blkcg: move rcu_read_lock() outside of blkio_group get functions
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
6e736be7 17#include "blk.h"
e98ef89b 18#include "cfq.h"
1da177e4
LT
19
20/*
21 * tunables
22 */
fe094d98 23/* max queue in one round of service */
abc3c744 24static const int cfq_quantum = 8;
64100099 25static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
26/* maximum backwards seek, in KiB */
27static const int cfq_back_max = 16 * 1024;
28/* penalty of a backwards seek */
29static const int cfq_back_penalty = 2;
64100099 30static const int cfq_slice_sync = HZ / 10;
3b18152c 31static int cfq_slice_async = HZ / 25;
64100099 32static const int cfq_slice_async_rq = 2;
caaa5f9f 33static int cfq_slice_idle = HZ / 125;
80bdf0c7 34static int cfq_group_idle = HZ / 125;
5db5d642
CZ
35static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36static const int cfq_hist_divisor = 4;
22e2c507 37
d9e7620e 38/*
0871714e 39 * offset from end of service tree
d9e7620e 40 */
0871714e 41#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
42
43/*
44 * below this threshold, we consider thinktime immediate
45 */
46#define CFQ_MIN_TT (2)
47
22e2c507 48#define CFQ_SLICE_SCALE (5)
45333d5a 49#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 50#define CFQ_SERVICE_SHIFT 12
22e2c507 51
3dde36dd 52#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 53#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 54#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 55#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 56
a612fddf
TH
57#define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
1da177e4 60
e18b890b 61static struct kmem_cache *cfq_pool;
1da177e4 62
22e2c507
JA
63#define CFQ_PRIO_LISTS IOPRIO_BE_NR
64#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
65#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
206dc69b 67#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 68#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 69
c5869807
TH
70struct cfq_ttime {
71 unsigned long last_end_request;
72
73 unsigned long ttime_total;
74 unsigned long ttime_samples;
75 unsigned long ttime_mean;
76};
77
cc09e299
JA
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
aa6f6a3d 87 unsigned count;
73e9ffdd 88 unsigned total_weight;
1fa8f6d6 89 u64 min_vdisktime;
f5f2b6ce 90 struct cfq_ttime ttime;
cc09e299 91};
f5f2b6ce
SL
92#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
93 .ttime = {.last_end_request = jiffies,},}
cc09e299 94
6118b70b
JA
95/*
96 * Per process-grouping structure
97 */
98struct cfq_queue {
99 /* reference count */
30d7b944 100 int ref;
6118b70b
JA
101 /* various state flags, see below */
102 unsigned int flags;
103 /* parent cfq_data */
104 struct cfq_data *cfqd;
105 /* service_tree member */
106 struct rb_node rb_node;
107 /* service_tree key */
108 unsigned long rb_key;
109 /* prio tree member */
110 struct rb_node p_node;
111 /* prio tree root we belong to, if any */
112 struct rb_root *p_root;
113 /* sorted list of pending requests */
114 struct rb_root sort_list;
115 /* if fifo isn't expired, next request to serve */
116 struct request *next_rq;
117 /* requests queued in sort_list */
118 int queued[2];
119 /* currently allocated requests */
120 int allocated[2];
121 /* fifo list of requests in sort_list */
122 struct list_head fifo;
123
dae739eb
VG
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start;
f75edf2d 126 unsigned int allocated_slice;
c4081ba5 127 unsigned int slice_dispatch;
dae739eb
VG
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start;
6118b70b
JA
130 unsigned long slice_end;
131 long slice_resid;
6118b70b 132
65299a3b
CH
133 /* pending priority requests */
134 int prio_pending;
6118b70b
JA
135 /* number of requests that are on the dispatch list or inside driver */
136 int dispatched;
137
138 /* io prio of this group */
139 unsigned short ioprio, org_ioprio;
4aede84b 140 unsigned short ioprio_class;
6118b70b 141
c4081ba5
RK
142 pid_t pid;
143
3dde36dd 144 u32 seek_history;
b2c18e1e
JM
145 sector_t last_request_pos;
146
aa6f6a3d 147 struct cfq_rb_root *service_tree;
df5fe3e8 148 struct cfq_queue *new_cfqq;
cdb16e8f 149 struct cfq_group *cfqg;
c4e7893e
VG
150 /* Number of sectors dispatched from queue in single dispatch round */
151 unsigned long nr_sectors;
6118b70b
JA
152};
153
c0324a02 154/*
718eee05 155 * First index in the service_trees.
c0324a02
CZ
156 * IDLE is handled separately, so it has negative index
157 */
158enum wl_prio_t {
c0324a02 159 BE_WORKLOAD = 0,
615f0259
VG
160 RT_WORKLOAD = 1,
161 IDLE_WORKLOAD = 2,
b4627321 162 CFQ_PRIO_NR,
c0324a02
CZ
163};
164
718eee05
CZ
165/*
166 * Second index in the service_trees.
167 */
168enum wl_type_t {
169 ASYNC_WORKLOAD = 0,
170 SYNC_NOIDLE_WORKLOAD = 1,
171 SYNC_WORKLOAD = 2
172};
173
cdb16e8f
VG
174/* This is per cgroup per device grouping structure */
175struct cfq_group {
1fa8f6d6
VG
176 /* group service_tree member */
177 struct rb_node rb_node;
178
179 /* group service_tree key */
180 u64 vdisktime;
25bc6b07 181 unsigned int weight;
8184f93e
JT
182 unsigned int new_weight;
183 bool needs_update;
1fa8f6d6
VG
184
185 /* number of cfqq currently on this group */
186 int nr_cfqq;
187
cdb16e8f 188 /*
4495a7d4 189 * Per group busy queues average. Useful for workload slice calc. We
b4627321
VG
190 * create the array for each prio class but at run time it is used
191 * only for RT and BE class and slot for IDLE class remains unused.
192 * This is primarily done to avoid confusion and a gcc warning.
193 */
194 unsigned int busy_queues_avg[CFQ_PRIO_NR];
195 /*
196 * rr lists of queues with requests. We maintain service trees for
197 * RT and BE classes. These trees are subdivided in subclasses
198 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
199 * class there is no subclassification and all the cfq queues go on
200 * a single tree service_tree_idle.
cdb16e8f
VG
201 * Counts are embedded in the cfq_rb_root
202 */
203 struct cfq_rb_root service_trees[2][3];
204 struct cfq_rb_root service_tree_idle;
dae739eb
VG
205
206 unsigned long saved_workload_slice;
207 enum wl_type_t saved_workload;
208 enum wl_prio_t saved_serving_prio;
25fb5169
VG
209 struct blkio_group blkg;
210#ifdef CONFIG_CFQ_GROUP_IOSCHED
211 struct hlist_node cfqd_node;
329a6781 212 int ref;
25fb5169 213#endif
80bdf0c7
VG
214 /* number of requests that are on the dispatch list or inside driver */
215 int dispatched;
7700fc4f 216 struct cfq_ttime ttime;
cdb16e8f 217};
718eee05 218
c5869807
TH
219struct cfq_io_cq {
220 struct io_cq icq; /* must be the first member */
221 struct cfq_queue *cfqq[2];
222 struct cfq_ttime ttime;
223};
224
22e2c507
JA
225/*
226 * Per block device queue structure
227 */
1da177e4 228struct cfq_data {
165125e1 229 struct request_queue *queue;
1fa8f6d6
VG
230 /* Root service tree for cfq_groups */
231 struct cfq_rb_root grp_service_tree;
cdb16e8f 232 struct cfq_group root_group;
22e2c507 233
c0324a02
CZ
234 /*
235 * The priority currently being served
22e2c507 236 */
c0324a02 237 enum wl_prio_t serving_prio;
718eee05
CZ
238 enum wl_type_t serving_type;
239 unsigned long workload_expires;
cdb16e8f 240 struct cfq_group *serving_group;
a36e71f9
JA
241
242 /*
243 * Each priority tree is sorted by next_request position. These
244 * trees are used when determining if two or more queues are
245 * interleaving requests (see cfq_close_cooperator).
246 */
247 struct rb_root prio_trees[CFQ_PRIO_LISTS];
248
22e2c507 249 unsigned int busy_queues;
ef8a41df 250 unsigned int busy_sync_queues;
22e2c507 251
53c583d2
CZ
252 int rq_in_driver;
253 int rq_in_flight[2];
45333d5a
AC
254
255 /*
256 * queue-depth detection
257 */
258 int rq_queued;
25776e35 259 int hw_tag;
e459dd08
CZ
260 /*
261 * hw_tag can be
262 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
263 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
264 * 0 => no NCQ
265 */
266 int hw_tag_est_depth;
267 unsigned int hw_tag_samples;
1da177e4 268
22e2c507
JA
269 /*
270 * idle window management
271 */
272 struct timer_list idle_slice_timer;
23e018a1 273 struct work_struct unplug_work;
1da177e4 274
22e2c507 275 struct cfq_queue *active_queue;
c5869807 276 struct cfq_io_cq *active_cic;
22e2c507 277
c2dea2d1
VT
278 /*
279 * async queue for each priority case
280 */
281 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
282 struct cfq_queue *async_idle_cfqq;
15c31be4 283
6d048f53 284 sector_t last_position;
1da177e4 285
1da177e4
LT
286 /*
287 * tunables, see top of file
288 */
289 unsigned int cfq_quantum;
22e2c507 290 unsigned int cfq_fifo_expire[2];
1da177e4
LT
291 unsigned int cfq_back_penalty;
292 unsigned int cfq_back_max;
22e2c507
JA
293 unsigned int cfq_slice[2];
294 unsigned int cfq_slice_async_rq;
295 unsigned int cfq_slice_idle;
80bdf0c7 296 unsigned int cfq_group_idle;
963b72fc 297 unsigned int cfq_latency;
d9ff4187 298
6118b70b
JA
299 /*
300 * Fallback dummy cfqq for extreme OOM conditions
301 */
302 struct cfq_queue oom_cfqq;
365722bb 303
573412b2 304 unsigned long last_delayed_sync;
25fb5169
VG
305
306 /* List of cfq groups being managed on this device*/
307 struct hlist_head cfqg_list;
56edf7d7
VG
308
309 /* Number of groups which are on blkcg->blkg_list */
310 unsigned int nr_blkcg_linked_grps;
1da177e4
LT
311};
312
25fb5169
VG
313static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
314
cdb16e8f
VG
315static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
316 enum wl_prio_t prio,
65b32a57 317 enum wl_type_t type)
c0324a02 318{
1fa8f6d6
VG
319 if (!cfqg)
320 return NULL;
321
c0324a02 322 if (prio == IDLE_WORKLOAD)
cdb16e8f 323 return &cfqg->service_tree_idle;
c0324a02 324
cdb16e8f 325 return &cfqg->service_trees[prio][type];
c0324a02
CZ
326}
327
3b18152c 328enum cfqq_state_flags {
b0b8d749
JA
329 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
330 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 331 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 332 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
333 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
334 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
335 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 336 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 337 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 338 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 339 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 340 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 341 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
342};
343
344#define CFQ_CFQQ_FNS(name) \
345static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
346{ \
fe094d98 347 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
348} \
349static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
350{ \
fe094d98 351 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
352} \
353static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
354{ \
fe094d98 355 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
356}
357
358CFQ_CFQQ_FNS(on_rr);
359CFQ_CFQQ_FNS(wait_request);
b029195d 360CFQ_CFQQ_FNS(must_dispatch);
3b18152c 361CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
362CFQ_CFQQ_FNS(fifo_expire);
363CFQ_CFQQ_FNS(idle_window);
364CFQ_CFQQ_FNS(prio_changed);
44f7c160 365CFQ_CFQQ_FNS(slice_new);
91fac317 366CFQ_CFQQ_FNS(sync);
a36e71f9 367CFQ_CFQQ_FNS(coop);
ae54abed 368CFQ_CFQQ_FNS(split_coop);
76280aff 369CFQ_CFQQ_FNS(deep);
f75edf2d 370CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
371#undef CFQ_CFQQ_FNS
372
afc24d49 373#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
374#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
375 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
376 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
4495a7d4 377 blkg_path(&(cfqq)->cfqg->blkg), ##args)
2868ef7b
VG
378
379#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
380 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
4495a7d4 381 blkg_path(&(cfqg)->blkg), ##args) \
2868ef7b
VG
382
383#else
7b679138
JA
384#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
385 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
4495a7d4 386#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
2868ef7b 387#endif
7b679138
JA
388#define cfq_log(cfqd, fmt, args...) \
389 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
390
615f0259
VG
391/* Traverses through cfq group service trees */
392#define for_each_cfqg_st(cfqg, i, j, st) \
393 for (i = 0; i <= IDLE_WORKLOAD; i++) \
394 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
395 : &cfqg->service_tree_idle; \
396 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
397 (i == IDLE_WORKLOAD && j == 0); \
398 j++, st = i < IDLE_WORKLOAD ? \
399 &cfqg->service_trees[i][j]: NULL) \
400
f5f2b6ce
SL
401static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
402 struct cfq_ttime *ttime, bool group_idle)
403{
404 unsigned long slice;
405 if (!sample_valid(ttime->ttime_samples))
406 return false;
407 if (group_idle)
408 slice = cfqd->cfq_group_idle;
409 else
410 slice = cfqd->cfq_slice_idle;
411 return ttime->ttime_mean > slice;
412}
615f0259 413
02b35081
VG
414static inline bool iops_mode(struct cfq_data *cfqd)
415{
416 /*
417 * If we are not idling on queues and it is a NCQ drive, parallel
418 * execution of requests is on and measuring time is not possible
419 * in most of the cases until and unless we drive shallower queue
420 * depths and that becomes a performance bottleneck. In such cases
421 * switch to start providing fairness in terms of number of IOs.
422 */
423 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
424 return true;
425 else
426 return false;
427}
428
c0324a02
CZ
429static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
430{
431 if (cfq_class_idle(cfqq))
432 return IDLE_WORKLOAD;
433 if (cfq_class_rt(cfqq))
434 return RT_WORKLOAD;
435 return BE_WORKLOAD;
436}
437
718eee05
CZ
438
439static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
440{
441 if (!cfq_cfqq_sync(cfqq))
442 return ASYNC_WORKLOAD;
443 if (!cfq_cfqq_idle_window(cfqq))
444 return SYNC_NOIDLE_WORKLOAD;
445 return SYNC_WORKLOAD;
446}
447
58ff82f3
VG
448static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
449 struct cfq_data *cfqd,
450 struct cfq_group *cfqg)
c0324a02
CZ
451{
452 if (wl == IDLE_WORKLOAD)
cdb16e8f 453 return cfqg->service_tree_idle.count;
c0324a02 454
cdb16e8f
VG
455 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
456 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
457 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
458}
459
f26bd1f0
VG
460static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
461 struct cfq_group *cfqg)
462{
463 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
464 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
465}
466
165125e1 467static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 468static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 469 struct io_context *, gfp_t);
91fac317 470
c5869807
TH
471static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
472{
473 /* cic->icq is the first member, %NULL will convert to %NULL */
474 return container_of(icq, struct cfq_io_cq, icq);
475}
476
47fdd4ca
TH
477static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
478 struct io_context *ioc)
479{
480 if (ioc)
481 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
482 return NULL;
483}
484
c5869807 485static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
91fac317 486{
a6151c3a 487 return cic->cfqq[is_sync];
91fac317
VT
488}
489
c5869807
TH
490static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
491 bool is_sync)
91fac317 492{
a6151c3a 493 cic->cfqq[is_sync] = cfqq;
91fac317
VT
494}
495
c5869807 496static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
bca4b914 497{
c5869807 498 return cic->icq.q->elevator->elevator_data;
bca4b914
KK
499}
500
91fac317
VT
501/*
502 * We regard a request as SYNC, if it's either a read or has the SYNC bit
503 * set (in which case it could also be direct WRITE).
