blkio: Provide some isolation between groups
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
25bc6b07 16#include "blk-cgroup.h"
1da177e4
LT
17
18/*
19 * tunables
20 */
fe094d98
JA
21/* max queue in one round of service */
22static const int cfq_quantum = 4;
64100099 23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
64100099 28static const int cfq_slice_sync = HZ / 10;
3b18152c 29static int cfq_slice_async = HZ / 25;
64100099 30static const int cfq_slice_async_rq = 2;
caaa5f9f 31static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
22e2c507 34
d9e7620e 35/*
0871714e 36 * offset from end of service tree
d9e7620e 37 */
0871714e 38#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT (2)
44
e6c5bc73
JM
45/*
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
48 */
49#define CFQQ_COOP_TOUT (HZ)
50
22e2c507 51#define CFQ_SLICE_SCALE (5)
45333d5a 52#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 53#define CFQ_SERVICE_SHIFT 12
22e2c507 54
fe094d98
JA
55#define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 57#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 58
e18b890b
CL
59static struct kmem_cache *cfq_pool;
60static struct kmem_cache *cfq_ioc_pool;
1da177e4 61
245b2e70 62static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 63static struct completion *ioc_gone;
9a11b4ed 64static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 65
22e2c507
JA
66#define CFQ_PRIO_LISTS IOPRIO_BE_NR
67#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
68#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
206dc69b 70#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 71#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 72
cc09e299
JA
73/*
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
78 */
79struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
aa6f6a3d 82 unsigned count;
1fa8f6d6 83 u64 min_vdisktime;
25bc6b07 84 struct rb_node *active;
58ff82f3 85 unsigned total_weight;
cc09e299 86};
1fa8f6d6 87#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
cc09e299 88
6118b70b
JA
89/*
90 * Per process-grouping structure
91 */
92struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
dae739eb
VG
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
120 /* time when first request from queue completed and slice started. */
121 unsigned long slice_start;
6118b70b
JA
122 unsigned long slice_end;
123 long slice_resid;
124 unsigned int slice_dispatch;
125
126 /* pending metadata requests */
127 int meta_pending;
128 /* number of requests that are on the dispatch list or inside driver */
129 int dispatched;
130
131 /* io prio of this group */
132 unsigned short ioprio, org_ioprio;
133 unsigned short ioprio_class, org_ioprio_class;
134
b2c18e1e
JM
135 unsigned int seek_samples;
136 u64 seek_total;
137 sector_t seek_mean;
138 sector_t last_request_pos;
e6c5bc73 139 unsigned long seeky_start;
b2c18e1e 140
6118b70b 141 pid_t pid;
df5fe3e8 142
aa6f6a3d 143 struct cfq_rb_root *service_tree;
df5fe3e8 144 struct cfq_queue *new_cfqq;
cdb16e8f 145 struct cfq_group *cfqg;
22084190
VG
146 /* Sectors dispatched in current dispatch round */
147 unsigned long nr_sectors;
6118b70b
JA
148};
149
c0324a02 150/*
718eee05 151 * First index in the service_trees.
c0324a02
CZ
152 * IDLE is handled separately, so it has negative index
153 */
154enum wl_prio_t {
c0324a02 155 BE_WORKLOAD = 0,
615f0259
VG
156 RT_WORKLOAD = 1,
157 IDLE_WORKLOAD = 2,
c0324a02
CZ
158};
159
718eee05
CZ
160/*
161 * Second index in the service_trees.
162 */
163enum wl_type_t {
164 ASYNC_WORKLOAD = 0,
165 SYNC_NOIDLE_WORKLOAD = 1,
166 SYNC_WORKLOAD = 2
167};
168
cdb16e8f
VG
169/* This is per cgroup per device grouping structure */
170struct cfq_group {
1fa8f6d6
VG
171 /* group service_tree member */
172 struct rb_node rb_node;
173
174 /* group service_tree key */
175 u64 vdisktime;
25bc6b07 176 unsigned int weight;
1fa8f6d6
VG
177 bool on_st;
178
179 /* number of cfqq currently on this group */
180 int nr_cfqq;
181
58ff82f3
VG
182 /* Per group busy queus average. Useful for workload slice calc. */
183 unsigned int busy_queues_avg[2];
cdb16e8f
VG
184 /*
185 * rr lists of queues with requests, onle rr for each priority class.
186 * Counts are embedded in the cfq_rb_root
187 */
188 struct cfq_rb_root service_trees[2][3];
189 struct cfq_rb_root service_tree_idle;
dae739eb
VG
190
191 unsigned long saved_workload_slice;
192 enum wl_type_t saved_workload;
193 enum wl_prio_t saved_serving_prio;
25fb5169
VG
194 struct blkio_group blkg;
195#ifdef CONFIG_CFQ_GROUP_IOSCHED
196 struct hlist_node cfqd_node;
b1c35769 197 atomic_t ref;
25fb5169 198#endif
cdb16e8f 199};
718eee05 200
22e2c507
JA
201/*
202 * Per block device queue structure
203 */
1da177e4 204struct cfq_data {
165125e1 205 struct request_queue *queue;
1fa8f6d6
VG
206 /* Root service tree for cfq_groups */
207 struct cfq_rb_root grp_service_tree;
cdb16e8f 208 struct cfq_group root_group;
58ff82f3
VG
209 /* Number of active cfq groups on group service tree */
210 int nr_groups;
22e2c507 211
c0324a02
CZ
212 /*
213 * The priority currently being served
22e2c507 214 */
c0324a02 215 enum wl_prio_t serving_prio;
718eee05
CZ
216 enum wl_type_t serving_type;
217 unsigned long workload_expires;
cdb16e8f 218 struct cfq_group *serving_group;
8e550632 219 bool noidle_tree_requires_idle;
a36e71f9
JA
220
221 /*
222 * Each priority tree is sorted by next_request position. These
223 * trees are used when determining if two or more queues are
224 * interleaving requests (see cfq_close_cooperator).
225 */
226 struct rb_root prio_trees[CFQ_PRIO_LISTS];
227
22e2c507
JA
228 unsigned int busy_queues;
229
5ad531db 230 int rq_in_driver[2];
3ed9a296 231 int sync_flight;
45333d5a
AC
232
233 /*
234 * queue-depth detection
235 */
236 int rq_queued;
25776e35 237 int hw_tag;
e459dd08
CZ
238 /*
239 * hw_tag can be
240 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
241 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
242 * 0 => no NCQ
243 */
244 int hw_tag_est_depth;
245 unsigned int hw_tag_samples;
1da177e4 246
22e2c507
JA
247 /*
248 * idle window management
249 */
250 struct timer_list idle_slice_timer;
23e018a1 251 struct work_struct unplug_work;
1da177e4 252
22e2c507
JA
253 struct cfq_queue *active_queue;
254 struct cfq_io_context *active_cic;
22e2c507 255
c2dea2d1
VT
256 /*
257 * async queue for each priority case
258 */
259 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
260 struct cfq_queue *async_idle_cfqq;
15c31be4 261
6d048f53 262 sector_t last_position;
1da177e4 263
1da177e4
LT
264 /*
265 * tunables, see top of file
266 */
267 unsigned int cfq_quantum;
22e2c507 268 unsigned int cfq_fifo_expire[2];
1da177e4
LT
269 unsigned int cfq_back_penalty;
270 unsigned int cfq_back_max;
22e2c507
JA
271 unsigned int cfq_slice[2];
272 unsigned int cfq_slice_async_rq;
273 unsigned int cfq_slice_idle;
963b72fc 274 unsigned int cfq_latency;
d9ff4187
AV
275
276 struct list_head cic_list;
1da177e4 277
6118b70b
JA
278 /*
279 * Fallback dummy cfqq for extreme OOM conditions
280 */
281 struct cfq_queue oom_cfqq;
365722bb
VG
282
283 unsigned long last_end_sync_rq;
25fb5169
VG
284
285 /* List of cfq groups being managed on this device*/
286 struct hlist_head cfqg_list;
1da177e4
LT
287};
288
25fb5169
VG
289static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
290
cdb16e8f
VG
291static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
292 enum wl_prio_t prio,
718eee05 293 enum wl_type_t type,
c0324a02
CZ
294 struct cfq_data *cfqd)
295{
1fa8f6d6
VG
296 if (!cfqg)
297 return NULL;
298
c0324a02 299 if (prio == IDLE_WORKLOAD)
cdb16e8f 300 return &cfqg->service_tree_idle;
c0324a02 301
cdb16e8f 302 return &cfqg->service_trees[prio][type];
c0324a02
CZ
303}
304
3b18152c 305enum cfqq_state_flags {
b0b8d749
JA
306 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
307 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 308 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 309 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
310 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
311 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
312 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 313 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 314 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 315 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
76280aff 316 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
3b18152c
JA
317};
318
319#define CFQ_CFQQ_FNS(name) \
320static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
321{ \
fe094d98 322 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
323} \
324static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
325{ \
fe094d98 326 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
327} \
328static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
329{ \
fe094d98 330 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
331}
332
333CFQ_CFQQ_FNS(on_rr);
334CFQ_CFQQ_FNS(wait_request);
b029195d 335CFQ_CFQQ_FNS(must_dispatch);
3b18152c 336CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
337CFQ_CFQQ_FNS(fifo_expire);
338CFQ_CFQQ_FNS(idle_window);
339CFQ_CFQQ_FNS(prio_changed);
44f7c160 340CFQ_CFQQ_FNS(slice_new);
91fac317 341CFQ_CFQQ_FNS(sync);
a36e71f9 342CFQ_CFQQ_FNS(coop);
76280aff 343CFQ_CFQQ_FNS(deep);
3b18152c
JA
344#undef CFQ_CFQQ_FNS
345
2868ef7b
VG
346#ifdef CONFIG_DEBUG_CFQ_IOSCHED
347#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
348 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
349 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
350 blkg_path(&(cfqq)->cfqg->blkg), ##args);
351
352#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
353 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
354 blkg_path(&(cfqg)->blkg), ##args); \
355
356#else
7b679138
JA
357#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
358 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
2868ef7b
VG
359#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
360#endif
7b679138
JA
361#define cfq_log(cfqd, fmt, args...) \
362 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
363
615f0259
VG
364/* Traverses through cfq group service trees */
365#define for_each_cfqg_st(cfqg, i, j, st) \
366 for (i = 0; i <= IDLE_WORKLOAD; i++) \
367 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
368 : &cfqg->service_tree_idle; \
369 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
370 (i == IDLE_WORKLOAD && j == 0); \
371 j++, st = i < IDLE_WORKLOAD ? \
372 &cfqg->service_trees[i][j]: NULL) \
373
374
c0324a02
CZ
375static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
376{
377 if (cfq_class_idle(cfqq))
378 return IDLE_WORKLOAD;
379 if (cfq_class_rt(cfqq))
380 return RT_WORKLOAD;
381 return BE_WORKLOAD;
382}
383
718eee05
CZ
384
385static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
386{
387 if (!cfq_cfqq_sync(cfqq))
388 return ASYNC_WORKLOAD;
389 if (!cfq_cfqq_idle_window(cfqq))
390 return SYNC_NOIDLE_WORKLOAD;
391 return SYNC_WORKLOAD;
392}
393
58ff82f3
VG
394static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
395 struct cfq_data *cfqd,
396 struct cfq_group *cfqg)
c0324a02
CZ
397{
398 if (wl == IDLE_WORKLOAD)
cdb16e8f 399 return cfqg->service_tree_idle.count;
c0324a02 400
cdb16e8f
VG
401 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
402 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
403 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
404}
405
165125e1 406static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 407static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 408 struct io_context *, gfp_t);
4ac845a2 409static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
410 struct io_context *);
411
5ad531db
JA
412static inline int rq_in_driver(struct cfq_data *cfqd)
413{
414 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
415}
416
91fac317 417static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 418 bool is_sync)
91fac317 419{
a6151c3a 420 return cic->cfqq[is_sync];
91fac317
VT
421}
422
423static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 424 struct cfq_queue *cfqq, bool is_sync)
91fac317 425{
a6151c3a 426 cic->cfqq[is_sync] = cfqq;
91fac317
VT
427}
428
429/*
430 * We regard a request as SYNC, if it's either a read or has the SYNC bit
431 * set (in which case it could also be direct WRITE).
432 */
a6151c3a 433static inline bool cfq_bio_sync(struct bio *bio)
91fac317 434{
a6151c3a 435 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 436}
1da177e4 437
99f95e52
AM
438/*
439 * scheduler run of queue, if there are requests pending and no one in the
440 * driver that will restart queueing
441 */
23e018a1 442static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 443{
7b679138
JA
444 if (cfqd->busy_queues) {
445 cfq_log(cfqd, "schedule dispatch");
23e018a1 446 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 447 }
99f95e52
AM
448}
449
165125e1 450static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
451{
452 struct cfq_data *cfqd = q->elevator->elevator_data;
453
f04a6424 454 return !cfqd->rq_queued;
99f95e52
AM
455}
456
44f7c160
JA
457/*
458 * Scale schedule slice based on io priority. Use the sync time slice only
459 * if a queue is marked sync and has sync io queued. A sync queue with async
460 * io only, should not get full sync slice length.
461 */
a6151c3a 462static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 463 unsigned short prio)
44f7c160 464{
d9e7620e 465 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 466
d9e7620e
JA
467 WARN_ON(prio >= IOPRIO_BE_NR);
468
469 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
470}
44f7c160 471
d9e7620e
JA
472static inline int
473cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
474{
475 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
476}
477
25bc6b07
VG
478static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
479{
480 u64 d = delta << CFQ_SERVICE_SHIFT;
481
482 d = d * BLKIO_WEIGHT_DEFAULT;
483 do_div(d, cfqg->weight);
484 return d;
485}
486
487static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
488{
489 s64 delta = (s64)(vdisktime - min_vdisktime);
490 if (delta > 0)
491 min_vdisktime = vdisktime;
492
493 return min_vdisktime;
494}
495
496static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
497{
498 s64 delta = (s64)(vdisktime - min_vdisktime);
499 if (delta < 0)
500 min_vdisktime = vdisktime;
501
502 return min_vdisktime;
503}
504
505static void update_min_vdisktime(struct cfq_rb_root *st)
506{
507 u64 vdisktime = st->min_vdisktime;
508 struct cfq_group *cfqg;
509
510 if (st->active) {
511 cfqg = rb_entry_cfqg(st->active);
512 vdisktime = cfqg->vdisktime;
513 }
514
515 if (st->left) {
516 cfqg = rb_entry_cfqg(st->left);
517 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
518 }
519
520 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
521}
522
5db5d642
CZ
523/*
524 * get averaged number of queues of RT/BE priority.
