fixlet: Remove fs_excl from struct task.
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
e98ef89b 17#include "cfq.h"
1da177e4
LT
18
19/*
20 * tunables
21 */
fe094d98 22/* max queue in one round of service */
abc3c744 23static const int cfq_quantum = 8;
64100099 24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
64100099 29static const int cfq_slice_sync = HZ / 10;
3b18152c 30static int cfq_slice_async = HZ / 25;
64100099 31static const int cfq_slice_async_rq = 2;
caaa5f9f 32static int cfq_slice_idle = HZ / 125;
80bdf0c7 33static int cfq_group_idle = HZ / 125;
5db5d642
CZ
34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35static const int cfq_hist_divisor = 4;
22e2c507 36
d9e7620e 37/*
0871714e 38 * offset from end of service tree
d9e7620e 39 */
0871714e 40#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
41
42/*
43 * below this threshold, we consider thinktime immediate
44 */
45#define CFQ_MIN_TT (2)
46
22e2c507 47#define CFQ_SLICE_SCALE (5)
45333d5a 48#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 49#define CFQ_SERVICE_SHIFT 12
22e2c507 50
3dde36dd 51#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 52#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 53#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 54#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 55
fe094d98 56#define RQ_CIC(rq) \
c186794d
MS
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
1da177e4 60
e18b890b
CL
61static struct kmem_cache *cfq_pool;
62static struct kmem_cache *cfq_ioc_pool;
1da177e4 63
245b2e70 64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 65static struct completion *ioc_gone;
9a11b4ed 66static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 67
80b15c73
KK
68static DEFINE_SPINLOCK(cic_index_lock);
69static DEFINE_IDA(cic_index_ida);
70
22e2c507
JA
71#define CFQ_PRIO_LISTS IOPRIO_BE_NR
72#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
73#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
206dc69b 75#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 76#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 77
cc09e299
JA
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
aa6f6a3d 87 unsigned count;
73e9ffdd 88 unsigned total_weight;
1fa8f6d6 89 u64 min_vdisktime;
cc09e299 90};
73e9ffdd
RK
91#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
cc09e299 93
6118b70b
JA
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98 /* reference count */
30d7b944 99 int ref;
6118b70b
JA
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
dae739eb
VG
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
f75edf2d 125 unsigned int allocated_slice;
c4081ba5 126 unsigned int slice_dispatch;
dae739eb
VG
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
6118b70b
JA
129 unsigned long slice_end;
130 long slice_resid;
6118b70b 131
6118b70b
JA
132 /* number of requests that are on the dispatch list or inside driver */
133 int dispatched;
134
135 /* io prio of this group */
136 unsigned short ioprio, org_ioprio;
4aede84b 137 unsigned short ioprio_class;
6118b70b 138
c4081ba5
RK
139 pid_t pid;
140
3dde36dd 141 u32 seek_history;
b2c18e1e
JM
142 sector_t last_request_pos;
143
aa6f6a3d 144 struct cfq_rb_root *service_tree;
df5fe3e8 145 struct cfq_queue *new_cfqq;
cdb16e8f 146 struct cfq_group *cfqg;
c4e7893e
VG
147 /* Number of sectors dispatched from queue in single dispatch round */
148 unsigned long nr_sectors;
6118b70b
JA
149};
150
c0324a02 151/*
718eee05 152 * First index in the service_trees.
c0324a02
CZ
153 * IDLE is handled separately, so it has negative index
154 */
155enum wl_prio_t {
c0324a02 156 BE_WORKLOAD = 0,
615f0259
VG
157 RT_WORKLOAD = 1,
158 IDLE_WORKLOAD = 2,
b4627321 159 CFQ_PRIO_NR,
c0324a02
CZ
160};
161
718eee05
CZ
162/*
163 * Second index in the service_trees.
164 */
165enum wl_type_t {
166 ASYNC_WORKLOAD = 0,
167 SYNC_NOIDLE_WORKLOAD = 1,
168 SYNC_WORKLOAD = 2
169};
170
cdb16e8f
VG
171/* This is per cgroup per device grouping structure */
172struct cfq_group {
1fa8f6d6
VG
173 /* group service_tree member */
174 struct rb_node rb_node;
175
176 /* group service_tree key */
177 u64 vdisktime;
25bc6b07 178 unsigned int weight;
8184f93e
JT
179 unsigned int new_weight;
180 bool needs_update;
1fa8f6d6
VG
181
182 /* number of cfqq currently on this group */
183 int nr_cfqq;
184
cdb16e8f 185 /*
4495a7d4 186 * Per group busy queues average. Useful for workload slice calc. We
b4627321
VG
187 * create the array for each prio class but at run time it is used
188 * only for RT and BE class and slot for IDLE class remains unused.
189 * This is primarily done to avoid confusion and a gcc warning.
190 */
191 unsigned int busy_queues_avg[CFQ_PRIO_NR];
192 /*
193 * rr lists of queues with requests. We maintain service trees for
194 * RT and BE classes. These trees are subdivided in subclasses
195 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
196 * class there is no subclassification and all the cfq queues go on
197 * a single tree service_tree_idle.
cdb16e8f
VG
198 * Counts are embedded in the cfq_rb_root
199 */
200 struct cfq_rb_root service_trees[2][3];
201 struct cfq_rb_root service_tree_idle;
dae739eb
VG
202
203 unsigned long saved_workload_slice;
204 enum wl_type_t saved_workload;
205 enum wl_prio_t saved_serving_prio;
25fb5169
VG
206 struct blkio_group blkg;
207#ifdef CONFIG_CFQ_GROUP_IOSCHED
208 struct hlist_node cfqd_node;
329a6781 209 int ref;
25fb5169 210#endif
80bdf0c7
VG
211 /* number of requests that are on the dispatch list or inside driver */
212 int dispatched;
cdb16e8f 213};
718eee05 214
22e2c507
JA
215/*
216 * Per block device queue structure
217 */
1da177e4 218struct cfq_data {
165125e1 219 struct request_queue *queue;
1fa8f6d6
VG
220 /* Root service tree for cfq_groups */
221 struct cfq_rb_root grp_service_tree;
cdb16e8f 222 struct cfq_group root_group;
22e2c507 223
c0324a02
CZ
224 /*
225 * The priority currently being served
22e2c507 226 */
c0324a02 227 enum wl_prio_t serving_prio;
718eee05
CZ
228 enum wl_type_t serving_type;
229 unsigned long workload_expires;
cdb16e8f 230 struct cfq_group *serving_group;
a36e71f9
JA
231
232 /*
233 * Each priority tree is sorted by next_request position. These
234 * trees are used when determining if two or more queues are
235 * interleaving requests (see cfq_close_cooperator).
236 */
237 struct rb_root prio_trees[CFQ_PRIO_LISTS];
238
22e2c507 239 unsigned int busy_queues;
ef8a41df 240 unsigned int busy_sync_queues;
22e2c507 241
53c583d2
CZ
242 int rq_in_driver;
243 int rq_in_flight[2];
45333d5a
AC
244
245 /*
246 * queue-depth detection
247 */
248 int rq_queued;
25776e35 249 int hw_tag;
e459dd08
CZ
250 /*
251 * hw_tag can be
252 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
253 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
254 * 0 => no NCQ
255 */
256 int hw_tag_est_depth;
257 unsigned int hw_tag_samples;
1da177e4 258
22e2c507
JA
259 /*
260 * idle window management
261 */
262 struct timer_list idle_slice_timer;
23e018a1 263 struct work_struct unplug_work;
1da177e4 264
22e2c507
JA
265 struct cfq_queue *active_queue;
266 struct cfq_io_context *active_cic;
22e2c507 267
c2dea2d1
VT
268 /*
269 * async queue for each priority case
270 */
271 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
272 struct cfq_queue *async_idle_cfqq;
15c31be4 273
6d048f53 274 sector_t last_position;
1da177e4 275
1da177e4
LT
276 /*
277 * tunables, see top of file
278 */
279 unsigned int cfq_quantum;
22e2c507 280 unsigned int cfq_fifo_expire[2];
1da177e4
LT
281 unsigned int cfq_back_penalty;
282 unsigned int cfq_back_max;
22e2c507
JA
283 unsigned int cfq_slice[2];
284 unsigned int cfq_slice_async_rq;
285 unsigned int cfq_slice_idle;
80bdf0c7 286 unsigned int cfq_group_idle;
963b72fc 287 unsigned int cfq_latency;
d9ff4187 288
80b15c73 289 unsigned int cic_index;
d9ff4187 290 struct list_head cic_list;
1da177e4 291
6118b70b
JA
292 /*
293 * Fallback dummy cfqq for extreme OOM conditions
294 */
295 struct cfq_queue oom_cfqq;
365722bb 296
573412b2 297 unsigned long last_delayed_sync;
25fb5169
VG
298
299 /* List of cfq groups being managed on this device*/
300 struct hlist_head cfqg_list;
56edf7d7
VG
301
302 /* Number of groups which are on blkcg->blkg_list */
303 unsigned int nr_blkcg_linked_grps;
1da177e4
LT
304};
305
25fb5169
VG
306static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
307
cdb16e8f
VG
308static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
309 enum wl_prio_t prio,
65b32a57 310 enum wl_type_t type)
c0324a02 311{
1fa8f6d6
VG
312 if (!cfqg)
313 return NULL;
314
c0324a02 315 if (prio == IDLE_WORKLOAD)
cdb16e8f 316 return &cfqg->service_tree_idle;
c0324a02 317
cdb16e8f 318 return &cfqg->service_trees[prio][type];
c0324a02
CZ
319}
320
3b18152c 321enum cfqq_state_flags {
b0b8d749
JA
322 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
323 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 324 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 325 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
326 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
327 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
328 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 329 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 330 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 331 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 332 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 333 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 334 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
335};
336
337#define CFQ_CFQQ_FNS(name) \
338static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
339{ \
fe094d98 340 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
341} \
342static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
343{ \
fe094d98 344 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
345} \
346static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
347{ \
fe094d98 348 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
349}
350
351CFQ_CFQQ_FNS(on_rr);
352CFQ_CFQQ_FNS(wait_request);
b029195d 353CFQ_CFQQ_FNS(must_dispatch);
3b18152c 354CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
355CFQ_CFQQ_FNS(fifo_expire);
356CFQ_CFQQ_FNS(idle_window);
357CFQ_CFQQ_FNS(prio_changed);
44f7c160 358CFQ_CFQQ_FNS(slice_new);
91fac317 359CFQ_CFQQ_FNS(sync);
a36e71f9 360CFQ_CFQQ_FNS(coop);
ae54abed 361CFQ_CFQQ_FNS(split_coop);
76280aff 362CFQ_CFQQ_FNS(deep);
f75edf2d 363CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
364#undef CFQ_CFQQ_FNS
365
afc24d49 366#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
367#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
368 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
369 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
4495a7d4 370 blkg_path(&(cfqq)->cfqg->blkg), ##args)
2868ef7b
VG
371
372#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
373 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
4495a7d4 374 blkg_path(&(cfqg)->blkg), ##args) \
2868ef7b
VG
375
376#else
7b679138
JA
377#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
378 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
4495a7d4 379#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
2868ef7b 380#endif
7b679138
JA
381#define cfq_log(cfqd, fmt, args...) \
382 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
383
615f0259
VG
384/* Traverses through cfq group service trees */
385#define for_each_cfqg_st(cfqg, i, j, st) \
386 for (i = 0; i <= IDLE_WORKLOAD; i++) \
387 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
388 : &cfqg->service_tree_idle; \
389 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
390 (i == IDLE_WORKLOAD && j == 0); \
391 j++, st = i < IDLE_WORKLOAD ? \
392 &cfqg->service_trees[i][j]: NULL) \
393
394
02b35081
VG
395static inline bool iops_mode(struct cfq_data *cfqd)
396{
397 /*
398 * If we are not idling on queues and it is a NCQ drive, parallel
399 * execution of requests is on and measuring time is not possible
400 * in most of the cases until and unless we drive shallower queue
401 * depths and that becomes a performance bottleneck. In such cases
402 * switch to start providing fairness in terms of number of IOs.
403 */
404 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
405 return true;
406 else
407 return false;
408}
409
c0324a02
CZ
410static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
411{
412 if (cfq_class_idle(cfqq))
413 return IDLE_WORKLOAD;
414 if (cfq_class_rt(cfqq))
415 return RT_WORKLOAD;
416 return BE_WORKLOAD;
417}
418
718eee05
CZ
419
420static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
421{
422 if (!cfq_cfqq_sync(cfqq))
423 return ASYNC_WORKLOAD;
424 if (!cfq_cfqq_idle_window(cfqq))
425 return SYNC_NOIDLE_WORKLOAD;
426 return SYNC_WORKLOAD;
427}
428
58ff82f3
VG
429static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
430 struct cfq_data *cfqd,
431 struct cfq_group *cfqg)
c0324a02
CZ
432{
433 if (wl == IDLE_WORKLOAD)
cdb16e8f 434 return cfqg->service_tree_idle.count;
c0324a02 435
cdb16e8f
VG
436 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
437 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
438 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
439}
440
f26bd1f0
VG
441static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
442 struct cfq_group *cfqg)
443{
444 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
445 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
446}
447
165125e1 448static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 449static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 450 struct io_context *, gfp_t);
4ac845a2 451static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
452 struct io_context *);
453
454static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 455 bool is_sync)
91fac317 456{
a6151c3a 457 return cic->cfqq[is_sync];
91fac317
VT
458}
459
460static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 461 struct cfq_queue *cfqq, bool is_sync)
91fac317 462{
a6151c3a 463 cic->cfqq[is_sync] = cfqq;
91fac317
VT
464}
465
bca4b914 466#define CIC_DEAD_KEY 1ul
80b15c73 467#define CIC_DEAD_INDEX_SHIFT 1
bca4b914
KK
468
469static inline void *cfqd_dead_key(struct cfq_data *cfqd)
470{
80b15c73 471 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
bca4b914
KK
472}
473
474static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
475{
476 struct cfq_data *cfqd = cic->key;
477
478 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
479 return NULL;
480
481 return cfqd;
482}
483
91fac317
VT
484/*
485 * We regard a request as SYNC, if it's either a read or has the SYNC bit
486 * set (in which case it could also be direct WRITE).
487 */
a6151c3a 488static inline bool cfq_bio_sync(struct bio *bio)
91fac317 489{
7b6d91da 490 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
91fac317 491}
1da177e4 492
99f95e52
AM
493/*
494 * scheduler run of queue, if there are requests pending and no one in the
495 * driver that will restart queueing
496 */
23e018a1 497static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 498{
7b679138
JA
499 if (cfqd->busy_queues) {
500 cfq_log(cfqd, "schedule dispatch");
23e018a1 501 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 502 }
99f95e52
AM
503}
504
44f7c160
JA
505/*
506 * Scale schedule slice based on io priority. Use the sync time slice only
507 * if a queue is marked sync and has sync io queued. A sync queue with async
508 * io only, should not get full sync slice length.
509 */
a6151c3a 510static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 511 unsigned short prio)
44f7c160 512{
d9e7620e 513 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 514
d9e7620e
JA
515 WARN_ON(prio >= IOPRIO_BE_NR);
516
517 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
518}
44f7c160 519
d9e7620e
JA
520static inline int
521cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
522{
523 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
524}
525
25bc6b07
VG
526static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
527{
528 u64 d = delta << CFQ_SERVICE_SHIFT;
529
530 d = d * BLKIO_WEIGHT_DEFAULT;
531 do_div(d, cfqg->weight);
532 return d;
533}
534
535static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
536{
537 s64 delta = (s64)(vdisktime - min_vdisktime);
538 if (delta > 0)
539 min_vdisktime = vdisktime;
540
541 return min_vdisktime;
542}
543
544static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
545{
546 s64 delta = (s64)(vdisktime - min_vdisktime);
547 if (delta < 0)
548 min_vdisktime = vdisktime;
549
550 return min_vdisktime;
551}
552
553static void update_min_vdisktime(struct cfq_rb_root *st)
554{
25bc6b07
VG
555 struct cfq_group *cfqg;
556
25bc6b07
VG
557 if (st->left) {
558 cfqg = rb_entry_cfqg(st->left);
a6032710
GJ
559 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
560 cfqg->vdisktime);
25bc6b07 561 }
25bc6b07
VG
562}
563
5db5d642
CZ
564/*
565 * get averaged number of queues of RT/BE priority.
