2238 NULL: pte_offset_kernel(pmd, address))
1da177e4 2239
e009bb30
KS
2240#if USE_SPLIT_PMD_PTLOCKS
2241
634391ac
MS
2242static struct page *pmd_to_page(pmd_t *pmd)
2243{
2244 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2245 return virt_to_page((void *)((unsigned long) pmd & mask));
2246}
2247
e009bb30
KS
2248static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2249{
634391ac 2250 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
2251}
2252
b2b29d6d 2253static inline bool pmd_ptlock_init(struct page *page)
e009bb30 2254{
e009bb30
KS
2255#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2256 page->pmd_huge_pte = NULL;
2257#endif
49076ec2 2258 return ptlock_init(page);
e009bb30
KS
2259}
2260
b2b29d6d 2261static inline void pmd_ptlock_free(struct page *page)
e009bb30
KS
2262{
2263#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 2264 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 2265#endif
49076ec2 2266 ptlock_free(page);
e009bb30
KS
2267}
2268
634391ac 2269#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
2270
2271#else
2272
9a86cb7b
KS
2273static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2274{
2275 return &mm->page_table_lock;
2276}
2277
b2b29d6d
MW
2278static inline bool pmd_ptlock_init(struct page *page) { return true; }
2279static inline void pmd_ptlock_free(struct page *page) {}
e009bb30 2280
c389a250 2281#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 2282
e009bb30
KS
2283#endif
2284
9a86cb7b
KS
2285static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2286{
2287 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2288 spin_lock(ptl);
2289 return ptl;
2290}
2291
b2b29d6d
MW
2292static inline bool pgtable_pmd_page_ctor(struct page *page)
2293{
2294 if (!pmd_ptlock_init(page))
2295 return false;
2296 __SetPageTable(page);
f0c0c115 2297 inc_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2298 return true;
2299}
2300
2301static inline void pgtable_pmd_page_dtor(struct page *page)
2302{
2303 pmd_ptlock_free(page);
2304 __ClearPageTable(page);
f0c0c115 2305 dec_lruvec_page_state(page, NR_PAGETABLE);
b2b29d6d
MW
2306}
2307
a00cc7d9
MW
2308/*
2309 * No scalability reason to split PUD locks yet, but follow the same pattern
2310 * as the PMD locks to make it easier if we decide to. The VM should not be
2311 * considered ready to switch to split PUD locks yet; there may be places
2312 * which need to be converted from page_table_lock.
2313 */
2314static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2315{
2316 return &mm->page_table_lock;
2317}
2318
2319static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2320{
2321 spinlock_t *ptl = pud_lockptr(mm, pud);
2322
2323 spin_lock(ptl);
2324 return ptl;
2325}
62906027 2326
a00cc7d9 2327extern void __init pagecache_init(void);
bc9331a1 2328extern void __init free_area_init_memoryless_node(int nid);
49a7f04a
DH
2329extern void free_initmem(void);
2330
69afade7
JL
2331/*
2332 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2333 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 2334 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
2335 * Return pages freed into the buddy system.
2336 */
11199692 2337extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 2338 int poison, const char *s);
c3d5f5f0 2339
cfa11e08
JL
2340#ifdef CONFIG_HIGHMEM
2341/*
2342 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2343 * and totalram_pages.
2344 */
2345extern void free_highmem_page(struct page *page);
2346#endif
69afade7 2347
c3d5f5f0 2348extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 2349extern void mem_init_print_info(const char *str);
69afade7 2350
4b50bcc7 2351extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 2352
69afade7
JL
2353/* Free the reserved page into the buddy system, so it gets managed. */
2354static inline void __free_reserved_page(struct page *page)
2355{
2356 ClearPageReserved(page);
2357 init_page_count(page);
2358 __free_page(page);
2359}
2360
2361static inline void free_reserved_page(struct page *page)
2362{
2363 __free_reserved_page(page);
2364 adjust_managed_page_count(page, 1);
2365}
2366
2367static inline void mark_page_reserved(struct page *page)
2368{
2369 SetPageReserved(page);
2370 adjust_managed_page_count(page, -1);
2371}
2372
2373/*
2374 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
2375 * The freed pages will be poisoned with pattern "poison" if it's within
2376 * range [0, UCHAR_MAX].