525 * average is updated, with a formula that gives more weight to higher numbers,
526 * to quickly follows sudden increases and decrease slowly
527 */
528
58ff82f3
VG
529static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
530 struct cfq_group *cfqg, bool rt)
5869619c 531{
5db5d642
CZ
532 unsigned min_q, max_q;
533 unsigned mult = cfq_hist_divisor - 1;
534 unsigned round = cfq_hist_divisor / 2;
58ff82f3 535 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 536
58ff82f3
VG
537 min_q = min(cfqg->busy_queues_avg[rt], busy);
538 max_q = max(cfqg->busy_queues_avg[rt], busy);
539 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 540 cfq_hist_divisor;
58ff82f3
VG
541 return cfqg->busy_queues_avg[rt];
542}
543
544static inline unsigned
545cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
546{
547 struct cfq_rb_root *st = &cfqd->grp_service_tree;
548
549 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
550}
551
44f7c160
JA
552static inline void
553cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
554{
5db5d642
CZ
555 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
556 if (cfqd->cfq_latency) {
58ff82f3
VG
557 /*
558 * interested queues (we consider only the ones with the same
559 * priority class in the cfq group)
560 */
561 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
562 cfq_class_rt(cfqq));
5db5d642
CZ
563 unsigned sync_slice = cfqd->cfq_slice[1];
564 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
565 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
566
567 if (expect_latency > group_slice) {
5db5d642
CZ
568 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
569 /* scale low_slice according to IO priority
570 * and sync vs async */
571 unsigned low_slice =
572 min(slice, base_low_slice * slice / sync_slice);
573 /* the adapted slice value is scaled to fit all iqs
574 * into the target latency */
58ff82f3 575 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
576 low_slice);
577 }
578 }
dae739eb 579 cfqq->slice_start = jiffies;
5db5d642 580 cfqq->slice_end = jiffies + slice;
7b679138 581 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
582}
583
584/*
585 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
586 * isn't valid until the first request from the dispatch is activated
587 * and the slice time set.
588 */
a6151c3a 589static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
590{
591 if (cfq_cfqq_slice_new(cfqq))
592 return 0;
593 if (time_before(jiffies, cfqq->slice_end))
594 return 0;
595
596 return 1;
597}
598
1da177e4 599/*
5e705374 600 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 601 * We choose the request that is closest to the head right now. Distance
e8a99053 602 * behind the head is penalized and only allowed to a certain extent.
1da177e4 603 */
5e705374 604static struct request *
cf7c25cf 605cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 606{
cf7c25cf 607 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 608 unsigned long back_max;
e8a99053
AM
609#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
610#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
611 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 612
5e705374
JA
613 if (rq1 == NULL || rq1 == rq2)
614 return rq2;
615 if (rq2 == NULL)
616 return rq1;
9c2c38a1 617
5e705374
JA
618 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
619 return rq1;
620 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
621 return rq2;
374f84ac
JA
622 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
623 return rq1;
624 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
625 return rq2;
1da177e4 626
83096ebf
TH
627 s1 = blk_rq_pos(rq1);
628 s2 = blk_rq_pos(rq2);
1da177e4 629
1da177e4
LT
630 /*
631 * by definition, 1KiB is 2 sectors
632 */
633 back_max = cfqd->cfq_back_max * 2;
634
635 /*
636 * Strict one way elevator _except_ in the case where we allow
637 * short backward seeks which are biased as twice the cost of a
638 * similar forward seek.
639 */
640 if (s1 >= last)
641 d1 = s1 - last;
642 else if (s1 + back_max >= last)
643 d1 = (last - s1) * cfqd->cfq_back_penalty;
644 else
e8a99053 645 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
646
647 if (s2 >= last)
648 d2 = s2 - last;
649 else if (s2 + back_max >= last)
650 d2 = (last - s2) * cfqd->cfq_back_penalty;
651 else
e8a99053 652 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
653
654 /* Found required data */
e8a99053
AM
655
656 /*
657 * By doing switch() on the bit mask "wrap" we avoid having to
658 * check two variables for all permutations: --> faster!
659 */
660 switch (wrap) {
5e705374 661 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 662 if (d1 < d2)
5e705374 663 return rq1;
e8a99053 664 else if (d2 < d1)
5e705374 665 return rq2;
e8a99053
AM
666 else {
667 if (s1 >= s2)
5e705374 668 return rq1;
e8a99053 669 else
5e705374 670 return rq2;
e8a99053 671 }
1da177e4 672
e8a99053 673 case CFQ_RQ2_WRAP:
5e705374 674 return rq1;
e8a99053 675 case CFQ_RQ1_WRAP:
5e705374
JA
676 return rq2;
677 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
678 default:
679 /*
680 * Since both rqs are wrapped,
681 * start with the one that's further behind head
682 * (--> only *one* back seek required),
683 * since back seek takes more time than forward.
684 */
685 if (s1 <= s2)
5e705374 686 return rq1;
1da177e4 687 else
5e705374 688 return rq2;
1da177e4
LT
689 }
690}
691
498d3aa2
JA
692/*
693 * The below is leftmost cache rbtree addon
694 */
0871714e 695static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 696{
615f0259
VG
697 /* Service tree is empty */
698 if (!root->count)
699 return NULL;
700
cc09e299
JA
701 if (!root->left)
702 root->left = rb_first(&root->rb);
703
0871714e
JA
704 if (root->left)
705 return rb_entry(root->left, struct cfq_queue, rb_node);
706
707 return NULL;
cc09e299
JA
708}
709
1fa8f6d6
VG
710static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
711{
712 if (!root->left)
713 root->left = rb_first(&root->rb);
714
715 if (root->left)
716 return rb_entry_cfqg(root->left);
717
718 return NULL;
719}
720
a36e71f9
JA
721static void rb_erase_init(struct rb_node *n, struct rb_root *root)
722{
723 rb_erase(n, root);
724 RB_CLEAR_NODE(n);
725}
726
cc09e299
JA
727static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
728{
729 if (root->left == n)
730 root->left = NULL;
a36e71f9 731 rb_erase_init(n, &root->rb);
aa6f6a3d 732 --root->count;
cc09e299
JA
733}
734
1da177e4
LT
735/*
736 * would be nice to take fifo expire time into account as well
737 */
5e705374
JA
738static struct request *
739cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
740 struct request *last)
1da177e4 741{
21183b07
JA
742 struct rb_node *rbnext = rb_next(&last->rb_node);
743 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 744 struct request *next = NULL, *prev = NULL;
1da177e4 745
21183b07 746 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
747
748 if (rbprev)
5e705374 749 prev = rb_entry_rq(rbprev);
1da177e4 750
21183b07 751 if (rbnext)
5e705374 752 next = rb_entry_rq(rbnext);
21183b07
JA
753 else {
754 rbnext = rb_first(&cfqq->sort_list);
755 if (rbnext && rbnext != &last->rb_node)
5e705374 756 next = rb_entry_rq(rbnext);
21183b07 757 }
1da177e4 758
cf7c25cf 759 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
760}
761
d9e7620e
JA
762static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
763 struct cfq_queue *cfqq)
1da177e4 764{
d9e7620e
JA
765 /*
766 * just an approximation, should be ok.
767 */
cdb16e8f 768 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 769 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
770}
771
1fa8f6d6
VG
772static inline s64
773cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
774{
775 return cfqg->vdisktime - st->min_vdisktime;
776}
777
778static void
779__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
780{
781 struct rb_node **node = &st->rb.rb_node;
782 struct rb_node *parent = NULL;
783 struct cfq_group *__cfqg;
784 s64 key = cfqg_key(st, cfqg);
785 int left = 1;
786
787 while (*node != NULL) {
788 parent = *node;
789 __cfqg = rb_entry_cfqg(parent);
790
791 if (key < cfqg_key(st, __cfqg))
792 node = &parent->rb_left;
793 else {
794 node = &parent->rb_right;
795 left = 0;
796 }
797 }
798
799 if (left)
800 st->left = &cfqg->rb_node;
801
802 rb_link_node(&cfqg->rb_node, parent, node);
803 rb_insert_color(&cfqg->rb_node, &st->rb);
804}
805
806static void
807cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
808{
809 struct cfq_rb_root *st = &cfqd->grp_service_tree;
810 struct cfq_group *__cfqg;
811 struct rb_node *n;
812
813 cfqg->nr_cfqq++;
814 if (cfqg->on_st)
815 return;
816
817 /*
818 * Currently put the group at the end. Later implement something
819 * so that groups get lesser vtime based on their weights, so that
820 * if group does not loose all if it was not continously backlogged.
821 */
822 n = rb_last(&st->rb);
823 if (n) {
824 __cfqg = rb_entry_cfqg(n);
825 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
826 } else
827 cfqg->vdisktime = st->min_vdisktime;
828
829 __cfq_group_service_tree_add(st, cfqg);
830 cfqg->on_st = true;
58ff82f3
VG
831 cfqd->nr_groups++;
832 st->total_weight += cfqg->weight;
1fa8f6d6
VG
833}
834
835static void
836cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
837{
838 struct cfq_rb_root *st = &cfqd->grp_service_tree;
839
25bc6b07
VG
840 if (st->active == &cfqg->rb_node)
841 st->active = NULL;
842
1fa8f6d6
VG
843 BUG_ON(cfqg->nr_cfqq < 1);
844 cfqg->nr_cfqq--;
25bc6b07 845
1fa8f6d6
VG
846 /* If there are other cfq queues under this group, don't delete it */
847 if (cfqg->nr_cfqq)
848 return;
849
2868ef7b 850 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1fa8f6d6 851 cfqg->on_st = false;
58ff82f3
VG
852 cfqd->nr_groups--;
853 st->total_weight -= cfqg->weight;
1fa8f6d6
VG
854 if (!RB_EMPTY_NODE(&cfqg->rb_node))
855 cfq_rb_erase(&cfqg->rb_node, st);
dae739eb 856 cfqg->saved_workload_slice = 0;
22084190 857 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
858}
859
860static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
861{
862 unsigned int slice_used, allocated_slice;
863
864 /*
865 * Queue got expired before even a single request completed or
866 * got expired immediately after first request completion.
867 */
868 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
869 /*
870 * Also charge the seek time incurred to the group, otherwise
871 * if there are mutiple queues in the group, each can dispatch
872 * a single request on seeky media and cause lots of seek time
873 * and group will never know it.
874 */
875 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
876 1);
877 } else {
878 slice_used = jiffies - cfqq->slice_start;
879 allocated_slice = cfqq->slice_end - cfqq->slice_start;
880 if (slice_used > allocated_slice)
881 slice_used = allocated_slice;
882 }
883
22084190
VG
884 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
885 cfqq->nr_sectors);
dae739eb
VG
886 return slice_used;
887}
888
889static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
890 struct cfq_queue *cfqq)
891{
892 struct cfq_rb_root *st = &cfqd->grp_service_tree;
893 unsigned int used_sl;
894
895 used_sl = cfq_cfqq_slice_usage(cfqq);
896
897 /* Can't update vdisktime while group is on service tree */
898 cfq_rb_erase(&cfqg->rb_node, st);
899 cfqg->vdisktime += cfq_scale_slice(used_sl, cfqg);
900 __cfq_group_service_tree_add(st, cfqg);
901
902 /* This group is being expired. Save the context */
903 if (time_after(cfqd->workload_expires, jiffies)) {
904 cfqg->saved_workload_slice = cfqd->workload_expires
905 - jiffies;
906 cfqg->saved_workload = cfqd->serving_type;
907 cfqg->saved_serving_prio = cfqd->serving_prio;
908 } else
909 cfqg->saved_workload_slice = 0;
2868ef7b
VG
910
911 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
912 st->min_vdisktime);
22084190
VG
913 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
914 cfqq->nr_sectors);
1fa8f6d6
VG
915}
916
25fb5169
VG
917#ifdef CONFIG_CFQ_GROUP_IOSCHED
918static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
919{
920 if (blkg)
921 return container_of(blkg, struct cfq_group, blkg);
922 return NULL;
923}
924
925static struct cfq_group *
926cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
927{
928 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
929 struct cfq_group *cfqg = NULL;
930 void *key = cfqd;
931 int i, j;
932 struct cfq_rb_root *st;
22084190
VG
933 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
934 unsigned int major, minor;
25fb5169
VG
935
936 /* Do we need to take this reference */
937 if (!css_tryget(&blkcg->css))
938 return NULL;;
939
940 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
941 if (cfqg || !create)
942 goto done;
943
944 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
945 if (!cfqg)
946 goto done;
947
948 cfqg->weight = blkcg->weight;
949 for_each_cfqg_st(cfqg, i, j, st)
950 *st = CFQ_RB_ROOT;
951 RB_CLEAR_NODE(&cfqg->rb_node);
952
b1c35769
VG
953 /*
954 * Take the initial reference that will be released on destroy
955 * This can be thought of a joint reference by cgroup and
956 * elevator which will be dropped by either elevator exit
957 * or cgroup deletion path depending on who is exiting first.
958 */
959 atomic_set(&cfqg->ref, 1);
960
25fb5169 961 /* Add group onto cgroup list */
22084190
VG
962 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
963 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
964 MKDEV(major, minor));
25fb5169
VG
965
966 /* Add group on cfqd list */
967 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
968
969done:
970 css_put(&blkcg->css);
971 return cfqg;
972}
973
974/*
975 * Search for the cfq group current task belongs to. If create = 1, then also
976 * create the cfq group if it does not exist. request_queue lock must be held.