566 * average is updated, with a formula that gives more weight to higher numbers,
567 * to quickly follows sudden increases and decrease slowly
568 */
569
58ff82f3
VG
570static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
571 struct cfq_group *cfqg, bool rt)
5869619c 572{
5db5d642
CZ
573 unsigned min_q, max_q;
574 unsigned mult = cfq_hist_divisor - 1;
575 unsigned round = cfq_hist_divisor / 2;
58ff82f3 576 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 577
58ff82f3
VG
578 min_q = min(cfqg->busy_queues_avg[rt], busy);
579 max_q = max(cfqg->busy_queues_avg[rt], busy);
580 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 581 cfq_hist_divisor;
58ff82f3
VG
582 return cfqg->busy_queues_avg[rt];
583}
584
585static inline unsigned
586cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
587{
588 struct cfq_rb_root *st = &cfqd->grp_service_tree;
589
590 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
591}
592
c553f8e3 593static inline unsigned
ba5bd520 594cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
44f7c160 595{
5db5d642
CZ
596 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
597 if (cfqd->cfq_latency) {
58ff82f3
VG
598 /*
599 * interested queues (we consider only the ones with the same
600 * priority class in the cfq group)
601 */
602 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
603 cfq_class_rt(cfqq));
5db5d642
CZ
604 unsigned sync_slice = cfqd->cfq_slice[1];
605 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
606 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
607
608 if (expect_latency > group_slice) {
5db5d642
CZ
609 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
610 /* scale low_slice according to IO priority
611 * and sync vs async */
612 unsigned low_slice =
613 min(slice, base_low_slice * slice / sync_slice);
614 /* the adapted slice value is scaled to fit all iqs
615 * into the target latency */
58ff82f3 616 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
617 low_slice);
618 }
619 }
c553f8e3
SL
620 return slice;
621}
622
623static inline void
624cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
625{
ba5bd520 626 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3 627
dae739eb 628 cfqq->slice_start = jiffies;
5db5d642 629 cfqq->slice_end = jiffies + slice;
f75edf2d 630 cfqq->allocated_slice = slice;
7b679138 631 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
632}
633
634/*
635 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
636 * isn't valid until the first request from the dispatch is activated
637 * and the slice time set.
638 */
a6151c3a 639static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
640{
641 if (cfq_cfqq_slice_new(cfqq))
c1e44756 642 return false;
44f7c160 643 if (time_before(jiffies, cfqq->slice_end))
c1e44756 644 return false;
44f7c160 645
c1e44756 646 return true;
44f7c160
JA
647}
648
1da177e4 649/*
5e705374 650 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 651 * We choose the request that is closest to the head right now. Distance
e8a99053 652 * behind the head is penalized and only allowed to a certain extent.
1da177e4 653 */
5e705374 654static struct request *
cf7c25cf 655cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 656{
cf7c25cf 657 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 658 unsigned long back_max;
e8a99053
AM
659#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
660#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
661 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 662
5e705374
JA
663 if (rq1 == NULL || rq1 == rq2)
664 return rq2;
665 if (rq2 == NULL)
666 return rq1;
9c2c38a1 667
229836bd
NK
668 if (rq_is_sync(rq1) != rq_is_sync(rq2))
669 return rq_is_sync(rq1) ? rq1 : rq2;
670
83096ebf
TH
671 s1 = blk_rq_pos(rq1);
672 s2 = blk_rq_pos(rq2);
1da177e4 673
1da177e4
LT
674 /*
675 * by definition, 1KiB is 2 sectors
676 */
677 back_max = cfqd->cfq_back_max * 2;
678
679 /*
680 * Strict one way elevator _except_ in the case where we allow
681 * short backward seeks which are biased as twice the cost of a
682 * similar forward seek.
683 */
684 if (s1 >= last)
685 d1 = s1 - last;
686 else if (s1 + back_max >= last)
687 d1 = (last - s1) * cfqd->cfq_back_penalty;
688 else
e8a99053 689 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
690
691 if (s2 >= last)
692 d2 = s2 - last;
693 else if (s2 + back_max >= last)
694 d2 = (last - s2) * cfqd->cfq_back_penalty;
695 else
e8a99053 696 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
697
698 /* Found required data */
e8a99053
AM
699
700 /*
701 * By doing switch() on the bit mask "wrap" we avoid having to
702 * check two variables for all permutations: --> faster!
703 */
704 switch (wrap) {
5e705374 705 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 706 if (d1 < d2)
5e705374 707 return rq1;
e8a99053 708 else if (d2 < d1)
5e705374 709 return rq2;
e8a99053
AM
710 else {
711 if (s1 >= s2)
5e705374 712 return rq1;
e8a99053 713 else
5e705374 714 return rq2;
e8a99053 715 }
1da177e4 716
e8a99053 717 case CFQ_RQ2_WRAP:
5e705374 718 return rq1;
e8a99053 719 case CFQ_RQ1_WRAP:
5e705374
JA
720 return rq2;
721 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
722 default:
723 /*
724 * Since both rqs are wrapped,
725 * start with the one that's further behind head
726 * (--> only *one* back seek required),
727 * since back seek takes more time than forward.
728 */
729 if (s1 <= s2)
5e705374 730 return rq1;
1da177e4 731 else
5e705374 732 return rq2;
1da177e4
LT
733 }
734}
735
498d3aa2
JA
736/*
737 * The below is leftmost cache rbtree addon
738 */
0871714e 739static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 740{
615f0259
VG
741 /* Service tree is empty */
742 if (!root->count)
743 return NULL;
744
cc09e299
JA
745 if (!root->left)
746 root->left = rb_first(&root->rb);
747
0871714e
JA
748 if (root->left)
749 return rb_entry(root->left, struct cfq_queue, rb_node);
750
751 return NULL;
cc09e299
JA
752}
753
1fa8f6d6
VG
754static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
755{
756 if (!root->left)
757 root->left = rb_first(&root->rb);
758
759 if (root->left)
760 return rb_entry_cfqg(root->left);
761
762 return NULL;
763}
764
a36e71f9
JA
765static void rb_erase_init(struct rb_node *n, struct rb_root *root)
766{
767 rb_erase(n, root);
768 RB_CLEAR_NODE(n);
769}
770
cc09e299
JA
771static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
772{
773 if (root->left == n)
774 root->left = NULL;
a36e71f9 775 rb_erase_init(n, &root->rb);
aa6f6a3d 776 --root->count;
cc09e299
JA
777}
778
1da177e4
LT
779/*
780 * would be nice to take fifo expire time into account as well
781 */
5e705374
JA
782static struct request *
783cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
784 struct request *last)
1da177e4 785{
21183b07
JA
786 struct rb_node *rbnext = rb_next(&last->rb_node);
787 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 788 struct request *next = NULL, *prev = NULL;
1da177e4 789
21183b07 790 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
791
792 if (rbprev)
5e705374 793 prev = rb_entry_rq(rbprev);
1da177e4 794
21183b07 795 if (rbnext)
5e705374 796 next = rb_entry_rq(rbnext);
21183b07
JA
797 else {
798 rbnext = rb_first(&cfqq->sort_list);
799 if (rbnext && rbnext != &last->rb_node)
5e705374 800 next = rb_entry_rq(rbnext);
21183b07 801 }
1da177e4 802
cf7c25cf 803 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
804}
805
d9e7620e
JA
806static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
807 struct cfq_queue *cfqq)
1da177e4 808{
d9e7620e
JA
809 /*
810 * just an approximation, should be ok.
811 */
cdb16e8f 812 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 813 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
814}
815
1fa8f6d6
VG
816static inline s64
817cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
818{
819 return cfqg->vdisktime - st->min_vdisktime;
820}
821
822static void
823__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
824{
825 struct rb_node **node = &st->rb.rb_node;
826 struct rb_node *parent = NULL;
827 struct cfq_group *__cfqg;
828 s64 key = cfqg_key(st, cfqg);
829 int left = 1;
830
831 while (*node != NULL) {
832 parent = *node;
833 __cfqg = rb_entry_cfqg(parent);
834
835 if (key < cfqg_key(st, __cfqg))
836 node = &parent->rb_left;
837 else {
838 node = &parent->rb_right;
839 left = 0;
840 }
841 }
842
843 if (left)
844 st->left = &cfqg->rb_node;
845
846 rb_link_node(&cfqg->rb_node, parent, node);
847 rb_insert_color(&cfqg->rb_node, &st->rb);
848}
849
850static void
8184f93e
JT
851cfq_update_group_weight(struct cfq_group *cfqg)
852{
853 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
854 if (cfqg->needs_update) {
855 cfqg->weight = cfqg->new_weight;
856 cfqg->needs_update = false;
857 }
858}
859
860static void
861cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
862{
863 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
864
865 cfq_update_group_weight(cfqg);
866 __cfq_group_service_tree_add(st, cfqg);
867 st->total_weight += cfqg->weight;
868}
869
870static void
871cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
872{
873 struct cfq_rb_root *st = &cfqd->grp_service_tree;
874 struct cfq_group *__cfqg;
875 struct rb_node *n;
876
877 cfqg->nr_cfqq++;
760701bf 878 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1fa8f6d6
VG
879 return;
880
881 /*
882 * Currently put the group at the end. Later implement something
883 * so that groups get lesser vtime based on their weights, so that
25985edc 884 * if group does not loose all if it was not continuously backlogged.
1fa8f6d6
VG
885 */
886 n = rb_last(&st->rb);
887 if (n) {
888 __cfqg = rb_entry_cfqg(n);
889 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
890 } else
891 cfqg->vdisktime = st->min_vdisktime;
8184f93e
JT
892 cfq_group_service_tree_add(st, cfqg);
893}
1fa8f6d6 894
8184f93e
JT
895static void
896cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
897{
898 st->total_weight -= cfqg->weight;
899 if (!RB_EMPTY_NODE(&cfqg->rb_node))
900 cfq_rb_erase(&cfqg->rb_node, st);
1fa8f6d6
VG
901}
902
903static void
8184f93e 904cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
905{
906 struct cfq_rb_root *st = &cfqd->grp_service_tree;
907
908 BUG_ON(cfqg->nr_cfqq < 1);
909 cfqg->nr_cfqq--;
25bc6b07 910
1fa8f6d6
VG
911 /* If there are other cfq queues under this group, don't delete it */
912 if (cfqg->nr_cfqq)
913 return;
914
2868ef7b 915 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
8184f93e 916 cfq_group_service_tree_del(st, cfqg);
dae739eb 917 cfqg->saved_workload_slice = 0;
e98ef89b 918 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
919}
920
167400d3
JT
921static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
922 unsigned int *unaccounted_time)
dae739eb 923{
f75edf2d 924 unsigned int slice_used;
dae739eb
VG
925
926 /*
927 * Queue got expired before even a single request completed or
928 * got expired immediately after first request completion.
929 */
930 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
931 /*
932 * Also charge the seek time incurred to the group, otherwise
933 * if there are mutiple queues in the group, each can dispatch
934 * a single request on seeky media and cause lots of seek time
935 * and group will never know it.
936 */
937 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
938 1);
939 } else {
940 slice_used = jiffies - cfqq->slice_start;
167400d3
JT
941 if (slice_used > cfqq->allocated_slice) {
942 *unaccounted_time = slice_used - cfqq->allocated_slice;
f75edf2d 943 slice_used = cfqq->allocated_slice;
167400d3
JT
944 }
945 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
946 *unaccounted_time += cfqq->slice_start -
947 cfqq->dispatch_start;
dae739eb
VG
948 }
949
dae739eb
VG
950 return slice_used;
951}
952
953static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 954 struct cfq_queue *cfqq)
dae739eb
VG
955{
956 struct cfq_rb_root *st = &cfqd->grp_service_tree;
167400d3 957 unsigned int used_sl, charge, unaccounted_sl = 0;
f26bd1f0
VG
958 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
959 - cfqg->service_tree_idle.count;
960
961 BUG_ON(nr_sync < 0);
167400d3 962 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
dae739eb 963
02b35081
VG
964 if (iops_mode(cfqd))
965 charge = cfqq->slice_dispatch;
966 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
967 charge = cfqq->allocated_slice;
dae739eb
VG
968
969 /* Can't update vdisktime while group is on service tree */
8184f93e 970 cfq_group_service_tree_del(st, cfqg);
02b35081 971 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
8184f93e
JT
972 /* If a new weight was requested, update now, off tree */
973 cfq_group_service_tree_add(st, cfqg);
dae739eb
VG
974
975 /* This group is being expired. Save the context */
976 if (time_after(cfqd->workload_expires, jiffies)) {
977 cfqg->saved_workload_slice = cfqd->workload_expires
978 - jiffies;
979 cfqg->saved_workload = cfqd->serving_type;
980 cfqg->saved_serving_prio = cfqd->serving_prio;
981 } else
982 cfqg->saved_workload_slice = 0;
2868ef7b
VG
983
984 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
985 st->min_vdisktime);
fd16d263
JP
986 cfq_log_cfqq(cfqq->cfqd, cfqq,
987 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
988 used_sl, cfqq->slice_dispatch, charge,
989 iops_mode(cfqd), cfqq->nr_sectors);
167400d3
JT
990 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
991 unaccounted_sl);
e98ef89b 992 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
993}
994
25fb5169
VG
995#ifdef CONFIG_CFQ_GROUP_IOSCHED
996static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
997{
998 if (blkg)
999 return container_of(blkg, struct cfq_group, blkg);
1000 return NULL;
1001}
1002
8aea4545
PB
1003static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1004 unsigned int weight)
f8d461d6 1005{
8184f93e
JT
1006 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1007 cfqg->new_weight = weight;
1008 cfqg->needs_update = true;
f8d461d6
VG
1009}
1010
f469a7b4
VG
1011static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1012 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
25fb5169 1013{
22084190
VG
1014 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1015 unsigned int major, minor;
25fb5169 1016
f469a7b4
VG
1017 /*
1018 * Add group onto cgroup list. It might happen that bdi->dev is
1019 * not initialized yet. Initialize this new group without major
1020 * and minor info and this info will be filled in once a new thread
1021 * comes for IO.
1022 */
1023 if (bdi->dev) {
a74b2ada 1024 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
f469a7b4
VG
1025 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1026 (void *)cfqd, MKDEV(major, minor));
1027 } else
1028 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1029 (void *)cfqd, 0);
1030
1031 cfqd->nr_blkcg_linked_grps++;
1032 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1033
1034 /* Add group on cfqd list */
1035 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1036}
1037
1038/*
1039 * Should be called from sleepable context. No request queue lock as per
1040 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1041 * from sleepable context.
1042 */
1043static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1044{
1045 struct cfq_group *cfqg = NULL;
5624a4e4 1046 int i, j, ret;
f469a7b4 1047 struct cfq_rb_root *st;
25fb5169
VG
1048
1049 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1050 if (!cfqg)
f469a7b4 1051 return NULL;
25fb5169 1052
25fb5169
VG
1053 for_each_cfqg_st(cfqg, i, j, st)
1054 *st = CFQ_RB_ROOT;
1055 RB_CLEAR_NODE(&cfqg->rb_node);
1056
b1c35769
VG
1057 /*
1058 * Take the initial reference that will be released on destroy
1059 * This can be thought of a joint reference by cgroup and
1060 * elevator which will be dropped by either elevator exit
1061 * or cgroup deletion path depending on who is exiting first.
1062 */
329a6781 1063 cfqg->ref = 1;
5624a4e4
VG
1064
1065 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1066 if (ret) {
1067 kfree(cfqg);
1068 return NULL;
1069 }
1070
f469a7b4
VG
1071 return cfqg;
1072}
1073
1074static struct cfq_group *
1075cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1076{
1077 struct cfq_group *cfqg = NULL;
1078 void *key = cfqd;
1079 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1080 unsigned int major, minor;
b1c35769 1081
180be2a0 1082 /*
f469a7b4
VG
1083 * This is the common case when there are no blkio cgroups.
1084 * Avoid lookup in this case
180be2a0 1085 */
f469a7b4
VG
1086 if (blkcg == &blkio_root_cgroup)
1087 cfqg = &cfqd->root_group;
1088 else
1089 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
25fb5169 1090
f469a7b4
VG
1091 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1092 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1093 cfqg->blkg.dev = MKDEV(major, minor);
1094 }
25fb5169 1095
25fb5169
VG
1096 return cfqg;
1097}
1098
1099/*
3e59cf9d
VG
1100 * Search for the cfq group current task belongs to. request_queue lock must
1101 * be held.