2377 * Return pages freed into the buddy system.
69afade7
JL
2378 */
2379static inline unsigned long free_initmem_default(int poison)
2380{
2381 extern char __init_begin[], __init_end[];
2382
11199692 2383 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
2384 poison, "unused kernel");
2385}
2386
7ee3d4e8
JL
2387static inline unsigned long get_num_physpages(void)
2388{
2389 int nid;
2390 unsigned long phys_pages = 0;
2391
2392 for_each_online_node(nid)
2393 phys_pages += node_present_pages(nid);
2394
2395 return phys_pages;
2396}
2397
c713216d 2398/*
3f08a302 2399 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
2400 * zones, allocate the backing mem_map and account for memory holes in an
2401 * architecture independent manner.
c713216d
MG
2402 *
2403 * An architecture is expected to register range of page frames backed by
0ee332c1 2404 * physical memory with memblock_add[_node]() before calling
9691a071 2405 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
2406 * usage, an architecture is expected to do something like
2407 *
2408 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2409 * max_highmem_pfn};
2410 * for_each_valid_physical_page_range()
0ee332c1 2411 * memblock_add_node(base, size, nid)
9691a071 2412 * free_area_init(max_zone_pfns);
c713216d 2413 */
9691a071 2414void free_area_init(unsigned long *max_zone_pfn);
1e01979c 2415unsigned long node_map_pfn_alignment(void);
32996250
YL
2416unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2417 unsigned long end_pfn);
c713216d
MG
2418extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2419 unsigned long end_pfn);
2420extern void get_pfn_range_for_nid(unsigned int nid,
2421 unsigned long *start_pfn, unsigned long *end_pfn);
2422extern unsigned long find_min_pfn_with_active_regions(void);
f2dbcfa7 2423
3f08a302 2424#ifndef CONFIG_NEED_MULTIPLE_NODES
6f24fbd3 2425static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
2426{
2427 return 0;
2428}
2429#else
2430/* please see mm/page_alloc.c */
2431extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
2432#endif
2433
0e0b864e 2434extern void set_dma_reserve(unsigned long new_dma_reserve);
a99583e7 2435extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
d882c006 2436 enum meminit_context, struct vmem_altmap *, int migratetype);
bc75d33f 2437extern void setup_per_zone_wmarks(void);
1b79acc9 2438extern int __meminit init_per_zone_wmark_min(void);
1da177e4 2439extern void mem_init(void);
8feae131 2440extern void __init mmap_init(void);
9af744d7 2441extern void show_mem(unsigned int flags, nodemask_t *nodemask);
d02bd27b 2442extern long si_mem_available(void);
1da177e4
LT
2443extern void si_meminfo(struct sysinfo * val);
2444extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
2445#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2446extern unsigned long arch_reserved_kernel_pages(void);
2447#endif
1da177e4 2448
a8e99259
MH
2449extern __printf(3, 4)
2450void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 2451
e7c8d5c9 2452extern void setup_per_cpu_pageset(void);
e7c8d5c9 2453
75f7ad8e
PS
2454/* page_alloc.c */
2455extern int min_free_kbytes;
1c30844d 2456extern int watermark_boost_factor;
795ae7a0 2457extern int watermark_scale_factor;
51930df5 2458extern bool arch_has_descending_max_zone_pfns(void);
75f7ad8e 2459
8feae131 2460/* nommu.c */
33e5d769 2461extern atomic_long_t mmap_pages_allocated;
7e660872 2462extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 2463
6b2dbba8 2464/* interval_tree.c */
6b2dbba8 2465void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 2466 struct rb_root_cached *root);
9826a516
ML
2467void vma_interval_tree_insert_after(struct vm_area_struct *node,
2468 struct vm_area_struct *prev,
f808c13f 2469 struct rb_root_cached *root);
6b2dbba8 2470void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
2471 struct rb_root_cached *root);
2472struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
2473 unsigned long start, unsigned long last);
2474struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2475 unsigned long start, unsigned long last);
2476
2477#define vma_interval_tree_foreach(vma, root, start, last) \
2478 for (vma = vma_interval_tree_iter_first(root, start, last); \
2479 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 2480
bf181b9f 2481void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 2482 struct rb_root_cached *root);
bf181b9f 2483void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
2484 struct rb_root_cached *root);
2485struct anon_vma_chain *
2486anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2487 unsigned long start, unsigned long last);
bf181b9f
ML
2488struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2489 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
2490#ifdef CONFIG_DEBUG_VM_RB
2491void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2492#endif