504 */
a6151c3a 505static inline bool cfq_bio_sync(struct bio *bio)
91fac317 506{
7b6d91da 507 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
91fac317 508}
1da177e4 509
99f95e52
AM
510/*
511 * scheduler run of queue, if there are requests pending and no one in the
512 * driver that will restart queueing
513 */
23e018a1 514static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 515{
7b679138
JA
516 if (cfqd->busy_queues) {
517 cfq_log(cfqd, "schedule dispatch");
23e018a1 518 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 519 }
99f95e52
AM
520}
521
44f7c160
JA
522/*
523 * Scale schedule slice based on io priority. Use the sync time slice only
524 * if a queue is marked sync and has sync io queued. A sync queue with async
525 * io only, should not get full sync slice length.
526 */
a6151c3a 527static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 528 unsigned short prio)
44f7c160 529{
d9e7620e 530 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 531
d9e7620e
JA
532 WARN_ON(prio >= IOPRIO_BE_NR);
533
534 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
535}
44f7c160 536
d9e7620e
JA
537static inline int
538cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
539{
540 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
541}
542
25bc6b07
VG
543static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
544{
545 u64 d = delta << CFQ_SERVICE_SHIFT;
546
547 d = d * BLKIO_WEIGHT_DEFAULT;
548 do_div(d, cfqg->weight);
549 return d;
550}
551
552static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
553{
554 s64 delta = (s64)(vdisktime - min_vdisktime);
555 if (delta > 0)
556 min_vdisktime = vdisktime;
557
558 return min_vdisktime;
559}
560
561static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
562{
563 s64 delta = (s64)(vdisktime - min_vdisktime);
564 if (delta < 0)
565 min_vdisktime = vdisktime;
566
567 return min_vdisktime;
568}
569
570static void update_min_vdisktime(struct cfq_rb_root *st)
571{
25bc6b07
VG
572 struct cfq_group *cfqg;
573
25bc6b07
VG
574 if (st->left) {
575 cfqg = rb_entry_cfqg(st->left);
a6032710
GJ
576 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
577 cfqg->vdisktime);
25bc6b07 578 }
25bc6b07
VG
579}
580
5db5d642
CZ
581/*
582 * get averaged number of queues of RT/BE priority.
583 * average is updated, with a formula that gives more weight to higher numbers,
584 * to quickly follows sudden increases and decrease slowly
585 */
586
58ff82f3
VG
587static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
588 struct cfq_group *cfqg, bool rt)
5869619c 589{
5db5d642
CZ
590 unsigned min_q, max_q;
591 unsigned mult = cfq_hist_divisor - 1;
592 unsigned round = cfq_hist_divisor / 2;
58ff82f3 593 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 594
58ff82f3
VG
595 min_q = min(cfqg->busy_queues_avg[rt], busy);
596 max_q = max(cfqg->busy_queues_avg[rt], busy);
597 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 598 cfq_hist_divisor;
58ff82f3
VG
599 return cfqg->busy_queues_avg[rt];
600}
601
602static inline unsigned
603cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
604{
605 struct cfq_rb_root *st = &cfqd->grp_service_tree;
606
607 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
608}
609
c553f8e3 610static inline unsigned
ba5bd520 611cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
44f7c160 612{
5db5d642
CZ
613 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
614 if (cfqd->cfq_latency) {
58ff82f3
VG
615 /*
616 * interested queues (we consider only the ones with the same
617 * priority class in the cfq group)
618 */
619 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
620 cfq_class_rt(cfqq));
5db5d642
CZ
621 unsigned sync_slice = cfqd->cfq_slice[1];
622 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
623 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
624
625 if (expect_latency > group_slice) {
5db5d642
CZ
626 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
627 /* scale low_slice according to IO priority
628 * and sync vs async */
629 unsigned low_slice =
630 min(slice, base_low_slice * slice / sync_slice);
631 /* the adapted slice value is scaled to fit all iqs
632 * into the target latency */
58ff82f3 633 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
634 low_slice);
635 }
636 }
c553f8e3
SL
637 return slice;
638}
639
640static inline void
641cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
642{
ba5bd520 643 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3 644
dae739eb 645 cfqq->slice_start = jiffies;
5db5d642 646 cfqq->slice_end = jiffies + slice;
f75edf2d 647 cfqq->allocated_slice = slice;
7b679138 648 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
649}
650
651/*
652 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
653 * isn't valid until the first request from the dispatch is activated
654 * and the slice time set.
655 */
a6151c3a 656static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
657{
658 if (cfq_cfqq_slice_new(cfqq))
c1e44756 659 return false;
44f7c160 660 if (time_before(jiffies, cfqq->slice_end))
c1e44756 661 return false;
44f7c160 662
c1e44756 663 return true;
44f7c160
JA
664}
665
1da177e4 666/*
5e705374 667 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 668 * We choose the request that is closest to the head right now. Distance
e8a99053 669 * behind the head is penalized and only allowed to a certain extent.
1da177e4 670 */
5e705374 671static struct request *
cf7c25cf 672cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 673{
cf7c25cf 674 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 675 unsigned long back_max;
e8a99053
AM
676#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
677#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
678 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 679
5e705374
JA
680 if (rq1 == NULL || rq1 == rq2)
681 return rq2;
682 if (rq2 == NULL)
683 return rq1;
9c2c38a1 684
229836bd
NK
685 if (rq_is_sync(rq1) != rq_is_sync(rq2))
686 return rq_is_sync(rq1) ? rq1 : rq2;
687
65299a3b
CH
688 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
689 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
b53d1ed7 690
83096ebf
TH
691 s1 = blk_rq_pos(rq1);
692 s2 = blk_rq_pos(rq2);
1da177e4 693
1da177e4
LT
694 /*
695 * by definition, 1KiB is 2 sectors
696 */
697 back_max = cfqd->cfq_back_max * 2;
698
699 /*
700 * Strict one way elevator _except_ in the case where we allow
701 * short backward seeks which are biased as twice the cost of a
702 * similar forward seek.
703 */
704 if (s1 >= last)
705 d1 = s1 - last;
706 else if (s1 + back_max >= last)
707 d1 = (last - s1) * cfqd->cfq_back_penalty;
708 else
e8a99053 709 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
710
711 if (s2 >= last)
712 d2 = s2 - last;
713 else if (s2 + back_max >= last)
714 d2 = (last - s2) * cfqd->cfq_back_penalty;
715 else
e8a99053 716 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
717
718 /* Found required data */
e8a99053
AM
719
720 /*
721 * By doing switch() on the bit mask "wrap" we avoid having to
722 * check two variables for all permutations: --> faster!
723 */
724 switch (wrap) {
5e705374 725 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 726 if (d1 < d2)
5e705374 727 return rq1;
e8a99053 728 else if (d2 < d1)
5e705374 729 return rq2;
e8a99053
AM
730 else {
731 if (s1 >= s2)
5e705374 732 return rq1;
e8a99053 733 else
5e705374 734 return rq2;
e8a99053 735 }
1da177e4 736
e8a99053 737 case CFQ_RQ2_WRAP:
5e705374 738 return rq1;
e8a99053 739 case CFQ_RQ1_WRAP:
5e705374
JA
740 return rq2;
741 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
742 default:
743 /*
744 * Since both rqs are wrapped,
745 * start with the one that's further behind head
746 * (--> only *one* back seek required),
747 * since back seek takes more time than forward.
748 */
749 if (s1 <= s2)
5e705374 750 return rq1;
1da177e4 751 else
5e705374 752 return rq2;
1da177e4
LT
753 }
754}
755
498d3aa2
JA
756/*
757 * The below is leftmost cache rbtree addon
758 */
0871714e 759static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 760{
615f0259
VG
761 /* Service tree is empty */
762 if (!root->count)
763 return NULL;
764
cc09e299
JA
765 if (!root->left)
766 root->left = rb_first(&root->rb);
767
0871714e
JA
768 if (root->left)
769 return rb_entry(root->left, struct cfq_queue, rb_node);
770
771 return NULL;
cc09e299
JA
772}
773
1fa8f6d6
VG
774static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
775{
776 if (!root->left)
777 root->left = rb_first(&root->rb);
778
779 if (root->left)
780 return rb_entry_cfqg(root->left);
781
782 return NULL;
783}
784
a36e71f9
JA
785static void rb_erase_init(struct rb_node *n, struct rb_root *root)
786{
787 rb_erase(n, root);
788 RB_CLEAR_NODE(n);
789}
790
cc09e299
JA
791static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
792{
793 if (root->left == n)
794 root->left = NULL;
a36e71f9 795 rb_erase_init(n, &root->rb);
aa6f6a3d 796 --root->count;
cc09e299
JA
797}
798
1da177e4
LT
799/*
800 * would be nice to take fifo expire time into account as well
801 */
5e705374
JA
802static struct request *
803cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
804 struct request *last)
1da177e4 805{
21183b07
JA
806 struct rb_node *rbnext = rb_next(&last->rb_node);
807 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 808 struct request *next = NULL, *prev = NULL;
1da177e4 809
21183b07 810 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
811
812 if (rbprev)
5e705374 813 prev = rb_entry_rq(rbprev);
1da177e4 814
21183b07 815 if (rbnext)
5e705374 816 next = rb_entry_rq(rbnext);
21183b07
JA
817 else {
818 rbnext = rb_first(&cfqq->sort_list);
819 if (rbnext && rbnext != &last->rb_node)
5e705374 820 next = rb_entry_rq(rbnext);
21183b07 821 }
1da177e4 822
cf7c25cf 823 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
824}
825
d9e7620e
JA
826static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
827 struct cfq_queue *cfqq)
1da177e4 828{
d9e7620e
JA
829 /*
830 * just an approximation, should be ok.
831 */
cdb16e8f 832 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 833 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
834}
835
1fa8f6d6
VG
836static inline s64
837cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
838{
839 return cfqg->vdisktime - st->min_vdisktime;
840}
841
842static void
843__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
844{
845 struct rb_node **node = &st->rb.rb_node;
846 struct rb_node *parent = NULL;
847 struct cfq_group *__cfqg;
848 s64 key = cfqg_key(st, cfqg);
849 int left = 1;
850
851 while (*node != NULL) {
852 parent = *node;
853 __cfqg = rb_entry_cfqg(parent);
854
855 if (key < cfqg_key(st, __cfqg))
856 node = &parent->rb_left;
857 else {
858 node = &parent->rb_right;
859 left = 0;
860 }
861 }
862
863 if (left)
864 st->left = &cfqg->rb_node;
865
866 rb_link_node(&cfqg->rb_node, parent, node);
867 rb_insert_color(&cfqg->rb_node, &st->rb);
868}
869
870static void
8184f93e
JT
871cfq_update_group_weight(struct cfq_group *cfqg)
872{
873 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
874 if (cfqg->needs_update) {
875 cfqg->weight = cfqg->new_weight;
876 cfqg->needs_update = false;
877 }
878}
879
880static void
881cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
882{
883 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
884
885 cfq_update_group_weight(cfqg);
886 __cfq_group_service_tree_add(st, cfqg);
887 st->total_weight += cfqg->weight;
888}
889
890static void
891cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
892{
893 struct cfq_rb_root *st = &cfqd->grp_service_tree;
894 struct cfq_group *__cfqg;
895 struct rb_node *n;
896
897 cfqg->nr_cfqq++;
760701bf 898 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1fa8f6d6
VG
899 return;
900
901 /*
902 * Currently put the group at the end. Later implement something
903 * so that groups get lesser vtime based on their weights, so that
25985edc 904 * if group does not loose all if it was not continuously backlogged.
1fa8f6d6
VG
905 */
906 n = rb_last(&st->rb);
907 if (n) {
908 __cfqg = rb_entry_cfqg(n);
909 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
910 } else
911 cfqg->vdisktime = st->min_vdisktime;
8184f93e
JT
912 cfq_group_service_tree_add(st, cfqg);
913}
1fa8f6d6 914
8184f93e
JT
915static void
916cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
917{
918 st->total_weight -= cfqg->weight;
919 if (!RB_EMPTY_NODE(&cfqg->rb_node))
920 cfq_rb_erase(&cfqg->rb_node, st);
1fa8f6d6
VG
921}
922
923static void
8184f93e 924cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
925{
926 struct cfq_rb_root *st = &cfqd->grp_service_tree;
927
928 BUG_ON(cfqg->nr_cfqq < 1);
929 cfqg->nr_cfqq--;
25bc6b07 930
1fa8f6d6
VG
931 /* If there are other cfq queues under this group, don't delete it */
932 if (cfqg->nr_cfqq)
933 return;
934
2868ef7b 935 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
8184f93e 936 cfq_group_service_tree_del(st, cfqg);
dae739eb 937 cfqg->saved_workload_slice = 0;
e98ef89b 938 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
939}
940
167400d3
JT
941static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
942 unsigned int *unaccounted_time)
dae739eb 943{
f75edf2d 944 unsigned int slice_used;
dae739eb
VG
945
946 /*
947 * Queue got expired before even a single request completed or
948 * got expired immediately after first request completion.
949 */
950 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
951 /*
952 * Also charge the seek time incurred to the group, otherwise
953 * if there are mutiple queues in the group, each can dispatch
954 * a single request on seeky media and cause lots of seek time
955 * and group will never know it.
956 */
957 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
958 1);
959 } else {
960 slice_used = jiffies - cfqq->slice_start;
167400d3
JT
961 if (slice_used > cfqq->allocated_slice) {
962 *unaccounted_time = slice_used - cfqq->allocated_slice;
f75edf2d 963 slice_used = cfqq->allocated_slice;
167400d3
JT
964 }
965 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
966 *unaccounted_time += cfqq->slice_start -
967 cfqq->dispatch_start;
dae739eb
VG
968 }
969
dae739eb
VG
970 return slice_used;
971}
972
973static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 974 struct cfq_queue *cfqq)
dae739eb
VG
975{
976 struct cfq_rb_root *st = &cfqd->grp_service_tree;
167400d3 977 unsigned int used_sl, charge, unaccounted_sl = 0;
f26bd1f0
VG
978 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
979 - cfqg->service_tree_idle.count;
980
981 BUG_ON(nr_sync < 0);
167400d3 982 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
dae739eb 983
02b35081
VG
984 if (iops_mode(cfqd))
985 charge = cfqq->slice_dispatch;
986 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
987 charge = cfqq->allocated_slice;
dae739eb
VG
988
989 /* Can't update vdisktime while group is on service tree */
8184f93e 990 cfq_group_service_tree_del(st, cfqg);
02b35081 991 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
8184f93e
JT
992 /* If a new weight was requested, update now, off tree */
993 cfq_group_service_tree_add(st, cfqg);
dae739eb
VG
994
995 /* This group is being expired. Save the context */
996 if (time_after(cfqd->workload_expires, jiffies)) {
997 cfqg->saved_workload_slice = cfqd->workload_expires
998 - jiffies;
999 cfqg->saved_workload = cfqd->serving_type;
1000 cfqg->saved_serving_prio = cfqd->serving_prio;
1001 } else
1002 cfqg->saved_workload_slice = 0;
2868ef7b
VG
1003
1004 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1005 st->min_vdisktime);
fd16d263
JP
1006 cfq_log_cfqq(cfqq->cfqd, cfqq,
1007 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1008 used_sl, cfqq->slice_dispatch, charge,
1009 iops_mode(cfqd), cfqq->nr_sectors);
167400d3
JT
1010 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1011 unaccounted_sl);
e98ef89b 1012 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
1013}
1014
25fb5169
VG
1015#ifdef CONFIG_CFQ_GROUP_IOSCHED
1016static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1017{
1018 if (blkg)
1019 return container_of(blkg, struct cfq_group, blkg);
1020 return NULL;
1021}
1022
8aea4545
PB
1023static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1024 unsigned int weight)
f8d461d6 1025{
8184f93e
JT
1026 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1027 cfqg->new_weight = weight;
1028 cfqg->needs_update = true;
f8d461d6
VG
1029}
1030
f469a7b4
VG
1031static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1032 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
25fb5169 1033{
22084190
VG
1034 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1035 unsigned int major, minor;
25fb5169 1036
f469a7b4
VG
1037 /*
1038 * Add group onto cgroup list. It might happen that bdi->dev is
1039 * not initialized yet. Initialize this new group without major
1040 * and minor info and this info will be filled in once a new thread
1041 * comes for IO.