25fb5169 1102 */
3e59cf9d 1103static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169 1104{
70087dc3 1105 struct blkio_cgroup *blkcg;
f469a7b4
VG
1106 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1107 struct request_queue *q = cfqd->queue;
25fb5169
VG
1108
1109 rcu_read_lock();
70087dc3 1110 blkcg = task_blkio_cgroup(current);
f469a7b4
VG
1111 cfqg = cfq_find_cfqg(cfqd, blkcg);
1112 if (cfqg) {
1113 rcu_read_unlock();
1114 return cfqg;
1115 }
1116
1117 /*
1118 * Need to allocate a group. Allocation of group also needs allocation
1119 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1120 * we need to drop rcu lock and queue_lock before we call alloc.
1121 *
1122 * Not taking any queue reference here and assuming that queue is
1123 * around by the time we return. CFQ queue allocation code does
1124 * the same. It might be racy though.
1125 */
1126
1127 rcu_read_unlock();
1128 spin_unlock_irq(q->queue_lock);
1129
1130 cfqg = cfq_alloc_cfqg(cfqd);
1131
1132 spin_lock_irq(q->queue_lock);
1133
1134 rcu_read_lock();
1135 blkcg = task_blkio_cgroup(current);
1136
1137 /*
1138 * If some other thread already allocated the group while we were
1139 * not holding queue lock, free up the group
1140 */
1141 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1142
1143 if (__cfqg) {
1144 kfree(cfqg);
1145 rcu_read_unlock();
1146 return __cfqg;
1147 }
1148
3e59cf9d 1149 if (!cfqg)
25fb5169 1150 cfqg = &cfqd->root_group;
f469a7b4
VG
1151
1152 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
25fb5169
VG
1153 rcu_read_unlock();
1154 return cfqg;
1155}
1156
7f1dc8a2
VG
1157static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1158{
329a6781 1159 cfqg->ref++;
7f1dc8a2
VG
1160 return cfqg;
1161}
1162
25fb5169
VG
1163static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1164{
1165 /* Currently, all async queues are mapped to root group */
1166 if (!cfq_cfqq_sync(cfqq))
1167 cfqg = &cfqq->cfqd->root_group;
1168
1169 cfqq->cfqg = cfqg;
b1c35769 1170 /* cfqq reference on cfqg */
329a6781 1171 cfqq->cfqg->ref++;
b1c35769
VG
1172}
1173
1174static void cfq_put_cfqg(struct cfq_group *cfqg)
1175{
1176 struct cfq_rb_root *st;
1177 int i, j;
1178
329a6781
SL
1179 BUG_ON(cfqg->ref <= 0);
1180 cfqg->ref--;
1181 if (cfqg->ref)
b1c35769
VG
1182 return;
1183 for_each_cfqg_st(cfqg, i, j, st)
b54ce60e 1184 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
5624a4e4 1185 free_percpu(cfqg->blkg.stats_cpu);
b1c35769
VG
1186 kfree(cfqg);
1187}
1188
1189static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1190{
1191 /* Something wrong if we are trying to remove same group twice */
1192 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1193
1194 hlist_del_init(&cfqg->cfqd_node);
1195
1196 /*
1197 * Put the reference taken at the time of creation so that when all
1198 * queues are gone, group can be destroyed.
1199 */
1200 cfq_put_cfqg(cfqg);
1201}
1202
1203static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1204{
1205 struct hlist_node *pos, *n;
1206 struct cfq_group *cfqg;
1207
1208 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1209 /*
1210 * If cgroup removal path got to blk_group first and removed
1211 * it from cgroup list, then it will take care of destroying
1212 * cfqg also.
1213 */
e98ef89b 1214 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769
VG
1215 cfq_destroy_cfqg(cfqd, cfqg);
1216 }
25fb5169 1217}
b1c35769
VG
1218
1219/*
1220 * Blk cgroup controller notification saying that blkio_group object is being
1221 * delinked as associated cgroup object is going away. That also means that
1222 * no new IO will come in this group. So get rid of this group as soon as
1223 * any pending IO in the group is finished.
1224 *
1225 * This function is called under rcu_read_lock(). key is the rcu protected
1226 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1227 * read lock.
1228 *
1229 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1230 * it should not be NULL as even if elevator was exiting, cgroup deltion
1231 * path got to it first.
1232 */
8aea4545 1233static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
b1c35769
VG
1234{
1235 unsigned long flags;
1236 struct cfq_data *cfqd = key;
1237
1238 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1239 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1240 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1241}
1242
25fb5169 1243#else /* GROUP_IOSCHED */
3e59cf9d 1244static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169
VG
1245{
1246 return &cfqd->root_group;
1247}
7f1dc8a2
VG
1248
1249static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1250{
50eaeb32 1251 return cfqg;
7f1dc8a2
VG
1252}
1253
25fb5169
VG
1254static inline void
1255cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1256 cfqq->cfqg = cfqg;
1257}
1258
b1c35769
VG
1259static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1260static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1261
25fb5169
VG
1262#endif /* GROUP_IOSCHED */
1263
498d3aa2 1264/*
c0324a02 1265 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1266 * requests waiting to be processed. It is sorted in the order that
1267 * we will service the queues.
1268 */
a36e71f9 1269static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1270 bool add_front)
d9e7620e 1271{
0871714e
JA
1272 struct rb_node **p, *parent;
1273 struct cfq_queue *__cfqq;
d9e7620e 1274 unsigned long rb_key;
c0324a02 1275 struct cfq_rb_root *service_tree;
498d3aa2 1276 int left;
dae739eb 1277 int new_cfqq = 1;
ae30c286 1278
cdb16e8f 1279 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1280 cfqq_type(cfqq));
0871714e
JA
1281 if (cfq_class_idle(cfqq)) {
1282 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1283 parent = rb_last(&service_tree->rb);
0871714e
JA
1284 if (parent && parent != &cfqq->rb_node) {
1285 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1286 rb_key += __cfqq->rb_key;
1287 } else
1288 rb_key += jiffies;
1289 } else if (!add_front) {
b9c8946b
JA
1290 /*
1291 * Get our rb key offset. Subtract any residual slice
1292 * value carried from last service. A negative resid
1293 * count indicates slice overrun, and this should position
1294 * the next service time further away in the tree.
1295 */
edd75ffd 1296 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1297 rb_key -= cfqq->slice_resid;
edd75ffd 1298 cfqq->slice_resid = 0;
48e025e6
CZ
1299 } else {
1300 rb_key = -HZ;
aa6f6a3d 1301 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1302 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1303 }
1da177e4 1304
d9e7620e 1305 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1306 new_cfqq = 0;
99f9628a 1307 /*
d9e7620e 1308 * same position, nothing more to do
99f9628a 1309 */
c0324a02
CZ
1310 if (rb_key == cfqq->rb_key &&
1311 cfqq->service_tree == service_tree)
d9e7620e 1312 return;
1da177e4 1313
aa6f6a3d
CZ
1314 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1315 cfqq->service_tree = NULL;
1da177e4 1316 }
d9e7620e 1317
498d3aa2 1318 left = 1;
0871714e 1319 parent = NULL;
aa6f6a3d
CZ
1320 cfqq->service_tree = service_tree;
1321 p = &service_tree->rb.rb_node;
d9e7620e 1322 while (*p) {
67060e37 1323 struct rb_node **n;
cc09e299 1324
d9e7620e
JA
1325 parent = *p;
1326 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1327
0c534e0a 1328 /*
c0324a02 1329 * sort by key, that represents service time.
0c534e0a 1330 */
c0324a02 1331 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1332 n = &(*p)->rb_left;
c0324a02 1333 else {
67060e37 1334 n = &(*p)->rb_right;
cc09e299 1335 left = 0;
c0324a02 1336 }
67060e37
JA
1337
1338 p = n;
d9e7620e
JA
1339 }
1340
cc09e299 1341 if (left)
aa6f6a3d 1342 service_tree->left = &cfqq->rb_node;
cc09e299 1343
d9e7620e
JA
1344 cfqq->rb_key = rb_key;
1345 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1346 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1347 service_tree->count++;
20359f27 1348 if (add_front || !new_cfqq)
dae739eb 1349 return;
8184f93e 1350 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1da177e4
LT
1351}
1352
a36e71f9 1353static struct cfq_queue *
f2d1f0ae
JA
1354cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1355 sector_t sector, struct rb_node **ret_parent,
1356 struct rb_node ***rb_link)
a36e71f9 1357{
a36e71f9
JA
1358 struct rb_node **p, *parent;
1359 struct cfq_queue *cfqq = NULL;
1360
1361 parent = NULL;
1362 p = &root->rb_node;
1363 while (*p) {
1364 struct rb_node **n;
1365
1366 parent = *p;
1367 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1368
1369 /*
1370 * Sort strictly based on sector. Smallest to the left,
1371 * largest to the right.
1372 */
2e46e8b2 1373 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1374 n = &(*p)->rb_right;
2e46e8b2 1375 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1376 n = &(*p)->rb_left;
1377 else
1378 break;
1379 p = n;
3ac6c9f8 1380 cfqq = NULL;
a36e71f9
JA
1381 }
1382
1383 *ret_parent = parent;
1384 if (rb_link)
1385 *rb_link = p;
3ac6c9f8 1386 return cfqq;
a36e71f9
JA
1387}
1388
1389static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1390{
a36e71f9
JA
1391 struct rb_node **p, *parent;
1392 struct cfq_queue *__cfqq;
1393
f2d1f0ae
JA
1394 if (cfqq->p_root) {
1395 rb_erase(&cfqq->p_node, cfqq->p_root);
1396 cfqq->p_root = NULL;
1397 }
a36e71f9
JA
1398
1399 if (cfq_class_idle(cfqq))
1400 return;
1401 if (!cfqq->next_rq)
1402 return;
1403
f2d1f0ae 1404 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1405 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1406 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1407 if (!__cfqq) {
1408 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1409 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1410 } else
1411 cfqq->p_root = NULL;
a36e71f9
JA
1412}
1413
498d3aa2
JA
1414/*
1415 * Update cfqq's position in the service tree.
1416 */
edd75ffd 1417static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1418{
6d048f53
JA
1419 /*
1420 * Resorting requires the cfqq to be on the RR list already.
1421 */
a36e71f9 1422 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1423 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1424 cfq_prio_tree_add(cfqd, cfqq);
1425 }
6d048f53
JA
1426}
1427
1da177e4
LT
1428/*
1429 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1430 * the pending list according to last request service
1da177e4 1431 */
febffd61 1432static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1433{
7b679138 1434 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1435 BUG_ON(cfq_cfqq_on_rr(cfqq));
1436 cfq_mark_cfqq_on_rr(cfqq);
1da177e4 1437 cfqd->busy_queues++;
ef8a41df
SL
1438 if (cfq_cfqq_sync(cfqq))
1439 cfqd->busy_sync_queues++;
1da177e4 1440
edd75ffd 1441 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1442}
1443
498d3aa2
JA
1444/*
1445 * Called when the cfqq no longer has requests pending, remove it from
1446 * the service tree.
1447 */
febffd61 1448static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1449{
7b679138 1450 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1451 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1452 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1453
aa6f6a3d
CZ
1454 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1455 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1456 cfqq->service_tree = NULL;
1457 }
f2d1f0ae
JA
1458 if (cfqq->p_root) {
1459 rb_erase(&cfqq->p_node, cfqq->p_root);
1460 cfqq->p_root = NULL;
1461 }
d9e7620e 1462
8184f93e 1463 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1da177e4
LT
1464 BUG_ON(!cfqd->busy_queues);
1465 cfqd->busy_queues--;
ef8a41df
SL
1466 if (cfq_cfqq_sync(cfqq))
1467 cfqd->busy_sync_queues--;
1da177e4
LT
1468}
1469
1470/*
1471 * rb tree support functions
1472 */
febffd61 1473static void cfq_del_rq_rb(struct request *rq)
1da177e4 1474{
5e705374 1475 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1476 const int sync = rq_is_sync(rq);
1da177e4 1477
b4878f24
JA
1478 BUG_ON(!cfqq->queued[sync]);
1479 cfqq->queued[sync]--;
1da177e4 1480
5e705374 1481 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1482
f04a6424
VG
1483 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1484 /*
1485 * Queue will be deleted from service tree when we actually
1486 * expire it later. Right now just remove it from prio tree
1487 * as it is empty.
1488 */
1489 if (cfqq->p_root) {
1490 rb_erase(&cfqq->p_node, cfqq->p_root);
1491 cfqq->p_root = NULL;
1492 }
1493 }
1da177e4
LT
1494}
1495
5e705374 1496static void cfq_add_rq_rb(struct request *rq)
1da177e4 1497{
5e705374 1498 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1499 struct cfq_data *cfqd = cfqq->cfqd;
796d5116 1500 struct request *prev;
1da177e4 1501
5380a101 1502 cfqq->queued[rq_is_sync(rq)]++;
1da177e4 1503
796d5116 1504 elv_rb_add(&cfqq->sort_list, rq);
5fccbf61
JA
1505
1506 if (!cfq_cfqq_on_rr(cfqq))
1507 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1508
1509 /*
1510 * check if this request is a better next-serve candidate
1511 */
a36e71f9 1512 prev = cfqq->next_rq;
cf7c25cf 1513 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1514
1515 /*
1516 * adjust priority tree position, if ->next_rq changes
1517 */
1518 if (prev != cfqq->next_rq)
1519 cfq_prio_tree_add(cfqd, cfqq);
1520
5044eed4 1521 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1522}
1523
febffd61 1524static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1525{
5380a101
JA
1526 elv_rb_del(&cfqq->sort_list, rq);
1527 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1528 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1529 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1530 cfq_add_rq_rb(rq);
e98ef89b 1531 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1532 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1533 rq_is_sync(rq));
1da177e4
LT
1534}
1535
206dc69b
JA
1536static struct request *
1537cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1538{
206dc69b 1539 struct task_struct *tsk = current;
91fac317 1540 struct cfq_io_context *cic;
206dc69b 1541 struct cfq_queue *cfqq;
1da177e4 1542
4ac845a2 1543 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1544 if (!cic)
1545 return NULL;
1546
1547 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1548 if (cfqq) {
1549 sector_t sector = bio->bi_sector + bio_sectors(bio);
1550
21183b07 1551 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1552 }
1da177e4 1553
1da177e4
LT
1554 return NULL;
1555}
1556
165125e1 1557static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1558{
22e2c507 1559 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1560
53c583d2 1561 cfqd->rq_in_driver++;
7b679138 1562 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1563 cfqd->rq_in_driver);
25776e35 1564
5b93629b 1565 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1566}
1567
165125e1 1568static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1569{
b4878f24
JA
1570 struct cfq_data *cfqd = q->elevator->elevator_data;
1571
53c583d2
CZ
1572 WARN_ON(!cfqd->rq_in_driver);
1573 cfqd->rq_in_driver--;
7b679138 1574 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1575 cfqd->rq_in_driver);
1da177e4
LT
1576}
1577
b4878f24 1578static void cfq_remove_request(struct request *rq)
1da177e4 1579{
5e705374 1580 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1581
5e705374
JA
1582 if (cfqq->next_rq == rq)
1583 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1584
b4878f24 1585 list_del_init(&rq->queuelist);
5e705374 1586 cfq_del_rq_rb(rq);
374f84ac 1587
45333d5a 1588 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1589 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1590 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
1591}
1592
165125e1
JA
1593static int cfq_merge(struct request_queue *q, struct request **req,
1594 struct bio *bio)
1da177e4
LT
1595{
1596 struct cfq_data *cfqd = q->elevator->elevator_data;
1597 struct request *__rq;
1da177e4 1598
206dc69b 1599 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1600 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1601 *req = __rq;
1602 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1603 }
1604
1605 return ELEVATOR_NO_MERGE;
1da177e4
LT
1606}
1607
165125e1 1608static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1609 int type)
1da177e4 1610{
21183b07 1611 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1612 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1613
5e705374 1614 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1615 }
1da177e4
LT
1616}
1617
812d4026
DS
1618static void cfq_bio_merged(struct request_queue *q, struct request *req,
1619 struct bio *bio)
1620{
e98ef89b
VG
1621 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1622 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1623}
1624
1da177e4 1625static void
165125e1 1626cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1627 struct request *next)
1628{
cf7c25cf 1629 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1630 /*
1631 * reposition in fifo if next is older than rq
1632 */
1633 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1634 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1635 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1636 rq_set_fifo_time(rq, rq_fifo_time(next));
1637 }
22e2c507 1638
cf7c25cf
CZ
1639 if (cfqq->next_rq == next)
1640 cfqq->next_rq = rq;
b4878f24 1641 cfq_remove_request(next);
e98ef89b
VG
1642 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1643 rq_data_dir(next), rq_is_sync(next));
22e2c507
JA
1644}
1645
165125e1 1646static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1647 struct bio *bio)
1648{
1649 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1650 struct cfq_io_context *cic;
da775265 1651 struct cfq_queue *cfqq;
da775265
JA
1652
1653 /*
ec8acb69 1654 * Disallow merge of a sync bio into an async request.