bf181b9f
ML
2493
2494#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2495 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2496 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2497
1da177e4 2498/* mmap.c */
34b4e4aa 2499extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
e86f15ee
AA
2500extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2501 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2502 struct vm_area_struct *expand);
2503static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2504 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2505{
2506 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2507}
1da177e4
LT
2508extern struct vm_area_struct *vma_merge(struct mm_struct *,
2509 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2510 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 2511 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4 2512extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
def5efe0
DR
2513extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2514 unsigned long addr, int new_below);
2515extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2516 unsigned long addr, int new_below);
1da177e4
LT
2517extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2518extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2519 struct rb_node **, struct rb_node *);
a8fb5618 2520extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 2521extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
2522 unsigned long addr, unsigned long len, pgoff_t pgoff,
2523 bool *need_rmap_locks);
1da177e4 2524extern void exit_mmap(struct mm_struct *);
925d1c40 2525
9c599024
CG
2526static inline int check_data_rlimit(unsigned long rlim,
2527 unsigned long new,
2528 unsigned long start,
2529 unsigned long end_data,
2530 unsigned long start_data)
2531{
2532 if (rlim < RLIM_INFINITY) {
2533 if (((new - start) + (end_data - start_data)) > rlim)
2534 return -ENOSPC;
2535 }
2536
2537 return 0;
2538}
2539
7906d00c
AA
2540extern int mm_take_all_locks(struct mm_struct *mm);
2541extern void mm_drop_all_locks(struct mm_struct *mm);
2542
38646013
JS
2543extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2544extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2545extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2546
84638335
KK
2547extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2548extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2549
2eefd878
DS
2550extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2551 const struct vm_special_mapping *sm);
3935ed6a
SS
2552extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2553 unsigned long addr, unsigned long len,
a62c34bd
AL
2554 unsigned long flags,
2555 const struct vm_special_mapping *spec);
2556/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2557extern int install_special_mapping(struct mm_struct *mm,
2558 unsigned long addr, unsigned long len,
2559 unsigned long flags, struct page **pages);
1da177e4 2560
649775be
AG
2561unsigned long randomize_stack_top(unsigned long stack_top);
2562
1da177e4
LT
2563extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2564
0165ab44 2565extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
2566 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2567 struct list_head *uf);
1fcfd8db 2568extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2569 unsigned long len, unsigned long prot, unsigned long flags,
45e55300 2570 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
85a06835
YS
2571extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2572 struct list_head *uf, bool downgrade);
897ab3e0
MR
2573extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2574 struct list_head *uf);
0726b01e 2575extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 2576
bebeb3d6
ML
2577#ifdef CONFIG_MMU
2578extern int __mm_populate(unsigned long addr, unsigned long len,
2579 int ignore_errors);
2580static inline void mm_populate(unsigned long addr, unsigned long len)
2581{
2582 /* Ignore errors */
2583 (void) __mm_populate(addr, len, 1);
2584}
2585#else
2586static inline void mm_populate(unsigned long addr, unsigned long len) {}
2587#endif
2588
e4eb1ff6 2589/* These take the mm semaphore themselves */
5d22fc25 2590extern int __must_check vm_brk(unsigned long, unsigned long);
16e72e9b 2591extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 2592extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2593extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2594 unsigned long, unsigned long,
2595 unsigned long, unsigned long);
1da177e4 2596
db4fbfb9
ML
2597struct vm_unmapped_area_info {
2598#define VM_UNMAPPED_AREA_TOPDOWN 1
2599 unsigned long flags;
2600 unsigned long length;
2601 unsigned long low_limit;
2602 unsigned long high_limit;
2603 unsigned long align_mask;
2604 unsigned long align_offset;
2605};
2606