1042 */
1043 if (bdi->dev) {
a74b2ada 1044 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
f469a7b4
VG
1045 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1046 (void *)cfqd, MKDEV(major, minor));
1047 } else
1048 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1049 (void *)cfqd, 0);
1050
1051 cfqd->nr_blkcg_linked_grps++;
1052 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1053
1054 /* Add group on cfqd list */
1055 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1056}
1057
1058/*
1059 * Should be called from sleepable context. No request queue lock as per
1060 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1061 * from sleepable context.
1062 */
1063static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1064{
1065 struct cfq_group *cfqg = NULL;
5624a4e4 1066 int i, j, ret;
f469a7b4 1067 struct cfq_rb_root *st;
25fb5169
VG
1068
1069 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1070 if (!cfqg)
f469a7b4 1071 return NULL;
25fb5169 1072
25fb5169
VG
1073 for_each_cfqg_st(cfqg, i, j, st)
1074 *st = CFQ_RB_ROOT;
1075 RB_CLEAR_NODE(&cfqg->rb_node);
1076
7700fc4f
SL
1077 cfqg->ttime.last_end_request = jiffies;
1078
b1c35769
VG
1079 /*
1080 * Take the initial reference that will be released on destroy
1081 * This can be thought of a joint reference by cgroup and
1082 * elevator which will be dropped by either elevator exit
1083 * or cgroup deletion path depending on who is exiting first.
1084 */
329a6781 1085 cfqg->ref = 1;
5624a4e4
VG
1086
1087 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1088 if (ret) {
1089 kfree(cfqg);
1090 return NULL;
1091 }
1092
f469a7b4
VG
1093 return cfqg;
1094}
1095
1096static struct cfq_group *
1097cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1098{
1099 struct cfq_group *cfqg = NULL;
1100 void *key = cfqd;
1101 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1102 unsigned int major, minor;
b1c35769 1103
180be2a0 1104 /*
f469a7b4
VG
1105 * This is the common case when there are no blkio cgroups.
1106 * Avoid lookup in this case
180be2a0 1107 */
f469a7b4
VG
1108 if (blkcg == &blkio_root_cgroup)
1109 cfqg = &cfqd->root_group;
1110 else
1111 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
25fb5169 1112
f469a7b4
VG
1113 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1114 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1115 cfqg->blkg.dev = MKDEV(major, minor);
1116 }
25fb5169 1117
25fb5169
VG
1118 return cfqg;
1119}
1120
1121/*
3e59cf9d
VG
1122 * Search for the cfq group current task belongs to. request_queue lock must
1123 * be held.
25fb5169 1124 */
3e59cf9d 1125static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169 1126{
70087dc3 1127 struct blkio_cgroup *blkcg;
f469a7b4
VG
1128 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1129 struct request_queue *q = cfqd->queue;
25fb5169 1130
70087dc3 1131 blkcg = task_blkio_cgroup(current);
f469a7b4 1132 cfqg = cfq_find_cfqg(cfqd, blkcg);
2a7f1244 1133 if (cfqg)
f469a7b4 1134 return cfqg;
f469a7b4
VG
1135
1136 /*
1137 * Need to allocate a group. Allocation of group also needs allocation
1138 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1139 * we need to drop rcu lock and queue_lock before we call alloc.
1140 *
1141 * Not taking any queue reference here and assuming that queue is
1142 * around by the time we return. CFQ queue allocation code does
1143 * the same. It might be racy though.
1144 */
1145
1146 rcu_read_unlock();
1147 spin_unlock_irq(q->queue_lock);
1148
1149 cfqg = cfq_alloc_cfqg(cfqd);
1150
1151 spin_lock_irq(q->queue_lock);
1152
1153 rcu_read_lock();
1154 blkcg = task_blkio_cgroup(current);
1155
1156 /*
1157 * If some other thread already allocated the group while we were
1158 * not holding queue lock, free up the group
1159 */
1160 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1161
1162 if (__cfqg) {
1163 kfree(cfqg);
f469a7b4
VG
1164 return __cfqg;
1165 }
1166
3e59cf9d 1167 if (!cfqg)
25fb5169 1168 cfqg = &cfqd->root_group;
f469a7b4
VG
1169
1170 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
25fb5169
VG
1171 return cfqg;
1172}
1173
7f1dc8a2
VG
1174static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1175{
329a6781 1176 cfqg->ref++;
7f1dc8a2
VG
1177 return cfqg;
1178}
1179
25fb5169
VG
1180static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1181{
1182 /* Currently, all async queues are mapped to root group */
1183 if (!cfq_cfqq_sync(cfqq))
1184 cfqg = &cfqq->cfqd->root_group;
1185
1186 cfqq->cfqg = cfqg;
b1c35769 1187 /* cfqq reference on cfqg */
329a6781 1188 cfqq->cfqg->ref++;
b1c35769
VG
1189}
1190
1191static void cfq_put_cfqg(struct cfq_group *cfqg)
1192{
1193 struct cfq_rb_root *st;
1194 int i, j;
1195
329a6781
SL
1196 BUG_ON(cfqg->ref <= 0);
1197 cfqg->ref--;
1198 if (cfqg->ref)
b1c35769
VG
1199 return;
1200 for_each_cfqg_st(cfqg, i, j, st)
b54ce60e 1201 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
5624a4e4 1202 free_percpu(cfqg->blkg.stats_cpu);
b1c35769
VG
1203 kfree(cfqg);
1204}
1205
1206static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1207{
1208 /* Something wrong if we are trying to remove same group twice */
1209 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1210
1211 hlist_del_init(&cfqg->cfqd_node);
1212
a5395b83
VG
1213 BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1214 cfqd->nr_blkcg_linked_grps--;
1215
b1c35769
VG
1216 /*
1217 * Put the reference taken at the time of creation so that when all
1218 * queues are gone, group can be destroyed.
1219 */
1220 cfq_put_cfqg(cfqg);
1221}
1222
72e06c25 1223static bool cfq_release_cfq_groups(struct cfq_data *cfqd)
b1c35769
VG
1224{
1225 struct hlist_node *pos, *n;
1226 struct cfq_group *cfqg;
72e06c25 1227 bool empty = true;
b1c35769
VG
1228
1229 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1230 /*
1231 * If cgroup removal path got to blk_group first and removed
1232 * it from cgroup list, then it will take care of destroying
1233 * cfqg also.
1234 */
e98ef89b 1235 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769 1236 cfq_destroy_cfqg(cfqd, cfqg);
72e06c25
TH
1237 else
1238 empty = false;
b1c35769 1239 }
72e06c25 1240 return empty;
25fb5169 1241}
b1c35769
VG
1242
1243/*
1244 * Blk cgroup controller notification saying that blkio_group object is being
1245 * delinked as associated cgroup object is going away. That also means that
1246 * no new IO will come in this group. So get rid of this group as soon as
1247 * any pending IO in the group is finished.
1248 *
1249 * This function is called under rcu_read_lock(). key is the rcu protected
1250 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1251 * read lock.
1252 *
1253 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1254 * it should not be NULL as even if elevator was exiting, cgroup deltion
1255 * path got to it first.
1256 */
8aea4545 1257static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
b1c35769
VG
1258{
1259 unsigned long flags;
1260 struct cfq_data *cfqd = key;
1261
1262 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1263 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1264 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1265}
1266
72e06c25
TH
1267static struct elevator_type iosched_cfq;
1268
1269static bool cfq_clear_queue(struct request_queue *q)
1270{
1271 lockdep_assert_held(q->queue_lock);
1272
1273 /* shoot down blkgs iff the current elevator is cfq */
1274 if (!q->elevator || q->elevator->type != &iosched_cfq)
1275 return true;
1276
1277 return cfq_release_cfq_groups(q->elevator->elevator_data);
1278}
1279
25fb5169 1280#else /* GROUP_IOSCHED */
3e59cf9d 1281static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169
VG
1282{
1283 return &cfqd->root_group;
1284}
7f1dc8a2
VG
1285
1286static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1287{
50eaeb32 1288 return cfqg;
7f1dc8a2
VG
1289}
1290
25fb5169
VG
1291static inline void
1292cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1293 cfqq->cfqg = cfqg;
1294}
1295
b1c35769
VG
1296static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1297static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1298
25fb5169
VG
1299#endif /* GROUP_IOSCHED */
1300
498d3aa2 1301/*
c0324a02 1302 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1303 * requests waiting to be processed. It is sorted in the order that
1304 * we will service the queues.
1305 */
a36e71f9 1306static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1307 bool add_front)
d9e7620e 1308{
0871714e
JA
1309 struct rb_node **p, *parent;
1310 struct cfq_queue *__cfqq;
d9e7620e 1311 unsigned long rb_key;
c0324a02 1312 struct cfq_rb_root *service_tree;
498d3aa2 1313 int left;
dae739eb 1314 int new_cfqq = 1;
ae30c286 1315
cdb16e8f 1316 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1317 cfqq_type(cfqq));
0871714e
JA
1318 if (cfq_class_idle(cfqq)) {
1319 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1320 parent = rb_last(&service_tree->rb);
0871714e
JA
1321 if (parent && parent != &cfqq->rb_node) {
1322 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1323 rb_key += __cfqq->rb_key;
1324 } else
1325 rb_key += jiffies;
1326 } else if (!add_front) {
b9c8946b
JA
1327 /*
1328 * Get our rb key offset. Subtract any residual slice
1329 * value carried from last service. A negative resid
1330 * count indicates slice overrun, and this should position
1331 * the next service time further away in the tree.
1332 */
edd75ffd 1333 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1334 rb_key -= cfqq->slice_resid;
edd75ffd 1335 cfqq->slice_resid = 0;
48e025e6
CZ
1336 } else {
1337 rb_key = -HZ;
aa6f6a3d 1338 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1339 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1340 }
1da177e4 1341
d9e7620e 1342 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1343 new_cfqq = 0;
99f9628a 1344 /*
d9e7620e 1345 * same position, nothing more to do
99f9628a 1346 */
c0324a02
CZ
1347 if (rb_key == cfqq->rb_key &&
1348 cfqq->service_tree == service_tree)
d9e7620e 1349 return;
1da177e4 1350
aa6f6a3d
CZ
1351 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1352 cfqq->service_tree = NULL;
1da177e4 1353 }
d9e7620e 1354
498d3aa2 1355 left = 1;
0871714e 1356 parent = NULL;
aa6f6a3d
CZ
1357 cfqq->service_tree = service_tree;
1358 p = &service_tree->rb.rb_node;
d9e7620e 1359 while (*p) {
67060e37 1360 struct rb_node **n;
cc09e299 1361
d9e7620e
JA
1362 parent = *p;
1363 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1364
0c534e0a 1365 /*
c0324a02 1366 * sort by key, that represents service time.
0c534e0a 1367 */
c0324a02 1368 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1369 n = &(*p)->rb_left;
c0324a02 1370 else {
67060e37 1371 n = &(*p)->rb_right;
cc09e299 1372 left = 0;
c0324a02 1373 }
67060e37
JA
1374
1375 p = n;
d9e7620e
JA
1376 }
1377
cc09e299 1378 if (left)
aa6f6a3d 1379 service_tree->left = &cfqq->rb_node;
cc09e299 1380
d9e7620e
JA
1381 cfqq->rb_key = rb_key;
1382 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1383 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1384 service_tree->count++;
20359f27 1385 if (add_front || !new_cfqq)
dae739eb 1386 return;
8184f93e 1387 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1da177e4
LT
1388}
1389
a36e71f9 1390static struct cfq_queue *
f2d1f0ae
JA
1391cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1392 sector_t sector, struct rb_node **ret_parent,
1393 struct rb_node ***rb_link)
a36e71f9 1394{
a36e71f9
JA
1395 struct rb_node **p, *parent;
1396 struct cfq_queue *cfqq = NULL;
1397
1398 parent = NULL;
1399 p = &root->rb_node;
1400 while (*p) {
1401 struct rb_node **n;
1402
1403 parent = *p;
1404 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1405
1406 /*
1407 * Sort strictly based on sector. Smallest to the left,
1408 * largest to the right.
1409 */
2e46e8b2 1410 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1411 n = &(*p)->rb_right;
2e46e8b2 1412 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1413 n = &(*p)->rb_left;
1414 else
1415 break;
1416 p = n;
3ac6c9f8 1417 cfqq = NULL;
a36e71f9
JA
1418 }
1419
1420 *ret_parent = parent;
1421 if (rb_link)
1422 *rb_link = p;
3ac6c9f8 1423 return cfqq;
a36e71f9
JA
1424}
1425
1426static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1427{
a36e71f9
JA
1428 struct rb_node **p, *parent;
1429 struct cfq_queue *__cfqq;
1430
f2d1f0ae
JA
1431 if (cfqq->p_root) {
1432 rb_erase(&cfqq->p_node, cfqq->p_root);
1433 cfqq->p_root = NULL;
1434 }
a36e71f9
JA
1435
1436 if (cfq_class_idle(cfqq))
1437 return;
1438 if (!cfqq->next_rq)
1439 return;
1440
f2d1f0ae 1441 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1442 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1443 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1444 if (!__cfqq) {
1445 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1446 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1447 } else
1448 cfqq->p_root = NULL;
a36e71f9
JA
1449}
1450
498d3aa2
JA
1451/*
1452 * Update cfqq's position in the service tree.
1453 */
edd75ffd 1454static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1455{
6d048f53
JA
1456 /*
1457 * Resorting requires the cfqq to be on the RR list already.
1458 */
a36e71f9 1459 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1460 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1461 cfq_prio_tree_add(cfqd, cfqq);
1462 }
6d048f53
JA
1463}
1464
1da177e4
LT
1465/*
1466 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1467 * the pending list according to last request service
1da177e4 1468 */
febffd61 1469static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1470{
7b679138 1471 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1472 BUG_ON(cfq_cfqq_on_rr(cfqq));
1473 cfq_mark_cfqq_on_rr(cfqq);
1da177e4 1474 cfqd->busy_queues++;
ef8a41df
SL
1475 if (cfq_cfqq_sync(cfqq))
1476 cfqd->busy_sync_queues++;
1da177e4 1477
edd75ffd 1478 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1479}
1480
498d3aa2
JA
1481/*
1482 * Called when the cfqq no longer has requests pending, remove it from
1483 * the service tree.
1484 */
febffd61 1485static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1486{
7b679138 1487 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1488 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1489 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1490
aa6f6a3d
CZ
1491 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1492 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1493 cfqq->service_tree = NULL;
1494 }
f2d1f0ae
JA
1495 if (cfqq->p_root) {
1496 rb_erase(&cfqq->p_node, cfqq->p_root);
1497 cfqq->p_root = NULL;
1498 }
d9e7620e 1499
8184f93e 1500 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1da177e4
LT
1501 BUG_ON(!cfqd->busy_queues);
1502 cfqd->busy_queues--;
ef8a41df
SL
1503 if (cfq_cfqq_sync(cfqq))
1504 cfqd->busy_sync_queues--;
1da177e4
LT
1505}
1506
1507/*
1508 * rb tree support functions
1509 */
febffd61 1510static void cfq_del_rq_rb(struct request *rq)
1da177e4 1511{
5e705374 1512 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1513 const int sync = rq_is_sync(rq);
1da177e4 1514
b4878f24
JA
1515 BUG_ON(!cfqq->queued[sync]);
1516 cfqq->queued[sync]--;
1da177e4 1517
5e705374 1518 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1519
f04a6424
VG
1520 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1521 /*
1522 * Queue will be deleted from service tree when we actually
1523 * expire it later. Right now just remove it from prio tree
1524 * as it is empty.
