ide: convert to rq pos and nr_sectors accessors
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
1da177e4 12#include <linux/rbtree.h>
22e2c507 13#include <linux/ioprio.h>
7b679138 14#include <linux/blktrace_api.h>
1da177e4
LT
15
16/*
17 * tunables
18 */
fe094d98
JA
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
64100099 21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
64100099 26static const int cfq_slice_sync = HZ / 10;
3b18152c 27static int cfq_slice_async = HZ / 25;
64100099 28static const int cfq_slice_async_rq = 2;
caaa5f9f 29static int cfq_slice_idle = HZ / 125;
22e2c507 30
d9e7620e 31/*
0871714e 32 * offset from end of service tree
d9e7620e 33 */
0871714e 34#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT (2)
40
22e2c507 41#define CFQ_SLICE_SCALE (5)
45333d5a 42#define CFQ_HW_QUEUE_MIN (5)
22e2c507 43
fe094d98
JA
44#define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 46#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 47
e18b890b
CL
48static struct kmem_cache *cfq_pool;
49static struct kmem_cache *cfq_ioc_pool;
1da177e4 50
4050cf16 51static DEFINE_PER_CPU(unsigned long, ioc_count);
334e94de 52static struct completion *ioc_gone;
9a11b4ed 53static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 54
22e2c507
JA
55#define CFQ_PRIO_LISTS IOPRIO_BE_NR
56#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
57#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
206dc69b
JA
59#define sample_valid(samples) ((samples) > 80)
60
cc09e299
JA
61/*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
70};
71#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
72
22e2c507
JA
73/*
74 * Per block device queue structure
75 */
1da177e4 76struct cfq_data {
165125e1 77 struct request_queue *queue;
22e2c507
JA
78
79 /*
80 * rr list of queues with requests and the count of them
81 */
cc09e299 82 struct cfq_rb_root service_tree;
a36e71f9
JA
83
84 /*
85 * Each priority tree is sorted by next_request position. These
86 * trees are used when determining if two or more queues are
87 * interleaving requests (see cfq_close_cooperator).
88 */
89 struct rb_root prio_trees[CFQ_PRIO_LISTS];
90
22e2c507 91 unsigned int busy_queues;
3a9a3f6c
DS
92 /*
93 * Used to track any pending rt requests so we can pre-empt current
94 * non-RT cfqq in service when this value is non-zero.
95 */
96 unsigned int busy_rt_queues;
22e2c507 97
22e2c507 98 int rq_in_driver;
3ed9a296 99 int sync_flight;
45333d5a
AC
100
101 /*
102 * queue-depth detection
103 */
104 int rq_queued;
25776e35 105 int hw_tag;
45333d5a
AC
106 int hw_tag_samples;
107 int rq_in_driver_peak;
1da177e4 108
22e2c507
JA
109 /*
110 * idle window management
111 */
112 struct timer_list idle_slice_timer;
113 struct work_struct unplug_work;
1da177e4 114
22e2c507
JA
115 struct cfq_queue *active_queue;
116 struct cfq_io_context *active_cic;
22e2c507 117
c2dea2d1
VT
118 /*
119 * async queue for each priority case
120 */
121 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
122 struct cfq_queue *async_idle_cfqq;
15c31be4 123
6d048f53 124 sector_t last_position;
22e2c507 125 unsigned long last_end_request;
1da177e4 126
1da177e4
LT
127 /*
128 * tunables, see top of file
129 */
130 unsigned int cfq_quantum;
22e2c507 131 unsigned int cfq_fifo_expire[2];
1da177e4
LT
132 unsigned int cfq_back_penalty;
133 unsigned int cfq_back_max;
22e2c507
JA
134 unsigned int cfq_slice[2];
135 unsigned int cfq_slice_async_rq;
136 unsigned int cfq_slice_idle;
d9ff4187
AV
137
138 struct list_head cic_list;
1da177e4
LT
139};
140
22e2c507
JA
141/*
142 * Per process-grouping structure
143 */
1da177e4
LT
144struct cfq_queue {
145 /* reference count */
146 atomic_t ref;
be754d2c
RK
147 /* various state flags, see below */
148 unsigned int flags;
1da177e4
LT
149 /* parent cfq_data */
150 struct cfq_data *cfqd;
d9e7620e
JA
151 /* service_tree member */
152 struct rb_node rb_node;
153 /* service_tree key */
154 unsigned long rb_key;
a36e71f9
JA
155 /* prio tree member */
156 struct rb_node p_node;
f2d1f0ae
JA
157 /* prio tree root we belong to, if any */
158 struct rb_root *p_root;
1da177e4
LT
159 /* sorted list of pending requests */
160 struct rb_root sort_list;
161 /* if fifo isn't expired, next request to serve */
5e705374 162 struct request *next_rq;
1da177e4
LT
163 /* requests queued in sort_list */
164 int queued[2];
165 /* currently allocated requests */
166 int allocated[2];
167 /* fifo list of requests in sort_list */
22e2c507 168 struct list_head fifo;
1da177e4 169
22e2c507 170 unsigned long slice_end;
c5b680f3 171 long slice_resid;
2f5cb738 172 unsigned int slice_dispatch;
1da177e4 173
be754d2c
RK
174 /* pending metadata requests */
175 int meta_pending;
6d048f53
JA
176 /* number of requests that are on the dispatch list or inside driver */
177 int dispatched;
22e2c507
JA
178
179 /* io prio of this group */
180 unsigned short ioprio, org_ioprio;
181 unsigned short ioprio_class, org_ioprio_class;
182
7b679138 183 pid_t pid;
1da177e4
LT
184};
185
3b18152c 186enum cfqq_state_flags {
b0b8d749
JA
187 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
188 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 189 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749
JA
190 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
191 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
192 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
193 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
194 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 195 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 196 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
a36e71f9 197 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
3b18152c
JA
198};
199
200#define CFQ_CFQQ_FNS(name) \
201static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
202{ \
fe094d98 203 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
204} \
205static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
206{ \
fe094d98 207 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
208} \
209static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
210{ \
fe094d98 211 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
212}
213
214CFQ_CFQQ_FNS(on_rr);
215CFQ_CFQQ_FNS(wait_request);
b029195d 216CFQ_CFQQ_FNS(must_dispatch);
3b18152c
JA
217CFQ_CFQQ_FNS(must_alloc);
218CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
219CFQ_CFQQ_FNS(fifo_expire);
220CFQ_CFQQ_FNS(idle_window);
221CFQ_CFQQ_FNS(prio_changed);
44f7c160 222CFQ_CFQQ_FNS(slice_new);
91fac317 223CFQ_CFQQ_FNS(sync);
a36e71f9 224CFQ_CFQQ_FNS(coop);
3b18152c
JA
225#undef CFQ_CFQQ_FNS
226
7b679138
JA
227#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
228 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
229#define cfq_log(cfqd, fmt, args...) \
230 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
231
165125e1 232static void cfq_dispatch_insert(struct request_queue *, struct request *);
91fac317 233static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
fd0928df 234 struct io_context *, gfp_t);
4ac845a2 235static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
236 struct io_context *);
237
238static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
239 int is_sync)
240{
241 return cic->cfqq[!!is_sync];
242}
243
244static inline void cic_set_cfqq(struct cfq_io_context *cic,
245 struct cfq_queue *cfqq, int is_sync)
246{
247 cic->cfqq[!!is_sync] = cfqq;
248}
249
250/*
251 * We regard a request as SYNC, if it's either a read or has the SYNC bit
252 * set (in which case it could also be direct WRITE).
253 */
254static inline int cfq_bio_sync(struct bio *bio)
255{
256 if (bio_data_dir(bio) == READ || bio_sync(bio))
257 return 1;
258
259 return 0;
260}
1da177e4 261
99f95e52
AM
262/*
263 * scheduler run of queue, if there are requests pending and no one in the
264 * driver that will restart queueing
265 */
266static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
267{
7b679138
JA
268 if (cfqd->busy_queues) {
269 cfq_log(cfqd, "schedule dispatch");
18887ad9 270 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 271 }
99f95e52
AM
272}
273
165125e1 274static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
275{
276 struct cfq_data *cfqd = q->elevator->elevator_data;
277
b4878f24 278 return !cfqd->busy_queues;
99f95e52
AM
279}
280
44f7c160
JA
281/*
282 * Scale schedule slice based on io priority. Use the sync time slice only
283 * if a queue is marked sync and has sync io queued. A sync queue with async
284 * io only, should not get full sync slice length.
285 */
d9e7620e
JA
286static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
287 unsigned short prio)
44f7c160 288{
d9e7620e 289 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 290
d9e7620e
JA
291 WARN_ON(prio >= IOPRIO_BE_NR);
292
293 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
294}
44f7c160 295
d9e7620e
JA
296static inline int
297cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
298{
299 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
300}
301
302static inline void
303cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
304{
305 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
7b679138 306 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
307}
308
309/*
310 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
311 * isn't valid until the first request from the dispatch is activated
312 * and the slice time set.
313 */
314static inline int cfq_slice_used(struct cfq_queue *cfqq)
315{
316 if (cfq_cfqq_slice_new(cfqq))
317 return 0;
318 if (time_before(jiffies, cfqq->slice_end))
319 return 0;
320
321 return 1;
322}
323
1da177e4 324/*
5e705374 325 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 326 * We choose the request that is closest to the head right now. Distance
e8a99053 327 * behind the head is penalized and only allowed to a certain extent.
1da177e4 328 */
5e705374
JA
329static struct request *
330cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
1da177e4
LT
331{
332 sector_t last, s1, s2, d1 = 0, d2 = 0;
1da177e4 333 unsigned long back_max;
e8a99053
AM
334#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
335#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
336 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 337
5e705374
JA
338 if (rq1 == NULL || rq1 == rq2)
339 return rq2;
340 if (rq2 == NULL)
341 return rq1;
9c2c38a1 342
5e705374
JA
343 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
344 return rq1;
345 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
346 return rq2;
374f84ac
JA
347 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
348 return rq1;
349 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
350 return rq2;
1da177e4 351
83096ebf
TH
352 s1 = blk_rq_pos(rq1);
353 s2 = blk_rq_pos(rq2);
1da177e4 354
6d048f53 355 last = cfqd->last_position;
1da177e4 356
1da177e4
LT
357 /*
358 * by definition, 1KiB is 2 sectors
359 */
360 back_max = cfqd->cfq_back_max * 2;
361
362 /*
363 * Strict one way elevator _except_ in the case where we allow
364 * short backward seeks which are biased as twice the cost of a
365 * similar forward seek.