baceaf1c 2607extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 2608
85821aab 2609/* truncate.c */
1da177e4 2610extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2611extern void truncate_inode_pages_range(struct address_space *,
2612 loff_t lstart, loff_t lend);
91b0abe3 2613extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2614
2615/* generic vm_area_ops exported for stackable file systems */
2bcd6454 2616extern vm_fault_t filemap_fault(struct vm_fault *vmf);
82b0f8c3 2617extern void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2618 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 2619extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4
LT
2620
2621/* mm/page-writeback.c */
2b69c828 2622int __must_check write_one_page(struct page *page);
1cf6e7d8 2623void task_dirty_inc(struct task_struct *tsk);
1da177e4 2624
1be7107f 2625extern unsigned long stack_guard_gap;
d05f3169 2626/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2627extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169 2628
11192337 2629/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
d05f3169
MH
2630extern int expand_downwards(struct vm_area_struct *vma,
2631 unsigned long address);
8ca3eb08 2632#if VM_GROWSUP
46dea3d0 2633extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2634#else
fee7e49d 2635 #define expand_upwards(vma, address) (0)
9ab88515 2636#endif
1da177e4
LT
2637
2638/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2639extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2640extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2641 struct vm_area_struct **pprev);
2642
2643/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2644 NULL if none. Assume start_addr < end_addr. */
2645static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2646{
2647 struct vm_area_struct * vma = find_vma(mm,start_addr);
2648
2649 if (vma && end_addr <= vma->vm_start)
2650 vma = NULL;
2651 return vma;
2652}
2653
1be7107f
HD
2654static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2655{
2656 unsigned long vm_start = vma->vm_start;
2657
2658 if (vma->vm_flags & VM_GROWSDOWN) {
2659 vm_start -= stack_guard_gap;
2660 if (vm_start > vma->vm_start)
2661 vm_start = 0;
2662 }
2663 return vm_start;
2664}
2665
2666static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2667{
2668 unsigned long vm_end = vma->vm_end;
2669
2670 if (vma->vm_flags & VM_GROWSUP) {
2671 vm_end += stack_guard_gap;
2672 if (vm_end < vma->vm_end)
2673 vm_end = -PAGE_SIZE;
2674 }
2675 return vm_end;
2676}
2677
1da177e4
LT
2678static inline unsigned long vma_pages(struct vm_area_struct *vma)
2679{
2680 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2681}
2682
640708a2
PE
2683/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2684static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2685 unsigned long vm_start, unsigned long vm_end)
2686{
2687 struct vm_area_struct *vma = find_vma(mm, vm_start);
2688
2689 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2690 vma = NULL;
2691
2692 return vma;
2693}
2694
017b1660
MK
2695static inline bool range_in_vma(struct vm_area_struct *vma,
2696 unsigned long start, unsigned long end)
2697{
2698 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2699}
2700
bad849b3 2701#ifdef CONFIG_MMU
804af2cf 2702pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2703void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2704#else
2705static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2706{
2707 return __pgprot(0);
2708}
64e45507
PF
2709static inline void vma_set_page_prot(struct vm_area_struct *vma)
2710{
2711 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2712}
bad849b3
DH
2713#endif
2714
295992fb
CK
2715void vma_set_file(struct vm_area_struct *vma, struct file *file);
2716
5877231f 2717#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2718unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2719 unsigned long start, unsigned long end);
2720#endif
2721
deceb6cd 2722struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2723int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2724 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2725int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
2726int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2727 struct page **pages, unsigned long *num);
a667d745
SJ
2728int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2729 unsigned long num);
2730int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2731 unsigned long num);
ae2b01f3 2732vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 2733 unsigned long pfn);
f5e6d1d5
MW
2734vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2735 unsigned long pfn, pgprot_t pgprot);
5d747637 2736vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2737 pfn_t pfn);
574c5b3d
TH
2738vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2739 pfn_t pfn, pgprot_t pgprot);