977 */
978static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
979{
980 struct cgroup *cgroup;
981 struct cfq_group *cfqg = NULL;
982
983 rcu_read_lock();
984 cgroup = task_cgroup(current, blkio_subsys_id);
985 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
986 if (!cfqg && create)
987 cfqg = &cfqd->root_group;
988 rcu_read_unlock();
989 return cfqg;
990}
991
992static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
993{
994 /* Currently, all async queues are mapped to root group */
995 if (!cfq_cfqq_sync(cfqq))
996 cfqg = &cfqq->cfqd->root_group;
997
998 cfqq->cfqg = cfqg;
b1c35769
VG
999 /* cfqq reference on cfqg */
1000 atomic_inc(&cfqq->cfqg->ref);
1001}
1002
1003static void cfq_put_cfqg(struct cfq_group *cfqg)
1004{
1005 struct cfq_rb_root *st;
1006 int i, j;
1007
1008 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1009 if (!atomic_dec_and_test(&cfqg->ref))
1010 return;
1011 for_each_cfqg_st(cfqg, i, j, st)
1012 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1013 kfree(cfqg);
1014}
1015
1016static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1017{
1018 /* Something wrong if we are trying to remove same group twice */
1019 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1020
1021 hlist_del_init(&cfqg->cfqd_node);
1022
1023 /*
1024 * Put the reference taken at the time of creation so that when all
1025 * queues are gone, group can be destroyed.
1026 */
1027 cfq_put_cfqg(cfqg);
1028}
1029
1030static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1031{
1032 struct hlist_node *pos, *n;
1033 struct cfq_group *cfqg;
1034
1035 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1036 /*
1037 * If cgroup removal path got to blk_group first and removed
1038 * it from cgroup list, then it will take care of destroying
1039 * cfqg also.
1040 */
1041 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1042 cfq_destroy_cfqg(cfqd, cfqg);
1043 }
25fb5169 1044}
b1c35769
VG
1045
1046/*
1047 * Blk cgroup controller notification saying that blkio_group object is being
1048 * delinked as associated cgroup object is going away. That also means that
1049 * no new IO will come in this group. So get rid of this group as soon as
1050 * any pending IO in the group is finished.
1051 *
1052 * This function is called under rcu_read_lock(). key is the rcu protected
1053 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1054 * read lock.
1055 *
1056 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1057 * it should not be NULL as even if elevator was exiting, cgroup deltion
1058 * path got to it first.
1059 */
1060void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1061{
1062 unsigned long flags;
1063 struct cfq_data *cfqd = key;
1064
1065 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1066 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1067 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1068}
1069
25fb5169
VG
1070#else /* GROUP_IOSCHED */
1071static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1072{
1073 return &cfqd->root_group;
1074}
1075static inline void
1076cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1077 cfqq->cfqg = cfqg;
1078}
1079
b1c35769
VG
1080static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1081static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1082
25fb5169
VG
1083#endif /* GROUP_IOSCHED */
1084
498d3aa2 1085/*
c0324a02 1086 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1087 * requests waiting to be processed. It is sorted in the order that
1088 * we will service the queues.
1089 */
a36e71f9 1090static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1091 bool add_front)
d9e7620e 1092{
0871714e
JA
1093 struct rb_node **p, *parent;
1094 struct cfq_queue *__cfqq;
d9e7620e 1095 unsigned long rb_key;
c0324a02 1096 struct cfq_rb_root *service_tree;
498d3aa2 1097 int left;
dae739eb 1098 int new_cfqq = 1;
d9e7620e 1099
cdb16e8f
VG
1100 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1101 cfqq_type(cfqq), cfqd);
0871714e
JA
1102 if (cfq_class_idle(cfqq)) {
1103 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1104 parent = rb_last(&service_tree->rb);
0871714e
JA
1105 if (parent && parent != &cfqq->rb_node) {
1106 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1107 rb_key += __cfqq->rb_key;
1108 } else
1109 rb_key += jiffies;
1110 } else if (!add_front) {
b9c8946b
JA
1111 /*
1112 * Get our rb key offset. Subtract any residual slice
1113 * value carried from last service. A negative resid
1114 * count indicates slice overrun, and this should position
1115 * the next service time further away in the tree.
1116 */
edd75ffd 1117 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1118 rb_key -= cfqq->slice_resid;
edd75ffd 1119 cfqq->slice_resid = 0;
48e025e6
CZ
1120 } else {
1121 rb_key = -HZ;
aa6f6a3d 1122 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1123 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1124 }
1da177e4 1125
d9e7620e 1126 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1127 new_cfqq = 0;
99f9628a 1128 /*
d9e7620e 1129 * same position, nothing more to do
99f9628a 1130 */
c0324a02
CZ
1131 if (rb_key == cfqq->rb_key &&
1132 cfqq->service_tree == service_tree)
d9e7620e 1133 return;
1da177e4 1134
aa6f6a3d
CZ
1135 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1136 cfqq->service_tree = NULL;
1da177e4 1137 }
d9e7620e 1138
498d3aa2 1139 left = 1;
0871714e 1140 parent = NULL;
aa6f6a3d
CZ
1141 cfqq->service_tree = service_tree;
1142 p = &service_tree->rb.rb_node;
d9e7620e 1143 while (*p) {
67060e37 1144 struct rb_node **n;
cc09e299 1145
d9e7620e
JA
1146 parent = *p;
1147 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1148
0c534e0a 1149 /*
c0324a02 1150 * sort by key, that represents service time.
0c534e0a 1151 */
c0324a02 1152 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1153 n = &(*p)->rb_left;
c0324a02 1154 else {
67060e37 1155 n = &(*p)->rb_right;
cc09e299 1156 left = 0;
c0324a02 1157 }
67060e37
JA
1158
1159 p = n;
d9e7620e
JA
1160 }
1161
cc09e299 1162 if (left)
aa6f6a3d 1163 service_tree->left = &cfqq->rb_node;
cc09e299 1164
d9e7620e
JA
1165 cfqq->rb_key = rb_key;
1166 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1167 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1168 service_tree->count++;
dae739eb
VG
1169 if (add_front || !new_cfqq)
1170 return;
1fa8f6d6 1171 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1da177e4
LT
1172}
1173
a36e71f9 1174static struct cfq_queue *
f2d1f0ae
JA
1175cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1176 sector_t sector, struct rb_node **ret_parent,
1177 struct rb_node ***rb_link)
a36e71f9 1178{
a36e71f9
JA
1179 struct rb_node **p, *parent;
1180 struct cfq_queue *cfqq = NULL;
1181
1182 parent = NULL;
1183 p = &root->rb_node;
1184 while (*p) {
1185 struct rb_node **n;
1186
1187 parent = *p;
1188 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1189
1190 /*
1191 * Sort strictly based on sector. Smallest to the left,
1192 * largest to the right.
1193 */
2e46e8b2 1194 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1195 n = &(*p)->rb_right;
2e46e8b2 1196 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1197 n = &(*p)->rb_left;
1198 else
1199 break;
1200 p = n;
3ac6c9f8 1201 cfqq = NULL;
a36e71f9
JA
1202 }
1203
1204 *ret_parent = parent;
1205 if (rb_link)
1206 *rb_link = p;
3ac6c9f8 1207 return cfqq;
a36e71f9
JA
1208}
1209
1210static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1211{
a36e71f9
JA
1212 struct rb_node **p, *parent;
1213 struct cfq_queue *__cfqq;
1214
f2d1f0ae
JA
1215 if (cfqq->p_root) {
1216 rb_erase(&cfqq->p_node, cfqq->p_root);
1217 cfqq->p_root = NULL;
1218 }
a36e71f9
JA
1219
1220 if (cfq_class_idle(cfqq))
1221 return;
1222 if (!cfqq->next_rq)
1223 return;
1224
f2d1f0ae 1225 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1226 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1227 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1228 if (!__cfqq) {
1229 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1230 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1231 } else
1232 cfqq->p_root = NULL;
a36e71f9
JA
1233}
1234
498d3aa2
JA
1235/*
1236 * Update cfqq's position in the service tree.
1237 */
edd75ffd 1238static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1239{
6d048f53
JA
1240 /*
1241 * Resorting requires the cfqq to be on the RR list already.
1242 */
a36e71f9 1243 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1244 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1245 cfq_prio_tree_add(cfqd, cfqq);
1246 }
6d048f53
JA
1247}
1248
1da177e4
LT
1249/*
1250 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1251 * the pending list according to last request service
1da177e4 1252 */
febffd61 1253static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1254{
7b679138 1255 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1256 BUG_ON(cfq_cfqq_on_rr(cfqq));
1257 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
1258 cfqd->busy_queues++;
1259
edd75ffd 1260 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1261}
1262
498d3aa2
JA
1263/*
1264 * Called when the cfqq no longer has requests pending, remove it from
1265 * the service tree.
1266 */
febffd61 1267static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1268{
7b679138 1269 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1270 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1271 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1272
aa6f6a3d
CZ
1273 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1274 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1275 cfqq->service_tree = NULL;
1276 }
f2d1f0ae
JA
1277 if (cfqq->p_root) {
1278 rb_erase(&cfqq->p_node, cfqq->p_root);
1279 cfqq->p_root = NULL;
1280 }
d9e7620e 1281
1fa8f6d6 1282 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1da177e4
LT
1283 BUG_ON(!cfqd->busy_queues);
1284 cfqd->busy_queues--;
1285}
1286
1287/*
1288 * rb tree support functions
1289 */
febffd61 1290static void cfq_del_rq_rb(struct request *rq)
1da177e4 1291{
5e705374 1292 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1293 const int sync = rq_is_sync(rq);
1da177e4 1294
b4878f24
JA
1295 BUG_ON(!cfqq->queued[sync]);
1296 cfqq->queued[sync]--;
1da177e4 1297
5e705374 1298 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1299
f04a6424
VG
1300 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1301 /*
1302 * Queue will be deleted from service tree when we actually
1303 * expire it later. Right now just remove it from prio tree
1304 * as it is empty.
1305 */
1306 if (cfqq->p_root) {
1307 rb_erase(&cfqq->p_node, cfqq->p_root);
1308 cfqq->p_root = NULL;
1309 }
1310 }
1da177e4
LT
1311}
1312
5e705374 1313static void cfq_add_rq_rb(struct request *rq)
1da177e4 1314{
5e705374 1315 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1316 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 1317 struct request *__alias, *prev;
1da177e4 1318
5380a101 1319 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
1320
1321 /*
1322 * looks a little odd, but the first insert might return an alias.
1323 * if that happens, put the alias on the dispatch list
1324 */
21183b07 1325 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 1326 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
1327
1328 if (!cfq_cfqq_on_rr(cfqq))
1329 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1330
1331 /*
1332 * check if this request is a better next-serve candidate
1333 */
a36e71f9 1334 prev = cfqq->next_rq;
cf7c25cf 1335 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1336
1337 /*
1338 * adjust priority tree position, if ->next_rq changes
1339 */
1340 if (prev != cfqq->next_rq)
1341 cfq_prio_tree_add(cfqd, cfqq);
1342
5044eed4 1343 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1344}
1345
febffd61 1346static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1347{
5380a101
JA
1348 elv_rb_del(&cfqq->sort_list, rq);
1349 cfqq->queued[rq_is_sync(rq)]--;
5e705374 1350 cfq_add_rq_rb(rq);
1da177e4
LT
1351}
1352
206dc69b
JA
1353static struct request *
1354cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1355{
206dc69b 1356 struct task_struct *tsk = current;
91fac317 1357 struct cfq_io_context *cic;
206dc69b 1358 struct cfq_queue *cfqq;
1da177e4 1359
4ac845a2 1360 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1361 if (!cic)
1362 return NULL;
1363
1364 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1365 if (cfqq) {
1366 sector_t sector = bio->bi_sector + bio_sectors(bio);
1367
21183b07 1368 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1369 }
1da177e4 1370
1da177e4
LT
1371 return NULL;
1372}
1373
165125e1 1374static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1375{
22e2c507 1376 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1377
5ad531db 1378 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 1379 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 1380 rq_in_driver(cfqd));
25776e35 1381
5b93629b 1382 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1383}
1384
165125e1 1385static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1386{
b4878f24 1387 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 1388 const int sync = rq_is_sync(rq);
b4878f24 1389
5ad531db
JA
1390 WARN_ON(!cfqd->rq_in_driver[sync]);
1391 cfqd->rq_in_driver[sync]--;
7b679138 1392 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 1393 rq_in_driver(cfqd));
1da177e4
LT
1394}
1395
b4878f24 1396static void cfq_remove_request(struct request *rq)
1da177e4 1397{
5e705374 1398 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1399
5e705374
JA
1400 if (cfqq->next_rq == rq)
1401 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1402
b4878f24 1403 list_del_init(&rq->queuelist);
5e705374 1404 cfq_del_rq_rb(rq);
374f84ac 1405
45333d5a 1406 cfqq->cfqd->rq_queued--;
374f84ac
JA
1407 if (rq_is_meta(rq)) {
1408 WARN_ON(!cfqq->meta_pending);
1409 cfqq->meta_pending--;
1410 }
1da177e4
LT
1411}
1412
165125e1
JA
1413static int cfq_merge(struct request_queue *q, struct request **req,
1414 struct bio *bio)
1da177e4
LT
1415{
1416 struct cfq_data *cfqd = q->elevator->elevator_data;
1417 struct request *__rq;
1da177e4 1418
206dc69b 1419 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1420 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1421 *req = __rq;
1422 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1423 }
1424
1425 return ELEVATOR_NO_MERGE;
1da177e4
LT
1426}
1427
165125e1 1428static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1429 int type)
1da177e4 1430{
21183b07 1431 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1432 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1433
5e705374 1434 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1435 }
1da177e4
LT
1436}
1437
1438static void
165125e1 1439cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1440 struct request *next)
1441{
cf7c25cf 1442 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1443 /*
1444 * reposition in fifo if next is older than rq
1445 */
1446 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1447 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1448 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1449 rq_set_fifo_time(rq, rq_fifo_time(next));
1450 }
22e2c507 1451
cf7c25cf
CZ
1452 if (cfqq->next_rq == next)
1453 cfqq->next_rq = rq;
b4878f24 1454 cfq_remove_request(next);
22e2c507
JA
1455}
1456
165125e1 1457static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1458 struct bio *bio)
1459{
1460 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1461 struct cfq_io_context *cic;
da775265 1462 struct cfq_queue *cfqq;
da775265 1463
8682e1f1
VG
1464 /* Deny merge if bio and rq don't belong to same cfq group */
1465 if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
1466 return false;
da775265 1467 /*
ec8acb69 1468 * Disallow merge of a sync bio into an async request.