da775265 1655 */
91fac317 1656 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1657 return false;
da775265
JA
1658
1659 /*
719d3402
JA
1660 * Lookup the cfqq that this bio will be queued with. Allow
1661 * merge only if rq is queued there.
da775265 1662 */
4ac845a2 1663 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1664 if (!cic)
a6151c3a 1665 return false;
719d3402 1666
91fac317 1667 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1668 return cfqq == RQ_CFQQ(rq);
da775265
JA
1669}
1670
812df48d
DS
1671static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1672{
1673 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1674 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1675}
1676
febffd61
JA
1677static void __cfq_set_active_queue(struct cfq_data *cfqd,
1678 struct cfq_queue *cfqq)
22e2c507
JA
1679{
1680 if (cfqq) {
b1ffe737
DS
1681 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1682 cfqd->serving_prio, cfqd->serving_type);
62a37f6b
JT
1683 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1684 cfqq->slice_start = 0;
1685 cfqq->dispatch_start = jiffies;
1686 cfqq->allocated_slice = 0;
1687 cfqq->slice_end = 0;
1688 cfqq->slice_dispatch = 0;
1689 cfqq->nr_sectors = 0;
1690
1691 cfq_clear_cfqq_wait_request(cfqq);
1692 cfq_clear_cfqq_must_dispatch(cfqq);
1693 cfq_clear_cfqq_must_alloc_slice(cfqq);
1694 cfq_clear_cfqq_fifo_expire(cfqq);
1695 cfq_mark_cfqq_slice_new(cfqq);
1696
1697 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1698 }
1699
1700 cfqd->active_queue = cfqq;
1701}
1702
7b14e3b5
JA
1703/*
1704 * current cfqq expired its slice (or was too idle), select new one
1705 */
1706static void
1707__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1708 bool timed_out)
7b14e3b5 1709{
7b679138
JA
1710 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1711
7b14e3b5 1712 if (cfq_cfqq_wait_request(cfqq))
812df48d 1713 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1714
7b14e3b5 1715 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1716 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1717
ae54abed
SL
1718 /*
1719 * If this cfqq is shared between multiple processes, check to
1720 * make sure that those processes are still issuing I/Os within
1721 * the mean seek distance. If not, it may be time to break the
1722 * queues apart again.
1723 */
1724 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1725 cfq_mark_cfqq_split_coop(cfqq);
1726
7b14e3b5 1727 /*
6084cdda 1728 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1729 */
c553f8e3
SL
1730 if (timed_out) {
1731 if (cfq_cfqq_slice_new(cfqq))
ba5bd520 1732 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3
SL
1733 else
1734 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1735 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1736 }
7b14e3b5 1737
e5ff082e 1738 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1739
f04a6424
VG
1740 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1741 cfq_del_cfqq_rr(cfqd, cfqq);
1742
edd75ffd 1743 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1744
1745 if (cfqq == cfqd->active_queue)
1746 cfqd->active_queue = NULL;
1747
1748 if (cfqd->active_cic) {
1749 put_io_context(cfqd->active_cic->ioc);
1750 cfqd->active_cic = NULL;
1751 }
7b14e3b5
JA
1752}
1753
e5ff082e 1754static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1755{
1756 struct cfq_queue *cfqq = cfqd->active_queue;
1757
1758 if (cfqq)
e5ff082e 1759 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1760}
1761
498d3aa2
JA
1762/*
1763 * Get next queue for service. Unless we have a queue preemption,
1764 * we'll simply select the first cfqq in the service tree.
1765 */
6d048f53 1766static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1767{
c0324a02 1768 struct cfq_rb_root *service_tree =
cdb16e8f 1769 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1770 cfqd->serving_type);
d9e7620e 1771
f04a6424
VG
1772 if (!cfqd->rq_queued)
1773 return NULL;
1774
1fa8f6d6
VG
1775 /* There is nothing to dispatch */
1776 if (!service_tree)
1777 return NULL;
c0324a02
CZ
1778 if (RB_EMPTY_ROOT(&service_tree->rb))
1779 return NULL;
1780 return cfq_rb_first(service_tree);
6d048f53
JA
1781}
1782
f04a6424
VG
1783static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1784{
25fb5169 1785 struct cfq_group *cfqg;
f04a6424
VG
1786 struct cfq_queue *cfqq;
1787 int i, j;
1788 struct cfq_rb_root *st;
1789
1790 if (!cfqd->rq_queued)
1791 return NULL;
1792
25fb5169
VG
1793 cfqg = cfq_get_next_cfqg(cfqd);
1794 if (!cfqg)
1795 return NULL;
1796
f04a6424
VG
1797 for_each_cfqg_st(cfqg, i, j, st)
1798 if ((cfqq = cfq_rb_first(st)) != NULL)
1799 return cfqq;
1800 return NULL;
1801}
1802
498d3aa2
JA
1803/*
1804 * Get and set a new active queue for service.
1805 */
a36e71f9
JA
1806static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1807 struct cfq_queue *cfqq)
6d048f53 1808{
e00ef799 1809 if (!cfqq)
a36e71f9 1810 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1811
22e2c507 1812 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1813 return cfqq;
22e2c507
JA
1814}
1815
d9e7620e
JA
1816static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1817 struct request *rq)
1818{
83096ebf
TH
1819 if (blk_rq_pos(rq) >= cfqd->last_position)
1820 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1821 else
83096ebf 1822 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1823}
1824
b2c18e1e 1825static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1826 struct request *rq)
6d048f53 1827{
e9ce335d 1828 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1829}
1830
a36e71f9
JA
1831static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1832 struct cfq_queue *cur_cfqq)
1833{
f2d1f0ae 1834 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1835 struct rb_node *parent, *node;
1836 struct cfq_queue *__cfqq;
1837 sector_t sector = cfqd->last_position;
1838
1839 if (RB_EMPTY_ROOT(root))
1840 return NULL;
1841
1842 /*
1843 * First, if we find a request starting at the end of the last
1844 * request, choose it.
1845 */
f2d1f0ae 1846 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1847 if (__cfqq)
1848 return __cfqq;
1849
1850 /*
1851 * If the exact sector wasn't found, the parent of the NULL leaf
1852 * will contain the closest sector.
1853 */
1854 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1855 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1856 return __cfqq;
1857
2e46e8b2 1858 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1859 node = rb_next(&__cfqq->p_node);
1860 else
1861 node = rb_prev(&__cfqq->p_node);
1862 if (!node)
1863 return NULL;
1864
1865 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1866 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1867 return __cfqq;
1868
1869 return NULL;
1870}
1871
1872/*
1873 * cfqd - obvious
1874 * cur_cfqq - passed in so that we don't decide that the current queue is
1875 * closely cooperating with itself.
1876 *
1877 * So, basically we're assuming that that cur_cfqq has dispatched at least
1878 * one request, and that cfqd->last_position reflects a position on the disk
1879 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1880 * assumption.
1881 */
1882static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1883 struct cfq_queue *cur_cfqq)
6d048f53 1884{
a36e71f9
JA
1885 struct cfq_queue *cfqq;
1886
39c01b21
DS
1887 if (cfq_class_idle(cur_cfqq))
1888 return NULL;
e6c5bc73
JM
1889 if (!cfq_cfqq_sync(cur_cfqq))
1890 return NULL;
1891 if (CFQQ_SEEKY(cur_cfqq))
1892 return NULL;
1893
b9d8f4c7
GJ
1894 /*
1895 * Don't search priority tree if it's the only queue in the group.
1896 */
1897 if (cur_cfqq->cfqg->nr_cfqq == 1)
1898 return NULL;
1899
6d048f53 1900 /*
d9e7620e
JA
1901 * We should notice if some of the queues are cooperating, eg
1902 * working closely on the same area of the disk. In that case,
1903 * we can group them together and don't waste time idling.
6d048f53 1904 */
a36e71f9
JA
1905 cfqq = cfqq_close(cfqd, cur_cfqq);
1906 if (!cfqq)
1907 return NULL;
1908
8682e1f1
VG
1909 /* If new queue belongs to different cfq_group, don't choose it */
1910 if (cur_cfqq->cfqg != cfqq->cfqg)
1911 return NULL;
1912
df5fe3e8
JM
1913 /*
1914 * It only makes sense to merge sync queues.
1915 */
1916 if (!cfq_cfqq_sync(cfqq))
1917 return NULL;
e6c5bc73
JM
1918 if (CFQQ_SEEKY(cfqq))
1919 return NULL;
df5fe3e8 1920
c0324a02
CZ
1921 /*
1922 * Do not merge queues of different priority classes
1923 */
1924 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1925 return NULL;
1926
a36e71f9 1927 return cfqq;
6d048f53
JA
1928}
1929
a6d44e98
CZ
1930/*
1931 * Determine whether we should enforce idle window for this queue.
1932 */
1933
1934static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1935{
1936 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1937 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1938
f04a6424
VG
1939 BUG_ON(!service_tree);
1940 BUG_ON(!service_tree->count);
1941
b6508c16
VG
1942 if (!cfqd->cfq_slice_idle)
1943 return false;
1944
a6d44e98
CZ
1945 /* We never do for idle class queues. */
1946 if (prio == IDLE_WORKLOAD)
1947 return false;
1948
1949 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1950 if (cfq_cfqq_idle_window(cfqq) &&
1951 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1952 return true;
1953
1954 /*
1955 * Otherwise, we do only if they are the last ones
1956 * in their service tree.
1957 */
b1ffe737 1958 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
c1e44756 1959 return true;
b1ffe737
DS
1960 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1961 service_tree->count);
c1e44756 1962 return false;
a6d44e98
CZ
1963}
1964
6d048f53 1965static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1966{
1792669c 1967 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1968 struct cfq_io_context *cic;
80bdf0c7 1969 unsigned long sl, group_idle = 0;
7b14e3b5 1970
a68bbddb 1971 /*
f7d7b7a7
JA
1972 * SSD device without seek penalty, disable idling. But only do so
1973 * for devices that support queuing, otherwise we still have a problem
1974 * with sync vs async workloads.
a68bbddb 1975 */
f7d7b7a7 1976 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1977 return;
1978
dd67d051 1979 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1980 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1981
1982 /*
1983 * idle is disabled, either manually or by past process history
1984 */
80bdf0c7
VG
1985 if (!cfq_should_idle(cfqd, cfqq)) {
1986 /* no queue idling. Check for group idling */
1987 if (cfqd->cfq_group_idle)
1988 group_idle = cfqd->cfq_group_idle;
1989 else
1990 return;
1991 }
6d048f53 1992
7b679138 1993 /*
8e550632 1994 * still active requests from this queue, don't idle
7b679138 1995 */
8e550632 1996 if (cfqq->dispatched)
7b679138
JA
1997 return;
1998
22e2c507
JA
1999 /*
2000 * task has exited, don't wait
2001 */
206dc69b 2002 cic = cfqd->active_cic;
66dac98e 2003 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
2004 return;
2005
355b659c
CZ
2006 /*
2007 * If our average think time is larger than the remaining time
2008 * slice, then don't idle. This avoids overrunning the allotted
2009 * time slice.
2010 */
2011 if (sample_valid(cic->ttime_samples) &&
b1ffe737 2012 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
fd16d263
JP
2013 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2014 cic->ttime_mean);
355b659c 2015 return;
b1ffe737 2016 }
355b659c 2017
80bdf0c7
VG
2018 /* There are other queues in the group, don't do group idle */
2019 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2020 return;
2021
3b18152c 2022 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 2023
80bdf0c7
VG
2024 if (group_idle)
2025 sl = cfqd->cfq_group_idle;
2026 else
2027 sl = cfqd->cfq_slice_idle;
206dc69b 2028
7b14e3b5 2029 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 2030 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
80bdf0c7
VG
2031 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2032 group_idle ? 1 : 0);
1da177e4
LT
2033}
2034
498d3aa2
JA
2035/*
2036 * Move request from internal lists to the request queue dispatch list.
2037 */
165125e1 2038static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 2039{
3ed9a296 2040 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2041 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2042
7b679138
JA
2043 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2044
06d21886 2045 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 2046 cfq_remove_request(rq);
6d048f53 2047 cfqq->dispatched++;
80bdf0c7 2048 (RQ_CFQG(rq))->dispatched++;
5380a101 2049 elv_dispatch_sort(q, rq);
3ed9a296 2050
53c583d2 2051 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
c4e7893e 2052 cfqq->nr_sectors += blk_rq_sectors(rq);
e98ef89b 2053 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 2054 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
2055}
2056
2057/*
2058 * return expired entry, or NULL to just start from scratch in rbtree
2059 */
febffd61 2060static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 2061{
30996f40 2062 struct request *rq = NULL;
1da177e4 2063
3b18152c 2064 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 2065 return NULL;
cb887411
JA
2066
2067 cfq_mark_cfqq_fifo_expire(cfqq);
2068
89850f7e
JA
2069 if (list_empty(&cfqq->fifo))
2070 return NULL;
1da177e4 2071
89850f7e 2072 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 2073 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 2074 rq = NULL;
1da177e4 2075
30996f40 2076 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 2077 return rq;
1da177e4
LT
2078}
2079
22e2c507
JA
2080static inline int
2081cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2082{
2083 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 2084
22e2c507 2085 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 2086
b9f8ce05 2087 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
1da177e4
LT
2088}
2089
df5fe3e8
JM
2090/*
2091 * Must be called with the queue_lock held.
2092 */
2093static int cfqq_process_refs(struct cfq_queue *cfqq)
2094{
2095 int process_refs, io_refs;
2096
2097 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
30d7b944 2098 process_refs = cfqq->ref - io_refs;
df5fe3e8
JM
2099 BUG_ON(process_refs < 0);
2100 return process_refs;
2101}
2102
2103static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2104{
e6c5bc73 2105 int process_refs, new_process_refs;
df5fe3e8
JM
2106 struct cfq_queue *__cfqq;
2107
c10b61f0
JM
2108 /*
2109 * If there are no process references on the new_cfqq, then it is
2110 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2111 * chain may have dropped their last reference (not just their
2112 * last process reference).
2113 */
2114 if (!cfqq_process_refs(new_cfqq))
2115 return;
2116
df5fe3e8
JM
2117 /* Avoid a circular list and skip interim queue merges */
2118 while ((__cfqq = new_cfqq->new_cfqq)) {
2119 if (__cfqq == cfqq)
2120 return;
2121 new_cfqq = __cfqq;
2122 }
2123
2124 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2125 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2126 /*
2127 * If the process for the cfqq has gone away, there is no
2128 * sense in merging the queues.
2129 */
c10b61f0 2130 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2131 return;
2132
e6c5bc73
JM
2133 /*
2134 * Merge in the direction of the lesser amount of work.
2135 */
e6c5bc73
JM
2136 if (new_process_refs >= process_refs) {
2137 cfqq->new_cfqq = new_cfqq;
30d7b944 2138 new_cfqq->ref += process_refs;
e6c5bc73
JM
2139 } else {
2140 new_cfqq->new_cfqq = cfqq;
30d7b944 2141 cfqq->ref += new_process_refs;
e6c5bc73 2142 }
df5fe3e8
JM
2143}
2144
cdb16e8f 2145static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2146 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2147{
2148 struct cfq_queue *queue;
2149 int i;
2150 bool key_valid = false;
2151 unsigned long lowest_key = 0;
2152 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2153
65b32a57
VG
2154 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2155 /* select the one with lowest rb_key */
2156 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2157 if (queue &&
2158 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2159 lowest_key = queue->rb_key;
2160 cur_best = i;
2161 key_valid = true;
2162 }
2163 }
2164
2165 return cur_best;
2166}
2167
cdb16e8f 2168static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2169{
718eee05
CZ
2170 unsigned slice;
2171 unsigned count;
cdb16e8f 2172 struct cfq_rb_root *st;
58ff82f3 2173 unsigned group_slice;
e4ea0c16 2174 enum wl_prio_t original_prio = cfqd->serving_prio;
1fa8f6d6 2175
718eee05 2176 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2177 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2178 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2179 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2180 cfqd->serving_prio = BE_WORKLOAD;
2181 else {
2182 cfqd->serving_prio = IDLE_WORKLOAD;
2183 cfqd->workload_expires = jiffies + 1;
2184 return;
2185 }
2186
e4ea0c16
SL
2187 if (original_prio != cfqd->serving_prio)
2188 goto new_workload;
2189
718eee05
CZ
2190 /*
2191 * For RT and BE, we have to choose also the type
2192 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2193 * expiration time
2194 */
65b32a57 2195 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2196 count = st->count;
718eee05
CZ
2197
2198 /*
65b32a57 2199 * check workload expiration, and that we still have other queues ready
718eee05 2200 */
65b32a57 2201 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2202 return;
2203
e4ea0c16 2204new_workload:
718eee05
CZ
2205 /* otherwise select new workload type */
2206 cfqd->serving_type =
65b32a57
VG
2207 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2208 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2209 count = st->count;
718eee05
CZ
2210
2211 /*
2212 * the workload slice is computed as a fraction of target latency
2213 * proportional to the number of queues in that workload, over
2214 * all the queues in the same priority class
2215 */
58ff82f3
VG
2216 group_slice = cfq_group_slice(cfqd, cfqg);
2217
2218 slice = group_slice * count /
2219 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2220 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2221
f26bd1f0
VG
2222 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2223 unsigned int tmp;
2224
2225 /*
2226 * Async queues are currently system wide. Just taking
2227 * proportion of queues with-in same group will lead to higher
2228 * async ratio system wide as generally root group is going
2229 * to have higher weight. A more accurate thing would be to
2230 * calculate system wide asnc/sync ratio.