ab77dab4
SJ
2740vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2741 unsigned long addr, pfn_t pfn);
b4cbb197
LT
2742int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2743
1c8f4220
SJ
2744static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2745 unsigned long addr, struct page *page)
2746{
2747 int err = vm_insert_page(vma, addr, page);
2748
2749 if (err == -ENOMEM)
2750 return VM_FAULT_OOM;
2751 if (err < 0 && err != -EBUSY)
2752 return VM_FAULT_SIGBUS;
2753
2754 return VM_FAULT_NOPAGE;
2755}
2756
f8f6ae5d
JG
2757#ifndef io_remap_pfn_range
2758static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2759 unsigned long addr, unsigned long pfn,
2760 unsigned long size, pgprot_t prot)
2761{
2762 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2763}
2764#endif
2765
d97baf94
SJ
2766static inline vm_fault_t vmf_error(int err)
2767{
2768 if (err == -ENOMEM)
2769 return VM_FAULT_OOM;
2770 return VM_FAULT_SIGBUS;
2771}
2772
df06b37f
KB
2773struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2774 unsigned int foll_flags);
240aadee 2775
deceb6cd
HD
2776#define FOLL_WRITE 0x01 /* check pte is writable */
2777#define FOLL_TOUCH 0x02 /* mark page accessed */
2778#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2779#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2780#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2781#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2782 * and return without waiting upon it */
84d33df2 2783#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2784#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2785#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2786#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2787#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2788#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2789#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2790#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
19be0eaf 2791#define FOLL_COW 0x4000 /* internal GUP flag */
7f7ccc2c 2792#define FOLL_ANON 0x8000 /* don't do file mappings */
932f4a63 2793#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
bfe7b00d 2794#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
f1f6a7dd 2795#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
376a34ef 2796#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
932f4a63
IW
2797
2798/*
eddb1c22
JH
2799 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2800 * other. Here is what they mean, and how to use them:
932f4a63
IW
2801 *
2802 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
eddb1c22
JH
2803 * period _often_ under userspace control. This is in contrast to
2804 * iov_iter_get_pages(), whose usages are transient.
932f4a63
IW
2805 *
2806 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2807 * lifetime enforced by the filesystem and we need guarantees that longterm
2808 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2809 * the filesystem. Ideas for this coordination include revoking the longterm
2810 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2811 * added after the problem with filesystems was found FS DAX VMAs are
2812 * specifically failed. Filesystem pages are still subject to bugs and use of
2813 * FOLL_LONGTERM should be avoided on those pages.
2814 *
2815 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2816 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2817 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2818 * is due to an incompatibility with the FS DAX check and
eddb1c22 2819 * FAULT_FLAG_ALLOW_RETRY.
932f4a63 2820 *
eddb1c22
JH
2821 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2822 * that region. And so, CMA attempts to migrate the page before pinning, when
932f4a63 2823 * FOLL_LONGTERM is specified.
eddb1c22
JH
2824 *
2825 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2826 * but an additional pin counting system) will be invoked. This is intended for
2827 * anything that gets a page reference and then touches page data (for example,
2828 * Direct IO). This lets the filesystem know that some non-file-system entity is
2829 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2830 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
f1f6a7dd 2831 * a call to unpin_user_page().
eddb1c22
JH
2832 *
2833 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2834 * and separate refcounting mechanisms, however, and that means that each has
2835 * its own acquire and release mechanisms:
2836 *
2837 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2838 *
f1f6a7dd 2839 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
eddb1c22
JH
2840 *
2841 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2842 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2843 * calls applied to them, and that's perfectly OK. This is a constraint on the
2844 * callers, not on the pages.)