1525 */
1526 if (cfqq->p_root) {
1527 rb_erase(&cfqq->p_node, cfqq->p_root);
1528 cfqq->p_root = NULL;
1529 }
1530 }
1da177e4
LT
1531}
1532
5e705374 1533static void cfq_add_rq_rb(struct request *rq)
1da177e4 1534{
5e705374 1535 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1536 struct cfq_data *cfqd = cfqq->cfqd;
796d5116 1537 struct request *prev;
1da177e4 1538
5380a101 1539 cfqq->queued[rq_is_sync(rq)]++;
1da177e4 1540
796d5116 1541 elv_rb_add(&cfqq->sort_list, rq);
5fccbf61
JA
1542
1543 if (!cfq_cfqq_on_rr(cfqq))
1544 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1545
1546 /*
1547 * check if this request is a better next-serve candidate
1548 */
a36e71f9 1549 prev = cfqq->next_rq;
cf7c25cf 1550 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1551
1552 /*
1553 * adjust priority tree position, if ->next_rq changes
1554 */
1555 if (prev != cfqq->next_rq)
1556 cfq_prio_tree_add(cfqd, cfqq);
1557
5044eed4 1558 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1559}
1560
febffd61 1561static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1562{
5380a101
JA
1563 elv_rb_del(&cfqq->sort_list, rq);
1564 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1565 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1566 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1567 cfq_add_rq_rb(rq);
e98ef89b 1568 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1569 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1570 rq_is_sync(rq));
1da177e4
LT
1571}
1572
206dc69b
JA
1573static struct request *
1574cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1575{
206dc69b 1576 struct task_struct *tsk = current;
c5869807 1577 struct cfq_io_cq *cic;
206dc69b 1578 struct cfq_queue *cfqq;
1da177e4 1579
4ac845a2 1580 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1581 if (!cic)
1582 return NULL;
1583
1584 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1585 if (cfqq) {
1586 sector_t sector = bio->bi_sector + bio_sectors(bio);
1587
21183b07 1588 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1589 }
1da177e4 1590
1da177e4
LT
1591 return NULL;
1592}
1593
165125e1 1594static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1595{
22e2c507 1596 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1597
53c583d2 1598 cfqd->rq_in_driver++;
7b679138 1599 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1600 cfqd->rq_in_driver);
25776e35 1601
5b93629b 1602 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1603}
1604
165125e1 1605static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1606{
b4878f24
JA
1607 struct cfq_data *cfqd = q->elevator->elevator_data;
1608
53c583d2
CZ
1609 WARN_ON(!cfqd->rq_in_driver);
1610 cfqd->rq_in_driver--;
7b679138 1611 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1612 cfqd->rq_in_driver);
1da177e4
LT
1613}
1614
b4878f24 1615static void cfq_remove_request(struct request *rq)
1da177e4 1616{
5e705374 1617 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1618
5e705374
JA
1619 if (cfqq->next_rq == rq)
1620 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1621
b4878f24 1622 list_del_init(&rq->queuelist);
5e705374 1623 cfq_del_rq_rb(rq);
374f84ac 1624
45333d5a 1625 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1626 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1627 rq_data_dir(rq), rq_is_sync(rq));
65299a3b
CH
1628 if (rq->cmd_flags & REQ_PRIO) {
1629 WARN_ON(!cfqq->prio_pending);
1630 cfqq->prio_pending--;
b53d1ed7 1631 }
1da177e4
LT
1632}
1633
165125e1
JA
1634static int cfq_merge(struct request_queue *q, struct request **req,
1635 struct bio *bio)
1da177e4
LT
1636{
1637 struct cfq_data *cfqd = q->elevator->elevator_data;
1638 struct request *__rq;
1da177e4 1639
206dc69b 1640 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1641 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1642 *req = __rq;
1643 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1644 }
1645
1646 return ELEVATOR_NO_MERGE;
1da177e4
LT
1647}
1648
165125e1 1649static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1650 int type)
1da177e4 1651{
21183b07 1652 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1653 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1654
5e705374 1655 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1656 }
1da177e4
LT
1657}
1658
812d4026
DS
1659static void cfq_bio_merged(struct request_queue *q, struct request *req,
1660 struct bio *bio)
1661{
e98ef89b
VG
1662 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1663 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1664}
1665
1da177e4 1666static void
165125e1 1667cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1668 struct request *next)
1669{
cf7c25cf 1670 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4a0b75c7
SL
1671 struct cfq_data *cfqd = q->elevator->elevator_data;
1672
22e2c507
JA
1673 /*
1674 * reposition in fifo if next is older than rq
1675 */
1676 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1677 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1678 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1679 rq_set_fifo_time(rq, rq_fifo_time(next));
1680 }
22e2c507 1681
cf7c25cf
CZ
1682 if (cfqq->next_rq == next)
1683 cfqq->next_rq = rq;
b4878f24 1684 cfq_remove_request(next);
e98ef89b
VG
1685 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1686 rq_data_dir(next), rq_is_sync(next));
4a0b75c7
SL
1687
1688 cfqq = RQ_CFQQ(next);
1689 /*
1690 * all requests of this queue are merged to other queues, delete it
1691 * from the service tree. If it's the active_queue,
1692 * cfq_dispatch_requests() will choose to expire it or do idle
1693 */
1694 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
1695 cfqq != cfqd->active_queue)
1696 cfq_del_cfqq_rr(cfqd, cfqq);
22e2c507
JA
1697}
1698
165125e1 1699static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1700 struct bio *bio)
1701{
1702 struct cfq_data *cfqd = q->elevator->elevator_data;
c5869807 1703 struct cfq_io_cq *cic;
da775265 1704 struct cfq_queue *cfqq;
da775265
JA
1705
1706 /*
ec8acb69 1707 * Disallow merge of a sync bio into an async request.
da775265 1708 */
91fac317 1709 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1710 return false;
da775265
JA
1711
1712 /*
f1a4f4d3 1713 * Lookup the cfqq that this bio will be queued with and allow
07c2bd37 1714 * merge only if rq is queued there.
f1a4f4d3 1715 */
07c2bd37
TH
1716 cic = cfq_cic_lookup(cfqd, current->io_context);
1717 if (!cic)
1718 return false;
719d3402 1719
91fac317 1720 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1721 return cfqq == RQ_CFQQ(rq);
da775265
JA
1722}
1723
812df48d
DS
1724static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1725{
1726 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1727 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1728}
1729
febffd61
JA
1730static void __cfq_set_active_queue(struct cfq_data *cfqd,
1731 struct cfq_queue *cfqq)
22e2c507
JA
1732{
1733 if (cfqq) {
b1ffe737
DS
1734 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1735 cfqd->serving_prio, cfqd->serving_type);
62a37f6b
JT
1736 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1737 cfqq->slice_start = 0;
1738 cfqq->dispatch_start = jiffies;
1739 cfqq->allocated_slice = 0;
1740 cfqq->slice_end = 0;
1741 cfqq->slice_dispatch = 0;
1742 cfqq->nr_sectors = 0;
1743
1744 cfq_clear_cfqq_wait_request(cfqq);
1745 cfq_clear_cfqq_must_dispatch(cfqq);
1746 cfq_clear_cfqq_must_alloc_slice(cfqq);
1747 cfq_clear_cfqq_fifo_expire(cfqq);
1748 cfq_mark_cfqq_slice_new(cfqq);
1749
1750 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1751 }
1752
1753 cfqd->active_queue = cfqq;
1754}
1755
7b14e3b5
JA
1756/*
1757 * current cfqq expired its slice (or was too idle), select new one
1758 */
1759static void
1760__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1761 bool timed_out)
7b14e3b5 1762{
7b679138
JA
1763 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1764
7b14e3b5 1765 if (cfq_cfqq_wait_request(cfqq))
812df48d 1766 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1767
7b14e3b5 1768 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1769 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1770
ae54abed
SL
1771 /*
1772 * If this cfqq is shared between multiple processes, check to
1773 * make sure that those processes are still issuing I/Os within
1774 * the mean seek distance. If not, it may be time to break the
1775 * queues apart again.
1776 */
1777 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1778 cfq_mark_cfqq_split_coop(cfqq);
1779
7b14e3b5 1780 /*
6084cdda 1781 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1782 */
c553f8e3
SL
1783 if (timed_out) {
1784 if (cfq_cfqq_slice_new(cfqq))
ba5bd520 1785 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3
SL
1786 else
1787 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1788 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1789 }
7b14e3b5 1790
e5ff082e 1791 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1792
f04a6424
VG
1793 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1794 cfq_del_cfqq_rr(cfqd, cfqq);
1795
edd75ffd 1796 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1797
1798 if (cfqq == cfqd->active_queue)
1799 cfqd->active_queue = NULL;
1800
1801 if (cfqd->active_cic) {
11a3122f 1802 put_io_context(cfqd->active_cic->icq.ioc);
7b14e3b5
JA
1803 cfqd->active_cic = NULL;
1804 }
7b14e3b5
JA
1805}
1806
e5ff082e 1807static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1808{
1809 struct cfq_queue *cfqq = cfqd->active_queue;
1810
1811 if (cfqq)
e5ff082e 1812 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1813}
1814
498d3aa2
JA
1815/*
1816 * Get next queue for service. Unless we have a queue preemption,
1817 * we'll simply select the first cfqq in the service tree.
1818 */
6d048f53 1819static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1820{
c0324a02 1821 struct cfq_rb_root *service_tree =
cdb16e8f 1822 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1823 cfqd->serving_type);
d9e7620e 1824
f04a6424
VG
1825 if (!cfqd->rq_queued)
1826 return NULL;
1827
1fa8f6d6
VG
1828 /* There is nothing to dispatch */
1829 if (!service_tree)
1830 return NULL;
c0324a02
CZ
1831 if (RB_EMPTY_ROOT(&service_tree->rb))
1832 return NULL;
1833 return cfq_rb_first(service_tree);
6d048f53
JA
1834}
1835
f04a6424
VG
1836static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1837{
25fb5169 1838 struct cfq_group *cfqg;
f04a6424
VG
1839 struct cfq_queue *cfqq;
1840 int i, j;
1841 struct cfq_rb_root *st;
1842
1843 if (!cfqd->rq_queued)
1844 return NULL;
1845
25fb5169
VG
1846 cfqg = cfq_get_next_cfqg(cfqd);
1847 if (!cfqg)
1848 return NULL;
1849
f04a6424
VG
1850 for_each_cfqg_st(cfqg, i, j, st)
1851 if ((cfqq = cfq_rb_first(st)) != NULL)
1852 return cfqq;
1853 return NULL;
1854}
1855
498d3aa2
JA
1856/*
1857 * Get and set a new active queue for service.
1858 */
a36e71f9
JA
1859static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1860 struct cfq_queue *cfqq)
6d048f53 1861{
e00ef799 1862 if (!cfqq)
a36e71f9 1863 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1864
22e2c507 1865 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1866 return cfqq;
22e2c507
JA
1867}
1868
d9e7620e
JA
1869static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1870 struct request *rq)
1871{
83096ebf
TH
1872 if (blk_rq_pos(rq) >= cfqd->last_position)
1873 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1874 else
83096ebf 1875 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1876}
1877
b2c18e1e 1878static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1879 struct request *rq)
6d048f53 1880{
e9ce335d 1881 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1882}
1883
a36e71f9
JA
1884static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1885 struct cfq_queue *cur_cfqq)
1886{
f2d1f0ae 1887 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1888 struct rb_node *parent, *node;
1889 struct cfq_queue *__cfqq;
1890 sector_t sector = cfqd->last_position;
1891
1892 if (RB_EMPTY_ROOT(root))
1893 return NULL;
1894
1895 /*
1896 * First, if we find a request starting at the end of the last
1897 * request, choose it.
1898 */
f2d1f0ae 1899 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1900 if (__cfqq)
1901 return __cfqq;
1902
1903 /*
1904 * If the exact sector wasn't found, the parent of the NULL leaf
1905 * will contain the closest sector.
1906 */
1907 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1908 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1909 return __cfqq;
1910
2e46e8b2 1911 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1912 node = rb_next(&__cfqq->p_node);
1913 else
1914 node = rb_prev(&__cfqq->p_node);
1915 if (!node)
1916 return NULL;
1917
1918 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1919 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1920 return __cfqq;
1921
1922 return NULL;
1923}
1924
1925/*
1926 * cfqd - obvious
1927 * cur_cfqq - passed in so that we don't decide that the current queue is
1928 * closely cooperating with itself.
1929 *
1930 * So, basically we're assuming that that cur_cfqq has dispatched at least
1931 * one request, and that cfqd->last_position reflects a position on the disk
1932 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1933 * assumption.
1934 */
1935static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1936 struct cfq_queue *cur_cfqq)
6d048f53 1937{
a36e71f9
JA
1938 struct cfq_queue *cfqq;
1939
39c01b21
DS
1940 if (cfq_class_idle(cur_cfqq))
1941 return NULL;
e6c5bc73
JM
1942 if (!cfq_cfqq_sync(cur_cfqq))
1943 return NULL;
1944 if (CFQQ_SEEKY(cur_cfqq))
1945 return NULL;
1946
b9d8f4c7
GJ
1947 /*
1948 * Don't search priority tree if it's the only queue in the group.
1949 */
1950 if (cur_cfqq->cfqg->nr_cfqq == 1)
1951 return NULL;
1952
6d048f53 1953 /*
d9e7620e
JA
1954 * We should notice if some of the queues are cooperating, eg
1955 * working closely on the same area of the disk. In that case,
1956 * we can group them together and don't waste time idling.
6d048f53 1957 */
a36e71f9
JA
1958 cfqq = cfqq_close(cfqd, cur_cfqq);
1959 if (!cfqq)
1960 return NULL;
1961
8682e1f1
VG
1962 /* If new queue belongs to different cfq_group, don't choose it */
1963 if (cur_cfqq->cfqg != cfqq->cfqg)
1964 return NULL;
1965
df5fe3e8
JM
1966 /*
1967 * It only makes sense to merge sync queues.
1968 */
1969 if (!cfq_cfqq_sync(cfqq))
1970 return NULL;
e6c5bc73
JM
1971 if (CFQQ_SEEKY(cfqq))
1972 return NULL;
df5fe3e8 1973
c0324a02
CZ
1974 /*
1975 * Do not merge queues of different priority classes
1976 */
1977 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1978 return NULL;
1979
a36e71f9 1980 return cfqq;
6d048f53
JA
1981}
1982
a6d44e98
CZ
1983/*
1984 * Determine whether we should enforce idle window for this queue.
1985 */
1986
1987static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1988{
1989 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1990 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1991
f04a6424
VG
1992 BUG_ON(!service_tree);
1993 BUG_ON(!service_tree->count);
1994
b6508c16
VG
1995 if (!cfqd->cfq_slice_idle)
1996 return false;
1997
a6d44e98
CZ
1998 /* We never do for idle class queues. */
1999 if (prio == IDLE_WORKLOAD)
2000 return false;
2001
2002 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
2003 if (cfq_cfqq_idle_window(cfqq) &&
2004 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
2005 return true;
2006
2007 /*
2008 * Otherwise, we do only if they are the last ones
2009 * in their service tree.