2231 */
2232 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2233 tmp = tmp/cfqd->busy_queues;
2234 slice = min_t(unsigned, slice, tmp);
2235
718eee05
CZ
2236 /* async workload slice is scaled down according to
2237 * the sync/async slice ratio. */
2238 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2239 } else
718eee05
CZ
2240 /* sync workload slice is at least 2 * cfq_slice_idle */
2241 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2242
2243 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2244 cfq_log(cfqd, "workload slice:%d", slice);
718eee05
CZ
2245 cfqd->workload_expires = jiffies + slice;
2246}
2247
1fa8f6d6
VG
2248static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2249{
2250 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2251 struct cfq_group *cfqg;
1fa8f6d6
VG
2252
2253 if (RB_EMPTY_ROOT(&st->rb))
2254 return NULL;
25bc6b07 2255 cfqg = cfq_rb_first_group(st);
25bc6b07
VG
2256 update_min_vdisktime(st);
2257 return cfqg;
1fa8f6d6
VG
2258}
2259
cdb16e8f
VG
2260static void cfq_choose_cfqg(struct cfq_data *cfqd)
2261{
1fa8f6d6
VG
2262 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2263
2264 cfqd->serving_group = cfqg;
dae739eb
VG
2265
2266 /* Restore the workload type data */
2267 if (cfqg->saved_workload_slice) {
2268 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2269 cfqd->serving_type = cfqg->saved_workload;
2270 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2271 } else
2272 cfqd->workload_expires = jiffies - 1;
2273
1fa8f6d6 2274 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2275}
2276
22e2c507 2277/*
498d3aa2
JA
2278 * Select a queue for service. If we have a current active queue,
2279 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2280 */
1b5ed5e1 2281static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2282{
a36e71f9 2283 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2284
22e2c507
JA
2285 cfqq = cfqd->active_queue;
2286 if (!cfqq)
2287 goto new_queue;
1da177e4 2288
f04a6424
VG
2289 if (!cfqd->rq_queued)
2290 return NULL;
c244bb50
VG
2291
2292 /*
2293 * We were waiting for group to get backlogged. Expire the queue
2294 */
2295 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2296 goto expire;
2297
22e2c507 2298 /*
6d048f53 2299 * The active queue has run out of time, expire it and select new.
22e2c507 2300 */
7667aa06
VG
2301 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2302 /*
2303 * If slice had not expired at the completion of last request
2304 * we might not have turned on wait_busy flag. Don't expire
2305 * the queue yet. Allow the group to get backlogged.
2306 *
2307 * The very fact that we have used the slice, that means we
2308 * have been idling all along on this queue and it should be
2309 * ok to wait for this request to complete.
2310 */
82bbbf28
VG
2311 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2312 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2313 cfqq = NULL;
7667aa06 2314 goto keep_queue;
82bbbf28 2315 } else
80bdf0c7 2316 goto check_group_idle;
7667aa06 2317 }
1da177e4 2318
22e2c507 2319 /*
6d048f53
JA
2320 * The active queue has requests and isn't expired, allow it to
2321 * dispatch.
22e2c507 2322 */
dd67d051 2323 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2324 goto keep_queue;
6d048f53 2325
a36e71f9
JA
2326 /*
2327 * If another queue has a request waiting within our mean seek
2328 * distance, let it run. The expire code will check for close
2329 * cooperators and put the close queue at the front of the service
df5fe3e8 2330 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2331 */
b3b6d040 2332 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2333 if (new_cfqq) {
2334 if (!cfqq->new_cfqq)
2335 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2336 goto expire;
df5fe3e8 2337 }
a36e71f9 2338
6d048f53
JA
2339 /*
2340 * No requests pending. If the active queue still has requests in
2341 * flight or is idling for a new request, allow either of these
2342 * conditions to happen (or time out) before selecting a new queue.
2343 */
80bdf0c7
VG
2344 if (timer_pending(&cfqd->idle_slice_timer)) {
2345 cfqq = NULL;
2346 goto keep_queue;
2347 }
2348
8e1ac665
SL
2349 /*
2350 * This is a deep seek queue, but the device is much faster than
2351 * the queue can deliver, don't idle
2352 **/
2353 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2354 (cfq_cfqq_slice_new(cfqq) ||
2355 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2356 cfq_clear_cfqq_deep(cfqq);
2357 cfq_clear_cfqq_idle_window(cfqq);
2358 }
2359
80bdf0c7
VG
2360 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2361 cfqq = NULL;
2362 goto keep_queue;
2363 }
2364
2365 /*
2366 * If group idle is enabled and there are requests dispatched from
2367 * this group, wait for requests to complete.
2368 */
2369check_group_idle:
2370 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2371 && cfqq->cfqg->dispatched) {
caaa5f9f
JA
2372 cfqq = NULL;
2373 goto keep_queue;
22e2c507
JA
2374 }
2375
3b18152c 2376expire:
e5ff082e 2377 cfq_slice_expired(cfqd, 0);
3b18152c 2378new_queue:
718eee05
CZ
2379 /*
2380 * Current queue expired. Check if we have to switch to a new
2381 * service tree
2382 */
2383 if (!new_cfqq)
cdb16e8f 2384 cfq_choose_cfqg(cfqd);
718eee05 2385
a36e71f9 2386 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2387keep_queue:
3b18152c 2388 return cfqq;
22e2c507
JA
2389}
2390
febffd61 2391static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2392{
2393 int dispatched = 0;
2394
2395 while (cfqq->next_rq) {
2396 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2397 dispatched++;
2398 }
2399
2400 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2401
2402 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2403 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2404 return dispatched;
2405}
2406
498d3aa2
JA
2407/*
2408 * Drain our current requests. Used for barriers and when switching
2409 * io schedulers on-the-fly.
2410 */
d9e7620e 2411static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2412{
0871714e 2413 struct cfq_queue *cfqq;
d9e7620e 2414 int dispatched = 0;
cdb16e8f 2415
3440c49f 2416 /* Expire the timeslice of the current active queue first */
e5ff082e 2417 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2418 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2419 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2420 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2421 }
1b5ed5e1 2422
1b5ed5e1
TH
2423 BUG_ON(cfqd->busy_queues);
2424
6923715a 2425 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2426 return dispatched;
2427}
2428
abc3c744
SL
2429static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2430 struct cfq_queue *cfqq)
2431{
2432 /* the queue hasn't finished any request, can't estimate */
2433 if (cfq_cfqq_slice_new(cfqq))
c1e44756 2434 return true;
abc3c744
SL
2435 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2436 cfqq->slice_end))
c1e44756 2437 return true;
abc3c744 2438
c1e44756 2439 return false;
abc3c744
SL
2440}
2441
0b182d61 2442static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2443{
2f5cb738 2444 unsigned int max_dispatch;
22e2c507 2445
5ad531db
JA
2446 /*
2447 * Drain async requests before we start sync IO
2448 */
53c583d2 2449 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2450 return false;
5ad531db 2451
2f5cb738
JA
2452 /*
2453 * If this is an async queue and we have sync IO in flight, let it wait
2454 */
53c583d2 2455 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2456 return false;
2f5cb738 2457
abc3c744 2458 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2459 if (cfq_class_idle(cfqq))
2460 max_dispatch = 1;
b4878f24 2461
2f5cb738
JA
2462 /*
2463 * Does this cfqq already have too much IO in flight?
2464 */
2465 if (cfqq->dispatched >= max_dispatch) {
ef8a41df 2466 bool promote_sync = false;
2f5cb738
JA
2467 /*
2468 * idle queue must always only have a single IO in flight
2469 */
3ed9a296 2470 if (cfq_class_idle(cfqq))
0b182d61 2471 return false;
3ed9a296 2472
ef8a41df 2473 /*
c4ade94f
LS
2474 * If there is only one sync queue
2475 * we can ignore async queue here and give the sync
ef8a41df
SL
2476 * queue no dispatch limit. The reason is a sync queue can
2477 * preempt async queue, limiting the sync queue doesn't make
2478 * sense. This is useful for aiostress test.
2479 */
c4ade94f
LS
2480 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2481 promote_sync = true;
ef8a41df 2482
2f5cb738
JA
2483 /*
2484 * We have other queues, don't allow more IO from this one
2485 */
ef8a41df
SL
2486 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2487 !promote_sync)
0b182d61 2488 return false;
9ede209e 2489
365722bb 2490 /*
474b18cc 2491 * Sole queue user, no limit
365722bb 2492 */
ef8a41df 2493 if (cfqd->busy_queues == 1 || promote_sync)
abc3c744
SL
2494 max_dispatch = -1;
2495 else
2496 /*
2497 * Normally we start throttling cfqq when cfq_quantum/2
2498 * requests have been dispatched. But we can drive
2499 * deeper queue depths at the beginning of slice
2500 * subjected to upper limit of cfq_quantum.
2501 * */
2502 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2503 }
2504
2505 /*
2506 * Async queues must wait a bit before being allowed dispatch.
2507 * We also ramp up the dispatch depth gradually for async IO,
2508 * based on the last sync IO we serviced
2509 */
963b72fc 2510 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2511 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2512 unsigned int depth;
365722bb 2513
61f0c1dc 2514 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2515 if (!depth && !cfqq->dispatched)
2516 depth = 1;
8e296755
JA
2517 if (depth < max_dispatch)
2518 max_dispatch = depth;
2f5cb738 2519 }
3ed9a296 2520
0b182d61
JA
2521 /*
2522 * If we're below the current max, allow a dispatch
2523 */
2524 return cfqq->dispatched < max_dispatch;
2525}
2526
2527/*
2528 * Dispatch a request from cfqq, moving them to the request queue
2529 * dispatch list.
2530 */
2531static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2532{
2533 struct request *rq;
2534
2535 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2536
2537 if (!cfq_may_dispatch(cfqd, cfqq))
2538 return false;
2539
2540 /*
2541 * follow expired path, else get first next available
2542 */
2543 rq = cfq_check_fifo(cfqq);
2544 if (!rq)
2545 rq = cfqq->next_rq;
2546
2547 /*
2548 * insert request into driver dispatch list
2549 */
2550 cfq_dispatch_insert(cfqd->queue, rq);
2551
2552 if (!cfqd->active_cic) {
2553 struct cfq_io_context *cic = RQ_CIC(rq);
2554
2555 atomic_long_inc(&cic->ioc->refcount);
2556 cfqd->active_cic = cic;
2557 }
2558
2559 return true;
2560}
2561
2562/*
2563 * Find the cfqq that we need to service and move a request from that to the
2564 * dispatch list
2565 */
2566static int cfq_dispatch_requests(struct request_queue *q, int force)
2567{
2568 struct cfq_data *cfqd = q->elevator->elevator_data;
2569 struct cfq_queue *cfqq;
2570
2571 if (!cfqd->busy_queues)
2572 return 0;
2573
2574 if (unlikely(force))
2575 return cfq_forced_dispatch(cfqd);
2576
2577 cfqq = cfq_select_queue(cfqd);
2578 if (!cfqq)
8e296755
JA
2579 return 0;
2580
2f5cb738 2581 /*
0b182d61 2582 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2583 */
0b182d61
JA
2584 if (!cfq_dispatch_request(cfqd, cfqq))
2585 return 0;
2586
2f5cb738 2587 cfqq->slice_dispatch++;
b029195d 2588 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2589
2f5cb738
JA
2590 /*
2591 * expire an async queue immediately if it has used up its slice. idle
2592 * queue always expire after 1 dispatch round.
2593 */
2594 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2595 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2596 cfq_class_idle(cfqq))) {
2597 cfqq->slice_end = jiffies + 1;
e5ff082e 2598 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2599 }
2600
b217a903 2601 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2602 return 1;
1da177e4
LT
2603}
2604
1da177e4 2605/*
5e705374
JA
2606 * task holds one reference to the queue, dropped when task exits. each rq
2607 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2608 *
b1c35769 2609 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2610 * queue lock must be held here.
2611 */
2612static void cfq_put_queue(struct cfq_queue *cfqq)
2613{
22e2c507 2614 struct cfq_data *cfqd = cfqq->cfqd;
0bbfeb83 2615 struct cfq_group *cfqg;
22e2c507 2616
30d7b944 2617 BUG_ON(cfqq->ref <= 0);
1da177e4 2618
30d7b944
SL
2619 cfqq->ref--;
2620 if (cfqq->ref)
1da177e4
LT
2621 return;
2622
7b679138 2623 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2624 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2625 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2626 cfqg = cfqq->cfqg;
1da177e4 2627
28f95cbc 2628 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2629 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2630 cfq_schedule_dispatch(cfqd);
28f95cbc 2631 }
22e2c507 2632
f04a6424 2633 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2634 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2635 cfq_put_cfqg(cfqg);
1da177e4
LT
2636}
2637
d6de8be7 2638/*
5f45c695 2639 * Call func for each cic attached to this ioc.
d6de8be7 2640 */
07416d29 2641static void
5f45c695
JA
2642call_for_each_cic(struct io_context *ioc,
2643 void (*func)(struct io_context *, struct cfq_io_context *))
07416d29
JA
2644{
2645 struct cfq_io_context *cic;
2646 struct hlist_node *n;
2647
5f45c695
JA
2648 rcu_read_lock();
2649
07416d29
JA
2650 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2651 func(ioc, cic);
07416d29 2652
4ac845a2 2653 rcu_read_unlock();
34e6bbf2
FC
2654}
2655
2656static void cfq_cic_free_rcu(struct rcu_head *head)
2657{
2658 struct cfq_io_context *cic;
2659
2660 cic = container_of(head, struct cfq_io_context, rcu_head);
2661
2662 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2663 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2664
9a11b4ed
JA
2665 if (ioc_gone) {
2666 /*
2667 * CFQ scheduler is exiting, grab exit lock and check
2668 * the pending io context count. If it hits zero,
2669 * complete ioc_gone and set it back to NULL
2670 */
2671 spin_lock(&ioc_gone_lock);
245b2e70 2672 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2673 complete(ioc_gone);
2674 ioc_gone = NULL;
2675 }
2676 spin_unlock(&ioc_gone_lock);
2677 }
34e6bbf2 2678}
4ac845a2 2679
34e6bbf2
FC
2680static void cfq_cic_free(struct cfq_io_context *cic)
2681{
2682 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2683}
2684
2685static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2686{
2687 unsigned long flags;
bca4b914 2688 unsigned long dead_key = (unsigned long) cic->key;
4ac845a2 2689
bca4b914 2690 BUG_ON(!(dead_key & CIC_DEAD_KEY));
4ac845a2
JA
2691
2692 spin_lock_irqsave(&ioc->lock, flags);
80b15c73 2693 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
ffc4e759 2694 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2695 spin_unlock_irqrestore(&ioc->lock, flags);
2696
34e6bbf2 2697 cfq_cic_free(cic);
4ac845a2
JA
2698}
2699
d6de8be7
JA
2700/*
2701 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2702 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2703 * and ->trim() which is called with the task lock held
2704 */
4ac845a2
JA
2705static void cfq_free_io_context(struct io_context *ioc)
2706{
4ac845a2 2707 /*
34e6bbf2
FC
2708 * ioc->refcount is zero here, or we are called from elv_unregister(),
2709 * so no more cic's are allowed to be linked into this ioc. So it
2710 * should be ok to iterate over the known list, we will see all cic's
2711 * since no new ones are added.