2845 *
2846 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2847 * directly by the caller. That's in order to help avoid mismatches when
2848 * releasing pages: get_user_pages*() pages must be released via put_page(),
f1f6a7dd 2849 * while pin_user_pages*() pages must be released via unpin_user_page().
eddb1c22 2850 *
72ef5e52 2851 * Please see Documentation/core-api/pin_user_pages.rst for more information.
932f4a63 2852 */
1da177e4 2853
2b740303 2854static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
2855{
2856 if (vm_fault & VM_FAULT_OOM)
2857 return -ENOMEM;
2858 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2859 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2860 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2861 return -EFAULT;
2862 return 0;
2863}
2864
8b1e0f81 2865typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
2866extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2867 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
2868extern int apply_to_existing_page_range(struct mm_struct *mm,
2869 unsigned long address, unsigned long size,
2870 pte_fn_t fn, void *data);
aee16b3c 2871
04013513 2872extern void init_mem_debugging_and_hardening(void);
8823b1db 2873#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
2874extern void __kernel_poison_pages(struct page *page, int numpages);
2875extern void __kernel_unpoison_pages(struct page *page, int numpages);
2876extern bool _page_poisoning_enabled_early;
2877DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2878static inline bool page_poisoning_enabled(void)
2879{
2880 return _page_poisoning_enabled_early;
2881}
2882/*
2883 * For use in fast paths after init_mem_debugging() has run, or when a
2884 * false negative result is not harmful when called too early.
2885 */
2886static inline bool page_poisoning_enabled_static(void)
2887{
2888 return static_branch_unlikely(&_page_poisoning_enabled);
2889}
2890static inline void kernel_poison_pages(struct page *page, int numpages)
2891{
2892 if (page_poisoning_enabled_static())
2893 __kernel_poison_pages(page, numpages);
2894}
2895static inline void kernel_unpoison_pages(struct page *page, int numpages)
2896{
2897 if (page_poisoning_enabled_static())
2898 __kernel_unpoison_pages(page, numpages);
2899}
8823b1db
LA
2900#else
2901static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 2902static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 2903static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
2904static inline void kernel_poison_pages(struct page *page, int numpages) { }
2905static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
2906#endif
2907
6471384a 2908DECLARE_STATIC_KEY_FALSE(init_on_alloc);
6471384a
AP
2909static inline bool want_init_on_alloc(gfp_t flags)
2910{
04013513 2911 if (static_branch_unlikely(&init_on_alloc))
6471384a
AP
2912 return true;
2913 return flags & __GFP_ZERO;
2914}
2915
6471384a 2916DECLARE_STATIC_KEY_FALSE(init_on_free);
6471384a
AP
2917static inline bool want_init_on_free(void)
2918{
04013513 2919 return static_branch_unlikely(&init_on_free);
6471384a
AP
2920}
2921
8e57f8ac
VB
2922extern bool _debug_pagealloc_enabled_early;
2923DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
2924
2925static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
2926{
2927 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2928 _debug_pagealloc_enabled_early;
2929}
2930
2931/*
2932 * For use in fast paths after init_debug_pagealloc() has run, or when a
2933 * false negative result is not harmful when called too early.