2010 */
f5f2b6ce
SL
2011 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
2012 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
c1e44756 2013 return true;
b1ffe737
DS
2014 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
2015 service_tree->count);
c1e44756 2016 return false;
a6d44e98
CZ
2017}
2018
6d048f53 2019static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 2020{
1792669c 2021 struct cfq_queue *cfqq = cfqd->active_queue;
c5869807 2022 struct cfq_io_cq *cic;
80bdf0c7 2023 unsigned long sl, group_idle = 0;
7b14e3b5 2024
a68bbddb 2025 /*
f7d7b7a7
JA
2026 * SSD device without seek penalty, disable idling. But only do so
2027 * for devices that support queuing, otherwise we still have a problem
2028 * with sync vs async workloads.
a68bbddb 2029 */
f7d7b7a7 2030 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
2031 return;
2032
dd67d051 2033 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 2034 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
2035
2036 /*
2037 * idle is disabled, either manually or by past process history
2038 */
80bdf0c7
VG
2039 if (!cfq_should_idle(cfqd, cfqq)) {
2040 /* no queue idling. Check for group idling */
2041 if (cfqd->cfq_group_idle)
2042 group_idle = cfqd->cfq_group_idle;
2043 else
2044 return;
2045 }
6d048f53 2046
7b679138 2047 /*
8e550632 2048 * still active requests from this queue, don't idle
7b679138 2049 */
8e550632 2050 if (cfqq->dispatched)
7b679138
JA
2051 return;
2052
22e2c507
JA
2053 /*
2054 * task has exited, don't wait
2055 */
206dc69b 2056 cic = cfqd->active_cic;
c5869807 2057 if (!cic || !atomic_read(&cic->icq.ioc->nr_tasks))
6d048f53
JA
2058 return;
2059
355b659c
CZ
2060 /*
2061 * If our average think time is larger than the remaining time
2062 * slice, then don't idle. This avoids overrunning the allotted
2063 * time slice.
2064 */
383cd721
SL
2065 if (sample_valid(cic->ttime.ttime_samples) &&
2066 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
fd16d263 2067 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
383cd721 2068 cic->ttime.ttime_mean);
355b659c 2069 return;
b1ffe737 2070 }
355b659c 2071
80bdf0c7
VG
2072 /* There are other queues in the group, don't do group idle */
2073 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2074 return;
2075
3b18152c 2076 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 2077
80bdf0c7
VG
2078 if (group_idle)
2079 sl = cfqd->cfq_group_idle;
2080 else
2081 sl = cfqd->cfq_slice_idle;
206dc69b 2082
7b14e3b5 2083 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 2084 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
80bdf0c7
VG
2085 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2086 group_idle ? 1 : 0);
1da177e4
LT
2087}
2088
498d3aa2
JA
2089/*
2090 * Move request from internal lists to the request queue dispatch list.
2091 */
165125e1 2092static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 2093{
3ed9a296 2094 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2095 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2096
7b679138
JA
2097 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2098
06d21886 2099 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 2100 cfq_remove_request(rq);
6d048f53 2101 cfqq->dispatched++;
80bdf0c7 2102 (RQ_CFQG(rq))->dispatched++;
5380a101 2103 elv_dispatch_sort(q, rq);
3ed9a296 2104
53c583d2 2105 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
c4e7893e 2106 cfqq->nr_sectors += blk_rq_sectors(rq);
e98ef89b 2107 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 2108 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
2109}
2110
2111/*
2112 * return expired entry, or NULL to just start from scratch in rbtree
2113 */
febffd61 2114static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 2115{
30996f40 2116 struct request *rq = NULL;
1da177e4 2117
3b18152c 2118 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 2119 return NULL;
cb887411
JA
2120
2121 cfq_mark_cfqq_fifo_expire(cfqq);
2122
89850f7e
JA
2123 if (list_empty(&cfqq->fifo))
2124 return NULL;
1da177e4 2125
89850f7e 2126 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 2127 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 2128 rq = NULL;
1da177e4 2129
30996f40 2130 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 2131 return rq;
1da177e4
LT
2132}
2133
22e2c507
JA
2134static inline int
2135cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2136{
2137 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 2138
22e2c507 2139 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 2140
b9f8ce05 2141 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
1da177e4
LT
2142}
2143
df5fe3e8
JM
2144/*
2145 * Must be called with the queue_lock held.
2146 */
2147static int cfqq_process_refs(struct cfq_queue *cfqq)
2148{
2149 int process_refs, io_refs;
2150
2151 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
30d7b944 2152 process_refs = cfqq->ref - io_refs;
df5fe3e8
JM
2153 BUG_ON(process_refs < 0);
2154 return process_refs;
2155}
2156
2157static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2158{
e6c5bc73 2159 int process_refs, new_process_refs;
df5fe3e8
JM
2160 struct cfq_queue *__cfqq;
2161
c10b61f0
JM
2162 /*
2163 * If there are no process references on the new_cfqq, then it is
2164 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2165 * chain may have dropped their last reference (not just their
2166 * last process reference).
2167 */
2168 if (!cfqq_process_refs(new_cfqq))
2169 return;
2170
df5fe3e8
JM
2171 /* Avoid a circular list and skip interim queue merges */
2172 while ((__cfqq = new_cfqq->new_cfqq)) {
2173 if (__cfqq == cfqq)
2174 return;
2175 new_cfqq = __cfqq;
2176 }
2177
2178 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2179 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2180 /*
2181 * If the process for the cfqq has gone away, there is no
2182 * sense in merging the queues.
2183 */
c10b61f0 2184 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2185 return;
2186
e6c5bc73
JM
2187 /*
2188 * Merge in the direction of the lesser amount of work.
2189 */
e6c5bc73
JM
2190 if (new_process_refs >= process_refs) {
2191 cfqq->new_cfqq = new_cfqq;
30d7b944 2192 new_cfqq->ref += process_refs;
e6c5bc73
JM
2193 } else {
2194 new_cfqq->new_cfqq = cfqq;
30d7b944 2195 cfqq->ref += new_process_refs;
e6c5bc73 2196 }
df5fe3e8
JM
2197}
2198
cdb16e8f 2199static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2200 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2201{
2202 struct cfq_queue *queue;
2203 int i;
2204 bool key_valid = false;
2205 unsigned long lowest_key = 0;
2206 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2207
65b32a57
VG
2208 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2209 /* select the one with lowest rb_key */
2210 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2211 if (queue &&
2212 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2213 lowest_key = queue->rb_key;
2214 cur_best = i;
2215 key_valid = true;
2216 }
2217 }
2218
2219 return cur_best;
2220}
2221
cdb16e8f 2222static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2223{
718eee05
CZ
2224 unsigned slice;
2225 unsigned count;
cdb16e8f 2226 struct cfq_rb_root *st;
58ff82f3 2227 unsigned group_slice;
e4ea0c16 2228 enum wl_prio_t original_prio = cfqd->serving_prio;
1fa8f6d6 2229
718eee05 2230 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2231 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2232 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2233 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2234 cfqd->serving_prio = BE_WORKLOAD;
2235 else {
2236 cfqd->serving_prio = IDLE_WORKLOAD;
2237 cfqd->workload_expires = jiffies + 1;
2238 return;
2239 }
2240
e4ea0c16
SL
2241 if (original_prio != cfqd->serving_prio)
2242 goto new_workload;
2243
718eee05
CZ
2244 /*
2245 * For RT and BE, we have to choose also the type
2246 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2247 * expiration time
2248 */
65b32a57 2249 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2250 count = st->count;
718eee05
CZ
2251
2252 /*
65b32a57 2253 * check workload expiration, and that we still have other queues ready
718eee05 2254 */
65b32a57 2255 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2256 return;
2257
e4ea0c16 2258new_workload:
718eee05
CZ
2259 /* otherwise select new workload type */
2260 cfqd->serving_type =
65b32a57
VG
2261 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2262 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2263 count = st->count;
718eee05
CZ
2264
2265 /*
2266 * the workload slice is computed as a fraction of target latency
2267 * proportional to the number of queues in that workload, over
2268 * all the queues in the same priority class
2269 */
58ff82f3
VG
2270 group_slice = cfq_group_slice(cfqd, cfqg);
2271
2272 slice = group_slice * count /
2273 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2274 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2275
f26bd1f0
VG
2276 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2277 unsigned int tmp;
2278
2279 /*
2280 * Async queues are currently system wide. Just taking
2281 * proportion of queues with-in same group will lead to higher
2282 * async ratio system wide as generally root group is going
2283 * to have higher weight. A more accurate thing would be to
2284 * calculate system wide asnc/sync ratio.
2285 */
2286 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2287 tmp = tmp/cfqd->busy_queues;
2288 slice = min_t(unsigned, slice, tmp);
2289
718eee05
CZ
2290 /* async workload slice is scaled down according to
2291 * the sync/async slice ratio. */
2292 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2293 } else
718eee05
CZ
2294 /* sync workload slice is at least 2 * cfq_slice_idle */
2295 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2296
2297 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2298 cfq_log(cfqd, "workload slice:%d", slice);
718eee05
CZ
2299 cfqd->workload_expires = jiffies + slice;
2300}
2301
1fa8f6d6
VG
2302static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2303{
2304 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2305 struct cfq_group *cfqg;
1fa8f6d6
VG
2306
2307 if (RB_EMPTY_ROOT(&st->rb))
2308 return NULL;
25bc6b07 2309 cfqg = cfq_rb_first_group(st);
25bc6b07
VG
2310 update_min_vdisktime(st);
2311 return cfqg;
1fa8f6d6
VG
2312}
2313
cdb16e8f
VG
2314static void cfq_choose_cfqg(struct cfq_data *cfqd)
2315{
1fa8f6d6
VG
2316 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2317
2318 cfqd->serving_group = cfqg;
dae739eb
VG
2319
2320 /* Restore the workload type data */
2321 if (cfqg->saved_workload_slice) {
2322 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2323 cfqd->serving_type = cfqg->saved_workload;
2324 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2325 } else
2326 cfqd->workload_expires = jiffies - 1;
2327
1fa8f6d6 2328 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2329}
2330
22e2c507 2331/*
498d3aa2
JA
2332 * Select a queue for service. If we have a current active queue,
2333 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2334 */
1b5ed5e1 2335static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2336{
a36e71f9 2337 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2338
22e2c507
JA
2339 cfqq = cfqd->active_queue;
2340 if (!cfqq)
2341 goto new_queue;
1da177e4 2342
f04a6424
VG
2343 if (!cfqd->rq_queued)
2344 return NULL;
c244bb50
VG
2345
2346 /*
2347 * We were waiting for group to get backlogged. Expire the queue
2348 */
2349 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2350 goto expire;
2351
22e2c507 2352 /*
6d048f53 2353 * The active queue has run out of time, expire it and select new.
22e2c507 2354 */
7667aa06
VG
2355 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2356 /*
2357 * If slice had not expired at the completion of last request
2358 * we might not have turned on wait_busy flag. Don't expire
2359 * the queue yet. Allow the group to get backlogged.
2360 *
2361 * The very fact that we have used the slice, that means we
2362 * have been idling all along on this queue and it should be
2363 * ok to wait for this request to complete.
2364 */
82bbbf28
VG
2365 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2366 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2367 cfqq = NULL;
7667aa06 2368 goto keep_queue;
82bbbf28 2369 } else
80bdf0c7 2370 goto check_group_idle;
7667aa06 2371 }
1da177e4 2372
22e2c507 2373 /*
6d048f53
JA
2374 * The active queue has requests and isn't expired, allow it to
2375 * dispatch.
22e2c507 2376 */
dd67d051 2377 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2378 goto keep_queue;
6d048f53 2379
a36e71f9
JA
2380 /*
2381 * If another queue has a request waiting within our mean seek
2382 * distance, let it run. The expire code will check for close
2383 * cooperators and put the close queue at the front of the service
df5fe3e8 2384 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2385 */
b3b6d040 2386 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2387 if (new_cfqq) {
2388 if (!cfqq->new_cfqq)
2389 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2390 goto expire;
df5fe3e8 2391 }
a36e71f9 2392
6d048f53
JA
2393 /*
2394 * No requests pending. If the active queue still has requests in
2395 * flight or is idling for a new request, allow either of these
2396 * conditions to happen (or time out) before selecting a new queue.
2397 */
80bdf0c7
VG
2398 if (timer_pending(&cfqd->idle_slice_timer)) {
2399 cfqq = NULL;
2400 goto keep_queue;
2401 }
2402
8e1ac665
SL
2403 /*
2404 * This is a deep seek queue, but the device is much faster than
2405 * the queue can deliver, don't idle
2406 **/
2407 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2408 (cfq_cfqq_slice_new(cfqq) ||
2409 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2410 cfq_clear_cfqq_deep(cfqq);
2411 cfq_clear_cfqq_idle_window(cfqq);
2412 }
2413
80bdf0c7
VG
2414 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2415 cfqq = NULL;
2416 goto keep_queue;
2417 }
2418
2419 /*
2420 * If group idle is enabled and there are requests dispatched from
2421 * this group, wait for requests to complete.
2422 */
2423check_group_idle:
7700fc4f
SL
2424 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2425 cfqq->cfqg->dispatched &&
2426 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
caaa5f9f
JA
2427 cfqq = NULL;
2428 goto keep_queue;
22e2c507
JA
2429 }
2430
3b18152c 2431expire:
e5ff082e 2432 cfq_slice_expired(cfqd, 0);
3b18152c 2433new_queue:
718eee05
CZ
2434 /*
2435 * Current queue expired. Check if we have to switch to a new
2436 * service tree
2437 */
2438 if (!new_cfqq)
cdb16e8f 2439 cfq_choose_cfqg(cfqd);
718eee05 2440
a36e71f9 2441 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2442keep_queue:
3b18152c 2443 return cfqq;
22e2c507
JA
2444}
2445
febffd61 2446static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2447{
2448 int dispatched = 0;
2449
2450 while (cfqq->next_rq) {
2451 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2452 dispatched++;
2453 }
2454
2455 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2456
2457 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2458 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2459 return dispatched;
2460}
2461
498d3aa2
JA
2462/*
2463 * Drain our current requests. Used for barriers and when switching
2464 * io schedulers on-the-fly.
2465 */
d9e7620e 2466static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2467{
0871714e 2468 struct cfq_queue *cfqq;
d9e7620e 2469 int dispatched = 0;
cdb16e8f 2470
3440c49f 2471 /* Expire the timeslice of the current active queue first */
e5ff082e 2472 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2473 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2474 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2475 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2476 }
1b5ed5e1 2477
1b5ed5e1
TH
2478 BUG_ON(cfqd->busy_queues);
2479
6923715a 2480 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2481 return dispatched;
2482}
2483
abc3c744
SL
2484static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2485 struct cfq_queue *cfqq)
2486{
2487 /* the queue hasn't finished any request, can't estimate */
2488 if (cfq_cfqq_slice_new(cfqq))
c1e44756 2489 return true;
abc3c744
SL
2490 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2491 cfqq->slice_end))
c1e44756 2492 return true;
abc3c744 2493
c1e44756 2494 return false;
abc3c744
SL
2495}
2496
0b182d61 2497static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2498{
2f5cb738 2499 unsigned int max_dispatch;
22e2c507 2500
5ad531db
JA
2501 /*
2502 * Drain async requests before we start sync IO
2503 */
53c583d2 2504 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2505 return false;
5ad531db 2506
2f5cb738
JA
2507 /*
2508 * If this is an async queue and we have sync IO in flight, let it wait
2509 */
53c583d2 2510 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2511 return false;
2f5cb738 2512
abc3c744 2513 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2514 if (cfq_class_idle(cfqq))
2515 max_dispatch = 1;
b4878f24 2516
2f5cb738
JA
2517 /*
2518 * Does this cfqq already have too much IO in flight?
2519 */
2520 if (cfqq->dispatched >= max_dispatch) {
ef8a41df 2521 bool promote_sync = false;
2f5cb738
JA
2522 /*
2523 * idle queue must always only have a single IO in flight
2524 */
3ed9a296 2525 if (cfq_class_idle(cfqq))
0b182d61 2526 return false;
3ed9a296 2527
ef8a41df 2528 /*
c4ade94f
LS
2529 * If there is only one sync queue
2530 * we can ignore async queue here and give the sync
ef8a41df
SL
2531 * queue no dispatch limit. The reason is a sync queue can
2532 * preempt async queue, limiting the sync queue doesn't make
2533 * sense. This is useful for aiostress test.