da775265 1469 */
91fac317 1470 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1471 return false;
da775265
JA
1472
1473 /*
719d3402
JA
1474 * Lookup the cfqq that this bio will be queued with. Allow
1475 * merge only if rq is queued there.
da775265 1476 */
4ac845a2 1477 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1478 if (!cic)
a6151c3a 1479 return false;
719d3402 1480
91fac317 1481 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1482 return cfqq == RQ_CFQQ(rq);
da775265
JA
1483}
1484
febffd61
JA
1485static void __cfq_set_active_queue(struct cfq_data *cfqd,
1486 struct cfq_queue *cfqq)
22e2c507
JA
1487{
1488 if (cfqq) {
7b679138 1489 cfq_log_cfqq(cfqd, cfqq, "set_active");
dae739eb
VG
1490 cfqq->slice_start = 0;
1491 cfqq->dispatch_start = jiffies;
22e2c507 1492 cfqq->slice_end = 0;
2f5cb738 1493 cfqq->slice_dispatch = 0;
22084190 1494 cfqq->nr_sectors = 0;
2f5cb738 1495
2f5cb738 1496 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1497 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1498 cfq_clear_cfqq_must_alloc_slice(cfqq);
1499 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1500 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1501
1502 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1503 }
1504
1505 cfqd->active_queue = cfqq;
1506}
1507
7b14e3b5
JA
1508/*
1509 * current cfqq expired its slice (or was too idle), select new one
1510 */
1511static void
1512__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1513 bool timed_out)
7b14e3b5 1514{
7b679138
JA
1515 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1516
7b14e3b5
JA
1517 if (cfq_cfqq_wait_request(cfqq))
1518 del_timer(&cfqd->idle_slice_timer);
1519
7b14e3b5
JA
1520 cfq_clear_cfqq_wait_request(cfqq);
1521
1522 /*
6084cdda 1523 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1524 */
7b679138 1525 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1526 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1527 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1528 }
7b14e3b5 1529
dae739eb
VG
1530 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1531
f04a6424
VG
1532 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1533 cfq_del_cfqq_rr(cfqd, cfqq);
1534
edd75ffd 1535 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1536
1537 if (cfqq == cfqd->active_queue)
1538 cfqd->active_queue = NULL;
1539
dae739eb
VG
1540 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1541 cfqd->grp_service_tree.active = NULL;
1542
7b14e3b5
JA
1543 if (cfqd->active_cic) {
1544 put_io_context(cfqd->active_cic->ioc);
1545 cfqd->active_cic = NULL;
1546 }
7b14e3b5
JA
1547}
1548
a6151c3a 1549static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1550{
1551 struct cfq_queue *cfqq = cfqd->active_queue;
1552
1553 if (cfqq)
6084cdda 1554 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1555}
1556
498d3aa2
JA
1557/*
1558 * Get next queue for service. Unless we have a queue preemption,
1559 * we'll simply select the first cfqq in the service tree.
1560 */
6d048f53 1561static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1562{
c0324a02 1563 struct cfq_rb_root *service_tree =
cdb16e8f
VG
1564 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1565 cfqd->serving_type, cfqd);
d9e7620e 1566
f04a6424
VG
1567 if (!cfqd->rq_queued)
1568 return NULL;
1569
1fa8f6d6
VG
1570 /* There is nothing to dispatch */
1571 if (!service_tree)
1572 return NULL;
c0324a02
CZ
1573 if (RB_EMPTY_ROOT(&service_tree->rb))
1574 return NULL;
1575 return cfq_rb_first(service_tree);
6d048f53
JA
1576}
1577
f04a6424
VG
1578static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1579{
25fb5169 1580 struct cfq_group *cfqg;
f04a6424
VG
1581 struct cfq_queue *cfqq;
1582 int i, j;
1583 struct cfq_rb_root *st;
1584
1585 if (!cfqd->rq_queued)
1586 return NULL;
1587
25fb5169
VG
1588 cfqg = cfq_get_next_cfqg(cfqd);
1589 if (!cfqg)
1590 return NULL;
1591
f04a6424
VG
1592 for_each_cfqg_st(cfqg, i, j, st)
1593 if ((cfqq = cfq_rb_first(st)) != NULL)
1594 return cfqq;
1595 return NULL;
1596}
1597
498d3aa2
JA
1598/*
1599 * Get and set a new active queue for service.
1600 */
a36e71f9
JA
1601static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1602 struct cfq_queue *cfqq)
6d048f53 1603{
e00ef799 1604 if (!cfqq)
a36e71f9 1605 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1606
22e2c507 1607 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1608 return cfqq;
22e2c507
JA
1609}
1610
d9e7620e
JA
1611static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1612 struct request *rq)
1613{
83096ebf
TH
1614 if (blk_rq_pos(rq) >= cfqd->last_position)
1615 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1616 else
83096ebf 1617 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1618}
1619
b2c18e1e
JM
1620#define CFQQ_SEEK_THR 8 * 1024
1621#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1622
b2c18e1e
JM
1623static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1624 struct request *rq)
6d048f53 1625{
b2c18e1e 1626 sector_t sdist = cfqq->seek_mean;
6d048f53 1627
b2c18e1e
JM
1628 if (!sample_valid(cfqq->seek_samples))
1629 sdist = CFQQ_SEEK_THR;
6d048f53 1630
04dc6e71 1631 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1632}
1633
a36e71f9
JA
1634static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1635 struct cfq_queue *cur_cfqq)
1636{
f2d1f0ae 1637 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1638 struct rb_node *parent, *node;
1639 struct cfq_queue *__cfqq;
1640 sector_t sector = cfqd->last_position;
1641
1642 if (RB_EMPTY_ROOT(root))
1643 return NULL;
1644
1645 /*
1646 * First, if we find a request starting at the end of the last
1647 * request, choose it.
1648 */
f2d1f0ae 1649 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1650 if (__cfqq)
1651 return __cfqq;
1652
1653 /*
1654 * If the exact sector wasn't found, the parent of the NULL leaf
1655 * will contain the closest sector.
1656 */
1657 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1658 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1659 return __cfqq;
1660
2e46e8b2 1661 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1662 node = rb_next(&__cfqq->p_node);
1663 else
1664 node = rb_prev(&__cfqq->p_node);
1665 if (!node)
1666 return NULL;
1667
1668 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1669 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1670 return __cfqq;
1671
1672 return NULL;
1673}
1674
1675/*
1676 * cfqd - obvious
1677 * cur_cfqq - passed in so that we don't decide that the current queue is
1678 * closely cooperating with itself.
1679 *
1680 * So, basically we're assuming that that cur_cfqq has dispatched at least
1681 * one request, and that cfqd->last_position reflects a position on the disk
1682 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1683 * assumption.
1684 */
1685static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1686 struct cfq_queue *cur_cfqq)
6d048f53 1687{
a36e71f9
JA
1688 struct cfq_queue *cfqq;
1689
e6c5bc73
JM
1690 if (!cfq_cfqq_sync(cur_cfqq))
1691 return NULL;
1692 if (CFQQ_SEEKY(cur_cfqq))
1693 return NULL;
1694
6d048f53 1695 /*
d9e7620e
JA
1696 * We should notice if some of the queues are cooperating, eg
1697 * working closely on the same area of the disk. In that case,
1698 * we can group them together and don't waste time idling.
6d048f53 1699 */
a36e71f9
JA
1700 cfqq = cfqq_close(cfqd, cur_cfqq);
1701 if (!cfqq)
1702 return NULL;
1703
8682e1f1
VG
1704 /* If new queue belongs to different cfq_group, don't choose it */
1705 if (cur_cfqq->cfqg != cfqq->cfqg)
1706 return NULL;
1707
df5fe3e8
JM
1708 /*
1709 * It only makes sense to merge sync queues.
1710 */
1711 if (!cfq_cfqq_sync(cfqq))
1712 return NULL;
e6c5bc73
JM
1713 if (CFQQ_SEEKY(cfqq))
1714 return NULL;
df5fe3e8 1715
c0324a02
CZ
1716 /*
1717 * Do not merge queues of different priority classes
1718 */
1719 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1720 return NULL;
1721
a36e71f9 1722 return cfqq;
6d048f53
JA
1723}
1724
a6d44e98
CZ
1725/*
1726 * Determine whether we should enforce idle window for this queue.
1727 */
1728
1729static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1730{
1731 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1732 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1733
f04a6424
VG
1734 BUG_ON(!service_tree);
1735 BUG_ON(!service_tree->count);
1736
a6d44e98
CZ
1737 /* We never do for idle class queues. */
1738 if (prio == IDLE_WORKLOAD)
1739 return false;
1740
1741 /* We do for queues that were marked with idle window flag. */
1742 if (cfq_cfqq_idle_window(cfqq))
1743 return true;
1744
1745 /*
1746 * Otherwise, we do only if they are the last ones
1747 * in their service tree.
1748 */
f04a6424 1749 return service_tree->count == 1;
a6d44e98
CZ
1750}
1751
6d048f53 1752static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1753{
1792669c 1754 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1755 struct cfq_io_context *cic;
7b14e3b5
JA
1756 unsigned long sl;
1757
a68bbddb 1758 /*
f7d7b7a7
JA
1759 * SSD device without seek penalty, disable idling. But only do so
1760 * for devices that support queuing, otherwise we still have a problem
1761 * with sync vs async workloads.
a68bbddb 1762 */
f7d7b7a7 1763 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1764 return;
1765
dd67d051 1766 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1767 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1768
1769 /*
1770 * idle is disabled, either manually or by past process history
1771 */
a6d44e98 1772 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1773 return;
1774
7b679138 1775 /*
8e550632 1776 * still active requests from this queue, don't idle
7b679138 1777 */
8e550632 1778 if (cfqq->dispatched)
7b679138
JA
1779 return;
1780
22e2c507
JA
1781 /*
1782 * task has exited, don't wait
1783 */
206dc69b 1784 cic = cfqd->active_cic;
66dac98e 1785 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1786 return;
1787
355b659c
CZ
1788 /*
1789 * If our average think time is larger than the remaining time
1790 * slice, then don't idle. This avoids overrunning the allotted
1791 * time slice.
1792 */
1793 if (sample_valid(cic->ttime_samples) &&
1794 (cfqq->slice_end - jiffies < cic->ttime_mean))
1795 return;
1796
3b18152c 1797 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1798
6d048f53 1799 sl = cfqd->cfq_slice_idle;
206dc69b 1800
7b14e3b5 1801 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1802 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1803}
1804
498d3aa2
JA
1805/*
1806 * Move request from internal lists to the request queue dispatch list.
1807 */
165125e1 1808static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1809{
3ed9a296 1810 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1811 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1812
7b679138
JA
1813 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1814
06d21886 1815 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1816 cfq_remove_request(rq);
6d048f53 1817 cfqq->dispatched++;
5380a101 1818 elv_dispatch_sort(q, rq);
3ed9a296
JA
1819
1820 if (cfq_cfqq_sync(cfqq))
1821 cfqd->sync_flight++;
22084190 1822 cfqq->nr_sectors += blk_rq_sectors(rq);
1da177e4
LT
1823}
1824
1825/*
1826 * return expired entry, or NULL to just start from scratch in rbtree
1827 */
febffd61 1828static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1829{
30996f40 1830 struct request *rq = NULL;
1da177e4 1831
3b18152c 1832 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1833 return NULL;
cb887411
JA
1834
1835 cfq_mark_cfqq_fifo_expire(cfqq);
1836
89850f7e
JA
1837 if (list_empty(&cfqq->fifo))
1838 return NULL;
1da177e4 1839
89850f7e 1840 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1841 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1842 rq = NULL;
1da177e4 1843
30996f40 1844 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1845 return rq;
1da177e4
LT
1846}
1847
22e2c507
JA
1848static inline int
1849cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1850{
1851 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1852
22e2c507 1853 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1854
22e2c507 1855 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1856}
1857
df5fe3e8
JM
1858/*
1859 * Must be called with the queue_lock held.
1860 */
1861static int cfqq_process_refs(struct cfq_queue *cfqq)
1862{
1863 int process_refs, io_refs;
1864
1865 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1866 process_refs = atomic_read(&cfqq->ref) - io_refs;
1867 BUG_ON(process_refs < 0);
1868 return process_refs;
1869}
1870
1871static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1872{
e6c5bc73 1873 int process_refs, new_process_refs;
df5fe3e8
JM
1874 struct cfq_queue *__cfqq;
1875
1876 /* Avoid a circular list and skip interim queue merges */
1877 while ((__cfqq = new_cfqq->new_cfqq)) {
1878 if (__cfqq == cfqq)
1879 return;
1880 new_cfqq = __cfqq;
1881 }
1882
1883 process_refs = cfqq_process_refs(cfqq);
1884 /*
1885 * If the process for the cfqq has gone away, there is no
1886 * sense in merging the queues.
1887 */
1888 if (process_refs == 0)
1889 return;
1890
e6c5bc73
JM
1891 /*
1892 * Merge in the direction of the lesser amount of work.