2934 */
2935static inline bool debug_pagealloc_enabled_static(void)
031bc574 2936{
96a2b03f
VB
2937 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2938 return false;
2939
2940 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
2941}
2942
5d6ad668 2943#ifdef CONFIG_DEBUG_PAGEALLOC
c87cbc1f 2944/*
5d6ad668
MR
2945 * To support DEBUG_PAGEALLOC architecture must ensure that
2946 * __kernel_map_pages() never fails
c87cbc1f 2947 */
d6332692
RE
2948extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2949
77bc7fd6
MR
2950static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2951{
2952 if (debug_pagealloc_enabled_static())
2953 __kernel_map_pages(page, numpages, 1);
2954}
2955
2956static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
2957{
2958 if (debug_pagealloc_enabled_static())
2959 __kernel_map_pages(page, numpages, 0);
2960}
5d6ad668 2961#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
2962static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
2963static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
5d6ad668 2964#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2965
a6c19dfe 2966#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2967extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2968extern int in_gate_area_no_mm(unsigned long addr);
2969extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2970#else
a6c19dfe
AL
2971static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2972{
2973 return NULL;
2974}
2975static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2976static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2977{
2978 return 0;
2979}
1da177e4
LT
2980#endif /* __HAVE_ARCH_GATE_AREA */
2981
44a70ade
MH
2982extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2983
146732ce
JT
2984#ifdef CONFIG_SYSCTL
2985extern int sysctl_drop_caches;
32927393
CH
2986int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2987 loff_t *);
146732ce
JT
2988#endif
2989
cb731d6c
VD
2990void drop_slab(void);
2991void drop_slab_node(int nid);
9d0243bc 2992
7a9166e3
LY
2993#ifndef CONFIG_MMU
2994#define randomize_va_space 0
2995#else
a62eaf15 2996extern int randomize_va_space;
7a9166e3 2997#endif
a62eaf15 2998
045e72ac 2999const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3000#ifdef CONFIG_MMU
03252919 3001void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3002#else
3003static inline void print_vma_addr(char *prefix, unsigned long rip)
3004{
3005}
3006#endif
e6e5494c 3007
35fd1eb1 3008void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0
DW
3009struct page * __populate_section_memmap(unsigned long pfn,
3010 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
29c71111 3011pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3012p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3013pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3014pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7
AK
3015pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3016 struct vmem_altmap *altmap);
8f6aac41 3017void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3018struct vmem_altmap;
56993b4e
AK
3019void *vmemmap_alloc_block_buf(unsigned long size, int node,
3020 struct vmem_altmap *altmap);
8f6aac41 3021void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b 3022int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3023 int node, struct vmem_altmap *altmap);
7b73d978
CH
3024int vmemmap_populate(unsigned long start, unsigned long end, int node,
3025 struct vmem_altmap *altmap);
c2b91e2e 3026void vmemmap_populate_print_last(void);
0197518c 3027#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3028void vmemmap_free(unsigned long start, unsigned long end,
3029 struct vmem_altmap *altmap);
0197518c 3030#endif
46723bfa 3031void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3032 unsigned long nr_pages);
6a46079c 3033
82ba011b
AK
3034enum mf_flags {
3035 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3036 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3037 MF_MUST_KILL = 1 << 2,
cf870c70 3038 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 3039};
83b57531
EB
3040extern int memory_failure(unsigned long pfn, int flags);
3041extern void memory_failure_queue(unsigned long pfn, int flags);
06202231 3042extern void memory_failure_queue_kick(int cpu);
847ce401 3043extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
3044extern int sysctl_memory_failure_early_kill;
3045extern int sysctl_memory_failure_recovery;
facb6011 3046extern void shake_page(struct page *p, int access);
5844a486 3047extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3048extern int soft_offline_page(unsigned long pfn, int flags);
6a46079c 3049
cc637b17
XX
3050
3051/*
3052 * Error handlers for various types of pages.