2534 */
c4ade94f
LS
2535 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2536 promote_sync = true;
ef8a41df 2537
2f5cb738
JA
2538 /*
2539 * We have other queues, don't allow more IO from this one
2540 */
ef8a41df
SL
2541 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2542 !promote_sync)
0b182d61 2543 return false;
9ede209e 2544
365722bb 2545 /*
474b18cc 2546 * Sole queue user, no limit
365722bb 2547 */
ef8a41df 2548 if (cfqd->busy_queues == 1 || promote_sync)
abc3c744
SL
2549 max_dispatch = -1;
2550 else
2551 /*
2552 * Normally we start throttling cfqq when cfq_quantum/2
2553 * requests have been dispatched. But we can drive
2554 * deeper queue depths at the beginning of slice
2555 * subjected to upper limit of cfq_quantum.
2556 * */
2557 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2558 }
2559
2560 /*
2561 * Async queues must wait a bit before being allowed dispatch.
2562 * We also ramp up the dispatch depth gradually for async IO,
2563 * based on the last sync IO we serviced
2564 */
963b72fc 2565 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2566 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2567 unsigned int depth;
365722bb 2568
61f0c1dc 2569 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2570 if (!depth && !cfqq->dispatched)
2571 depth = 1;
8e296755
JA
2572 if (depth < max_dispatch)
2573 max_dispatch = depth;
2f5cb738 2574 }
3ed9a296 2575
0b182d61
JA
2576 /*
2577 * If we're below the current max, allow a dispatch
2578 */
2579 return cfqq->dispatched < max_dispatch;
2580}
2581
2582/*
2583 * Dispatch a request from cfqq, moving them to the request queue
2584 * dispatch list.
2585 */
2586static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2587{
2588 struct request *rq;
2589
2590 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2591
2592 if (!cfq_may_dispatch(cfqd, cfqq))
2593 return false;
2594
2595 /*
2596 * follow expired path, else get first next available
2597 */
2598 rq = cfq_check_fifo(cfqq);
2599 if (!rq)
2600 rq = cfqq->next_rq;
2601
2602 /*
2603 * insert request into driver dispatch list
2604 */
2605 cfq_dispatch_insert(cfqd->queue, rq);
2606
2607 if (!cfqd->active_cic) {
c5869807 2608 struct cfq_io_cq *cic = RQ_CIC(rq);
0b182d61 2609
c5869807 2610 atomic_long_inc(&cic->icq.ioc->refcount);
0b182d61
JA
2611 cfqd->active_cic = cic;
2612 }
2613
2614 return true;
2615}
2616
2617/*
2618 * Find the cfqq that we need to service and move a request from that to the
2619 * dispatch list
2620 */
2621static int cfq_dispatch_requests(struct request_queue *q, int force)
2622{
2623 struct cfq_data *cfqd = q->elevator->elevator_data;
2624 struct cfq_queue *cfqq;
2625
2626 if (!cfqd->busy_queues)
2627 return 0;
2628
2629 if (unlikely(force))
2630 return cfq_forced_dispatch(cfqd);
2631
2632 cfqq = cfq_select_queue(cfqd);
2633 if (!cfqq)
8e296755
JA
2634 return 0;
2635
2f5cb738 2636 /*
0b182d61 2637 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2638 */
0b182d61
JA
2639 if (!cfq_dispatch_request(cfqd, cfqq))
2640 return 0;
2641
2f5cb738 2642 cfqq->slice_dispatch++;
b029195d 2643 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2644
2f5cb738
JA
2645 /*
2646 * expire an async queue immediately if it has used up its slice. idle
2647 * queue always expire after 1 dispatch round.
2648 */
2649 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2650 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2651 cfq_class_idle(cfqq))) {
2652 cfqq->slice_end = jiffies + 1;
e5ff082e 2653 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2654 }
2655
b217a903 2656 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2657 return 1;
1da177e4
LT
2658}
2659
1da177e4 2660/*
5e705374
JA
2661 * task holds one reference to the queue, dropped when task exits. each rq
2662 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2663 *
b1c35769 2664 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2665 * queue lock must be held here.
2666 */
2667static void cfq_put_queue(struct cfq_queue *cfqq)
2668{
22e2c507 2669 struct cfq_data *cfqd = cfqq->cfqd;
0bbfeb83 2670 struct cfq_group *cfqg;
22e2c507 2671
30d7b944 2672 BUG_ON(cfqq->ref <= 0);
1da177e4 2673
30d7b944
SL
2674 cfqq->ref--;
2675 if (cfqq->ref)
1da177e4
LT
2676 return;
2677
7b679138 2678 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2679 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2680 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2681 cfqg = cfqq->cfqg;
1da177e4 2682
28f95cbc 2683 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2684 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2685 cfq_schedule_dispatch(cfqd);
28f95cbc 2686 }
22e2c507 2687
f04a6424 2688 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2689 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2690 cfq_put_cfqg(cfqg);
1da177e4
LT
2691}
2692
d02a2c07 2693static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2694{
df5fe3e8
JM
2695 struct cfq_queue *__cfqq, *next;
2696
df5fe3e8
JM
2697 /*
2698 * If this queue was scheduled to merge with another queue, be
2699 * sure to drop the reference taken on that queue (and others in
2700 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2701 */
2702 __cfqq = cfqq->new_cfqq;
2703 while (__cfqq) {
2704 if (__cfqq == cfqq) {
2705 WARN(1, "cfqq->new_cfqq loop detected\n");
2706 break;
2707 }
2708 next = __cfqq->new_cfqq;
2709 cfq_put_queue(__cfqq);
2710 __cfqq = next;
2711 }
d02a2c07
SL
2712}
2713
2714static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2715{
2716 if (unlikely(cfqq == cfqd->active_queue)) {
2717 __cfq_slice_expired(cfqd, cfqq, 0);
2718 cfq_schedule_dispatch(cfqd);
2719 }
2720
2721 cfq_put_cooperator(cfqq);
df5fe3e8 2722
89850f7e
JA
2723 cfq_put_queue(cfqq);
2724}
22e2c507 2725
9b84cacd
TH
2726static void cfq_init_icq(struct io_cq *icq)
2727{
2728 struct cfq_io_cq *cic = icq_to_cic(icq);
2729
2730 cic->ttime.last_end_request = jiffies;
2731}
2732
c5869807 2733static void cfq_exit_icq(struct io_cq *icq)
89850f7e 2734{
c5869807 2735 struct cfq_io_cq *cic = icq_to_cic(icq);
283287a5 2736 struct cfq_data *cfqd = cic_to_cfqd(cic);
4faa3c81 2737
ff6657c6
JA
2738 if (cic->cfqq[BLK_RW_ASYNC]) {
2739 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2740 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2741 }
2742
ff6657c6
JA
2743 if (cic->cfqq[BLK_RW_SYNC]) {
2744 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2745 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2746 }
89850f7e
JA
2747}
2748
fd0928df 2749static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2750{
2751 struct task_struct *tsk = current;
2752 int ioprio_class;
2753
3b18152c 2754 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2755 return;
2756
fd0928df 2757 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2758 switch (ioprio_class) {
fe094d98
JA
2759 default:
2760 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2761 case IOPRIO_CLASS_NONE:
2762 /*
6d63c275 2763 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2764 */
2765 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2766 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2767 break;
2768 case IOPRIO_CLASS_RT:
2769 cfqq->ioprio = task_ioprio(ioc);
2770 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2771 break;
2772 case IOPRIO_CLASS_BE:
2773 cfqq->ioprio = task_ioprio(ioc);
2774 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2775 break;
2776 case IOPRIO_CLASS_IDLE:
2777 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2778 cfqq->ioprio = 7;
2779 cfq_clear_cfqq_idle_window(cfqq);
2780 break;
22e2c507
JA
2781 }
2782
2783 /*
2784 * keep track of original prio settings in case we have to temporarily
2785 * elevate the priority of this queue
2786 */
2787 cfqq->org_ioprio = cfqq->ioprio;
3b18152c 2788 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2789}
2790
c5869807 2791static void changed_ioprio(struct cfq_io_cq *cic)
22e2c507 2792{
bca4b914 2793 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2794 struct cfq_queue *cfqq;
35e6077c 2795
caaa5f9f
JA
2796 if (unlikely(!cfqd))
2797 return;
2798
ff6657c6 2799 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2800 if (cfqq) {
2801 struct cfq_queue *new_cfqq;
c5869807 2802 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->icq.ioc,
ff6657c6 2803 GFP_ATOMIC);
caaa5f9f 2804 if (new_cfqq) {
ff6657c6 2805 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2806 cfq_put_queue(cfqq);
2807 }
22e2c507 2808 }
caaa5f9f 2809
ff6657c6 2810 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2811 if (cfqq)
2812 cfq_mark_cfqq_prio_changed(cfqq);
22e2c507
JA
2813}
2814
d5036d77 2815static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2816 pid_t pid, bool is_sync)
d5036d77
JA
2817{
2818 RB_CLEAR_NODE(&cfqq->rb_node);
2819 RB_CLEAR_NODE(&cfqq->p_node);
2820 INIT_LIST_HEAD(&cfqq->fifo);
2821
30d7b944 2822 cfqq->ref = 0;
d5036d77
JA
2823 cfqq->cfqd = cfqd;
2824
2825 cfq_mark_cfqq_prio_changed(cfqq);
2826
2827 if (is_sync) {
2828 if (!cfq_class_idle(cfqq))
2829 cfq_mark_cfqq_idle_window(cfqq);
2830 cfq_mark_cfqq_sync(cfqq);
2831 }
2832 cfqq->pid = pid;
2833}
2834
24610333 2835#ifdef CONFIG_CFQ_GROUP_IOSCHED
c5869807 2836static void changed_cgroup(struct cfq_io_cq *cic)
24610333
VG
2837{
2838 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2839 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2840 struct request_queue *q;
2841
2842 if (unlikely(!cfqd))
2843 return;
2844
2845 q = cfqd->queue;
2846
24610333
VG
2847 if (sync_cfqq) {
2848 /*
2849 * Drop reference to sync queue. A new sync queue will be
2850 * assigned in new group upon arrival of a fresh request.
2851 */
2852 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2853 cic_set_cfqq(cic, NULL, 1);
2854 cfq_put_queue(sync_cfqq);
2855 }
24610333 2856}
24610333
VG
2857#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2858
22e2c507 2859static struct cfq_queue *
a6151c3a 2860cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2861 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2862{
22e2c507 2863 struct cfq_queue *cfqq, *new_cfqq = NULL;
c5869807 2864 struct cfq_io_cq *cic;
cdb16e8f 2865 struct cfq_group *cfqg;
22e2c507
JA
2866
2867retry:
2a7f1244
TH
2868 rcu_read_lock();
2869
3e59cf9d 2870 cfqg = cfq_get_cfqg(cfqd);
4ac845a2 2871 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2872 /* cic always exists here */
2873 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2874
6118b70b
JA
2875 /*
2876 * Always try a new alloc if we fell back to the OOM cfqq
2877 * originally, since it should just be a temporary situation.
2878 */
2879 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2880 cfqq = NULL;
22e2c507
JA
2881 if (new_cfqq) {
2882 cfqq = new_cfqq;
2883 new_cfqq = NULL;
2884 } else if (gfp_mask & __GFP_WAIT) {
2a7f1244 2885 rcu_read_unlock();
22e2c507 2886 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2887 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2888 gfp_mask | __GFP_ZERO,
94f6030c 2889 cfqd->queue->node);
22e2c507 2890 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2891 if (new_cfqq)
2892 goto retry;
22e2c507 2893 } else {
94f6030c
CL
2894 cfqq = kmem_cache_alloc_node(cfq_pool,
2895 gfp_mask | __GFP_ZERO,
2896 cfqd->queue->node);
22e2c507
JA
2897 }
2898
6118b70b
JA
2899 if (cfqq) {
2900 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2901 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2902 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2903 cfq_log_cfqq(cfqd, cfqq, "alloced");
2904 } else
2905 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2906 }
2907
2908 if (new_cfqq)
2909 kmem_cache_free(cfq_pool, new_cfqq);
2910
2a7f1244 2911 rcu_read_unlock();
22e2c507
JA
2912 return cfqq;
2913}
2914
c2dea2d1
VT
2915static struct cfq_queue **
2916cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2917{
fe094d98 2918 switch (ioprio_class) {
c2dea2d1
VT
2919 case IOPRIO_CLASS_RT:
2920 return &cfqd->async_cfqq[0][ioprio];
2921 case IOPRIO_CLASS_BE:
2922 return &cfqd->async_cfqq[1][ioprio];
2923 case IOPRIO_CLASS_IDLE:
2924 return &cfqd->async_idle_cfqq;
2925 default:
2926 BUG();
2927 }
2928}
2929
15c31be4 2930static struct cfq_queue *
a6151c3a 2931cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2932 gfp_t gfp_mask)
2933{
fd0928df
JA
2934 const int ioprio = task_ioprio(ioc);
2935 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2936 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2937 struct cfq_queue *cfqq = NULL;
2938
c2dea2d1
VT
2939 if (!is_sync) {
2940 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2941 cfqq = *async_cfqq;
2942 }
2943
6118b70b 2944 if (!cfqq)
fd0928df 2945 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2946
2947 /*
2948 * pin the queue now that it's allocated, scheduler exit will prune it
2949 */
c2dea2d1 2950 if (!is_sync && !(*async_cfqq)) {
30d7b944 2951 cfqq->ref++;
c2dea2d1 2952 *async_cfqq = cfqq;
15c31be4
JA
2953 }
2954
30d7b944 2955 cfqq->ref++;
15c31be4
JA
2956 return cfqq;
2957}
2958
22e2c507 2959static void
383cd721 2960__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
1da177e4 2961{
383cd721
SL
2962 unsigned long elapsed = jiffies - ttime->last_end_request;
2963 elapsed = min(elapsed, 2UL * slice_idle);
db3b5848 2964
383cd721
SL
2965 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
2966 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
2967 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
2968}
2969
2970static void
2971cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
c5869807 2972 struct cfq_io_cq *cic)
383cd721 2973{
f5f2b6ce 2974 if (cfq_cfqq_sync(cfqq)) {
383cd721 2975 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
f5f2b6ce
SL
2976 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
2977 cfqd->cfq_slice_idle);
2978 }
7700fc4f
SL
2979#ifdef CONFIG_CFQ_GROUP_IOSCHED
2980 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
2981#endif
22e2c507 2982}
1da177e4 2983
206dc69b 2984static void
b2c18e1e 2985cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2986 struct request *rq)
206dc69b 2987{
3dde36dd 2988 sector_t sdist = 0;
41647e7a 2989 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
2990 if (cfqq->last_request_pos) {
2991 if (cfqq->last_request_pos < blk_rq_pos(rq))
2992 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2993 else
2994 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2995 }
206dc69b 2996
3dde36dd 2997 cfqq->seek_history <<= 1;
41647e7a
CZ
2998 if (blk_queue_nonrot(cfqd->queue))
2999 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3000 else
3001 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3002}
1da177e4 3003
22e2c507
JA
3004/*
3005 * Disable idle window if the process thinks too long or seeks so much that
3006 * it doesn't matter
3007 */
3008static void
3009cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
c5869807 3010 struct cfq_io_cq *cic)
22e2c507 3011{
7b679138 3012 int old_idle, enable_idle;
1be92f2f 3013
0871714e
JA
3014 /*
3015 * Don't idle for async or idle io prio class
3016 */
3017 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3018 return;
3019
c265a7f4 3020 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3021
76280aff
CZ
3022 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3023 cfq_mark_cfqq_deep(cfqq);
3024
749ef9f8
CZ
3025 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3026 enable_idle = 0;
c5869807
TH
3027 else if (!atomic_read(&cic->icq.ioc->nr_tasks) ||
3028 !cfqd->cfq_slice_idle ||
3029 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507 3030 enable_idle = 0;
383cd721
SL
3031 else if (sample_valid(cic->ttime.ttime_samples)) {
3032 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3033 enable_idle = 0;
3034 else
3035 enable_idle = 1;
1da177e4
LT
3036 }
3037
7b679138
JA
3038 if (old_idle != enable_idle) {
3039 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3040 if (enable_idle)
3041 cfq_mark_cfqq_idle_window(cfqq);
3042 else
3043 cfq_clear_cfqq_idle_window(cfqq);
3044 }
22e2c507 3045}
1da177e4 3046
22e2c507
JA
3047/*
3048 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3049 * no or if we aren't sure, a 1 will cause a preempt.