366 */
367 if (s1 >= last)
368 d1 = s1 - last;
369 else if (s1 + back_max >= last)
370 d1 = (last - s1) * cfqd->cfq_back_penalty;
371 else
e8a99053 372 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
373
374 if (s2 >= last)
375 d2 = s2 - last;
376 else if (s2 + back_max >= last)
377 d2 = (last - s2) * cfqd->cfq_back_penalty;
378 else
e8a99053 379 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
380
381 /* Found required data */
e8a99053
AM
382
383 /*
384 * By doing switch() on the bit mask "wrap" we avoid having to
385 * check two variables for all permutations: --> faster!
386 */
387 switch (wrap) {
5e705374 388 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 389 if (d1 < d2)
5e705374 390 return rq1;
e8a99053 391 else if (d2 < d1)
5e705374 392 return rq2;
e8a99053
AM
393 else {
394 if (s1 >= s2)
5e705374 395 return rq1;
e8a99053 396 else
5e705374 397 return rq2;
e8a99053 398 }
1da177e4 399
e8a99053 400 case CFQ_RQ2_WRAP:
5e705374 401 return rq1;
e8a99053 402 case CFQ_RQ1_WRAP:
5e705374
JA
403 return rq2;
404 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
405 default:
406 /*
407 * Since both rqs are wrapped,
408 * start with the one that's further behind head
409 * (--> only *one* back seek required),
410 * since back seek takes more time than forward.
411 */
412 if (s1 <= s2)
5e705374 413 return rq1;
1da177e4 414 else
5e705374 415 return rq2;
1da177e4
LT
416 }
417}
418
498d3aa2
JA
419/*
420 * The below is leftmost cache rbtree addon
421 */
0871714e 422static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
423{
424 if (!root->left)
425 root->left = rb_first(&root->rb);
426
0871714e
JA
427 if (root->left)
428 return rb_entry(root->left, struct cfq_queue, rb_node);
429
430 return NULL;
cc09e299
JA
431}
432
a36e71f9
JA
433static void rb_erase_init(struct rb_node *n, struct rb_root *root)
434{
435 rb_erase(n, root);
436 RB_CLEAR_NODE(n);
437}
438
cc09e299
JA
439static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
440{
441 if (root->left == n)
442 root->left = NULL;
a36e71f9 443 rb_erase_init(n, &root->rb);
cc09e299
JA
444}
445
1da177e4
LT
446/*
447 * would be nice to take fifo expire time into account as well
448 */
5e705374
JA
449static struct request *
450cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
451 struct request *last)
1da177e4 452{
21183b07
JA
453 struct rb_node *rbnext = rb_next(&last->rb_node);
454 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 455 struct request *next = NULL, *prev = NULL;
1da177e4 456
21183b07 457 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
458
459 if (rbprev)
5e705374 460 prev = rb_entry_rq(rbprev);
1da177e4 461
21183b07 462 if (rbnext)
5e705374 463 next = rb_entry_rq(rbnext);
21183b07
JA
464 else {
465 rbnext = rb_first(&cfqq->sort_list);
466 if (rbnext && rbnext != &last->rb_node)
5e705374 467 next = rb_entry_rq(rbnext);
21183b07 468 }
1da177e4 469
21183b07 470 return cfq_choose_req(cfqd, next, prev);
1da177e4
LT
471}
472
d9e7620e
JA
473static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
474 struct cfq_queue *cfqq)
1da177e4 475{
d9e7620e
JA
476 /*
477 * just an approximation, should be ok.
478 */
67e6b49e
JA
479 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
480 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
481}
482
498d3aa2
JA
483/*
484 * The cfqd->service_tree holds all pending cfq_queue's that have
485 * requests waiting to be processed. It is sorted in the order that
486 * we will service the queues.
487 */
a36e71f9
JA
488static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
489 int add_front)
d9e7620e 490{
0871714e
JA
491 struct rb_node **p, *parent;
492 struct cfq_queue *__cfqq;
d9e7620e 493 unsigned long rb_key;
498d3aa2 494 int left;
d9e7620e 495
0871714e
JA
496 if (cfq_class_idle(cfqq)) {
497 rb_key = CFQ_IDLE_DELAY;
498 parent = rb_last(&cfqd->service_tree.rb);
499 if (parent && parent != &cfqq->rb_node) {
500 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
501 rb_key += __cfqq->rb_key;
502 } else
503 rb_key += jiffies;
504 } else if (!add_front) {
edd75ffd
JA
505 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
506 rb_key += cfqq->slice_resid;
507 cfqq->slice_resid = 0;
508 } else
509 rb_key = 0;
1da177e4 510
d9e7620e 511 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 512 /*
d9e7620e 513 * same position, nothing more to do
99f9628a 514 */
d9e7620e
JA
515 if (rb_key == cfqq->rb_key)
516 return;
1da177e4 517
cc09e299 518 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
1da177e4 519 }
d9e7620e 520
498d3aa2 521 left = 1;
0871714e
JA
522 parent = NULL;
523 p = &cfqd->service_tree.rb.rb_node;
d9e7620e 524 while (*p) {
67060e37 525 struct rb_node **n;
cc09e299 526
d9e7620e
JA
527 parent = *p;
528 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
529
0c534e0a
JA
530 /*
531 * sort RT queues first, we always want to give
67060e37
JA
532 * preference to them. IDLE queues goes to the back.
533 * after that, sort on the next service time.
0c534e0a
JA
534 */
535 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
67060e37 536 n = &(*p)->rb_left;
0c534e0a 537 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
67060e37
JA
538 n = &(*p)->rb_right;
539 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
540 n = &(*p)->rb_left;
541 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
542 n = &(*p)->rb_right;
0c534e0a 543 else if (rb_key < __cfqq->rb_key)
67060e37
JA
544 n = &(*p)->rb_left;
545 else
546 n = &(*p)->rb_right;
547
548 if (n == &(*p)->rb_right)
cc09e299 549 left = 0;
67060e37
JA
550
551 p = n;
d9e7620e
JA
552 }
553
cc09e299
JA
554 if (left)
555 cfqd->service_tree.left = &cfqq->rb_node;
556
d9e7620e
JA
557 cfqq->rb_key = rb_key;
558 rb_link_node(&cfqq->rb_node, parent, p);
cc09e299 559 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
1da177e4
LT
560}
561
a36e71f9 562static struct cfq_queue *
f2d1f0ae
JA
563cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
564 sector_t sector, struct rb_node **ret_parent,
565 struct rb_node ***rb_link)
a36e71f9 566{
a36e71f9
JA
567 struct rb_node **p, *parent;
568 struct cfq_queue *cfqq = NULL;
569
570 parent = NULL;
571 p = &root->rb_node;
572 while (*p) {
573 struct rb_node **n;
574
575 parent = *p;
576 cfqq = rb_entry(parent, struct cfq_queue, p_node);
577
578 /*
579 * Sort strictly based on sector. Smallest to the left,
580 * largest to the right.
581 */
582 if (sector > cfqq->next_rq->sector)
583 n = &(*p)->rb_right;
584 else if (sector < cfqq->next_rq->sector)
585 n = &(*p)->rb_left;
586 else
587 break;
588 p = n;
3ac6c9f8 589 cfqq = NULL;
a36e71f9
JA
590 }
591
592 *ret_parent = parent;
593 if (rb_link)
594 *rb_link = p;
3ac6c9f8 595 return cfqq;
a36e71f9
JA
596}
597
598static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
599{
a36e71f9
JA
600 struct rb_node **p, *parent;
601 struct cfq_queue *__cfqq;
602
f2d1f0ae
JA
603 if (cfqq->p_root) {
604 rb_erase(&cfqq->p_node, cfqq->p_root);
605 cfqq->p_root = NULL;
606 }
a36e71f9
JA
607
608 if (cfq_class_idle(cfqq))
609 return;
610 if (!cfqq->next_rq)
611 return;
612
f2d1f0ae
JA
613 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
614 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root, cfqq->next_rq->sector,
a36e71f9 615 &parent, &p);
3ac6c9f8
JA
616 if (!__cfqq) {
617 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
618 rb_insert_color(&cfqq->p_node, cfqq->p_root);
619 } else
620 cfqq->p_root = NULL;
a36e71f9
JA
621}
622
498d3aa2
JA
623/*
624 * Update cfqq's position in the service tree.
625 */
edd75ffd 626static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 627{
6d048f53
JA
628 /*
629 * Resorting requires the cfqq to be on the RR list already.
630 */
a36e71f9 631 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 632 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
633 cfq_prio_tree_add(cfqd, cfqq);
634 }
6d048f53
JA
635}
636
1da177e4
LT
637/*
638 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 639 * the pending list according to last request service
1da177e4 640 */
febffd61 641static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 642{
7b679138 643 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
644 BUG_ON(cfq_cfqq_on_rr(cfqq));
645 cfq_mark_cfqq_on_rr(cfqq);
1da177e4 646 cfqd->busy_queues++;
3a9a3f6c
DS
647 if (cfq_class_rt(cfqq))
648 cfqd->busy_rt_queues++;
1da177e4 649
edd75ffd 650 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
651}
652
498d3aa2
JA
653/*
654 * Called when the cfqq no longer has requests pending, remove it from
655 * the service tree.
656 */
febffd61 657static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 658{
7b679138 659 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
660 BUG_ON(!cfq_cfqq_on_rr(cfqq));
661 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 662
cc09e299
JA
663 if (!RB_EMPTY_NODE(&cfqq->rb_node))
664 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
f2d1f0ae
JA
665 if (cfqq->p_root) {
666 rb_erase(&cfqq->p_node, cfqq->p_root);
667 cfqq->p_root = NULL;
668 }
d9e7620e 669
1da177e4
LT
670 BUG_ON(!cfqd->busy_queues);
671 cfqd->busy_queues--;
3a9a3f6c
DS
672 if (cfq_class_rt(cfqq))
673 cfqd->busy_rt_queues--;
1da177e4
LT
674}
675
676/*
677 * rb tree support functions
678 */
febffd61 679static void cfq_del_rq_rb(struct request *rq)
1da177e4 680{
5e705374 681 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 682 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 683 const int sync = rq_is_sync(rq);
1da177e4 684
b4878f24
JA
685 BUG_ON(!cfqq->queued[sync]);
686 cfqq->queued[sync]--;
1da177e4 687
5e705374 688 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 689
dd67d051 690 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 691 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
692}
693
5e705374 694static void cfq_add_rq_rb(struct request *rq)
1da177e4 695{
5e705374 696 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 697 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 698 struct request *__alias, *prev;
1da177e4 699
5380a101 700 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
701
702 /*
703 * looks a little odd, but the first insert might return an alias.