1893 */
1894 new_process_refs = cfqq_process_refs(new_cfqq);
1895 if (new_process_refs >= process_refs) {
1896 cfqq->new_cfqq = new_cfqq;
1897 atomic_add(process_refs, &new_cfqq->ref);
1898 } else {
1899 new_cfqq->new_cfqq = cfqq;
1900 atomic_add(new_process_refs, &cfqq->ref);
1901 }
df5fe3e8
JM
1902}
1903
cdb16e8f
VG
1904static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1905 struct cfq_group *cfqg, enum wl_prio_t prio,
1906 bool prio_changed)
718eee05
CZ
1907{
1908 struct cfq_queue *queue;
1909 int i;
1910 bool key_valid = false;
1911 unsigned long lowest_key = 0;
1912 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1913
1914 if (prio_changed) {
1915 /*
1916 * When priorities switched, we prefer starting
1917 * from SYNC_NOIDLE (first choice), or just SYNC
1918 * over ASYNC
1919 */
cdb16e8f 1920 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1921 return cur_best;
1922 cur_best = SYNC_WORKLOAD;
cdb16e8f 1923 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1924 return cur_best;
1925
1926 return ASYNC_WORKLOAD;
1927 }
1928
1929 for (i = 0; i < 3; ++i) {
1930 /* otherwise, select the one with lowest rb_key */
cdb16e8f 1931 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
718eee05
CZ
1932 if (queue &&
1933 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1934 lowest_key = queue->rb_key;
1935 cur_best = i;
1936 key_valid = true;
1937 }
1938 }
1939
1940 return cur_best;
1941}
1942
cdb16e8f 1943static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05
CZ
1944{
1945 enum wl_prio_t previous_prio = cfqd->serving_prio;
1946 bool prio_changed;
1947 unsigned slice;
1948 unsigned count;
cdb16e8f 1949 struct cfq_rb_root *st;
58ff82f3 1950 unsigned group_slice;
718eee05 1951
1fa8f6d6
VG
1952 if (!cfqg) {
1953 cfqd->serving_prio = IDLE_WORKLOAD;
1954 cfqd->workload_expires = jiffies + 1;
1955 return;
1956 }
1957
718eee05 1958 /* Choose next priority. RT > BE > IDLE */
58ff82f3 1959 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 1960 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 1961 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
1962 cfqd->serving_prio = BE_WORKLOAD;
1963 else {
1964 cfqd->serving_prio = IDLE_WORKLOAD;
1965 cfqd->workload_expires = jiffies + 1;
1966 return;
1967 }
1968
1969 /*
1970 * For RT and BE, we have to choose also the type
1971 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1972 * expiration time
1973 */
1974 prio_changed = (cfqd->serving_prio != previous_prio);
cdb16e8f
VG
1975 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1976 cfqd);
1977 count = st->count;
718eee05
CZ
1978
1979 /*
1980 * If priority didn't change, check workload expiration,
1981 * and that we still have other queues ready
1982 */
1983 if (!prio_changed && count &&
1984 !time_after(jiffies, cfqd->workload_expires))
1985 return;
1986
1987 /* otherwise select new workload type */
1988 cfqd->serving_type =
cdb16e8f
VG
1989 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1990 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1991 cfqd);
1992 count = st->count;
718eee05
CZ
1993
1994 /*
1995 * the workload slice is computed as a fraction of target latency
1996 * proportional to the number of queues in that workload, over
1997 * all the queues in the same priority class
1998 */
58ff82f3
VG
1999 group_slice = cfq_group_slice(cfqd, cfqg);
2000
2001 slice = group_slice * count /
2002 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2003 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05
CZ
2004
2005 if (cfqd->serving_type == ASYNC_WORKLOAD)
2006 /* async workload slice is scaled down according to
2007 * the sync/async slice ratio. */
2008 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2009 else
2010 /* sync workload slice is at least 2 * cfq_slice_idle */
2011 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2012
2013 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2014 cfqd->workload_expires = jiffies + slice;
8e550632 2015 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
2016}
2017
1fa8f6d6
VG
2018static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2019{
2020 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2021 struct cfq_group *cfqg;
1fa8f6d6
VG
2022
2023 if (RB_EMPTY_ROOT(&st->rb))
2024 return NULL;
25bc6b07
VG
2025 cfqg = cfq_rb_first_group(st);
2026 st->active = &cfqg->rb_node;
2027 update_min_vdisktime(st);
2028 return cfqg;
1fa8f6d6
VG
2029}
2030
cdb16e8f
VG
2031static void cfq_choose_cfqg(struct cfq_data *cfqd)
2032{
1fa8f6d6
VG
2033 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2034
2035 cfqd->serving_group = cfqg;
dae739eb
VG
2036
2037 /* Restore the workload type data */
2038 if (cfqg->saved_workload_slice) {
2039 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2040 cfqd->serving_type = cfqg->saved_workload;
2041 cfqd->serving_prio = cfqg->saved_serving_prio;
2042 }
1fa8f6d6 2043 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2044}
2045
22e2c507 2046/*
498d3aa2
JA
2047 * Select a queue for service. If we have a current active queue,
2048 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2049 */
1b5ed5e1 2050static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2051{
a36e71f9 2052 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2053
22e2c507
JA
2054 cfqq = cfqd->active_queue;
2055 if (!cfqq)
2056 goto new_queue;
1da177e4 2057
f04a6424
VG
2058 if (!cfqd->rq_queued)
2059 return NULL;
22e2c507 2060 /*
6d048f53 2061 * The active queue has run out of time, expire it and select new.
22e2c507 2062 */
b029195d 2063 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 2064 goto expire;
1da177e4 2065
22e2c507 2066 /*
6d048f53
JA
2067 * The active queue has requests and isn't expired, allow it to
2068 * dispatch.
22e2c507 2069 */
dd67d051 2070 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2071 goto keep_queue;
6d048f53 2072
a36e71f9
JA
2073 /*
2074 * If another queue has a request waiting within our mean seek
2075 * distance, let it run. The expire code will check for close
2076 * cooperators and put the close queue at the front of the service
df5fe3e8 2077 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2078 */
b3b6d040 2079 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2080 if (new_cfqq) {
2081 if (!cfqq->new_cfqq)
2082 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2083 goto expire;
df5fe3e8 2084 }
a36e71f9 2085
6d048f53
JA
2086 /*
2087 * No requests pending. If the active queue still has requests in
2088 * flight or is idling for a new request, allow either of these
2089 * conditions to happen (or time out) before selecting a new queue.
2090 */
cc197479 2091 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 2092 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
2093 cfqq = NULL;
2094 goto keep_queue;
22e2c507
JA
2095 }
2096
3b18152c 2097expire:
6084cdda 2098 cfq_slice_expired(cfqd, 0);
3b18152c 2099new_queue:
718eee05
CZ
2100 /*
2101 * Current queue expired. Check if we have to switch to a new
2102 * service tree
2103 */
2104 if (!new_cfqq)
cdb16e8f 2105 cfq_choose_cfqg(cfqd);
718eee05 2106
a36e71f9 2107 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2108keep_queue:
3b18152c 2109 return cfqq;
22e2c507
JA
2110}
2111
febffd61 2112static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2113{
2114 int dispatched = 0;
2115
2116 while (cfqq->next_rq) {
2117 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2118 dispatched++;
2119 }
2120
2121 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2122
2123 /* By default cfqq is not expired if it is empty. Do it explicitly */
2124 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2125 return dispatched;
2126}
2127
498d3aa2
JA
2128/*
2129 * Drain our current requests. Used for barriers and when switching
2130 * io schedulers on-the-fly.
2131 */
d9e7620e 2132static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2133{
0871714e 2134 struct cfq_queue *cfqq;
d9e7620e 2135 int dispatched = 0;
cdb16e8f 2136
f04a6424
VG
2137 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2138 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 2139
6084cdda 2140 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
2141 BUG_ON(cfqd->busy_queues);
2142
6923715a 2143 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2144 return dispatched;
2145}
2146
0b182d61 2147static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2148{
2f5cb738 2149 unsigned int max_dispatch;
22e2c507 2150
5ad531db
JA
2151 /*
2152 * Drain async requests before we start sync IO
2153 */
a6d44e98 2154 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 2155 return false;
5ad531db 2156
2f5cb738
JA
2157 /*
2158 * If this is an async queue and we have sync IO in flight, let it wait
2159 */
2160 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 2161 return false;
2f5cb738
JA
2162
2163 max_dispatch = cfqd->cfq_quantum;
2164 if (cfq_class_idle(cfqq))
2165 max_dispatch = 1;
b4878f24 2166
2f5cb738
JA
2167 /*
2168 * Does this cfqq already have too much IO in flight?
2169 */
2170 if (cfqq->dispatched >= max_dispatch) {
2171 /*
2172 * idle queue must always only have a single IO in flight
2173 */
3ed9a296 2174 if (cfq_class_idle(cfqq))
0b182d61 2175 return false;
3ed9a296 2176
2f5cb738
JA
2177 /*
2178 * We have other queues, don't allow more IO from this one
2179 */
2180 if (cfqd->busy_queues > 1)
0b182d61 2181 return false;
9ede209e 2182
365722bb 2183 /*
474b18cc 2184 * Sole queue user, no limit
365722bb 2185 */
474b18cc 2186 max_dispatch = -1;
8e296755
JA
2187 }
2188
2189 /*
2190 * Async queues must wait a bit before being allowed dispatch.
2191 * We also ramp up the dispatch depth gradually for async IO,
2192 * based on the last sync IO we serviced
2193 */
963b72fc 2194 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
2195 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
2196 unsigned int depth;
365722bb 2197
61f0c1dc 2198 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2199 if (!depth && !cfqq->dispatched)
2200 depth = 1;
8e296755
JA
2201 if (depth < max_dispatch)
2202 max_dispatch = depth;
2f5cb738 2203 }
3ed9a296 2204
0b182d61
JA
2205 /*
2206 * If we're below the current max, allow a dispatch
2207 */
2208 return cfqq->dispatched < max_dispatch;
2209}
2210
2211/*
2212 * Dispatch a request from cfqq, moving them to the request queue
2213 * dispatch list.
2214 */
2215static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2216{
2217 struct request *rq;
2218
2219 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2220
2221 if (!cfq_may_dispatch(cfqd, cfqq))
2222 return false;
2223
2224 /*
2225 * follow expired path, else get first next available
2226 */
2227 rq = cfq_check_fifo(cfqq);
2228 if (!rq)
2229 rq = cfqq->next_rq;
2230
2231 /*
2232 * insert request into driver dispatch list
2233 */
2234 cfq_dispatch_insert(cfqd->queue, rq);
2235
2236 if (!cfqd->active_cic) {
2237 struct cfq_io_context *cic = RQ_CIC(rq);
2238
2239 atomic_long_inc(&cic->ioc->refcount);
2240 cfqd->active_cic = cic;
2241 }
2242
2243 return true;
2244}
2245
2246/*
2247 * Find the cfqq that we need to service and move a request from that to the
2248 * dispatch list
2249 */
2250static int cfq_dispatch_requests(struct request_queue *q, int force)
2251{
2252 struct cfq_data *cfqd = q->elevator->elevator_data;
2253 struct cfq_queue *cfqq;
2254
2255 if (!cfqd->busy_queues)
2256 return 0;
2257
2258 if (unlikely(force))
2259 return cfq_forced_dispatch(cfqd);
2260
2261 cfqq = cfq_select_queue(cfqd);
2262 if (!cfqq)
8e296755
JA
2263 return 0;
2264
2f5cb738 2265 /*
0b182d61 2266 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2267 */
0b182d61
JA
2268 if (!cfq_dispatch_request(cfqd, cfqq))
2269 return 0;
2270
2f5cb738 2271 cfqq->slice_dispatch++;
b029195d 2272 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2273
2f5cb738
JA
2274 /*
2275 * expire an async queue immediately if it has used up its slice. idle
2276 * queue always expire after 1 dispatch round.
2277 */
2278 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2279 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2280 cfq_class_idle(cfqq))) {
2281 cfqq->slice_end = jiffies + 1;
2282 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2283 }
2284
b217a903 2285 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2286 return 1;
1da177e4
LT
2287}
2288
1da177e4 2289/*
5e705374
JA
2290 * task holds one reference to the queue, dropped when task exits. each rq
2291 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2292 *
b1c35769 2293 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2294 * queue lock must be held here.
2295 */
2296static void cfq_put_queue(struct cfq_queue *cfqq)
2297{
22e2c507 2298 struct cfq_data *cfqd = cfqq->cfqd;
b1c35769 2299 struct cfq_group *cfqg;
22e2c507
JA
2300
2301 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
2302
2303 if (!atomic_dec_and_test(&cfqq->ref))
2304 return;
2305
7b679138 2306 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2307 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2308 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2309 cfqg = cfqq->cfqg;
1da177e4 2310
28f95cbc 2311 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 2312 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2313 cfq_schedule_dispatch(cfqd);
28f95cbc 2314 }
22e2c507 2315
f04a6424 2316 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2317 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2318 cfq_put_cfqg(cfqg);
1da177e4
LT
2319}
2320
d6de8be7
JA
2321/*
2322 * Must always be called with the rcu_read_lock() held
2323 */
07416d29
JA
2324static void
2325__call_for_each_cic(struct io_context *ioc,
2326 void (*func)(struct io_context *, struct cfq_io_context *))
2327{
2328 struct cfq_io_context *cic;
2329 struct hlist_node *n;
2330
2331 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2332 func(ioc, cic);
2333}
2334
4ac845a2 2335/*
34e6bbf2 2336 * Call func for each cic attached to this ioc.
4ac845a2 2337 */
34e6bbf2 2338static void
4ac845a2
JA
2339call_for_each_cic(struct io_context *ioc,
2340 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 2341{
4ac845a2 2342 rcu_read_lock();
07416d29 2343 __call_for_each_cic(ioc, func);
4ac845a2 2344 rcu_read_unlock();
34e6bbf2
FC
2345}
2346
2347static void cfq_cic_free_rcu(struct rcu_head *head)
2348{
2349 struct cfq_io_context *cic;
2350
2351 cic = container_of(head, struct cfq_io_context, rcu_head);
2352
2353 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 2354 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 2355
9a11b4ed
JA
2356 if (ioc_gone) {
2357 /*
2358 * CFQ scheduler is exiting, grab exit lock and check
2359 * the pending io context count. If it hits zero,
2360 * complete ioc_gone and set it back to NULL
2361 */
2362 spin_lock(&ioc_gone_lock);
245b2e70 2363 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
2364 complete(ioc_gone);
2365 ioc_gone = NULL;
2366 }
2367 spin_unlock(&ioc_gone_lock);
2368 }
34e6bbf2 2369}
4ac845a2 2370
34e6bbf2
FC
2371static void cfq_cic_free(struct cfq_io_context *cic)
2372{
2373 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2374}
2375
2376static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2377{
2378 unsigned long flags;
2379
2380 BUG_ON(!cic->dead_key);
2381
2382 spin_lock_irqsave(&ioc->lock, flags);
2383 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 2384 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2385 spin_unlock_irqrestore(&ioc->lock, flags);
2386
34e6bbf2 2387 cfq_cic_free(cic);
4ac845a2
JA
2388}
2389
d6de8be7
JA
2390/*
2391 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2392 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2393 * and ->trim() which is called with the task lock held
2394 */
4ac845a2
JA
2395static void cfq_free_io_context(struct io_context *ioc)
2396{
4ac845a2 2397 /*
34e6bbf2
FC
2398 * ioc->refcount is zero here, or we are called from elv_unregister(),
2399 * so no more cic's are allowed to be linked into this ioc. So it
2400 * should be ok to iterate over the known list, we will see all cic's
2401 * since no new ones are added.