3050 */
a6151c3a 3051static bool
22e2c507 3052cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3053 struct request *rq)
22e2c507 3054{
6d048f53 3055 struct cfq_queue *cfqq;
22e2c507 3056
6d048f53
JA
3057 cfqq = cfqd->active_queue;
3058 if (!cfqq)
a6151c3a 3059 return false;
22e2c507 3060
6d048f53 3061 if (cfq_class_idle(new_cfqq))
a6151c3a 3062 return false;
22e2c507
JA
3063
3064 if (cfq_class_idle(cfqq))
a6151c3a 3065 return true;
1e3335de 3066
875feb63
DS
3067 /*
3068 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3069 */
3070 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3071 return false;
3072
374f84ac
JA
3073 /*
3074 * if the new request is sync, but the currently running queue is
3075 * not, let the sync request have priority.
3076 */
5e705374 3077 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3078 return true;
1e3335de 3079
8682e1f1
VG
3080 if (new_cfqq->cfqg != cfqq->cfqg)
3081 return false;
3082
3083 if (cfq_slice_used(cfqq))
3084 return true;
3085
3086 /* Allow preemption only if we are idling on sync-noidle tree */
3087 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3088 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3089 new_cfqq->service_tree->count == 2 &&
3090 RB_EMPTY_ROOT(&cfqq->sort_list))
3091 return true;
3092
b53d1ed7
JA
3093 /*
3094 * So both queues are sync. Let the new request get disk time if
3095 * it's a metadata request and the current queue is doing regular IO.
3096 */
65299a3b 3097 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
b53d1ed7
JA
3098 return true;
3099
3a9a3f6c
DS
3100 /*
3101 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3102 */
3103 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3104 return true;
3a9a3f6c 3105
d2d59e18
SL
3106 /* An idle queue should not be idle now for some reason */
3107 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3108 return true;
3109
1e3335de 3110 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3111 return false;
1e3335de
JA
3112
3113 /*
3114 * if this request is as-good as one we would expect from the
3115 * current cfqq, let it preempt
3116 */
e9ce335d 3117 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3118 return true;
1e3335de 3119
a6151c3a 3120 return false;
22e2c507
JA
3121}
3122
3123/*
3124 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3125 * let it have half of its nominal slice.
3126 */
3127static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3128{
df0793ab
SL
3129 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3130
7b679138 3131 cfq_log_cfqq(cfqd, cfqq, "preempt");
df0793ab 3132 cfq_slice_expired(cfqd, 1);
22e2c507 3133
f8ae6e3e
SL
3134 /*
3135 * workload type is changed, don't save slice, otherwise preempt
3136 * doesn't happen
3137 */
df0793ab 3138 if (old_type != cfqq_type(cfqq))
f8ae6e3e
SL
3139 cfqq->cfqg->saved_workload_slice = 0;
3140
bf572256
JA
3141 /*
3142 * Put the new queue at the front of the of the current list,
3143 * so we know that it will be selected next.
3144 */
3145 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3146
3147 cfq_service_tree_add(cfqd, cfqq, 1);
eda5e0c9 3148
62a37f6b
JT
3149 cfqq->slice_end = 0;
3150 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3151}
3152
22e2c507 3153/*
5e705374 3154 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3155 * something we should do about it
3156 */
3157static void
5e705374
JA
3158cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3159 struct request *rq)
22e2c507 3160{
c5869807 3161 struct cfq_io_cq *cic = RQ_CIC(rq);
12e9fddd 3162
45333d5a 3163 cfqd->rq_queued++;
65299a3b
CH
3164 if (rq->cmd_flags & REQ_PRIO)
3165 cfqq->prio_pending++;
374f84ac 3166
383cd721 3167 cfq_update_io_thinktime(cfqd, cfqq, cic);
b2c18e1e 3168 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3169 cfq_update_idle_window(cfqd, cfqq, cic);
3170
b2c18e1e 3171 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3172
3173 if (cfqq == cfqd->active_queue) {
3174 /*
b029195d
JA
3175 * Remember that we saw a request from this process, but
3176 * don't start queuing just yet. Otherwise we risk seeing lots
3177 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3178 * and merging. If the request is already larger than a single
3179 * page, let it rip immediately. For that case we assume that
2d870722
JA
3180 * merging is already done. Ditto for a busy system that
3181 * has other work pending, don't risk delaying until the
3182 * idle timer unplug to continue working.
22e2c507 3183 */
d6ceb25e 3184 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3185 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3186 cfqd->busy_queues > 1) {
812df48d 3187 cfq_del_timer(cfqd, cfqq);
554554f6 3188 cfq_clear_cfqq_wait_request(cfqq);
24ecfbe2 3189 __blk_run_queue(cfqd->queue);
a11cdaa7 3190 } else {
e98ef89b 3191 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3192 &cfqq->cfqg->blkg);
bf791937 3193 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3194 }
d6ceb25e 3195 }
5e705374 3196 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3197 /*
3198 * not the active queue - expire current slice if it is
3199 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3200 * has some old slice time left and is of higher priority or
3201 * this new queue is RT and the current one is BE
22e2c507
JA
3202 */
3203 cfq_preempt_queue(cfqd, cfqq);
24ecfbe2 3204 __blk_run_queue(cfqd->queue);
22e2c507 3205 }
1da177e4
LT
3206}
3207
165125e1 3208static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3209{
b4878f24 3210 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3211 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3212
7b679138 3213 cfq_log_cfqq(cfqd, cfqq, "insert_request");
c5869807 3214 cfq_init_prio_data(cfqq, RQ_CIC(rq)->icq.ioc);
1da177e4 3215
30996f40 3216 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3217 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3218 cfq_add_rq_rb(rq);
e98ef89b 3219 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3220 &cfqd->serving_group->blkg, rq_data_dir(rq),
3221 rq_is_sync(rq));
5e705374 3222 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3223}
3224
45333d5a
AC
3225/*
3226 * Update hw_tag based on peak queue depth over 50 samples under
3227 * sufficient load.
3228 */
3229static void cfq_update_hw_tag(struct cfq_data *cfqd)
3230{
1a1238a7
SL
3231 struct cfq_queue *cfqq = cfqd->active_queue;
3232
53c583d2
CZ
3233 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3234 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3235
3236 if (cfqd->hw_tag == 1)
3237 return;
45333d5a
AC
3238
3239 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3240 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3241 return;
3242
1a1238a7
SL
3243 /*
3244 * If active queue hasn't enough requests and can idle, cfq might not
3245 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3246 * case
3247 */
3248 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3249 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3250 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3251 return;
3252
45333d5a
AC
3253 if (cfqd->hw_tag_samples++ < 50)
3254 return;
3255
e459dd08 3256 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3257 cfqd->hw_tag = 1;
3258 else
3259 cfqd->hw_tag = 0;
45333d5a
AC
3260}
3261
7667aa06
VG
3262static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3263{
c5869807 3264 struct cfq_io_cq *cic = cfqd->active_cic;
7667aa06 3265
02a8f01b
JT
3266 /* If the queue already has requests, don't wait */
3267 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3268 return false;
3269
7667aa06
VG
3270 /* If there are other queues in the group, don't wait */
3271 if (cfqq->cfqg->nr_cfqq > 1)
3272 return false;
3273
7700fc4f
SL
3274 /* the only queue in the group, but think time is big */
3275 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3276 return false;
3277
7667aa06
VG
3278 if (cfq_slice_used(cfqq))
3279 return true;
3280
3281 /* if slice left is less than think time, wait busy */
383cd721
SL
3282 if (cic && sample_valid(cic->ttime.ttime_samples)
3283 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
7667aa06
VG
3284 return true;
3285
3286 /*
3287 * If think times is less than a jiffy than ttime_mean=0 and above
3288 * will not be true. It might happen that slice has not expired yet
3289 * but will expire soon (4-5 ns) during select_queue(). To cover the
3290 * case where think time is less than a jiffy, mark the queue wait
3291 * busy if only 1 jiffy is left in the slice.
3292 */
3293 if (cfqq->slice_end - jiffies == 1)
3294 return true;
3295
3296 return false;
3297}
3298
165125e1 3299static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3300{
5e705374 3301 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3302 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3303 const int sync = rq_is_sync(rq);
b4878f24 3304 unsigned long now;
1da177e4 3305
b4878f24 3306 now = jiffies;
33659ebb
CH
3307 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3308 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3309
45333d5a
AC
3310 cfq_update_hw_tag(cfqd);
3311
53c583d2 3312 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3313 WARN_ON(!cfqq->dispatched);
53c583d2 3314 cfqd->rq_in_driver--;
6d048f53 3315 cfqq->dispatched--;
80bdf0c7 3316 (RQ_CFQG(rq))->dispatched--;
e98ef89b
VG
3317 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3318 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3319 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3320
53c583d2 3321 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3322
365722bb 3323 if (sync) {
f5f2b6ce
SL
3324 struct cfq_rb_root *service_tree;
3325
383cd721 3326 RQ_CIC(rq)->ttime.last_end_request = now;
f5f2b6ce
SL
3327
3328 if (cfq_cfqq_on_rr(cfqq))
3329 service_tree = cfqq->service_tree;
3330 else
3331 service_tree = service_tree_for(cfqq->cfqg,
3332 cfqq_prio(cfqq), cfqq_type(cfqq));
3333 service_tree->ttime.last_end_request = now;
573412b2
CZ
3334 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3335 cfqd->last_delayed_sync = now;
365722bb 3336 }
caaa5f9f 3337
7700fc4f
SL
3338#ifdef CONFIG_CFQ_GROUP_IOSCHED
3339 cfqq->cfqg->ttime.last_end_request = now;
3340#endif
3341
caaa5f9f
JA
3342 /*
3343 * If this is the active queue, check if it needs to be expired,
3344 * or if we want to idle in case it has no pending requests.
3345 */
3346 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3347 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3348
44f7c160
JA
3349 if (cfq_cfqq_slice_new(cfqq)) {
3350 cfq_set_prio_slice(cfqd, cfqq);
3351 cfq_clear_cfqq_slice_new(cfqq);
3352 }
f75edf2d
VG
3353
3354 /*
7667aa06
VG
3355 * Should we wait for next request to come in before we expire
3356 * the queue.
f75edf2d 3357 */
7667aa06 3358 if (cfq_should_wait_busy(cfqd, cfqq)) {
80bdf0c7
VG
3359 unsigned long extend_sl = cfqd->cfq_slice_idle;
3360 if (!cfqd->cfq_slice_idle)
3361 extend_sl = cfqd->cfq_group_idle;
3362 cfqq->slice_end = jiffies + extend_sl;
f75edf2d 3363 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3364 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3365 }
3366
a36e71f9 3367 /*
8e550632
CZ
3368 * Idling is not enabled on:
3369 * - expired queues
3370 * - idle-priority queues
3371 * - async queues
3372 * - queues with still some requests queued
3373 * - when there is a close cooperator
a36e71f9 3374 */
0871714e 3375 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3376 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3377 else if (sync && cfqq_empty &&
3378 !cfq_close_cooperator(cfqd, cfqq)) {
749ef9f8 3379 cfq_arm_slice_timer(cfqd);
8e550632 3380 }
caaa5f9f 3381 }
6d048f53 3382
53c583d2 3383 if (!cfqd->rq_in_driver)
23e018a1 3384 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3385}
3386
89850f7e 3387static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3388{
1b379d8d 3389 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3390 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3391 return ELV_MQUEUE_MUST;
3b18152c 3392 }
1da177e4 3393
22e2c507 3394 return ELV_MQUEUE_MAY;
22e2c507
JA
3395}
3396
165125e1 3397static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3398{
3399 struct cfq_data *cfqd = q->elevator->elevator_data;
3400 struct task_struct *tsk = current;
c5869807 3401 struct cfq_io_cq *cic;
22e2c507
JA
3402 struct cfq_queue *cfqq;
3403
3404 /*
3405 * don't force setup of a queue from here, as a call to may_queue
3406 * does not necessarily imply that a request actually will be queued.
3407 * so just lookup a possibly existing queue, or return 'may queue'
3408 * if that fails
3409 */
4ac845a2 3410 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3411 if (!cic)
3412 return ELV_MQUEUE_MAY;
3413
b0b78f81 3414 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3415 if (cfqq) {
c5869807 3416 cfq_init_prio_data(cfqq, cic->icq.ioc);
22e2c507 3417
89850f7e 3418 return __cfq_may_queue(cfqq);
22e2c507
JA
3419 }
3420
3421 return ELV_MQUEUE_MAY;
1da177e4
LT
3422}
3423
1da177e4
LT
3424/*
3425 * queue lock held here
3426 */
bb37b94c 3427static void cfq_put_request(struct request *rq)
1da177e4 3428{
5e705374 3429 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3430
5e705374 3431 if (cfqq) {
22e2c507 3432 const int rw = rq_data_dir(rq);
1da177e4 3433
22e2c507
JA
3434 BUG_ON(!cfqq->allocated[rw]);
3435 cfqq->allocated[rw]--;
1da177e4 3436
7f1dc8a2
VG
3437 /* Put down rq reference on cfqg */
3438 cfq_put_cfqg(RQ_CFQG(rq));
a612fddf
TH
3439 rq->elv.priv[0] = NULL;
3440 rq->elv.priv[1] = NULL;
7f1dc8a2 3441
1da177e4
LT
3442 cfq_put_queue(cfqq);
3443 }
3444}
3445
df5fe3e8 3446static struct cfq_queue *
c5869807 3447cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
df5fe3e8
JM
3448 struct cfq_queue *cfqq)
3449{
3450 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3451 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3452 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3453 cfq_put_queue(cfqq);
3454 return cic_to_cfqq(cic, 1);
3455}
3456
e6c5bc73
JM
3457/*
3458 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3459 * was the last process referring to said cfqq.
3460 */
3461static struct cfq_queue *
c5869807 3462split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
e6c5bc73
JM
3463{
3464 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3465 cfqq->pid = current->pid;
3466 cfq_clear_cfqq_coop(cfqq);
ae54abed 3467 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3468 return cfqq;
3469 }
3470
3471 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3472
3473 cfq_put_cooperator(cfqq);
3474
e6c5bc73
JM
3475 cfq_put_queue(cfqq);
3476 return NULL;
3477}
1da177e4 3478/*
22e2c507 3479 * Allocate cfq data structures associated with this request.
1da177e4 3480 */
22e2c507 3481static int
165125e1 3482cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3483{
3484 struct cfq_data *cfqd = q->elevator->elevator_data;
f1f8cc94 3485 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
1da177e4 3486 const int rw = rq_data_dir(rq);
a6151c3a 3487 const bool is_sync = rq_is_sync(rq);
22e2c507 3488 struct cfq_queue *cfqq;
d705ae6b 3489 unsigned int changed;
1da177e4
LT
3490
3491 might_sleep_if(gfp_mask & __GFP_WAIT);
3492
216284c3 3493 spin_lock_irq(q->queue_lock);
f1f8cc94
TH
3494
3495 /* handle changed notifications */
d705ae6b
TH
3496 changed = icq_get_changed(&cic->icq);
3497 if (unlikely(changed & ICQ_IOPRIO_CHANGED))
3498 changed_ioprio(cic);
f1f8cc94 3499#ifdef CONFIG_CFQ_GROUP_IOSCHED
d705ae6b
TH
3500 if (unlikely(changed & ICQ_CGROUP_CHANGED))
3501 changed_cgroup(cic);
f1f8cc94 3502#endif
22e2c507 3503
e6c5bc73 3504new_queue:
91fac317 3505 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3506 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
c5869807 3507 cfqq = cfq_get_queue(cfqd, is_sync, cic->icq.ioc, gfp_mask);
91fac317 3508 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3509 } else {
e6c5bc73
JM
3510 /*
3511 * If the queue was seeky for too long, break it apart.