704 * if that happens, put the alias on the dispatch list
705 */
21183b07 706 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 707 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
708
709 if (!cfq_cfqq_on_rr(cfqq))
710 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
711
712 /*
713 * check if this request is a better next-serve candidate
714 */
a36e71f9 715 prev = cfqq->next_rq;
5044eed4 716 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
a36e71f9
JA
717
718 /*
719 * adjust priority tree position, if ->next_rq changes
720 */
721 if (prev != cfqq->next_rq)
722 cfq_prio_tree_add(cfqd, cfqq);
723
5044eed4 724 BUG_ON(!cfqq->next_rq);
1da177e4
LT
725}
726
febffd61 727static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 728{
5380a101
JA
729 elv_rb_del(&cfqq->sort_list, rq);
730 cfqq->queued[rq_is_sync(rq)]--;
5e705374 731 cfq_add_rq_rb(rq);
1da177e4
LT
732}
733
206dc69b
JA
734static struct request *
735cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 736{
206dc69b 737 struct task_struct *tsk = current;
91fac317 738 struct cfq_io_context *cic;
206dc69b 739 struct cfq_queue *cfqq;
1da177e4 740
4ac845a2 741 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
742 if (!cic)
743 return NULL;
744
745 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
746 if (cfqq) {
747 sector_t sector = bio->bi_sector + bio_sectors(bio);
748
21183b07 749 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 750 }
1da177e4 751
1da177e4
LT
752 return NULL;
753}
754
165125e1 755static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 756{
22e2c507 757 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 758
b4878f24 759 cfqd->rq_in_driver++;
7b679138
JA
760 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
761 cfqd->rq_in_driver);
25776e35 762
5b93629b 763 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
764}
765
165125e1 766static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 767{
b4878f24
JA
768 struct cfq_data *cfqd = q->elevator->elevator_data;
769
770 WARN_ON(!cfqd->rq_in_driver);
771 cfqd->rq_in_driver--;
7b679138
JA
772 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
773 cfqd->rq_in_driver);
1da177e4
LT
774}
775
b4878f24 776static void cfq_remove_request(struct request *rq)
1da177e4 777{
5e705374 778 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 779
5e705374
JA
780 if (cfqq->next_rq == rq)
781 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 782
b4878f24 783 list_del_init(&rq->queuelist);
5e705374 784 cfq_del_rq_rb(rq);
374f84ac 785
45333d5a 786 cfqq->cfqd->rq_queued--;
374f84ac
JA
787 if (rq_is_meta(rq)) {
788 WARN_ON(!cfqq->meta_pending);
789 cfqq->meta_pending--;
790 }
1da177e4
LT
791}
792
165125e1
JA
793static int cfq_merge(struct request_queue *q, struct request **req,
794 struct bio *bio)
1da177e4
LT
795{
796 struct cfq_data *cfqd = q->elevator->elevator_data;
797 struct request *__rq;
1da177e4 798
206dc69b 799 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 800 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
801 *req = __rq;
802 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
803 }
804
805 return ELEVATOR_NO_MERGE;
1da177e4
LT
806}
807
165125e1 808static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 809 int type)
1da177e4 810{
21183b07 811 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 812 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 813
5e705374 814 cfq_reposition_rq_rb(cfqq, req);
1da177e4 815 }
1da177e4
LT
816}
817
818static void
165125e1 819cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
820 struct request *next)
821{
22e2c507
JA
822 /*
823 * reposition in fifo if next is older than rq
824 */
825 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
826 time_before(next->start_time, rq->start_time))
827 list_move(&rq->queuelist, &next->queuelist);
828
b4878f24 829 cfq_remove_request(next);
22e2c507
JA
830}
831
165125e1 832static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
833 struct bio *bio)
834{
835 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 836 struct cfq_io_context *cic;
da775265 837 struct cfq_queue *cfqq;
da775265
JA
838
839 /*
ec8acb69 840 * Disallow merge of a sync bio into an async request.
da775265 841 */
91fac317 842 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
da775265
JA
843 return 0;
844
845 /*
719d3402
JA
846 * Lookup the cfqq that this bio will be queued with. Allow
847 * merge only if rq is queued there.
da775265 848 */
4ac845a2 849 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317
VT
850 if (!cic)
851 return 0;
719d3402 852
91fac317 853 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
719d3402
JA
854 if (cfqq == RQ_CFQQ(rq))
855 return 1;
da775265 856
ec8acb69 857 return 0;
da775265
JA
858}
859
febffd61
JA
860static void __cfq_set_active_queue(struct cfq_data *cfqd,
861 struct cfq_queue *cfqq)
22e2c507
JA
862{
863 if (cfqq) {
7b679138 864 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 865 cfqq->slice_end = 0;
2f5cb738
JA
866 cfqq->slice_dispatch = 0;
867
2f5cb738 868 cfq_clear_cfqq_wait_request(cfqq);
b029195d 869 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
870 cfq_clear_cfqq_must_alloc_slice(cfqq);
871 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 872 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
873
874 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
875 }
876
877 cfqd->active_queue = cfqq;
878}
879
7b14e3b5
JA
880/*
881 * current cfqq expired its slice (or was too idle), select new one
882 */
883static void
884__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6084cdda 885 int timed_out)
7b14e3b5 886{
7b679138
JA
887 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
888
7b14e3b5
JA
889 if (cfq_cfqq_wait_request(cfqq))
890 del_timer(&cfqd->idle_slice_timer);
891
7b14e3b5
JA
892 cfq_clear_cfqq_wait_request(cfqq);
893
894 /*
6084cdda 895 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 896 */
7b679138 897 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 898 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
899 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
900 }
7b14e3b5 901
edd75ffd 902 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
903
904 if (cfqq == cfqd->active_queue)
905 cfqd->active_queue = NULL;
906
907 if (cfqd->active_cic) {
908 put_io_context(cfqd->active_cic->ioc);
909 cfqd->active_cic = NULL;
910 }
7b14e3b5
JA
911}
912
6084cdda 913static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
7b14e3b5
JA
914{
915 struct cfq_queue *cfqq = cfqd->active_queue;
916
917 if (cfqq)
6084cdda 918 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
919}
920
498d3aa2
JA
921/*
922 * Get next queue for service. Unless we have a queue preemption,
923 * we'll simply select the first cfqq in the service tree.
924 */
6d048f53 925static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 926{
edd75ffd
JA
927 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
928 return NULL;
d9e7620e 929
0871714e 930 return cfq_rb_first(&cfqd->service_tree);
6d048f53
JA
931}
932
498d3aa2
JA
933/*
934 * Get and set a new active queue for service.
935 */
a36e71f9
JA
936static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
937 struct cfq_queue *cfqq)
6d048f53 938{
a36e71f9
JA
939 if (!cfqq) {
940 cfqq = cfq_get_next_queue(cfqd);
941 if (cfqq)
942 cfq_clear_cfqq_coop(cfqq);
943 }
6d048f53 944
22e2c507 945 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 946 return cfqq;
22e2c507
JA
947}
948
d9e7620e
JA
949static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
950 struct request *rq)
951{
83096ebf
TH
952 if (blk_rq_pos(rq) >= cfqd->last_position)
953 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 954 else
83096ebf 955 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
956}
957
04dc6e71
JM
958#define CIC_SEEK_THR 8 * 1024
959#define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
960
6d048f53
JA
961static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
962{
963 struct cfq_io_context *cic = cfqd->active_cic;
04dc6e71 964 sector_t sdist = cic->seek_mean;
6d048f53
JA
965
966 if (!sample_valid(cic->seek_samples))
04dc6e71 967 sdist = CIC_SEEK_THR;
6d048f53 968
04dc6e71 969 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
970}
971
a36e71f9
JA
972static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
973 struct cfq_queue *cur_cfqq)
974{
f2d1f0ae 975 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
976 struct rb_node *parent, *node;
977 struct cfq_queue *__cfqq;
978 sector_t sector = cfqd->last_position;
979
980 if (RB_EMPTY_ROOT(root))
981 return NULL;
982
983 /*
984 * First, if we find a request starting at the end of the last
985 * request, choose it.
986 */
f2d1f0ae 987 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
988 if (__cfqq)
989 return __cfqq;
990
991 /*
992 * If the exact sector wasn't found, the parent of the NULL leaf
993 * will contain the closest sector.
994 */
995 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
996 if (cfq_rq_close(cfqd, __cfqq->next_rq))
997 return __cfqq;
998
999 if (__cfqq->next_rq->sector < sector)
1000 node = rb_next(&__cfqq->p_node);
1001 else
1002 node = rb_prev(&__cfqq->p_node);
1003 if (!node)
1004 return NULL;
1005
1006 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1007 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1008 return __cfqq;
1009
1010 return NULL;
1011}
1012
1013/*
1014 * cfqd - obvious
1015 * cur_cfqq - passed in so that we don't decide that the current queue is
1016 * closely cooperating with itself.
1017 *
1018 * So, basically we're assuming that that cur_cfqq has dispatched at least
1019 * one request, and that cfqd->last_position reflects a position on the disk
1020 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1021 * assumption.
1022 */
1023static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1024 struct cfq_queue *cur_cfqq,
1025 int probe)
6d048f53 1026{
a36e71f9
JA
1027 struct cfq_queue *cfqq;
1028
1029 /*
1030 * A valid cfq_io_context is necessary to compare requests against
1031 * the seek_mean of the current cfqq.
1032 */
1033 if (!cfqd->active_cic)
1034 return NULL;
1035
6d048f53 1036 /*
d9e7620e
JA
1037 * We should notice if some of the queues are cooperating, eg
1038 * working closely on the same area of the disk. In that case,
1039 * we can group them together and don't waste time idling.