4ac845a2 2712 */
5f45c695 2713 call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2714}
2715
d02a2c07 2716static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2717{
df5fe3e8
JM
2718 struct cfq_queue *__cfqq, *next;
2719
df5fe3e8
JM
2720 /*
2721 * If this queue was scheduled to merge with another queue, be
2722 * sure to drop the reference taken on that queue (and others in
2723 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2724 */
2725 __cfqq = cfqq->new_cfqq;
2726 while (__cfqq) {
2727 if (__cfqq == cfqq) {
2728 WARN(1, "cfqq->new_cfqq loop detected\n");
2729 break;
2730 }
2731 next = __cfqq->new_cfqq;
2732 cfq_put_queue(__cfqq);
2733 __cfqq = next;
2734 }
d02a2c07
SL
2735}
2736
2737static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2738{
2739 if (unlikely(cfqq == cfqd->active_queue)) {
2740 __cfq_slice_expired(cfqd, cfqq, 0);
2741 cfq_schedule_dispatch(cfqd);
2742 }
2743
2744 cfq_put_cooperator(cfqq);
df5fe3e8 2745
89850f7e
JA
2746 cfq_put_queue(cfqq);
2747}
22e2c507 2748
89850f7e
JA
2749static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2750 struct cfq_io_context *cic)
2751{
4faa3c81
FC
2752 struct io_context *ioc = cic->ioc;
2753
fc46379d 2754 list_del_init(&cic->queue_list);
4ac845a2
JA
2755
2756 /*
bca4b914 2757 * Make sure dead mark is seen for dead queues
4ac845a2 2758 */
fc46379d 2759 smp_wmb();
bca4b914 2760 cic->key = cfqd_dead_key(cfqd);
fc46379d 2761
3181faa8 2762 rcu_read_lock();
9b50902d 2763 if (rcu_dereference(ioc->ioc_data) == cic) {
3181faa8 2764 rcu_read_unlock();
9b50902d 2765 spin_lock(&ioc->lock);
4faa3c81 2766 rcu_assign_pointer(ioc->ioc_data, NULL);
9b50902d 2767 spin_unlock(&ioc->lock);
3181faa8
SL
2768 } else
2769 rcu_read_unlock();
4faa3c81 2770
ff6657c6
JA
2771 if (cic->cfqq[BLK_RW_ASYNC]) {
2772 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2773 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2774 }
2775
ff6657c6
JA
2776 if (cic->cfqq[BLK_RW_SYNC]) {
2777 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2778 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2779 }
89850f7e
JA
2780}
2781
4ac845a2
JA
2782static void cfq_exit_single_io_context(struct io_context *ioc,
2783 struct cfq_io_context *cic)
89850f7e 2784{
bca4b914 2785 struct cfq_data *cfqd = cic_to_cfqd(cic);
89850f7e 2786
89850f7e 2787 if (cfqd) {
165125e1 2788 struct request_queue *q = cfqd->queue;
4ac845a2 2789 unsigned long flags;
89850f7e 2790
4ac845a2 2791 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2792
2793 /*
2794 * Ensure we get a fresh copy of the ->key to prevent
2795 * race between exiting task and queue
2796 */
2797 smp_read_barrier_depends();
bca4b914 2798 if (cic->key == cfqd)
62c1fe9d
JA
2799 __cfq_exit_single_io_context(cfqd, cic);
2800
4ac845a2 2801 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2802 }
1da177e4
LT
2803}
2804
498d3aa2
JA
2805/*
2806 * The process that ioc belongs to has exited, we need to clean up
2807 * and put the internal structures we have that belongs to that process.
2808 */
e2d74ac0 2809static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2810{
4ac845a2 2811 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2812}
2813
22e2c507 2814static struct cfq_io_context *
8267e268 2815cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2816{
b5deef90 2817 struct cfq_io_context *cic;
1da177e4 2818
94f6030c
CL
2819 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2820 cfqd->queue->node);
1da177e4 2821 if (cic) {
22e2c507 2822 cic->last_end_request = jiffies;
553698f9 2823 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2824 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2825 cic->dtor = cfq_free_io_context;
2826 cic->exit = cfq_exit_io_context;
245b2e70 2827 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2828 }
2829
2830 return cic;
2831}
2832
fd0928df 2833static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2834{
2835 struct task_struct *tsk = current;
2836 int ioprio_class;
2837
3b18152c 2838 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2839 return;
2840
fd0928df 2841 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2842 switch (ioprio_class) {
fe094d98
JA
2843 default:
2844 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2845 case IOPRIO_CLASS_NONE:
2846 /*
6d63c275 2847 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2848 */
2849 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2850 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2851 break;
2852 case IOPRIO_CLASS_RT:
2853 cfqq->ioprio = task_ioprio(ioc);
2854 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2855 break;
2856 case IOPRIO_CLASS_BE:
2857 cfqq->ioprio = task_ioprio(ioc);
2858 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2859 break;
2860 case IOPRIO_CLASS_IDLE:
2861 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2862 cfqq->ioprio = 7;
2863 cfq_clear_cfqq_idle_window(cfqq);
2864 break;
22e2c507
JA
2865 }
2866
2867 /*
2868 * keep track of original prio settings in case we have to temporarily
2869 * elevate the priority of this queue
2870 */
2871 cfqq->org_ioprio = cfqq->ioprio;
3b18152c 2872 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2873}
2874
febffd61 2875static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2876{
bca4b914 2877 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2878 struct cfq_queue *cfqq;
c1b707d2 2879 unsigned long flags;
35e6077c 2880
caaa5f9f
JA
2881 if (unlikely(!cfqd))
2882 return;
2883
c1b707d2 2884 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2885
ff6657c6 2886 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2887 if (cfqq) {
2888 struct cfq_queue *new_cfqq;
ff6657c6
JA
2889 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2890 GFP_ATOMIC);
caaa5f9f 2891 if (new_cfqq) {
ff6657c6 2892 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2893 cfq_put_queue(cfqq);
2894 }
22e2c507 2895 }
caaa5f9f 2896
ff6657c6 2897 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2898 if (cfqq)
2899 cfq_mark_cfqq_prio_changed(cfqq);
2900
c1b707d2 2901 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2902}
2903
fc46379d 2904static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2905{
4ac845a2 2906 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2907 ioc->ioprio_changed = 0;
22e2c507
JA
2908}
2909
d5036d77 2910static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2911 pid_t pid, bool is_sync)
d5036d77
JA
2912{
2913 RB_CLEAR_NODE(&cfqq->rb_node);
2914 RB_CLEAR_NODE(&cfqq->p_node);
2915 INIT_LIST_HEAD(&cfqq->fifo);
2916
30d7b944 2917 cfqq->ref = 0;
d5036d77
JA
2918 cfqq->cfqd = cfqd;
2919
2920 cfq_mark_cfqq_prio_changed(cfqq);
2921
2922 if (is_sync) {
2923 if (!cfq_class_idle(cfqq))
2924 cfq_mark_cfqq_idle_window(cfqq);
2925 cfq_mark_cfqq_sync(cfqq);
2926 }
2927 cfqq->pid = pid;
2928}
2929
24610333
VG
2930#ifdef CONFIG_CFQ_GROUP_IOSCHED
2931static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2932{
2933 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2934 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2935 unsigned long flags;
2936 struct request_queue *q;
2937
2938 if (unlikely(!cfqd))
2939 return;
2940
2941 q = cfqd->queue;
2942
2943 spin_lock_irqsave(q->queue_lock, flags);
2944
2945 if (sync_cfqq) {
2946 /*
2947 * Drop reference to sync queue. A new sync queue will be
2948 * assigned in new group upon arrival of a fresh request.
2949 */
2950 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2951 cic_set_cfqq(cic, NULL, 1);
2952 cfq_put_queue(sync_cfqq);
2953 }
2954
2955 spin_unlock_irqrestore(q->queue_lock, flags);
2956}
2957
2958static void cfq_ioc_set_cgroup(struct io_context *ioc)
2959{
2960 call_for_each_cic(ioc, changed_cgroup);
2961 ioc->cgroup_changed = 0;
2962}
2963#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2964
22e2c507 2965static struct cfq_queue *
a6151c3a 2966cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2967 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2968{
22e2c507 2969 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2970 struct cfq_io_context *cic;
cdb16e8f 2971 struct cfq_group *cfqg;
22e2c507
JA
2972
2973retry:
3e59cf9d 2974 cfqg = cfq_get_cfqg(cfqd);
4ac845a2 2975 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2976 /* cic always exists here */
2977 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2978
6118b70b
JA
2979 /*
2980 * Always try a new alloc if we fell back to the OOM cfqq
2981 * originally, since it should just be a temporary situation.
2982 */
2983 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2984 cfqq = NULL;
22e2c507
JA
2985 if (new_cfqq) {
2986 cfqq = new_cfqq;
2987 new_cfqq = NULL;
2988 } else if (gfp_mask & __GFP_WAIT) {
2989 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2990 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2991 gfp_mask | __GFP_ZERO,
94f6030c 2992 cfqd->queue->node);
22e2c507 2993 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2994 if (new_cfqq)
2995 goto retry;
22e2c507 2996 } else {
94f6030c
CL
2997 cfqq = kmem_cache_alloc_node(cfq_pool,
2998 gfp_mask | __GFP_ZERO,
2999 cfqd->queue->node);
22e2c507
JA
3000 }
3001
6118b70b
JA
3002 if (cfqq) {
3003 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3004 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 3005 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
3006 cfq_log_cfqq(cfqd, cfqq, "alloced");
3007 } else
3008 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
3009 }
3010
3011 if (new_cfqq)
3012 kmem_cache_free(cfq_pool, new_cfqq);
3013
22e2c507
JA
3014 return cfqq;
3015}
3016
c2dea2d1
VT
3017static struct cfq_queue **
3018cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3019{
fe094d98 3020 switch (ioprio_class) {
c2dea2d1
VT
3021 case IOPRIO_CLASS_RT:
3022 return &cfqd->async_cfqq[0][ioprio];
3023 case IOPRIO_CLASS_BE:
3024 return &cfqd->async_cfqq[1][ioprio];
3025 case IOPRIO_CLASS_IDLE:
3026 return &cfqd->async_idle_cfqq;
3027 default:
3028 BUG();
3029 }
3030}
3031
15c31be4 3032static struct cfq_queue *
a6151c3a 3033cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
3034 gfp_t gfp_mask)
3035{
fd0928df
JA
3036 const int ioprio = task_ioprio(ioc);
3037 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 3038 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
3039 struct cfq_queue *cfqq = NULL;
3040
c2dea2d1
VT
3041 if (!is_sync) {
3042 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3043 cfqq = *async_cfqq;
3044 }
3045
6118b70b 3046 if (!cfqq)
fd0928df 3047 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
3048
3049 /*
3050 * pin the queue now that it's allocated, scheduler exit will prune it
3051 */
c2dea2d1 3052 if (!is_sync && !(*async_cfqq)) {
30d7b944 3053 cfqq->ref++;
c2dea2d1 3054 *async_cfqq = cfqq;
15c31be4
JA
3055 }
3056
30d7b944 3057 cfqq->ref++;
15c31be4
JA
3058 return cfqq;
3059}
3060
498d3aa2
JA
3061/*
3062 * We drop cfq io contexts lazily, so we may find a dead one.
3063 */
dbecf3ab 3064static void
4ac845a2
JA
3065cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3066 struct cfq_io_context *cic)
dbecf3ab 3067{
4ac845a2
JA
3068 unsigned long flags;
3069
fc46379d 3070 WARN_ON(!list_empty(&cic->queue_list));
bca4b914 3071 BUG_ON(cic->key != cfqd_dead_key(cfqd));
597bc485 3072
4ac845a2
JA
3073 spin_lock_irqsave(&ioc->lock, flags);
3074
726e99ab
SL
3075 BUG_ON(rcu_dereference_check(ioc->ioc_data,
3076 lockdep_is_held(&ioc->lock)) == cic);
597bc485 3077
80b15c73 3078 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
ffc4e759 3079 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
3080 spin_unlock_irqrestore(&ioc->lock, flags);
3081
3082 cfq_cic_free(cic);
dbecf3ab
OH
3083}
3084
e2d74ac0 3085static struct cfq_io_context *
4ac845a2 3086cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 3087{
e2d74ac0 3088 struct cfq_io_context *cic;
d6de8be7 3089 unsigned long flags;
e2d74ac0 3090
91fac317
VT
3091 if (unlikely(!ioc))
3092 return NULL;
3093
d6de8be7
JA
3094 rcu_read_lock();
3095
597bc485
JA
3096 /*
3097 * we maintain a last-hit cache, to avoid browsing over the tree
3098 */
4ac845a2 3099 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
3100 if (cic && cic->key == cfqd) {
3101 rcu_read_unlock();
597bc485 3102 return cic;
d6de8be7 3103 }
597bc485 3104
4ac845a2 3105 do {
80b15c73 3106 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
4ac845a2
JA
3107 rcu_read_unlock();
3108 if (!cic)
3109 break;
bca4b914 3110 if (unlikely(cic->key != cfqd)) {
4ac845a2 3111 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 3112 rcu_read_lock();
4ac845a2 3113 continue;
dbecf3ab 3114 }
e2d74ac0 3115
d6de8be7 3116 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 3117 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 3118 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
3119 break;
3120 } while (1);
e2d74ac0 3121
4ac845a2 3122 return cic;
e2d74ac0
JA
3123}
3124
4ac845a2
JA
3125/*
3126 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3127 * the process specific cfq io context when entered from the block layer.
3128 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3129 */
febffd61
JA
3130static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3131 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 3132{
0261d688 3133 unsigned long flags;
4ac845a2 3134 int ret;
e2d74ac0 3135
4ac845a2
JA
3136 ret = radix_tree_preload(gfp_mask);
3137 if (!ret) {
3138 cic->ioc = ioc;
3139 cic->key = cfqd;
e2d74ac0 3140
4ac845a2
JA
3141 spin_lock_irqsave(&ioc->lock, flags);
3142 ret = radix_tree_insert(&ioc->radix_root,
80b15c73 3143 cfqd->cic_index, cic);
ffc4e759
JA
3144 if (!ret)
3145 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 3146 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 3147
4ac845a2
JA
3148 radix_tree_preload_end();
3149
3150 if (!ret) {
3151 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3152 list_add(&cic->queue_list, &cfqd->cic_list);
3153 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3154 }
e2d74ac0
JA
3155 }
3156
4ac845a2
JA
3157 if (ret)
3158 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 3159
4ac845a2 3160 return ret;
e2d74ac0
JA
3161}
3162
1da177e4
LT
3163/*
3164 * Setup general io context and cfq io context. There can be several cfq
3165 * io contexts per general io context, if this process is doing io to more
e2d74ac0 3166 * than one device managed by cfq.