4ac845a2 2402 */
07416d29 2403 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
2404}
2405
89850f7e 2406static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 2407{
df5fe3e8
JM
2408 struct cfq_queue *__cfqq, *next;
2409
28f95cbc 2410 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 2411 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2412 cfq_schedule_dispatch(cfqd);
28f95cbc 2413 }
22e2c507 2414
df5fe3e8
JM
2415 /*
2416 * If this queue was scheduled to merge with another queue, be
2417 * sure to drop the reference taken on that queue (and others in
2418 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2419 */
2420 __cfqq = cfqq->new_cfqq;
2421 while (__cfqq) {
2422 if (__cfqq == cfqq) {
2423 WARN(1, "cfqq->new_cfqq loop detected\n");
2424 break;
2425 }
2426 next = __cfqq->new_cfqq;
2427 cfq_put_queue(__cfqq);
2428 __cfqq = next;
2429 }
2430
89850f7e
JA
2431 cfq_put_queue(cfqq);
2432}
22e2c507 2433
89850f7e
JA
2434static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2435 struct cfq_io_context *cic)
2436{
4faa3c81
FC
2437 struct io_context *ioc = cic->ioc;
2438
fc46379d 2439 list_del_init(&cic->queue_list);
4ac845a2
JA
2440
2441 /*
2442 * Make sure key == NULL is seen for dead queues
2443 */
fc46379d 2444 smp_wmb();
4ac845a2 2445 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
2446 cic->key = NULL;
2447
4faa3c81
FC
2448 if (ioc->ioc_data == cic)
2449 rcu_assign_pointer(ioc->ioc_data, NULL);
2450
ff6657c6
JA
2451 if (cic->cfqq[BLK_RW_ASYNC]) {
2452 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2453 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2454 }
2455
ff6657c6
JA
2456 if (cic->cfqq[BLK_RW_SYNC]) {
2457 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2458 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2459 }
89850f7e
JA
2460}
2461
4ac845a2
JA
2462static void cfq_exit_single_io_context(struct io_context *ioc,
2463 struct cfq_io_context *cic)
89850f7e
JA
2464{
2465 struct cfq_data *cfqd = cic->key;
2466
89850f7e 2467 if (cfqd) {
165125e1 2468 struct request_queue *q = cfqd->queue;
4ac845a2 2469 unsigned long flags;
89850f7e 2470
4ac845a2 2471 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
2472
2473 /*
2474 * Ensure we get a fresh copy of the ->key to prevent
2475 * race between exiting task and queue
2476 */
2477 smp_read_barrier_depends();
2478 if (cic->key)
2479 __cfq_exit_single_io_context(cfqd, cic);
2480
4ac845a2 2481 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 2482 }
1da177e4
LT
2483}
2484
498d3aa2
JA
2485/*
2486 * The process that ioc belongs to has exited, we need to clean up
2487 * and put the internal structures we have that belongs to that process.
2488 */
e2d74ac0 2489static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 2490{
4ac845a2 2491 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
2492}
2493
22e2c507 2494static struct cfq_io_context *
8267e268 2495cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2496{
b5deef90 2497 struct cfq_io_context *cic;
1da177e4 2498
94f6030c
CL
2499 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2500 cfqd->queue->node);
1da177e4 2501 if (cic) {
22e2c507 2502 cic->last_end_request = jiffies;
553698f9 2503 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2504 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
2505 cic->dtor = cfq_free_io_context;
2506 cic->exit = cfq_exit_io_context;
245b2e70 2507 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2508 }
2509
2510 return cic;
2511}
2512
fd0928df 2513static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2514{
2515 struct task_struct *tsk = current;
2516 int ioprio_class;
2517
3b18152c 2518 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2519 return;
2520
fd0928df 2521 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2522 switch (ioprio_class) {
fe094d98
JA
2523 default:
2524 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2525 case IOPRIO_CLASS_NONE:
2526 /*
6d63c275 2527 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2528 */
2529 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2530 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2531 break;
2532 case IOPRIO_CLASS_RT:
2533 cfqq->ioprio = task_ioprio(ioc);
2534 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2535 break;
2536 case IOPRIO_CLASS_BE:
2537 cfqq->ioprio = task_ioprio(ioc);
2538 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2539 break;
2540 case IOPRIO_CLASS_IDLE:
2541 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2542 cfqq->ioprio = 7;
2543 cfq_clear_cfqq_idle_window(cfqq);
2544 break;
22e2c507
JA
2545 }
2546
2547 /*
2548 * keep track of original prio settings in case we have to temporarily
2549 * elevate the priority of this queue
2550 */
2551 cfqq->org_ioprio = cfqq->ioprio;
2552 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2553 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2554}
2555
febffd61 2556static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2557{
478a82b0
AV
2558 struct cfq_data *cfqd = cic->key;
2559 struct cfq_queue *cfqq;
c1b707d2 2560 unsigned long flags;
35e6077c 2561
caaa5f9f
JA
2562 if (unlikely(!cfqd))
2563 return;
2564
c1b707d2 2565 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2566
ff6657c6 2567 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2568 if (cfqq) {
2569 struct cfq_queue *new_cfqq;
ff6657c6
JA
2570 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2571 GFP_ATOMIC);
caaa5f9f 2572 if (new_cfqq) {
ff6657c6 2573 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2574 cfq_put_queue(cfqq);
2575 }
22e2c507 2576 }
caaa5f9f 2577
ff6657c6 2578 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2579 if (cfqq)
2580 cfq_mark_cfqq_prio_changed(cfqq);
2581
c1b707d2 2582 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2583}
2584
fc46379d 2585static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2586{
4ac845a2 2587 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2588 ioc->ioprio_changed = 0;
22e2c507
JA
2589}
2590
d5036d77 2591static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2592 pid_t pid, bool is_sync)
d5036d77
JA
2593{
2594 RB_CLEAR_NODE(&cfqq->rb_node);
2595 RB_CLEAR_NODE(&cfqq->p_node);
2596 INIT_LIST_HEAD(&cfqq->fifo);
2597
2598 atomic_set(&cfqq->ref, 0);
2599 cfqq->cfqd = cfqd;
2600
2601 cfq_mark_cfqq_prio_changed(cfqq);
2602
2603 if (is_sync) {
2604 if (!cfq_class_idle(cfqq))
2605 cfq_mark_cfqq_idle_window(cfqq);
2606 cfq_mark_cfqq_sync(cfqq);
2607 }
2608 cfqq->pid = pid;
2609}
2610
22e2c507 2611static struct cfq_queue *
a6151c3a 2612cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2613 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2614{
22e2c507 2615 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2616 struct cfq_io_context *cic;
cdb16e8f 2617 struct cfq_group *cfqg;
22e2c507
JA
2618
2619retry:
cdb16e8f 2620 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2621 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2622 /* cic always exists here */
2623 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2624
6118b70b
JA
2625 /*
2626 * Always try a new alloc if we fell back to the OOM cfqq
2627 * originally, since it should just be a temporary situation.
2628 */
2629 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2630 cfqq = NULL;
22e2c507
JA
2631 if (new_cfqq) {
2632 cfqq = new_cfqq;
2633 new_cfqq = NULL;
2634 } else if (gfp_mask & __GFP_WAIT) {
2635 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2636 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2637 gfp_mask | __GFP_ZERO,
94f6030c 2638 cfqd->queue->node);
22e2c507 2639 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2640 if (new_cfqq)
2641 goto retry;
22e2c507 2642 } else {
94f6030c
CL
2643 cfqq = kmem_cache_alloc_node(cfq_pool,
2644 gfp_mask | __GFP_ZERO,
2645 cfqd->queue->node);
22e2c507
JA
2646 }
2647
6118b70b
JA
2648 if (cfqq) {
2649 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2650 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2651 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2652 cfq_log_cfqq(cfqd, cfqq, "alloced");
2653 } else
2654 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2655 }
2656
2657 if (new_cfqq)
2658 kmem_cache_free(cfq_pool, new_cfqq);
2659
22e2c507
JA
2660 return cfqq;
2661}
2662
c2dea2d1
VT
2663static struct cfq_queue **
2664cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2665{
fe094d98 2666 switch (ioprio_class) {
c2dea2d1
VT
2667 case IOPRIO_CLASS_RT:
2668 return &cfqd->async_cfqq[0][ioprio];
2669 case IOPRIO_CLASS_BE:
2670 return &cfqd->async_cfqq[1][ioprio];
2671 case IOPRIO_CLASS_IDLE:
2672 return &cfqd->async_idle_cfqq;
2673 default:
2674 BUG();
2675 }
2676}
2677
15c31be4 2678static struct cfq_queue *
a6151c3a 2679cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2680 gfp_t gfp_mask)
2681{
fd0928df
JA
2682 const int ioprio = task_ioprio(ioc);
2683 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2684 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2685 struct cfq_queue *cfqq = NULL;
2686
c2dea2d1
VT
2687 if (!is_sync) {
2688 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2689 cfqq = *async_cfqq;
2690 }
2691
6118b70b 2692 if (!cfqq)
fd0928df 2693 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2694
2695 /*
2696 * pin the queue now that it's allocated, scheduler exit will prune it
2697 */
c2dea2d1 2698 if (!is_sync && !(*async_cfqq)) {
15c31be4 2699 atomic_inc(&cfqq->ref);
c2dea2d1 2700 *async_cfqq = cfqq;
15c31be4
JA
2701 }
2702
2703 atomic_inc(&cfqq->ref);
2704 return cfqq;
2705}
2706
498d3aa2
JA
2707/*
2708 * We drop cfq io contexts lazily, so we may find a dead one.
2709 */
dbecf3ab 2710static void
4ac845a2
JA
2711cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2712 struct cfq_io_context *cic)
dbecf3ab 2713{
4ac845a2
JA
2714 unsigned long flags;
2715
fc46379d 2716 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2717
4ac845a2
JA
2718 spin_lock_irqsave(&ioc->lock, flags);
2719
4faa3c81 2720 BUG_ON(ioc->ioc_data == cic);
597bc485 2721
4ac845a2 2722 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2723 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2724 spin_unlock_irqrestore(&ioc->lock, flags);
2725
2726 cfq_cic_free(cic);
dbecf3ab
OH
2727}
2728
e2d74ac0 2729static struct cfq_io_context *
4ac845a2 2730cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2731{
e2d74ac0 2732 struct cfq_io_context *cic;
d6de8be7 2733 unsigned long flags;
4ac845a2 2734 void *k;
e2d74ac0 2735
91fac317
VT
2736 if (unlikely(!ioc))
2737 return NULL;
2738
d6de8be7
JA
2739 rcu_read_lock();
2740
597bc485
JA
2741 /*
2742 * we maintain a last-hit cache, to avoid browsing over the tree
2743 */
4ac845a2 2744 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2745 if (cic && cic->key == cfqd) {
2746 rcu_read_unlock();
597bc485 2747 return cic;
d6de8be7 2748 }
597bc485 2749
4ac845a2 2750 do {
4ac845a2
JA
2751 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2752 rcu_read_unlock();
2753 if (!cic)
2754 break;
be3b0753
OH
2755 /* ->key must be copied to avoid race with cfq_exit_queue() */
2756 k = cic->key;
2757 if (unlikely(!k)) {
4ac845a2 2758 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2759 rcu_read_lock();
4ac845a2 2760 continue;
dbecf3ab 2761 }
e2d74ac0 2762
d6de8be7 2763 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2764 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2765 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2766 break;
2767 } while (1);
e2d74ac0 2768
4ac845a2 2769 return cic;
e2d74ac0
JA
2770}
2771
4ac845a2
JA
2772/*
2773 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2774 * the process specific cfq io context when entered from the block layer.
2775 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2776 */
febffd61
JA
2777static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2778 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2779{
0261d688 2780 unsigned long flags;
4ac845a2 2781 int ret;
e2d74ac0 2782
4ac845a2
JA
2783 ret = radix_tree_preload(gfp_mask);
2784 if (!ret) {
2785 cic->ioc = ioc;
2786 cic->key = cfqd;
e2d74ac0 2787
4ac845a2
JA
2788 spin_lock_irqsave(&ioc->lock, flags);
2789 ret = radix_tree_insert(&ioc->radix_root,
2790 (unsigned long) cfqd, cic);
ffc4e759
JA
2791 if (!ret)
2792 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2793 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2794
4ac845a2
JA
2795 radix_tree_preload_end();
2796
2797 if (!ret) {
2798 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2799 list_add(&cic->queue_list, &cfqd->cic_list);
2800 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2801 }
e2d74ac0
JA
2802 }
2803
4ac845a2
JA
2804 if (ret)
2805 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2806
4ac845a2 2807 return ret;
e2d74ac0
JA
2808}
2809
1da177e4
LT
2810/*
2811 * Setup general io context and cfq io context. There can be several cfq
2812 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2813 * than one device managed by cfq.