6d048f53 1040 */
a36e71f9
JA
1041 cfqq = cfqq_close(cfqd, cur_cfqq);
1042 if (!cfqq)
1043 return NULL;
1044
1045 if (cfq_cfqq_coop(cfqq))
1046 return NULL;
1047
1048 if (!probe)
1049 cfq_mark_cfqq_coop(cfqq);
1050 return cfqq;
6d048f53
JA
1051}
1052
6d048f53 1053static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1054{
1792669c 1055 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1056 struct cfq_io_context *cic;
7b14e3b5
JA
1057 unsigned long sl;
1058
a68bbddb 1059 /*
f7d7b7a7
JA
1060 * SSD device without seek penalty, disable idling. But only do so
1061 * for devices that support queuing, otherwise we still have a problem
1062 * with sync vs async workloads.
a68bbddb 1063 */
f7d7b7a7 1064 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1065 return;
1066
dd67d051 1067 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1068 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1069
1070 /*
1071 * idle is disabled, either manually or by past process history
1072 */
6d048f53
JA
1073 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1074 return;
1075
7b679138
JA
1076 /*
1077 * still requests with the driver, don't idle
1078 */
1079 if (cfqd->rq_in_driver)
1080 return;
1081
22e2c507
JA
1082 /*
1083 * task has exited, don't wait
1084 */
206dc69b 1085 cic = cfqd->active_cic;
66dac98e 1086 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1087 return;
1088
3b18152c 1089 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1090
206dc69b
JA
1091 /*
1092 * we don't want to idle for seeks, but we do want to allow
1093 * fair distribution of slice time for a process doing back-to-back
1094 * seeks. so allow a little bit of time for him to submit a new rq
1095 */
6d048f53 1096 sl = cfqd->cfq_slice_idle;
caaa5f9f 1097 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
d9e7620e 1098 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
206dc69b 1099
7b14e3b5 1100 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1101 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1102}
1103
498d3aa2
JA
1104/*
1105 * Move request from internal lists to the request queue dispatch list.
1106 */
165125e1 1107static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1108{
3ed9a296 1109 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1110 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1111
7b679138
JA
1112 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1113
5380a101 1114 cfq_remove_request(rq);
6d048f53 1115 cfqq->dispatched++;
5380a101 1116 elv_dispatch_sort(q, rq);
3ed9a296
JA
1117
1118 if (cfq_cfqq_sync(cfqq))
1119 cfqd->sync_flight++;
1da177e4
LT
1120}
1121
1122/*
1123 * return expired entry, or NULL to just start from scratch in rbtree
1124 */
febffd61 1125static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4
LT
1126{
1127 struct cfq_data *cfqd = cfqq->cfqd;
22e2c507 1128 struct request *rq;
89850f7e 1129 int fifo;
1da177e4 1130
3b18152c 1131 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1132 return NULL;
cb887411
JA
1133
1134 cfq_mark_cfqq_fifo_expire(cfqq);
1135
89850f7e
JA
1136 if (list_empty(&cfqq->fifo))
1137 return NULL;
1da177e4 1138
6d048f53 1139 fifo = cfq_cfqq_sync(cfqq);
89850f7e 1140 rq = rq_entry_fifo(cfqq->fifo.next);
1da177e4 1141
6d048f53 1142 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
7b679138 1143 rq = NULL;
1da177e4 1144
7b679138 1145 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
6d048f53 1146 return rq;
1da177e4
LT
1147}
1148
22e2c507
JA
1149static inline int
1150cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1151{
1152 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1153
22e2c507 1154 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1155
22e2c507 1156 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1157}
1158
22e2c507 1159/*
498d3aa2
JA
1160 * Select a queue for service. If we have a current active queue,
1161 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1162 */
1b5ed5e1 1163static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1164{
a36e71f9 1165 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1166
22e2c507
JA
1167 cfqq = cfqd->active_queue;
1168 if (!cfqq)
1169 goto new_queue;
1da177e4 1170
22e2c507 1171 /*
6d048f53 1172 * The active queue has run out of time, expire it and select new.
22e2c507 1173 */
b029195d 1174 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1175 goto expire;
1da177e4 1176
3a9a3f6c
DS
1177 /*
1178 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1179 * cfqq.
1180 */
1181 if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues) {
1182 /*
1183 * We simulate this as cfqq timed out so that it gets to bank
1184 * the remaining of its time slice.
1185 */
1186 cfq_log_cfqq(cfqd, cfqq, "preempt");
1187 cfq_slice_expired(cfqd, 1);
1188 goto new_queue;
1189 }
1190
22e2c507 1191 /*
6d048f53
JA
1192 * The active queue has requests and isn't expired, allow it to
1193 * dispatch.
22e2c507 1194 */
dd67d051 1195 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1196 goto keep_queue;
6d048f53 1197
a36e71f9
JA
1198 /*
1199 * If another queue has a request waiting within our mean seek
1200 * distance, let it run. The expire code will check for close
1201 * cooperators and put the close queue at the front of the service
1202 * tree.
1203 */
1204 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1205 if (new_cfqq)
1206 goto expire;
1207
6d048f53
JA
1208 /*
1209 * No requests pending. If the active queue still has requests in
1210 * flight or is idling for a new request, allow either of these
1211 * conditions to happen (or time out) before selecting a new queue.
1212 */
cc197479
JA
1213 if (timer_pending(&cfqd->idle_slice_timer) ||
1214 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
caaa5f9f
JA
1215 cfqq = NULL;
1216 goto keep_queue;
22e2c507
JA
1217 }
1218
3b18152c 1219expire:
6084cdda 1220 cfq_slice_expired(cfqd, 0);
3b18152c 1221new_queue:
a36e71f9 1222 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1223keep_queue:
3b18152c 1224 return cfqq;
22e2c507
JA
1225}
1226
febffd61 1227static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1228{
1229 int dispatched = 0;
1230
1231 while (cfqq->next_rq) {
1232 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1233 dispatched++;
1234 }
1235
1236 BUG_ON(!list_empty(&cfqq->fifo));
1237 return dispatched;
1238}
1239
498d3aa2
JA
1240/*
1241 * Drain our current requests. Used for barriers and when switching
1242 * io schedulers on-the-fly.
1243 */
d9e7620e 1244static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1245{
0871714e 1246 struct cfq_queue *cfqq;
d9e7620e 1247 int dispatched = 0;
1b5ed5e1 1248
0871714e 1249 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
d9e7620e 1250 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1251
6084cdda 1252 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1253
1254 BUG_ON(cfqd->busy_queues);
1255
7b679138 1256 cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1b5ed5e1
TH
1257 return dispatched;
1258}
1259
2f5cb738
JA
1260/*
1261 * Dispatch a request from cfqq, moving them to the request queue
1262 * dispatch list.
1263 */
1264static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1265{
1266 struct request *rq;
1267
1268 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1269
1270 /*
1271 * follow expired path, else get first next available
1272 */
1273 rq = cfq_check_fifo(cfqq);
1274 if (!rq)
1275 rq = cfqq->next_rq;
1276
1277 /*
1278 * insert request into driver dispatch list
1279 */
1280 cfq_dispatch_insert(cfqd->queue, rq);
1281
1282 if (!cfqd->active_cic) {
1283 struct cfq_io_context *cic = RQ_CIC(rq);
1284
1285 atomic_inc(&cic->ioc->refcount);
1286 cfqd->active_cic = cic;
1287 }
1288}
1289
1290/*
1291 * Find the cfqq that we need to service and move a request from that to the
1292 * dispatch list
1293 */
165125e1 1294static int cfq_dispatch_requests(struct request_queue *q, int force)
22e2c507
JA
1295{
1296 struct cfq_data *cfqd = q->elevator->elevator_data;
6d048f53 1297 struct cfq_queue *cfqq;
2f5cb738 1298 unsigned int max_dispatch;
22e2c507
JA
1299
1300 if (!cfqd->busy_queues)
1301 return 0;
1302
1b5ed5e1
TH
1303 if (unlikely(force))
1304 return cfq_forced_dispatch(cfqd);
1305
2f5cb738
JA
1306 cfqq = cfq_select_queue(cfqd);
1307 if (!cfqq)
1308 return 0;
1309
1310 /*
1311 * If this is an async queue and we have sync IO in flight, let it wait
1312 */
1313 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1314 return 0;
1315
1316 max_dispatch = cfqd->cfq_quantum;
1317 if (cfq_class_idle(cfqq))
1318 max_dispatch = 1;
b4878f24 1319
2f5cb738
JA
1320 /*
1321 * Does this cfqq already have too much IO in flight?
1322 */
1323 if (cfqq->dispatched >= max_dispatch) {
1324 /*
1325 * idle queue must always only have a single IO in flight
1326 */
3ed9a296 1327 if (cfq_class_idle(cfqq))
2f5cb738 1328 return 0;
3ed9a296 1329
2f5cb738
JA
1330 /*
1331 * We have other queues, don't allow more IO from this one
1332 */
1333 if (cfqd->busy_queues > 1)
1334 return 0;
9ede209e 1335
2f5cb738
JA
1336 /*
1337 * we are the only queue, allow up to 4 times of 'quantum'
1338 */
1339 if (cfqq->dispatched >= 4 * max_dispatch)
1340 return 0;
1341 }
3ed9a296 1342
2f5cb738
JA
1343 /*
1344 * Dispatch a request from this cfqq
1345 */
1346 cfq_dispatch_request(cfqd, cfqq);
1347 cfqq->slice_dispatch++;
b029195d 1348 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1349
2f5cb738
JA
1350 /*
1351 * expire an async queue immediately if it has used up its slice. idle
1352 * queue always expire after 1 dispatch round.
1353 */
1354 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1355 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1356 cfq_class_idle(cfqq))) {
1357 cfqq->slice_end = jiffies + 1;
1358 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1359 }
1360
2f5cb738
JA
1361 cfq_log(cfqd, "dispatched a request");
1362 return 1;
1da177e4
LT
1363}
1364
1da177e4 1365/*
5e705374
JA
1366 * task holds one reference to the queue, dropped when task exits. each rq
1367 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1368 *
1369 * queue lock must be held here.
1370 */
1371static void cfq_put_queue(struct cfq_queue *cfqq)
1372{
22e2c507
JA
1373 struct cfq_data *cfqd = cfqq->cfqd;
1374
1375 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1376
1377 if (!atomic_dec_and_test(&cfqq->ref))
1378 return;
1379
7b679138 1380 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1381 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1382 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1383 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1384
28f95cbc 1385 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1386 __cfq_slice_expired(cfqd, cfqq, 0);
28f95cbc
JA
1387 cfq_schedule_dispatch(cfqd);
1388 }
22e2c507 1389
1da177e4
LT
1390 kmem_cache_free(cfq_pool, cfqq);
1391}
1392
d6de8be7
JA
1393/*
1394 * Must always be called with the rcu_read_lock() held
1395 */
07416d29
JA
1396static void
1397__call_for_each_cic(struct io_context *ioc,
1398 void (*func)(struct io_context *, struct cfq_io_context *))
1399{
1400 struct cfq_io_context *cic;
1401 struct hlist_node *n;
1402
1403 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1404 func(ioc, cic);
1405}
1406
4ac845a2 1407/*
34e6bbf2 1408 * Call func for each cic attached to this ioc.