1da177e4
LT
3167 */
3168static struct cfq_io_context *
e2d74ac0 3169cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 3170{
22e2c507 3171 struct io_context *ioc = NULL;
1da177e4 3172 struct cfq_io_context *cic;
1da177e4 3173
22e2c507 3174 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 3175
b5deef90 3176 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
3177 if (!ioc)
3178 return NULL;
3179
4ac845a2 3180 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
3181 if (cic)
3182 goto out;
1da177e4 3183
e2d74ac0
JA
3184 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3185 if (cic == NULL)
3186 goto err;
1da177e4 3187
4ac845a2
JA
3188 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3189 goto err_free;
3190
1da177e4 3191out:
fc46379d
JA
3192 smp_read_barrier_depends();
3193 if (unlikely(ioc->ioprio_changed))
3194 cfq_ioc_set_ioprio(ioc);
3195
24610333
VG
3196#ifdef CONFIG_CFQ_GROUP_IOSCHED
3197 if (unlikely(ioc->cgroup_changed))
3198 cfq_ioc_set_cgroup(ioc);
3199#endif
1da177e4 3200 return cic;
4ac845a2
JA
3201err_free:
3202 cfq_cic_free(cic);
1da177e4
LT
3203err:
3204 put_io_context(ioc);
3205 return NULL;
3206}
3207
22e2c507
JA
3208static void
3209cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 3210{
aaf1228d
JA
3211 unsigned long elapsed = jiffies - cic->last_end_request;
3212 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 3213
22e2c507
JA
3214 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3215 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3216 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3217}
1da177e4 3218
206dc69b 3219static void
b2c18e1e 3220cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3221 struct request *rq)
206dc69b 3222{
3dde36dd 3223 sector_t sdist = 0;
41647e7a 3224 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3225 if (cfqq->last_request_pos) {
3226 if (cfqq->last_request_pos < blk_rq_pos(rq))
3227 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3228 else
3229 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3230 }
206dc69b 3231
3dde36dd 3232 cfqq->seek_history <<= 1;
41647e7a
CZ
3233 if (blk_queue_nonrot(cfqd->queue))
3234 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3235 else
3236 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3237}
1da177e4 3238
22e2c507
JA
3239/*
3240 * Disable idle window if the process thinks too long or seeks so much that
3241 * it doesn't matter
3242 */
3243static void
3244cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3245 struct cfq_io_context *cic)
3246{
7b679138 3247 int old_idle, enable_idle;
1be92f2f 3248
0871714e
JA
3249 /*
3250 * Don't idle for async or idle io prio class
3251 */
3252 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3253 return;
3254
c265a7f4 3255 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3256
76280aff
CZ
3257 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3258 cfq_mark_cfqq_deep(cfqq);
3259
749ef9f8
CZ
3260 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3261 enable_idle = 0;
3262 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3263 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
3264 enable_idle = 0;
3265 else if (sample_valid(cic->ttime_samples)) {
718eee05 3266 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3267 enable_idle = 0;
3268 else
3269 enable_idle = 1;
1da177e4
LT
3270 }
3271
7b679138
JA
3272 if (old_idle != enable_idle) {
3273 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3274 if (enable_idle)
3275 cfq_mark_cfqq_idle_window(cfqq);
3276 else
3277 cfq_clear_cfqq_idle_window(cfqq);
3278 }
22e2c507 3279}
1da177e4 3280
22e2c507
JA
3281/*
3282 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3283 * no or if we aren't sure, a 1 will cause a preempt.
3284 */
a6151c3a 3285static bool
22e2c507 3286cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3287 struct request *rq)
22e2c507 3288{
6d048f53 3289 struct cfq_queue *cfqq;
22e2c507 3290
6d048f53
JA
3291 cfqq = cfqd->active_queue;
3292 if (!cfqq)
a6151c3a 3293 return false;
22e2c507 3294
6d048f53 3295 if (cfq_class_idle(new_cfqq))
a6151c3a 3296 return false;
22e2c507
JA
3297
3298 if (cfq_class_idle(cfqq))
a6151c3a 3299 return true;
1e3335de 3300
875feb63
DS
3301 /*
3302 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3303 */
3304 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3305 return false;
3306
374f84ac
JA
3307 /*
3308 * if the new request is sync, but the currently running queue is
3309 * not, let the sync request have priority.
3310 */
5e705374 3311 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3312 return true;
1e3335de 3313
8682e1f1
VG
3314 if (new_cfqq->cfqg != cfqq->cfqg)
3315 return false;
3316
3317 if (cfq_slice_used(cfqq))
3318 return true;
3319
3320 /* Allow preemption only if we are idling on sync-noidle tree */
3321 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3322 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3323 new_cfqq->service_tree->count == 2 &&
3324 RB_EMPTY_ROOT(&cfqq->sort_list))
3325 return true;
3326
3a9a3f6c
DS
3327 /*
3328 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3329 */
3330 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3331 return true;
3a9a3f6c 3332
d2d59e18
SL
3333 /* An idle queue should not be idle now for some reason */
3334 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3335 return true;
3336
1e3335de 3337 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3338 return false;
1e3335de
JA
3339
3340 /*
3341 * if this request is as-good as one we would expect from the
3342 * current cfqq, let it preempt
3343 */
e9ce335d 3344 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3345 return true;
1e3335de 3346
a6151c3a 3347 return false;
22e2c507
JA
3348}
3349
3350/*
3351 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3352 * let it have half of its nominal slice.
3353 */
3354static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3355{
f8ae6e3e
SL
3356 struct cfq_queue *old_cfqq = cfqd->active_queue;
3357
7b679138 3358 cfq_log_cfqq(cfqd, cfqq, "preempt");
e5ff082e 3359 cfq_slice_expired(cfqd, 1);
22e2c507 3360
f8ae6e3e
SL
3361 /*
3362 * workload type is changed, don't save slice, otherwise preempt
3363 * doesn't happen
3364 */
3365 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3366 cfqq->cfqg->saved_workload_slice = 0;
3367
bf572256
JA
3368 /*
3369 * Put the new queue at the front of the of the current list,
3370 * so we know that it will be selected next.
3371 */
3372 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3373
3374 cfq_service_tree_add(cfqd, cfqq, 1);
eda5e0c9 3375
62a37f6b
JT
3376 cfqq->slice_end = 0;
3377 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3378}
3379
22e2c507 3380/*
5e705374 3381 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3382 * something we should do about it
3383 */
3384static void
5e705374
JA
3385cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3386 struct request *rq)
22e2c507 3387{
5e705374 3388 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3389
45333d5a 3390 cfqd->rq_queued++;
374f84ac 3391
9c2c38a1 3392 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3393 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3394 cfq_update_idle_window(cfqd, cfqq, cic);
3395
b2c18e1e 3396 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3397
3398 if (cfqq == cfqd->active_queue) {
3399 /*
b029195d
JA
3400 * Remember that we saw a request from this process, but
3401 * don't start queuing just yet. Otherwise we risk seeing lots
3402 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3403 * and merging. If the request is already larger than a single
3404 * page, let it rip immediately. For that case we assume that
2d870722
JA
3405 * merging is already done. Ditto for a busy system that
3406 * has other work pending, don't risk delaying until the
3407 * idle timer unplug to continue working.
22e2c507 3408 */
d6ceb25e 3409 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3410 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3411 cfqd->busy_queues > 1) {
812df48d 3412 cfq_del_timer(cfqd, cfqq);
554554f6 3413 cfq_clear_cfqq_wait_request(cfqq);
24ecfbe2 3414 __blk_run_queue(cfqd->queue);
a11cdaa7 3415 } else {
e98ef89b 3416 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3417 &cfqq->cfqg->blkg);
bf791937 3418 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3419 }
d6ceb25e 3420 }
5e705374 3421 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3422 /*
3423 * not the active queue - expire current slice if it is
3424 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3425 * has some old slice time left and is of higher priority or
3426 * this new queue is RT and the current one is BE
22e2c507
JA
3427 */
3428 cfq_preempt_queue(cfqd, cfqq);
24ecfbe2 3429 __blk_run_queue(cfqd->queue);
22e2c507 3430 }
1da177e4
LT
3431}
3432
165125e1 3433static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3434{
b4878f24 3435 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3436 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3437
7b679138 3438 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3439 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3440
30996f40 3441 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3442 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3443 cfq_add_rq_rb(rq);
e98ef89b 3444 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3445 &cfqd->serving_group->blkg, rq_data_dir(rq),
3446 rq_is_sync(rq));
5e705374 3447 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3448}
3449
45333d5a
AC
3450/*
3451 * Update hw_tag based on peak queue depth over 50 samples under
3452 * sufficient load.
3453 */
3454static void cfq_update_hw_tag(struct cfq_data *cfqd)
3455{
1a1238a7
SL
3456 struct cfq_queue *cfqq = cfqd->active_queue;
3457
53c583d2
CZ
3458 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3459 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3460
3461 if (cfqd->hw_tag == 1)
3462 return;
45333d5a
AC
3463
3464 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3465 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3466 return;
3467
1a1238a7
SL
3468 /*
3469 * If active queue hasn't enough requests and can idle, cfq might not
3470 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3471 * case
3472 */
3473 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3474 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3475 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3476 return;
3477
45333d5a
AC
3478 if (cfqd->hw_tag_samples++ < 50)
3479 return;
3480
e459dd08 3481 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3482 cfqd->hw_tag = 1;
3483 else
3484 cfqd->hw_tag = 0;
45333d5a
AC
3485}
3486
7667aa06
VG
3487static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3488{
3489 struct cfq_io_context *cic = cfqd->active_cic;
3490
02a8f01b
JT
3491 /* If the queue already has requests, don't wait */
3492 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3493 return false;
3494
7667aa06
VG
3495 /* If there are other queues in the group, don't wait */
3496 if (cfqq->cfqg->nr_cfqq > 1)
3497 return false;
3498
3499 if (cfq_slice_used(cfqq))
3500 return true;
3501
3502 /* if slice left is less than think time, wait busy */
3503 if (cic && sample_valid(cic->ttime_samples)
3504 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3505 return true;
3506
3507 /*
3508 * If think times is less than a jiffy than ttime_mean=0 and above
3509 * will not be true. It might happen that slice has not expired yet
3510 * but will expire soon (4-5 ns) during select_queue(). To cover the
3511 * case where think time is less than a jiffy, mark the queue wait
3512 * busy if only 1 jiffy is left in the slice.
3513 */
3514 if (cfqq->slice_end - jiffies == 1)
3515 return true;
3516
3517 return false;
3518}
3519
165125e1 3520static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3521{
5e705374 3522 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3523 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3524 const int sync = rq_is_sync(rq);
b4878f24 3525 unsigned long now;
1da177e4 3526
b4878f24 3527 now = jiffies;
33659ebb
CH
3528 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3529 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3530
45333d5a
AC
3531 cfq_update_hw_tag(cfqd);
3532
53c583d2 3533 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3534 WARN_ON(!cfqq->dispatched);
53c583d2 3535 cfqd->rq_in_driver--;
6d048f53 3536 cfqq->dispatched--;
80bdf0c7 3537 (RQ_CFQG(rq))->dispatched--;
e98ef89b
VG
3538 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3539 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3540 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3541
53c583d2 3542 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3543
365722bb 3544 if (sync) {
5e705374 3545 RQ_CIC(rq)->last_end_request = now;
573412b2
CZ
3546 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3547 cfqd->last_delayed_sync = now;
365722bb 3548 }
caaa5f9f
JA
3549
3550 /*
3551 * If this is the active queue, check if it needs to be expired,
3552 * or if we want to idle in case it has no pending requests.
3553 */
3554 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3555 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3556
44f7c160
JA
3557 if (cfq_cfqq_slice_new(cfqq)) {
3558 cfq_set_prio_slice(cfqd, cfqq);
3559 cfq_clear_cfqq_slice_new(cfqq);
3560 }
f75edf2d
VG
3561
3562 /*
7667aa06
VG
3563 * Should we wait for next request to come in before we expire
3564 * the queue.
f75edf2d 3565 */
7667aa06 3566 if (cfq_should_wait_busy(cfqd, cfqq)) {
80bdf0c7
VG
3567 unsigned long extend_sl = cfqd->cfq_slice_idle;
3568 if (!cfqd->cfq_slice_idle)
3569 extend_sl = cfqd->cfq_group_idle;
3570 cfqq->slice_end = jiffies + extend_sl;
f75edf2d 3571 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3572 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3573 }
3574
a36e71f9 3575 /*
8e550632
CZ
3576 * Idling is not enabled on:
3577 * - expired queues
3578 * - idle-priority queues
3579 * - async queues
3580 * - queues with still some requests queued
3581 * - when there is a close cooperator
a36e71f9 3582 */
0871714e 3583 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3584 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3585 else if (sync && cfqq_empty &&
3586 !cfq_close_cooperator(cfqd, cfqq)) {
749ef9f8 3587 cfq_arm_slice_timer(cfqd);
8e550632 3588 }
caaa5f9f 3589 }
6d048f53 3590
53c583d2 3591 if (!cfqd->rq_in_driver)
23e018a1 3592 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3593}
3594
89850f7e 3595static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3596{
1b379d8d 3597 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3598 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3599 return ELV_MQUEUE_MUST;
3b18152c 3600 }
1da177e4 3601
22e2c507 3602 return ELV_MQUEUE_MAY;
22e2c507
JA
3603}
3604
165125e1 3605static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3606{
3607 struct cfq_data *cfqd = q->elevator->elevator_data;
3608 struct task_struct *tsk = current;
91fac317 3609 struct cfq_io_context *cic;
22e2c507
JA
3610 struct cfq_queue *cfqq;
3611
3612 /*
3613 * don't force setup of a queue from here, as a call to may_queue
3614 * does not necessarily imply that a request actually will be queued.
3615 * so just lookup a possibly existing queue, or return 'may queue'
3616 * if that fails
3617 */
4ac845a2 3618 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3619 if (!cic)
3620 return ELV_MQUEUE_MAY;
3621
b0b78f81 3622 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3623 if (cfqq) {
fd0928df 3624 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507 3625
89850f7e 3626 return __cfq_may_queue(cfqq);
22e2c507
JA
3627 }
3628
3629 return ELV_MQUEUE_MAY;
1da177e4
LT
3630}
3631
1da177e4
LT
3632/*
3633 * queue lock held here
3634 */
bb37b94c 3635static void cfq_put_request(struct request *rq)
1da177e4 3636{
5e705374 3637 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3638
5e705374 3639 if (cfqq) {
22e2c507 3640 const int rw = rq_data_dir(rq);
1da177e4 3641
22e2c507
JA
3642 BUG_ON(!cfqq->allocated[rw]);
3643 cfqq->allocated[rw]--;
1da177e4 3644
5e705374 3645 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3646
c186794d
MS
3647 rq->elevator_private[0] = NULL;
3648 rq->elevator_private[1] = NULL;
1da177e4 3649
7f1dc8a2
VG
3650 /* Put down rq reference on cfqg */
3651 cfq_put_cfqg(RQ_CFQG(rq));
c186794d 3652 rq->elevator_private[2] = NULL;
7f1dc8a2 3653
1da177e4
LT
3654 cfq_put_queue(cfqq);
3655 }
3656}
3657
df5fe3e8
JM
3658static struct cfq_queue *
3659cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3660 struct cfq_queue *cfqq)
3661{
3662 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3663 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3664 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3665 cfq_put_queue(cfqq);
3666 return cic_to_cfqq(cic, 1);
3667}
3668
e6c5bc73
JM
3669/*
3670 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3671 * was the last process referring to said cfqq.
3672 */
3673static struct cfq_queue *
3674split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3675{
3676 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3677 cfqq->pid = current->pid;
3678 cfq_clear_cfqq_coop(cfqq);
ae54abed 3679 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3680 return cfqq;
3681 }
3682
3683 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3684
3685 cfq_put_cooperator(cfqq);
3686
e6c5bc73
JM
3687 cfq_put_queue(cfqq);
3688 return NULL;
3689}
1da177e4 3690/*
22e2c507 3691 * Allocate cfq data structures associated with this request.
1da177e4 3692 */
22e2c507 3693static int
165125e1 3694cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3695{
3696 struct cfq_data *cfqd = q->elevator->elevator_data;
3697 struct cfq_io_context *cic;
3698 const int rw = rq_data_dir(rq);
a6151c3a 3699 const bool is_sync = rq_is_sync(rq);
22e2c507 3700 struct cfq_queue *cfqq;
1da177e4
LT
3701 unsigned long flags;
3702
3703 might_sleep_if(gfp_mask & __GFP_WAIT);
3704
e2d74ac0 3705 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3706
1da177e4
LT
3707 spin_lock_irqsave(q->queue_lock, flags);
3708
22e2c507
JA
3709 if (!cic)
3710 goto queue_fail;
3711
e6c5bc73 3712new_queue:
91fac317 3713 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3714 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3715 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3716 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3717 } else {
e6c5bc73
JM
3718 /*
3719 * If the queue was seeky for too long, break it apart.
3720 */
ae54abed 3721 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3722 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3723 cfqq = split_cfqq(cic, cfqq);
3724 if (!cfqq)
3725 goto new_queue;
3726 }
3727
df5fe3e8
JM
3728 /*
3729 * Check to see if this queue is scheduled to merge with
3730 * another, closely cooperating queue. The merging of
3731 * queues happens here as it must be done in process context.
3732 * The reference on new_cfqq was taken in merge_cfqqs.