1da177e4
LT
2814 */
2815static struct cfq_io_context *
e2d74ac0 2816cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2817{
22e2c507 2818 struct io_context *ioc = NULL;
1da177e4 2819 struct cfq_io_context *cic;
1da177e4 2820
22e2c507 2821 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2822
b5deef90 2823 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2824 if (!ioc)
2825 return NULL;
2826
4ac845a2 2827 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2828 if (cic)
2829 goto out;
1da177e4 2830
e2d74ac0
JA
2831 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2832 if (cic == NULL)
2833 goto err;
1da177e4 2834
4ac845a2
JA
2835 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2836 goto err_free;
2837
1da177e4 2838out:
fc46379d
JA
2839 smp_read_barrier_depends();
2840 if (unlikely(ioc->ioprio_changed))
2841 cfq_ioc_set_ioprio(ioc);
2842
1da177e4 2843 return cic;
4ac845a2
JA
2844err_free:
2845 cfq_cic_free(cic);
1da177e4
LT
2846err:
2847 put_io_context(ioc);
2848 return NULL;
2849}
2850
22e2c507
JA
2851static void
2852cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2853{
aaf1228d
JA
2854 unsigned long elapsed = jiffies - cic->last_end_request;
2855 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2856
22e2c507
JA
2857 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2858 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2859 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2860}
1da177e4 2861
206dc69b 2862static void
b2c18e1e 2863cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2864 struct request *rq)
206dc69b
JA
2865{
2866 sector_t sdist;
2867 u64 total;
2868
b2c18e1e 2869 if (!cfqq->last_request_pos)
4d00aa47 2870 sdist = 0;
b2c18e1e
JM
2871 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2872 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2873 else
b2c18e1e 2874 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2875
2876 /*
2877 * Don't allow the seek distance to get too large from the
2878 * odd fragment, pagein, etc
2879 */
b2c18e1e
JM
2880 if (cfqq->seek_samples <= 60) /* second&third seek */
2881 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2882 else
b2c18e1e 2883 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2884
b2c18e1e
JM
2885 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2886 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2887 total = cfqq->seek_total + (cfqq->seek_samples/2);
2888 do_div(total, cfqq->seek_samples);
2889 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
2890
2891 /*
2892 * If this cfqq is shared between multiple processes, check to
2893 * make sure that those processes are still issuing I/Os within
2894 * the mean seek distance. If not, it may be time to break the
2895 * queues apart again.
2896 */
2897 if (cfq_cfqq_coop(cfqq)) {
2898 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2899 cfqq->seeky_start = jiffies;
2900 else if (!CFQQ_SEEKY(cfqq))
2901 cfqq->seeky_start = 0;
2902 }
206dc69b 2903}
1da177e4 2904
22e2c507
JA
2905/*
2906 * Disable idle window if the process thinks too long or seeks so much that
2907 * it doesn't matter
2908 */
2909static void
2910cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2911 struct cfq_io_context *cic)
2912{
7b679138 2913 int old_idle, enable_idle;
1be92f2f 2914
0871714e
JA
2915 /*
2916 * Don't idle for async or idle io prio class
2917 */
2918 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2919 return;
2920
c265a7f4 2921 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2922
76280aff
CZ
2923 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2924 cfq_mark_cfqq_deep(cfqq);
2925
66dac98e 2926 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
76280aff
CZ
2927 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2928 && CFQQ_SEEKY(cfqq)))
22e2c507
JA
2929 enable_idle = 0;
2930 else if (sample_valid(cic->ttime_samples)) {
718eee05 2931 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
2932 enable_idle = 0;
2933 else
2934 enable_idle = 1;
1da177e4
LT
2935 }
2936
7b679138
JA
2937 if (old_idle != enable_idle) {
2938 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2939 if (enable_idle)
2940 cfq_mark_cfqq_idle_window(cfqq);
2941 else
2942 cfq_clear_cfqq_idle_window(cfqq);
2943 }
22e2c507 2944}
1da177e4 2945
22e2c507
JA
2946/*
2947 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2948 * no or if we aren't sure, a 1 will cause a preempt.
2949 */
a6151c3a 2950static bool
22e2c507 2951cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2952 struct request *rq)
22e2c507 2953{
6d048f53 2954 struct cfq_queue *cfqq;
22e2c507 2955
6d048f53
JA
2956 cfqq = cfqd->active_queue;
2957 if (!cfqq)
a6151c3a 2958 return false;
22e2c507 2959
6d048f53 2960 if (cfq_class_idle(new_cfqq))
a6151c3a 2961 return false;
22e2c507
JA
2962
2963 if (cfq_class_idle(cfqq))
a6151c3a 2964 return true;
1e3335de 2965
374f84ac
JA
2966 /*
2967 * if the new request is sync, but the currently running queue is
2968 * not, let the sync request have priority.
2969 */
5e705374 2970 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 2971 return true;
1e3335de 2972
8682e1f1
VG
2973 if (new_cfqq->cfqg != cfqq->cfqg)
2974 return false;
2975
2976 if (cfq_slice_used(cfqq))
2977 return true;
2978
2979 /* Allow preemption only if we are idling on sync-noidle tree */
2980 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2981 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2982 new_cfqq->service_tree->count == 2 &&
2983 RB_EMPTY_ROOT(&cfqq->sort_list))
2984 return true;
2985
374f84ac
JA
2986 /*
2987 * So both queues are sync. Let the new request get disk time if
2988 * it's a metadata request and the current queue is doing regular IO.
2989 */
2990 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 2991 return true;
22e2c507 2992
3a9a3f6c
DS
2993 /*
2994 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2995 */
2996 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 2997 return true;
3a9a3f6c 2998
1e3335de 2999 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3000 return false;
1e3335de
JA
3001
3002 /*
3003 * if this request is as-good as one we would expect from the
3004 * current cfqq, let it preempt
3005 */
e00ef799 3006 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3007 return true;
1e3335de 3008
a6151c3a 3009 return false;
22e2c507
JA
3010}
3011
3012/*
3013 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3014 * let it have half of its nominal slice.
3015 */
3016static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3017{
7b679138 3018 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 3019 cfq_slice_expired(cfqd, 1);
22e2c507 3020
bf572256
JA
3021 /*
3022 * Put the new queue at the front of the of the current list,
3023 * so we know that it will be selected next.
3024 */
3025 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3026
3027 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 3028
44f7c160
JA
3029 cfqq->slice_end = 0;
3030 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3031}
3032
22e2c507 3033/*
5e705374 3034 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3035 * something we should do about it
3036 */
3037static void
5e705374
JA
3038cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3039 struct request *rq)
22e2c507 3040{
5e705374 3041 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3042
45333d5a 3043 cfqd->rq_queued++;
374f84ac
JA
3044 if (rq_is_meta(rq))
3045 cfqq->meta_pending++;
3046
9c2c38a1 3047 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 3048 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3049 cfq_update_idle_window(cfqd, cfqq, cic);
3050
b2c18e1e 3051 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3052
3053 if (cfqq == cfqd->active_queue) {
3054 /*
b029195d
JA
3055 * Remember that we saw a request from this process, but
3056 * don't start queuing just yet. Otherwise we risk seeing lots
3057 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3058 * and merging. If the request is already larger than a single
3059 * page, let it rip immediately. For that case we assume that
2d870722
JA
3060 * merging is already done. Ditto for a busy system that
3061 * has other work pending, don't risk delaying until the
3062 * idle timer unplug to continue working.
22e2c507 3063 */
d6ceb25e 3064 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3065 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3066 cfqd->busy_queues > 1) {
d6ceb25e 3067 del_timer(&cfqd->idle_slice_timer);
bf791937
VG
3068 __blk_run_queue(cfqd->queue);
3069 } else
3070 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 3071 }
5e705374 3072 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3073 /*
3074 * not the active queue - expire current slice if it is
3075 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3076 * has some old slice time left and is of higher priority or
3077 * this new queue is RT and the current one is BE
22e2c507
JA
3078 */
3079 cfq_preempt_queue(cfqd, cfqq);
a7f55792 3080 __blk_run_queue(cfqd->queue);
22e2c507 3081 }
1da177e4
LT
3082}
3083
165125e1 3084static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3085{
b4878f24 3086 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3087 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3088
7b679138 3089 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3090 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3091
30996f40 3092 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3093 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3094 cfq_add_rq_rb(rq);
22e2c507 3095
5e705374 3096 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3097}
3098
45333d5a
AC
3099/*
3100 * Update hw_tag based on peak queue depth over 50 samples under
3101 * sufficient load.
3102 */
3103static void cfq_update_hw_tag(struct cfq_data *cfqd)
3104{
1a1238a7
SL
3105 struct cfq_queue *cfqq = cfqd->active_queue;
3106
e459dd08
CZ
3107 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3108 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3109
3110 if (cfqd->hw_tag == 1)
3111 return;
45333d5a
AC
3112
3113 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 3114 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3115 return;
3116
1a1238a7
SL
3117 /*
3118 * If active queue hasn't enough requests and can idle, cfq might not
3119 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3120 * case
3121 */
3122 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3123 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3124 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3125 return;
3126
45333d5a
AC
3127 if (cfqd->hw_tag_samples++ < 50)
3128 return;
3129
e459dd08 3130 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3131 cfqd->hw_tag = 1;
3132 else
3133 cfqd->hw_tag = 0;
45333d5a
AC
3134}
3135
165125e1 3136static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3137{
5e705374 3138 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3139 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3140 const int sync = rq_is_sync(rq);
b4878f24 3141 unsigned long now;
1da177e4 3142
b4878f24 3143 now = jiffies;
2868ef7b 3144 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
1da177e4 3145
45333d5a
AC
3146 cfq_update_hw_tag(cfqd);
3147
5ad531db 3148 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 3149 WARN_ON(!cfqq->dispatched);
5ad531db 3150 cfqd->rq_in_driver[sync]--;
6d048f53 3151 cfqq->dispatched--;
1da177e4 3152
3ed9a296
JA
3153 if (cfq_cfqq_sync(cfqq))
3154 cfqd->sync_flight--;
3155
365722bb 3156 if (sync) {
5e705374 3157 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
3158 cfqd->last_end_sync_rq = now;
3159 }
caaa5f9f
JA
3160
3161 /*
3162 * If this is the active queue, check if it needs to be expired,
3163 * or if we want to idle in case it has no pending requests.
3164 */
3165 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3166 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3167
44f7c160
JA
3168 if (cfq_cfqq_slice_new(cfqq)) {
3169 cfq_set_prio_slice(cfqd, cfqq);
3170 cfq_clear_cfqq_slice_new(cfqq);
3171 }
a36e71f9 3172 /*
8e550632
CZ
3173 * Idling is not enabled on:
3174 * - expired queues
3175 * - idle-priority queues
3176 * - async queues
3177 * - queues with still some requests queued
3178 * - when there is a close cooperator
a36e71f9 3179 */
0871714e 3180 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 3181 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3182 else if (sync && cfqq_empty &&
3183 !cfq_close_cooperator(cfqd, cfqq)) {
3184 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3185 /*
3186 * Idling is enabled for SYNC_WORKLOAD.
3187 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3188 * only if we processed at least one !rq_noidle request
3189 */
3190 if (cfqd->serving_type == SYNC_WORKLOAD
3191 || cfqd->noidle_tree_requires_idle)
3192 cfq_arm_slice_timer(cfqd);
3193 }
caaa5f9f 3194 }
6d048f53 3195
5ad531db 3196 if (!rq_in_driver(cfqd))
23e018a1 3197 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3198}
3199
22e2c507
JA
3200/*
3201 * we temporarily boost lower priority queues if they are holding fs exclusive
3202 * resources. they are boosted to normal prio (CLASS_BE/4)
3203 */
3204static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 3205{
22e2c507
JA
3206 if (has_fs_excl()) {
3207 /*
3208 * boost idle prio on transactions that would lock out other
3209 * users of the filesystem
3210 */
3211 if (cfq_class_idle(cfqq))
3212 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3213 if (cfqq->ioprio > IOPRIO_NORM)
3214 cfqq->ioprio = IOPRIO_NORM;
3215 } else {
3216 /*
dddb7451 3217 * unboost the queue (if needed)
22e2c507 3218 */
dddb7451
CZ
3219 cfqq->ioprio_class = cfqq->org_ioprio_class;
3220 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 3221 }
22e2c507 3222}
1da177e4 3223
89850f7e 3224static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3225{
1b379d8d 3226 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3227 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3228 return ELV_MQUEUE_MUST;
3b18152c 3229 }
1da177e4 3230
22e2c507 3231 return ELV_MQUEUE_MAY;
22e2c507
JA
3232}
3233
165125e1 3234static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3235{
3236 struct cfq_data *cfqd = q->elevator->elevator_data;
3237 struct task_struct *tsk = current;
91fac317 3238 struct cfq_io_context *cic;
22e2c507
JA
3239 struct cfq_queue *cfqq;
3240
3241 /*
3242 * don't force setup of a queue from here, as a call to may_queue
3243 * does not necessarily imply that a request actually will be queued.
3244 * so just lookup a possibly existing queue, or return 'may queue'
3245 * if that fails
3246 */
4ac845a2 3247 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3248 if (!cic)
3249 return ELV_MQUEUE_MAY;
3250
b0b78f81 3251 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3252 if (cfqq) {
fd0928df 3253 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
3254 cfq_prio_boost(cfqq);
3255
89850f7e 3256 return __cfq_may_queue(cfqq);
22e2c507
JA
3257 }
3258
3259 return ELV_MQUEUE_MAY;
1da177e4
LT
3260}
3261
1da177e4
LT
3262/*
3263 * queue lock held here
3264 */
bb37b94c 3265static void cfq_put_request(struct request *rq)
1da177e4 3266{
5e705374 3267 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3268
5e705374 3269 if (cfqq) {
22e2c507 3270 const int rw = rq_data_dir(rq);
1da177e4 3271
22e2c507
JA
3272 BUG_ON(!cfqq->allocated[rw]);
3273 cfqq->allocated[rw]--;
1da177e4 3274
5e705374 3275 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 3276
1da177e4 3277 rq->elevator_private = NULL;
5e705374 3278 rq->elevator_private2 = NULL;
1da177e4 3279
1da177e4
LT
3280 cfq_put_queue(cfqq);
3281 }
3282}
3283
df5fe3e8
JM
3284static struct cfq_queue *
3285cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3286 struct cfq_queue *cfqq)
3287{
3288 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3289 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3290 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3291 cfq_put_queue(cfqq);
3292 return cic_to_cfqq(cic, 1);
3293}
3294
e6c5bc73
JM
3295static int should_split_cfqq(struct cfq_queue *cfqq)
3296{
3297 if (cfqq->seeky_start &&
3298 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3299 return 1;
3300 return 0;
3301}
3302
3303/*
3304 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3305 * was the last process referring to said cfqq.
3306 */
3307static struct cfq_queue *
3308split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3309{
3310 if (cfqq_process_refs(cfqq) == 1) {
3311 cfqq->seeky_start = 0;
3312 cfqq->pid = current->pid;
3313 cfq_clear_cfqq_coop(cfqq);
3314 return cfqq;
3315 }
3316
3317 cic_set_cfqq(cic, NULL, 1);
3318 cfq_put_queue(cfqq);
3319 return NULL;
3320}
1da177e4 3321/*
22e2c507 3322 * Allocate cfq data structures associated with this request.