4ac845a2 1409 */
34e6bbf2 1410static void
4ac845a2
JA
1411call_for_each_cic(struct io_context *ioc,
1412 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1413{
4ac845a2 1414 rcu_read_lock();
07416d29 1415 __call_for_each_cic(ioc, func);
4ac845a2 1416 rcu_read_unlock();
34e6bbf2
FC
1417}
1418
1419static void cfq_cic_free_rcu(struct rcu_head *head)
1420{
1421 struct cfq_io_context *cic;
1422
1423 cic = container_of(head, struct cfq_io_context, rcu_head);
1424
1425 kmem_cache_free(cfq_ioc_pool, cic);
1426 elv_ioc_count_dec(ioc_count);
1427
9a11b4ed
JA
1428 if (ioc_gone) {
1429 /*
1430 * CFQ scheduler is exiting, grab exit lock and check
1431 * the pending io context count. If it hits zero,
1432 * complete ioc_gone and set it back to NULL
1433 */
1434 spin_lock(&ioc_gone_lock);
1435 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1436 complete(ioc_gone);
1437 ioc_gone = NULL;
1438 }
1439 spin_unlock(&ioc_gone_lock);
1440 }
34e6bbf2 1441}
4ac845a2 1442
34e6bbf2
FC
1443static void cfq_cic_free(struct cfq_io_context *cic)
1444{
1445 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1446}
1447
1448static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1449{
1450 unsigned long flags;
1451
1452 BUG_ON(!cic->dead_key);
1453
1454 spin_lock_irqsave(&ioc->lock, flags);
1455 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1456 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1457 spin_unlock_irqrestore(&ioc->lock, flags);
1458
34e6bbf2 1459 cfq_cic_free(cic);
4ac845a2
JA
1460}
1461
d6de8be7
JA
1462/*
1463 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1464 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1465 * and ->trim() which is called with the task lock held
1466 */
4ac845a2
JA
1467static void cfq_free_io_context(struct io_context *ioc)
1468{
4ac845a2 1469 /*
34e6bbf2
FC
1470 * ioc->refcount is zero here, or we are called from elv_unregister(),
1471 * so no more cic's are allowed to be linked into this ioc. So it
1472 * should be ok to iterate over the known list, we will see all cic's
1473 * since no new ones are added.
4ac845a2 1474 */
07416d29 1475 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1476}
1477
89850f7e 1478static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1479{
28f95cbc 1480 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1481 __cfq_slice_expired(cfqd, cfqq, 0);
28f95cbc
JA
1482 cfq_schedule_dispatch(cfqd);
1483 }
22e2c507 1484
89850f7e
JA
1485 cfq_put_queue(cfqq);
1486}
22e2c507 1487
89850f7e
JA
1488static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1489 struct cfq_io_context *cic)
1490{
4faa3c81
FC
1491 struct io_context *ioc = cic->ioc;
1492
fc46379d 1493 list_del_init(&cic->queue_list);
4ac845a2
JA
1494
1495 /*
1496 * Make sure key == NULL is seen for dead queues
1497 */
fc46379d 1498 smp_wmb();
4ac845a2 1499 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1500 cic->key = NULL;
1501
4faa3c81
FC
1502 if (ioc->ioc_data == cic)
1503 rcu_assign_pointer(ioc->ioc_data, NULL);
1504
ff6657c6
JA
1505 if (cic->cfqq[BLK_RW_ASYNC]) {
1506 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1507 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1508 }
1509
ff6657c6
JA
1510 if (cic->cfqq[BLK_RW_SYNC]) {
1511 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1512 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1513 }
89850f7e
JA
1514}
1515
4ac845a2
JA
1516static void cfq_exit_single_io_context(struct io_context *ioc,
1517 struct cfq_io_context *cic)
89850f7e
JA
1518{
1519 struct cfq_data *cfqd = cic->key;
1520
89850f7e 1521 if (cfqd) {
165125e1 1522 struct request_queue *q = cfqd->queue;
4ac845a2 1523 unsigned long flags;
89850f7e 1524
4ac845a2 1525 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1526
1527 /*
1528 * Ensure we get a fresh copy of the ->key to prevent
1529 * race between exiting task and queue
1530 */
1531 smp_read_barrier_depends();
1532 if (cic->key)
1533 __cfq_exit_single_io_context(cfqd, cic);
1534
4ac845a2 1535 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1536 }
1da177e4
LT
1537}
1538
498d3aa2
JA
1539/*
1540 * The process that ioc belongs to has exited, we need to clean up
1541 * and put the internal structures we have that belongs to that process.
1542 */
e2d74ac0 1543static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1544{
4ac845a2 1545 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1546}
1547
22e2c507 1548static struct cfq_io_context *
8267e268 1549cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1550{
b5deef90 1551 struct cfq_io_context *cic;
1da177e4 1552
94f6030c
CL
1553 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1554 cfqd->queue->node);
1da177e4 1555 if (cic) {
22e2c507 1556 cic->last_end_request = jiffies;
553698f9 1557 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1558 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1559 cic->dtor = cfq_free_io_context;
1560 cic->exit = cfq_exit_io_context;
4050cf16 1561 elv_ioc_count_inc(ioc_count);
1da177e4
LT
1562 }
1563
1564 return cic;
1565}
1566
fd0928df 1567static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1568{
1569 struct task_struct *tsk = current;
1570 int ioprio_class;
1571
3b18152c 1572 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1573 return;
1574
fd0928df 1575 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1576 switch (ioprio_class) {
fe094d98
JA
1577 default:
1578 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1579 case IOPRIO_CLASS_NONE:
1580 /*
6d63c275 1581 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1582 */
1583 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1584 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1585 break;
1586 case IOPRIO_CLASS_RT:
1587 cfqq->ioprio = task_ioprio(ioc);
1588 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1589 break;
1590 case IOPRIO_CLASS_BE:
1591 cfqq->ioprio = task_ioprio(ioc);
1592 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1593 break;
1594 case IOPRIO_CLASS_IDLE:
1595 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1596 cfqq->ioprio = 7;
1597 cfq_clear_cfqq_idle_window(cfqq);
1598 break;
22e2c507
JA
1599 }
1600
1601 /*
1602 * keep track of original prio settings in case we have to temporarily
1603 * elevate the priority of this queue
1604 */
1605 cfqq->org_ioprio = cfqq->ioprio;
1606 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1607 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1608}
1609
febffd61 1610static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1611{
478a82b0
AV
1612 struct cfq_data *cfqd = cic->key;
1613 struct cfq_queue *cfqq;
c1b707d2 1614 unsigned long flags;
35e6077c 1615
caaa5f9f
JA
1616 if (unlikely(!cfqd))
1617 return;
1618
c1b707d2 1619 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 1620
ff6657c6 1621 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
1622 if (cfqq) {
1623 struct cfq_queue *new_cfqq;
ff6657c6
JA
1624 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1625 GFP_ATOMIC);
caaa5f9f 1626 if (new_cfqq) {
ff6657c6 1627 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
1628 cfq_put_queue(cfqq);
1629 }
22e2c507 1630 }
caaa5f9f 1631
ff6657c6 1632 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
1633 if (cfqq)
1634 cfq_mark_cfqq_prio_changed(cfqq);
1635
c1b707d2 1636 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
1637}
1638
fc46379d 1639static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 1640{
4ac845a2 1641 call_for_each_cic(ioc, changed_ioprio);
fc46379d 1642 ioc->ioprio_changed = 0;
22e2c507
JA
1643}
1644
1645static struct cfq_queue *
15c31be4 1646cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
fd0928df 1647 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 1648{
22e2c507 1649 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 1650 struct cfq_io_context *cic;
22e2c507
JA
1651
1652retry:
4ac845a2 1653 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
1654 /* cic always exists here */
1655 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507
JA
1656
1657 if (!cfqq) {
1658 if (new_cfqq) {
1659 cfqq = new_cfqq;
1660 new_cfqq = NULL;
1661 } else if (gfp_mask & __GFP_WAIT) {
89850f7e
JA
1662 /*
1663 * Inform the allocator of the fact that we will
1664 * just repeat this allocation if it fails, to allow
1665 * the allocator to do whatever it needs to attempt to
1666 * free memory.
1667 */
22e2c507 1668 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c
CL
1669 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1670 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1671 cfqd->queue->node);
22e2c507
JA
1672 spin_lock_irq(cfqd->queue->queue_lock);
1673 goto retry;
1674 } else {
94f6030c
CL
1675 cfqq = kmem_cache_alloc_node(cfq_pool,
1676 gfp_mask | __GFP_ZERO,
1677 cfqd->queue->node);
22e2c507
JA
1678 if (!cfqq)
1679 goto out;
1680 }
1681
d9e7620e 1682 RB_CLEAR_NODE(&cfqq->rb_node);
a36e71f9 1683 RB_CLEAR_NODE(&cfqq->p_node);
22e2c507
JA
1684 INIT_LIST_HEAD(&cfqq->fifo);
1685
22e2c507
JA
1686 atomic_set(&cfqq->ref, 0);
1687 cfqq->cfqd = cfqd;
c5b680f3 1688
3b18152c 1689 cfq_mark_cfqq_prio_changed(cfqq);
91fac317 1690
fd0928df 1691 cfq_init_prio_data(cfqq, ioc);
0871714e
JA
1692
1693 if (is_sync) {
1694 if (!cfq_class_idle(cfqq))
1695 cfq_mark_cfqq_idle_window(cfqq);
1696 cfq_mark_cfqq_sync(cfqq);
1697 }
7b679138
JA
1698 cfqq->pid = current->pid;
1699 cfq_log_cfqq(cfqd, cfqq, "alloced");
22e2c507
JA
1700 }
1701
1702 if (new_cfqq)
1703 kmem_cache_free(cfq_pool, new_cfqq);
1704
22e2c507
JA
1705out:
1706 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1707 return cfqq;
1708}
1709
c2dea2d1
VT
1710static struct cfq_queue **
1711cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1712{
fe094d98 1713 switch (ioprio_class) {
c2dea2d1
VT
1714 case IOPRIO_CLASS_RT:
1715 return &cfqd->async_cfqq[0][ioprio];
1716 case IOPRIO_CLASS_BE:
1717 return &cfqd->async_cfqq[1][ioprio];
1718 case IOPRIO_CLASS_IDLE:
1719 return &cfqd->async_idle_cfqq;
1720 default:
1721 BUG();
1722 }
1723}
1724
15c31be4 1725static struct cfq_queue *
fd0928df 1726cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
15c31be4
JA
1727 gfp_t gfp_mask)
1728{
fd0928df
JA
1729 const int ioprio = task_ioprio(ioc);
1730 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 1731 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
1732 struct cfq_queue *cfqq = NULL;
1733
c2dea2d1
VT
1734 if (!is_sync) {
1735 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1736 cfqq = *async_cfqq;
1737 }
1738
0a0836a0 1739 if (!cfqq) {
fd0928df 1740 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
0a0836a0
ON
1741 if (!cfqq)
1742 return NULL;
1743 }
15c31be4
JA
1744
1745 /*
1746 * pin the queue now that it's allocated, scheduler exit will prune it
1747 */
c2dea2d1 1748 if (!is_sync && !(*async_cfqq)) {
15c31be4 1749 atomic_inc(&cfqq->ref);
c2dea2d1 1750 *async_cfqq = cfqq;
15c31be4
JA
1751 }
1752
1753 atomic_inc(&cfqq->ref);
1754 return cfqq;
1755}
1756
498d3aa2
JA
1757/*
1758 * We drop cfq io contexts lazily, so we may find a dead one.