3053 */
cc3e2af4 3054enum mf_result {
cc637b17
XX
3055 MF_IGNORED, /* Error: cannot be handled */
3056 MF_FAILED, /* Error: handling failed */
3057 MF_DELAYED, /* Will be handled later */
3058 MF_RECOVERED, /* Successfully recovered */
3059};
3060
3061enum mf_action_page_type {
3062 MF_MSG_KERNEL,
3063 MF_MSG_KERNEL_HIGH_ORDER,
3064 MF_MSG_SLAB,
3065 MF_MSG_DIFFERENT_COMPOUND,
3066 MF_MSG_POISONED_HUGE,
3067 MF_MSG_HUGE,
3068 MF_MSG_FREE_HUGE,
31286a84 3069 MF_MSG_NON_PMD_HUGE,
cc637b17
XX
3070 MF_MSG_UNMAP_FAILED,
3071 MF_MSG_DIRTY_SWAPCACHE,
3072 MF_MSG_CLEAN_SWAPCACHE,
3073 MF_MSG_DIRTY_MLOCKED_LRU,
3074 MF_MSG_CLEAN_MLOCKED_LRU,
3075 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3076 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3077 MF_MSG_DIRTY_LRU,
3078 MF_MSG_CLEAN_LRU,
3079 MF_MSG_TRUNCATED_LRU,
3080 MF_MSG_BUDDY,
3081 MF_MSG_BUDDY_2ND,
6100e34b 3082 MF_MSG_DAX,
5d1fd5dc 3083 MF_MSG_UNSPLIT_THP,
cc637b17
XX
3084 MF_MSG_UNKNOWN,
3085};
3086
47ad8475
AA
3087#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3088extern void clear_huge_page(struct page *page,
c79b57e4 3089 unsigned long addr_hint,
47ad8475
AA
3090 unsigned int pages_per_huge_page);
3091extern void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71
HY
3092 unsigned long addr_hint,
3093 struct vm_area_struct *vma,
47ad8475 3094 unsigned int pages_per_huge_page);
fa4d75c1
MK
3095extern long copy_huge_page_from_user(struct page *dst_page,
3096 const void __user *usr_src,
810a56b9
MK
3097 unsigned int pages_per_huge_page,
3098 bool allow_pagefault);
2484ca9b
THV
3099
3100/**
3101 * vma_is_special_huge - Are transhuge page-table entries considered special?
3102 * @vma: Pointer to the struct vm_area_struct to consider
3103 *
3104 * Whether transhuge page-table entries are considered "special" following
3105 * the definition in vm_normal_page().
3106 *
3107 * Return: true if transhuge page-table entries should be considered special,
3108 * false otherwise.
3109 */
3110static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3111{
3112 return vma_is_dax(vma) || (vma->vm_file &&
3113 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3114}
3115
47ad8475
AA
3116#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3117
c0a32fc5
SG
3118#ifdef CONFIG_DEBUG_PAGEALLOC
3119extern unsigned int _debug_guardpage_minorder;
96a2b03f 3120DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
c0a32fc5
SG
3121
3122static inline unsigned int debug_guardpage_minorder(void)
3123{
3124 return _debug_guardpage_minorder;
3125}
3126
e30825f1
JK
3127static inline bool debug_guardpage_enabled(void)
3128{
96a2b03f 3129 return static_branch_unlikely(&_debug_guardpage_enabled);
e30825f1
JK
3130}
3131
c0a32fc5
SG
3132static inline bool page_is_guard(struct page *page)
3133{
e30825f1
JK
3134 if (!debug_guardpage_enabled())
3135 return false;
3136
3972f6bb 3137 return PageGuard(page);
c0a32fc5
SG
3138}
3139#else
3140static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 3141static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
3142static inline bool page_is_guard(struct page *page) { return false; }
3143#endif /* CONFIG_DEBUG_PAGEALLOC */
3144
f9872caf
CS
3145#if MAX_NUMNODES > 1
3146void __init setup_nr_node_ids(void);
3147#else
3148static inline void setup_nr_node_ids(void) {}
3149#endif
3150
010c164a
SL
3151extern int memcmp_pages(struct page *page1, struct page *page2);
3152
3153static inline int pages_identical(struct page *page1, struct page *page2)
3154{
3155 return !memcmp_pages(page1, page2);
3156}
3157
c5acad84
TH
3158#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3159unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3160 pgoff_t first_index, pgoff_t nr,
3161 pgoff_t bitmap_pgoff,
3162 unsigned long *bitmap,
3163 pgoff_t *start,
3164 pgoff_t *end);
3165
3166unsigned long wp_shared_mapping_range(struct address_space *mapping,
3167 pgoff_t first_index, pgoff_t nr);
3168#endif
3169
2374c09b
CH
3170extern int sysctl_nr_trim_pages;
3171
1da177e4
LT
3172#endif /* __KERNEL__ */
3173#endif /* _LINUX_MM_H */