1da177e4 3323 */
22e2c507 3324static int
165125e1 3325cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3326{
3327 struct cfq_data *cfqd = q->elevator->elevator_data;
3328 struct cfq_io_context *cic;
3329 const int rw = rq_data_dir(rq);
a6151c3a 3330 const bool is_sync = rq_is_sync(rq);
22e2c507 3331 struct cfq_queue *cfqq;
1da177e4
LT
3332 unsigned long flags;
3333
3334 might_sleep_if(gfp_mask & __GFP_WAIT);
3335
e2d74ac0 3336 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 3337
1da177e4
LT
3338 spin_lock_irqsave(q->queue_lock, flags);
3339
22e2c507
JA
3340 if (!cic)
3341 goto queue_fail;
3342
e6c5bc73 3343new_queue:
91fac317 3344 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3345 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3346 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3347 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3348 } else {
e6c5bc73
JM
3349 /*
3350 * If the queue was seeky for too long, break it apart.
3351 */
3352 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3353 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3354 cfqq = split_cfqq(cic, cfqq);
3355 if (!cfqq)
3356 goto new_queue;
3357 }
3358
df5fe3e8
JM
3359 /*
3360 * Check to see if this queue is scheduled to merge with
3361 * another, closely cooperating queue. The merging of
3362 * queues happens here as it must be done in process context.
3363 * The reference on new_cfqq was taken in merge_cfqqs.
3364 */
3365 if (cfqq->new_cfqq)
3366 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3367 }
1da177e4
LT
3368
3369 cfqq->allocated[rw]++;
22e2c507 3370 atomic_inc(&cfqq->ref);
1da177e4 3371
5e705374 3372 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 3373
5e705374
JA
3374 rq->elevator_private = cic;
3375 rq->elevator_private2 = cfqq;
3376 return 0;
1da177e4 3377
22e2c507
JA
3378queue_fail:
3379 if (cic)
3380 put_io_context(cic->ioc);
89850f7e 3381
23e018a1 3382 cfq_schedule_dispatch(cfqd);
1da177e4 3383 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 3384 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3385 return 1;
3386}
3387
65f27f38 3388static void cfq_kick_queue(struct work_struct *work)
22e2c507 3389{
65f27f38 3390 struct cfq_data *cfqd =
23e018a1 3391 container_of(work, struct cfq_data, unplug_work);
165125e1 3392 struct request_queue *q = cfqd->queue;
22e2c507 3393
40bb54d1 3394 spin_lock_irq(q->queue_lock);
a7f55792 3395 __blk_run_queue(cfqd->queue);
40bb54d1 3396 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3397}
3398
3399/*
3400 * Timer running if the active_queue is currently idling inside its time slice
3401 */
3402static void cfq_idle_slice_timer(unsigned long data)
3403{
3404 struct cfq_data *cfqd = (struct cfq_data *) data;
3405 struct cfq_queue *cfqq;
3406 unsigned long flags;
3c6bd2f8 3407 int timed_out = 1;
22e2c507 3408
7b679138
JA
3409 cfq_log(cfqd, "idle timer fired");
3410
22e2c507
JA
3411 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3412
fe094d98
JA
3413 cfqq = cfqd->active_queue;
3414 if (cfqq) {
3c6bd2f8
JA
3415 timed_out = 0;
3416
b029195d
JA
3417 /*
3418 * We saw a request before the queue expired, let it through
3419 */
3420 if (cfq_cfqq_must_dispatch(cfqq))
3421 goto out_kick;
3422
22e2c507
JA
3423 /*
3424 * expired
3425 */
44f7c160 3426 if (cfq_slice_used(cfqq))
22e2c507
JA
3427 goto expire;
3428
3429 /*
3430 * only expire and reinvoke request handler, if there are
3431 * other queues with pending requests
3432 */
caaa5f9f 3433 if (!cfqd->busy_queues)
22e2c507 3434 goto out_cont;
22e2c507
JA
3435
3436 /*
3437 * not expired and it has a request pending, let it dispatch
3438 */
75e50984 3439 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3440 goto out_kick;
76280aff
CZ
3441
3442 /*
3443 * Queue depth flag is reset only when the idle didn't succeed
3444 */
3445 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3446 }
3447expire:
6084cdda 3448 cfq_slice_expired(cfqd, timed_out);
22e2c507 3449out_kick:
23e018a1 3450 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3451out_cont:
3452 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3453}
3454
3b18152c
JA
3455static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3456{
3457 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3458 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3459}
22e2c507 3460
c2dea2d1
VT
3461static void cfq_put_async_queues(struct cfq_data *cfqd)
3462{
3463 int i;
3464
3465 for (i = 0; i < IOPRIO_BE_NR; i++) {
3466 if (cfqd->async_cfqq[0][i])
3467 cfq_put_queue(cfqd->async_cfqq[0][i]);
3468 if (cfqd->async_cfqq[1][i])
3469 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3470 }
2389d1ef
ON
3471
3472 if (cfqd->async_idle_cfqq)
3473 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3474}
3475
b374d18a 3476static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3477{
22e2c507 3478 struct cfq_data *cfqd = e->elevator_data;
165125e1 3479 struct request_queue *q = cfqd->queue;
22e2c507 3480
3b18152c 3481 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3482
d9ff4187 3483 spin_lock_irq(q->queue_lock);
e2d74ac0 3484
d9ff4187 3485 if (cfqd->active_queue)
6084cdda 3486 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3487
3488 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3489 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3490 struct cfq_io_context,
3491 queue_list);
89850f7e
JA
3492
3493 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 3494 }
e2d74ac0 3495
c2dea2d1 3496 cfq_put_async_queues(cfqd);
b1c35769
VG
3497 cfq_release_cfq_groups(cfqd);
3498 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
15c31be4 3499
d9ff4187 3500 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3501
3502 cfq_shutdown_timer_wq(cfqd);
3503
b1c35769
VG
3504 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3505 synchronize_rcu();
a90d742e 3506 kfree(cfqd);
1da177e4
LT
3507}
3508
165125e1 3509static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3510{
3511 struct cfq_data *cfqd;
718eee05 3512 int i, j;
cdb16e8f 3513 struct cfq_group *cfqg;
615f0259 3514 struct cfq_rb_root *st;
1da177e4 3515
94f6030c 3516 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3517 if (!cfqd)
bc1c1169 3518 return NULL;
1da177e4 3519
1fa8f6d6
VG
3520 /* Init root service tree */
3521 cfqd->grp_service_tree = CFQ_RB_ROOT;
3522
cdb16e8f
VG
3523 /* Init root group */
3524 cfqg = &cfqd->root_group;
615f0259
VG
3525 for_each_cfqg_st(cfqg, i, j, st)
3526 *st = CFQ_RB_ROOT;
1fa8f6d6 3527 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3528
25bc6b07
VG
3529 /* Give preference to root group over other groups */
3530 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3531
25fb5169 3532#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769
VG
3533 /*
3534 * Take a reference to root group which we never drop. This is just
3535 * to make sure that cfq_put_cfqg() does not try to kfree root group
3536 */
3537 atomic_set(&cfqg->ref, 1);
22084190
VG
3538 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3539 0);
25fb5169 3540#endif
26a2ac00
JA
3541 /*
3542 * Not strictly needed (since RB_ROOT just clears the node and we
3543 * zeroed cfqd on alloc), but better be safe in case someone decides
3544 * to add magic to the rb code
3545 */
3546 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3547 cfqd->prio_trees[i] = RB_ROOT;
3548
6118b70b
JA
3549 /*
3550 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3551 * Grab a permanent reference to it, so that the normal code flow
3552 * will not attempt to free it.
3553 */
3554 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3555 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3556 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3557
d9ff4187 3558 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3559
1da177e4 3560 cfqd->queue = q;
1da177e4 3561
22e2c507
JA
3562 init_timer(&cfqd->idle_slice_timer);
3563 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3564 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3565
23e018a1 3566 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3567
1da177e4 3568 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3569 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3570 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3571 cfqd->cfq_back_max = cfq_back_max;
3572 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3573 cfqd->cfq_slice[0] = cfq_slice_async;
3574 cfqd->cfq_slice[1] = cfq_slice_sync;
3575 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3576 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3577 cfqd->cfq_latency = 1;
e459dd08 3578 cfqd->hw_tag = -1;
365722bb 3579 cfqd->last_end_sync_rq = jiffies;
bc1c1169 3580 return cfqd;
1da177e4
LT
3581}
3582
3583static void cfq_slab_kill(void)
3584{
d6de8be7
JA
3585 /*
3586 * Caller already ensured that pending RCU callbacks are completed,
3587 * so we should have no busy allocations at this point.
3588 */
1da177e4
LT
3589 if (cfq_pool)
3590 kmem_cache_destroy(cfq_pool);
3591 if (cfq_ioc_pool)
3592 kmem_cache_destroy(cfq_ioc_pool);
3593}
3594
3595static int __init cfq_slab_setup(void)
3596{
0a31bd5f 3597 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3598 if (!cfq_pool)
3599 goto fail;
3600
34e6bbf2 3601 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3602 if (!cfq_ioc_pool)
3603 goto fail;
3604
3605 return 0;
3606fail:
3607 cfq_slab_kill();
3608 return -ENOMEM;
3609}
3610
1da177e4
LT
3611/*
3612 * sysfs parts below -->
3613 */
1da177e4
LT
3614static ssize_t
3615cfq_var_show(unsigned int var, char *page)
3616{
3617 return sprintf(page, "%d\n", var);
3618}
3619
3620static ssize_t
3621cfq_var_store(unsigned int *var, const char *page, size_t count)
3622{
3623 char *p = (char *) page;
3624
3625 *var = simple_strtoul(p, &p, 10);
3626 return count;
3627}
3628
1da177e4 3629#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3630static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3631{ \
3d1ab40f 3632 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3633 unsigned int __data = __VAR; \
3634 if (__CONV) \
3635 __data = jiffies_to_msecs(__data); \
3636 return cfq_var_show(__data, (page)); \
3637}
3638SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3639SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3640SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3641SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3642SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3643SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3644SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3645SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3646SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3647SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
3648#undef SHOW_FUNCTION
3649
3650#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3651static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3652{ \
3d1ab40f 3653 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3654 unsigned int __data; \
3655 int ret = cfq_var_store(&__data, (page), count); \
3656 if (__data < (MIN)) \
3657 __data = (MIN); \
3658 else if (__data > (MAX)) \
3659 __data = (MAX); \
3660 if (__CONV) \
3661 *(__PTR) = msecs_to_jiffies(__data); \
3662 else \
3663 *(__PTR) = __data; \
3664 return ret; \
3665}
3666STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3667STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3668 UINT_MAX, 1);
3669STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3670 UINT_MAX, 1);
e572ec7e 3671STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3672STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3673 UINT_MAX, 0);
22e2c507
JA
3674STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3675STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3676STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3677STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3678 UINT_MAX, 0);
963b72fc 3679STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
3680#undef STORE_FUNCTION
3681
e572ec7e
AV
3682#define CFQ_ATTR(name) \
3683 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3684
3685static struct elv_fs_entry cfq_attrs[] = {
3686 CFQ_ATTR(quantum),
e572ec7e
AV
3687 CFQ_ATTR(fifo_expire_sync),
3688 CFQ_ATTR(fifo_expire_async),
3689 CFQ_ATTR(back_seek_max),
3690 CFQ_ATTR(back_seek_penalty),
3691 CFQ_ATTR(slice_sync),
3692 CFQ_ATTR(slice_async),
3693 CFQ_ATTR(slice_async_rq),
3694 CFQ_ATTR(slice_idle),
963b72fc 3695 CFQ_ATTR(low_latency),
e572ec7e 3696 __ATTR_NULL
1da177e4
LT
3697};
3698
1da177e4
LT
3699static struct elevator_type iosched_cfq = {
3700 .ops = {
3701 .elevator_merge_fn = cfq_merge,
3702 .elevator_merged_fn = cfq_merged_request,
3703 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3704 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3705 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3706 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3707 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3708 .elevator_deactivate_req_fn = cfq_deactivate_request,
3709 .elevator_queue_empty_fn = cfq_queue_empty,
3710 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3711 .elevator_former_req_fn = elv_rb_former_request,
3712 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3713 .elevator_set_req_fn = cfq_set_request,
3714 .elevator_put_req_fn = cfq_put_request,
3715 .elevator_may_queue_fn = cfq_may_queue,
3716 .elevator_init_fn = cfq_init_queue,
3717 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3718 .trim = cfq_free_io_context,
1da177e4 3719 },
3d1ab40f 3720 .elevator_attrs = cfq_attrs,
1da177e4
LT
3721 .elevator_name = "cfq",
3722 .elevator_owner = THIS_MODULE,
3723};
3724
3725static int __init cfq_init(void)
3726{
22e2c507
JA
3727 /*
3728 * could be 0 on HZ < 1000 setups
3729 */
3730 if (!cfq_slice_async)
3731 cfq_slice_async = 1;
3732 if (!cfq_slice_idle)
3733 cfq_slice_idle = 1;
3734
1da177e4
LT
3735 if (cfq_slab_setup())
3736 return -ENOMEM;
3737
2fdd82bd 3738 elv_register(&iosched_cfq);
1da177e4 3739
2fdd82bd 3740 return 0;
1da177e4
LT
3741}
3742
3743static void __exit cfq_exit(void)
3744{
6e9a4738 3745 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 3746 elv_unregister(&iosched_cfq);
334e94de 3747 ioc_gone = &all_gone;
fba82272
OH
3748 /* ioc_gone's update must be visible before reading ioc_count */
3749 smp_wmb();
d6de8be7
JA
3750
3751 /*
3752 * this also protects us from entering cfq_slab_kill() with
3753 * pending RCU callbacks
3754 */
245b2e70 3755 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3756 wait_for_completion(&all_gone);
83521d3e 3757 cfq_slab_kill();
1da177e4
LT
3758}
3759
3760module_init(cfq_init);
3761module_exit(cfq_exit);
3762
3763MODULE_AUTHOR("Jens Axboe");
3764MODULE_LICENSE("GPL");
3765MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");