1759 */
dbecf3ab 1760static void
4ac845a2
JA
1761cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1762 struct cfq_io_context *cic)
dbecf3ab 1763{
4ac845a2
JA
1764 unsigned long flags;
1765
fc46379d 1766 WARN_ON(!list_empty(&cic->queue_list));
597bc485 1767
4ac845a2
JA
1768 spin_lock_irqsave(&ioc->lock, flags);
1769
4faa3c81 1770 BUG_ON(ioc->ioc_data == cic);
597bc485 1771
4ac845a2 1772 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 1773 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1774 spin_unlock_irqrestore(&ioc->lock, flags);
1775
1776 cfq_cic_free(cic);
dbecf3ab
OH
1777}
1778
e2d74ac0 1779static struct cfq_io_context *
4ac845a2 1780cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 1781{
e2d74ac0 1782 struct cfq_io_context *cic;
d6de8be7 1783 unsigned long flags;
4ac845a2 1784 void *k;
e2d74ac0 1785
91fac317
VT
1786 if (unlikely(!ioc))
1787 return NULL;
1788
d6de8be7
JA
1789 rcu_read_lock();
1790
597bc485
JA
1791 /*
1792 * we maintain a last-hit cache, to avoid browsing over the tree
1793 */
4ac845a2 1794 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
1795 if (cic && cic->key == cfqd) {
1796 rcu_read_unlock();
597bc485 1797 return cic;
d6de8be7 1798 }
597bc485 1799
4ac845a2 1800 do {
4ac845a2
JA
1801 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1802 rcu_read_unlock();
1803 if (!cic)
1804 break;
be3b0753
OH
1805 /* ->key must be copied to avoid race with cfq_exit_queue() */
1806 k = cic->key;
1807 if (unlikely(!k)) {
4ac845a2 1808 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 1809 rcu_read_lock();
4ac845a2 1810 continue;
dbecf3ab 1811 }
e2d74ac0 1812
d6de8be7 1813 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 1814 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 1815 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
1816 break;
1817 } while (1);
e2d74ac0 1818
4ac845a2 1819 return cic;
e2d74ac0
JA
1820}
1821
4ac845a2
JA
1822/*
1823 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1824 * the process specific cfq io context when entered from the block layer.
1825 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1826 */
febffd61
JA
1827static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1828 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 1829{
0261d688 1830 unsigned long flags;
4ac845a2 1831 int ret;
e2d74ac0 1832
4ac845a2
JA
1833 ret = radix_tree_preload(gfp_mask);
1834 if (!ret) {
1835 cic->ioc = ioc;
1836 cic->key = cfqd;
e2d74ac0 1837
4ac845a2
JA
1838 spin_lock_irqsave(&ioc->lock, flags);
1839 ret = radix_tree_insert(&ioc->radix_root,
1840 (unsigned long) cfqd, cic);
ffc4e759
JA
1841 if (!ret)
1842 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 1843 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 1844
4ac845a2
JA
1845 radix_tree_preload_end();
1846
1847 if (!ret) {
1848 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1849 list_add(&cic->queue_list, &cfqd->cic_list);
1850 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1851 }
e2d74ac0
JA
1852 }
1853
4ac845a2
JA
1854 if (ret)
1855 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 1856
4ac845a2 1857 return ret;
e2d74ac0
JA
1858}
1859
1da177e4
LT
1860/*
1861 * Setup general io context and cfq io context. There can be several cfq
1862 * io contexts per general io context, if this process is doing io to more
e2d74ac0 1863 * than one device managed by cfq.
1da177e4
LT
1864 */
1865static struct cfq_io_context *
e2d74ac0 1866cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1867{
22e2c507 1868 struct io_context *ioc = NULL;
1da177e4 1869 struct cfq_io_context *cic;
1da177e4 1870
22e2c507 1871 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 1872
b5deef90 1873 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
1874 if (!ioc)
1875 return NULL;
1876
4ac845a2 1877 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
1878 if (cic)
1879 goto out;
1da177e4 1880
e2d74ac0
JA
1881 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1882 if (cic == NULL)
1883 goto err;
1da177e4 1884
4ac845a2
JA
1885 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1886 goto err_free;
1887
1da177e4 1888out:
fc46379d
JA
1889 smp_read_barrier_depends();
1890 if (unlikely(ioc->ioprio_changed))
1891 cfq_ioc_set_ioprio(ioc);
1892
1da177e4 1893 return cic;
4ac845a2
JA
1894err_free:
1895 cfq_cic_free(cic);
1da177e4
LT
1896err:
1897 put_io_context(ioc);
1898 return NULL;
1899}
1900
22e2c507
JA
1901static void
1902cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 1903{
aaf1228d
JA
1904 unsigned long elapsed = jiffies - cic->last_end_request;
1905 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 1906
22e2c507
JA
1907 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1908 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1909 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1910}
1da177e4 1911
206dc69b 1912static void
6d048f53
JA
1913cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1914 struct request *rq)
206dc69b
JA
1915{
1916 sector_t sdist;
1917 u64 total;
1918
4d00aa47
JM
1919 if (!cic->last_request_pos)
1920 sdist = 0;
83096ebf
TH
1921 else if (cic->last_request_pos < blk_rq_pos(rq))
1922 sdist = blk_rq_pos(rq) - cic->last_request_pos;
206dc69b 1923 else
83096ebf 1924 sdist = cic->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
1925
1926 /*
1927 * Don't allow the seek distance to get too large from the
1928 * odd fragment, pagein, etc
1929 */
1930 if (cic->seek_samples <= 60) /* second&third seek */
1931 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1932 else
1933 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1934
1935 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1936 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1937 total = cic->seek_total + (cic->seek_samples/2);
1938 do_div(total, cic->seek_samples);
1939 cic->seek_mean = (sector_t)total;
1940}
1da177e4 1941
22e2c507
JA
1942/*
1943 * Disable idle window if the process thinks too long or seeks so much that
1944 * it doesn't matter
1945 */
1946static void
1947cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1948 struct cfq_io_context *cic)
1949{
7b679138 1950 int old_idle, enable_idle;
1be92f2f 1951
0871714e
JA
1952 /*
1953 * Don't idle for async or idle io prio class
1954 */
1955 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
1956 return;
1957
c265a7f4 1958 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 1959
66dac98e 1960 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
caaa5f9f 1961 (cfqd->hw_tag && CIC_SEEKY(cic)))
22e2c507
JA
1962 enable_idle = 0;
1963 else if (sample_valid(cic->ttime_samples)) {
1964 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1965 enable_idle = 0;
1966 else
1967 enable_idle = 1;
1da177e4
LT
1968 }
1969
7b679138
JA
1970 if (old_idle != enable_idle) {
1971 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1972 if (enable_idle)
1973 cfq_mark_cfqq_idle_window(cfqq);
1974 else
1975 cfq_clear_cfqq_idle_window(cfqq);
1976 }
22e2c507 1977}
1da177e4 1978
22e2c507
JA
1979/*
1980 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1981 * no or if we aren't sure, a 1 will cause a preempt.
1982 */
1983static int
1984cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 1985 struct request *rq)
22e2c507 1986{
6d048f53 1987 struct cfq_queue *cfqq;
22e2c507 1988
6d048f53
JA
1989 cfqq = cfqd->active_queue;
1990 if (!cfqq)
22e2c507
JA
1991 return 0;
1992
6d048f53
JA
1993 if (cfq_slice_used(cfqq))
1994 return 1;
1995
1996 if (cfq_class_idle(new_cfqq))
caaa5f9f 1997 return 0;
22e2c507
JA
1998
1999 if (cfq_class_idle(cfqq))
2000 return 1;
1e3335de 2001
374f84ac
JA
2002 /*
2003 * if the new request is sync, but the currently running queue is
2004 * not, let the sync request have priority.
2005 */
5e705374 2006 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
22e2c507 2007 return 1;
1e3335de 2008
374f84ac
JA
2009 /*
2010 * So both queues are sync. Let the new request get disk time if
2011 * it's a metadata request and the current queue is doing regular IO.
2012 */
2013 if (rq_is_meta(rq) && !cfqq->meta_pending)
2014 return 1;
22e2c507 2015
3a9a3f6c
DS
2016 /*
2017 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2018 */
2019 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2020 return 1;
2021
1e3335de
JA
2022 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2023 return 0;
2024
2025 /*
2026 * if this request is as-good as one we would expect from the
2027 * current cfqq, let it preempt
2028 */
6d048f53 2029 if (cfq_rq_close(cfqd, rq))
1e3335de
JA
2030 return 1;
2031
22e2c507
JA
2032 return 0;
2033}
2034
2035/*
2036 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2037 * let it have half of its nominal slice.
2038 */
2039static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2040{
7b679138 2041 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2042 cfq_slice_expired(cfqd, 1);
22e2c507 2043
bf572256
JA
2044 /*
2045 * Put the new queue at the front of the of the current list,
2046 * so we know that it will be selected next.