3733 */
3734 if (cfqq->new_cfqq)
3735 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3736 }
1da177e4
LT
3737
3738 cfqq->allocated[rw]++;
1da177e4 3739
6fae9c25 3740 cfqq->ref++;
c186794d
MS
3741 rq->elevator_private[0] = cic;
3742 rq->elevator_private[1] = cfqq;
3743 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
93803e01 3744 spin_unlock_irqrestore(q->queue_lock, flags);
5e705374 3745 return 0;
1da177e4 3746
22e2c507 3747queue_fail:
23e018a1 3748 cfq_schedule_dispatch(cfqd);
1da177e4 3749 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3750 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3751 return 1;
3752}
3753
65f27f38 3754static void cfq_kick_queue(struct work_struct *work)
22e2c507 3755{
65f27f38 3756 struct cfq_data *cfqd =
23e018a1 3757 container_of(work, struct cfq_data, unplug_work);
165125e1 3758 struct request_queue *q = cfqd->queue;
22e2c507 3759
40bb54d1 3760 spin_lock_irq(q->queue_lock);
24ecfbe2 3761 __blk_run_queue(cfqd->queue);
40bb54d1 3762 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3763}
3764
3765/*
3766 * Timer running if the active_queue is currently idling inside its time slice
3767 */
3768static void cfq_idle_slice_timer(unsigned long data)
3769{
3770 struct cfq_data *cfqd = (struct cfq_data *) data;
3771 struct cfq_queue *cfqq;
3772 unsigned long flags;
3c6bd2f8 3773 int timed_out = 1;
22e2c507 3774
7b679138
JA
3775 cfq_log(cfqd, "idle timer fired");
3776
22e2c507
JA
3777 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3778
fe094d98
JA
3779 cfqq = cfqd->active_queue;
3780 if (cfqq) {
3c6bd2f8
JA
3781 timed_out = 0;
3782
b029195d
JA
3783 /*
3784 * We saw a request before the queue expired, let it through
3785 */
3786 if (cfq_cfqq_must_dispatch(cfqq))
3787 goto out_kick;
3788
22e2c507
JA
3789 /*
3790 * expired
3791 */
44f7c160 3792 if (cfq_slice_used(cfqq))
22e2c507
JA
3793 goto expire;
3794
3795 /*
3796 * only expire and reinvoke request handler, if there are
3797 * other queues with pending requests
3798 */
caaa5f9f 3799 if (!cfqd->busy_queues)
22e2c507 3800 goto out_cont;
22e2c507
JA
3801
3802 /*
3803 * not expired and it has a request pending, let it dispatch
3804 */
75e50984 3805 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3806 goto out_kick;
76280aff
CZ
3807
3808 /*
3809 * Queue depth flag is reset only when the idle didn't succeed
3810 */
3811 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3812 }
3813expire:
e5ff082e 3814 cfq_slice_expired(cfqd, timed_out);
22e2c507 3815out_kick:
23e018a1 3816 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3817out_cont:
3818 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3819}
3820
3b18152c
JA
3821static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3822{
3823 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3824 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3825}
22e2c507 3826
c2dea2d1
VT
3827static void cfq_put_async_queues(struct cfq_data *cfqd)
3828{
3829 int i;
3830
3831 for (i = 0; i < IOPRIO_BE_NR; i++) {
3832 if (cfqd->async_cfqq[0][i])
3833 cfq_put_queue(cfqd->async_cfqq[0][i]);
3834 if (cfqd->async_cfqq[1][i])
3835 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3836 }
2389d1ef
ON
3837
3838 if (cfqd->async_idle_cfqq)
3839 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3840}
3841
b374d18a 3842static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3843{
22e2c507 3844 struct cfq_data *cfqd = e->elevator_data;
165125e1 3845 struct request_queue *q = cfqd->queue;
56edf7d7 3846 bool wait = false;
22e2c507 3847
3b18152c 3848 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3849
d9ff4187 3850 spin_lock_irq(q->queue_lock);
e2d74ac0 3851
d9ff4187 3852 if (cfqd->active_queue)
e5ff082e 3853 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3854
3855 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3856 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3857 struct cfq_io_context,
3858 queue_list);
89850f7e
JA
3859
3860 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3861 }
e2d74ac0 3862
c2dea2d1 3863 cfq_put_async_queues(cfqd);
b1c35769 3864 cfq_release_cfq_groups(cfqd);
56edf7d7
VG
3865
3866 /*
3867 * If there are groups which we could not unlink from blkcg list,
3868 * wait for a rcu period for them to be freed.
3869 */
3870 if (cfqd->nr_blkcg_linked_grps)
3871 wait = true;
15c31be4 3872
d9ff4187 3873 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3874
3875 cfq_shutdown_timer_wq(cfqd);
3876
80b15c73
KK
3877 spin_lock(&cic_index_lock);
3878 ida_remove(&cic_index_ida, cfqd->cic_index);
3879 spin_unlock(&cic_index_lock);
3880
56edf7d7
VG
3881 /*
3882 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3883 * Do this wait only if there are other unlinked groups out
3884 * there. This can happen if cgroup deletion path claimed the
3885 * responsibility of cleaning up a group before queue cleanup code
3886 * get to the group.
3887 *
3888 * Do not call synchronize_rcu() unconditionally as there are drivers
3889 * which create/delete request queue hundreds of times during scan/boot
3890 * and synchronize_rcu() can take significant time and slow down boot.
3891 */
3892 if (wait)
3893 synchronize_rcu();
2abae55f
VG
3894
3895#ifdef CONFIG_CFQ_GROUP_IOSCHED
3896 /* Free up per cpu stats for root group */
3897 free_percpu(cfqd->root_group.blkg.stats_cpu);
3898#endif
56edf7d7 3899 kfree(cfqd);
1da177e4
LT
3900}
3901
80b15c73
KK
3902static int cfq_alloc_cic_index(void)
3903{
3904 int index, error;
3905
3906 do {
3907 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3908 return -ENOMEM;
3909
3910 spin_lock(&cic_index_lock);
3911 error = ida_get_new(&cic_index_ida, &index);
3912 spin_unlock(&cic_index_lock);
3913 if (error && error != -EAGAIN)
3914 return error;
3915 } while (error);
3916
3917 return index;
3918}
3919
165125e1 3920static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3921{
3922 struct cfq_data *cfqd;
718eee05 3923 int i, j;
cdb16e8f 3924 struct cfq_group *cfqg;
615f0259 3925 struct cfq_rb_root *st;
1da177e4 3926
80b15c73
KK
3927 i = cfq_alloc_cic_index();
3928 if (i < 0)
3929 return NULL;
3930
94f6030c 3931 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1547010e
NK
3932 if (!cfqd) {
3933 spin_lock(&cic_index_lock);
3934 ida_remove(&cic_index_ida, i);
3935 spin_unlock(&cic_index_lock);
bc1c1169 3936 return NULL;
1547010e 3937 }
1da177e4 3938
30d7b944
SL
3939 /*
3940 * Don't need take queue_lock in the routine, since we are
3941 * initializing the ioscheduler, and nobody is using cfqd
3942 */
80b15c73
KK
3943 cfqd->cic_index = i;
3944
1fa8f6d6
VG
3945 /* Init root service tree */
3946 cfqd->grp_service_tree = CFQ_RB_ROOT;
3947
cdb16e8f
VG
3948 /* Init root group */
3949 cfqg = &cfqd->root_group;
615f0259
VG
3950 for_each_cfqg_st(cfqg, i, j, st)
3951 *st = CFQ_RB_ROOT;
1fa8f6d6 3952 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3953
25bc6b07
VG
3954 /* Give preference to root group over other groups */
3955 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3956
25fb5169 3957#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769 3958 /*
56edf7d7
VG
3959 * Set root group reference to 2. One reference will be dropped when
3960 * all groups on cfqd->cfqg_list are being deleted during queue exit.
3961 * Other reference will remain there as we don't want to delete this
3962 * group as it is statically allocated and gets destroyed when
3963 * throtl_data goes away.
b1c35769 3964 */
56edf7d7 3965 cfqg->ref = 2;
5624a4e4
VG
3966
3967 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
3968 kfree(cfqg);
3969 kfree(cfqd);
3970 return NULL;
3971 }
3972
dcf097b2 3973 rcu_read_lock();
5624a4e4 3974
e98ef89b
VG
3975 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3976 (void *)cfqd, 0);
dcf097b2 3977 rcu_read_unlock();
56edf7d7
VG
3978 cfqd->nr_blkcg_linked_grps++;
3979
3980 /* Add group on cfqd->cfqg_list */
3981 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
25fb5169 3982#endif
26a2ac00
JA
3983 /*
3984 * Not strictly needed (since RB_ROOT just clears the node and we
3985 * zeroed cfqd on alloc), but better be safe in case someone decides
3986 * to add magic to the rb code
3987 */
3988 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3989 cfqd->prio_trees[i] = RB_ROOT;
3990
6118b70b
JA
3991 /*
3992 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3993 * Grab a permanent reference to it, so that the normal code flow
3994 * will not attempt to free it.
3995 */
3996 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
30d7b944 3997 cfqd->oom_cfqq.ref++;
cdb16e8f 3998 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3999
d9ff4187 4000 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 4001
1da177e4 4002 cfqd->queue = q;
1da177e4 4003
22e2c507
JA
4004 init_timer(&cfqd->idle_slice_timer);
4005 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4006 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4007
23e018a1 4008 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 4009
1da177e4 4010 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
4011 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4012 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
4013 cfqd->cfq_back_max = cfq_back_max;
4014 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
4015 cfqd->cfq_slice[0] = cfq_slice_async;
4016 cfqd->cfq_slice[1] = cfq_slice_sync;
4017 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4018 cfqd->cfq_slice_idle = cfq_slice_idle;
80bdf0c7 4019 cfqd->cfq_group_idle = cfq_group_idle;
963b72fc 4020 cfqd->cfq_latency = 1;
e459dd08 4021 cfqd->hw_tag = -1;
edc71131
CZ
4022 /*
4023 * we optimistically start assuming sync ops weren't delayed in last
4024 * second, in order to have larger depth for async operations.
4025 */
573412b2 4026 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 4027 return cfqd;
1da177e4
LT
4028}
4029
4030static void cfq_slab_kill(void)
4031{
d6de8be7
JA
4032 /*
4033 * Caller already ensured that pending RCU callbacks are completed,
4034 * so we should have no busy allocations at this point.
4035 */
1da177e4
LT
4036 if (cfq_pool)
4037 kmem_cache_destroy(cfq_pool);
4038 if (cfq_ioc_pool)
4039 kmem_cache_destroy(cfq_ioc_pool);
4040}
4041
4042static int __init cfq_slab_setup(void)
4043{
0a31bd5f 4044 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
4045 if (!cfq_pool)
4046 goto fail;
4047
34e6bbf2 4048 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
4049 if (!cfq_ioc_pool)
4050 goto fail;
4051
4052 return 0;
4053fail:
4054 cfq_slab_kill();
4055 return -ENOMEM;
4056}
4057
1da177e4
LT
4058/*
4059 * sysfs parts below -->
4060 */
1da177e4
LT
4061static ssize_t
4062cfq_var_show(unsigned int var, char *page)
4063{
4064 return sprintf(page, "%d\n", var);
4065}
4066
4067static ssize_t
4068cfq_var_store(unsigned int *var, const char *page, size_t count)
4069{
4070 char *p = (char *) page;
4071
4072 *var = simple_strtoul(p, &p, 10);
4073 return count;
4074}
4075
1da177e4 4076#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 4077static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 4078{ \
3d1ab40f 4079 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4080 unsigned int __data = __VAR; \
4081 if (__CONV) \
4082 __data = jiffies_to_msecs(__data); \
4083 return cfq_var_show(__data, (page)); \
4084}
4085SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
4086SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4087SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
4088SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4089SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507 4090SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
80bdf0c7 4091SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
22e2c507
JA
4092SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4093SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4094SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 4095SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
4096#undef SHOW_FUNCTION
4097
4098#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 4099static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 4100{ \
3d1ab40f 4101 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4102 unsigned int __data; \
4103 int ret = cfq_var_store(&__data, (page), count); \
4104 if (__data < (MIN)) \
4105 __data = (MIN); \
4106 else if (__data > (MAX)) \
4107 __data = (MAX); \
4108 if (__CONV) \
4109 *(__PTR) = msecs_to_jiffies(__data); \
4110 else \
4111 *(__PTR) = __data; \
4112 return ret; \
4113}
4114STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
4115STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4116 UINT_MAX, 1);
4117STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4118 UINT_MAX, 1);
e572ec7e 4119STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
4120STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4121 UINT_MAX, 0);
22e2c507 4122STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
80bdf0c7 4123STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
22e2c507
JA
4124STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4125STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
4126STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4127 UINT_MAX, 0);
963b72fc 4128STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
4129#undef STORE_FUNCTION
4130
e572ec7e
AV
4131#define CFQ_ATTR(name) \
4132 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4133
4134static struct elv_fs_entry cfq_attrs[] = {
4135 CFQ_ATTR(quantum),
e572ec7e
AV
4136 CFQ_ATTR(fifo_expire_sync),
4137 CFQ_ATTR(fifo_expire_async),
4138 CFQ_ATTR(back_seek_max),
4139 CFQ_ATTR(back_seek_penalty),
4140 CFQ_ATTR(slice_sync),
4141 CFQ_ATTR(slice_async),
4142 CFQ_ATTR(slice_async_rq),
4143 CFQ_ATTR(slice_idle),
80bdf0c7 4144 CFQ_ATTR(group_idle),
963b72fc 4145 CFQ_ATTR(low_latency),
e572ec7e 4146 __ATTR_NULL
1da177e4
LT
4147};
4148
1da177e4
LT
4149static struct elevator_type iosched_cfq = {
4150 .ops = {
4151 .elevator_merge_fn = cfq_merge,
4152 .elevator_merged_fn = cfq_merged_request,
4153 .elevator_merge_req_fn = cfq_merged_requests,
da775265 4154 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 4155 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 4156 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 4157 .elevator_add_req_fn = cfq_insert_request,
b4878f24 4158 .elevator_activate_req_fn = cfq_activate_request,
1da177e4 4159 .elevator_deactivate_req_fn = cfq_deactivate_request,
1da177e4 4160 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
4161 .elevator_former_req_fn = elv_rb_former_request,
4162 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
4163 .elevator_set_req_fn = cfq_set_request,
4164 .elevator_put_req_fn = cfq_put_request,
4165 .elevator_may_queue_fn = cfq_may_queue,
4166 .elevator_init_fn = cfq_init_queue,
4167 .elevator_exit_fn = cfq_exit_queue,
fc46379d 4168 .trim = cfq_free_io_context,
1da177e4 4169 },
3d1ab40f 4170 .elevator_attrs = cfq_attrs,
1da177e4
LT
4171 .elevator_name = "cfq",
4172 .elevator_owner = THIS_MODULE,
4173};
4174
3e252066
VG
4175#ifdef CONFIG_CFQ_GROUP_IOSCHED
4176static struct blkio_policy_type blkio_policy_cfq = {
4177 .ops = {
4178 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4179 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4180 },
062a644d 4181 .plid = BLKIO_POLICY_PROP,
3e252066
VG
4182};
4183#else
4184static struct blkio_policy_type blkio_policy_cfq;
4185#endif
4186
1da177e4
LT
4187static int __init cfq_init(void)
4188{
22e2c507
JA
4189 /*
4190 * could be 0 on HZ < 1000 setups
4191 */
4192 if (!cfq_slice_async)
4193 cfq_slice_async = 1;
4194 if (!cfq_slice_idle)
4195 cfq_slice_idle = 1;
4196
80bdf0c7
VG
4197#ifdef CONFIG_CFQ_GROUP_IOSCHED
4198 if (!cfq_group_idle)
4199 cfq_group_idle = 1;
4200#else
4201 cfq_group_idle = 0;
4202#endif
1da177e4
LT
4203 if (cfq_slab_setup())
4204 return -ENOMEM;
4205
2fdd82bd 4206 elv_register(&iosched_cfq);
3e252066 4207 blkio_policy_register(&blkio_policy_cfq);
1da177e4 4208
2fdd82bd 4209 return 0;
1da177e4
LT
4210}
4211
4212static void __exit cfq_exit(void)
4213{
6e9a4738 4214 DECLARE_COMPLETION_ONSTACK(all_gone);
3e252066 4215 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 4216 elv_unregister(&iosched_cfq);
334e94de 4217 ioc_gone = &all_gone;
fba82272
OH
4218 /* ioc_gone's update must be visible before reading ioc_count */
4219 smp_wmb();
d6de8be7
JA
4220
4221 /*
4222 * this also protects us from entering cfq_slab_kill() with
4223 * pending RCU callbacks
4224 */
245b2e70 4225 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 4226 wait_for_completion(&all_gone);
80b15c73 4227 ida_destroy(&cic_index_ida);
83521d3e 4228 cfq_slab_kill();
1da177e4
LT
4229}
4230
4231module_init(cfq_init);
4232module_exit(cfq_exit);
4233
4234MODULE_AUTHOR("Jens Axboe");
4235MODULE_LICENSE("GPL");
4236MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");