3512 */
ae54abed 3513 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3514 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3515 cfqq = split_cfqq(cic, cfqq);
3516 if (!cfqq)
3517 goto new_queue;
3518 }
3519
df5fe3e8
JM
3520 /*
3521 * Check to see if this queue is scheduled to merge with
3522 * another, closely cooperating queue. The merging of
3523 * queues happens here as it must be done in process context.
3524 * The reference on new_cfqq was taken in merge_cfqqs.
3525 */
3526 if (cfqq->new_cfqq)
3527 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3528 }
1da177e4
LT
3529
3530 cfqq->allocated[rw]++;
1da177e4 3531
6fae9c25 3532 cfqq->ref++;
a612fddf
TH
3533 rq->elv.priv[0] = cfqq;
3534 rq->elv.priv[1] = cfq_ref_get_cfqg(cfqq->cfqg);
216284c3 3535 spin_unlock_irq(q->queue_lock);
5e705374 3536 return 0;
1da177e4
LT
3537}
3538
65f27f38 3539static void cfq_kick_queue(struct work_struct *work)
22e2c507 3540{
65f27f38 3541 struct cfq_data *cfqd =
23e018a1 3542 container_of(work, struct cfq_data, unplug_work);
165125e1 3543 struct request_queue *q = cfqd->queue;
22e2c507 3544
40bb54d1 3545 spin_lock_irq(q->queue_lock);
24ecfbe2 3546 __blk_run_queue(cfqd->queue);
40bb54d1 3547 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3548}
3549
3550/*
3551 * Timer running if the active_queue is currently idling inside its time slice
3552 */
3553static void cfq_idle_slice_timer(unsigned long data)
3554{
3555 struct cfq_data *cfqd = (struct cfq_data *) data;
3556 struct cfq_queue *cfqq;
3557 unsigned long flags;
3c6bd2f8 3558 int timed_out = 1;
22e2c507 3559
7b679138
JA
3560 cfq_log(cfqd, "idle timer fired");
3561
22e2c507
JA
3562 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3563
fe094d98
JA
3564 cfqq = cfqd->active_queue;
3565 if (cfqq) {
3c6bd2f8
JA
3566 timed_out = 0;
3567
b029195d
JA
3568 /*
3569 * We saw a request before the queue expired, let it through
3570 */
3571 if (cfq_cfqq_must_dispatch(cfqq))
3572 goto out_kick;
3573
22e2c507
JA
3574 /*
3575 * expired
3576 */
44f7c160 3577 if (cfq_slice_used(cfqq))
22e2c507
JA
3578 goto expire;
3579
3580 /*
3581 * only expire and reinvoke request handler, if there are
3582 * other queues with pending requests
3583 */
caaa5f9f 3584 if (!cfqd->busy_queues)
22e2c507 3585 goto out_cont;
22e2c507
JA
3586
3587 /*
3588 * not expired and it has a request pending, let it dispatch
3589 */
75e50984 3590 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3591 goto out_kick;
76280aff
CZ
3592
3593 /*
3594 * Queue depth flag is reset only when the idle didn't succeed
3595 */
3596 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3597 }
3598expire:
e5ff082e 3599 cfq_slice_expired(cfqd, timed_out);
22e2c507 3600out_kick:
23e018a1 3601 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3602out_cont:
3603 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3604}
3605
3b18152c
JA
3606static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3607{
3608 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3609 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3610}
22e2c507 3611
c2dea2d1
VT
3612static void cfq_put_async_queues(struct cfq_data *cfqd)
3613{
3614 int i;
3615
3616 for (i = 0; i < IOPRIO_BE_NR; i++) {
3617 if (cfqd->async_cfqq[0][i])
3618 cfq_put_queue(cfqd->async_cfqq[0][i]);
3619 if (cfqd->async_cfqq[1][i])
3620 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3621 }
2389d1ef
ON
3622
3623 if (cfqd->async_idle_cfqq)
3624 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3625}
3626
b374d18a 3627static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3628{
22e2c507 3629 struct cfq_data *cfqd = e->elevator_data;
165125e1 3630 struct request_queue *q = cfqd->queue;
56edf7d7 3631 bool wait = false;
22e2c507 3632
3b18152c 3633 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3634
d9ff4187 3635 spin_lock_irq(q->queue_lock);
e2d74ac0 3636
d9ff4187 3637 if (cfqd->active_queue)
e5ff082e 3638 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0 3639
c2dea2d1 3640 cfq_put_async_queues(cfqd);
b1c35769 3641 cfq_release_cfq_groups(cfqd);
56edf7d7
VG
3642
3643 /*
3644 * If there are groups which we could not unlink from blkcg list,
3645 * wait for a rcu period for them to be freed.
3646 */
3647 if (cfqd->nr_blkcg_linked_grps)
3648 wait = true;
15c31be4 3649
d9ff4187 3650 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3651
3652 cfq_shutdown_timer_wq(cfqd);
3653
56edf7d7
VG
3654 /*
3655 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3656 * Do this wait only if there are other unlinked groups out
3657 * there. This can happen if cgroup deletion path claimed the
3658 * responsibility of cleaning up a group before queue cleanup code
3659 * get to the group.
3660 *
3661 * Do not call synchronize_rcu() unconditionally as there are drivers
3662 * which create/delete request queue hundreds of times during scan/boot
3663 * and synchronize_rcu() can take significant time and slow down boot.
3664 */
3665 if (wait)
3666 synchronize_rcu();
2abae55f
VG
3667
3668#ifdef CONFIG_CFQ_GROUP_IOSCHED
3669 /* Free up per cpu stats for root group */
3670 free_percpu(cfqd->root_group.blkg.stats_cpu);
3671#endif
56edf7d7 3672 kfree(cfqd);
1da177e4
LT
3673}
3674
b2fab5ac 3675static int cfq_init_queue(struct request_queue *q)
1da177e4
LT
3676{
3677 struct cfq_data *cfqd;
718eee05 3678 int i, j;
cdb16e8f 3679 struct cfq_group *cfqg;
615f0259 3680 struct cfq_rb_root *st;
1da177e4 3681
94f6030c 3682 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
a73f730d 3683 if (!cfqd)
b2fab5ac 3684 return -ENOMEM;
80b15c73 3685
1fa8f6d6
VG
3686 /* Init root service tree */
3687 cfqd->grp_service_tree = CFQ_RB_ROOT;
3688
cdb16e8f
VG
3689 /* Init root group */
3690 cfqg = &cfqd->root_group;
615f0259
VG
3691 for_each_cfqg_st(cfqg, i, j, st)
3692 *st = CFQ_RB_ROOT;
1fa8f6d6 3693 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3694
25bc6b07
VG
3695 /* Give preference to root group over other groups */
3696 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3697
25fb5169 3698#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769 3699 /*
56edf7d7
VG
3700 * Set root group reference to 2. One reference will be dropped when
3701 * all groups on cfqd->cfqg_list are being deleted during queue exit.
3702 * Other reference will remain there as we don't want to delete this
3703 * group as it is statically allocated and gets destroyed when
3704 * throtl_data goes away.
b1c35769 3705 */
56edf7d7 3706 cfqg->ref = 2;
5624a4e4
VG
3707
3708 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
3709 kfree(cfqg);
3710 kfree(cfqd);
b2fab5ac 3711 return -ENOMEM;
5624a4e4
VG
3712 }
3713
dcf097b2 3714 rcu_read_lock();
5624a4e4 3715
e98ef89b
VG
3716 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3717 (void *)cfqd, 0);
dcf097b2 3718 rcu_read_unlock();
56edf7d7
VG
3719 cfqd->nr_blkcg_linked_grps++;
3720
3721 /* Add group on cfqd->cfqg_list */
3722 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
25fb5169 3723#endif
26a2ac00
JA
3724 /*
3725 * Not strictly needed (since RB_ROOT just clears the node and we
3726 * zeroed cfqd on alloc), but better be safe in case someone decides
3727 * to add magic to the rb code
3728 */
3729 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3730 cfqd->prio_trees[i] = RB_ROOT;
3731
6118b70b
JA
3732 /*
3733 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3734 * Grab a permanent reference to it, so that the normal code flow
3735 * will not attempt to free it.
3736 */
3737 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
30d7b944 3738 cfqd->oom_cfqq.ref++;
cdb16e8f 3739 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3740
1da177e4 3741 cfqd->queue = q;
b2fab5ac 3742 q->elevator->elevator_data = cfqd;
1da177e4 3743
22e2c507
JA
3744 init_timer(&cfqd->idle_slice_timer);
3745 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3746 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3747
23e018a1 3748 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3749
1da177e4 3750 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3751 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3752 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3753 cfqd->cfq_back_max = cfq_back_max;
3754 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3755 cfqd->cfq_slice[0] = cfq_slice_async;
3756 cfqd->cfq_slice[1] = cfq_slice_sync;
3757 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3758 cfqd->cfq_slice_idle = cfq_slice_idle;
80bdf0c7 3759 cfqd->cfq_group_idle = cfq_group_idle;
963b72fc 3760 cfqd->cfq_latency = 1;
e459dd08 3761 cfqd->hw_tag = -1;
edc71131
CZ
3762 /*
3763 * we optimistically start assuming sync ops weren't delayed in last
3764 * second, in order to have larger depth for async operations.
3765 */
573412b2 3766 cfqd->last_delayed_sync = jiffies - HZ;
b2fab5ac 3767 return 0;
1da177e4
LT
3768}
3769
1da177e4
LT
3770/*
3771 * sysfs parts below -->
3772 */
1da177e4
LT
3773static ssize_t
3774cfq_var_show(unsigned int var, char *page)
3775{
3776 return sprintf(page, "%d\n", var);
3777}
3778
3779static ssize_t
3780cfq_var_store(unsigned int *var, const char *page, size_t count)
3781{
3782 char *p = (char *) page;
3783
3784 *var = simple_strtoul(p, &p, 10);
3785 return count;
3786}
3787
1da177e4 3788#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3789static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3790{ \
3d1ab40f 3791 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3792 unsigned int __data = __VAR; \
3793 if (__CONV) \
3794 __data = jiffies_to_msecs(__data); \
3795 return cfq_var_show(__data, (page)); \
3796}
3797SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3798SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3799SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3800SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3801SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507 3802SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
80bdf0c7 3803SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
22e2c507
JA
3804SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3805SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3806SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3807SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
3808#undef SHOW_FUNCTION
3809
3810#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3811static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3812{ \
3d1ab40f 3813 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3814 unsigned int __data; \
3815 int ret = cfq_var_store(&__data, (page), count); \
3816 if (__data < (MIN)) \
3817 __data = (MIN); \
3818 else if (__data > (MAX)) \
3819 __data = (MAX); \
3820 if (__CONV) \
3821 *(__PTR) = msecs_to_jiffies(__data); \
3822 else \
3823 *(__PTR) = __data; \
3824 return ret; \
3825}
3826STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3827STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3828 UINT_MAX, 1);
3829STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3830 UINT_MAX, 1);
e572ec7e 3831STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3832STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3833 UINT_MAX, 0);
22e2c507 3834STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
80bdf0c7 3835STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
22e2c507
JA
3836STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3837STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3838STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3839 UINT_MAX, 0);
963b72fc 3840STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
3841#undef STORE_FUNCTION
3842
e572ec7e
AV
3843#define CFQ_ATTR(name) \
3844 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3845
3846static struct elv_fs_entry cfq_attrs[] = {
3847 CFQ_ATTR(quantum),
e572ec7e
AV
3848 CFQ_ATTR(fifo_expire_sync),
3849 CFQ_ATTR(fifo_expire_async),
3850 CFQ_ATTR(back_seek_max),
3851 CFQ_ATTR(back_seek_penalty),
3852 CFQ_ATTR(slice_sync),
3853 CFQ_ATTR(slice_async),
3854 CFQ_ATTR(slice_async_rq),
3855 CFQ_ATTR(slice_idle),
80bdf0c7 3856 CFQ_ATTR(group_idle),
963b72fc 3857 CFQ_ATTR(low_latency),
e572ec7e 3858 __ATTR_NULL
1da177e4
LT
3859};
3860
1da177e4
LT
3861static struct elevator_type iosched_cfq = {
3862 .ops = {
3863 .elevator_merge_fn = cfq_merge,
3864 .elevator_merged_fn = cfq_merged_request,
3865 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3866 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 3867 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 3868 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3869 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3870 .elevator_activate_req_fn = cfq_activate_request,
1da177e4 3871 .elevator_deactivate_req_fn = cfq_deactivate_request,
1da177e4 3872 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3873 .elevator_former_req_fn = elv_rb_former_request,
3874 .elevator_latter_req_fn = elv_rb_latter_request,
9b84cacd 3875 .elevator_init_icq_fn = cfq_init_icq,
7e5a8794 3876 .elevator_exit_icq_fn = cfq_exit_icq,
1da177e4
LT
3877 .elevator_set_req_fn = cfq_set_request,
3878 .elevator_put_req_fn = cfq_put_request,
3879 .elevator_may_queue_fn = cfq_may_queue,
3880 .elevator_init_fn = cfq_init_queue,
3881 .elevator_exit_fn = cfq_exit_queue,
3882 },
3d3c2379
TH
3883 .icq_size = sizeof(struct cfq_io_cq),
3884 .icq_align = __alignof__(struct cfq_io_cq),
3d1ab40f 3885 .elevator_attrs = cfq_attrs,
3d3c2379 3886 .elevator_name = "cfq",
1da177e4
LT
3887 .elevator_owner = THIS_MODULE,
3888};
3889
3e252066
VG
3890#ifdef CONFIG_CFQ_GROUP_IOSCHED
3891static struct blkio_policy_type blkio_policy_cfq = {
3892 .ops = {
3893 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
72e06c25 3894 .blkio_clear_queue_fn = cfq_clear_queue,
3e252066
VG
3895 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3896 },
062a644d 3897 .plid = BLKIO_POLICY_PROP,
3e252066 3898};
3e252066
VG
3899#endif
3900
1da177e4
LT
3901static int __init cfq_init(void)
3902{
3d3c2379
TH
3903 int ret;
3904
22e2c507
JA
3905 /*
3906 * could be 0 on HZ < 1000 setups
3907 */
3908 if (!cfq_slice_async)
3909 cfq_slice_async = 1;
3910 if (!cfq_slice_idle)
3911 cfq_slice_idle = 1;
3912
80bdf0c7
VG
3913#ifdef CONFIG_CFQ_GROUP_IOSCHED
3914 if (!cfq_group_idle)
3915 cfq_group_idle = 1;
3916#else
3917 cfq_group_idle = 0;
3918#endif
3d3c2379
TH
3919 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3920 if (!cfq_pool)
1da177e4
LT
3921 return -ENOMEM;
3922
3d3c2379
TH
3923 ret = elv_register(&iosched_cfq);
3924 if (ret) {
3925 kmem_cache_destroy(cfq_pool);
3926 return ret;
3927 }
3d3c2379 3928
b95ada55 3929#ifdef CONFIG_CFQ_GROUP_IOSCHED
3e252066 3930 blkio_policy_register(&blkio_policy_cfq);
b95ada55 3931#endif
2fdd82bd 3932 return 0;
1da177e4
LT
3933}
3934
3935static void __exit cfq_exit(void)
3936{
b95ada55 3937#ifdef CONFIG_CFQ_GROUP_IOSCHED
3e252066 3938 blkio_policy_unregister(&blkio_policy_cfq);
b95ada55 3939#endif
1da177e4 3940 elv_unregister(&iosched_cfq);
3d3c2379 3941 kmem_cache_destroy(cfq_pool);
1da177e4
LT
3942}
3943
3944module_init(cfq_init);
3945module_exit(cfq_exit);
3946
3947MODULE_AUTHOR("Jens Axboe");
3948MODULE_LICENSE("GPL");
3949MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");