2047 */
2048 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2049
2050 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2051
44f7c160
JA
2052 cfqq->slice_end = 0;
2053 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2054}
2055
22e2c507 2056/*
5e705374 2057 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2058 * something we should do about it
2059 */
2060static void
5e705374
JA
2061cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2062 struct request *rq)
22e2c507 2063{
5e705374 2064 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2065
45333d5a 2066 cfqd->rq_queued++;
374f84ac
JA
2067 if (rq_is_meta(rq))
2068 cfqq->meta_pending++;
2069
9c2c38a1 2070 cfq_update_io_thinktime(cfqd, cic);
6d048f53 2071 cfq_update_io_seektime(cfqd, cic, rq);
9c2c38a1
JA
2072 cfq_update_idle_window(cfqd, cfqq, cic);
2073
83096ebf 2074 cic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2075
2076 if (cfqq == cfqd->active_queue) {
2077 /*
b029195d
JA
2078 * Remember that we saw a request from this process, but
2079 * don't start queuing just yet. Otherwise we risk seeing lots
2080 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2081 * and merging. If the request is already larger than a single
2082 * page, let it rip immediately. For that case we assume that
2d870722
JA
2083 * merging is already done. Ditto for a busy system that
2084 * has other work pending, don't risk delaying until the
2085 * idle timer unplug to continue working.
22e2c507 2086 */
d6ceb25e 2087 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2088 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2089 cfqd->busy_queues > 1) {
d6ceb25e 2090 del_timer(&cfqd->idle_slice_timer);
a7f55792 2091 __blk_run_queue(cfqd->queue);
d6ceb25e 2092 }
b029195d 2093 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2094 }
5e705374 2095 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2096 /*
2097 * not the active queue - expire current slice if it is
2098 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2099 * has some old slice time left and is of higher priority or
2100 * this new queue is RT and the current one is BE
22e2c507
JA
2101 */
2102 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2103 __blk_run_queue(cfqd->queue);
22e2c507 2104 }
1da177e4
LT
2105}
2106
165125e1 2107static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2108{
b4878f24 2109 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2110 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2111
7b679138 2112 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2113 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2114
5e705374 2115 cfq_add_rq_rb(rq);
1da177e4 2116
22e2c507
JA
2117 list_add_tail(&rq->queuelist, &cfqq->fifo);
2118
5e705374 2119 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2120}
2121
45333d5a
AC
2122/*
2123 * Update hw_tag based on peak queue depth over 50 samples under
2124 * sufficient load.
2125 */
2126static void cfq_update_hw_tag(struct cfq_data *cfqd)
2127{
2128 if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
2129 cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
2130
2131 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2132 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
2133 return;
2134
2135 if (cfqd->hw_tag_samples++ < 50)
2136 return;
2137
2138 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2139 cfqd->hw_tag = 1;
2140 else
2141 cfqd->hw_tag = 0;
2142
2143 cfqd->hw_tag_samples = 0;
2144 cfqd->rq_in_driver_peak = 0;
2145}
2146
165125e1 2147static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2148{
5e705374 2149 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2150 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2151 const int sync = rq_is_sync(rq);
b4878f24 2152 unsigned long now;
1da177e4 2153
b4878f24 2154 now = jiffies;
7b679138 2155 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2156
45333d5a
AC
2157 cfq_update_hw_tag(cfqd);
2158
b4878f24 2159 WARN_ON(!cfqd->rq_in_driver);
6d048f53 2160 WARN_ON(!cfqq->dispatched);
b4878f24 2161 cfqd->rq_in_driver--;
6d048f53 2162 cfqq->dispatched--;
1da177e4 2163
3ed9a296
JA
2164 if (cfq_cfqq_sync(cfqq))
2165 cfqd->sync_flight--;
2166
b4878f24
JA
2167 if (!cfq_class_idle(cfqq))
2168 cfqd->last_end_request = now;
3b18152c 2169
caaa5f9f 2170 if (sync)
5e705374 2171 RQ_CIC(rq)->last_end_request = now;
caaa5f9f
JA
2172
2173 /*
2174 * If this is the active queue, check if it needs to be expired,
2175 * or if we want to idle in case it has no pending requests.
2176 */
2177 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2178 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2179
44f7c160
JA
2180 if (cfq_cfqq_slice_new(cfqq)) {
2181 cfq_set_prio_slice(cfqd, cfqq);
2182 cfq_clear_cfqq_slice_new(cfqq);
2183 }
a36e71f9
JA
2184 /*
2185 * If there are no requests waiting in this queue, and
2186 * there are other queues ready to issue requests, AND
2187 * those other queues are issuing requests within our
2188 * mean seek distance, give them a chance to run instead
2189 * of idling.
2190 */
0871714e 2191 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2192 cfq_slice_expired(cfqd, 1);
a36e71f9
JA
2193 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2194 sync && !rq_noidle(rq))
6d048f53 2195 cfq_arm_slice_timer(cfqd);
caaa5f9f 2196 }
6d048f53
JA
2197
2198 if (!cfqd->rq_in_driver)
2199 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2200}
2201
22e2c507
JA
2202/*
2203 * we temporarily boost lower priority queues if they are holding fs exclusive
2204 * resources. they are boosted to normal prio (CLASS_BE/4)
2205 */
2206static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2207{
22e2c507
JA
2208 if (has_fs_excl()) {
2209 /*
2210 * boost idle prio on transactions that would lock out other
2211 * users of the filesystem
2212 */
2213 if (cfq_class_idle(cfqq))
2214 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2215 if (cfqq->ioprio > IOPRIO_NORM)
2216 cfqq->ioprio = IOPRIO_NORM;
2217 } else {
2218 /*
2219 * check if we need to unboost the queue
2220 */
2221 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2222 cfqq->ioprio_class = cfqq->org_ioprio_class;
2223 if (cfqq->ioprio != cfqq->org_ioprio)
2224 cfqq->ioprio = cfqq->org_ioprio;
2225 }
22e2c507 2226}
1da177e4 2227
89850f7e 2228static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2229{
3b18152c 2230 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
99f95e52 2231 !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2232 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2233 return ELV_MQUEUE_MUST;
3b18152c 2234 }
1da177e4 2235
22e2c507 2236 return ELV_MQUEUE_MAY;
22e2c507
JA
2237}
2238
165125e1 2239static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2240{
2241 struct cfq_data *cfqd = q->elevator->elevator_data;
2242 struct task_struct *tsk = current;
91fac317 2243 struct cfq_io_context *cic;
22e2c507
JA
2244 struct cfq_queue *cfqq;
2245
2246 /*
2247 * don't force setup of a queue from here, as a call to may_queue
2248 * does not necessarily imply that a request actually will be queued.
2249 * so just lookup a possibly existing queue, or return 'may queue'
2250 * if that fails
2251 */
4ac845a2 2252 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2253 if (!cic)
2254 return ELV_MQUEUE_MAY;
2255
b0b78f81 2256 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2257 if (cfqq) {
fd0928df 2258 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2259 cfq_prio_boost(cfqq);
2260
89850f7e 2261 return __cfq_may_queue(cfqq);
22e2c507
JA
2262 }
2263
2264 return ELV_MQUEUE_MAY;
1da177e4
LT
2265}
2266
1da177e4
LT
2267/*
2268 * queue lock held here
2269 */
bb37b94c 2270static void cfq_put_request(struct request *rq)
1da177e4 2271{
5e705374 2272 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2273
5e705374 2274 if (cfqq) {
22e2c507 2275 const int rw = rq_data_dir(rq);
1da177e4 2276
22e2c507
JA
2277 BUG_ON(!cfqq->allocated[rw]);
2278 cfqq->allocated[rw]--;
1da177e4 2279
5e705374 2280 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2281
1da177e4 2282 rq->elevator_private = NULL;
5e705374 2283 rq->elevator_private2 = NULL;
1da177e4 2284
1da177e4
LT
2285 cfq_put_queue(cfqq);
2286 }
2287}
2288
2289/*
22e2c507 2290 * Allocate cfq data structures associated with this request.
1da177e4 2291 */
22e2c507 2292static int
165125e1 2293cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2294{
2295 struct cfq_data *cfqd = q->elevator->elevator_data;
2296 struct cfq_io_context *cic;
2297 const int rw = rq_data_dir(rq);
7749a8d4 2298 const int is_sync = rq_is_sync(rq);
22e2c507 2299 struct cfq_queue *cfqq;
1da177e4
LT
2300 unsigned long flags;
2301
2302 might_sleep_if(gfp_mask & __GFP_WAIT);
2303
e2d74ac0 2304 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2305
1da177e4
LT
2306 spin_lock_irqsave(q->queue_lock, flags);
2307
22e2c507
JA
2308 if (!cic)
2309 goto queue_fail;
2310
91fac317
VT
2311 cfqq = cic_to_cfqq(cic, is_sync);
2312 if (!cfqq) {
fd0928df 2313 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 2314
22e2c507
JA
2315 if (!cfqq)
2316 goto queue_fail;
1da177e4 2317
91fac317
VT
2318 cic_set_cfqq(cic, cfqq, is_sync);
2319 }
1da177e4
LT
2320
2321 cfqq->allocated[rw]++;
3b18152c 2322 cfq_clear_cfqq_must_alloc(cfqq);
22e2c507 2323 atomic_inc(&cfqq->ref);
1da177e4 2324
5e705374 2325 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2326
5e705374
JA
2327 rq->elevator_private = cic;
2328 rq->elevator_private2 = cfqq;
2329 return 0;
1da177e4 2330
22e2c507
JA
2331queue_fail:
2332 if (cic)
2333 put_io_context(cic->ioc);
89850f7e 2334
3b18152c 2335 cfq_schedule_dispatch(cfqd);
1da177e4 2336 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2337 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2338 return 1;
2339}
2340
65f27f38 2341static void cfq_kick_queue(struct work_struct *work)
22e2c507 2342{
65f27f38
DH
2343 struct cfq_data *cfqd =
2344 container_of(work, struct cfq_data, unplug_work);
165125e1 2345 struct request_queue *q = cfqd->queue;
22e2c507 2346
40bb54d1 2347 spin_lock_irq(q->queue_lock);
a7f55792 2348 __blk_run_queue(cfqd->queue);
40bb54d1 2349 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2350}
2351
2352/*
2353 * Timer running if the active_queue is currently idling inside its time slice
2354 */
2355static void cfq_idle_slice_timer(unsigned long data)
2356{
2357 struct cfq_data *cfqd = (struct cfq_data *) data;
2358 struct cfq_queue *cfqq;
2359 unsigned long flags;
3c6bd2f8 2360 int timed_out = 1;
22e2c507 2361
7b679138
JA
2362 cfq_log(cfqd, "idle timer fired");
2363
22e2c507
JA
2364 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2365
fe094d98
JA
2366 cfqq = cfqd->active_queue;
2367 if (cfqq) {
3c6bd2f8
JA
2368 timed_out = 0;
2369
b029195d
JA
2370 /*
2371 * We saw a request before the queue expired, let it through
2372 */
2373 if (cfq_cfqq_must_dispatch(cfqq))
2374 goto out_kick;
2375
22e2c507
JA
2376 /*
2377 * expired
2378 */
44f7c160 2379 if (cfq_slice_used(cfqq))
22e2c507
JA
2380 goto expire;
2381
2382 /*
2383 * only expire and reinvoke request handler, if there are
2384 * other queues with pending requests
2385 */
caaa5f9f 2386 if (!cfqd->busy_queues)
22e2c507 2387 goto out_cont;
22e2c507
JA
2388
2389 /*
2390 * not expired and it has a request pending, let it dispatch
2391 */
75e50984 2392 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2393 goto out_kick;
22e2c507
JA
2394 }
2395expire:
6084cdda 2396 cfq_slice_expired(cfqd, timed_out);
22e2c507 2397out_kick:
3b18152c 2398 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2399out_cont:
2400 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2401}
2402
3b18152c
JA
2403static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2404{
2405 del_timer_sync(&cfqd->idle_slice_timer);
64d01dc9 2406 cancel_work_sync(&cfqd->unplug_work);
3b18152c 2407}
22e2c507 2408
c2dea2d1
VT
2409static void cfq_put_async_queues(struct cfq_data *cfqd)
2410{
2411 int i;
2412
2413 for (i = 0; i < IOPRIO_BE_NR; i++) {
2414 if (cfqd->async_cfqq[0][i])
2415 cfq_put_queue(cfqd->async_cfqq[0][i]);
2416 if (cfqd->async_cfqq[1][i])
2417 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2418 }
2389d1ef
ON
2419
2420 if (cfqd->async_idle_cfqq)
2421 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2422}
2423
b374d18a 2424static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2425{
22e2c507 2426 struct cfq_data *cfqd = e->elevator_data;
165125e1 2427 struct request_queue *q = cfqd->queue;
22e2c507 2428
3b18152c 2429 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2430
d9ff4187 2431 spin_lock_irq(q->queue_lock);
e2d74ac0 2432
d9ff4187 2433 if (cfqd->active_queue)
6084cdda 2434 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2435
2436 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2437 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2438 struct cfq_io_context,
2439 queue_list);
89850f7e
JA
2440
2441 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2442 }
e2d74ac0 2443
c2dea2d1 2444 cfq_put_async_queues(cfqd);
15c31be4 2445
d9ff4187 2446 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2447
2448 cfq_shutdown_timer_wq(cfqd);
2449
a90d742e 2450 kfree(cfqd);
1da177e4
LT
2451}
2452
165125e1 2453static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2454{
2455 struct cfq_data *cfqd;
26a2ac00 2456 int i;
1da177e4 2457
94f6030c 2458 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2459 if (!cfqd)
bc1c1169 2460 return NULL;
1da177e4 2461
cc09e299 2462 cfqd->service_tree = CFQ_RB_ROOT;
26a2ac00
JA
2463
2464 /*
2465 * Not strictly needed (since RB_ROOT just clears the node and we
2466 * zeroed cfqd on alloc), but better be safe in case someone decides
2467 * to add magic to the rb code
2468 */
2469 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2470 cfqd->prio_trees[i] = RB_ROOT;
2471
d9ff4187 2472 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2473
1da177e4 2474 cfqd->queue = q;
1da177e4 2475
22e2c507
JA
2476 init_timer(&cfqd->idle_slice_timer);
2477 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2478 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2479
65f27f38 2480 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2481
b70c864d 2482 cfqd->last_end_request = jiffies;
1da177e4 2483 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2484 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2485 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2486 cfqd->cfq_back_max = cfq_back_max;
2487 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2488 cfqd->cfq_slice[0] = cfq_slice_async;
2489 cfqd->cfq_slice[1] = cfq_slice_sync;
2490 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2491 cfqd->cfq_slice_idle = cfq_slice_idle;
45333d5a 2492 cfqd->hw_tag = 1;
3b18152c 2493
bc1c1169 2494 return cfqd;
1da177e4
LT
2495}
2496
2497static void cfq_slab_kill(void)
2498{
d6de8be7
JA
2499 /*
2500 * Caller already ensured that pending RCU callbacks are completed,
2501 * so we should have no busy allocations at this point.
2502 */
1da177e4
LT
2503 if (cfq_pool)
2504 kmem_cache_destroy(cfq_pool);
2505 if (cfq_ioc_pool)
2506 kmem_cache_destroy(cfq_ioc_pool);
2507}
2508
2509static int __init cfq_slab_setup(void)
2510{
0a31bd5f 2511 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
2512 if (!cfq_pool)
2513 goto fail;
2514
34e6bbf2 2515 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
2516 if (!cfq_ioc_pool)
2517 goto fail;
2518
2519 return 0;
2520fail:
2521 cfq_slab_kill();
2522 return -ENOMEM;
2523}
2524
1da177e4
LT
2525/*
2526 * sysfs parts below -->
2527 */
1da177e4
LT
2528static ssize_t
2529cfq_var_show(unsigned int var, char *page)
2530{
2531 return sprintf(page, "%d\n", var);
2532}
2533
2534static ssize_t
2535cfq_var_store(unsigned int *var, const char *page, size_t count)
2536{
2537 char *p = (char *) page;
2538
2539 *var = simple_strtoul(p, &p, 10);
2540 return count;
2541}
2542
1da177e4 2543#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 2544static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 2545{ \
3d1ab40f 2546 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2547 unsigned int __data = __VAR; \
2548 if (__CONV) \
2549 __data = jiffies_to_msecs(__data); \
2550 return cfq_var_show(__data, (page)); \
2551}
2552SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
2553SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2554SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
2555SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2556SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
2557SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2558SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2559SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2560SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
1da177e4
LT
2561#undef SHOW_FUNCTION
2562
2563#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 2564static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 2565{ \
3d1ab40f 2566 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2567 unsigned int __data; \
2568 int ret = cfq_var_store(&__data, (page), count); \
2569 if (__data < (MIN)) \
2570 __data = (MIN); \
2571 else if (__data > (MAX)) \
2572 __data = (MAX); \
2573 if (__CONV) \
2574 *(__PTR) = msecs_to_jiffies(__data); \
2575 else \
2576 *(__PTR) = __data; \
2577 return ret; \
2578}
2579STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
2580STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2581 UINT_MAX, 1);
2582STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2583 UINT_MAX, 1);
e572ec7e 2584STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
2585STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2586 UINT_MAX, 0);
22e2c507
JA
2587STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2588STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2589STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
2590STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2591 UINT_MAX, 0);
1da177e4
LT
2592#undef STORE_FUNCTION
2593
e572ec7e
AV
2594#define CFQ_ATTR(name) \
2595 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2596
2597static struct elv_fs_entry cfq_attrs[] = {
2598 CFQ_ATTR(quantum),
e572ec7e
AV
2599 CFQ_ATTR(fifo_expire_sync),
2600 CFQ_ATTR(fifo_expire_async),
2601 CFQ_ATTR(back_seek_max),
2602 CFQ_ATTR(back_seek_penalty),
2603 CFQ_ATTR(slice_sync),
2604 CFQ_ATTR(slice_async),
2605 CFQ_ATTR(slice_async_rq),
2606 CFQ_ATTR(slice_idle),
e572ec7e 2607 __ATTR_NULL
1da177e4
LT
2608};
2609
1da177e4
LT
2610static struct elevator_type iosched_cfq = {
2611 .ops = {
2612 .elevator_merge_fn = cfq_merge,
2613 .elevator_merged_fn = cfq_merged_request,
2614 .elevator_merge_req_fn = cfq_merged_requests,
da775265 2615 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 2616 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 2617 .elevator_add_req_fn = cfq_insert_request,
b4878f24 2618 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
2619 .elevator_deactivate_req_fn = cfq_deactivate_request,
2620 .elevator_queue_empty_fn = cfq_queue_empty,
2621 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
2622 .elevator_former_req_fn = elv_rb_former_request,
2623 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
2624 .elevator_set_req_fn = cfq_set_request,
2625 .elevator_put_req_fn = cfq_put_request,
2626 .elevator_may_queue_fn = cfq_may_queue,
2627 .elevator_init_fn = cfq_init_queue,
2628 .elevator_exit_fn = cfq_exit_queue,
fc46379d 2629 .trim = cfq_free_io_context,
1da177e4 2630 },
3d1ab40f 2631 .elevator_attrs = cfq_attrs,
1da177e4
LT
2632 .elevator_name = "cfq",
2633 .elevator_owner = THIS_MODULE,
2634};
2635
2636static int __init cfq_init(void)
2637{
22e2c507
JA
2638 /*
2639 * could be 0 on HZ < 1000 setups
2640 */
2641 if (!cfq_slice_async)
2642 cfq_slice_async = 1;
2643 if (!cfq_slice_idle)
2644 cfq_slice_idle = 1;
2645
1da177e4
LT
2646 if (cfq_slab_setup())
2647 return -ENOMEM;
2648
2fdd82bd 2649 elv_register(&iosched_cfq);
1da177e4 2650
2fdd82bd 2651 return 0;
1da177e4
LT
2652}
2653
2654static void __exit cfq_exit(void)
2655{
6e9a4738 2656 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 2657 elv_unregister(&iosched_cfq);
334e94de 2658 ioc_gone = &all_gone;
fba82272
OH
2659 /* ioc_gone's update must be visible before reading ioc_count */
2660 smp_wmb();
d6de8be7
JA
2661
2662 /*
2663 * this also protects us from entering cfq_slab_kill() with
2664 * pending RCU callbacks
2665 */
4050cf16 2666 if (elv_ioc_count_read(ioc_count))
9a11b4ed 2667 wait_for_completion(&all_gone);
83521d3e 2668 cfq_slab_kill();
1da177e4
LT
2669}
2670
2671module_init(cfq_init);
2672module_exit(cfq_exit);
2673
2674MODULE_AUTHOR("Jens Axboe");
2675MODULE_LICENSE("GPL");
2676MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");